]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
Reorganize, remove now-redundant tests.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
23b2ce53 1/* Emit RTL for the GNU C-Compiler expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2cc2d4bb 3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
23b2ce53 4
1322177d 5This file is part of GCC.
23b2ce53 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
23b2ce53 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
23b2ce53
RS
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
670ee920 39#include "system.h"
01198c2f 40#include "toplev.h"
23b2ce53 41#include "rtl.h"
a25c7971 42#include "tree.h"
6baf1cc8 43#include "tm_p.h"
23b2ce53
RS
44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
aff48bca 48#include "hard-reg-set.h"
c13e8210 49#include "hashtab.h"
23b2ce53 50#include "insn-config.h"
e9a25f70 51#include "recog.h"
23b2ce53 52#include "real.h"
ca695ac9 53#include "obstack.h"
0dfa1860 54#include "bitmap.h"
a05924f9 55#include "basic-block.h"
87ff9c8e 56#include "ggc.h"
e1772ac0 57#include "debug.h"
d23c55c2 58#include "langhooks.h"
ca695ac9 59
1d445e9e
ILT
60/* Commonly used modes. */
61
0f41302f
MS
62enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 64enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 65enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 66
23b2ce53
RS
67
68/* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71static int label_num = 1;
72
23b2ce53
RS
73/* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
76
77static int last_label_num;
78
79/* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
81
82static int base_label_num;
83
84/* Nonzero means do not generate NOTEs for source line numbers. */
85
86static int no_line_numbers;
87
88/* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
5692c7bc
ZW
90 All of these are unique; no other rtx-object will be equal to any
91 of these. */
23b2ce53 92
5da077de 93rtx global_rtl[GR_MAX];
23b2ce53 94
6cde4876
JL
95/* Commonly used RTL for hard registers. These objects are not necessarily
96 unique, so we allocate them separately from global_rtl. They are
97 initialized once per compilation unit, then copied into regno_reg_rtx
98 at the beginning of each function. */
99static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
100
23b2ce53
RS
101/* We record floating-point CONST_DOUBLEs in each floating-point mode for
102 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
103 record a copy of const[012]_rtx. */
104
105rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
106
68d75312
JC
107rtx const_true_rtx;
108
23b2ce53
RS
109REAL_VALUE_TYPE dconst0;
110REAL_VALUE_TYPE dconst1;
111REAL_VALUE_TYPE dconst2;
112REAL_VALUE_TYPE dconstm1;
113
114/* All references to the following fixed hard registers go through
115 these unique rtl objects. On machines where the frame-pointer and
116 arg-pointer are the same register, they use the same unique object.
117
118 After register allocation, other rtl objects which used to be pseudo-regs
119 may be clobbered to refer to the frame-pointer register.
120 But references that were originally to the frame-pointer can be
121 distinguished from the others because they contain frame_pointer_rtx.
122
ac6f08b0
DE
123 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
124 tricky: until register elimination has taken place hard_frame_pointer_rtx
750c9258 125 should be used if it is being set, and frame_pointer_rtx otherwise. After
ac6f08b0
DE
126 register elimination hard_frame_pointer_rtx should always be used.
127 On machines where the two registers are same (most) then these are the
128 same.
129
23b2ce53
RS
130 In an inline procedure, the stack and frame pointer rtxs may not be
131 used for anything else. */
23b2ce53
RS
132rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
133rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
134rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
135rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
136rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137
a4417a86
JW
138/* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141
23b2ce53
RS
142/* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
145 integers. */
146
5da077de 147rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 148
c13e8210
MM
149/* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
151
e2500fed
GK
152static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153 htab_t const_int_htab;
c13e8210 154
173b24b9 155/* A hash table storing memory attribute structures. */
e2500fed
GK
156static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157 htab_t mem_attrs_htab;
173b24b9 158
5692c7bc 159/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
160static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
161 htab_t const_double_htab;
5692c7bc 162
01d939e8
BS
163#define first_insn (cfun->emit->x_first_insn)
164#define last_insn (cfun->emit->x_last_insn)
165#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
166#define last_linenum (cfun->emit->x_last_linenum)
167#define last_filename (cfun->emit->x_last_filename)
168#define first_label_num (cfun->emit->x_first_label_num)
23b2ce53 169
711d877c
KG
170static rtx make_jump_insn_raw PARAMS ((rtx));
171static rtx make_call_insn_raw PARAMS ((rtx));
172static rtx find_line_note PARAMS ((rtx));
738cc472
RK
173static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
174 int));
d1b81779 175static void unshare_all_rtl_1 PARAMS ((rtx));
5c6df058 176static void unshare_all_decls PARAMS ((tree));
2d4aecb3 177static void reset_used_decls PARAMS ((tree));
e5bef2e4 178static void mark_label_nuses PARAMS ((rtx));
c13e8210
MM
179static hashval_t const_int_htab_hash PARAMS ((const void *));
180static int const_int_htab_eq PARAMS ((const void *,
181 const void *));
5692c7bc
ZW
182static hashval_t const_double_htab_hash PARAMS ((const void *));
183static int const_double_htab_eq PARAMS ((const void *,
184 const void *));
185static rtx lookup_const_double PARAMS ((rtx));
173b24b9
RK
186static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
187static int mem_attrs_htab_eq PARAMS ((const void *,
188 const void *));
173b24b9 189static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
10b76d73
RK
190 rtx, unsigned int,
191 enum machine_mode));
998d7deb 192static tree component_ref_for_mem_expr PARAMS ((tree));
ff88fe10 193static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
c13e8210 194
6b24c259
JH
195/* Probability of the conditional branch currently proceeded by try_split.
196 Set to -1 otherwise. */
197int split_branch_probability = -1;
ca695ac9 198\f
c13e8210
MM
199/* Returns a hash code for X (which is a really a CONST_INT). */
200
201static hashval_t
202const_int_htab_hash (x)
203 const void *x;
204{
5692c7bc 205 return (hashval_t) INTVAL ((struct rtx_def *) x);
c13e8210
MM
206}
207
208/* Returns non-zero if the value represented by X (which is really a
209 CONST_INT) is the same as that given by Y (which is really a
210 HOST_WIDE_INT *). */
211
212static int
213const_int_htab_eq (x, y)
214 const void *x;
215 const void *y;
216{
5692c7bc
ZW
217 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
218}
219
220/* Returns a hash code for X (which is really a CONST_DOUBLE). */
221static hashval_t
222const_double_htab_hash (x)
223 const void *x;
224{
225 hashval_t h = 0;
226 size_t i;
227 rtx value = (rtx) x;
228
229 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
230 h ^= XWINT (value, i);
231 return h;
232}
233
234/* Returns non-zero if the value represented by X (really a ...)
