]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
Expensive selftests: torture testing for fix-it boundary conditions (PR c/82050)
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
cbe34bb5 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
23b2ce53 3
1322177d 4This file is part of GCC.
23b2ce53 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
23b2ce53 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
23b2ce53
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
23b2ce53
RS
19
20
21/* Middle-to-low level generation of rtx code and insns.
22
f822fcf7
KH
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
23b2ce53
RS
33
34#include "config.h"
670ee920 35#include "system.h"
4977bab6 36#include "coretypes.h"
4d0cdd0c 37#include "memmodel.h"
c7131fb2 38#include "backend.h"
957060b5 39#include "target.h"
23b2ce53 40#include "rtl.h"
957060b5 41#include "tree.h"
c7131fb2 42#include "df.h"
957060b5
AM
43#include "tm_p.h"
44#include "stringpool.h"
957060b5
AM
45#include "insn-config.h"
46#include "regs.h"
47#include "emit-rtl.h"
48#include "recog.h"
c7131fb2 49#include "diagnostic-core.h"
40e23961 50#include "alias.h"
40e23961 51#include "fold-const.h"
d8a2d370 52#include "varasm.h"
60393bbc 53#include "cfgrtl.h"
60393bbc 54#include "tree-eh.h"
36566b39 55#include "explow.h"
23b2ce53 56#include "expr.h"
b5b8b0ac 57#include "params.h"
9b2b7279 58#include "builtins.h"
9021b8ec 59#include "rtl-iter.h"
1f9ceff1 60#include "stor-layout.h"
ecf835e9 61#include "opts.h"
5fa396ad 62#include "predict.h"
ca695ac9 63
5fb0e246
RS
64struct target_rtl default_target_rtl;
65#if SWITCHABLE_TARGET
66struct target_rtl *this_target_rtl = &default_target_rtl;
67#endif
68
69#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
1d445e9e
ILT
71/* Commonly used modes. */
72
501623d4
RS
73scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
75scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 76
bd60bab2
JH
77/* Datastructures maintained for currently processed function in RTL form. */
78
3e029763 79struct rtl_data x_rtl;
bd60bab2
JH
80
81/* Indexed by pseudo register number, gives the rtx for that pseudo.
b8698a0f 82 Allocated in parallel with regno_pointer_align.
bd60bab2
JH
83 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
84 with length attribute nested in top level structures. */
85
86rtx * regno_reg_rtx;
23b2ce53
RS
87
88/* This is *not* reset after each function. It gives each CODE_LABEL
89 in the entire compilation a unique label number. */
90
044b4de3 91static GTY(()) int label_num = 1;
23b2ce53 92
23b2ce53
RS
93/* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
e7c82a99
JJ
95 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
96 is set only for MODE_INT and MODE_VECTOR_INT modes. */
23b2ce53 97
e7c82a99 98rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
23b2ce53 99
68d75312
JC
100rtx const_true_rtx;
101
23b2ce53
RS
102REAL_VALUE_TYPE dconst0;
103REAL_VALUE_TYPE dconst1;
104REAL_VALUE_TYPE dconst2;
105REAL_VALUE_TYPE dconstm1;
03f2ea93 106REAL_VALUE_TYPE dconsthalf;
23b2ce53 107
325217ed
CF
108/* Record fixed-point constant 0 and 1. */
109FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
23b2ce53
RS
112/* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
5da077de 117rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 118
ca4adc91
RS
119/* Standard pieces of rtx, to be substituted directly into things. */
120rtx pc_rtx;
121rtx ret_rtx;
122rtx simple_return_rtx;
123rtx cc0_rtx;
124
1476d1bd
MM
125/* Marker used for denoting an INSN, which should never be accessed (i.e.,
126 this pointer should normally never be dereferenced), but is required to be
127 distinct from NULL_RTX. Currently used by peephole2 pass. */
128rtx_insn *invalid_insn_rtx;
129
c13e8210
MM
130/* A hash table storing CONST_INTs whose absolute value is greater
131 than MAX_SAVED_CONST_INT. */
132
6c907cff 133struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
134{
135 typedef HOST_WIDE_INT compare_type;
136
137 static hashval_t hash (rtx i);
138 static bool equal (rtx i, HOST_WIDE_INT h);
139};
c13e8210 140
aebf76a2
TS
141static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
142
6c907cff 143struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
144{
145 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y);
147};
148
149static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
807e902e 150
a560d4d4 151/* A hash table storing register attribute structures. */
6c907cff 152struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
aebf76a2
TS
153{
154 static hashval_t hash (reg_attrs *x);
155 static bool equal (reg_attrs *a, reg_attrs *b);
156};
157
158static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
a560d4d4 159
5692c7bc 160/* A hash table storing all CONST_DOUBLEs. */
6c907cff 161struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
162{
163 static hashval_t hash (rtx x);
164 static bool equal (rtx x, rtx y);
165};
166
167static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
5692c7bc 168
091a3ac7 169/* A hash table storing all CONST_FIXEDs. */
6c907cff 170struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
171{
172 static hashval_t hash (rtx x);
173 static bool equal (rtx x, rtx y);
174};
175
176static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
091a3ac7 177
3e029763 178#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
b5b8b0ac 179#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
3e029763 180#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 181
5eb2a9f2 182static void set_used_decls (tree);
502b8322 183static void mark_label_nuses (rtx);
807e902e 184#if TARGET_SUPPORTS_WIDE_INT
807e902e
KZ
185static rtx lookup_const_wide_int (rtx);
186#endif
502b8322 187static rtx lookup_const_double (rtx);
091a3ac7 188static rtx lookup_const_fixed (rtx);
502b8322 189static reg_attrs *get_reg_attrs (tree, int);
ef4bddc2 190static rtx gen_const_vector (machine_mode, int);
32b32b16 191static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 192
5fa396ad
JH
193/* Probability of the conditional branch currently proceeded by try_split. */
194profile_probability split_branch_probability;
ca695ac9 195\f
c13e8210
MM
196/* Returns a hash code for X (which is a really a CONST_INT). */
197
aebf76a2
TS
198hashval_t
199const_int_hasher::hash (rtx x)
c13e8210 200{
aebf76a2 201 return (hashval_t) INTVAL (x);
c13e8210
MM
202}
203
cc2902df 204/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
205 CONST_INT) is the same as that given by Y (which is really a
206 HOST_WIDE_INT *). */
207
aebf76a2
TS
208bool
209const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
c13e8210 210{
aebf76a2 211 return (INTVAL (x) == y);
5692c7bc
ZW
212}
213
807e902e
KZ
214#if TARGET_SUPPORTS_WIDE_INT
215/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
216
aebf76a2
TS
217hashval_t
218const_wide_int_hasher::hash (rtx x)
807e902e
KZ
219{
220 int i;
d7ca26e4 221 unsigned HOST_WIDE_INT hash = 0;
aebf76a2 222 const_rtx xr = x;
807e902e
KZ
223
224 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
225 hash += CONST_WIDE_INT_ELT (xr, i);
226
227 return (hashval_t) hash;
228}
229
230/* Returns nonzero if the value represented by X (which is really a
231 CONST_WIDE_INT) is the same as that given by Y (which is really a
232 CONST_WIDE_INT). */
233
aebf76a2
TS
234bool
235const_wide_int_hasher::equal (rtx x, rtx y)
807e902e
KZ
236{
237 int i;
aebf76a2
TS
238 const_rtx xr = x;
239 const_rtx yr = y;
807e902e 240 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
aebf76a2 241 return false;
807e902e
KZ
242
243 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
244 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
aebf76a2 245 return false;
807e902e 246
aebf76a2 247 return true;
807e902e
KZ
248}
249#endif
250
5692c7bc 251/* Returns a hash code for X (which is really a CONST_DOUBLE). */
aebf76a2
TS
252hashval_t
253const_double_hasher::hash (rtx x)
5692c7bc 254{
aebf76a2 255 const_rtx const value = x;
46b33600 256 hashval_t h;
5692c7bc 257
807e902e 258 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
46b33600
RH
259 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
260 else
fe352c29 261 {
15c812e3 262 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
263 /* MODE is used in the comparison, so it should be in the hash. */
264 h ^= GET_MODE (value);
265 }
5692c7bc
ZW
266 return h;
267}
268
cc2902df 269/* Returns nonzero if the value represented by X (really a ...)
5692c7bc 270 is the same as that represented by Y (really a ...) */
aebf76a2
TS
271bool
272const_double_hasher::equal (rtx x, rtx y)
5692c7bc 273{
aebf76a2 274 const_rtx const a = x, b = y;
5692c7bc
ZW
275
276 if (GET_MODE (a) != GET_MODE (b))
277 return 0;
807e902e 278 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
8580f7a0
RH
279 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
280 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
281 else
282 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
283 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
284}
285
091a3ac7
CF
286/* Returns a hash code for X (which is really a CONST_FIXED). */
287
aebf76a2
TS
288hashval_t
289const_fixed_hasher::hash (rtx x)
091a3ac7 290{
aebf76a2 291 const_rtx const value = x;
091a3ac7
CF
292 hashval_t h;
293
294 h = fixed_hash (CONST_FIXED_VALUE (value));
295 /* MODE is used in the comparison, so it should be in the hash. */
296 h ^= GET_MODE (value);
297 return h;
298}
299
aebf76a2
TS
300/* Returns nonzero if the value represented by X is the same as that
301 represented by Y. */
091a3ac7 302
aebf76a2
TS
303bool
304const_fixed_hasher::equal (rtx x, rtx y)
091a3ac7 305{
aebf76a2 306 const_rtx const a = x, b = y;
091a3ac7
CF
307
308 if (GET_MODE (a) != GET_MODE (b))
309 return 0;
310 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
311}
312
f12144dd 313/* Return true if the given memory attributes are equal. */
c13e8210 314
96b3c03f 315bool
f12144dd 316mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
c13e8210 317{
96b3c03f
RB
318 if (p == q)
319 return true;
320 if (!p || !q)
321 return false;
754c3d5d
RS
322 return (p->alias == q->alias
323 && p->offset_known_p == q->offset_known_p
324 && (!p->offset_known_p || p->offset == q->offset)
325 && p->size_known_p == q->size_known_p
326 && (!p->size_known_p || p->size == q->size)
327 && p->align == q->align
09e881c9 328 && p->addrspace == q->addrspace
78b76d08
SB
329 && (p->expr == q->expr
330 || (p->expr != NULL_TREE && q->expr != NULL_TREE
331 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
332}
333
f12144dd 334/* Set MEM's memory attributes so that they are the same as ATTRS. */
10b76d73 335
f12144dd
RS
336static void
337set_mem_attrs (rtx mem, mem_attrs *attrs)
338{
f12144dd
RS
339 /* If everything is the default, we can just clear the attributes. */
340 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
341 {
342 MEM_ATTRS (mem) = 0;
343 return;
344 }
173b24b9 345
84053e02
RB
346 if (!MEM_ATTRS (mem)
347 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
173b24b9 348 {
766090c2 349 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
84053e02 350 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
173b24b9 351 }
c13e8210
MM
352}
353
a560d4d4
JH
354/* Returns a hash code for X (which is a really a reg_attrs *). */
355
aebf76a2
TS
356hashval_t
357reg_attr_hasher::hash (reg_attrs *x)
a560d4d4 358{
aebf76a2 359 const reg_attrs *const p = x;
a560d4d4 360
9841210f 361 return ((p->offset * 1000) ^ (intptr_t) p->decl);
a560d4d4
JH
362}
363
aebf76a2
TS
364/* Returns nonzero if the value represented by X is the same as that given by
365 Y. */
a560d4d4 366
aebf76a2
TS
367bool
368reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
a560d4d4 369{
aebf76a2
TS
370 const reg_attrs *const p = x;
371 const reg_attrs *const q = y;
a560d4d4
JH
372
373 return (p->decl == q->decl && p->offset == q->offset);
374}
375/* Allocate a new reg_attrs structure and insert it into the hash table if
376 one identical to it is not already in the table. We are doing this for
377 MEM of mode MODE. */
378
379static reg_attrs *
502b8322 380get_reg_attrs (tree decl, int offset)
a560d4d4
JH
381{
382 reg_attrs attrs;
a560d4d4
JH
383
384 /* If everything is the default, we can just return zero. */
385 if (decl == 0 && offset == 0)
386 return 0;
387
388 attrs.decl = decl;
389 attrs.offset = offset;
390
aebf76a2 391 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
a560d4d4
JH
392 if (*slot == 0)
393 {
766090c2 394 *slot = ggc_alloc<reg_attrs> ();
a560d4d4
JH
395 memcpy (*slot, &attrs, sizeof (reg_attrs));
396 }
397
aebf76a2 398 return *slot;
a560d4d4
JH
399}
400
6fb5fa3c
DB
401
402#if !HAVE_blockage
adddc347
HPN
403/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
404 and to block register equivalences to be seen across this insn. */
6fb5fa3c
DB
405
406rtx
407gen_blockage (void)
408{
409 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
410 MEM_VOLATILE_P (x) = true;
411 return x;
412}
413#endif
414
415
8deccbb7
RS
416/* Set the mode and register number of X to MODE and REGNO. */
417
418void
419set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
420{
9188b286 421 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
ad474626 422 ? hard_regno_nregs (regno, mode)
9188b286 423 : 1);
8deccbb7 424 PUT_MODE_RAW (x, mode);
9188b286 425 set_regno_raw (x, regno, nregs);
8deccbb7
RS
426}
427
08394eef
BS
428/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
429 don't attempt to share with the various global pieces of rtl (such as
430 frame_pointer_rtx). */
431
432rtx
8deccbb7 433gen_raw_REG (machine_mode mode, unsigned int regno)
08394eef 434{
84c2ad23 435 rtx x = rtx_alloc (REG MEM_STAT_INFO);
8deccbb7 436 set_mode_and_regno (x, mode, regno);
9fccb335 437 REG_ATTRS (x) = NULL;
08394eef
BS
438 ORIGINAL_REGNO (x) = regno;
439 return x;
440}
441
c5c76735
JL
442/* There are some RTL codes that require special attention; the generation
443 functions do the raw handling. If you add to this list, modify
444 special_rtx in gengenrtl.c as well. */
445
38e60c55 446rtx_expr_list *
ef4bddc2 447gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
38e60c55
DM
448{
449 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
450 expr_list));
451}
452
a756c6be 453rtx_insn_list *
ef4bddc2 454gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
a756c6be
DM
455{
456 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
457 insn_list));
458}
459
d6e1e8b8 460rtx_insn *
ef4bddc2 461gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
d6e1e8b8
DM
462 basic_block bb, rtx pattern, int location, int code,
463 rtx reg_notes)
464{
465 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
466 prev_insn, next_insn,
467 bb, pattern, location, code,
468 reg_notes));
469}
470
3b80f6ca 471rtx
ef4bddc2 472gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca
RH
473{
474 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 475 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
476
477#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
478 if (const_true_rtx && arg == STORE_FLAG_VALUE)
479 return const_true_rtx;
480#endif
481
c13e8210 482 /* Look up the CONST_INT in the hash table. */
aebf76a2
TS
483 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
484 INSERT);
29105cea 485 if (*slot == 0)
1f8f4a0b 486 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210 487
aebf76a2 488 return *slot;
3b80f6ca
RH
489}
490
2496c7bd 491rtx
ef4bddc2 492gen_int_mode (HOST_WIDE_INT c, machine_mode mode)
2496c7bd
LB
493{
494 return GEN_INT (trunc_int_for_mode (c, mode));
495}
496
5692c7bc
ZW
497/* CONST_DOUBLEs might be created from pairs of integers, or from
498 REAL_VALUE_TYPEs. Also, their length is known only at run time,
499 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
500
501/* Determine whether REAL, a CONST_DOUBLE, already exists in the
502 hash table. If so, return its counterpart; otherwise add it
503 to the hash table and return it. */
504static rtx
502b8322 505lookup_const_double (rtx real)
5692c7bc 506{
aebf76a2 507 rtx *slot = const_double_htab->find_slot (real, INSERT);
5692c7bc
ZW
508 if (*slot == 0)
509 *slot = real;
510
aebf76a2 511 return *slot;
5692c7bc 512}
29105cea 513
5692c7bc
ZW
514/* Return a CONST_DOUBLE rtx for a floating-point value specified by
515 VALUE in mode MODE. */
0133b7d9 516rtx
ef4bddc2 517const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
0133b7d9 518{
5692c7bc
ZW
519 rtx real = rtx_alloc (CONST_DOUBLE);
520 PUT_MODE (real, mode);
521
9e254451 522 real->u.rv = value;
5692c7bc
ZW
523
524 return lookup_const_double (real);
525}
526
091a3ac7
CF
527/* Determine whether FIXED, a CONST_FIXED, already exists in the
528 hash table. If so, return its counterpart; otherwise add it
529 to the hash table and return it. */
530
531static rtx
532lookup_const_fixed (rtx fixed)
533{
aebf76a2 534 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
091a3ac7
CF
535 if (*slot == 0)
536 *slot = fixed;
537
aebf76a2 538 return *slot;
091a3ac7
CF
539}
540
541/* Return a CONST_FIXED rtx for a fixed-point value specified by
542 VALUE in mode MODE. */
543
544rtx
ef4bddc2 545const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
091a3ac7
CF
546{
547 rtx fixed = rtx_alloc (CONST_FIXED);
548 PUT_MODE (fixed, mode);
549
550 fixed->u.fv = value;
551
552 return lookup_const_fixed (fixed);
553}
554
807e902e 555#if TARGET_SUPPORTS_WIDE_INT == 0
3e93ff81
AS
556/* Constructs double_int from rtx CST. */
557
558double_int
559rtx_to_double_int (const_rtx cst)
560{
561 double_int r;
562
563 if (CONST_INT_P (cst))
27bcd47c 564 r = double_int::from_shwi (INTVAL (cst));
48175537 565 else if (CONST_DOUBLE_AS_INT_P (cst))
3e93ff81
AS
566 {
567 r.low = CONST_DOUBLE_LOW (cst);
568 r.high = CONST_DOUBLE_HIGH (cst);
569 }
570 else
571 gcc_unreachable ();
572
573 return r;
574}
807e902e 575#endif
3e93ff81 576
807e902e
KZ
577#if TARGET_SUPPORTS_WIDE_INT
578/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
579 If so, return its counterpart; otherwise add it to the hash table and
580 return it. */
3e93ff81 581
807e902e
KZ
582static rtx
583lookup_const_wide_int (rtx wint)
584{
aebf76a2 585 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
807e902e
KZ
586 if (*slot == 0)
587 *slot = wint;
588
aebf76a2 589 return *slot;
807e902e
KZ
590}
591#endif
592
593/* Return an rtx constant for V, given that the constant has mode MODE.
594 The returned rtx will be a CONST_INT if V fits, otherwise it will be
595 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
596 (if TARGET_SUPPORTS_WIDE_INT). */
54fb1ae0
AS
597
598rtx
ef4bddc2 599immed_wide_int_const (const wide_int_ref &v, machine_mode mode)
54fb1ae0 600{
807e902e 601 unsigned int len = v.get_len ();
db61b7f9
RS
602 /* Not scalar_int_mode because we also allow pointer bound modes. */
603 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
807e902e
KZ
604
605 /* Allow truncation but not extension since we do not know if the
606 number is signed or unsigned. */
607 gcc_assert (prec <= v.get_precision ());
608
609 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
610 return gen_int_mode (v.elt (0), mode);
611
612#if TARGET_SUPPORTS_WIDE_INT
613 {
614 unsigned int i;
615 rtx value;
616 unsigned int blocks_needed
617 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
618
619 if (len > blocks_needed)
620 len = blocks_needed;
621
622 value = const_wide_int_alloc (len);
623
624 /* It is so tempting to just put the mode in here. Must control
625 myself ... */
626 PUT_MODE (value, VOIDmode);
627 CWI_PUT_NUM_ELEM (value, len);
628
629 for (i = 0; i < len; i++)
630 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
631
632 return lookup_const_wide_int (value);
633 }
634#else
635 return immed_double_const (v.elt (0), v.elt (1), mode);
636#endif
54fb1ae0
AS
637}
638
807e902e 639#if TARGET_SUPPORTS_WIDE_INT == 0
5692c7bc
ZW
640/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
641 of ints: I0 is the low-order word and I1 is the high-order word.
49ab6098 642 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
929e10f4
MS
643 implied upper bits are copies of the high bit of i1. The value
644 itself is neither signed nor unsigned. Do not use this routine for
645 non-integer modes; convert to REAL_VALUE_TYPE and use
555affd7 646 const_double_from_real_value. */
5692c7bc
ZW
647
648rtx
ef4bddc2 649immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
5692c7bc
ZW
650{
651 rtx value;
652 unsigned int i;
653
65acccdd 654 /* There are the following cases (note that there are no modes with
49ab6098 655 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
65acccdd
ZD
656
657 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
658 gen_int_mode.
929e10f4
MS
659 2) If the value of the integer fits into HOST_WIDE_INT anyway
660 (i.e., i1 consists only from copies of the sign bit, and sign
661 of i0 and i1 are the same), then we return a CONST_INT for i0.
65acccdd 662 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
db61b7f9
RS
663 scalar_mode smode;
664 if (is_a <scalar_mode> (mode, &smode)
665 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
666 return gen_int_mode (i0, mode);
5692c7bc
ZW
667
668 /* If this integer fits in one word, return a CONST_INT. */
669 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
670 return GEN_INT (i0);
671
672 /* We use VOIDmode for integers. */
673 value = rtx_alloc (CONST_DOUBLE);
674 PUT_MODE (value, VOIDmode);
675
676 CONST_DOUBLE_LOW (value) = i0;
677 CONST_DOUBLE_HIGH (value) = i1;
678
679 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
680 XWINT (value, i) = 0;
681
682 return lookup_const_double (value);
0133b7d9 683}
807e902e 684#endif
0133b7d9 685
3b80f6ca 686rtx
ef4bddc2 687gen_rtx_REG (machine_mode mode, unsigned int regno)
3b80f6ca
RH
688{
689 /* In case the MD file explicitly references the frame pointer, have
690 all such references point to the same frame pointer. This is
691 used during frame pointer elimination to distinguish the explicit
692 references to these registers from pseudos that happened to be
693 assigned to them.
694
695 If we have eliminated the frame pointer or arg pointer, we will
696 be using it as a normal register, for example as a spill
697 register. In such cases, we might be accessing it in a mode that
698 is not Pmode and therefore cannot use the pre-allocated rtx.
699
700 Also don't do this when we are making new REGs in reload, since
701 we don't want to get confused with the real pointers. */
702
55a2c322 703 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3b80f6ca 704 {
e10c79fe
LB
705 if (regno == FRAME_POINTER_REGNUM
706 && (!reload_completed || frame_pointer_needed))
3b80f6ca 707 return frame_pointer_rtx;
c3e08036
TS
708
709 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
710 && regno == HARD_FRAME_POINTER_REGNUM
e10c79fe 711 && (!reload_completed || frame_pointer_needed))
3b80f6ca 712 return hard_frame_pointer_rtx;
3f393fc6
TS
713#if !HARD_FRAME_POINTER_IS_ARG_POINTER
714 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
715 && regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
716 return arg_pointer_rtx;
717#endif
718#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 719 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
720 return return_address_pointer_rtx;
721#endif
fc555370 722 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
bf9412cd 723 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
2d67bd7b 724 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 725 return pic_offset_table_rtx;
bcb33994 726 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
727 return stack_pointer_rtx;
728 }
729
006a94b0 730#if 0
6cde4876 731 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
732 an existing entry in that table to avoid useless generation of RTL.
733
734 This code is disabled for now until we can fix the various backends
735 which depend on having non-shared hard registers in some cases. Long
736 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
737 on the amount of useless RTL that gets generated.
738
739 We'll also need to fix some code that runs after reload that wants to
740 set ORIGINAL_REGNO. */
741
6cde4876
JL
742 if (cfun
743 && cfun->emit
744 && regno_reg_rtx
745 && regno < FIRST_PSEUDO_REGISTER
746 && reg_raw_mode[regno] == mode)
747 return regno_reg_rtx[regno];
006a94b0 748#endif
6cde4876 749
08394eef 750 return gen_raw_REG (mode, regno);
3b80f6ca
RH
751}
752
41472af8 753rtx
ef4bddc2 754gen_rtx_MEM (machine_mode mode, rtx addr)
41472af8
MM
755{
756 rtx rt = gen_rtx_raw_MEM (mode, addr);
757
758 /* This field is not cleared by the mere allocation of the rtx, so
759 we clear it here. */
173b24b9 760 MEM_ATTRS (rt) = 0;
41472af8
MM
761
762 return rt;
763}
ddef6bc7 764
542a8afa
RH
765/* Generate a memory referring to non-trapping constant memory. */
766
767rtx
ef4bddc2 768gen_const_mem (machine_mode mode, rtx addr)
542a8afa
RH
769{
770 rtx mem = gen_rtx_MEM (mode, addr);
771 MEM_READONLY_P (mem) = 1;
772 MEM_NOTRAP_P (mem) = 1;
773 return mem;
774}
775
bf877a76
R
776/* Generate a MEM referring to fixed portions of the frame, e.g., register
777 save areas. */
778
779rtx
ef4bddc2 780gen_frame_mem (machine_mode mode, rtx addr)
bf877a76
R
781{
782 rtx mem = gen_rtx_MEM (mode, addr);
783 MEM_NOTRAP_P (mem) = 1;
784 set_mem_alias_set (mem, get_frame_alias_set ());
785 return mem;
786}
787
788/* Generate a MEM referring to a temporary use of the stack, not part
789 of the fixed stack frame. For example, something which is pushed
790 by a target splitter. */
791rtx
ef4bddc2 792gen_tmp_stack_mem (machine_mode mode, rtx addr)
bf877a76
R
793{
794 rtx mem = gen_rtx_MEM (mode, addr);
795 MEM_NOTRAP_P (mem) = 1;
e3b5732b 796 if (!cfun->calls_alloca)
bf877a76
R
797 set_mem_alias_set (mem, get_frame_alias_set ());
798 return mem;
799}
800
beb72684
RH
801/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
802 this construct would be valid, and false otherwise. */
803
804bool
ef4bddc2 805validate_subreg (machine_mode omode, machine_mode imode,
ed7a4b4b 806 const_rtx reg, unsigned int offset)
ddef6bc7 807{
beb72684
RH
808 unsigned int isize = GET_MODE_SIZE (imode);
809 unsigned int osize = GET_MODE_SIZE (omode);
810
811 /* All subregs must be aligned. */
812 if (offset % osize != 0)
813 return false;
814
815 /* The subreg offset cannot be outside the inner object. */
816 if (offset >= isize)
817 return false;
818
1eae67f8
RS
819 unsigned int regsize = REGMODE_NATURAL_SIZE (imode);
820
beb72684
RH
821 /* ??? This should not be here. Temporarily continue to allow word_mode
822 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
823 Generally, backends are doing something sketchy but it'll take time to
824 fix them all. */
825 if (omode == word_mode)
826 ;
827 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
828 is the culprit here, and not the backends. */
1eae67f8 829 else if (osize >= regsize && isize >= osize)
beb72684
RH
830 ;
831 /* Allow component subregs of complex and vector. Though given the below
832 extraction rules, it's not always clear what that means. */
833 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
834 && GET_MODE_INNER (imode) == omode)
835 ;
836 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
837 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
838 represent this. It's questionable if this ought to be represented at
839 all -- why can't this all be hidden in post-reload splitters that make
840 arbitrarily mode changes to the registers themselves. */
841 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
842 ;
843 /* Subregs involving floating point modes are not allowed to
844 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
845 (subreg:SI (reg:DF) 0) isn't. */
846 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
847 {
55a2c322
VM
848 if (! (isize == osize
849 /* LRA can use subreg to store a floating point value in
850 an integer mode. Although the floating point and the
851 integer modes need the same number of hard registers,
852 the size of floating point mode can be less than the
853 integer mode. LRA also uses subregs for a register
854 should be used in different mode in on insn. */
855 || lra_in_progress))
beb72684
RH
856 return false;
857 }
ddef6bc7 858
beb72684
RH
859 /* Paradoxical subregs must have offset zero. */
860 if (osize > isize)
861 return offset == 0;
862
863 /* This is a normal subreg. Verify that the offset is representable. */
864
865 /* For hard registers, we already have most of these rules collected in
866 subreg_offset_representable_p. */
867 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
868 {
869 unsigned int regno = REGNO (reg);
870
beb72684
RH
871 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
872 && GET_MODE_INNER (imode) == omode)
873 ;
0d803030 874 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
beb72684 875 return false;
beb72684
RH
876
877 return subreg_offset_representable_p (regno, imode, offset, omode);
878 }
879
880 /* For pseudo registers, we want most of the same checks. Namely:
1eae67f8
RS
881
882 Assume that the pseudo register will be allocated to hard registers
883 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
884 the remainder must correspond to the lowpart of the containing hard
885 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
886 otherwise it is at the lowest offset.