235 is the same as that represented by Y (really a ...) */
236static int
237const_double_htab_eq (x, y)
238 const void *x;
239 const void *y;
240{
241 rtx a = (rtx)x, b = (rtx)y;
242 size_t i;
243
244 if (GET_MODE (a) != GET_MODE (b))
245 return 0;
246 for (i = 0; i < sizeof(CONST_DOUBLE_FORMAT)-1; i++)
247 if (XWINT (a, i) != XWINT (b, i))
248 return 0;
249
250 return 1;
c13e8210
MM
251}
252
173b24b9
RK
253/* Returns a hash code for X (which is a really a mem_attrs *). */
254
255static hashval_t
256mem_attrs_htab_hash (x)
257 const void *x;
258{
259 mem_attrs *p = (mem_attrs *) x;
260
261 return (p->alias ^ (p->align * 1000)
262 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
263 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
998d7deb 264 ^ (size_t) p->expr);
173b24b9
RK
265}
266
267/* Returns non-zero if the value represented by X (which is really a
268 mem_attrs *) is the same as that given by Y (which is also really a
269 mem_attrs *). */
c13e8210
MM
270
271static int
173b24b9
RK
272mem_attrs_htab_eq (x, y)
273 const void *x;
274 const void *y;
c13e8210 275{
173b24b9
RK
276 mem_attrs *p = (mem_attrs *) x;
277 mem_attrs *q = (mem_attrs *) y;
278
998d7deb 279 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
173b24b9 280 && p->size == q->size && p->align == q->align);
c13e8210
MM
281}
282
173b24b9 283/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
284 one identical to it is not already in the table. We are doing this for
285 MEM of mode MODE. */
173b24b9
RK
286
287static mem_attrs *
998d7deb 288get_mem_attrs (alias, expr, offset, size, align, mode)
173b24b9 289 HOST_WIDE_INT alias;
998d7deb 290 tree expr;
173b24b9
RK
291 rtx offset;
292 rtx size;
293 unsigned int align;
10b76d73 294 enum machine_mode mode;
173b24b9
RK
295{
296 mem_attrs attrs;
297 void **slot;
298
10b76d73 299 /* If everything is the default, we can just return zero. */
998d7deb 300 if (alias == 0 && expr == 0 && offset == 0
10b76d73
RK
301 && (size == 0
302 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
916f389b 303 && (align == BITS_PER_UNIT
917afb0c
RK
304 || (STRICT_ALIGNMENT
305 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
10b76d73
RK
306 return 0;
307
173b24b9 308 attrs.alias = alias;
998d7deb 309 attrs.expr = expr;
173b24b9
RK
310 attrs.offset = offset;
311 attrs.size = size;
312 attrs.align = align;
313
314 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
315 if (*slot == 0)
316 {
317 *slot = ggc_alloc (sizeof (mem_attrs));
318 memcpy (*slot, &attrs, sizeof (mem_attrs));
319 }
320
321 return *slot;
c13e8210
MM
322}
323
08394eef
BS
324/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
325 don't attempt to share with the various global pieces of rtl (such as
326 frame_pointer_rtx). */
327
328rtx
329gen_raw_REG (mode, regno)
330 enum machine_mode mode;
331 int regno;
332{
333 rtx x = gen_rtx_raw_REG (mode, regno);
334 ORIGINAL_REGNO (x) = regno;
335 return x;
336}
337
c5c76735
JL
338/* There are some RTL codes that require special attention; the generation
339 functions do the raw handling. If you add to this list, modify
340 special_rtx in gengenrtl.c as well. */
341
3b80f6ca
RH
342rtx
343gen_rtx_CONST_INT (mode, arg)
c13e8210 344 enum machine_mode mode ATTRIBUTE_UNUSED;
3b80f6ca
RH
345 HOST_WIDE_INT arg;
346{
c13e8210
MM
347 void **slot;
348
3b80f6ca 349 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 350 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
351
352#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
353 if (const_true_rtx && arg == STORE_FLAG_VALUE)
354 return const_true_rtx;
355#endif
356
c13e8210 357 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
358 slot = htab_find_slot_with_hash (const_int_htab, &arg,
359 (hashval_t) arg, INSERT);
29105cea 360 if (*slot == 0)
1f8f4a0b 361 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
362
363 return (rtx) *slot;
3b80f6ca
RH
364}
365
2496c7bd
LB
366rtx
367gen_int_mode (c, mode)
368 HOST_WIDE_INT c;
369 enum machine_mode mode;
370{
371 return GEN_INT (trunc_int_for_mode (c, mode));
372}
373
5692c7bc
ZW
374/* CONST_DOUBLEs might be created from pairs of integers, or from
375 REAL_VALUE_TYPEs. Also, their length is known only at run time,
376 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
377
378/* Determine whether REAL, a CONST_DOUBLE, already exists in the
379 hash table. If so, return its counterpart; otherwise add it
380 to the hash table and return it. */
381static rtx
382lookup_const_double (real)
383 rtx real;
384{
385 void **slot = htab_find_slot (const_double_htab, real, INSERT);
386 if (*slot == 0)
387 *slot = real;
388
389 return (rtx) *slot;
390}
29105cea 391
5692c7bc
ZW
392/* Return a CONST_DOUBLE rtx for a floating-point value specified by
393 VALUE in mode MODE. */
0133b7d9 394rtx
5692c7bc
ZW
395const_double_from_real_value (value, mode)
396 REAL_VALUE_TYPE value;
0133b7d9 397 enum machine_mode mode;
0133b7d9 398{
5692c7bc
ZW
399 rtx real = rtx_alloc (CONST_DOUBLE);
400 PUT_MODE (real, mode);
401
402 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
403
404 return lookup_const_double (real);
405}
406
407/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
408 of ints: I0 is the low-order word and I1 is the high-order word.
409 Do not use this routine for non-integer modes; convert to
410 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
411
412rtx
413immed_double_const (i0, i1, mode)
414 HOST_WIDE_INT i0, i1;
415 enum machine_mode mode;
416{
417 rtx value;
418 unsigned int i;
419
420 if (mode != VOIDmode)
421 {
422 int width;
423 if (GET_MODE_CLASS (mode) != MODE_INT
cb2a532e
AH
424 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
425 /* We can get a 0 for an error mark. */
426 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
427 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
5692c7bc
ZW
428 abort ();
429
430 /* We clear out all bits that don't belong in MODE, unless they and
431 our sign bit are all one. So we get either a reasonable negative
432 value or a reasonable unsigned value for this mode. */
433 width = GET_MODE_BITSIZE (mode);
434 if (width < HOST_BITS_PER_WIDE_INT
435 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
436 != ((HOST_WIDE_INT) (-1) << (width - 1))))
437 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
438 else if (width == HOST_BITS_PER_WIDE_INT
439 && ! (i1 == ~0 && i0 < 0))
440 i1 = 0;
441 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
442 /* We cannot represent this value as a constant. */
443 abort ();
444
445 /* If this would be an entire word for the target, but is not for
446 the host, then sign-extend on the host so that the number will
447 look the same way on the host that it would on the target.
448
449 For example, when building a 64 bit alpha hosted 32 bit sparc
450 targeted compiler, then we want the 32 bit unsigned value -1 to be
451 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
452 The latter confuses the sparc backend. */
453
454 if (width < HOST_BITS_PER_WIDE_INT
455 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
456 i0 |= ((HOST_WIDE_INT) (-1) << width);
2454beaf 457
5692c7bc
ZW
458 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
459 CONST_INT.
2454beaf 460
5692c7bc
ZW
461 ??? Strictly speaking, this is wrong if we create a CONST_INT for
462 a large unsigned constant with the size of MODE being
463 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
464 in a wider mode. In that case we will mis-interpret it as a
465 negative number.
2454beaf 466
5692c7bc
ZW
467 Unfortunately, the only alternative is to make a CONST_DOUBLE for
468 any constant in any mode if it is an unsigned constant larger
469 than the maximum signed integer in an int on the host. However,
470 doing this will break everyone that always expects to see a
471 CONST_INT for SImode and smaller.
472
473 We have always been making CONST_INTs in this case, so nothing
474 new is being broken. */
475
476 if (width <= HOST_BITS_PER_WIDE_INT)
477 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
478 }
479
480 /* If this integer fits in one word, return a CONST_INT. */
481 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
482 return GEN_INT (i0);
483
484 /* We use VOIDmode for integers. */
485 value = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (value, VOIDmode);
487
488 CONST_DOUBLE_LOW (value) = i0;
489 CONST_DOUBLE_HIGH (value) = i1;
490
491 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
492 XWINT (value, i) = 0;
493
494 return lookup_const_double (value);
0133b7d9
RH
495}
496
3b80f6ca
RH
497rtx
498gen_rtx_REG (mode, regno)
499 enum machine_mode mode;
5692c7bc 500 unsigned int regno;
3b80f6ca
RH
501{
502 /* In case the MD file explicitly references the frame pointer, have
503 all such references point to the same frame pointer. This is
504 used during frame pointer elimination to distinguish the explicit
505 references to these registers from pseudos that happened to be
506 assigned to them.
507
508 If we have eliminated the frame pointer or arg pointer, we will
509 be using it as a normal register, for example as a spill
510 register. In such cases, we might be accessing it in a mode that
511 is not Pmode and therefore cannot use the pre-allocated rtx.
512
513 Also don't do this when we are making new REGs in reload, since
514 we don't want to get confused with the real pointers. */
515
516 if (mode == Pmode && !reload_in_progress)
517 {
bcb33994 518 if (regno == FRAME_POINTER_REGNUM)
3b80f6ca
RH
519 return frame_pointer_rtx;
520#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
bcb33994 521 if (regno == HARD_FRAME_POINTER_REGNUM)
3b80f6ca
RH
522 return hard_frame_pointer_rtx;
523#endif
524#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 525 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
526 return arg_pointer_rtx;
527#endif
528#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 529 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
530 return return_address_pointer_rtx;
531#endif
2d67bd7b
JDA
532 if (regno == PIC_OFFSET_TABLE_REGNUM
533 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 534 return pic_offset_table_rtx;
bcb33994 535 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
536 return stack_pointer_rtx;
537 }
538
006a94b0 539#if 0
6cde4876 540 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
541 an existing entry in that table to avoid useless generation of RTL.
542
543 This code is disabled for now until we can fix the various backends
544 which depend on having non-shared hard registers in some cases. Long
545 term we want to re-enable this code as it can significantly cut down
546 on the amount of useless RTL that gets generated. */
6cde4876
JL
547 if (cfun
548 && cfun->emit
549 && regno_reg_rtx
550 && regno < FIRST_PSEUDO_REGISTER
551 && reg_raw_mode[regno] == mode)
552 return regno_reg_rtx[regno];
006a94b0 553#endif
6cde4876 554
08394eef 555 return gen_raw_REG (mode, regno);
3b80f6ca
RH
556}
557
41472af8
MM
558rtx
559gen_rtx_MEM (mode, addr)
560 enum machine_mode mode;
561 rtx addr;
562{
563 rtx rt = gen_rtx_raw_MEM (mode, addr);
564
565 /* This field is not cleared by the mere allocation of the rtx, so
566 we clear it here. */
173b24b9 567 MEM_ATTRS (rt) = 0;
41472af8
MM
568
569 return rt;
570}
ddef6bc7
JJ
571
572rtx
573gen_rtx_SUBREG (mode, reg, offset)
574 enum machine_mode mode;
575 rtx reg;
576 int offset;
577{
578 /* This is the most common failure type.
579 Catch it early so we can see who does it. */
580 if ((offset % GET_MODE_SIZE (mode)) != 0)
581 abort ();
582
583 /* This check isn't usable right now because combine will
584 throw arbitrary crap like a CALL into a SUBREG in
585 gen_lowpart_for_combine so we must just eat it. */
586#if 0
587 /* Check for this too. */
588 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
589 abort ();
590#endif
5692c7bc 591 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
592}
593
173b24b9
RK
594/* Generate a SUBREG representing the least-significant part of REG if MODE
595 is smaller than mode of REG, otherwise paradoxical SUBREG. */
596
ddef6bc7
JJ
597rtx
598gen_lowpart_SUBREG (mode, reg)
599 enum machine_mode mode;
600 rtx reg;
601{
602 enum machine_mode inmode;
ddef6bc7
JJ
603
604 inmode = GET_MODE (reg);
605 if (inmode == VOIDmode)
606 inmode = mode;
e0e08ac2
JH
607 return gen_rtx_SUBREG (mode, reg,
608 subreg_lowpart_offset (mode, inmode));
ddef6bc7 609}
c5c76735 610\f
23b2ce53
RS
611/* rtx gen_rtx (code, mode, [element1, ..., elementn])
612**
613** This routine generates an RTX of the size specified by
614** <code>, which is an RTX code. The RTX structure is initialized
615** from the arguments <element1> through <elementn>, which are
616** interpreted according to the specific RTX type's format. The
617** special machine mode associated with the rtx (if any) is specified
618** in <mode>.