887
888 Given that we've already checked the mode and offset alignment,
889 we only have to check subblock subregs here. */
890 if (osize < regsize
55a2c322 891 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
beb72684 892 {
1eae67f8
RS
893 unsigned int block_size = MIN (isize, regsize);
894 unsigned int offset_within_block = offset % block_size;
895 if (BYTES_BIG_ENDIAN
896 ? offset_within_block != block_size - osize
897 : offset_within_block != 0)
beb72684
RH
898 return false;
899 }
900 return true;
901}
902
903rtx
ef4bddc2 904gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset)
beb72684
RH
905{
906 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 907 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
908}
909
173b24b9
RK
910/* Generate a SUBREG representing the least-significant part of REG if MODE
911 is smaller than mode of REG, otherwise paradoxical SUBREG. */
912
ddef6bc7 913rtx
ef4bddc2 914gen_lowpart_SUBREG (machine_mode mode, rtx reg)
ddef6bc7 915{
ef4bddc2 916 machine_mode inmode;
ddef6bc7
JJ
917
918 inmode = GET_MODE (reg);
919 if (inmode == VOIDmode)
920 inmode = mode;
e0e08ac2
JH
921 return gen_rtx_SUBREG (mode, reg,
922 subreg_lowpart_offset (mode, inmode));
ddef6bc7 923}
fcc74520
RS
924
925rtx
ef4bddc2 926gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
fcc74520
RS
927 enum var_init_status status)
928{
929 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
930 PAT_VAR_LOCATION_STATUS (x) = status;
931 return x;
932}
c5c76735 933\f
23b2ce53 934
80379f51
PB
935/* Create an rtvec and stores within it the RTXen passed in the arguments. */
936
23b2ce53 937rtvec
e34d07f2 938gen_rtvec (int n, ...)
23b2ce53 939{
80379f51
PB
940 int i;
941 rtvec rt_val;
e34d07f2 942 va_list p;
23b2ce53 943
e34d07f2 944 va_start (p, n);
23b2ce53 945
80379f51 946 /* Don't allocate an empty rtvec... */
23b2ce53 947 if (n == 0)
0edf1bb2
JL
948 {
949 va_end (p);
950 return NULL_RTVEC;
951 }
23b2ce53 952
80379f51 953 rt_val = rtvec_alloc (n);
4f90e4a0 954
23b2ce53 955 for (i = 0; i < n; i++)
80379f51 956 rt_val->elem[i] = va_arg (p, rtx);
6268b922 957
e34d07f2 958 va_end (p);
80379f51 959 return rt_val;
23b2ce53
RS
960}
961
962rtvec
502b8322 963gen_rtvec_v (int n, rtx *argp)
23b2ce53 964{
b3694847
SS
965 int i;
966 rtvec rt_val;
23b2ce53 967
80379f51 968 /* Don't allocate an empty rtvec... */
23b2ce53 969 if (n == 0)
80379f51 970 return NULL_RTVEC;
23b2ce53 971
80379f51 972 rt_val = rtvec_alloc (n);
23b2ce53
RS
973
974 for (i = 0; i < n; i++)
8f985ec4 975 rt_val->elem[i] = *argp++;
23b2ce53
RS
976
977 return rt_val;
978}
e6eda746
DM
979
980rtvec
981gen_rtvec_v (int n, rtx_insn **argp)
982{
983 int i;
984 rtvec rt_val;
985
986 /* Don't allocate an empty rtvec... */
987 if (n == 0)
988 return NULL_RTVEC;
989
990 rt_val = rtvec_alloc (n);
991
992 for (i = 0; i < n; i++)
993 rt_val->elem[i] = *argp++;
994
995 return rt_val;
996}
997
23b2ce53 998\f
38ae7651
RS
999/* Return the number of bytes between the start of an OUTER_MODE
1000 in-memory value and the start of an INNER_MODE in-memory value,
1001 given that the former is a lowpart of the latter. It may be a
1002 paradoxical lowpart, in which case the offset will be negative
1003 on big-endian targets. */
1004
1005int
ef4bddc2
RS
1006byte_lowpart_offset (machine_mode outer_mode,
1007 machine_mode inner_mode)
38ae7651 1008{
03a95621 1009 if (paradoxical_subreg_p (outer_mode, inner_mode))
38ae7651 1010 return -subreg_lowpart_offset (inner_mode, outer_mode);
03a95621
RS
1011 else
1012 return subreg_lowpart_offset (outer_mode, inner_mode);
38ae7651 1013}
3d09ba95
RS
1014
1015/* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1016 from address X. For paradoxical big-endian subregs this is a
1017 negative value, otherwise it's the same as OFFSET. */
1018
1019int
1020subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1021 unsigned int offset)
1022{
1023 if (paradoxical_subreg_p (outer_mode, inner_mode))
1024 {
1025 gcc_assert (offset == 0);
1026 return -subreg_lowpart_offset (inner_mode, outer_mode);
1027 }
1028 return offset;
1029}
1030
1031/* As above, but return the offset that existing subreg X would have
1032 if SUBREG_REG (X) were stored in memory. The only significant thing
1033 about the current SUBREG_REG is its mode. */
1034
1035int
1036subreg_memory_offset (const_rtx x)
1037{
1038 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1039 SUBREG_BYTE (x));
1040}
38ae7651 1041\f
23b2ce53
RS
1042/* Generate a REG rtx for a new pseudo register of mode MODE.
1043 This pseudo is assigned the next sequential register number. */
1044
1045rtx
ef4bddc2 1046gen_reg_rtx (machine_mode mode)
23b2ce53 1047{
b3694847 1048 rtx val;
2e3f842f 1049 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 1050
f8335a4f 1051 gcc_assert (can_create_pseudo_p ());
23b2ce53 1052
2e3f842f
L
1053 /* If a virtual register with bigger mode alignment is generated,
1054 increase stack alignment estimation because it might be spilled
1055 to stack later. */
b8698a0f 1056 if (SUPPORTS_STACK_ALIGNMENT
2e3f842f
L
1057 && crtl->stack_alignment_estimated < align
1058 && !crtl->stack_realign_processed)
ae58e548
JJ
1059 {
1060 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1061 if (crtl->stack_alignment_estimated < min_align)
1062 crtl->stack_alignment_estimated = min_align;
1063 }
2e3f842f 1064
1b3d8f8a
GK
1065 if (generating_concat_p
1066 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1067 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
1068 {
1069 /* For complex modes, don't make a single pseudo.
1070 Instead, make a CONCAT of two pseudos.
1071 This allows noncontiguous allocation of the real and imaginary parts,
1072 which makes much better code. Besides, allocating DCmode
1073 pseudos overstrains reload on some machines like the 386. */
1074 rtx realpart, imagpart;
ef4bddc2 1075 machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
1076
1077 realpart = gen_reg_rtx (partmode);
1078 imagpart = gen_reg_rtx (partmode);
3b80f6ca 1079 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
1080 }
1081
004a7e45
UB
1082 /* Do not call gen_reg_rtx with uninitialized crtl. */
1083 gcc_assert (crtl->emit.regno_pointer_align_length);
1084
f44986d7
DM
1085 crtl->emit.ensure_regno_capacity ();
1086 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
23b2ce53 1087
f44986d7
DM
1088 val = gen_raw_REG (mode, reg_rtx_no);
1089 regno_reg_rtx[reg_rtx_no++] = val;
1090 return val;
1091}
0d4903b8 1092
f44986d7
DM
1093/* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1094 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
49ad7cfa 1095
f44986d7
DM
1096void
1097emit_status::ensure_regno_capacity ()
1098{
1099 int old_size = regno_pointer_align_length;
23b2ce53 1100
f44986d7
DM
1101 if (reg_rtx_no < old_size)
1102 return;
23b2ce53 1103
f44986d7
DM
1104 int new_size = old_size * 2;
1105 while (reg_rtx_no >= new_size)
1106 new_size *= 2;
1107
1108 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1109 memset (tmp + old_size, 0, new_size - old_size);
1110 regno_pointer_align = (unsigned char *) tmp;
1111
1112 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1113 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1114 regno_reg_rtx = new1;
1115
1116 crtl->emit.regno_pointer_align_length = new_size;
23b2ce53
RS
1117}
1118
a698cc03
JL
1119/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1120
1121bool
1122reg_is_parm_p (rtx reg)
1123{
1124 tree decl;
1125
1126 gcc_assert (REG_P (reg));
1127 decl = REG_EXPR (reg);
1128 return (decl && TREE_CODE (decl) == PARM_DECL);
1129}
1130
38ae7651
RS
1131/* Update NEW with the same attributes as REG, but with OFFSET added
1132 to the REG_OFFSET. */
a560d4d4 1133
e53a16e7 1134static void
60564289 1135update_reg_offset (rtx new_rtx, rtx reg, int offset)
a560d4d4 1136{
60564289 1137 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
502b8322 1138 REG_OFFSET (reg) + offset);
e53a16e7
ILT
1139}
1140
38ae7651
RS
1141/* Generate a register with same attributes as REG, but with OFFSET
1142 added to the REG_OFFSET. */
e53a16e7
ILT
1143
1144rtx
ef4bddc2 1145gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
e53a16e7
ILT
1146 int offset)
1147{
60564289 1148 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 1149
60564289
KG
1150 update_reg_offset (new_rtx, reg, offset);
1151 return new_rtx;
e53a16e7
ILT
1152}
1153
1154/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 1155 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
1156
1157rtx
ef4bddc2 1158gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
e53a16e7 1159{
60564289 1160 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 1161
60564289
KG
1162 update_reg_offset (new_rtx, reg, offset);
1163 return new_rtx;
a560d4d4
JH
1164}
1165
38ae7651
RS
1166/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1167 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
1168
1169void
ef4bddc2 1170adjust_reg_mode (rtx reg, machine_mode mode)
a560d4d4 1171{
38ae7651
RS
1172 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1173 PUT_MODE (reg, mode);
1174}
1175
1176/* Copy REG's attributes from X, if X has any attributes. If REG and X
1177 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1178
1179void
1180set_reg_attrs_from_value (rtx reg, rtx x)
1181{
1182 int offset;
de6f3f7a
L
1183 bool can_be_reg_pointer = true;
1184
1185 /* Don't call mark_reg_pointer for incompatible pointer sign
1186 extension. */
1187 while (GET_CODE (x) == SIGN_EXTEND
1188 || GET_CODE (x) == ZERO_EXTEND
1189 || GET_CODE (x) == TRUNCATE
1190 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1191 {
2a870875
RS
1192#if defined(POINTERS_EXTEND_UNSIGNED)
1193 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
8d8e740c
BE
1194 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1195 || (paradoxical_subreg_p (x)
1196 && ! (SUBREG_PROMOTED_VAR_P (x)
1197 && SUBREG_CHECK_PROMOTED_SIGN (x,
1198 POINTERS_EXTEND_UNSIGNED))))
2a870875 1199 && !targetm.have_ptr_extend ())
de6f3f7a
L
1200 can_be_reg_pointer = false;
1201#endif
1202 x = XEXP (x, 0);
1203 }
38ae7651 1204
923ba36f
JJ
1205 /* Hard registers can be reused for multiple purposes within the same
1206 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1207 on them is wrong. */
1208 if (HARD_REGISTER_P (reg))
1209 return;
1210
38ae7651 1211 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
1212 if (MEM_P (x))
1213 {
527210c4
RS
1214 if (MEM_OFFSET_KNOWN_P (x))
1215 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1216 MEM_OFFSET (x) + offset);
de6f3f7a 1217 if (can_be_reg_pointer && MEM_POINTER (x))
0a317111 1218 mark_reg_pointer (reg, 0);
46b71b03
PB
1219 }
1220 else if (REG_P (x))
1221 {
1222 if (REG_ATTRS (x))
1223 update_reg_offset (reg, x, offset);
de6f3f7a 1224 if (can_be_reg_pointer && REG_POINTER (x))
46b71b03
PB
1225 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1226 }
1227}
1228
1229/* Generate a REG rtx for a new pseudo register, copying the mode
1230 and attributes from X. */
1231
1232rtx
1233gen_reg_rtx_and_attrs (rtx x)
1234{
1235 rtx reg = gen_reg_rtx (GET_MODE (x));
1236 set_reg_attrs_from_value (reg, x);
1237 return reg;
a560d4d4
JH
1238}
1239
9d18e06b
JZ
1240/* Set the register attributes for registers contained in PARM_RTX.
1241 Use needed values from memory attributes of MEM. */
1242
1243void
502b8322 1244set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1245{
f8cfc6aa 1246 if (REG_P (parm_rtx))
38ae7651 1247 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1248 else if (GET_CODE (parm_rtx) == PARALLEL)
1249 {
1250 /* Check for a NULL entry in the first slot, used to indicate that the
1251 parameter goes both on the stack and in registers. */
1252 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1253 for (; i < XVECLEN (parm_rtx, 0); i++)
1254 {
1255 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1256 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1257 REG_ATTRS (XEXP (x, 0))
1258 = get_reg_attrs (MEM_EXPR (mem),
1259 INTVAL (XEXP (x, 1)));
1260 }
1261 }
1262}
1263
38ae7651
RS
1264/* Set the REG_ATTRS for registers in value X, given that X represents
1265 decl T. */
a560d4d4 1266
4e3825db 1267void
38ae7651
RS
1268set_reg_attrs_for_decl_rtl (tree t, rtx x)
1269{
1f9ceff1
AO
1270 if (!t)
1271 return;
1272 tree tdecl = t;
38ae7651 1273 if (GET_CODE (x) == SUBREG)
fbe6ec81 1274 {
38ae7651
RS
1275 gcc_assert (subreg_lowpart_p (x));
1276 x = SUBREG_REG (x);
fbe6ec81 1277 }
f8cfc6aa 1278 if (REG_P (x))
38ae7651
RS
1279 REG_ATTRS (x)
1280 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1f9ceff1
AO
1281 DECL_P (tdecl)
1282 ? DECL_MODE (tdecl)
1283 : TYPE_MODE (TREE_TYPE (tdecl))));
a560d4d4
JH
1284 if (GET_CODE (x) == CONCAT)
1285 {
1286 if (REG_P (XEXP (x, 0)))
1287 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1288 if (REG_P (XEXP (x, 1)))
1289 REG_ATTRS (XEXP (x, 1))
1290 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1291 }
1292 if (GET_CODE (x) == PARALLEL)
1293 {
d4afac5b
JZ
1294 int i, start;
1295
1296 /* Check for a NULL entry, used to indicate that the parameter goes
1297 both on the stack and in registers. */
1298 if (XEXP (XVECEXP (x, 0, 0), 0))
1299 start = 0;
1300 else
1301 start = 1;
1302
1303 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1304 {
1305 rtx y = XVECEXP (x, 0, i);
1306 if (REG_P (XEXP (y, 0)))
1307 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1308 }
1309 }
1310}
1311
38ae7651
RS
1312/* Assign the RTX X to declaration T. */
1313
1314void
1315set_decl_rtl (tree t, rtx x)
1316{
1317 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1318 if (x)
1319 set_reg_attrs_for_decl_rtl (t, x);
1320}
1321
5141868d
RS
1322/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1323 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1324
1325void
5141868d 1326set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1327{
1328 DECL_INCOMING_RTL (t) = x;
5141868d 1329 if (x && !by_reference_p)
38ae7651
RS
1330 set_reg_attrs_for_decl_rtl (t, x);
1331}
1332
754fdcca
RK
1333/* Identify REG (which may be a CONCAT) as a user register. */
1334
1335void
502b8322 1336mark_user_reg (rtx reg)
754fdcca
RK
1337{
1338 if (GET_CODE (reg) == CONCAT)
1339 {
1340 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1341 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1342 }
754fdcca 1343 else
5b0264cb
NS
1344 {
1345 gcc_assert (REG_P (reg));
1346 REG_USERVAR_P (reg) = 1;
1347 }
754fdcca
RK
1348}
1349
86fe05e0
RK
1350/* Identify REG as a probable pointer register and show its alignment
1351 as ALIGN, if nonzero. */
23b2ce53
RS
1352
1353void
502b8322 1354mark_reg_pointer (rtx reg, int align)
23b2ce53 1355{
3502dc9c 1356 if (! REG_POINTER (reg))
00995e78 1357 {
3502dc9c 1358 REG_POINTER (reg) = 1;
86fe05e0 1359
00995e78
RE
1360 if (align)
1361 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1362 }
1363 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1364 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1365 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1366}
1367
1368/* Return 1 plus largest pseudo reg number used in the current function. */
1369
1370int
502b8322 1371max_reg_num (void)
23b2ce53
RS
1372{
1373 return reg_rtx_no;
1374}
1375
1376/* Return 1 + the largest label number used so far in the current function. */
1377
1378int
502b8322 1379max_label_num (void)
23b2ce53 1380{
23b2ce53
RS
1381 return label_num;
1382}
1383
1384/* Return first label number used in this function (if any were used). */
1385
1386int
502b8322 1387get_first_label_num (void)
23b2ce53
RS
1388{
1389 return first_label_num;
1390}
6de9cd9a
DN
1391
1392/* If the rtx for label was created during the expansion of a nested
1393 function, then first_label_num won't include this label number.
fa10beec 1394 Fix this now so that array indices work later. */
6de9cd9a
DN
1395
1396void
9aa50db7 1397maybe_set_first_label_num (rtx_code_label *x)
6de9cd9a
DN
1398{
1399 if (CODE_LABEL_NUMBER (x) < first_label_num)
1400 first_label_num = CODE_LABEL_NUMBER (x);
1401}
51b86113
DM
1402
1403/* For use by the RTL function loader, when mingling with normal
1404 functions.
1405 Ensure that label_num is greater than the label num of X, to avoid
1406 duplicate labels in the generated assembler. */
1407
1408void
1409maybe_set_max_label_num (rtx_code_label *x)
1410{
1411 if (CODE_LABEL_NUMBER (x) >= label_num)
1412 label_num = CODE_LABEL_NUMBER (x) + 1;
1413}
1414
23b2ce53
RS
1415\f
1416/* Return a value representing some low-order bits of X, where the number
1417 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1418 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1419 representation is returned.
1420
1421 This function handles the cases in common between gen_lowpart, below,
1422 and two variants in cse.c and combine.c. These are the cases that can
1423 be safely handled at all points in the compilation.
1424
1425 If this is not a case we can handle, return 0. */
1426
1427rtx
ef4bddc2 1428gen_lowpart_common (machine_mode mode, rtx x)
23b2ce53 1429{
ddef6bc7 1430 int msize = GET_MODE_SIZE (mode);
550d1387 1431 int xsize;
ef4bddc2 1432 machine_mode innermode;
550d1387
GK
1433
1434 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1435 so we have to make one up. Yuk. */
1436 innermode = GET_MODE (x);
481683e1 1437 if (CONST_INT_P (x)
db487452 1438 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
f4b31647 1439 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
550d1387 1440 else if (innermode == VOIDmode)
f4b31647 1441 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
b8698a0f 1442
550d1387
GK
1443 xsize = GET_MODE_SIZE (innermode);
1444
5b0264cb 1445 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1446
550d1387 1447 if (innermode == mode)
23b2ce53
RS
1448 return x;
1449
1eae67f8
RS
1450 if (SCALAR_FLOAT_MODE_P (mode))
1451 {
1452 /* Don't allow paradoxical FLOAT_MODE subregs. */
1453 if (msize > xsize)
1454 return 0;
1455 }
1456 else
1457 {
1458 /* MODE must occupy no more of the underlying registers than X. */
1459 unsigned int regsize = REGMODE_NATURAL_SIZE (innermode);
1460 unsigned int mregs = CEIL (msize, regsize);
1461 unsigned int xregs = CEIL (xsize, regsize);
1462 if (mregs > xregs)
1463 return 0;
1464 }
53501a19 1465
54651377 1466 scalar_int_mode int_mode, int_innermode, from_mode;
23b2ce53 1467 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
54651377
RS
1468 && is_a <scalar_int_mode> (mode, &int_mode)
1469 && is_a <scalar_int_mode> (innermode, &int_innermode)
1470 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
23b2ce53
RS
1471 {
1472 /* If we are getting the low-order part of something that has been
1473 sign- or zero-extended, we can either just use the object being
1474 extended or make a narrower extension. If we want an even smaller
1475 piece than the size of the object being extended, call ourselves
1476 recursively.
1477
1478 This case is used mostly by combine and cse. */
1479
54651377 1480 if (from_mode == int_mode)
23b2ce53 1481 return XEXP (x, 0);
54651377
RS
1482 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1483 return gen_lowpart_common (int_mode, XEXP (x, 0));
1484 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1485 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
23b2ce53 1486 }
f8cfc6aa 1487 else if (GET_CODE (x) == SUBREG || REG_P (x)
06ec586d 1488 || GET_CODE (x) == CONCAT || const_vec_p (x)
33ffb5c5 1489 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
3403a1a9 1490 return lowpart_subreg (mode, x, innermode);
8aada4ad 1491
23b2ce53
RS
1492 /* Otherwise, we can't do this. */
1493 return 0;
1494}
1495\f
ccba022b 1496rtx
ef4bddc2 1497gen_highpart (machine_mode mode, rtx x)
ccba022b 1498{
ddef6bc7 1499 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1500 rtx result;
ddef6bc7 1501
ccba022b
RS
1502 /* This case loses if X is a subreg. To catch bugs early,
1503 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1504 gcc_assert (msize <= UNITS_PER_WORD
1505 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1506
e0e08ac2
JH
1507 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1508 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb 1509 gcc_assert (result);
b8698a0f 1510
09482e0d
JW
1511 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1512 the target if we have a MEM. gen_highpart must return a valid operand,
1513 emitting code if necessary to do so. */
5b0264cb
NS
1514 if (MEM_P (result))
1515 {
1516 result = validize_mem (result);
1517 gcc_assert (result);
1518 }
b8698a0f 1519
e0e08ac2
JH
1520 return result;
1521}
5222e470 1522
26d249eb 1523/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1524 be VOIDmode constant. */
1525rtx
ef4bddc2 1526gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
5222e470
JH
1527{
1528 if (GET_MODE (exp) != VOIDmode)
1529 {
5b0264cb 1530 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1531 return gen_highpart (outermode, exp);
1532 }
1533 return simplify_gen_subreg (outermode, exp, innermode,
1534 subreg_highpart_offset (outermode, innermode));
1535}
68252e27 1536
33951763
RS
1537/* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1538 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
8698cce3 1539
e0e08ac2 1540unsigned int
33951763 1541subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes)
e0e08ac2 1542{
33951763
RS
1543 if (outer_bytes > inner_bytes)
1544 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1545 return 0;
ddef6bc7 1546
33951763
RS
1547 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1548 return inner_bytes - outer_bytes;
1549 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1550 return 0;
1551 else
1552 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
ccba022b 1553}
eea50aa0 1554
33951763
RS
1555/* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1556 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1557
e0e08ac2 1558unsigned int
33951763
RS
1559subreg_size_highpart_offset (unsigned int outer_bytes,
1560 unsigned int inner_bytes)
eea50aa0 1561{
33951763 1562 gcc_assert (inner_bytes >= outer_bytes);
eea50aa0 1563
33951763
RS
1564 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1565 return 0;
1566 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1567 return inner_bytes - outer_bytes;
1568 else
1569 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1570 (inner_bytes - outer_bytes)
1571 * BITS_PER_UNIT);
eea50aa0 1572}
ccba022b 1573
23b2ce53
RS
1574/* Return 1 iff X, assumed to be a SUBREG,
1575 refers to the least significant part of its containing reg.
1576 If X is not a SUBREG, always return 1 (it is its own low part!). */
1577
1578int
fa233e34 1579subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1580{
1581 if (GET_CODE (x) != SUBREG)
1582 return 1;
a3a03040
RK
1583 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1584 return 0;
23b2ce53 1585
e0e08ac2
JH
1586 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1587 == SUBREG_BYTE (x));
23b2ce53
RS
1588}
1589\f
ddef6bc7
JJ
1590/* Return subword OFFSET of operand OP.
1591 The word number, OFFSET, is interpreted as the word number starting
1592 at the low-order address. OFFSET 0 is the low-order word if not
1593 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1594
1595 If we cannot extract the required word, we return zero. Otherwise,
1596 an rtx corresponding to the requested word will be returned.
1597
1598 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1599 reload has completed, a valid address will always be returned. After
1600 reload, if a valid address cannot be returned, we return zero.
1601
1602 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1603 it is the responsibility of the caller.
1604
1605 MODE is the mode of OP in case it is a CONST_INT.
1606
1607 ??? This is still rather broken for some cases. The problem for the
1608 moment is that all callers of this thing provide no 'goal mode' to
1609 tell us to work with. This exists because all callers were written
0631e0bf
JH
1610 in a word based SUBREG world.
1611 Now use of this function can be deprecated by simplify_subreg in most
1612 cases.
1613 */
ddef6bc7
JJ
1614
1615rtx
ef4bddc2 1616operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode)
ddef6bc7
JJ
1617{
1618 if (mode == VOIDmode)
1619 mode = GET_MODE (op);
1620
5b0264cb 1621 gcc_assert (mode != VOIDmode);
ddef6bc7 1622
30f7a378 1623 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1624 if (mode != BLKmode
1625 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1626 return 0;
1627
30f7a378 1628 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1629 if (mode != BLKmode
1630 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1631 return const0_rtx;
1632
ddef6bc7 1633 /* Form a new MEM at the requested address. */
3c0cb5de 1634 if (MEM_P (op))
ddef6bc7 1635 {
60564289 1636 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1637
f1ec5147 1638 if (! validate_address)
60564289 1639 return new_rtx;
f1ec5147
RK
1640
1641 else if (reload_completed)
ddef6bc7 1642 {
09e881c9
BE
1643 if (! strict_memory_address_addr_space_p (word_mode,
1644 XEXP (new_rtx, 0),
1645 MEM_ADDR_SPACE (op)))
f1ec5147 1646 return 0;
ddef6bc7 1647 }
f1ec5147 1648 else
60564289 1649 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1650 }
1651
0631e0bf
JH
1652 /* Rest can be handled by simplify_subreg. */
1653 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1654}
1655
535a42b1
NS
1656/* Similar to `operand_subword', but never return 0. If we can't
1657 extract the required subword, put OP into a register and try again.
1658 The second attempt must succeed. We always validate the address in
1659 this case.