619**
1632afca 620** gen_rtx can be invoked in a way which resembles the lisp-like
23b2ce53
RS
621** rtx it will generate. For example, the following rtx structure:
622**
623** (plus:QI (mem:QI (reg:SI 1))
624** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
625**
626** ...would be generated by the following C code:
627**
750c9258 628** gen_rtx (PLUS, QImode,
23b2ce53
RS
629** gen_rtx (MEM, QImode,
630** gen_rtx (REG, SImode, 1)),
631** gen_rtx (MEM, QImode,
632** gen_rtx (PLUS, SImode,
633** gen_rtx (REG, SImode, 2),
634** gen_rtx (REG, SImode, 3)))),
635*/
636
637/*VARARGS2*/
638rtx
711d877c 639gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
23b2ce53 640{
b3694847
SS
641 int i; /* Array indices... */
642 const char *fmt; /* Current rtx's format... */
643 rtx rt_val; /* RTX to return to caller... */
23b2ce53 644
7a75edb7
AJ
645 VA_OPEN (p, mode);
646 VA_FIXEDARG (p, enum rtx_code, code);
647 VA_FIXEDARG (p, enum machine_mode, mode);
23b2ce53 648
0133b7d9 649 switch (code)
23b2ce53 650 {
0133b7d9
RH
651 case CONST_INT:
652 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
653 break;
654
655 case CONST_DOUBLE:
656 {
a79e3a45 657 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
0133b7d9 658 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
a79e3a45 659
0fb7aeda 660 rt_val = immed_double_const (arg0, arg1, mode);
0133b7d9
RH
661 }
662 break;
663
664 case REG:
665 rt_val = gen_rtx_REG (mode, va_arg (p, int));
666 break;
667
668 case MEM:
669 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
670 break;
671
672 default:
23b2ce53
RS
673 rt_val = rtx_alloc (code); /* Allocate the storage space. */
674 rt_val->mode = mode; /* Store the machine mode... */
675
676 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
677 for (i = 0; i < GET_RTX_LENGTH (code); i++)
678 {
679 switch (*fmt++)
680 {
681 case '0': /* Unused field. */
682 break;
683
684 case 'i': /* An integer? */
685 XINT (rt_val, i) = va_arg (p, int);
686 break;
687
906c4e36
RK
688 case 'w': /* A wide integer? */
689 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
690 break;
691
23b2ce53
RS
692 case 's': /* A string? */
693 XSTR (rt_val, i) = va_arg (p, char *);
694 break;
695
696 case 'e': /* An expression? */
697 case 'u': /* An insn? Same except when printing. */
698 XEXP (rt_val, i) = va_arg (p, rtx);
699 break;
700
701 case 'E': /* An RTX vector? */
702 XVEC (rt_val, i) = va_arg (p, rtvec);
703 break;
704
0dfa1860
MM
705 case 'b': /* A bitmap? */
706 XBITMAP (rt_val, i) = va_arg (p, bitmap);
707 break;
708
709 case 't': /* A tree? */
710 XTREE (rt_val, i) = va_arg (p, tree);
711 break;
712
23b2ce53 713 default:
1632afca 714 abort ();
23b2ce53
RS
715 }
716 }
0133b7d9 717 break;
23b2ce53 718 }
0133b7d9 719
7a75edb7 720 VA_CLOSE (p);
0133b7d9 721 return rt_val;
23b2ce53
RS
722}
723
724/* gen_rtvec (n, [rt1, ..., rtn])
725**
726** This routine creates an rtvec and stores within it the
727** pointers to rtx's which are its arguments.
728*/
729
730/*VARARGS1*/
731rtvec
711d877c 732gen_rtvec VPARAMS ((int n, ...))
23b2ce53 733{
6268b922 734 int i, save_n;
23b2ce53
RS
735 rtx *vector;
736
7a75edb7
AJ
737 VA_OPEN (p, n);
738 VA_FIXEDARG (p, int, n);
23b2ce53
RS
739
740 if (n == 0)
741 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
742
743 vector = (rtx *) alloca (n * sizeof (rtx));
4f90e4a0 744
23b2ce53
RS
745 for (i = 0; i < n; i++)
746 vector[i] = va_arg (p, rtx);
6268b922
KG
747
748 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
749 save_n = n;
7a75edb7 750 VA_CLOSE (p);
23b2ce53 751
6268b922 752 return gen_rtvec_v (save_n, vector);
23b2ce53
RS
753}
754
755rtvec
756gen_rtvec_v (n, argp)
757 int n;
758 rtx *argp;
759{
b3694847
SS
760 int i;
761 rtvec rt_val;
23b2ce53
RS
762
763 if (n == 0)
764 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
765
766 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
767
768 for (i = 0; i < n; i++)
8f985ec4 769 rt_val->elem[i] = *argp++;
23b2ce53
RS
770
771 return rt_val;
772}
773\f
774/* Generate a REG rtx for a new pseudo register of mode MODE.
775 This pseudo is assigned the next sequential register number. */
776
777rtx
778gen_reg_rtx (mode)
779 enum machine_mode mode;
780{
01d939e8 781 struct function *f = cfun;
b3694847 782 rtx val;
23b2ce53 783
f1db3576
JL
784 /* Don't let anything called after initial flow analysis create new
785 registers. */
786 if (no_new_pseudos)
23b2ce53
RS
787 abort ();
788
1b3d8f8a
GK
789 if (generating_concat_p
790 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
791 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
792 {
793 /* For complex modes, don't make a single pseudo.
794 Instead, make a CONCAT of two pseudos.
795 This allows noncontiguous allocation of the real and imaginary parts,
796 which makes much better code. Besides, allocating DCmode
797 pseudos overstrains reload on some machines like the 386. */
798 rtx realpart, imagpart;
799 int size = GET_MODE_UNIT_SIZE (mode);
800 enum machine_mode partmode
801 = mode_for_size (size * BITS_PER_UNIT,
802 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
803 ? MODE_FLOAT : MODE_INT),
804 0);
805
806 realpart = gen_reg_rtx (partmode);
807 imagpart = gen_reg_rtx (partmode);
3b80f6ca 808 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
809 }
810
0d4903b8
RK
811 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
812 enough to have an element for this pseudo reg number. */
23b2ce53 813
3502dc9c 814 if (reg_rtx_no == f->emit->regno_pointer_align_length)
23b2ce53 815 {
3502dc9c 816 int old_size = f->emit->regno_pointer_align_length;
e2ecd91c 817 char *new;
0d4903b8
RK
818 rtx *new1;
819 tree *new2;
820
e2500fed 821 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
49ad7cfa 822 memset (new + old_size, 0, old_size);
f9e158c3 823 f->emit->regno_pointer_align = (unsigned char *) new;
49ad7cfa 824
e2500fed
GK
825 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
826 old_size * 2 * sizeof (rtx));
49ad7cfa 827 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
828 regno_reg_rtx = new1;
829
e2500fed
GK
830 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
831 old_size * 2 * sizeof (tree));
0d4903b8
RK
832 memset (new2 + old_size, 0, old_size * sizeof (tree));
833 f->emit->regno_decl = new2;
834
3502dc9c 835 f->emit->regno_pointer_align_length = old_size * 2;
23b2ce53
RS
836 }
837
08394eef 838 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
839 regno_reg_rtx[reg_rtx_no++] = val;
840 return val;
841}
842
754fdcca
RK
843/* Identify REG (which may be a CONCAT) as a user register. */
844
845void
846mark_user_reg (reg)
847 rtx reg;
848{
849 if (GET_CODE (reg) == CONCAT)
850 {
851 REG_USERVAR_P (XEXP (reg, 0)) = 1;
852 REG_USERVAR_P (XEXP (reg, 1)) = 1;
853 }
854 else if (GET_CODE (reg) == REG)
855 REG_USERVAR_P (reg) = 1;
856 else
857 abort ();
858}
859
86fe05e0
RK
860/* Identify REG as a probable pointer register and show its alignment
861 as ALIGN, if nonzero. */
23b2ce53
RS
862
863void
86fe05e0 864mark_reg_pointer (reg, align)
23b2ce53 865 rtx reg;
86fe05e0 866 int align;
23b2ce53 867{
3502dc9c 868 if (! REG_POINTER (reg))
00995e78 869 {
3502dc9c 870 REG_POINTER (reg) = 1;
86fe05e0 871
00995e78
RE
872 if (align)
873 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
874 }
875 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
876 /* We can no-longer be sure just how aligned this pointer is */
86fe05e0 877 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
878}
879
880/* Return 1 plus largest pseudo reg number used in the current function. */
881
882int
883max_reg_num ()
884{
885 return reg_rtx_no;
886}
887
888/* Return 1 + the largest label number used so far in the current function. */
889
890int
891max_label_num ()
892{
893 if (last_label_num && label_num == base_label_num)
894 return last_label_num;
895 return label_num;
896}
897
898/* Return first label number used in this function (if any were used). */
899
900int
901get_first_label_num ()
902{
903 return first_label_num;
904}
905\f
ddef6bc7
JJ
906/* Return the final regno of X, which is a SUBREG of a hard
907 register. */
908int
909subreg_hard_regno (x, check_mode)
b3694847 910 rtx x;
ddef6bc7
JJ
911 int check_mode;
912{
913 enum machine_mode mode = GET_MODE (x);
914 unsigned int byte_offset, base_regno, final_regno;
915 rtx reg = SUBREG_REG (x);
916
917 /* This is where we attempt to catch illegal subregs
918 created by the compiler. */
919 if (GET_CODE (x) != SUBREG
920 || GET_CODE (reg) != REG)
921 abort ();
922 base_regno = REGNO (reg);
923 if (base_regno >= FIRST_PSEUDO_REGISTER)
924 abort ();
0607953c 925 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
ddef6bc7
JJ
926 abort ();
927
928 /* Catch non-congruent offsets too. */
929 byte_offset = SUBREG_BYTE (x);
930 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
931 abort ();
932
933 final_regno = subreg_regno (x);
934
935 return final_regno;
936}
937
23b2ce53
RS
938/* Return a value representing some low-order bits of X, where the number
939 of low-order bits is given by MODE. Note that no conversion is done
750c9258 940 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
941 representation is returned.