23b2ce53
RS
1660
1661 MODE is the mode of OP, in case it is CONST_INT. */
1662
1663rtx
ef4bddc2 1664operand_subword_force (rtx op, unsigned int offset, machine_mode mode)
23b2ce53 1665{
ddef6bc7 1666 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1667
1668 if (result)
1669 return result;
1670
1671 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1672 {
1673 /* If this is a register which can not be accessed by words, copy it
1674 to a pseudo register. */
f8cfc6aa 1675 if (REG_P (op))
77e6b0eb
JC
1676 op = copy_to_reg (op);
1677 else
1678 op = force_reg (mode, op);
1679 }
23b2ce53 1680
ddef6bc7 1681 result = operand_subword (op, offset, 1, mode);
5b0264cb 1682 gcc_assert (result);
23b2ce53
RS
1683
1684 return result;
1685}
1686\f
2b3493c8
AK
1687/* Returns 1 if both MEM_EXPR can be considered equal
1688 and 0 otherwise. */
1689
1690int
4f588890 1691mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1692{
1693 if (expr1 == expr2)
1694 return 1;
1695
1696 if (! expr1 || ! expr2)
1697 return 0;
1698
1699 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1700 return 0;
1701
55b34b5f 1702 return operand_equal_p (expr1, expr2, 0);
2b3493c8
AK
1703}
1704
805903b5
JJ
1705/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1706 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1707 -1 if not known. */
1708
1709int
d9223014 1710get_mem_align_offset (rtx mem, unsigned int align)
805903b5
JJ
1711{
1712 tree expr;
1713 unsigned HOST_WIDE_INT offset;
1714
1715 /* This function can't use
527210c4 1716 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
e80c2726 1717 || (MAX (MEM_ALIGN (mem),
0eb77834 1718 MAX (align, get_object_alignment (MEM_EXPR (mem))))
805903b5
JJ
1719 < align))
1720 return -1;
1721 else
527210c4 1722 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
805903b5
JJ
1723 for two reasons:
1724 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1725 for <variable>. get_inner_reference doesn't handle it and
1726 even if it did, the alignment in that case needs to be determined
1727 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1728 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1729 isn't sufficiently aligned, the object it is in might be. */
1730 gcc_assert (MEM_P (mem));
1731 expr = MEM_EXPR (mem);
527210c4 1732 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
805903b5
JJ
1733 return -1;
1734
527210c4 1735 offset = MEM_OFFSET (mem);
805903b5
JJ
1736 if (DECL_P (expr))
1737 {
1738 if (DECL_ALIGN (expr) < align)
1739 return -1;
1740 }
1741 else if (INDIRECT_REF_P (expr))
1742 {
1743 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1744 return -1;
1745 }
1746 else if (TREE_CODE (expr) == COMPONENT_REF)
1747 {
1748 while (1)
1749 {
1750 tree inner = TREE_OPERAND (expr, 0);
1751 tree field = TREE_OPERAND (expr, 1);
1752 tree byte_offset = component_ref_field_offset (expr);
1753 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1754
1755 if (!byte_offset
cc269bb6
RS
1756 || !tree_fits_uhwi_p (byte_offset)
1757 || !tree_fits_uhwi_p (bit_offset))
805903b5
JJ
1758 return -1;
1759
ae7e9ddd
RS
1760 offset += tree_to_uhwi (byte_offset);
1761 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
805903b5
JJ
1762
1763 if (inner == NULL_TREE)
1764 {
1765 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1766 < (unsigned int) align)
1767 return -1;
1768 break;
1769 }
1770 else if (DECL_P (inner))
1771 {
1772 if (DECL_ALIGN (inner) < align)
1773 return -1;
1774 break;
1775 }
1776 else if (TREE_CODE (inner) != COMPONENT_REF)
1777 return -1;
1778 expr = inner;
1779 }
1780 }
1781 else
1782 return -1;
1783
1784 return offset & ((align / BITS_PER_UNIT) - 1);
1785}
1786
6926c713 1787/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1788 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1789 if we are making a new object of this type. BITPOS is nonzero if
1790 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1791
1792void
502b8322
AJ
1793set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1794 HOST_WIDE_INT bitpos)
173b24b9 1795{
6f1087be 1796 HOST_WIDE_INT apply_bitpos = 0;
173b24b9 1797 tree type;
f12144dd 1798 struct mem_attrs attrs, *defattrs, *refattrs;
f18a7b25 1799 addr_space_t as;
173b24b9
RK
1800
1801 /* It can happen that type_for_mode was given a mode for which there
1802 is no language-level type. In which case it returns NULL, which
1803 we can see here. */
1804 if (t == NULL_TREE)
1805 return;
1806
1807 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1808 if (type == error_mark_node)
1809 return;
173b24b9 1810
173b24b9
RK
1811 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1812 wrong answer, as it assumes that DECL_RTL already has the right alias
1813 info. Callers should not set DECL_RTL until after the call to
1814 set_mem_attributes. */
5b0264cb 1815 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1816
f12144dd
RS
1817 memset (&attrs, 0, sizeof (attrs));
1818
738cc472 1819 /* Get the alias set from the expression or type (perhaps using a
8ac61af7 1820 front-end routine) and use it. */
f12144dd 1821 attrs.alias = get_alias_set (t);
173b24b9 1822
a5e9c810 1823 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
f8ad8d7c 1824 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1825
268f7033 1826 /* Default values from pre-existing memory attributes if present. */
f12144dd
RS
1827 refattrs = MEM_ATTRS (ref);
1828 if (refattrs)
268f7033
UW
1829 {
1830 /* ??? Can this ever happen? Calling this routine on a MEM that
1831 already carries memory attributes should probably be invalid. */
f12144dd 1832 attrs.expr = refattrs->expr;
754c3d5d 1833 attrs.offset_known_p = refattrs->offset_known_p;
f12144dd 1834 attrs.offset = refattrs->offset;
754c3d5d 1835 attrs.size_known_p = refattrs->size_known_p;
f12144dd
RS
1836 attrs.size = refattrs->size;
1837 attrs.align = refattrs->align;
268f7033
UW
1838 }
1839
1840 /* Otherwise, default values from the mode of the MEM reference. */
f12144dd 1841 else
268f7033 1842 {
f12144dd
RS
1843 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1844 gcc_assert (!defattrs->expr);
754c3d5d 1845 gcc_assert (!defattrs->offset_known_p);
f12144dd 1846
268f7033 1847 /* Respect mode size. */
754c3d5d 1848 attrs.size_known_p = defattrs->size_known_p;
f12144dd 1849 attrs.size = defattrs->size;
268f7033
UW
1850 /* ??? Is this really necessary? We probably should always get
1851 the size from the type below. */
1852
1853 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1854 if T is an object, always compute the object alignment below. */
f12144dd
RS
1855 if (TYPE_P (t))
1856 attrs.align = defattrs->align;
1857 else
1858 attrs.align = BITS_PER_UNIT;
268f7033
UW
1859 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1860 e.g. if the type carries an alignment attribute. Should we be
1861 able to simply always use TYPE_ALIGN? */
1862 }
1863
25b75a48
BE
1864 /* We can set the alignment from the type if we are making an object or if
1865 this is an INDIRECT_REF. */
1866 if (objectp || TREE_CODE (t) == INDIRECT_REF)
f12144dd 1867 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
a80903ff 1868
738cc472 1869 /* If the size is known, we can set that. */
a787ccc3 1870 tree new_size = TYPE_SIZE_UNIT (type);
738cc472 1871
30b0317c
RB
1872 /* The address-space is that of the type. */
1873 as = TYPE_ADDR_SPACE (type);
1874
80965c18
RK
1875 /* If T is not a type, we may be able to deduce some more information about
1876 the expression. */
1877 if (! TYPE_P (t))
8ac61af7 1878 {
8476af98 1879 tree base;
389fdba0 1880
8ac61af7
RK
1881 if (TREE_THIS_VOLATILE (t))
1882 MEM_VOLATILE_P (ref) = 1;
173b24b9 1883
c56e3582
RK
1884 /* Now remove any conversions: they don't change what the underlying
1885 object is. Likewise for SAVE_EXPR. */
1043771b 1886 while (CONVERT_EXPR_P (t)
c56e3582
RK
1887 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1888 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1889 t = TREE_OPERAND (t, 0);
1890
4994da65
RG
1891 /* Note whether this expression can trap. */
1892 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1893
1894 base = get_base_address (t);
f18a7b25
MJ
1895 if (base)
1896 {
1897 if (DECL_P (base)
1898 && TREE_READONLY (base)
1899 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1900 && !TREE_THIS_VOLATILE (base))
1901 MEM_READONLY_P (ref) = 1;
1902
1903 /* Mark static const strings readonly as well. */
1904 if (TREE_CODE (base) == STRING_CST
1905 && TREE_READONLY (base)
1906 && TREE_STATIC (base))
1907 MEM_READONLY_P (ref) = 1;
1908
30b0317c 1909 /* Address-space information is on the base object. */
f18a7b25
MJ
1910 if (TREE_CODE (base) == MEM_REF
1911 || TREE_CODE (base) == TARGET_MEM_REF)
1912 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1913 0))));
1914 else
1915 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1916 }
ba30e50d 1917
2039d7aa
RH
1918 /* If this expression uses it's parent's alias set, mark it such
1919 that we won't change it. */
b4ada065 1920 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
10b76d73
RK
1921 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1922
8ac61af7
RK
1923 /* If this is a decl, set the attributes of the MEM from it. */
1924 if (DECL_P (t))
1925 {
f12144dd 1926 attrs.expr = t;
754c3d5d
RS
1927 attrs.offset_known_p = true;
1928 attrs.offset = 0;
6f1087be 1929 apply_bitpos = bitpos;
a787ccc3 1930 new_size = DECL_SIZE_UNIT (t);
8ac61af7
RK
1931 }
1932
30b0317c 1933 /* ??? If we end up with a constant here do record a MEM_EXPR. */
6615c446 1934 else if (CONSTANT_CLASS_P (t))
30b0317c 1935 ;
998d7deb 1936
a787ccc3
RS
1937 /* If this is a field reference, record it. */
1938 else if (TREE_CODE (t) == COMPONENT_REF)
998d7deb 1939 {
f12144dd 1940 attrs.expr = t;
754c3d5d
RS
1941 attrs.offset_known_p = true;
1942 attrs.offset = 0;
6f1087be 1943 apply_bitpos = bitpos;
a787ccc3
RS
1944 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1945 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
998d7deb
RH
1946 }
1947
1948 /* If this is an array reference, look for an outer field reference. */
1949 else if (TREE_CODE (t) == ARRAY_REF)
1950 {
1951 tree off_tree = size_zero_node;
1b1838b6
JW
1952 /* We can't modify t, because we use it at the end of the
1953 function. */
1954 tree t2 = t;
998d7deb
RH
1955
1956 do
1957 {
1b1838b6 1958 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1959 tree low_bound = array_ref_low_bound (t2);
1960 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1961
1962 /* We assume all arrays have sizes that are a multiple of a byte.
1963 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1964 index, then convert to sizetype and multiply by the size of
1965 the array element. */
1966 if (! integer_zerop (low_bound))
4845b383
KH
1967 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1968 index, low_bound);
2567406a 1969
44de5aeb 1970 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1971 size_binop (MULT_EXPR,
1972 fold_convert (sizetype,
1973 index),
44de5aeb
RK
1974 unit_size),
1975 off_tree);
1b1838b6 1976 t2 = TREE_OPERAND (t2, 0);
998d7deb 1977 }
1b1838b6 1978 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1979
30b0317c 1980 if (DECL_P (t2)
12ead254
RB
1981 || (TREE_CODE (t2) == COMPONENT_REF
1982 /* For trailing arrays t2 doesn't have a size that
1983 covers all valid accesses. */
c3e46927 1984 && ! array_at_struct_end_p (t)))
998d7deb 1985 {
f12144dd 1986 attrs.expr = t2;
754c3d5d 1987 attrs.offset_known_p = false;
cc269bb6 1988 if (tree_fits_uhwi_p (off_tree))
6f1087be 1989 {
754c3d5d 1990 attrs.offset_known_p = true;
ae7e9ddd 1991 attrs.offset = tree_to_uhwi (off_tree);
6f1087be
RH
1992 apply_bitpos = bitpos;
1993 }
998d7deb 1994 }
30b0317c 1995 /* Else do not record a MEM_EXPR. */
c67a1cf6
RH
1996 }
1997
56c47f22 1998 /* If this is an indirect reference, record it. */
70f34814 1999 else if (TREE_CODE (t) == MEM_REF
be1ac4ec 2000 || TREE_CODE (t) == TARGET_MEM_REF)
56c47f22 2001 {
f12144dd 2002 attrs.expr = t;
754c3d5d
RS
2003 attrs.offset_known_p = true;
2004 attrs.offset = 0;
56c47f22
RG
2005 apply_bitpos = bitpos;
2006 }
2007
30b0317c
RB
2008 /* Compute the alignment. */
2009 unsigned int obj_align;
2010 unsigned HOST_WIDE_INT obj_bitpos;
2011 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
2012 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
2013 if (obj_bitpos != 0)
146ec50f 2014 obj_align = least_bit_hwi (obj_bitpos);
30b0317c 2015 attrs.align = MAX (attrs.align, obj_align);
8ac61af7
RK
2016 }
2017
cc269bb6 2018 if (tree_fits_uhwi_p (new_size))
a787ccc3
RS
2019 {
2020 attrs.size_known_p = true;
ae7e9ddd 2021 attrs.size = tree_to_uhwi (new_size);
a787ccc3
RS
2022 }
2023
15c812e3 2024 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
2025 bit position offset. Similarly, increase the size of the accessed
2026 object to contain the negative offset. */
6f1087be 2027 if (apply_bitpos)
8c317c5f 2028 {
754c3d5d
RS
2029 gcc_assert (attrs.offset_known_p);
2030 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
2031 if (attrs.size_known_p)
2032 attrs.size += apply_bitpos / BITS_PER_UNIT;
8c317c5f 2033 }
6f1087be 2034
8ac61af7 2035 /* Now set the attributes we computed above. */
f18a7b25 2036 attrs.addrspace = as;
f12144dd 2037 set_mem_attrs (ref, &attrs);
173b24b9
RK
2038}
2039
6f1087be 2040void
502b8322 2041set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
2042{
2043 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2044}
2045
173b24b9
RK
2046/* Set the alias set of MEM to SET. */
2047
2048void
4862826d 2049set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 2050{
f12144dd
RS
2051 struct mem_attrs attrs;
2052
173b24b9 2053 /* If the new and old alias sets don't conflict, something is wrong. */
77a74ed7 2054 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
f12144dd
RS
2055 attrs = *get_mem_attrs (mem);
2056 attrs.alias = set;
2057 set_mem_attrs (mem, &attrs);
09e881c9
BE
2058}
2059
2060/* Set the address space of MEM to ADDRSPACE (target-defined). */
2061
2062void
2063set_mem_addr_space (rtx mem, addr_space_t addrspace)
2064{
f12144dd
RS
2065 struct mem_attrs attrs;
2066
2067 attrs = *get_mem_attrs (mem);
2068 attrs.addrspace = addrspace;
2069 set_mem_attrs (mem, &attrs);
173b24b9 2070}
738cc472 2071
d022d93e 2072/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
2073
2074void
502b8322 2075set_mem_align (rtx mem, unsigned int align)
738cc472 2076{
f12144dd
RS
2077 struct mem_attrs attrs;
2078
2079 attrs = *get_mem_attrs (mem);
2080 attrs.align = align;
2081 set_mem_attrs (mem, &attrs);
738cc472 2082}
1285011e 2083
998d7deb 2084/* Set the expr for MEM to EXPR. */
1285011e
RK
2085
2086void
502b8322 2087set_mem_expr (rtx mem, tree expr)
1285011e 2088{
f12144dd
RS
2089 struct mem_attrs attrs;
2090
2091 attrs = *get_mem_attrs (mem);
2092 attrs.expr = expr;
2093 set_mem_attrs (mem, &attrs);
1285011e 2094}
998d7deb
RH
2095
2096/* Set the offset of MEM to OFFSET. */
2097
2098void
527210c4 2099set_mem_offset (rtx mem, HOST_WIDE_INT offset)
998d7deb 2100{
f12144dd
RS
2101 struct mem_attrs attrs;
2102
2103 attrs = *get_mem_attrs (mem);
754c3d5d
RS
2104 attrs.offset_known_p = true;
2105 attrs.offset = offset;
527210c4
RS
2106 set_mem_attrs (mem, &attrs);
2107}
2108
2109/* Clear the offset of MEM. */
2110
2111void
2112clear_mem_offset (rtx mem)
2113{
2114 struct mem_attrs attrs;
2115
2116 attrs = *get_mem_attrs (mem);
754c3d5d 2117 attrs.offset_known_p = false;
f12144dd 2118 set_mem_attrs (mem, &attrs);
35aff10b
AM
2119}
2120
2121/* Set the size of MEM to SIZE. */
2122
2123void
f5541398 2124set_mem_size (rtx mem, HOST_WIDE_INT size)
35aff10b 2125{
f12144dd
RS
2126 struct mem_attrs attrs;
2127
2128 attrs = *get_mem_attrs (mem);
754c3d5d
RS
2129 attrs.size_known_p = true;
2130 attrs.size = size;
f5541398
RS
2131 set_mem_attrs (mem, &attrs);
2132}
2133
2134/* Clear the size of MEM. */
2135
2136void
2137clear_mem_size (rtx mem)
2138{
2139 struct mem_attrs attrs;
2140
2141 attrs = *get_mem_attrs (mem);
754c3d5d 2142 attrs.size_known_p = false;
f12144dd 2143 set_mem_attrs (mem, &attrs);
998d7deb 2144}
173b24b9 2145\f
738cc472
RK
2146/* Return a memory reference like MEMREF, but with its mode changed to MODE
2147 and its address changed to ADDR. (VOIDmode means don't change the mode.
2148 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
23b33725
RS
2149 returned memory location is required to be valid. INPLACE is true if any
2150 changes can be made directly to MEMREF or false if MEMREF must be treated
2151 as immutable.
2152
2153 The memory attributes are not changed. */
23b2ce53 2154
738cc472 2155static rtx
ef4bddc2 2156change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
23b33725 2157 bool inplace)
23b2ce53 2158{
09e881c9 2159 addr_space_t as;
60564289 2160 rtx new_rtx;
23b2ce53 2161
5b0264cb 2162 gcc_assert (MEM_P (memref));
09e881c9 2163 as = MEM_ADDR_SPACE (memref);
23b2ce53
RS
2164 if (mode == VOIDmode)
2165 mode = GET_MODE (memref);
2166 if (addr == 0)
2167 addr = XEXP (memref, 0);
a74ff877 2168 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
09e881c9 2169 && (!validate || memory_address_addr_space_p (mode, addr, as)))
a74ff877 2170 return memref;
23b2ce53 2171
91c5ee5b
VM
2172 /* Don't validate address for LRA. LRA can make the address valid
2173 by itself in most efficient way. */
2174 if (validate && !lra_in_progress)
23b2ce53 2175 {
f1ec5147 2176 if (reload_in_progress || reload_completed)
09e881c9 2177 gcc_assert (memory_address_addr_space_p (mode, addr, as));
f1ec5147 2178 else
09e881c9 2179 addr = memory_address_addr_space (mode, addr, as);
23b2ce53 2180 }
750c9258 2181
9b04c6a8
RK
2182 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2183 return memref;
2184
23b33725
RS
2185 if (inplace)
2186 {
2187 XEXP (memref, 0) = addr;
2188 return memref;
2189 }
2190
60564289
KG
2191 new_rtx = gen_rtx_MEM (mode, addr);
2192 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2193 return new_rtx;
23b2ce53 2194}
792760b9 2195
738cc472
RK
2196/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2197 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
2198
2199rtx
ef4bddc2 2200change_address (rtx memref, machine_mode mode, rtx addr)
f4ef873c 2201{
23b33725 2202 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
ef4bddc2 2203 machine_mode mmode = GET_MODE (new_rtx);
f12144dd 2204 struct mem_attrs attrs, *defattrs;
4e44c1ef 2205
f12144dd
RS
2206 attrs = *get_mem_attrs (memref);
2207 defattrs = mode_mem_attrs[(int) mmode];
754c3d5d
RS
2208 attrs.expr = NULL_TREE;
2209 attrs.offset_known_p = false;
2210 attrs.size_known_p = defattrs->size_known_p;
f12144dd
RS
2211 attrs.size = defattrs->size;
2212 attrs.align = defattrs->align;
c2f7bcc3 2213
fdb1c7b3 2214 /* If there are no changes, just return the original memory reference. */
60564289 2215 if (new_rtx == memref)
4e44c1ef 2216 {
f12144dd 2217 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
60564289 2218 return new_rtx;
4e44c1ef 2219
60564289
KG
2220 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2221 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 2222 }
fdb1c7b3 2223
f12144dd 2224 set_mem_attrs (new_rtx, &attrs);
60564289 2225 return new_rtx;
f4ef873c 2226}
792760b9 2227
738cc472
RK
2228/* Return a memory reference like MEMREF, but with its mode changed
2229 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6 2230 nonzero, the memory address is forced to be valid.
5ef0b50d
EB
2231 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2232 and the caller is responsible for adjusting MEMREF base register.
2233 If ADJUST_OBJECT is zero, the underlying object associated with the
2234 memory reference is left unchanged and the caller is responsible for
2235 dealing with it. Otherwise, if the new memory reference is outside
5f2cbd0d
RS
2236 the underlying object, even partially, then the object is dropped.
2237 SIZE, if nonzero, is the size of an access in cases where MODE
2238 has no inherent size. */
f1ec5147
RK
2239
2240rtx
ef4bddc2 2241adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset,
5f2cbd0d
RS
2242 int validate, int adjust_address, int adjust_object,
2243 HOST_WIDE_INT size)
f1ec5147 2244{
823e3574 2245 rtx addr = XEXP (memref, 0);
60564289 2246 rtx new_rtx;
095a2d76 2247 scalar_int_mode address_mode;
a6fe9ed4 2248 int pbits;
0207fa90 2249 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
f12144dd 2250 unsigned HOST_WIDE_INT max_align;
0207fa90 2251#ifdef POINTERS_EXTEND_UNSIGNED
095a2d76 2252 scalar_int_mode pointer_mode
0207fa90
EB
2253 = targetm.addr_space.pointer_mode (attrs.addrspace);
2254#endif
823e3574 2255
ee88e690
EB
2256 /* VOIDmode means no mode change for change_address_1. */
2257 if (mode == VOIDmode)
2258 mode = GET_MODE (memref);
2259
5f2cbd0d
RS
2260 /* Take the size of non-BLKmode accesses from the mode. */
2261 defattrs = mode_mem_attrs[(int) mode];
2262 if (defattrs->size_known_p)
2263 size = defattrs->size;
2264
fdb1c7b3
JH
2265 /* If there are no changes, just return the original memory reference. */
2266 if (mode == GET_MODE (memref) && !offset
5f2cbd0d 2267 && (size == 0 || (attrs.size_known_p && attrs.size == size))
f12144dd
RS
2268 && (!validate || memory_address_addr_space_p (mode, addr,
2269 attrs.addrspace)))
fdb1c7b3
JH
2270 return memref;
2271
d14419e4 2272 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2273 This may happen even if offset is nonzero -- consider
d14419e4
RH
2274 (plus (plus reg reg) const_int) -- so do this always. */
2275 addr = copy_rtx (addr);
2276
a6fe9ed4
JM
2277 /* Convert a possibly large offset to a signed value within the
2278 range of the target address space. */
372d6395 2279 address_mode = get_address_mode (memref);
d4ebfa65 2280 pbits = GET_MODE_BITSIZE (address_mode);
a6fe9ed4
JM
2281 if (HOST_BITS_PER_WIDE_INT > pbits)
2282 {
2283 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2284 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2285 >> shift);
2286 }
2287
5ef0b50d 2288 if (adjust_address)
4a78c787
RH
2289 {
2290 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2291 object, we can merge it into the LO_SUM. */
2292 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2293 && offset >= 0
2294 && (unsigned HOST_WIDE_INT) offset
2295 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
d4ebfa65 2296 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
0a81f074
RS
2297 plus_constant (address_mode,
2298 XEXP (addr, 1), offset));
0207fa90
EB
2299#ifdef POINTERS_EXTEND_UNSIGNED
2300 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2301 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2302 the fact that pointers are not allowed to overflow. */
2303 else if (POINTERS_EXTEND_UNSIGNED > 0
2304 && GET_CODE (addr) == ZERO_EXTEND
2305 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2306 && trunc_int_for_mode (offset, pointer_mode) == offset)
2307 addr = gen_rtx_ZERO_EXTEND (address_mode,
2308 plus_constant (pointer_mode,
2309 XEXP (addr, 0), offset));
2310#endif
4a78c787 2311 else
0a81f074 2312 addr = plus_constant (address_mode, addr, offset);
4a78c787 2313 }
823e3574 2314
23b33725 2315 new_rtx = change_address_1 (memref, mode, addr, validate, false);
738cc472 2316
09efeca1
PB
2317 /* If the address is a REG, change_address_1 rightfully returns memref,
2318 but this would destroy memref's MEM_ATTRS. */
2319 if (new_rtx == memref && offset != 0)
2320 new_rtx = copy_rtx (new_rtx);
2321
5ef0b50d
EB
2322 /* Conservatively drop the object if we don't know where we start from. */
2323 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2324 {
2325 attrs.expr = NULL_TREE;
2326 attrs.alias = 0;
2327 }
2328
738cc472
RK
2329 /* Compute the new values of the memory attributes due to this adjustment.
2330 We add the offsets and update the alignment. */
754c3d5d 2331 if (attrs.offset_known_p)
5ef0b50d
EB
2332 {
2333 attrs.offset += offset;
2334
2335 /* Drop the object if the new left end is not within its bounds. */
2336 if (adjust_object && attrs.offset < 0)
2337 {
2338 attrs.expr = NULL_TREE;
2339 attrs.alias = 0;
2340 }
2341 }
738cc472 2342
03bf2c23
RK
2343 /* Compute the new alignment by taking the MIN of the alignment and the
2344 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2345 if zero. */
2346 if (offset != 0)
f12144dd 2347 {
146ec50f 2348 max_align = least_bit_hwi (offset) * BITS_PER_UNIT;
f12144dd
RS
2349 attrs.align = MIN (attrs.align, max_align);
2350 }
738cc472 2351
5f2cbd0d 2352 if (size)
754c3d5d 2353 {
5ef0b50d 2354 /* Drop the object if the new right end is not within its bounds. */
5f2cbd0d 2355 if (adjust_object && (offset + size) > attrs.size)
5ef0b50d
EB
2356 {
2357 attrs.expr = NULL_TREE;
2358 attrs.alias = 0;
2359 }
754c3d5d 2360 attrs.size_known_p = true;
5f2cbd0d 2361 attrs.size = size;
754c3d5d
RS
2362 }
2363 else if (attrs.size_known_p)
5ef0b50d 2364 {
5f2cbd0d 2365 gcc_assert (!adjust_object);
5ef0b50d 2366 attrs.size -= offset;
5f2cbd0d
RS
2367 /* ??? The store_by_pieces machinery generates negative sizes,
2368 so don't assert for that here. */
5ef0b50d 2369 }
10b76d73 2370
f12144dd 2371 set_mem_attrs (new_rtx, &attrs);
738cc472 2372
60564289 2373 return new_rtx;
f1ec5147
RK
2374}
2375
630036c6
JJ
2376/* Return a memory reference like MEMREF, but with its mode changed
2377 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 2378 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2379 nonzero, the memory address is forced to be valid. */
2380
2381rtx
ef4bddc2 2382adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
502b8322 2383 HOST_WIDE_INT offset, int validate)
630036c6 2384{
23b33725 2385 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
5f2cbd0d 2386 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
630036c6
JJ
2387}
2388
8ac61af7
RK
2389/* Return a memory reference like MEMREF, but whose address is changed by
2390 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2391 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2392
2393rtx
502b8322 2394offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2395{
60564289 2396 rtx new_rtx, addr = XEXP (memref, 0);
ef4bddc2 2397 machine_mode address_mode;
754c3d5d 2398 struct mem_attrs attrs, *defattrs;
e3c8ea67 2399
f12144dd 2400 attrs = *get_mem_attrs (memref);
372d6395 2401 address_mode = get_address_mode (memref);
d4ebfa65 2402 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67 2403
68252e27 2404 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2405 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2406
2407 However, if we did go and rearrange things, we can wind up not
2408 being able to recognize the magic around pic_offset_table_rtx.
2409 This stuff is fragile, and is yet another example of why it is
2410 bad to expose PIC machinery too early. */
f12144dd
RS
2411 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2412 attrs.addrspace)
e3c8ea67
RH
2413 && GET_CODE (addr) == PLUS
2414 && XEXP (addr, 0) == pic_offset_table_rtx)
2415 {
2416 addr = force_reg (GET_MODE (addr), addr);
d4ebfa65 2417 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67
RH
2418 }
2419
60564289 2420 update_temp_slot_address (XEXP (memref, 0), new_rtx);
23b33725 2421 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
0d4903b8 2422
fdb1c7b3 2423 /* If there are no changes, just return the original memory reference. */
60564289
KG
2424 if (new_rtx == memref)
2425 return new_rtx;
fdb1c7b3 2426
0d4903b8
RK
2427 /* Update the alignment to reflect the offset. Reset the offset, which
2428 we don't know. */
754c3d5d
RS
2429 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2430 attrs.offset_known_p = false;
2431 attrs.size_known_p = defattrs->size_known_p;
2432 attrs.size = defattrs->size;
f12144dd
RS
2433 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2434 set_mem_attrs (new_rtx, &attrs);
60564289 2435 return new_rtx;
0d4903b8 2436}
68252e27 2437
792760b9
RK
2438/* Return a memory reference like MEMREF, but with its address changed to
2439 ADDR. The caller is asserting that the actual piece of memory pointed
2440 to is the same, just the form of the address is being changed, such as
23b33725
RS
2441 by putting something into a register. INPLACE is true if any changes
2442 can be made directly to MEMREF or false if MEMREF must be treated as
2443 immutable. */
792760b9
RK
2444
2445rtx
23b33725 2446replace_equiv_address (rtx memref, rtx addr, bool inplace)
792760b9 2447{
738cc472
RK
2448 /* change_address_1 copies the memory attribute structure without change
2449 and that's exactly what we want here. */
40c0668b 2450 update_temp_slot_address (XEXP (memref, 0), addr);
23b33725 2451 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
792760b9 2452}
738cc472 2453
f1ec5147
RK
2454/* Likewise, but the reference is not required to be valid. */
2455
2456rtx
23b33725 2457replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
f1ec5147 2458{
23b33725 2459 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
f1ec5147 2460}
e7dfe4bb
RH
2461
2462/* Return a memory reference like MEMREF, but with its mode widened to
2463 MODE and offset by OFFSET. This would be used by targets that e.g.
2464 cannot issue QImode memory operations and have to use SImode memory
2465 operations plus masking logic. */
2466
2467rtx
ef4bddc2 2468widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb 2469{
5f2cbd0d 2470 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
f12144dd 2471 struct mem_attrs attrs;
e7dfe4bb
RH
2472 unsigned int size = GET_MODE_SIZE (mode);
2473
fdb1c7b3 2474 /* If there are no changes, just return the original memory reference. */
60564289
KG
2475 if (new_rtx == memref)
2476 return new_rtx;
fdb1c7b3 2477
f12144dd
RS
2478 attrs = *get_mem_attrs (new_rtx);
2479
e7dfe4bb
RH
2480 /* If we don't know what offset we were at within the expression, then
2481 we can't know if we've overstepped the bounds. */
754c3d5d 2482 if (! attrs.offset_known_p)
f12144dd 2483 attrs.expr = NULL_TREE;
e7dfe4bb 2484
f12144dd 2485 while (attrs.expr)
e7dfe4bb 2486 {
f12144dd 2487 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
e7dfe4bb 2488 {
f12144dd
RS
2489 tree field = TREE_OPERAND (attrs.expr, 1);
2490 tree offset = component_ref_field_offset (attrs.expr);
e7dfe4bb
RH
2491
2492 if (! DECL_SIZE_UNIT (field))
2493 {
f12144dd 2494 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2495 break;
2496 }
2497
2498 /* Is the field at least as large as the access? If so, ok,
2499 otherwise strip back to the containing structure. */
03667700
RK
2500 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2501 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
754c3d5d 2502 && attrs.offset >= 0)
e7dfe4bb
RH
2503 break;
2504
cc269bb6 2505 if (! tree_fits_uhwi_p (offset))
e7dfe4bb 2506 {
f12144dd 2507 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2508 break;
2509 }
2510
f12144dd 2511 attrs.expr = TREE_OPERAND (attrs.expr, 0);
ae7e9ddd
RS
2512 attrs.offset += tree_to_uhwi (offset);
2513 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
754c3d5d 2514 / BITS_PER_UNIT);
e7dfe4bb
RH
2515 }
2516 /* Similarly for the decl. */
f12144dd
RS
2517 else if (DECL_P (attrs.expr)
2518 && DECL_SIZE_UNIT (attrs.expr)
2519 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2520 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
754c3d5d 2521 && (! attrs.offset_known_p || attrs.offset >= 0))
e7dfe4bb
RH
2522 break;
2523 else
2524 {
2525 /* The widened memory access overflows the expression, which means
2526 that it could alias another expression. Zap it. */
f12144dd 2527 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2528 break;
2529 }
2530 }
2531
f12144dd 2532 if (! attrs.expr)
754c3d5d 2533 attrs.offset_known_p = false;
e7dfe4bb
RH
2534
2535 /* The widened memory may alias other stuff, so zap the alias set. */
2536 /* ??? Maybe use get_alias_set on any remaining expression. */
f12144dd 2537 attrs.alias = 0;
754c3d5d
RS
2538 attrs.size_known_p = true;
2539 attrs.size = size;
f12144dd 2540 set_mem_attrs (new_rtx, &attrs);
60564289 2541 return new_rtx;
e7dfe4bb 2542}
23b2ce53 2543\f
f6129d66
RH
2544/* A fake decl that is used as the MEM_EXPR of spill slots. */
2545static GTY(()) tree spill_slot_decl;
2546
3d7e23f6
RH
2547tree
2548get_spill_slot_decl (bool force_build_p)
f6129d66
RH
2549{
2550 tree d = spill_slot_decl;
2551 rtx rd;
f12144dd 2552 struct mem_attrs attrs;
f6129d66 2553
3d7e23f6 2554 if (d || !force_build_p)
f6129d66
RH
2555 return d;
2556
c2255bc4
AH
2557 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2558 VAR_DECL, get_identifier ("%sfp"), void_type_node);
f6129d66
RH
2559 DECL_ARTIFICIAL (d) = 1;
2560 DECL_IGNORED_P (d) = 1;
2561 TREE_USED (d) = 1;
f6129d66
RH
2562 spill_slot_decl = d;
2563
2564 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2565 MEM_NOTRAP_P (rd) = 1;
f12144dd
RS
2566 attrs = *mode_mem_attrs[(int) BLKmode];
2567 attrs.alias = new_alias_set ();
2568 attrs.expr = d;
2569 set_mem_attrs (rd, &attrs);
f6129d66
RH
2570 SET_DECL_RTL (d, rd);
2571
2572 return d;
2573}
2574
2575/* Given MEM, a result from assign_stack_local, fill in the memory
2576 attributes as appropriate for a register allocator spill slot.
2577 These slots are not aliasable by other memory. We arrange for
2578 them all to use a single MEM_EXPR, so that the aliasing code can
2579 work properly in the case of shared spill slots. */
2580
2581void
2582set_mem_attrs_for_spill (rtx mem)
2583{
f12144dd
RS
2584 struct mem_attrs attrs;
2585 rtx addr;
f6129d66 2586
f12144dd
RS
2587 attrs = *get_mem_attrs (mem);
2588 attrs.expr = get_spill_slot_decl (true);
2589 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2590 attrs.addrspace = ADDR_SPACE_GENERIC;
f6129d66
RH
2591
2592 /* We expect the incoming memory to be of the form:
2593 (mem:MODE (plus (reg sfp) (const_int offset)))
2594 with perhaps the plus missing for offset = 0. */
2595 addr = XEXP (mem, 0);
754c3d5d
RS
2596 attrs.offset_known_p = true;
2597 attrs.offset = 0;
f6129d66 2598 if (GET_CODE (addr) == PLUS
481683e1 2599 && CONST_INT_P (XEXP (addr, 1)))
754c3d5d 2600 attrs.offset = INTVAL (XEXP (addr, 1));
f6129d66 2601
f12144dd 2602 set_mem_attrs (mem, &attrs);
f6129d66
RH
2603 MEM_NOTRAP_P (mem) = 1;
2604}
2605\f
23b2ce53
RS
2606/* Return a newly created CODE_LABEL rtx with a unique label number. */
2607
7dcc3ab5 2608rtx_code_label *
502b8322 2609gen_label_rtx (void)
23b2ce53 2610{
7dcc3ab5
DM
2611 return as_a <rtx_code_label *> (
2612 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2613 NULL, label_num++, NULL));
23b2ce53
RS
2614}
2615\f
2616/* For procedure integration. */
2617
23b2ce53 2618/* Install new pointers to the first and last insns in the chain.
86fe05e0 2619 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2620 Used for an inline-procedure after copying the insn chain. */
2621
2622void
fee3e72c 2623set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
23b2ce53 2624{
fee3e72c 2625 rtx_insn *insn;
86fe05e0 2626
5936d944
JH
2627 set_first_insn (first);
2628 set_last_insn (last);
86fe05e0
RK
2629 cur_insn_uid = 0;
2630
b5b8b0ac
AO
2631 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2632 {
2633 int debug_count = 0;
2634
2635 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2636 cur_debug_insn_uid = 0;
2637
2638 for (insn = first; insn; insn = NEXT_INSN (insn))
2639 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2640 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2641 else
2642 {
2643 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2644 if (DEBUG_INSN_P (insn))
2645 debug_count++;
2646 }
2647
2648 if (debug_count)
2649 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2650 else
2651 cur_debug_insn_uid++;
2652 }
2653 else
2654 for (insn = first; insn; insn = NEXT_INSN (insn))
2655 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
86fe05e0
RK
2656
2657 cur_insn_uid++;
23b2ce53 2658}
23b2ce53 2659\f
750c9258 2660/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2661 structure. This routine should only be called once. */
23b2ce53 2662
fd743bc1 2663static void
6bb9bf63 2664unshare_all_rtl_1 (rtx_insn *insn)
23b2ce53 2665{
d1b81779 2666 /* Unshare just about everything else. */
2c07f13b 2667 unshare_all_rtl_in_chain (insn);
750c9258 2668
23b2ce53
RS
2669 /* Make sure the addresses of stack slots found outside the insn chain
2670 (such as, in DECL_RTL of a variable) are not shared
2671 with the insn chain.
2672
2673 This special care is necessary when the stack slot MEM does not
2674 actually appear in the insn chain. If it does appear, its address
2675 is unshared from all else at that point. */
8c39f8ae
TS
2676 unsigned int i;
2677 rtx temp;
2678 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2679 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
23b2ce53
RS
2680}
2681
750c9258 2682/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2683 structure, again. This is a fairly expensive thing to do so it
2684 should be done sparingly. */
2685
2686void
6bb9bf63 2687unshare_all_rtl_again (rtx_insn *insn)
d1b81779 2688{
6bb9bf63 2689 rtx_insn *p;
624c87aa
RE
2690 tree decl;
2691
d1b81779 2692 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2693 if (INSN_P (p))
d1b81779
GK
2694 {
2695 reset_used_flags (PATTERN (p));
2696 reset_used_flags (REG_NOTES (p));
776bebcd
JJ
2697 if (CALL_P (p))
2698 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
d1b81779 2699 }
624c87aa 2700
2d4aecb3 2701 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2702 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2703
624c87aa 2704 /* Make sure that virtual parameters are not shared. */
910ad8de 2705 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
5eb2a9f2 2706 set_used_flags (DECL_RTL (decl));
624c87aa 2707
8c39f8ae
TS
2708 rtx temp;
2709 unsigned int i;
2710 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2711 reset_used_flags (temp);
624c87aa 2712
b4aaa77b 2713 unshare_all_rtl_1 (insn);
fd743bc1
PB
2714}
2715
c2924966 2716unsigned int
fd743bc1
PB
2717unshare_all_rtl (void)
2718{
b4aaa77b 2719 unshare_all_rtl_1 (get_insns ());
60ebe8ce
JJ
2720
2721 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2722 {
2723 if (DECL_RTL_SET_P (decl))
2724 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2725 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2726 }
2727
c2924966 2728 return 0;
d1b81779
GK
2729}
2730
ef330312 2731
2c07f13b
JH
2732/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2733 Recursively does the same for subexpressions. */
2734
2735static void
2736verify_rtx_sharing (rtx orig, rtx insn)
2737{
2738 rtx x = orig;
2739 int i;
2740 enum rtx_code code;
2741 const char *format_ptr;
2742
2743 if (x == 0)
2744 return;
2745
2746 code = GET_CODE (x);
2747
2748 /* These types may be freely shared. */
2749
2750 switch (code)
2751 {
2752 case REG:
0ca5af51
AO
2753 case DEBUG_EXPR:
2754 case VALUE:
d8116890 2755 CASE_CONST_ANY:
2c07f13b
JH
2756 case SYMBOL_REF:
2757 case LABEL_REF:
2758 case CODE_LABEL:
2759 case PC:
2760 case CC0:
3810076b 2761 case RETURN:
26898771 2762 case SIMPLE_RETURN:
2c07f13b 2763 case SCRATCH:
3e89ed8d 2764 /* SCRATCH must be shared because they represent distinct values. */
c5c5ba89 2765 return;
3e89ed8d 2766 case CLOBBER:
c5c5ba89
JH
2767 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2768 clobbers or clobbers of hard registers that originated as pseudos.
2769 This is needed to allow safe register renaming. */
d7ae3739
EB
2770 if (REG_P (XEXP (x, 0))
2771 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2772 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3e89ed8d
JH
2773 return;
2774 break;
2c07f13b
JH
2775
2776 case CONST:
6fb5fa3c 2777 if (shared_const_p (orig))
2c07f13b
JH
2778 return;
2779 break;
2780
2781 case MEM:
2782 /* A MEM is allowed to be shared if its address is constant. */
2783 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2784 || reload_completed || reload_in_progress)
2785 return;
2786
2787 break;
2788
2789 default:
2790 break;
2791 }
2792
2793 /* This rtx may not be shared. If it has already been seen,
2794 replace it with a copy of itself. */
b2b29377 2795 if (flag_checking && RTX_FLAG (x, used))
2c07f13b 2796 {
ab532386 2797 error ("invalid rtl sharing found in the insn");
2c07f13b 2798 debug_rtx (insn);
ab532386 2799 error ("shared rtx");
2c07f13b 2800 debug_rtx (x);
ab532386 2801 internal_error ("internal consistency failure");
2c07f13b 2802 }
1a2caa7a 2803 gcc_assert (!RTX_FLAG (x, used));
b8698a0f 2804
2c07f13b
JH
2805 RTX_FLAG (x, used) = 1;
2806
6614fd40 2807 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2808
2809 format_ptr = GET_RTX_FORMAT (code);
2810
2811 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2812 {
2813 switch (*format_ptr++)
2814 {
2815 case 'e':
2816 verify_rtx_sharing (XEXP (x, i), insn);
2817 break;
2818
2819 case 'E':
2820 if (XVEC (x, i) != NULL)
2821 {
2822 int j;
2823 int len = XVECLEN (x, i);
2824
2825 for (j = 0; j < len; j++)
2826 {
1a2caa7a
NS
2827 /* We allow sharing of ASM_OPERANDS inside single
2828 instruction. */
2c07f13b 2829 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2830 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2831 == ASM_OPERANDS))
2c07f13b
JH
2832 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2833 else
2834 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2835 }
2836 }
2837 break;
2838 }
2839 }
2840 return;
2841}
2842
0e0f87d4
SB
2843/* Reset used-flags for INSN. */
2844
2845static void
2846reset_insn_used_flags (rtx insn)
2847{
2848 gcc_assert (INSN_P (insn));
2849 reset_used_flags (PATTERN (insn));
2850 reset_used_flags (REG_NOTES (insn));
2851 if (CALL_P (insn))
2852 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2853}
2854
a24243a0 2855/* Go through all the RTL insn bodies and clear all the USED bits. */
2c07f13b 2856
a24243a0
AK
2857static void
2858reset_all_used_flags (void)
2c07f13b 2859{
dc01c3d1 2860 rtx_insn *p;
2c07f13b
JH
2861
2862 for (p = get_insns (); p; p = NEXT_INSN (p))
2863 if (INSN_P (p))
2864 {
0e0f87d4
SB
2865 rtx pat = PATTERN (p);
2866 if (GET_CODE (pat) != SEQUENCE)
2867 reset_insn_used_flags (p);
2868 else
2954a813 2869 {
0e0f87d4
SB
2870 gcc_assert (REG_NOTES (p) == NULL);
2871 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
2872 {
2873 rtx insn = XVECEXP (pat, 0, i);
2874 if (INSN_P (insn))
2875 reset_insn_used_flags (insn);
2876 }
2954a813 2877 }
2c07f13b 2878 }
a24243a0
AK
2879}
2880
0e0f87d4
SB
2881/* Verify sharing in INSN. */
2882
2883static void
2884verify_insn_sharing (rtx insn)
2885{
2886 gcc_assert (INSN_P (insn));
4b498f72
JJ
2887 verify_rtx_sharing (PATTERN (insn), insn);
2888 verify_rtx_sharing (REG_NOTES (insn), insn);
0e0f87d4 2889 if (CALL_P (insn))
4b498f72 2890 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
0e0f87d4
SB
2891}
2892
a24243a0
AK
2893/* Go through all the RTL insn bodies and check that there is no unexpected
2894 sharing in between the subexpressions. */
2895
2896DEBUG_FUNCTION void
2897verify_rtl_sharing (void)
2898{
dc01c3d1 2899 rtx_insn *p;
a24243a0
AK
2900
2901 timevar_push (TV_VERIFY_RTL_SHARING);
2902
2903 reset_all_used_flags ();
2c07f13b
JH
2904
2905 for (p = get_insns (); p; p = NEXT_INSN (p))
2906 if (INSN_P (p))
2907 {
0e0f87d4
SB
2908 rtx pat = PATTERN (p);
2909 if (GET_CODE (pat) != SEQUENCE)
2910 verify_insn_sharing (p);
2911 else
2912 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
2913 {
2914 rtx insn = XVECEXP (pat, 0, i);
2915 if (INSN_P (insn))
2916 verify_insn_sharing (insn);
2917 }
2c07f13b 2918 }
a222c01a 2919
a24243a0
AK
2920 reset_all_used_flags ();
2921
a222c01a 2922 timevar_pop (TV_VERIFY_RTL_SHARING);
2c07f13b
JH
2923}
2924
d1b81779
GK
2925/* Go through all the RTL insn bodies and copy any invalid shared structure.
2926 Assumes the mark bits are cleared at entry. */
2927
2c07f13b 2928void
dc01c3d1 2929unshare_all_rtl_in_chain (rtx_insn *insn)
d1b81779
GK
2930{
2931 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2932 if (INSN_P (insn))
d1b81779
GK
2933 {
2934 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2935 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
776bebcd
JJ
2936 if (CALL_P (insn))
2937 CALL_INSN_FUNCTION_USAGE (insn)
2938 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
d1b81779
GK
2939 }
2940}
2941
2d4aecb3 2942/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2943 shared. We never replace the DECL_RTLs themselves with a copy,
2944 but expressions mentioned into a DECL_RTL cannot be shared with
2945 expressions in the instruction stream.
2946
2947 Note that reload may convert pseudo registers into memories in-place.
2948 Pseudo registers are always shared, but MEMs never are. Thus if we
2949 reset the used flags on MEMs in the instruction stream, we must set
2950 them again on MEMs that appear in DECL_RTLs. */
2951
2d4aecb3 2952static void
5eb2a9f2 2953set_used_decls (tree blk)
2d4aecb3
AO
2954{
2955 tree t;
2956
2957 /* Mark decls. */
910ad8de 2958 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
19e7881c 2959 if (DECL_RTL_SET_P (t))
5eb2a9f2 2960 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2961
2962 /* Now process sub-blocks. */
87caf699 2963 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 2964 set_used_decls (t);
2d4aecb3
AO
2965}
2966
23b2ce53 2967/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2968 Recursively does the same for subexpressions. Uses
2969 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2970
2971rtx
502b8322 2972copy_rtx_if_shared (rtx orig)
23b2ce53 2973{
32b32b16
AP
2974 copy_rtx_if_shared_1 (&orig);
2975 return orig;
2976}
2977
ff954f39
AP
2978/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2979 use. Recursively does the same for subexpressions. */
2980
32b32b16
AP
2981static void
2982copy_rtx_if_shared_1 (rtx *orig1)
2983{
2984 rtx x;
b3694847
SS
2985 int i;
2986 enum rtx_code code;
32b32b16 2987 rtx *last_ptr;
b3694847 2988 const char *format_ptr;
23b2ce53 2989 int copied = 0;
32b32b16
AP
2990 int length;
2991
2992 /* Repeat is used to turn tail-recursion into iteration. */
2993repeat:
2994 x = *orig1;
23b2ce53
RS
2995
2996 if (x == 0)
32b32b16 2997 return;
23b2ce53
RS
2998
2999 code = GET_CODE (x);
3000
3001 /* These types may be freely shared. */
3002
3003 switch (code)
3004 {
3005 case REG:
0ca5af51
AO
3006 case DEBUG_EXPR:
3007 case VALUE:
d8116890 3008 CASE_CONST_ANY:
23b2ce53 3009 case SYMBOL_REF:
2c07f13b 3010 case LABEL_REF:
23b2ce53
RS
3011 case CODE_LABEL:
3012 case PC:
3013 case CC0:
276e0224 3014 case RETURN:
26898771 3015 case SIMPLE_RETURN:
23b2ce53 3016 case SCRATCH:
0f41302f 3017 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 3018 return;
3e89ed8d 3019 case CLOBBER:
c5c5ba89
JH
3020 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3021 clobbers or clobbers of hard registers that originated as pseudos.
3022 This is needed to allow safe register renaming. */
d7ae3739
EB
3023 if (REG_P (XEXP (x, 0))
3024 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3025 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3e89ed8d
JH
3026 return;
3027 break;
23b2ce53 3028
b851ea09 3029 case CONST:
6fb5fa3c 3030 if (shared_const_p (x))
32b32b16 3031 return;
b851ea09
RK
3032 break;
3033
b5b8b0ac 3034 case DEBUG_INSN:
23b2ce53
RS
3035 case INSN:
3036 case JUMP_INSN:
3037 case CALL_INSN:
3038 case NOTE:
23b2ce53
RS
3039 case BARRIER:
3040 /* The chain of insns is not being copied. */
32b32b16 3041 return;
23b2ce53 3042
e9a25f70
JL
3043 default:
3044 break;
23b2ce53
RS
3045 }
3046
3047 /* This rtx may not be shared. If it has already been seen,
3048 replace it with a copy of itself. */
3049
2adc7f12 3050 if (RTX_FLAG (x, used))
23b2ce53 3051 {
aacd3885 3052 x = shallow_copy_rtx (x);
23b2ce53
RS
3053 copied = 1;
3054 }
2adc7f12 3055 RTX_FLAG (x, used) = 1;
23b2ce53
RS
3056
3057 /* Now scan the subexpressions recursively.
3058 We can store any replaced subexpressions directly into X
3059 since we know X is not shared! Any vectors in X
3060 must be copied if X was copied. */
3061
3062 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
3063 length = GET_RTX_LENGTH (code);
3064 last_ptr = NULL;
b8698a0f 3065
32b32b16 3066 for (i = 0; i < length; i++)
23b2ce53
RS
3067 {
3068 switch (*format_ptr++)
3069 {
3070 case 'e':
32b32b16
AP
3071 if (last_ptr)
3072 copy_rtx_if_shared_1 (last_ptr);
3073 last_ptr = &XEXP (x, i);
23b2ce53
RS
3074 break;
3075
3076 case 'E':
3077 if (XVEC (x, i) != NULL)
3078 {
b3694847 3079 int j;
f0722107 3080 int len = XVECLEN (x, i);
b8698a0f 3081
6614fd40
KH
3082 /* Copy the vector iff I copied the rtx and the length
3083 is nonzero. */
f0722107 3084 if (copied && len > 0)
8f985ec4 3085 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
b8698a0f 3086
5d3cc252 3087 /* Call recursively on all inside the vector. */
f0722107 3088 for (j = 0; j < len; j++)
32b32b16
AP
3089 {
3090 if (last_ptr)
3091 copy_rtx_if_shared_1 (last_ptr);
3092 last_ptr = &XVECEXP (x, i, j);
3093 }
23b2ce53
RS
3094 }
3095 break;
3096 }
3097 }
32b32b16
AP
3098 *orig1 = x;
3099 if (last_ptr)
3100 {
3101 orig1 = last_ptr;
3102 goto repeat;
3103 }
3104 return;
23b2ce53
RS
3105}
3106
76369a82 3107/* Set the USED bit in X and its non-shareable subparts to FLAG. */
23b2ce53 3108
76369a82
NF
3109static void
3110mark_used_flags (rtx x, int flag)
23b2ce53 3111{
b3694847
SS
3112 int i, j;
3113 enum rtx_code code;
3114 const char *format_ptr;
32b32b16 3115 int length;
23b2ce53 3116
32b32b16
AP
3117 /* Repeat is used to turn tail-recursion into iteration. */
3118repeat:
23b2ce53
RS
3119 if (x == 0)
3120 return;
3121
3122 code = GET_CODE (x);
3123
9faa82d8 3124 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
3125 for them. */
3126
3127 switch (code)
3128 {
3129 case REG:
0ca5af51
AO
3130 case DEBUG_EXPR:
3131 case VALUE:
d8116890 3132 CASE_CONST_ANY:
23b2ce53
RS
3133 case SYMBOL_REF:
3134 case CODE_LABEL:
3135 case PC:
3136 case CC0:
276e0224 3137 case RETURN:
26898771 3138 case SIMPLE_RETURN:
23b2ce53
RS
3139 return;
3140
b5b8b0ac 3141 case DEBUG_INSN:
23b2ce53
RS
3142 case INSN:
3143 case JUMP_INSN:
3144 case CALL_INSN:
3145 case NOTE:
3146 case LABEL_REF:
3147 case BARRIER:
3148 /* The chain of insns is not being copied. */
3149 return;
750c9258 3150
e9a25f70
JL
3151 default:
3152 break;
23b2ce53
RS
3153 }
3154
76369a82 3155 RTX_FLAG (x, used) = flag;
23b2ce53
RS
3156
3157 format_ptr = GET_RTX_FORMAT (code);
32b32b16 3158 length = GET_RTX_LENGTH (code);
b8698a0f 3159
32b32b16 3160 for (i = 0; i < length; i++)
23b2ce53
RS
3161 {
3162 switch (*format_ptr++)
3163 {
3164 case 'e':
32b32b16
AP
3165 if (i == length-1)
3166 {
3167 x = XEXP (x, i);
3168 goto repeat;
3169 }
76369a82 3170 mark_used_flags (XEXP (x, i), flag);
23b2ce53
RS
3171 break;
3172
3173 case 'E':
3174 for (j = 0; j < XVECLEN (x, i); j++)
76369a82 3175 mark_used_flags (XVECEXP (x, i, j), flag);
23b2ce53
RS
3176 break;
3177 }
3178 }
3179}
2c07f13b 3180
76369a82 3181/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2c07f13b
JH
3182 to look for shared sub-parts. */
3183
3184void
76369a82 3185reset_used_flags (rtx x)
2c07f13b 3186{
76369a82
NF
3187 mark_used_flags (x, 0);
3188}
2c07f13b 3189
76369a82
NF
3190/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3191 to look for shared sub-parts. */
2c07f13b 3192
76369a82
NF
3193void
3194set_used_flags (rtx x)
3195{
3196 mark_used_flags (x, 1);
2c07f13b 3197}
23b2ce53
RS
3198\f
3199/* Copy X if necessary so that it won't be altered by changes in OTHER.