942
943 This function handles the cases in common between gen_lowpart, below,
944 and two variants in cse.c and combine.c. These are the cases that can
945 be safely handled at all points in the compilation.
946
947 If this is not a case we can handle, return 0. */
948
949rtx
950gen_lowpart_common (mode, x)
951 enum machine_mode mode;
b3694847 952 rtx x;
23b2ce53 953{
ddef6bc7
JJ
954 int msize = GET_MODE_SIZE (mode);
955 int xsize = GET_MODE_SIZE (GET_MODE (x));
956 int offset = 0;
23b2ce53
RS
957
958 if (GET_MODE (x) == mode)
959 return x;
960
961 /* MODE must occupy no more words than the mode of X. */
962 if (GET_MODE (x) != VOIDmode
ddef6bc7
JJ
963 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
964 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
23b2ce53
RS
965 return 0;
966
53501a19
BS
967 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
968 if (GET_MODE_CLASS (mode) == MODE_FLOAT
969 && GET_MODE (x) != VOIDmode && msize > xsize)
970 return 0;
971
e0e08ac2 972 offset = subreg_lowpart_offset (mode, GET_MODE (x));
23b2ce53
RS
973
974 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
975 && (GET_MODE_CLASS (mode) == MODE_INT
976 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
977 {
978 /* If we are getting the low-order part of something that has been
979 sign- or zero-extended, we can either just use the object being
980 extended or make a narrower extension. If we want an even smaller
981 piece than the size of the object being extended, call ourselves
982 recursively.
983
984 This case is used mostly by combine and cse. */
985
986 if (GET_MODE (XEXP (x, 0)) == mode)
987 return XEXP (x, 0);
988 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
989 return gen_lowpart_common (mode, XEXP (x, 0));
990 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3b80f6ca 991 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 992 }
76321db6
MH
993 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
994 || GET_CODE (x) == CONCAT)
e0e08ac2 995 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
23b2ce53
RS
996 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
997 from the low-order part of the constant. */
83e9c679
RK
998 else if ((GET_MODE_CLASS (mode) == MODE_INT
999 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1000 && GET_MODE (x) == VOIDmode
23b2ce53 1001 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1a5b457d
RK
1002 {
1003 /* If MODE is twice the host word size, X is already the desired
1004 representation. Otherwise, if MODE is wider than a word, we can't
e1389cac 1005 do this. If MODE is exactly a word, return just one CONST_INT. */
1a5b457d 1006
a8dd0e73 1007 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1a5b457d 1008 return x;
906c4e36 1009 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1a5b457d 1010 return 0;
906c4e36 1011 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1a5b457d 1012 return (GET_CODE (x) == CONST_INT ? x
906c4e36 1013 : GEN_INT (CONST_DOUBLE_LOW (x)));
1a5b457d
RK
1014 else
1015 {
27eef9ce 1016 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
906c4e36
RK
1017 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1018 : CONST_DOUBLE_LOW (x));
1a5b457d 1019
27eef9ce 1020 /* Sign extend to HOST_WIDE_INT. */
e1389cac 1021 val = trunc_int_for_mode (val, mode);
1a5b457d
RK
1022
1023 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
906c4e36 1024 : GEN_INT (val));
1a5b457d
RK
1025 }
1026 }
23b2ce53 1027
ba31d94e 1028 /* The floating-point emulator can handle all conversions between
a2061c0d
GK
1029 FP and integer operands. This simplifies reload because it
1030 doesn't have to deal with constructs like (subreg:DI
1031 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
57dadce2
EC
1032 /* Single-precision floats are always 32-bits and double-precision
1033 floats are always 64-bits. */
a2061c0d 1034
76321db6 1035 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
57dadce2 1036 && GET_MODE_BITSIZE (mode) == 32
a2061c0d 1037 && GET_CODE (x) == CONST_INT)
68252e27 1038 {
a2061c0d
GK
1039 REAL_VALUE_TYPE r;
1040 HOST_WIDE_INT i;
1041
1042 i = INTVAL (x);
1043 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
1044 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
68252e27 1045 }
76321db6 1046 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
57dadce2 1047 && GET_MODE_BITSIZE (mode) == 64
a2061c0d
GK
1048 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1049 && GET_MODE (x) == VOIDmode)
1050 {
1051 REAL_VALUE_TYPE r;
1052 HOST_WIDE_INT i[2];
1053 HOST_WIDE_INT low, high;
1054
1055 if (GET_CODE (x) == CONST_INT)
1056 {
1057 low = INTVAL (x);
1058 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1059 }
1060 else
1061 {
750c9258 1062 low = CONST_DOUBLE_LOW (x);
a2061c0d
GK
1063 high = CONST_DOUBLE_HIGH (x);
1064 }
1065
467cb2da 1066#if HOST_BITS_PER_WIDE_INT == 32
a2061c0d
GK
1067 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1068 target machine. */
1069 if (WORDS_BIG_ENDIAN)
1070 i[0] = high, i[1] = low;
1071 else
1072 i[0] = low, i[1] = high;
467cb2da
HP
1073#else
1074 i[0] = low;
1075#endif
a2061c0d
GK
1076
1077 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1078 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1079 }
1080 else if ((GET_MODE_CLASS (mode) == MODE_INT
1081 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1082 && GET_CODE (x) == CONST_DOUBLE
1083 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1084 {
1085 REAL_VALUE_TYPE r;
1086 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1087 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1088
8125704b
GK
1089 /* Convert 'r' into an array of four 32-bit words in target word
1090 order. */
a2061c0d 1091 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
57dadce2 1092 switch (GET_MODE_BITSIZE (GET_MODE (x)))
a2061c0d 1093 {
57dadce2 1094 case 32:
68252e27 1095 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
8125704b
GK
1096 i[1] = 0;
1097 i[2] = 0;
68252e27
KH
1098 i[3 - 3 * endian] = 0;
1099 break;
57dadce2 1100 case 64:
68252e27 1101 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
8125704b
GK
1102 i[2 - 2 * endian] = 0;
1103 i[3 - 2 * endian] = 0;
68252e27 1104 break;
57dadce2 1105 case 96:
e389897b 1106 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
8125704b 1107 i[3 - 3 * endian] = 0;
76321db6 1108 break;
57dadce2 1109 case 128:
a2061c0d
GK
1110 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1111 break;
1112 default:
1156b23c 1113 abort ();
a2061c0d 1114 }
a2061c0d
GK
1115 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1116 and return it. */
1117#if HOST_BITS_PER_WIDE_INT == 32
8125704b 1118 return immed_double_const (i[3 * endian], i[1 + endian], mode);
a2061c0d 1119#else
8125704b
GK
1120 if (HOST_BITS_PER_WIDE_INT != 64)
1121 abort ();
50e60bc3 1122
a76033a0
GK
1123 return immed_double_const ((((unsigned long) i[3 * endian])
1124 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1125 (((unsigned long) i[2 - endian])
1126 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
8125704b 1127 mode);
a2061c0d
GK
1128#endif
1129 }
8aada4ad 1130
23b2ce53
RS
1131 /* Otherwise, we can't do this. */
1132 return 0;
1133}
1134\f
280194b0
RS
1135/* Return the real part (which has mode MODE) of a complex value X.