3200 Return X or the rtx for the pseudo reg the value of X was copied into.
3201 OTHER must be valid as a SET_DEST. */
3202
3203rtx
502b8322 3204make_safe_from (rtx x, rtx other)
23b2ce53
RS
3205{
3206 while (1)
3207 switch (GET_CODE (other))
3208 {
3209 case SUBREG:
3210 other = SUBREG_REG (other);
3211 break;
3212 case STRICT_LOW_PART:
3213 case SIGN_EXTEND:
3214 case ZERO_EXTEND:
3215 other = XEXP (other, 0);
3216 break;
3217 default:
3218 goto done;
3219 }
3220 done:
3c0cb5de 3221 if ((MEM_P (other)
23b2ce53 3222 && ! CONSTANT_P (x)
f8cfc6aa 3223 && !REG_P (x)
23b2ce53 3224 && GET_CODE (x) != SUBREG)
f8cfc6aa 3225 || (REG_P (other)
23b2ce53
RS
3226 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3227 || reg_mentioned_p (other, x))))
3228 {
3229 rtx temp = gen_reg_rtx (GET_MODE (x));
3230 emit_move_insn (temp, x);
3231 return temp;
3232 }
3233 return x;
3234}
3235\f
3236/* Emission of insns (adding them to the doubly-linked list). */
3237
23b2ce53
RS
3238/* Return the last insn emitted, even if it is in a sequence now pushed. */
3239
db76cf1e 3240rtx_insn *
502b8322 3241get_last_insn_anywhere (void)
23b2ce53 3242{
614d5bd8
AM
3243 struct sequence_stack *seq;
3244 for (seq = get_current_sequence (); seq; seq = seq->next)
3245 if (seq->last != 0)
3246 return seq->last;
23b2ce53
RS
3247 return 0;
3248}
3249
2a496e8b
JDA
3250/* Return the first nonnote insn emitted in current sequence or current
3251 function. This routine looks inside SEQUENCEs. */
3252
e4685bc8 3253rtx_insn *
502b8322 3254get_first_nonnote_insn (void)
2a496e8b 3255{
dc01c3d1 3256 rtx_insn *insn = get_insns ();
91373fe8
JDA
3257
3258 if (insn)
3259 {
3260 if (NOTE_P (insn))
3261 for (insn = next_insn (insn);
3262 insn && NOTE_P (insn);
3263 insn = next_insn (insn))
3264 continue;
3265 else
3266 {
2ca202e7 3267 if (NONJUMP_INSN_P (insn)
91373fe8 3268 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3269 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
91373fe8
JDA
3270 }
3271 }
2a496e8b
JDA
3272
3273 return insn;
3274}
3275
3276/* Return the last nonnote insn emitted in current sequence or current
3277 function. This routine looks inside SEQUENCEs. */
3278
e4685bc8 3279rtx_insn *
502b8322 3280get_last_nonnote_insn (void)
2a496e8b 3281{
dc01c3d1 3282 rtx_insn *insn = get_last_insn ();
91373fe8
JDA
3283
3284 if (insn)
3285 {
3286 if (NOTE_P (insn))
3287 for (insn = previous_insn (insn);
3288 insn && NOTE_P (insn);
3289 insn = previous_insn (insn))
3290 continue;
3291 else
3292 {
dc01c3d1
DM
3293 if (NONJUMP_INSN_P (insn))
3294 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3295 insn = seq->insn (seq->len () - 1);
91373fe8
JDA
3296 }
3297 }
2a496e8b
JDA
3298
3299 return insn;
3300}
3301
b5b8b0ac
AO
3302/* Return the number of actual (non-debug) insns emitted in this
3303 function. */
3304
3305int
3306get_max_insn_count (void)
3307{
3308 int n = cur_insn_uid;
3309
3310 /* The table size must be stable across -g, to avoid codegen
3311 differences due to debug insns, and not be affected by
3312 -fmin-insn-uid, to avoid excessive table size and to simplify
3313 debugging of -fcompare-debug failures. */
3314 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3315 n -= cur_debug_insn_uid;
3316 else
3317 n -= MIN_NONDEBUG_INSN_UID;
3318
3319 return n;
3320}
3321
23b2ce53
RS
3322\f
3323/* Return the next insn. If it is a SEQUENCE, return the first insn
3324 of the sequence. */
3325
eb51c837 3326rtx_insn *
4ce524a1 3327next_insn (rtx_insn *insn)
23b2ce53 3328{
75547801
KG
3329 if (insn)
3330 {
3331 insn = NEXT_INSN (insn);
3332 if (insn && NONJUMP_INSN_P (insn)
3333 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3334 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
75547801 3335 }
23b2ce53 3336
dc01c3d1 3337 return insn;
23b2ce53
RS
3338}
3339
3340/* Return the previous insn. If it is a SEQUENCE, return the last insn
3341 of the sequence. */
3342
eb51c837 3343rtx_insn *
4ce524a1 3344previous_insn (rtx_insn *insn)
23b2ce53 3345{
75547801
KG
3346 if (insn)
3347 {
3348 insn = PREV_INSN (insn);
dc01c3d1
DM
3349 if (insn && NONJUMP_INSN_P (insn))
3350 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3351 insn = seq->insn (seq->len () - 1);
75547801 3352 }
23b2ce53 3353
dc01c3d1 3354 return insn;
23b2ce53
RS
3355}
3356
3357/* Return the next insn after INSN that is not a NOTE. This routine does not
3358 look inside SEQUENCEs. */
3359
eb51c837 3360rtx_insn *
c9b0a227 3361next_nonnote_insn (rtx_insn *insn)
23b2ce53 3362{
75547801
KG
3363 while (insn)
3364 {
3365 insn = NEXT_INSN (insn);
3366 if (insn == 0 || !NOTE_P (insn))
3367 break;
3368 }
23b2ce53 3369
dc01c3d1 3370 return insn;
23b2ce53
RS
3371}
3372
1e211590
DD
3373/* Return the next insn after INSN that is not a NOTE, but stop the
3374 search before we enter another basic block. This routine does not
3375 look inside SEQUENCEs. */
3376
eb51c837 3377rtx_insn *
e4685bc8 3378next_nonnote_insn_bb (rtx_insn *insn)
1e211590
DD
3379{
3380 while (insn)
3381 {
3382 insn = NEXT_INSN (insn);
3383 if (insn == 0 || !NOTE_P (insn))
3384 break;
3385 if (NOTE_INSN_BASIC_BLOCK_P (insn))
eb51c837 3386 return NULL;
1e211590
DD
3387 }
3388
dc01c3d1 3389 return insn;
1e211590
DD
3390}
3391
23b2ce53
RS
3392/* Return the previous insn before INSN that is not a NOTE. This routine does
3393 not look inside SEQUENCEs. */
3394
eb51c837 3395rtx_insn *
c9b0a227 3396prev_nonnote_insn (rtx_insn *insn)
23b2ce53 3397{
75547801
KG
3398 while (insn)
3399 {
3400 insn = PREV_INSN (insn);
3401 if (insn == 0 || !NOTE_P (insn))
3402 break;
3403 }
23b2ce53 3404
dc01c3d1 3405 return insn;
23b2ce53
RS
3406}
3407
896aa4ea
DD
3408/* Return the previous insn before INSN that is not a NOTE, but stop
3409 the search before we enter another basic block. This routine does
3410 not look inside SEQUENCEs. */
3411
eb51c837 3412rtx_insn *
9815687d 3413prev_nonnote_insn_bb (rtx_insn *insn)
896aa4ea 3414{
dc01c3d1 3415
896aa4ea
DD
3416 while (insn)
3417 {
3418 insn = PREV_INSN (insn);
3419 if (insn == 0 || !NOTE_P (insn))
3420 break;
3421 if (NOTE_INSN_BASIC_BLOCK_P (insn))
eb51c837 3422 return NULL;
896aa4ea
DD
3423 }
3424
dc01c3d1 3425 return insn;
896aa4ea
DD
3426}
3427
b5b8b0ac
AO
3428/* Return the next insn after INSN that is not a DEBUG_INSN. This
3429 routine does not look inside SEQUENCEs. */
3430
eb51c837 3431rtx_insn *
30d2ef86 3432next_nondebug_insn (rtx_insn *insn)
b5b8b0ac
AO
3433{
3434 while (insn)
3435 {
3436 insn = NEXT_INSN (insn);
3437 if (insn == 0 || !DEBUG_INSN_P (insn))
3438 break;
3439 }
3440
dc01c3d1 3441 return insn;
b5b8b0ac
AO
3442}
3443
3444/* Return the previous insn before INSN that is not a DEBUG_INSN.
3445 This routine does not look inside SEQUENCEs. */
3446
eb51c837 3447rtx_insn *
30d2ef86 3448prev_nondebug_insn (rtx_insn *insn)
b5b8b0ac
AO
3449{
3450 while (insn)
3451 {
3452 insn = PREV_INSN (insn);
3453 if (insn == 0 || !DEBUG_INSN_P (insn))
3454 break;
3455 }
3456
dc01c3d1 3457 return insn;
b5b8b0ac
AO
3458}
3459
f0fc0803
JJ
3460/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3461 This routine does not look inside SEQUENCEs. */
3462
eb51c837 3463rtx_insn *
1f00691e 3464next_nonnote_nondebug_insn (rtx_insn *insn)
f0fc0803
JJ
3465{
3466 while (insn)
3467 {
3468 insn = NEXT_INSN (insn);
3469 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3470 break;
3471 }
3472
dc01c3d1 3473 return insn;
f0fc0803
JJ
3474}
3475
3476/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3477 This routine does not look inside SEQUENCEs. */
3478
eb51c837 3479rtx_insn *
1f00691e 3480prev_nonnote_nondebug_insn (rtx_insn *insn)
f0fc0803
JJ
3481{
3482 while (insn)
3483 {
3484 insn = PREV_INSN (insn);
3485 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3486 break;
3487 }
3488
dc01c3d1 3489 return insn;
f0fc0803
JJ
3490}
3491
23b2ce53
RS
3492/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3493 or 0, if there is none. This routine does not look inside
0f41302f 3494 SEQUENCEs. */
23b2ce53 3495
eb51c837 3496rtx_insn *
dc01c3d1 3497next_real_insn (rtx uncast_insn)
23b2ce53 3498{
dc01c3d1
DM
3499 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3500
75547801
KG
3501 while (insn)
3502 {
3503 insn = NEXT_INSN (insn);
3504 if (insn == 0 || INSN_P (insn))
3505 break;
3506 }
23b2ce53 3507
dc01c3d1 3508 return insn;
23b2ce53
RS
3509}
3510
3511/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3512 or 0, if there is none. This routine does not look inside
3513 SEQUENCEs. */
3514
eb51c837 3515rtx_insn *
d8fd56b2 3516prev_real_insn (rtx_insn *insn)
23b2ce53 3517{
75547801
KG
3518 while (insn)
3519 {
3520 insn = PREV_INSN (insn);
3521 if (insn == 0 || INSN_P (insn))
3522 break;
3523 }
23b2ce53 3524
dc01c3d1 3525 return insn;
23b2ce53
RS
3526}
3527
ee960939
OH
3528/* Return the last CALL_INSN in the current list, or 0 if there is none.
3529 This routine does not look inside SEQUENCEs. */
3530
049cfc4a 3531rtx_call_insn *
502b8322 3532last_call_insn (void)
ee960939 3533{
049cfc4a 3534 rtx_insn *insn;
ee960939
OH
3535
3536 for (insn = get_last_insn ();
4b4bf941 3537 insn && !CALL_P (insn);
ee960939
OH
3538 insn = PREV_INSN (insn))
3539 ;
3540
049cfc4a 3541 return safe_as_a <rtx_call_insn *> (insn);
ee960939
OH
3542}
3543
23b2ce53 3544/* Find the next insn after INSN that really does something. This routine
9c517bf3
AK
3545 does not look inside SEQUENCEs. After reload this also skips over
3546 standalone USE and CLOBBER insn. */
23b2ce53 3547
69732dcb 3548int
7c9796ed 3549active_insn_p (const rtx_insn *insn)
69732dcb 3550{
4b4bf941 3551 return (CALL_P (insn) || JUMP_P (insn)
39718607 3552 || JUMP_TABLE_DATA_P (insn) /* FIXME */
4b4bf941 3553 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3554 && (! reload_completed
3555 || (GET_CODE (PATTERN (insn)) != USE
3556 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3557}
3558
eb51c837 3559rtx_insn *
7c9796ed 3560next_active_insn (rtx_insn *insn)
23b2ce53 3561{
75547801
KG
3562 while (insn)
3563 {
3564 insn = NEXT_INSN (insn);
3565 if (insn == 0 || active_insn_p (insn))
3566 break;
3567 }
23b2ce53 3568
dc01c3d1 3569 return insn;
23b2ce53
RS
3570}
3571
3572/* Find the last insn before INSN that really does something. This routine
9c517bf3
AK
3573 does not look inside SEQUENCEs. After reload this also skips over
3574 standalone USE and CLOBBER insn. */
23b2ce53 3575
eb51c837 3576rtx_insn *
7c9796ed 3577prev_active_insn (rtx_insn *insn)
23b2ce53 3578{
75547801
KG
3579 while (insn)
3580 {
3581 insn = PREV_INSN (insn);
3582 if (insn == 0 || active_insn_p (insn))
3583 break;
3584 }
23b2ce53 3585
dc01c3d1 3586 return insn;
23b2ce53 3587}
23b2ce53 3588\f
23b2ce53
RS
3589/* Return the next insn that uses CC0 after INSN, which is assumed to
3590 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3591 applied to the result of this function should yield INSN).
3592
3593 Normally, this is simply the next insn. However, if a REG_CC_USER note
3594 is present, it contains the insn that uses CC0.
3595
3596 Return 0 if we can't find the insn. */
3597
75b46023 3598rtx_insn *
475edec0 3599next_cc0_user (rtx_insn *insn)
23b2ce53 3600{
906c4e36 3601 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3602
3603 if (note)
75b46023 3604 return safe_as_a <rtx_insn *> (XEXP (note, 0));
23b2ce53
RS
3605
3606 insn = next_nonnote_insn (insn);
4b4bf941 3607 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3608 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
23b2ce53 3609
2c3c49de 3610 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
dc01c3d1 3611 return insn;
23b2ce53
RS
3612
3613 return 0;
3614}
3615
3616/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3617 note, it is the previous insn. */
3618
75b46023 3619rtx_insn *
5c8db5b4 3620prev_cc0_setter (rtx_insn *insn)
23b2ce53 3621{
906c4e36 3622 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3623
3624 if (note)
75b46023 3625 return safe_as_a <rtx_insn *> (XEXP (note, 0));
23b2ce53
RS
3626
3627 insn = prev_nonnote_insn (insn);
5b0264cb 3628 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53 3629
dc01c3d1 3630 return insn;
23b2ce53 3631}
e5bef2e4 3632
594f8779
RZ
3633/* Find a RTX_AUTOINC class rtx which matches DATA. */
3634
3635static int
9021b8ec 3636find_auto_inc (const_rtx x, const_rtx reg)
594f8779 3637{
9021b8ec
RS
3638 subrtx_iterator::array_type array;
3639 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
594f8779 3640 {
9021b8ec
RS
3641 const_rtx x = *iter;
3642 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3643 && rtx_equal_p (reg, XEXP (x, 0)))
3644 return true;
594f8779 3645 }
9021b8ec 3646 return false;
594f8779 3647}
594f8779 3648
e5bef2e4
HB
3649/* Increment the label uses for all labels present in rtx. */
3650
3651static void
502b8322 3652mark_label_nuses (rtx x)
e5bef2e4 3653{
b3694847
SS
3654 enum rtx_code code;
3655 int i, j;
3656 const char *fmt;
e5bef2e4
HB
3657
3658 code = GET_CODE (x);
04a121a7
TS
3659 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3660 LABEL_NUSES (label_ref_label (x))++;
e5bef2e4
HB
3661
3662 fmt = GET_RTX_FORMAT (code);
3663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3664 {
3665 if (fmt[i] == 'e')
0fb7aeda 3666 mark_label_nuses (XEXP (x, i));
e5bef2e4 3667 else if (fmt[i] == 'E')
0fb7aeda 3668 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3669 mark_label_nuses (XVECEXP (x, i, j));
3670 }
3671}
3672
23b2ce53
RS
3673\f
3674/* Try splitting insns that can be split for better scheduling.
3675 PAT is the pattern which might split.
3676 TRIAL is the insn providing PAT.
cc2902df 3677 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3678
3679 If this routine succeeds in splitting, it returns the first or last
11147ebe 3680 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3681 returns TRIAL. If the insn to be returned can be split, it will be. */
3682
53f04688 3683rtx_insn *
bb5c4956 3684try_split (rtx pat, rtx_insn *trial, int last)
23b2ce53 3685{
d4eff95b 3686 rtx_insn *before, *after;
dc01c3d1
DM
3687 rtx note;
3688 rtx_insn *seq, *tem;
5fa396ad 3689 profile_probability probability;
dc01c3d1 3690 rtx_insn *insn_last, *insn;
599aedd9 3691 int njumps = 0;
e67d1102 3692 rtx_insn *call_insn = NULL;
6b24c259 3693
cd9c1ca8
RH
3694 /* We're not good at redistributing frame information. */
3695 if (RTX_FRAME_RELATED_P (trial))
dc01c3d1 3696 return trial;
cd9c1ca8 3697
6b24c259
JH
3698 if (any_condjump_p (trial)
3699 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
5fa396ad
JH
3700 split_branch_probability
3701 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3702 else
3703 split_branch_probability = profile_probability::uninitialized ();
3704
6b24c259
JH
3705 probability = split_branch_probability;
3706
bb5c4956 3707 seq = split_insns (pat, trial);
6b24c259 3708
5fa396ad 3709 split_branch_probability = profile_probability::uninitialized ();
23b2ce53 3710
599aedd9 3711 if (!seq)
dc01c3d1 3712 return trial;
599aedd9
RH
3713
3714 /* Avoid infinite loop if any insn of the result matches
3715 the original pattern. */
3716 insn_last = seq;
3717 while (1)
23b2ce53 3718 {
599aedd9
RH
3719 if (INSN_P (insn_last)
3720 && rtx_equal_p (PATTERN (insn_last), pat))
dc01c3d1 3721 return trial;
599aedd9
RH
3722 if (!NEXT_INSN (insn_last))
3723 break;
3724 insn_last = NEXT_INSN (insn_last);
3725 }
750c9258 3726
6fb5fa3c
DB
3727 /* We will be adding the new sequence to the function. The splitters
3728 may have introduced invalid RTL sharing, so unshare the sequence now. */
3729 unshare_all_rtl_in_chain (seq);
3730
339ba33b 3731 /* Mark labels and copy flags. */
599aedd9
RH
3732 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3733 {
4b4bf941 3734 if (JUMP_P (insn))
599aedd9 3735 {
339ba33b
RS
3736 if (JUMP_P (trial))
3737 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
599aedd9
RH
3738 mark_jump_label (PATTERN (insn), insn, 0);
3739 njumps++;
5fa396ad 3740 if (probability.initialized_p ()
599aedd9
RH
3741 && any_condjump_p (insn)
3742 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3743 {
599aedd9
RH
3744 /* We can preserve the REG_BR_PROB notes only if exactly
3745 one jump is created, otherwise the machine description
3746 is responsible for this step using
3747 split_branch_probability variable. */
5b0264cb 3748 gcc_assert (njumps == 1);
5fa396ad 3749 add_reg_br_prob_note (insn, probability);
2f937369 3750 }
599aedd9
RH
3751 }
3752 }
3753
3754 /* If we are splitting a CALL_INSN, look for the CALL_INSN
65712d5c 3755 in SEQ and copy any additional information across. */
4b4bf941 3756 if (CALL_P (trial))
599aedd9
RH
3757 {
3758 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3759 if (CALL_P (insn))
599aedd9 3760 {
dc01c3d1
DM
3761 rtx_insn *next;
3762 rtx *p;
65712d5c 3763
4f660b15
RO
3764 gcc_assert (call_insn == NULL_RTX);
3765 call_insn = insn;
3766
65712d5c
RS
3767 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3768 target may have explicitly specified. */
3769 p = &CALL_INSN_FUNCTION_USAGE (insn);
f6a1f3f6
RH
3770 while (*p)
3771 p = &XEXP (*p, 1);
3772 *p = CALL_INSN_FUNCTION_USAGE (trial);
65712d5c
RS
3773
3774 /* If the old call was a sibling call, the new one must
3775 be too. */
599aedd9 3776 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
65712d5c
RS
3777
3778 /* If the new call is the last instruction in the sequence,
3779 it will effectively replace the old call in-situ. Otherwise
3780 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3781 so that it comes immediately after the new call. */
3782 if (NEXT_INSN (insn))
65f3dedb
RS
3783 for (next = NEXT_INSN (trial);
3784 next && NOTE_P (next);
3785 next = NEXT_INSN (next))
3786 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
65712d5c
RS
3787 {
3788 remove_insn (next);
3789 add_insn_after (next, insn, NULL);
65f3dedb 3790 break;
65712d5c 3791 }
599aedd9
RH
3792 }
3793 }
4b5e8abe 3794
599aedd9
RH
3795 /* Copy notes, particularly those related to the CFG. */
3796 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3797 {
3798 switch (REG_NOTE_KIND (note))
3799 {
3800 case REG_EH_REGION:
1d65f45c 3801 copy_reg_eh_region_note_backward (note, insn_last, NULL);
599aedd9 3802 break;
216183ce 3803
599aedd9
RH
3804 case REG_NORETURN:
3805 case REG_SETJMP:
0a35513e 3806 case REG_TM:
5c5f0b65 3807 case REG_CALL_NOCF_CHECK:
594f8779 3808 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3809 {
4b4bf941 3810 if (CALL_P (insn))
65c5f2a6 3811 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3812 }
599aedd9 3813 break;
d6e95df8 3814
599aedd9 3815 case REG_NON_LOCAL_GOTO:
594f8779 3816 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3817 {
4b4bf941 3818 if (JUMP_P (insn))
65c5f2a6 3819 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3820 }
599aedd9 3821 break;
e5bef2e4 3822
594f8779 3823 case REG_INC:
760edf20
TS
3824 if (!AUTO_INC_DEC)
3825 break;
3826
594f8779
RZ
3827 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3828 {
3829 rtx reg = XEXP (note, 0);
3830 if (!FIND_REG_INC_NOTE (insn, reg)
9021b8ec 3831 && find_auto_inc (PATTERN (insn), reg))
65c5f2a6 3832 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3833 }
3834 break;
594f8779 3835
9a08d230 3836 case REG_ARGS_SIZE:
e5b51ca0 3837 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0)));
9a08d230
RH
3838 break;
3839
4f660b15
RO
3840 case REG_CALL_DECL:
3841 gcc_assert (call_insn != NULL_RTX);
3842 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3843 break;
3844
599aedd9
RH
3845 default:
3846 break;
23b2ce53 3847 }
599aedd9
RH
3848 }
3849
3850 /* If there are LABELS inside the split insns increment the
3851 usage count so we don't delete the label. */
cf7c4aa6 3852 if (INSN_P (trial))
599aedd9
RH
3853 {
3854 insn = insn_last;
3855 while (insn != NULL_RTX)
23b2ce53 3856 {
cf7c4aa6 3857 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3858 if (NONJUMP_INSN_P (insn))
599aedd9 3859 mark_label_nuses (PATTERN (insn));
23b2ce53 3860
599aedd9
RH
3861 insn = PREV_INSN (insn);
3862 }
23b2ce53
RS
3863 }
3864
d4eff95b
JC
3865 before = PREV_INSN (trial);
3866 after = NEXT_INSN (trial);
3867
5368224f 3868 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
599aedd9
RH
3869
3870 delete_insn (trial);
599aedd9
RH
3871
3872 /* Recursively call try_split for each new insn created; by the
3873 time control returns here that insn will be fully split, so
3874 set LAST and continue from the insn after the one returned.
3875 We can't use next_active_insn here since AFTER may be a note.
3876 Ignore deleted insns, which can be occur if not optimizing. */
3877 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
4654c0cf 3878 if (! tem->deleted () && INSN_P (tem))
599aedd9
RH
3879 tem = try_split (PATTERN (tem), tem, 1);
3880
3881 /* Return either the first or the last insn, depending on which was
3882 requested. */
3883 return last
5936d944 3884 ? (after ? PREV_INSN (after) : get_last_insn ())
599aedd9 3885 : NEXT_INSN (before);
23b2ce53
RS
3886}
3887\f
3888/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3889 Store PATTERN in the pattern slots. */
23b2ce53 3890
167b9fae 3891rtx_insn *
502b8322 3892make_insn_raw (rtx pattern)
23b2ce53 3893{
167b9fae 3894 rtx_insn *insn;
23b2ce53 3895
167b9fae 3896 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
23b2ce53 3897
43127294 3898 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3899 PATTERN (insn) = pattern;
3900 INSN_CODE (insn) = -1;
1632afca 3901 REG_NOTES (insn) = NULL;
5368224f 3902 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3903 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3904
47984720
NC
3905#ifdef ENABLE_RTL_CHECKING
3906 if (insn
2c3c49de 3907 && INSN_P (insn)
47984720
NC
3908 && (returnjump_p (insn)
3909 || (GET_CODE (insn) == SET
3910 && SET_DEST (insn) == pc_rtx)))
3911 {
d4ee4d25 3912 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3913 debug_rtx (insn);
3914 }
3915#endif
750c9258 3916
23b2ce53
RS
3917 return insn;
3918}
3919
b5b8b0ac
AO
3920/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3921
167b9fae 3922static rtx_insn *
b5b8b0ac
AO
3923make_debug_insn_raw (rtx pattern)
3924{
167b9fae 3925 rtx_debug_insn *insn;
b5b8b0ac 3926
167b9fae 3927 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
b5b8b0ac
AO
3928 INSN_UID (insn) = cur_debug_insn_uid++;
3929 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3930 INSN_UID (insn) = cur_insn_uid++;
3931
3932 PATTERN (insn) = pattern;
3933 INSN_CODE (insn) = -1;
3934 REG_NOTES (insn) = NULL;
5368224f 3935 INSN_LOCATION (insn) = curr_insn_location ();
b5b8b0ac
AO
3936 BLOCK_FOR_INSN (insn) = NULL;
3937
3938 return insn;
3939}
3940
2f937369 3941/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3942
167b9fae 3943static rtx_insn *
502b8322 3944make_jump_insn_raw (rtx pattern)
23b2ce53 3945{
167b9fae 3946 rtx_jump_insn *insn;
23b2ce53 3947
167b9fae 3948 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
1632afca 3949 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3950
3951 PATTERN (insn) = pattern;
3952 INSN_CODE (insn) = -1;
1632afca
RS
3953 REG_NOTES (insn) = NULL;
3954 JUMP_LABEL (insn) = NULL;
5368224f 3955 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3956 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3957
3958 return insn;
3959}
aff507f4 3960
2f937369 3961/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4 3962
167b9fae 3963static rtx_insn *
502b8322 3964make_call_insn_raw (rtx pattern)
aff507f4 3965{
167b9fae 3966 rtx_call_insn *insn;
aff507f4 3967
167b9fae 3968 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
aff507f4
RK
3969 INSN_UID (insn) = cur_insn_uid++;
3970
3971 PATTERN (insn) = pattern;
3972 INSN_CODE (insn) = -1;
aff507f4
RK
3973 REG_NOTES (insn) = NULL;
3974 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5368224f 3975 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3976 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3977
3978 return insn;
3979}
96fba521
SB
3980
3981/* Like `make_insn_raw' but make a NOTE instead of an insn. */
3982
66e8df53 3983static rtx_note *
96fba521
SB
3984make_note_raw (enum insn_note subtype)
3985{
3986 /* Some notes are never created this way at all. These notes are
3987 only created by patching out insns. */
3988 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3989 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3990
66e8df53 3991 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
96fba521
SB
3992 INSN_UID (note) = cur_insn_uid++;
3993 NOTE_KIND (note) = subtype;
3994 BLOCK_FOR_INSN (note) = NULL;
3995 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3996 return note;
3997}
23b2ce53 3998\f
96fba521
SB
3999/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4000 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4001 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4002
4003static inline void
9152e0aa 4004link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
96fba521 4005{
0f82e5c9
DM
4006 SET_PREV_INSN (insn) = prev;
4007 SET_NEXT_INSN (insn) = next;
96fba521
SB
4008 if (prev != NULL)
4009 {
0f82e5c9 4010 SET_NEXT_INSN (prev) = insn;
96fba521
SB
4011 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4012 {
e6eda746
DM
4013 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4014 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
96fba521
SB
4015 }
4016 }
4017 if (next != NULL)
4018 {
0f82e5c9 4019 SET_PREV_INSN (next) = insn;
96fba521 4020 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
4021 {
4022 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4023 SET_PREV_INSN (sequence->insn (0)) = insn;
4024 }
96fba521 4025 }
3ccb989e
SB
4026
4027 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4028 {
e6eda746
DM
4029 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4030 SET_PREV_INSN (sequence->insn (0)) = prev;
4031 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3ccb989e 4032 }
96fba521
SB
4033}
4034
23b2ce53
RS
4035/* Add INSN to the end of the doubly-linked list.