1136 This always comes at the low address in memory. */
1137
1138rtx
1139gen_realpart (mode, x)
1140 enum machine_mode mode;
b3694847 1141 rtx x;
280194b0 1142{
e0e08ac2
JH
1143 if (WORDS_BIG_ENDIAN
1144 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1145 && REG_P (x)
1146 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4 1147 internal_error
c725bd79 1148 ("can't access real part of complex value in hard register");
dc139c90 1149 else if (WORDS_BIG_ENDIAN)
280194b0
RS
1150 return gen_highpart (mode, x);
1151 else
1152 return gen_lowpart (mode, x);
1153}
1154
1155/* Return the imaginary part (which has mode MODE) of a complex value X.
1156 This always comes at the high address in memory. */
1157
1158rtx
1159gen_imagpart (mode, x)
1160 enum machine_mode mode;
b3694847 1161 rtx x;
280194b0 1162{
e0e08ac2 1163 if (WORDS_BIG_ENDIAN)
280194b0 1164 return gen_lowpart (mode, x);
ddef6bc7 1165 else if (! WORDS_BIG_ENDIAN
40c0c3cf
JL
1166 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1167 && REG_P (x)
1168 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4
RK
1169 internal_error
1170 ("can't access imaginary part of complex value in hard register");
280194b0
RS
1171 else
1172 return gen_highpart (mode, x);
1173}
81284a6a
JW
1174
1175/* Return 1 iff X, assumed to be a SUBREG,
1176 refers to the real part of the complex value in its containing reg.
1177 Complex values are always stored with the real part in the first word,
1178 regardless of WORDS_BIG_ENDIAN. */
1179
1180int
1181subreg_realpart_p (x)
1182 rtx x;
1183{
1184 if (GET_CODE (x) != SUBREG)
1185 abort ();
1186
ddef6bc7 1187 return ((unsigned int) SUBREG_BYTE (x)
770ae6cc 1188 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
81284a6a 1189}
280194b0 1190\f
23b2ce53
RS
1191/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1192 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1193 least-significant part of X.
1194 MODE specifies how big a part of X to return;
1195 it usually should not be larger than a word.
1196 If X is a MEM whose address is a QUEUED, the value may be so also. */
1197
1198rtx
1199gen_lowpart (mode, x)
1200 enum machine_mode mode;
b3694847 1201 rtx x;
23b2ce53
RS
1202{
1203 rtx result = gen_lowpart_common (mode, x);
1204
1205 if (result)
1206 return result;
ea8262b0
RK
1207 else if (GET_CODE (x) == REG)
1208 {
1209 /* Must be a hard reg that's not valid in MODE. */
1210 result = gen_lowpart_common (mode, copy_to_reg (x));
1211 if (result == 0)
1212 abort ();
72c3833b 1213 return result;
ea8262b0 1214 }
23b2ce53
RS
1215 else if (GET_CODE (x) == MEM)
1216 {
1217 /* The only additional case we can do is MEM. */
b3694847 1218 int offset = 0;
23b2ce53
RS
1219 if (WORDS_BIG_ENDIAN)
1220 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1221 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1222
1223 if (BYTES_BIG_ENDIAN)
1224 /* Adjust the address so that the address-after-the-data
1225 is unchanged. */
1226 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1227 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1228
f4ef873c 1229 return adjust_address (x, mode, offset);
23b2ce53 1230 }
e9a25f70
JL
1231 else if (GET_CODE (x) == ADDRESSOF)
1232 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
23b2ce53
RS
1233 else
1234 abort ();
1235}
1236
750c9258 1237/* Like `gen_lowpart', but refer to the most significant part.
ccba022b
RS
1238 This is used to access the imaginary part of a complex number. */
1239
1240rtx
1241gen_highpart (mode, x)
1242 enum machine_mode mode;
b3694847 1243 rtx x;
ccba022b 1244{
ddef6bc7 1245 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1246 rtx result;
ddef6bc7 1247
ccba022b
RS
1248 /* This case loses if X is a subreg. To catch bugs early,
1249 complain if an invalid MODE is used even in other cases. */
ddef6bc7
JJ
1250 if (msize > UNITS_PER_WORD
1251 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
ccba022b 1252 abort ();
ddef6bc7 1253
e0e08ac2
JH
1254 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1255 subreg_highpart_offset (mode, GET_MODE (x)));
09482e0d
JW
1256
1257 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1258 the target if we have a MEM. gen_highpart must return a valid operand,
1259 emitting code if necessary to do so. */
13b8c631 1260 if (result != NULL_RTX && GET_CODE (result) == MEM)
09482e0d
JW
1261 result = validize_mem (result);
1262
e0e08ac2
JH
1263 if (!result)
1264 abort ();
1265 return result;
1266}
5222e470
JH
1267
1268/* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1269 be VOIDmode constant. */
1270rtx
1271gen_highpart_mode (outermode, innermode, exp)
68252e27
KH
1272 enum machine_mode outermode, innermode;
1273 rtx exp;
5222e470
JH
1274{
1275 if (GET_MODE (exp) != VOIDmode)
1276 {
1277 if (GET_MODE (exp) != innermode)
1278 abort ();
1279 return gen_highpart (outermode, exp);
1280 }
1281 return simplify_gen_subreg (outermode, exp, innermode,
1282 subreg_highpart_offset (outermode, innermode));
1283}
68252e27 1284
e0e08ac2
JH
1285/* Return offset in bytes to get OUTERMODE low part
1286 of the value in mode INNERMODE stored in memory in target format. */
8698cce3 1287
e0e08ac2
JH
1288unsigned int
1289subreg_lowpart_offset (outermode, innermode)
1290 enum machine_mode outermode, innermode;
1291{
1292 unsigned int offset = 0;
1293 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1294
e0e08ac2 1295 if (difference > 0)
ccba022b 1296 {
e0e08ac2
JH
1297 if (WORDS_BIG_ENDIAN)
1298 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1299 if (BYTES_BIG_ENDIAN)
1300 offset += difference % UNITS_PER_WORD;
ccba022b 1301 }
ddef6bc7 1302
e0e08ac2 1303 return offset;
ccba022b 1304}
eea50aa0 1305
e0e08ac2
JH
1306/* Return offset in bytes to get OUTERMODE high part
1307 of the value in mode INNERMODE stored in memory in target format. */
1308unsigned int
1309subreg_highpart_offset (outermode, innermode)
eea50aa0 1310 enum machine_mode outermode, innermode;
eea50aa0
JH
1311{
1312 unsigned int offset = 0;
1313 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1314
e0e08ac2 1315 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
68252e27 1316 abort ();
e0e08ac2 1317
eea50aa0
JH
1318 if (difference > 0)
1319 {
e0e08ac2 1320 if (! WORDS_BIG_ENDIAN)
eea50aa0 1321 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1322 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1323 offset += difference % UNITS_PER_WORD;
1324 }
1325
e0e08ac2 1326 return offset;
eea50aa0 1327}
ccba022b 1328
23b2ce53
RS
1329/* Return 1 iff X, assumed to be a SUBREG,
1330 refers to the least significant part of its containing reg.