4036 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4037
4038void
9152e0aa 4039add_insn (rtx_insn *insn)
23b2ce53 4040{
9152e0aa 4041 rtx_insn *prev = get_last_insn ();
96fba521 4042 link_insn_into_chain (insn, prev, NULL);
5936d944
JH
4043 if (NULL == get_insns ())
4044 set_first_insn (insn);
5936d944 4045 set_last_insn (insn);
23b2ce53
RS
4046}
4047
96fba521 4048/* Add INSN into the doubly-linked list after insn AFTER. */
23b2ce53 4049
96fba521 4050static void
9152e0aa 4051add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
23b2ce53 4052{
9152e0aa 4053 rtx_insn *next = NEXT_INSN (after);
23b2ce53 4054
4654c0cf 4055 gcc_assert (!optimize || !after->deleted ());
ba213285 4056
96fba521 4057 link_insn_into_chain (insn, after, next);
23b2ce53 4058
96fba521 4059 if (next == NULL)
23b2ce53 4060 {
614d5bd8
AM
4061 struct sequence_stack *seq;
4062
4063 for (seq = get_current_sequence (); seq; seq = seq->next)
4064 if (after == seq->last)
4065 {
4066 seq->last = insn;
4067 break;
4068 }
23b2ce53 4069 }
96fba521
SB
4070}
4071
4072/* Add INSN into the doubly-linked list before insn BEFORE. */
4073
4074static void
9152e0aa 4075add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
96fba521 4076{
9152e0aa 4077 rtx_insn *prev = PREV_INSN (before);
96fba521 4078
4654c0cf 4079 gcc_assert (!optimize || !before->deleted ());
96fba521
SB
4080
4081 link_insn_into_chain (insn, prev, before);
4082
4083 if (prev == NULL)
23b2ce53 4084 {
614d5bd8 4085 struct sequence_stack *seq;
a0ae8e8d 4086
614d5bd8
AM
4087 for (seq = get_current_sequence (); seq; seq = seq->next)
4088 if (before == seq->first)
4089 {
4090 seq->first = insn;
4091 break;
4092 }
4093
4094 gcc_assert (seq);
23b2ce53 4095 }
96fba521
SB
4096}
4097
4098/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4099 If BB is NULL, an attempt is made to infer the bb from before.
4100
4101 This and the next function should be the only functions called
4102 to insert an insn once delay slots have been filled since only
4103 they know how to update a SEQUENCE. */
23b2ce53 4104
96fba521 4105void
9152e0aa 4106add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
96fba521 4107{
1130d5e3 4108 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
9152e0aa 4109 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
96fba521 4110 add_insn_after_nobb (insn, after);
4b4bf941
JQ
4111 if (!BARRIER_P (after)
4112 && !BARRIER_P (insn)
3c030e88
JH
4113 && (bb = BLOCK_FOR_INSN (after)))
4114 {
4115 set_block_for_insn (insn, bb);
38c1593d 4116 if (INSN_P (insn))
6fb5fa3c 4117 df_insn_rescan (insn);
3c030e88 4118 /* Should not happen as first in the BB is always
a1f300c0 4119 either NOTE or LABEL. */
a813c111 4120 if (BB_END (bb) == after
3c030e88 4121 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 4122 && !BARRIER_P (insn)
a38e7aa5 4123 && !NOTE_INSN_BASIC_BLOCK_P (insn))
1130d5e3 4124 BB_END (bb) = insn;
3c030e88 4125 }
23b2ce53
RS
4126}
4127
96fba521
SB
4128/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4129 If BB is NULL, an attempt is made to infer the bb from before.
4130
4131 This and the previous function should be the only functions called
4132 to insert an insn once delay slots have been filled since only
4133 they know how to update a SEQUENCE. */
a0ae8e8d
RK
4134
4135void
9152e0aa 4136add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
a0ae8e8d 4137{
9152e0aa
DM
4138 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4139 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
96fba521 4140 add_insn_before_nobb (insn, before);
a0ae8e8d 4141
b8698a0f 4142 if (!bb
6fb5fa3c
DB
4143 && !BARRIER_P (before)
4144 && !BARRIER_P (insn))
4145 bb = BLOCK_FOR_INSN (before);
4146
4147 if (bb)
3c030e88
JH
4148 {
4149 set_block_for_insn (insn, bb);
38c1593d 4150 if (INSN_P (insn))
6fb5fa3c 4151 df_insn_rescan (insn);
5b0264cb 4152 /* Should not happen as first in the BB is always either NOTE or
43e05e45 4153 LABEL. */
5b0264cb
NS
4154 gcc_assert (BB_HEAD (bb) != insn
4155 /* Avoid clobbering of structure when creating new BB. */
4156 || BARRIER_P (insn)
a38e7aa5 4157 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88 4158 }
a0ae8e8d
RK
4159}
4160
6fb5fa3c
DB
4161/* Replace insn with an deleted instruction note. */
4162
0ce2b299
EB
4163void
4164set_insn_deleted (rtx insn)
6fb5fa3c 4165{
39718607 4166 if (INSN_P (insn))
b2908ba6 4167 df_insn_delete (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
4168 PUT_CODE (insn, NOTE);
4169 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4170}
4171
4172
1f397f45
SB
4173/* Unlink INSN from the insn chain.
4174
4175 This function knows how to handle sequences.
4176
4177 This function does not invalidate data flow information associated with
4178 INSN (i.e. does not call df_insn_delete). That makes this function
4179 usable for only disconnecting an insn from the chain, and re-emit it
4180 elsewhere later.
4181
4182 To later insert INSN elsewhere in the insn chain via add_insn and
4183 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4184 the caller. Nullifying them here breaks many insn chain walks.
4185
4186 To really delete an insn and related DF information, use delete_insn. */
4187
89e99eea 4188void
dc01c3d1 4189remove_insn (rtx uncast_insn)
89e99eea 4190{
dc01c3d1 4191 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
1130d5e3
DM
4192 rtx_insn *next = NEXT_INSN (insn);
4193 rtx_insn *prev = PREV_INSN (insn);
53c17031
JH
4194 basic_block bb;
4195
89e99eea
DB
4196 if (prev)
4197 {
0f82e5c9 4198 SET_NEXT_INSN (prev) = next;
4b4bf941 4199 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea 4200 {
e6eda746
DM
4201 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4202 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
89e99eea
DB
4203 }
4204 }
89e99eea
DB
4205 else
4206 {
614d5bd8
AM
4207 struct sequence_stack *seq;
4208
4209 for (seq = get_current_sequence (); seq; seq = seq->next)
4210 if (insn == seq->first)
89e99eea 4211 {
614d5bd8 4212 seq->first = next;
89e99eea
DB
4213 break;
4214 }
4215
614d5bd8 4216 gcc_assert (seq);
89e99eea
DB
4217 }
4218
4219 if (next)
4220 {
0f82e5c9 4221 SET_PREV_INSN (next) = prev;
4b4bf941 4222 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
4223 {
4224 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4225 SET_PREV_INSN (sequence->insn (0)) = prev;
4226 }
89e99eea 4227 }
89e99eea
DB
4228 else
4229 {
614d5bd8
AM
4230 struct sequence_stack *seq;
4231
4232 for (seq = get_current_sequence (); seq; seq = seq->next)
4233 if (insn == seq->last)
89e99eea 4234 {
614d5bd8 4235 seq->last = prev;
89e99eea
DB
4236 break;
4237 }
4238
614d5bd8 4239 gcc_assert (seq);
89e99eea 4240 }
80eb8028 4241
80eb8028 4242 /* Fix up basic block boundaries, if necessary. */
4b4bf941 4243 if (!BARRIER_P (insn)
53c17031
JH
4244 && (bb = BLOCK_FOR_INSN (insn)))
4245 {
a813c111 4246 if (BB_HEAD (bb) == insn)
53c17031 4247 {
3bf1e984
RK
4248 /* Never ever delete the basic block note without deleting whole
4249 basic block. */
5b0264cb 4250 gcc_assert (!NOTE_P (insn));
1130d5e3 4251 BB_HEAD (bb) = next;
53c17031 4252 }
a813c111 4253 if (BB_END (bb) == insn)
1130d5e3 4254 BB_END (bb) = prev;
53c17031 4255 }
89e99eea
DB
4256}
4257
ee960939
OH
4258/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4259
4260void
502b8322 4261add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 4262{
5b0264cb 4263 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
4264
4265 /* Put the register usage information on the CALL. If there is already
4266 some usage information, put ours at the end. */
4267 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4268 {
4269 rtx link;
4270
4271 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4272 link = XEXP (link, 1))
4273 ;
4274
4275 XEXP (link, 1) = call_fusage;
4276 }
4277 else
4278 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4279}
4280
23b2ce53
RS
4281/* Delete all insns made since FROM.
4282 FROM becomes the new last instruction. */
4283
4284void
fee3e72c 4285delete_insns_since (rtx_insn *from)
23b2ce53
RS
4286{
4287 if (from == 0)
5936d944 4288 set_first_insn (0);
23b2ce53 4289 else
0f82e5c9 4290 SET_NEXT_INSN (from) = 0;
5936d944 4291 set_last_insn (from);
23b2ce53
RS
4292}
4293
5dab5552
MS
4294/* This function is deprecated, please use sequences instead.
4295
4296 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
4297 The insns to be moved are those between FROM and TO.
4298 They are moved to a new position after the insn AFTER.
4299 AFTER must not be FROM or TO or any insn in between.
4300
4301 This function does not know about SEQUENCEs and hence should not be
4302 called after delay-slot filling has been done. */
4303
4304void
fee3e72c 4305reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
23b2ce53 4306{
b2b29377
MM
4307 if (flag_checking)
4308 {
4309 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4310 gcc_assert (after != x);
4311 gcc_assert (after != to);
4312 }
4f8344eb 4313
23b2ce53
RS
4314 /* Splice this bunch out of where it is now. */
4315 if (PREV_INSN (from))
0f82e5c9 4316 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
23b2ce53 4317 if (NEXT_INSN (to))
0f82e5c9 4318 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
5936d944
JH
4319 if (get_last_insn () == to)
4320 set_last_insn (PREV_INSN (from));
4321 if (get_insns () == from)
4322 set_first_insn (NEXT_INSN (to));
23b2ce53
RS
4323
4324 /* Make the new neighbors point to it and it to them. */
4325 if (NEXT_INSN (after))
0f82e5c9 4326 SET_PREV_INSN (NEXT_INSN (after)) = to;
23b2ce53 4327
0f82e5c9
DM
4328 SET_NEXT_INSN (to) = NEXT_INSN (after);
4329 SET_PREV_INSN (from) = after;
4330 SET_NEXT_INSN (after) = from;
c3284718 4331 if (after == get_last_insn ())
5936d944 4332 set_last_insn (to);
23b2ce53
RS
4333}
4334
3c030e88
JH
4335/* Same as function above, but take care to update BB boundaries. */
4336void
ac9d2d2c 4337reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
3c030e88 4338{
ac9d2d2c 4339 rtx_insn *prev = PREV_INSN (from);
3c030e88
JH
4340 basic_block bb, bb2;
4341
4342 reorder_insns_nobb (from, to, after);
4343
4b4bf941 4344 if (!BARRIER_P (after)
3c030e88
JH
4345 && (bb = BLOCK_FOR_INSN (after)))
4346 {
b2908ba6 4347 rtx_insn *x;
6fb5fa3c 4348 df_set_bb_dirty (bb);
68252e27 4349
4b4bf941 4350 if (!BARRIER_P (from)
3c030e88
JH
4351 && (bb2 = BLOCK_FOR_INSN (from)))
4352 {
a813c111 4353 if (BB_END (bb2) == to)
1130d5e3 4354 BB_END (bb2) = prev;
6fb5fa3c 4355 df_set_bb_dirty (bb2);
3c030e88
JH
4356 }
4357
a813c111 4358 if (BB_END (bb) == after)
1130d5e3 4359 BB_END (bb) = to;
3c030e88
JH
4360
4361 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 4362 if (!BARRIER_P (x))
63642d5a 4363 df_insn_change_bb (x, bb);
3c030e88
JH
4364 }
4365}
4366
23b2ce53 4367\f
2f937369
DM
4368/* Emit insn(s) of given code and pattern
4369 at a specified place within the doubly-linked list.
23b2ce53 4370
2f937369
DM
4371 All of the emit_foo global entry points accept an object
4372 X which is either an insn list or a PATTERN of a single
4373 instruction.
23b2ce53 4374
2f937369
DM
4375 There are thus a few canonical ways to generate code and
4376 emit it at a specific place in the instruction stream. For
4377 example, consider the instruction named SPOT and the fact that
4378 we would like to emit some instructions before SPOT. We might
4379 do it like this:
23b2ce53 4380
2f937369
DM
4381 start_sequence ();
4382 ... emit the new instructions ...
4383 insns_head = get_insns ();
4384 end_sequence ();
23b2ce53 4385
2f937369 4386 emit_insn_before (insns_head, SPOT);
23b2ce53 4387
2f937369
DM
4388 It used to be common to generate SEQUENCE rtl instead, but that
4389 is a relic of the past which no longer occurs. The reason is that
4390 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4391 generated would almost certainly die right after it was created. */
23b2ce53 4392
cd459bf8 4393static rtx_insn *
5f02387d 4394emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
167b9fae 4395 rtx_insn *(*make_raw) (rtx))
23b2ce53 4396{
167b9fae 4397 rtx_insn *insn;
23b2ce53 4398
5b0264cb 4399 gcc_assert (before);
2f937369
DM
4400
4401 if (x == NULL_RTX)
cd459bf8 4402 return safe_as_a <rtx_insn *> (last);
2f937369
DM
4403
4404 switch (GET_CODE (x))
23b2ce53 4405 {
b5b8b0ac 4406 case DEBUG_INSN:
2f937369
DM
4407 case INSN:
4408 case JUMP_INSN:
4409 case CALL_INSN:
4410 case CODE_LABEL:
4411 case BARRIER:
4412 case NOTE:
167b9fae 4413 insn = as_a <rtx_insn *> (x);
2f937369
DM
4414 while (insn)
4415 {
167b9fae 4416 rtx_insn *next = NEXT_INSN (insn);
6fb5fa3c 4417 add_insn_before (insn, before, bb);
2f937369
DM
4418 last = insn;
4419 insn = next;
4420 }
4421 break;
4422
4423#ifdef ENABLE_RTL_CHECKING
4424 case SEQUENCE:
5b0264cb 4425 gcc_unreachable ();
2f937369
DM
4426 break;
4427#endif
4428
4429 default:
5f02387d 4430 last = (*make_raw) (x);
6fb5fa3c 4431 add_insn_before (last, before, bb);
2f937369 4432 break;
23b2ce53
RS
4433 }
4434
cd459bf8 4435 return safe_as_a <rtx_insn *> (last);
23b2ce53
RS
4436}
4437
5f02387d
NF
4438/* Make X be output before the instruction BEFORE. */
4439
cd459bf8 4440rtx_insn *
596f2b17 4441emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
5f02387d
NF
4442{
4443 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4444}
4445
2f937369 4446/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4447 and output it before the instruction BEFORE. */
4448
1476d1bd 4449rtx_jump_insn *
596f2b17 4450emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
23b2ce53 4451{
1476d1bd
MM
4452 return as_a <rtx_jump_insn *> (
4453 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4454 make_jump_insn_raw));
23b2ce53
RS
4455}
4456
2f937369 4457/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4458 and output it before the instruction BEFORE. */
4459
cd459bf8 4460rtx_insn *
596f2b17 4461emit_call_insn_before_noloc (rtx x, rtx_insn *before)
969d70ca 4462{
5f02387d
NF
4463 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4464 make_call_insn_raw);
969d70ca
JH
4465}
4466
b5b8b0ac
AO
4467/* Make an instruction with body X and code DEBUG_INSN
4468 and output it before the instruction BEFORE. */
4469
cd459bf8 4470rtx_insn *
b5b8b0ac
AO
4471emit_debug_insn_before_noloc (rtx x, rtx before)
4472{
5f02387d
NF
4473 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4474 make_debug_insn_raw);
b5b8b0ac
AO
4475}
4476
23b2ce53 4477/* Make an insn of code BARRIER
e881bb1b 4478 and output it before the insn BEFORE. */
23b2ce53 4479
cd459bf8 4480rtx_barrier *
502b8322 4481emit_barrier_before (rtx before)
23b2ce53 4482{
cd459bf8 4483 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4484
4485 INSN_UID (insn) = cur_insn_uid++;
4486
6fb5fa3c 4487 add_insn_before (insn, before, NULL);
23b2ce53
RS
4488 return insn;
4489}
4490
e881bb1b
RH
4491/* Emit the label LABEL before the insn BEFORE. */
4492
1476d1bd 4493rtx_code_label *
596f2b17 4494emit_label_before (rtx label, rtx_insn *before)
e881bb1b 4495{
468660d3
SB
4496 gcc_checking_assert (INSN_UID (label) == 0);
4497 INSN_UID (label) = cur_insn_uid++;
4498 add_insn_before (label, before, NULL);
1476d1bd 4499 return as_a <rtx_code_label *> (label);
e881bb1b 4500}
23b2ce53 4501\f
2f937369
DM
4502/* Helper for emit_insn_after, handles lists of instructions
4503 efficiently. */
23b2ce53 4504
e6eda746
DM
4505static rtx_insn *
4506emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
23b2ce53 4507{
e6eda746 4508 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
1130d5e3
DM
4509 rtx_insn *last;
4510 rtx_insn *after_after;
6fb5fa3c
DB
4511 if (!bb && !BARRIER_P (after))
4512 bb = BLOCK_FOR_INSN (after);
23b2ce53 4513
6fb5fa3c 4514 if (bb)
23b2ce53 4515 {
6fb5fa3c 4516 df_set_bb_dirty (bb);
2f937369 4517 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4518 if (!BARRIER_P (last))
6fb5fa3c
DB
4519 {
4520 set_block_for_insn (last, bb);
4521 df_insn_rescan (last);
4522 }
4b4bf941 4523 if (!BARRIER_P (last))
6fb5fa3c
DB
4524 {
4525 set_block_for_insn (last, bb);
4526 df_insn_rescan (last);
4527 }
a813c111 4528 if (BB_END (bb) == after)
1130d5e3 4529 BB_END (bb) = last;
23b2ce53
RS
4530 }
4531 else
2f937369
DM
4532 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4533 continue;
4534
4535 after_after = NEXT_INSN (after);
4536
0f82e5c9
DM
4537 SET_NEXT_INSN (after) = first;
4538 SET_PREV_INSN (first) = after;
4539 SET_NEXT_INSN (last) = after_after;
2f937369 4540 if (after_after)
0f82e5c9 4541 SET_PREV_INSN (after_after) = last;
2f937369 4542
c3284718 4543 if (after == get_last_insn ())
5936d944 4544 set_last_insn (last);
e855c69d 4545
2f937369
DM
4546 return last;
4547}
4548
cd459bf8 4549static rtx_insn *
e6eda746 4550emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
167b9fae 4551 rtx_insn *(*make_raw)(rtx))
2f937369 4552{
e6eda746
DM
4553 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4554 rtx_insn *last = after;
2f937369 4555
5b0264cb 4556 gcc_assert (after);
2f937369
DM
4557
4558 if (x == NULL_RTX)
e6eda746 4559 return last;
2f937369
DM
4560
4561 switch (GET_CODE (x))
23b2ce53 4562 {
b5b8b0ac 4563 case DEBUG_INSN:
2f937369
DM
4564 case INSN:
4565 case JUMP_INSN:
4566 case CALL_INSN:
4567 case CODE_LABEL:
4568 case BARRIER:
4569 case NOTE:
1130d5e3 4570 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
2f937369
DM
4571 break;
4572
4573#ifdef ENABLE_RTL_CHECKING
4574 case SEQUENCE:
5b0264cb 4575 gcc_unreachable ();
2f937369
DM
4576 break;
4577#endif
4578
4579 default:
5f02387d 4580 last = (*make_raw) (x);
6fb5fa3c 4581 add_insn_after (last, after, bb);
2f937369 4582 break;
23b2ce53
RS
4583 }
4584
e6eda746 4585 return last;
23b2ce53
RS
4586}
4587
5f02387d
NF
4588/* Make X be output after the insn AFTER and set the BB of insn. If
4589 BB is NULL, an attempt is made to infer the BB from AFTER. */
4590
cd459bf8 4591rtx_insn *
5f02387d
NF
4592emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4593{
4594 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4595}
4596
255680cf 4597
2f937369 4598/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4599 and output it after the insn AFTER. */
4600
1476d1bd 4601rtx_jump_insn *
a7102479 4602emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4603{
1476d1bd
MM
4604 return as_a <rtx_jump_insn *> (
4605 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
2f937369
DM
4606}
4607
4608/* Make an instruction with body X and code CALL_INSN
4609 and output it after the instruction AFTER. */
4610
cd459bf8 4611rtx_insn *
a7102479 4612emit_call_insn_after_noloc (rtx x, rtx after)
2f937369 4613{
5f02387d 4614 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
23b2ce53
RS
4615}
4616
b5b8b0ac
AO
4617/* Make an instruction with body X and code CALL_INSN
4618 and output it after the instruction AFTER. */
4619
cd459bf8 4620rtx_insn *
b5b8b0ac
AO
4621emit_debug_insn_after_noloc (rtx x, rtx after)
4622{
5f02387d 4623 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
b5b8b0ac
AO
4624}
4625
23b2ce53
RS
4626/* Make an insn of code BARRIER
4627 and output it after the insn AFTER. */
4628
cd459bf8 4629rtx_barrier *
502b8322 4630emit_barrier_after (rtx after)
23b2ce53 4631{
cd459bf8 4632 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4633
4634 INSN_UID (insn) = cur_insn_uid++;
4635
6fb5fa3c 4636 add_insn_after (insn, after, NULL);
23b2ce53
RS
4637 return insn;
4638}
4639
4640/* Emit the label LABEL after the insn AFTER. */
4641
cd459bf8 4642rtx_insn *
596f2b17 4643emit_label_after (rtx label, rtx_insn *after)
23b2ce53 4644{
468660d3
SB
4645 gcc_checking_assert (INSN_UID (label) == 0);
4646 INSN_UID (label) = cur_insn_uid++;
4647 add_insn_after (label, after, NULL);
cd459bf8 4648 return as_a <rtx_insn *> (label);
23b2ce53 4649}
96fba521
SB
4650\f
4651/* Notes require a bit of special handling: Some notes need to have their
4652 BLOCK_FOR_INSN set, others should never have it set, and some should
4653 have it set or clear depending on the context. */
4654
4655/* Return true iff a note of kind SUBTYPE should be emitted with routines
4656 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4657 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4658
4659static bool
4660note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4661{
4662 switch (subtype)
4663 {
4664 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4665 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4666 return true;
4667
4668 /* Notes for var tracking and EH region markers can appear between or
4669 inside basic blocks. If the caller is emitting on the basic block
4670 boundary, do not set BLOCK_FOR_INSN on the new note. */
4671 case NOTE_INSN_VAR_LOCATION:
4672 case NOTE_INSN_CALL_ARG_LOCATION:
4673 case NOTE_INSN_EH_REGION_BEG:
4674 case NOTE_INSN_EH_REGION_END:
4675 return on_bb_boundary_p;
4676
4677 /* Otherwise, BLOCK_FOR_INSN must be set. */
4678 default:
4679 return false;
4680 }
4681}
23b2ce53
RS
4682
4683/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4684
66e8df53 4685rtx_note *
589e43f9 4686emit_note_after (enum insn_note subtype, rtx_insn *after)
23b2ce53 4687{
66e8df53 4688 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4689 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4690 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4691
4692 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4693 add_insn_after_nobb (note, after);
4694 else
4695 add_insn_after (note, after, bb);
4696 return note;
4697}
4698
4699/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4700
66e8df53 4701rtx_note *
89b6250d 4702emit_note_before (enum insn_note subtype, rtx_insn *before)
96fba521 4703{
66e8df53 4704 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4705 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4706 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4707
4708 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4709 add_insn_before_nobb (note, before);
4710 else
4711 add_insn_before (note, before, bb);
23b2ce53
RS
4712 return note;
4713}
23b2ce53 4714\f
e8110d6f
NF
4715/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4716 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4717
cd459bf8 4718static rtx_insn *
dc01c3d1 4719emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
167b9fae 4720 rtx_insn *(*make_raw) (rtx))
0d682900 4721{
dc01c3d1 4722 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
e67d1102 4723 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0d682900 4724
a7102479 4725 if (pattern == NULL_RTX || !loc)
e67d1102 4726 return last;
dd3adcf8 4727
2f937369
DM
4728 after = NEXT_INSN (after);
4729 while (1)
4730 {
20d4397a
EB
4731 if (active_insn_p (after)
4732 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4733 && !INSN_LOCATION (after))
5368224f 4734 INSN_LOCATION (after) = loc;
2f937369
DM
4735 if (after == last)
4736 break;
4737 after = NEXT_INSN (after);
4738 }
e67d1102 4739 return last;
0d682900
JH
4740}
4741
e8110d6f
NF
4742/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4743 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4744 any DEBUG_INSNs. */
4745
cd459bf8 4746static rtx_insn *
dc01c3d1 4747emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
167b9fae 4748 rtx_insn *(*make_raw) (rtx))
a7102479 4749{
dc01c3d1
DM
4750 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4751 rtx_insn *prev = after;
b5b8b0ac 4752
e8110d6f
NF
4753 if (skip_debug_insns)
4754 while (DEBUG_INSN_P (prev))
4755 prev = PREV_INSN (prev);
b5b8b0ac
AO
4756
4757 if (INSN_P (prev))
5368224f 4758 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
e8110d6f 4759 make_raw);
a7102479 4760 else
e8110d6f 4761 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
a7102479
JH
4762}
4763
5368224f 4764/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4765rtx_insn *
e8110d6f 4766emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4767{
e8110d6f
NF
4768 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4769}
2f937369 4770
5368224f 4771/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4772rtx_insn *
e8110d6f
NF
4773emit_insn_after (rtx pattern, rtx after)
4774{
4775 return emit_pattern_after (pattern, after, true, make_insn_raw);
4776}
dd3adcf8 4777
5368224f 4778/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 4779rtx_jump_insn *
e8110d6f
NF
4780emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4781{
1476d1bd
MM
4782 return as_a <rtx_jump_insn *> (
4783 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
0d682900
JH
4784}
4785
5368224f 4786/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
1476d1bd 4787rtx_jump_insn *
a7102479
JH
4788emit_jump_insn_after (rtx pattern, rtx after)
4789{
1476d1bd
MM
4790 return as_a <rtx_jump_insn *> (
4791 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
a7102479
JH
4792}
4793
5368224f 4794/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4795rtx_insn *
502b8322 4796emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4797{
e8110d6f 4798 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
0d682900
JH
4799}
4800
5368224f 4801/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4802rtx_insn *
a7102479
JH
4803emit_call_insn_after (rtx pattern, rtx after)
4804{
e8110d6f 4805 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
a7102479
JH
4806}
4807
5368224f 4808/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4809rtx_insn *
b5b8b0ac
AO
4810emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4811{
e8110d6f 4812 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
b5b8b0ac
AO
4813}
4814
5368224f 4815/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4816rtx_insn *
b5b8b0ac
AO
4817emit_debug_insn_after (rtx pattern, rtx after)
4818{
e8110d6f 4819 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
b5b8b0ac
AO
4820}
4821
e8110d6f
NF
4822/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4823 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4824 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4825 CALL_INSN, etc. */
4826
cd459bf8 4827static rtx_insn *
dc01c3d1 4828emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
167b9fae 4829 rtx_insn *(*make_raw) (rtx))
0d682900 4830{
dc01c3d1
DM
4831 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4832 rtx_insn *first = PREV_INSN (before);
4833 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4834 insnp ? before : NULL_RTX,
4835 NULL, make_raw);
a7102479
JH
4836
4837 if (pattern == NULL_RTX || !loc)
dc01c3d1 4838 return last;
a7102479 4839
26cb3993
JH
4840 if (!first)
4841 first = get_insns ();
4842 else
4843 first = NEXT_INSN (first);
a7102479
JH
4844 while (1)
4845 {
20d4397a
EB
4846 if (active_insn_p (first)
4847 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4848 && !INSN_LOCATION (first))
5368224f 4849 INSN_LOCATION (first) = loc;
a7102479
JH
4850 if (first == last)
4851 break;
4852 first = NEXT_INSN (first);
4853 }
dc01c3d1 4854 return last;
a7102479
JH
4855}
4856
e8110d6f
NF
4857/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4858 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4859 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4860 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4861
cd459bf8 4862static rtx_insn *
dc01c3d1 4863emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
167b9fae 4864 bool insnp, rtx_insn *(*make_raw) (rtx))
a7102479 4865{
dc01c3d1
DM
4866 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4867 rtx_insn *next = before;
b5b8b0ac 4868
e8110d6f
NF
4869 if (skip_debug_insns)
4870 while (DEBUG_INSN_P (next))
4871 next = PREV_INSN (next);
b5b8b0ac
AO
4872
4873 if (INSN_P (next))
5368224f 4874 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
e8110d6f 4875 insnp, make_raw);
a7102479 4876 else
e8110d6f 4877 return emit_pattern_before_noloc (pattern, before,
9b2ea071 4878 insnp ? before : NULL_RTX,
e8110d6f 4879 NULL, make_raw);
a7102479
JH
4880}
4881
5368224f 4882/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4883rtx_insn *
596f2b17 4884emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
a7102479 4885{
e8110d6f
NF
4886 return emit_pattern_before_setloc (pattern, before, loc, true,
4887 make_insn_raw);
4888}
a7102479 4889
5368224f 4890/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
cd459bf8 4891rtx_insn *
e8110d6f
NF
4892emit_insn_before (rtx pattern, rtx before)
4893{
4894 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4895}
a7102479 4896
5368224f 4897/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 4898rtx_jump_insn *
596f2b17 4899emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
e8110d6f 4900{
1476d1bd
MM
4901 return as_a <rtx_jump_insn *> (
4902 emit_pattern_before_setloc (pattern, before, loc, false,
4903 make_jump_insn_raw));
a7102479
JH
4904}
4905
5368224f 4906/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
1476d1bd 4907rtx_jump_insn *
a7102479
JH
4908emit_jump_insn_before (rtx pattern, rtx before)
4909{
1476d1bd
MM
4910 return as_a <rtx_jump_insn *> (
4911 emit_pattern_before (pattern, before, true, false,
4912 make_jump_insn_raw));
a7102479
JH
4913}
4914
5368224f 4915/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4916rtx_insn *
596f2b17 4917emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
a7102479 4918{
e8110d6f
NF
4919 return emit_pattern_before_setloc (pattern, before, loc, false,
4920 make_call_insn_raw);
0d682900 4921}
a7102479 4922
e8110d6f 4923/* Like emit_call_insn_before_noloc,
5368224f 4924 but set insn_location according to BEFORE. */
cd459bf8 4925rtx_insn *
596f2b17 4926emit_call_insn_before (rtx pattern, rtx_insn *before)
a7102479 4927{
e8110d6f
NF
4928 return emit_pattern_before (pattern, before, true, false,
4929 make_call_insn_raw);
a7102479 4930}
b5b8b0ac 4931
5368224f 4932/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4933rtx_insn *
b5b8b0ac
AO
4934emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4935{
e8110d6f
NF
4936 return emit_pattern_before_setloc (pattern, before, loc, false,
4937 make_debug_insn_raw);
b5b8b0ac
AO
4938}
4939
e8110d6f 4940/* Like emit_debug_insn_before_noloc,
5368224f 4941 but set insn_location according to BEFORE. */
cd459bf8 4942rtx_insn *
3a6216b0 4943emit_debug_insn_before (rtx pattern, rtx_insn *before)
b5b8b0ac 4944{
e8110d6f
NF
4945 return emit_pattern_before (pattern, before, false, false,
4946 make_debug_insn_raw);