1331 If X is not a SUBREG, always return 1 (it is its own low part!). */
1332
1333int
1334subreg_lowpart_p (x)
1335 rtx x;
1336{
1337 if (GET_CODE (x) != SUBREG)
1338 return 1;
a3a03040
RK
1339 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1340 return 0;
23b2ce53 1341
e0e08ac2
JH
1342 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1343 == SUBREG_BYTE (x));
23b2ce53
RS
1344}
1345\f
23b2ce53 1346
ddef6bc7
JJ
1347/* Helper routine for all the constant cases of operand_subword.
1348 Some places invoke this directly. */
23b2ce53
RS
1349
1350rtx
ddef6bc7 1351constant_subword (op, offset, mode)
23b2ce53 1352 rtx op;
ddef6bc7 1353 int offset;
23b2ce53
RS
1354 enum machine_mode mode;
1355{
906c4e36 1356 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
ddef6bc7 1357 HOST_WIDE_INT val;
23b2ce53
RS
1358
1359 /* If OP is already an integer word, return it. */
1360 if (GET_MODE_CLASS (mode) == MODE_INT
1361 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1362 return op;
1363
5495cc55
RH
1364 /* The output is some bits, the width of the target machine's word.
1365 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1366 host can't. */
9847c2f6 1367 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1632afca 1368 && GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1369 && GET_MODE_BITSIZE (mode) == 64
1632afca
RS
1370 && GET_CODE (op) == CONST_DOUBLE)
1371 {
9847c2f6 1372 long k[2];
1632afca
RS
1373 REAL_VALUE_TYPE rv;
1374
1375 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1376 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
7677ffa4 1377
9847c2f6 1378 /* We handle 32-bit and >= 64-bit words here. Note that the order in
7677ffa4 1379 which the words are written depends on the word endianness.
7677ffa4 1380 ??? This is a potential portability problem and should
7cae975e
RH
1381 be fixed at some point.
1382
a1f300c0 1383 We must exercise caution with the sign bit. By definition there
7cae975e
RH
1384 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1385 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1386 So we explicitly mask and sign-extend as necessary. */
9847c2f6 1387 if (BITS_PER_WORD == 32)
7cae975e 1388 {
ddef6bc7 1389 val = k[offset];
7cae975e
RH
1390 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1391 return GEN_INT (val);
1392 }
1393#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1394 else if (BITS_PER_WORD >= 64 && offset == 0)
7cae975e
RH
1395 {
1396 val = k[! WORDS_BIG_ENDIAN];
1397 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1398 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1399 return GEN_INT (val);
1400 }
9847c2f6 1401#endif
47b34d40
JW
1402 else if (BITS_PER_WORD == 16)
1403 {
ddef6bc7
JJ
1404 val = k[offset >> 1];
1405 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1406 val >>= 16;
73de376f 1407 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
7cae975e 1408 return GEN_INT (val);
47b34d40 1409 }
7677ffa4
RK
1410 else
1411 abort ();
1632afca 1412 }
a5559dbc
RE
1413 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1414 && GET_MODE_CLASS (mode) == MODE_FLOAT
1415 && GET_MODE_BITSIZE (mode) > 64
1416 && GET_CODE (op) == CONST_DOUBLE)
5495cc55
RH
1417 {
1418 long k[4];
1419 REAL_VALUE_TYPE rv;
a5559dbc 1420
5495cc55
RH
1421 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1422 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
a5559dbc 1423
5495cc55
RH
1424 if (BITS_PER_WORD == 32)
1425 {
ddef6bc7 1426 val = k[offset];
5495cc55
RH
1427 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1428 return GEN_INT (val);
1429 }
1430#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1431 else if (BITS_PER_WORD >= 64 && offset <= 1)
5495cc55 1432 {
ddef6bc7 1433 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
5495cc55 1434 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
ddef6bc7 1435 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
5495cc55
RH
1436 return GEN_INT (val);
1437 }
1438#endif
1439 else
1440 abort ();
1441 }
23b2ce53
RS
1442
1443 /* Single word float is a little harder, since single- and double-word
1444 values often do not have the same high-order bits. We have already
1445 verified that we want the only defined word of the single-word value. */
9847c2f6 1446 if (GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1447 && GET_MODE_BITSIZE (mode) == 32
1632afca
RS
1448 && GET_CODE (op) == CONST_DOUBLE)
1449 {
9847c2f6 1450 long l;
1632afca
RS
1451 REAL_VALUE_TYPE rv;
1452
1453 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1454 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
aa2ae679 1455
7cae975e
RH
1456 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1457 val = l;
1458 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
b5a3eb84 1459
aa2ae679
JL
1460 if (BITS_PER_WORD == 16)
1461 {
ddef6bc7 1462 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1463 val >>= 16;
73de376f 1464 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
aa2ae679 1465 }
7cae975e
RH
1466
1467 return GEN_INT (val);
1632afca 1468 }
750c9258 1469
23b2ce53
RS
1470 /* The only remaining cases that we can handle are integers.
1471 Convert to proper endianness now since these cases need it.
750c9258 1472 At this point, offset == 0 means the low-order word.