b5b8b0ac 4947}
0d682900 4948\f
2f937369
DM
4949/* Take X and emit it at the end of the doubly-linked
4950 INSN list.
23b2ce53
RS
4951
4952 Returns the last insn emitted. */
4953
cd459bf8 4954rtx_insn *
502b8322 4955emit_insn (rtx x)
23b2ce53 4956{
cd459bf8
DM
4957 rtx_insn *last = get_last_insn ();
4958 rtx_insn *insn;
23b2ce53 4959
2f937369
DM
4960 if (x == NULL_RTX)
4961 return last;
23b2ce53 4962
2f937369
DM
4963 switch (GET_CODE (x))
4964 {
b5b8b0ac 4965 case DEBUG_INSN:
2f937369
DM
4966 case INSN:
4967 case JUMP_INSN:
4968 case CALL_INSN:
4969 case CODE_LABEL:
4970 case BARRIER:
4971 case NOTE:
cd459bf8 4972 insn = as_a <rtx_insn *> (x);
2f937369 4973 while (insn)
23b2ce53 4974 {
cd459bf8 4975 rtx_insn *next = NEXT_INSN (insn);
23b2ce53 4976 add_insn (insn);
2f937369
DM
4977 last = insn;
4978 insn = next;
23b2ce53 4979 }
2f937369 4980 break;
23b2ce53 4981
2f937369 4982#ifdef ENABLE_RTL_CHECKING
39718607 4983 case JUMP_TABLE_DATA:
2f937369 4984 case SEQUENCE:
5b0264cb 4985 gcc_unreachable ();
2f937369
DM
4986 break;
4987#endif
23b2ce53 4988
2f937369
DM
4989 default:
4990 last = make_insn_raw (x);
4991 add_insn (last);
4992 break;
23b2ce53
RS
4993 }
4994
4995 return last;
4996}
4997
b5b8b0ac
AO
4998/* Make an insn of code DEBUG_INSN with pattern X
4999 and add it to the end of the doubly-linked list. */
5000
cd459bf8 5001rtx_insn *
b5b8b0ac
AO
5002emit_debug_insn (rtx x)
5003{
cd459bf8
DM
5004 rtx_insn *last = get_last_insn ();
5005 rtx_insn *insn;
b5b8b0ac
AO
5006
5007 if (x == NULL_RTX)
5008 return last;
5009
5010 switch (GET_CODE (x))
5011 {
5012 case DEBUG_INSN:
5013 case INSN:
5014 case JUMP_INSN:
5015 case CALL_INSN:
5016 case CODE_LABEL:
5017 case BARRIER:
5018 case NOTE:
cd459bf8 5019 insn = as_a <rtx_insn *> (x);
b5b8b0ac
AO
5020 while (insn)
5021 {
cd459bf8 5022 rtx_insn *next = NEXT_INSN (insn);
b5b8b0ac
AO
5023 add_insn (insn);
5024 last = insn;
5025 insn = next;
5026 }
5027 break;
5028
5029#ifdef ENABLE_RTL_CHECKING
39718607 5030 case JUMP_TABLE_DATA:
b5b8b0ac
AO
5031 case SEQUENCE:
5032 gcc_unreachable ();
5033 break;
5034#endif
5035
5036 default:
5037 last = make_debug_insn_raw (x);
5038 add_insn (last);
5039 break;
5040 }
5041
5042 return last;
5043}
5044
2f937369
DM
5045/* Make an insn of code JUMP_INSN with pattern X
5046 and add it to the end of the doubly-linked list. */
23b2ce53 5047
cd459bf8 5048rtx_insn *
502b8322 5049emit_jump_insn (rtx x)
23b2ce53 5050{
cd459bf8
DM
5051 rtx_insn *last = NULL;
5052 rtx_insn *insn;
23b2ce53 5053
2f937369 5054 switch (GET_CODE (x))
23b2ce53 5055 {
b5b8b0ac 5056 case DEBUG_INSN:
2f937369
DM
5057 case INSN:
5058 case JUMP_INSN:
5059 case CALL_INSN:
5060 case CODE_LABEL:
5061 case BARRIER:
5062 case NOTE:
cd459bf8 5063 insn = as_a <rtx_insn *> (x);
2f937369
DM
5064 while (insn)
5065 {
cd459bf8 5066 rtx_insn *next = NEXT_INSN (insn);
2f937369
DM
5067 add_insn (insn);
5068 last = insn;
5069 insn = next;
5070 }
5071 break;
e0a5c5eb 5072
2f937369 5073#ifdef ENABLE_RTL_CHECKING
39718607 5074 case JUMP_TABLE_DATA:
2f937369 5075 case SEQUENCE:
5b0264cb 5076 gcc_unreachable ();
2f937369
DM
5077 break;
5078#endif
e0a5c5eb 5079
2f937369
DM
5080 default:
5081 last = make_jump_insn_raw (x);
5082 add_insn (last);
5083 break;
3c030e88 5084 }
e0a5c5eb
RS
5085
5086 return last;
5087}
5088
2f937369 5089/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
5090 and add it to the end of the doubly-linked list. */
5091
cd459bf8 5092rtx_insn *
502b8322 5093emit_call_insn (rtx x)
23b2ce53 5094{
cd459bf8 5095 rtx_insn *insn;
2f937369
DM
5096
5097 switch (GET_CODE (x))
23b2ce53 5098 {
b5b8b0ac 5099 case DEBUG_INSN:
2f937369
DM
5100 case INSN:
5101 case JUMP_INSN:
5102 case CALL_INSN:
5103 case CODE_LABEL:
5104 case BARRIER:
5105 case NOTE:
5106 insn = emit_insn (x);
5107 break;
23b2ce53 5108
2f937369
DM
5109#ifdef ENABLE_RTL_CHECKING
5110 case SEQUENCE:
39718607 5111 case JUMP_TABLE_DATA:
5b0264cb 5112 gcc_unreachable ();
2f937369
DM
5113 break;
5114#endif
23b2ce53 5115
2f937369
DM
5116 default:
5117 insn = make_call_insn_raw (x);
23b2ce53 5118 add_insn (insn);
2f937369 5119 break;
23b2ce53 5120 }
2f937369
DM
5121
5122 return insn;
23b2ce53
RS
5123}
5124
5125/* Add the label LABEL to the end of the doubly-linked list. */
5126
1476d1bd
MM
5127rtx_code_label *
5128emit_label (rtx uncast_label)
23b2ce53 5129{
1476d1bd
MM
5130 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5131
468660d3
SB
5132 gcc_checking_assert (INSN_UID (label) == 0);
5133 INSN_UID (label) = cur_insn_uid++;
1476d1bd
MM
5134 add_insn (label);
5135 return label;
23b2ce53
RS
5136}
5137
39718607
SB
5138/* Make an insn of code JUMP_TABLE_DATA
5139 and add it to the end of the doubly-linked list. */
5140
4598afdd 5141rtx_jump_table_data *
39718607
SB
5142emit_jump_table_data (rtx table)
5143{
4598afdd
DM
5144 rtx_jump_table_data *jump_table_data =
5145 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
39718607
SB
5146 INSN_UID (jump_table_data) = cur_insn_uid++;
5147 PATTERN (jump_table_data) = table;
5148 BLOCK_FOR_INSN (jump_table_data) = NULL;
5149 add_insn (jump_table_data);
5150 return jump_table_data;
5151}
5152
23b2ce53
RS
5153/* Make an insn of code BARRIER
5154 and add it to the end of the doubly-linked list. */
5155
cd459bf8 5156rtx_barrier *
502b8322 5157emit_barrier (void)
23b2ce53 5158{
cd459bf8 5159 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
5160 INSN_UID (barrier) = cur_insn_uid++;
5161 add_insn (barrier);
5162 return barrier;
5163}
5164
5f2fc772 5165/* Emit a copy of note ORIG. */
502b8322 5166
66e8df53
DM
5167rtx_note *
5168emit_note_copy (rtx_note *orig)
5f2fc772 5169{
96fba521 5170 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
66e8df53 5171 rtx_note *note = make_note_raw (kind);
5f2fc772 5172 NOTE_DATA (note) = NOTE_DATA (orig);
5f2fc772 5173 add_insn (note);
2e040219 5174 return note;
23b2ce53
RS
5175}
5176
2e040219
NS
5177/* Make an insn of code NOTE or type NOTE_NO
5178 and add it to the end of the doubly-linked list. */
23b2ce53 5179
66e8df53 5180rtx_note *
a38e7aa5 5181emit_note (enum insn_note kind)
23b2ce53 5182{
66e8df53 5183 rtx_note *note = make_note_raw (kind);
23b2ce53
RS
5184 add_insn (note);
5185 return note;
5186}
5187
c41c1387
RS
5188/* Emit a clobber of lvalue X. */
5189
cd459bf8 5190rtx_insn *
c41c1387
RS
5191emit_clobber (rtx x)
5192{
5193 /* CONCATs should not appear in the insn stream. */
5194 if (GET_CODE (x) == CONCAT)
5195 {
5196 emit_clobber (XEXP (x, 0));
5197 return emit_clobber (XEXP (x, 1));
5198 }
5199 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5200}
5201
5202/* Return a sequence of insns to clobber lvalue X. */
5203
cd459bf8 5204rtx_insn *
c41c1387
RS
5205gen_clobber (rtx x)
5206{
cd459bf8 5207 rtx_insn *seq;
c41c1387
RS
5208
5209 start_sequence ();
5210 emit_clobber (x);
5211 seq = get_insns ();
5212 end_sequence ();
5213 return seq;
5214}
5215
5216/* Emit a use of rvalue X. */
5217
cd459bf8 5218rtx_insn *
c41c1387
RS
5219emit_use (rtx x)
5220{
5221 /* CONCATs should not appear in the insn stream. */
5222 if (GET_CODE (x) == CONCAT)
5223 {
5224 emit_use (XEXP (x, 0));
5225 return emit_use (XEXP (x, 1));
5226 }
5227 return emit_insn (gen_rtx_USE (VOIDmode, x));
5228}
5229
5230/* Return a sequence of insns to use rvalue X. */
5231
cd459bf8 5232rtx_insn *
c41c1387
RS
5233gen_use (rtx x)
5234{
cd459bf8 5235 rtx_insn *seq;
c41c1387
RS
5236
5237 start_sequence ();
5238 emit_use (x);
5239 seq = get_insns ();
5240 end_sequence ();
5241 return seq;
5242}
5243
c8912e53
RS
5244/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5245 Return the set in INSN that such notes describe, or NULL if the notes
5246 have no meaning for INSN. */
5247
5248rtx
5249set_for_reg_notes (rtx insn)
5250{
5251 rtx pat, reg;
5252
5253 if (!INSN_P (insn))
5254 return NULL_RTX;
5255
5256 pat = PATTERN (insn);
5257 if (GET_CODE (pat) == PARALLEL)
5258 {
5259 /* We do not use single_set because that ignores SETs of unused
5260 registers. REG_EQUAL and REG_EQUIV notes really do require the
5261 PARALLEL to have a single SET. */
5262 if (multiple_sets (insn))
5263 return NULL_RTX;
5264 pat = XVECEXP (pat, 0, 0);
5265 }
5266
5267 if (GET_CODE (pat) != SET)
5268 return NULL_RTX;
5269
5270 reg = SET_DEST (pat);
5271
5272 /* Notes apply to the contents of a STRICT_LOW_PART. */
7f7379f6
KV
5273 if (GET_CODE (reg) == STRICT_LOW_PART
5274 || GET_CODE (reg) == ZERO_EXTRACT)
c8912e53
RS
5275 reg = XEXP (reg, 0);
5276
5277 /* Check that we have a register. */
5278 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5279 return NULL_RTX;
5280
5281 return pat;
5282}
5283
87b47c85 5284/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 5285 note of this type already exists, remove it first. */
87b47c85 5286
3d238248 5287rtx
502b8322 5288set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
5289{
5290 rtx note = find_reg_note (insn, kind, NULL_RTX);
5291
52488da1
JW
5292 switch (kind)
5293 {
5294 case REG_EQUAL:
5295 case REG_EQUIV:
8073cbd4
EB
5296 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5297 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
c8912e53 5298 return NULL_RTX;
52488da1
JW
5299
5300 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5301 It serves no useful purpose and breaks eliminate_regs. */
5302 if (GET_CODE (datum) == ASM_OPERANDS)
5303 return NULL_RTX;
109374e2
RS
5304
5305 /* Notes with side effects are dangerous. Even if the side-effect
5306 initially mirrors one in PATTERN (INSN), later optimizations
5307 might alter the way that the final register value is calculated
5308 and so move or alter the side-effect in some way. The note would
5309 then no longer be a valid substitution for SET_SRC. */
5310 if (side_effects_p (datum))
5311 return NULL_RTX;
52488da1
JW
5312 break;
5313
5314 default:
5315 break;
5316 }
3d238248 5317
c8912e53
RS
5318 if (note)
5319 XEXP (note, 0) = datum;
5320 else
5321 {
5322 add_reg_note (insn, kind, datum);
5323 note = REG_NOTES (insn);
5324 }
6fb5fa3c
DB
5325
5326 switch (kind)
3d238248 5327 {
6fb5fa3c
DB
5328 case REG_EQUAL:
5329 case REG_EQUIV:
b2908ba6 5330 df_notes_rescan (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
5331 break;
5332 default:
5333 break;
3d238248 5334 }
87b47c85 5335
c8912e53 5336 return note;
87b47c85 5337}
7543f918
JR
5338
5339/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5340rtx
5341set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5342{
c8912e53 5343 rtx set = set_for_reg_notes (insn);
7543f918
JR
5344
5345 if (set && SET_DEST (set) == dst)
5346 return set_unique_reg_note (insn, kind, datum);
5347 return NULL_RTX;
5348}
23b2ce53 5349\f
9d8895c9
RS
5350/* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5351 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5352 is true.
5353
23b2ce53
RS
5354 If X is a label, it is simply added into the insn chain. */
5355
cd459bf8 5356rtx_insn *
9d8895c9 5357emit (rtx x, bool allow_barrier_p)
23b2ce53
RS
5358{
5359 enum rtx_code code = classify_insn (x);
5360
5b0264cb 5361 switch (code)
23b2ce53 5362 {
5b0264cb
NS
5363 case CODE_LABEL:
5364 return emit_label (x);
5365 case INSN:
5366 return emit_insn (x);
5367 case JUMP_INSN:
5368 {
cd459bf8 5369 rtx_insn *insn = emit_jump_insn (x);
9d8895c9
RS
5370 if (allow_barrier_p
5371 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5b0264cb
NS
5372 return emit_barrier ();
5373 return insn;
5374 }
5375 case CALL_INSN:
5376 return emit_call_insn (x);
b5b8b0ac
AO
5377 case DEBUG_INSN:
5378 return emit_debug_insn (x);
5b0264cb
NS
5379 default:
5380 gcc_unreachable ();
23b2ce53 5381 }
23b2ce53
RS
5382}
5383\f
e2500fed 5384/* Space for free sequence stack entries. */
1431042e 5385static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 5386
4dfa0342
RH
5387/* Begin emitting insns to a sequence. If this sequence will contain
5388 something that might cause the compiler to pop arguments to function
5389 calls (because those pops have previously been deferred; see
5390 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5391 before calling this function. That will ensure that the deferred
5392 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
5393
5394void
502b8322 5395start_sequence (void)
23b2ce53
RS
5396{
5397 struct sequence_stack *tem;
5398
e2500fed
GK
5399 if (free_sequence_stack != NULL)
5400 {
5401 tem = free_sequence_stack;
5402 free_sequence_stack = tem->next;
5403 }
5404 else
766090c2 5405 tem = ggc_alloc<sequence_stack> ();
23b2ce53 5406
614d5bd8 5407 tem->next = get_current_sequence ()->next;
5936d944
JH
5408 tem->first = get_insns ();
5409 tem->last = get_last_insn ();
614d5bd8 5410 get_current_sequence ()->next = tem;
23b2ce53 5411
5936d944
JH
5412 set_first_insn (0);
5413 set_last_insn (0);
23b2ce53
RS
5414}
5415
5c7a310f
MM
5416/* Set up the insn chain starting with FIRST as the current sequence,
5417 saving the previously current one. See the documentation for
5418 start_sequence for more information about how to use this function. */
23b2ce53
RS
5419
5420void
fee3e72c 5421push_to_sequence (rtx_insn *first)
23b2ce53 5422{
fee3e72c 5423 rtx_insn *last;
23b2ce53
RS
5424
5425 start_sequence ();
5426
e84a58ff
EB
5427 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5428 ;
23b2ce53 5429
5936d944
JH
5430 set_first_insn (first);
5431 set_last_insn (last);
23b2ce53
RS
5432}
5433
bb27eeda
SE
5434/* Like push_to_sequence, but take the last insn as an argument to avoid
5435 looping through the list. */
5436
5437void
fee3e72c 5438push_to_sequence2 (rtx_insn *first, rtx_insn *last)
bb27eeda
SE
5439{
5440 start_sequence ();
5441
5936d944
JH
5442 set_first_insn (first);
5443 set_last_insn (last);
bb27eeda
SE
5444}
5445
f15ae3a1
TW
5446/* Set up the outer-level insn chain
5447 as the current sequence, saving the previously current one. */
5448
5449void
502b8322 5450push_topmost_sequence (void)
f15ae3a1 5451{
614d5bd8 5452 struct sequence_stack *top;
f15ae3a1
TW
5453
5454 start_sequence ();
5455
614d5bd8 5456 top = get_topmost_sequence ();
5936d944
JH
5457 set_first_insn (top->first);
5458 set_last_insn (top->last);
f15ae3a1
TW
5459}
5460
5461/* After emitting to the outer-level insn chain, update the outer-level
5462 insn chain, and restore the previous saved state. */
5463
5464void
502b8322 5465pop_topmost_sequence (void)
f15ae3a1 5466{
614d5bd8 5467 struct sequence_stack *top;
f15ae3a1 5468
614d5bd8 5469 top = get_topmost_sequence ();
5936d944
JH
5470 top->first = get_insns ();
5471 top->last = get_last_insn ();
f15ae3a1
TW
5472
5473 end_sequence ();
5474}
5475
23b2ce53
RS
5476/* After emitting to a sequence, restore previous saved state.
5477
5c7a310f 5478 To get the contents of the sequence just made, you must call
2f937369 5479 `get_insns' *before* calling here.
5c7a310f
MM
5480
5481 If the compiler might have deferred popping arguments while
5482 generating this sequence, and this sequence will not be immediately
5483 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 5484 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
5485 pops are inserted into this sequence, and not into some random
5486 location in the instruction stream. See INHIBIT_DEFER_POP for more
5487 information about deferred popping of arguments. */
23b2ce53
RS
5488
5489void
502b8322 5490end_sequence (void)
23b2ce53 5491{
614d5bd8 5492 struct sequence_stack *tem = get_current_sequence ()->next;
23b2ce53 5493
5936d944
JH
5494 set_first_insn (tem->first);
5495 set_last_insn (tem->last);
614d5bd8 5496 get_current_sequence ()->next = tem->next;
23b2ce53 5497
e2500fed
GK
5498 memset (tem, 0, sizeof (*tem));
5499 tem->next = free_sequence_stack;
5500 free_sequence_stack = tem;
23b2ce53
RS
5501}
5502
5503/* Return 1 if currently emitting into a sequence. */
5504
5505int
502b8322 5506in_sequence_p (void)
23b2ce53 5507{
614d5bd8 5508 return get_current_sequence ()->next != 0;
23b2ce53 5509}
23b2ce53 5510\f
59ec66dc
MM
5511/* Put the various virtual registers into REGNO_REG_RTX. */
5512
2bbdec73 5513static void
bd60bab2 5514init_virtual_regs (void)
59ec66dc 5515{
bd60bab2
JH
5516 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5517 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5518 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5519 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5520 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
32990d5b
JJ
5521 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5522 = virtual_preferred_stack_boundary_rtx;
49ad7cfa
BS
5523}
5524
da43a810
BS
5525\f
5526/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5527static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5528static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5529static int copy_insn_n_scratches;
5530
5531/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5532 copied an ASM_OPERANDS.
5533 In that case, it is the original input-operand vector. */
5534static rtvec orig_asm_operands_vector;
5535
5536/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5537 copied an ASM_OPERANDS.
5538 In that case, it is the copied input-operand vector. */
5539static rtvec copy_asm_operands_vector;
5540
5541/* Likewise for the constraints vector. */
5542static rtvec orig_asm_constraints_vector;
5543static rtvec copy_asm_constraints_vector;
5544
5545/* Recursively create a new copy of an rtx for copy_insn.
5546 This function differs from copy_rtx in that it handles SCRATCHes and
5547 ASM_OPERANDs properly.
5548 Normally, this function is not used directly; use copy_insn as front end.
5549 However, you could first copy an insn pattern with copy_insn and then use
5550 this function afterwards to properly copy any REG_NOTEs containing
5551 SCRATCHes. */
5552
5553rtx
502b8322 5554copy_insn_1 (rtx orig)
da43a810 5555{
b3694847
SS
5556 rtx copy;
5557 int i, j;
5558 RTX_CODE code;
5559 const char *format_ptr;
da43a810 5560
cd9c1ca8
RH
5561 if (orig == NULL)
5562 return NULL;
5563
da43a810
BS
5564 code = GET_CODE (orig);
5565
5566 switch (code)
5567 {
5568 case REG:
a52a87c3 5569 case DEBUG_EXPR:
d8116890 5570 CASE_CONST_ANY:
da43a810
BS
5571 case SYMBOL_REF:
5572 case CODE_LABEL:
5573 case PC:
5574 case CC0:
276e0224 5575 case RETURN:
26898771 5576 case SIMPLE_RETURN:
da43a810 5577 return orig;
3e89ed8d 5578 case CLOBBER:
c5c5ba89
JH
5579 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5580 clobbers or clobbers of hard registers that originated as pseudos.
5581 This is needed to allow safe register renaming. */
d7ae3739
EB
5582 if (REG_P (XEXP (orig, 0))
5583 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5584 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
3e89ed8d
JH
5585 return orig;
5586 break;
da43a810
BS
5587
5588 case SCRATCH:
5589 for (i = 0; i < copy_insn_n_scratches; i++)
5590 if (copy_insn_scratch_in[i] == orig)
5591 return copy_insn_scratch_out[i];
5592 break;
5593
5594 case CONST:
6fb5fa3c 5595 if (shared_const_p (orig))
da43a810
BS
5596 return orig;
5597 break;
750c9258 5598
da43a810
BS
5599 /* A MEM with a constant address is not sharable. The problem is that
5600 the constant address may need to be reloaded. If the mem is shared,
5601 then reloading one copy of this mem will cause all copies to appear
5602 to have been reloaded. */
5603
5604 default:
5605 break;
5606 }
5607
aacd3885
RS
5608 /* Copy the various flags, fields, and other information. We assume
5609 that all fields need copying, and then clear the fields that should
da43a810
BS
5610 not be copied. That is the sensible default behavior, and forces
5611 us to explicitly document why we are *not* copying a flag. */
aacd3885 5612 copy = shallow_copy_rtx (orig);
da43a810 5613
da43a810 5614 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5615 if (INSN_P (orig))
da43a810 5616 {
2adc7f12
JJ
5617 RTX_FLAG (copy, jump) = 0;
5618 RTX_FLAG (copy, call) = 0;
5619 RTX_FLAG (copy, frame_related) = 0;
da43a810 5620 }
750c9258 5621
da43a810
BS
5622 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5623
5624 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5625 switch (*format_ptr++)
5626 {
5627 case 'e':
5628 if (XEXP (orig, i) != NULL)
5629 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5630 break;
da43a810 5631
aacd3885
RS
5632 case 'E':
5633 case 'V':
5634 if (XVEC (orig, i) == orig_asm_constraints_vector)
5635 XVEC (copy, i) = copy_asm_constraints_vector;
5636 else if (XVEC (orig, i) == orig_asm_operands_vector)
5637 XVEC (copy, i) = copy_asm_operands_vector;
5638 else if (XVEC (orig, i) != NULL)
5639 {
5640 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5641 for (j = 0; j < XVECLEN (copy, i); j++)
5642 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5643 }
5644 break;
da43a810 5645
aacd3885
RS
5646 case 't':
5647 case 'w':
5648 case 'i':
5649 case 's':
5650 case 'S':
5651 case 'u':
5652 case '0':
5653 /* These are left unchanged. */
5654 break;
da43a810 5655
aacd3885
RS
5656 default:
5657 gcc_unreachable ();
5658 }
da43a810
BS
5659
5660 if (code == SCRATCH)
5661 {
5662 i = copy_insn_n_scratches++;
5b0264cb 5663 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5664 copy_insn_scratch_in[i] = orig;
5665 copy_insn_scratch_out[i] = copy;
5666 }
5667 else if (code == ASM_OPERANDS)
5668 {
6462bb43
AO
5669 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5670 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5671 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5672 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5673 }
5674
5675 return copy;
5676}
5677
5678/* Create a new copy of an rtx.
5679 This function differs from copy_rtx in that it handles SCRATCHes and
5680 ASM_OPERANDs properly.
5681 INSN doesn't really have to be a full INSN; it could be just the
5682 pattern. */
5683rtx
502b8322 5684copy_insn (rtx insn)
da43a810
BS
5685{
5686 copy_insn_n_scratches = 0;
5687 orig_asm_operands_vector = 0;
5688 orig_asm_constraints_vector = 0;
5689 copy_asm_operands_vector = 0;
5690 copy_asm_constraints_vector = 0;
5691 return copy_insn_1 (insn);
5692}
59ec66dc 5693
8e383849
JR
5694/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5695 on that assumption that INSN itself remains in its original place. */
5696
f8f0516e
DM
5697rtx_insn *
5698copy_delay_slot_insn (rtx_insn *insn)
8e383849
JR
5699{
5700 /* Copy INSN with its rtx_code, all its notes, location etc. */
f8f0516e 5701 insn = as_a <rtx_insn *> (copy_rtx (insn));
8e383849
JR
5702 INSN_UID (insn) = cur_insn_uid++;
5703 return insn;
5704}
5705
23b2ce53
RS
5706/* Initialize data structures and variables in this file
5707 before generating rtl for each function. */
5708
5709void
502b8322 5710init_emit (void)
23b2ce53 5711{
5936d944
JH
5712 set_first_insn (NULL);
5713 set_last_insn (NULL);
b5b8b0ac
AO
5714 if (MIN_NONDEBUG_INSN_UID)
5715 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5716 else
5717 cur_insn_uid = 1;
5718 cur_debug_insn_uid = 1;
23b2ce53 5719 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
23b2ce53 5720 first_label_num = label_num;
614d5bd8 5721 get_current_sequence ()->next = NULL;
23b2ce53 5722
23b2ce53
RS
5723 /* Init the tables that describe all the pseudo regs. */
5724
3e029763 5725 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5726
3e029763 5727 crtl->emit.regno_pointer_align
1b4572a8 5728 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5729
f44986d7
DM
5730 regno_reg_rtx
5731 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
0d4903b8 5732
e50126e8 5733 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876 5734 memcpy (regno_reg_rtx,
5fb0e246 5735 initial_regno_reg_rtx,
6cde4876 5736 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5737
23b2ce53 5738 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5739 init_virtual_regs ();
740ab4a2
RK
5740
5741 /* Indicate that the virtual registers and stack locations are
5742 all pointers. */
3502dc9c
JDA
5743 REG_POINTER (stack_pointer_rtx) = 1;
5744 REG_POINTER (frame_pointer_rtx) = 1;
5745 REG_POINTER (hard_frame_pointer_rtx) = 1;
5746 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5747
3502dc9c
JDA
5748 REG_POINTER (virtual_incoming_args_rtx) = 1;
5749 REG_POINTER (virtual_stack_vars_rtx) = 1;
5750 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5751 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5752 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5753
86fe05e0 5754#ifdef STACK_BOUNDARY
bdb429a5
RK
5755 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5756 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5757 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5758 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5759
da75ca93
EB
5760 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5761 32-bit SPARC and cannot be all fixed because of the ABI). */
bdb429a5
RK
5762 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5763 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5764 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5765 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
da75ca93 5766
bdb429a5 5767 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5768#endif
5769
5e82e7bd
JVA
5770#ifdef INIT_EXPANDERS
5771 INIT_EXPANDERS;
5772#endif
23b2ce53
RS
5773}
5774
9b4473b6
RS
5775/* Return true if X is a valid element for a duplicated vector constant
5776 of the given mode. */
5777
5778bool
5779valid_for_const_vec_duplicate_p (machine_mode, rtx x)
5780{
5781 return (CONST_SCALAR_INT_P (x)
5782 || CONST_DOUBLE_AS_FLOAT_P (x)
5783 || CONST_FIXED_P (x));
5784}
5785
59d06c05 5786/* Like gen_const_vec_duplicate, but ignore const_tiny_rtx. */
69ef87e2
AH
5787
5788static rtx
59d06c05 5789gen_const_vec_duplicate_1 (machine_mode mode, rtx el)
69ef87e2 5790{
59d06c05
RS
5791 int nunits = GET_MODE_NUNITS (mode);
5792 rtvec v = rtvec_alloc (nunits);
5793 for (int i = 0; i < nunits; ++i)
5794 RTVEC_ELT (v, i) = el;
5795 return gen_rtx_raw_CONST_VECTOR (mode, v);
5796}
69ef87e2 5797
59d06c05
RS
5798/* Generate a vector constant of mode MODE in which every element has
5799 value ELT. */
69ef87e2 5800
59d06c05
RS
5801rtx
5802gen_const_vec_duplicate (machine_mode mode, rtx elt)
5803{
5804 scalar_mode inner_mode = GET_MODE_INNER (mode);
5805 if (elt == CONST0_RTX (inner_mode))
5806 return CONST0_RTX (mode);
5807 else if (elt == CONST1_RTX (inner_mode))
5808 return CONST1_RTX (mode);
5809 else if (elt == CONSTM1_RTX (inner_mode))
5810 return CONSTM1_RTX (mode);
5811
5812 return gen_const_vec_duplicate_1 (mode, elt);
5813}
5814
5815/* Return a vector rtx of mode MODE in which every element has value X.
5816 The result will be a constant if X is constant. */
5817
5818rtx
5819gen_vec_duplicate (machine_mode mode, rtx x)
5820{
9b4473b6 5821 if (valid_for_const_vec_duplicate_p (mode, x))
59d06c05
RS
5822 return gen_const_vec_duplicate (mode, x);
5823 return gen_rtx_VEC_DUPLICATE (mode, x);
5824}
15ed7b52 5825
ef339d6e
RS
5826/* A subroutine of const_vec_series_p that handles the case in which
5827 X is known to be an integer CONST_VECTOR. */
5828
5829bool
5830const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5831{
5832 unsigned int nelts = CONST_VECTOR_NUNITS (x);
5833 if (nelts < 2)
5834 return false;
5835
5836 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5837 rtx base = CONST_VECTOR_ELT (x, 0);
5838 rtx step = simplify_binary_operation (MINUS, inner,
5839 CONST_VECTOR_ELT (x, 1), base);
5840 if (rtx_equal_p (step, CONST0_RTX (inner)))
5841 return false;
5842
5843 for (unsigned int i = 2; i < nelts; ++i)
5844 {
5845 rtx diff = simplify_binary_operation (MINUS, inner,
5846 CONST_VECTOR_ELT (x, i),
5847 CONST_VECTOR_ELT (x, i - 1));
5848 if (!rtx_equal_p (step, diff))
5849 return false;
5850 }
5851
5852 *base_out = base;
5853 *step_out = step;
5854 return true;
5855}
5856
5857/* Generate a vector constant of mode MODE in which element I has
5858 the value BASE + I * STEP. */
5859
5860rtx
5861gen_const_vec_series (machine_mode mode, rtx base, rtx step)
5862{
5863 gcc_assert (CONSTANT_P (base) && CONSTANT_P (step));
5864
5865 int nunits = GET_MODE_NUNITS (mode);
5866 rtvec v = rtvec_alloc (nunits);
5867 scalar_mode inner_mode = GET_MODE_INNER (mode);
5868 RTVEC_ELT (v, 0) = base;
5869 for (int i = 1; i < nunits; ++i)
5870 RTVEC_ELT (v, i) = simplify_gen_binary (PLUS, inner_mode,
5871 RTVEC_ELT (v, i - 1), step);
5872 return gen_rtx_raw_CONST_VECTOR (mode, v);
5873}
5874
5875/* Generate a vector of mode MODE in which element I has the value
5876 BASE + I * STEP. The result will be a constant if BASE and STEP
5877 are both constants. */
5878
5879rtx
5880gen_vec_series (machine_mode mode, rtx base, rtx step)
5881{
5882 if (step == const0_rtx)
5883 return gen_vec_duplicate (mode, base);
5884 if (CONSTANT_P (base) && CONSTANT_P (step))
5885 return gen_const_vec_series (mode, base, step);
5886 return gen_rtx_VEC_SERIES (mode, base, step);
5887}
5888
59d06c05
RS
5889/* Generate a new vector constant for mode MODE and constant value
5890 CONSTANT. */
69ef87e2 5891
59d06c05
RS
5892static rtx
5893gen_const_vector (machine_mode mode, int constant)
5894{
5895 machine_mode inner = GET_MODE_INNER (mode);
69ef87e2 5896
59d06c05
RS
5897 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5898
5899 rtx el = const_tiny_rtx[constant][(int) inner];
5900 gcc_assert (el);
69ef87e2 5901
59d06c05 5902 return gen_const_vec_duplicate_1 (mode, el);
69ef87e2
AH
5903}
5904
a06e3c40 5905/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5906 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5907rtx
ef4bddc2 5908gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
a06e3c40 5909{
59d06c05 5910 gcc_assert (GET_MODE_NUNITS (mode) == GET_NUM_ELEM (v));
a73b091d
JW
5911
5912 /* If the values are all the same, check to see if we can use one of the
5913 standard constant vectors. */
59d06c05
RS
5914 if (rtvec_all_equal_p (v))
5915 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
a73b091d
JW
5916
5917 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5918}
5919
b5deb7b6
SL
5920/* Initialise global register information required by all functions. */
5921
5922void
5923init_emit_regs (void)
5924{
5925 int i;
ef4bddc2 5926 machine_mode mode;
1c3f523e 5927 mem_attrs *attrs;
b5deb7b6
SL
5928
5929 /* Reset register attributes */
aebf76a2 5930 reg_attrs_htab->empty ();
b5deb7b6
SL
5931
5932 /* We need reg_raw_mode, so initialize the modes now. */
5933 init_reg_modes_target ();
5934
5935 /* Assign register numbers to the globally defined register rtx. */
b5deb7b6
SL
5936 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5937 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5938 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5939 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5940 virtual_incoming_args_rtx =
5941 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5942 virtual_stack_vars_rtx =
5943 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5944 virtual_stack_dynamic_rtx =
5945 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5946 virtual_outgoing_args_rtx =
5947 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5948 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
32990d5b
JJ
5949 virtual_preferred_stack_boundary_rtx =
5950 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
b5deb7b6
SL
5951
5952 /* Initialize RTL for commonly used hard registers. These are
5953 copied into regno_reg_rtx as we begin to compile each function. */
5954 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5fb0e246 5955 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
b5deb7b6
SL
5956
5957#ifdef RETURN_ADDRESS_POINTER_REGNUM
5958 return_address_pointer_rtx
5959 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5960#endif
5961
ca72dad5 5962 pic_offset_table_rtx = NULL_RTX;
b5deb7b6
SL
5963 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5964 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
1c3f523e
RS
5965
5966 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5967 {
ef4bddc2 5968 mode = (machine_mode) i;
766090c2 5969 attrs = ggc_cleared_alloc<mem_attrs> ();
1c3f523e
RS
5970 attrs->align = BITS_PER_UNIT;
5971 attrs->addrspace = ADDR_SPACE_GENERIC;
5972 if (mode != BLKmode)
5973 {
754c3d5d
RS
5974 attrs->size_known_p = true;
5975 attrs->size = GET_MODE_SIZE (mode);
1c3f523e
RS
5976 if (STRICT_ALIGNMENT)
5977 attrs->align = GET_MODE_ALIGNMENT (mode);
5978 }
5979 mode_mem_attrs[i] = attrs;
5980 }
af364399
ML
5981
5982 split_branch_probability = profile_probability::uninitialized ();
b5deb7b6
SL
5983}
5984
aa3a12d6
RS
5985/* Initialize global machine_mode variables. */
5986
5987void
5988init_derived_machine_modes (void)
5989{
501623d4
RS
5990 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
5991 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
aa3a12d6 5992 {
501623d4
RS
5993 scalar_int_mode mode = mode_iter.require ();
5994
aa3a12d6 5995 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
501623d4
RS
5996 && !opt_byte_mode.exists ())
5997 opt_byte_mode = mode;
aa3a12d6
RS
5998
5999 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
501623d4
RS
6000 && !opt_word_mode.exists ())
6001 opt_word_mode = mode;
aa3a12d6
RS
6002 }
6003
501623d4
RS
6004 byte_mode = opt_byte_mode.require ();
6005 word_mode = opt_word_mode.require ();
f95c5b8e
RS
6006 ptr_mode = as_a <scalar_int_mode>
6007 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
aa3a12d6
RS
6008}
6009
2d888286 6010/* Create some permanent unique rtl objects shared between all functions. */
23b2ce53
RS
6011
6012void
2d888286 6013init_emit_once (void)
23b2ce53
RS
6014{
6015 int i;
ef4bddc2 6016 machine_mode mode;
857c7b46 6017 scalar_float_mode double_mode;
16d22000 6018 opt_scalar_mode smode_iter;
23b2ce53 6019
807e902e
KZ
6020 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6021 CONST_FIXED, and memory attribute hash tables. */
aebf76a2 6022 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
173b24b9 6023
807e902e 6024#if TARGET_SUPPORTS_WIDE_INT
aebf76a2 6025 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
807e902e 6026#endif
aebf76a2 6027 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5692c7bc 6028
aebf76a2 6029 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
091a3ac7 6030
aebf76a2 6031 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
67673f5c 6032
5da077de 6033#ifdef INIT_EXPANDERS
414c4dc4
NC
6034 /* This is to initialize {init|mark|free}_machine_status before the first
6035 call to push_function_context_to. This is needed by the Chill front
a1f300c0 6036 end which calls push_function_context_to before the first call to
5da077de
AS
6037 init_function_start. */
6038 INIT_EXPANDERS;
6039#endif
6040
23b2ce53
RS
6041 /* Create the unique rtx's for certain rtx codes and operand values. */
6042
ecf835e9
KN
6043 /* Process stack-limiting command-line options. */
6044 if (opt_fstack_limit_symbol_arg != NULL)
6045 stack_limit_rtx
6046 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6047 if (opt_fstack_limit_register_no >= 0)
6048 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6049
a2a8cc44 6050 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 6051 tries to use these variables. */
23b2ce53 6052 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 6053 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 6054 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 6055
68d75312
JC
6056 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6057 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 6058 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 6059 else
3b80f6ca 6060 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 6061
857c7b46 6062 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
aa3a12d6 6063
807e902e
KZ
6064 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6065 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6066 real_from_integer (&dconst2, double_mode, 2, SIGNED);
aefa9d43
KG
6067
6068 dconstm1 = dconst1;
6069 dconstm1.sign = 1;
03f2ea93
RS
6070
6071 dconsthalf = dconst1;
1e92bbb9 6072 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 6073
e7c82a99 6074 for (i = 0; i < 3; i++)
23b2ce53 6075 {
aefa9d43 6076 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
6077 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6078
c94843d2 6079 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
15ed7b52 6080 const_tiny_rtx[i][(int) mode] =
555affd7 6081 const_double_from_real_value (*r, mode);
15ed7b52 6082
c94843d2 6083 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
5692c7bc 6084 const_tiny_rtx[i][(int) mode] =
555affd7 6085 const_double_from_real_value (*r, mode);
23b2ce53 6086
906c4e36 6087 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 6088
c94843d2 6089 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
906c4e36 6090 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559 6091
ede6c734
MS
6092 for (mode = MIN_MODE_PARTIAL_INT;
6093 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 6094 mode = (machine_mode)((int)(mode) + 1))
33d3e559 6095 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
6096 }
6097
e7c82a99
JJ
6098 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6099
c94843d2 6100 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
e7c82a99
JJ
6101 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6102
ede6c734
MS
6103 for (mode = MIN_MODE_PARTIAL_INT;
6104 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 6105 mode = (machine_mode)((int)(mode) + 1))
c8a89d2a 6106 const_tiny_rtx[3][(int) mode] = constm1_rtx;
c94843d2
RS
6107
6108 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
e90721b1
AP
6109 {
6110 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6111 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6112 }
6113
c94843d2 6114 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
e90721b1
AP
6115 {
6116 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6117 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6118 }
6119
c94843d2 6120 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
a73b091d
JW
6121 {
6122 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6123 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
e7c82a99 6124 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
a73b091d 6125 }
69ef87e2 6126
c94843d2 6127 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
a73b091d
JW
6128 {
6129 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6130 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6131 }
69ef87e2 6132
16d22000 6133 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
325217ed 6134 {
16d22000
RS
6135 scalar_mode smode = smode_iter.require ();
6136 FCONST0 (smode).data.high = 0;
6137 FCONST0 (smode).data.low = 0;
6138 FCONST0 (smode).mode = smode;
6139 const_tiny_rtx[0][(int) smode]
6140 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6141 }
6142
16d22000 6143 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
325217ed 6144 {
16d22000
RS
6145 scalar_mode smode = smode_iter.require ();
6146 FCONST0 (smode).data.high = 0;
6147 FCONST0 (smode).data.low = 0;
6148 FCONST0 (smode).mode = smode;
6149 const_tiny_rtx[0][(int) smode]
6150 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6151 }
6152
16d22000 6153 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
325217ed 6154 {
16d22000
RS
6155 scalar_mode smode = smode_iter.require ();
6156 FCONST0 (smode).data.high = 0;
6157 FCONST0 (smode).data.low = 0;
6158 FCONST0 (smode).mode = smode;
6159 const_tiny_rtx[0][(int) smode]
6160 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6161
6162 /* We store the value 1. */
16d22000
RS
6163 FCONST1 (smode).data.high = 0;
6164 FCONST1 (smode).data.low = 0;
6165 FCONST1 (smode).mode = smode;
6166 FCONST1 (smode).data
6167 = double_int_one.lshift (GET_MODE_FBIT (smode),
9be0ac8c 6168 HOST_BITS_PER_DOUBLE_INT,
16d22000
RS
6169 SIGNED_FIXED_POINT_MODE_P (smode));
6170 const_tiny_rtx[1][(int) smode]
6171 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
325217ed
CF
6172 }
6173
16d22000 6174 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
325217ed 6175 {
16d22000
RS
6176 scalar_mode smode = smode_iter.require ();
6177 FCONST0 (smode).data.high = 0;
6178 FCONST0 (smode).data.low = 0;
6179 FCONST0 (smode).mode = smode;
6180 const_tiny_rtx[0][(int) smode]
6181 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6182
6183 /* We store the value 1. */
16d22000
RS
6184 FCONST1 (smode).data.high = 0;
6185 FCONST1 (smode).data.low = 0;
6186 FCONST1 (smode).mode = smode;
6187 FCONST1 (smode).data
6188 = double_int_one.lshift (GET_MODE_FBIT (smode),
9be0ac8c 6189 HOST_BITS_PER_DOUBLE_INT,
16d22000
RS
6190 SIGNED_FIXED_POINT_MODE_P (smode));
6191 const_tiny_rtx[1][(int) smode]
6192 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
091a3ac7
CF
6193 }
6194
c94843d2 6195 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
091a3ac7
CF
6196 {
6197 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6198 }
6199
c94843d2 6200 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
091a3ac7
CF
6201 {
6202 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6203 }
6204
c94843d2 6205 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
091a3ac7
CF
6206 {
6207 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6208 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6209 }
6210
c94843d2 6211 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
091a3ac7
CF
6212 {
6213 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6214 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
6215 }
6216
dbbbbf3b 6217 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
ef4bddc2 6218 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
dbbbbf3b 6219 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 6220
f0417c82
RH
6221 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6222 if (STORE_FLAG_VALUE == 1)
6223 const_tiny_rtx[1][(int) BImode] = const1_rtx;
ca4adc91 6224
16d22000 6225 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_POINTER_BOUNDS)
d5e254e1 6226 {
16d22000
RS
6227 scalar_mode smode = smode_iter.require ();
6228 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (smode));
6229 const_tiny_rtx[0][smode] = immed_wide_int_const (wi_zero, smode);
d5e254e1
IE
6230 }
6231
ca4adc91
RS
6232 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6233 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6234 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6235 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
1476d1bd
MM
6236 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6237 /*prev_insn=*/NULL,
6238 /*next_insn=*/NULL,
6239 /*bb=*/NULL,
6240 /*pattern=*/NULL_RTX,
6241 /*location=*/-1,
6242 CODE_FOR_nothing,
6243 /*reg_notes=*/NULL_RTX);
23b2ce53 6244}
a11759a3 6245\f
969d70ca
JH
6246/* Produce exact duplicate of insn INSN after AFTER.
6247 Care updating of libcall regions if present. */
6248
cd459bf8 6249rtx_insn *
a1950df3 6250emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
969d70ca 6251{
cd459bf8
DM
6252 rtx_insn *new_rtx;
6253 rtx link;
969d70ca
JH
6254
6255 switch (GET_CODE (insn))
6256 {
6257 case INSN:
60564289 6258 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
6259 break;
6260
6261 case JUMP_INSN:
60564289 6262 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
ec27069c 6263 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
969d70ca
JH
6264 break;
6265
b5b8b0ac
AO
6266 case DEBUG_INSN:
6267 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6268 break;
6269
969d70ca 6270 case CALL_INSN:
60564289 6271 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 6272 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 6273 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 6274 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
6275 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6276 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6277 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
b8698a0f 6278 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 6279 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
6280 break;
6281
6282 default:
5b0264cb 6283 gcc_unreachable ();
969d70ca
JH
6284 }
6285
6286 /* Update LABEL_NUSES. */
60564289 6287 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 6288
5368224f 6289 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ba4f7968 6290
0a3d71f5
JW
6291 /* If the old insn is frame related, then so is the new one. This is
6292 primarily needed for IA-64 unwind info which marks epilogue insns,
6293 which may be duplicated by the basic block reordering code. */
60564289 6294 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 6295
1581a12c
BS
6296 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6297 rtx *ptail = &REG_NOTES (new_rtx);
6298 while (*ptail != NULL_RTX)
6299 ptail = &XEXP (*ptail, 1);
6300
cf7c4aa6
HPN
6301 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6302 will make them. REG_LABEL_TARGETs are created there too, but are
6303 supposed to be sticky, so we copy them. */
969d70ca 6304 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 6305 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca 6306 {
1581a12c
BS
6307 *ptail = duplicate_reg_note (link);
6308 ptail = &XEXP (*ptail, 1);
969d70ca
JH
6309 }
6310
60564289
KG
6311 INSN_CODE (new_rtx) = INSN_CODE (insn);
6312 return new_rtx;
969d70ca 6313}
e2500fed 6314
1431042e 6315static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d 6316rtx
ef4bddc2 6317gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
3e89ed8d
JH
6318{
6319 if (hard_reg_clobbers[mode][regno])
6320 return hard_reg_clobbers[mode][regno];
6321 else
6322 return (hard_reg_clobbers[mode][regno] =
6323 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6324}
6325
5368224f
DC
6326location_t prologue_location;
6327location_t epilogue_location;
78bde837
SB
6328
6329/* Hold current location information and last location information, so the
6330 datastructures are built lazily only when some instructions in given
6331 place are needed. */
3a50da34 6332static location_t curr_location;
78bde837 6333
5368224f 6334/* Allocate insn location datastructure. */
78bde837 6335void
5368224f 6336insn_locations_init (void)
78bde837 6337{
5368224f 6338 prologue_location = epilogue_location = 0;
78bde837 6339 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6340}
6341
6342/* At the end of emit stage, clear current location. */
6343void
5368224f 6344insn_locations_finalize (void)
78bde837 6345{
5368224f
DC
6346 epilogue_location = curr_location;
6347 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6348}
6349
6350/* Set current location. */
6351void
5368224f 6352set_curr_insn_location (location_t location)
78bde837 6353{
78bde837
SB
6354 curr_location = location;
6355}
6356
6357/* Get current location. */
6358location_t
5368224f 6359curr_insn_location (void)
78bde837
SB
6360{
6361 return curr_location;
6362}
6363
78bde837
SB
6364/* Return lexical scope block insn belongs to. */
6365tree
a1950df3 6366insn_scope (const rtx_insn *insn)
78bde837 6367{
5368224f 6368 return LOCATION_BLOCK (INSN_LOCATION (insn));
78bde837
SB
6369}
6370
6371/* Return line number of the statement that produced this insn. */
6372int
a1950df3 6373insn_line (const rtx_insn *insn)
78bde837 6374{
5368224f 6375 return LOCATION_LINE (INSN_LOCATION (insn));
78bde837
SB
6376}
6377
6378/* Return source file of the statement that produced this insn. */
6379const char *
a1950df3 6380insn_file (const rtx_insn *insn)
78bde837 6381{
5368224f 6382 return LOCATION_FILE (INSN_LOCATION (insn));
78bde837 6383}
8930883e 6384
ffa4602f
EB
6385/* Return expanded location of the statement that produced this insn. */
6386expanded_location
a1950df3 6387insn_location (const rtx_insn *insn)
ffa4602f
EB
6388{
6389 return expand_location (INSN_LOCATION (insn));
6390}
6391
8930883e
MK
6392/* Return true if memory model MODEL requires a pre-operation (release-style)
6393 barrier or a post-operation (acquire-style) barrier. While not universal,
6394 this function matches behavior of several targets. */
6395
6396bool
6397need_atomic_barrier_p (enum memmodel model, bool pre)
6398{
40ad260d 6399 switch (model & MEMMODEL_BASE_MASK)
8930883e
MK
6400 {
6401 case MEMMODEL_RELAXED:
6402 case MEMMODEL_CONSUME:
6403 return false;
6404 case MEMMODEL_RELEASE:
6405 return pre;
6406 case MEMMODEL_ACQUIRE:
6407 return !pre;
6408 case MEMMODEL_ACQ_REL:
6409 case MEMMODEL_SEQ_CST:
6410 return true;
6411 default:
6412 gcc_unreachable ();
6413 }
6414}
8194c537
DM
6415
6416/* Initialize fields of rtl_data related to stack alignment. */
6417
6418void
6419rtl_data::init_stack_alignment ()
6420{
6421 stack_alignment_needed = STACK_BOUNDARY;
6422 max_used_stack_slot_alignment = STACK_BOUNDARY;
6423 stack_alignment_estimated = 0;
6424 preferred_stack_boundary = STACK_BOUNDARY;
6425}
6426
8930883e 6427\f
e2500fed 6428#include "gt-emit-rtl.h"