23b2ce53 1473
2d4f57f8
RK
1474 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1475 in general. However, if OP is (const_int 0), we can just return
1476 it for any word. */
1477
1478 if (op == const0_rtx)
1479 return op;
23b2ce53
RS
1480
1481 if (GET_MODE_CLASS (mode) != MODE_INT
2d4f57f8 1482 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
0cf214a0 1483 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
23b2ce53
RS
1484 return 0;
1485
1486 if (WORDS_BIG_ENDIAN)
ddef6bc7 1487 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
23b2ce53
RS
1488
1489 /* Find out which word on the host machine this value is in and get
1490 it from the constant. */
ddef6bc7 1491 val = (offset / size_ratio == 0
23b2ce53
RS
1492 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1493 : (GET_CODE (op) == CONST_INT
1494 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1495
3f518020 1496 /* Get the value we want into the low bits of val. */
906c4e36 1497 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
ddef6bc7 1498 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
3f518020 1499
7e4ce834 1500 val = trunc_int_for_mode (val, word_mode);
23b2ce53 1501
906c4e36 1502 return GEN_INT (val);
23b2ce53
RS
1503}
1504
ddef6bc7
JJ
1505/* Return subword OFFSET of operand OP.
1506 The word number, OFFSET, is interpreted as the word number starting
1507 at the low-order address. OFFSET 0 is the low-order word if not
1508 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1509
1510 If we cannot extract the required word, we return zero. Otherwise,
1511 an rtx corresponding to the requested word will be returned.
1512
1513 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1514 reload has completed, a valid address will always be returned. After
1515 reload, if a valid address cannot be returned, we return zero.
1516
1517 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1518 it is the responsibility of the caller.
1519
1520 MODE is the mode of OP in case it is a CONST_INT.
1521
1522 ??? This is still rather broken for some cases. The problem for the
1523 moment is that all callers of this thing provide no 'goal mode' to
1524 tell us to work with. This exists because all callers were written
0631e0bf
JH
1525 in a word based SUBREG world.
1526 Now use of this function can be deprecated by simplify_subreg in most
1527 cases.
1528 */
ddef6bc7
JJ
1529
1530rtx
1531operand_subword (op, offset, validate_address, mode)
1532 rtx op;
1533 unsigned int offset;
1534 int validate_address;
1535 enum machine_mode mode;
1536{
1537 if (mode == VOIDmode)
1538 mode = GET_MODE (op);
1539
1540 if (mode == VOIDmode)
1541 abort ();
1542
30f7a378 1543 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1544 if (mode != BLKmode
1545 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1546 return 0;
1547
30f7a378 1548 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1549 if (mode != BLKmode
1550 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1551 return const0_rtx;
1552
ddef6bc7
JJ
1553 /* Form a new MEM at the requested address. */
1554 if (GET_CODE (op) == MEM)
1555 {
f1ec5147 1556 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1557
f1ec5147
RK
1558 if (! validate_address)
1559 return new;
1560
1561 else if (reload_completed)
ddef6bc7 1562 {
f1ec5147
RK
1563 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1564 return 0;
ddef6bc7 1565 }
f1ec5147
RK
1566 else
1567 return replace_equiv_address (new, XEXP (new, 0));
ddef6bc7
JJ
1568 }
1569
0631e0bf
JH
1570 /* Rest can be handled by simplify_subreg. */
1571 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1572}
1573
23b2ce53
RS
1574/* Similar to `operand_subword', but never return 0. If we can't extract
1575 the required subword, put OP into a register and try again. If that fails,
750c9258 1576 abort. We always validate the address in this case.
23b2ce53
RS
1577
1578 MODE is the mode of OP, in case it is CONST_INT. */
1579
1580rtx
ddef6bc7 1581operand_subword_force (op, offset, mode)
23b2ce53 1582 rtx op;
ddef6bc7 1583 unsigned int offset;
23b2ce53
RS
1584 enum machine_mode mode;
1585{
ddef6bc7 1586 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1587
1588 if (result)
1589 return result;
1590
1591 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1592 {
1593 /* If this is a register which can not be accessed by words, copy it
1594 to a pseudo register. */
1595 if (GET_CODE (op) == REG)
1596 op = copy_to_reg (op);
1597 else
1598 op = force_reg (mode, op);
1599 }
23b2ce53 1600
ddef6bc7 1601 result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1602 if (result == 0)
1603 abort ();
1604
1605 return result;
1606}
1607\f
1608/* Given a compare instruction, swap the operands.
1609 A test instruction is changed into a compare of 0 against the operand. */
1610
1611void
1612reverse_comparison (insn)
1613 rtx insn;
1614{
1615 rtx body = PATTERN (insn);
1616 rtx comp;
1617
1618 if (GET_CODE (body) == SET)
1619 comp = SET_SRC (body);
1620 else
1621 comp = SET_SRC (XVECEXP (body, 0, 0));
1622
1623 if (GET_CODE (comp) == COMPARE)
1624 {
1625 rtx op0 = XEXP (comp, 0);
1626 rtx op1 = XEXP (comp, 1);
1627 XEXP (comp, 0) = op1;
1628 XEXP (comp, 1) = op0;
1629 }
1630 else
1631 {
c5c76735
JL
1632 rtx new = gen_rtx_COMPARE (VOIDmode,
1633 CONST0_RTX (GET_MODE (comp)), comp);
23b2ce53
RS
1634 if (GET_CODE (body) == SET)
1635 SET_SRC (body) = new;
1636 else
1637 SET_SRC (XVECEXP (body, 0, 0)) = new;
1638 }
1639}
1640\f
998d7deb
RH
1641/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1642 or (2) a component ref of something variable. Represent the later with
1643 a NULL expression. */
1644
1645static tree
1646component_ref_for_mem_expr (ref)
1647 tree ref;
1648{
1649 tree inner = TREE_OPERAND (ref, 0);
1650
1651 if (TREE_CODE (inner) == COMPONENT_REF)
1652 inner = component_ref_for_mem_expr (inner);
c56e3582
RK
1653 else
1654 {
1655 tree placeholder_ptr = 0;
1656
1657 /* Now remove any conversions: they don't change what the underlying
1658 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1659 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1660 || TREE_CODE (inner) == NON_LVALUE_EXPR
1661 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1662 || TREE_CODE (inner) == SAVE_EXPR
1663 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
68252e27
KH
1664 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1665 inner = find_placeholder (inner, &placeholder_ptr);
1666 else
1667 inner = TREE_OPERAND (inner, 0);
c56e3582
RK
1668
1669 if (! DECL_P (inner))
1670 inner = NULL_TREE;
1671 }
998d7deb
RH
1672
1673 if (inner == TREE_OPERAND (ref, 0))
1674 return ref;
1675 else
c56e3582
RK
1676 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1677 TREE_OPERAND (ref, 1));
998d7deb 1678}
173b24b9
RK
1679
1680/* Given REF, a MEM, and T, either the type of X or the expression
1681 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1682 if we are making a new object of this type. */
1683
1684void
1685set_mem_attributes (ref, t, objectp)
1686 rtx ref;
1687 tree t;
1688 int objectp;
1689{
8ac61af7 1690 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
998d7deb 1691 tree expr = MEM_EXPR (ref);
8ac61af7
RK
1692 rtx offset = MEM_OFFSET (ref);
1693 rtx size = MEM_SIZE (ref);
1694 unsigned int align = MEM_ALIGN (ref);
173b24b9
RK
1695 tree type;
1696
1697 /* It can happen that type_for_mode was given a mode for which there
1698 is no language-level type. In which case it returns NULL, which
1699 we can see here. */
1700 if (t == NULL_TREE)
1701 return;
1702
1703 type = TYPE_P (t) ? t : TREE_TYPE (t);
1704
173b24b9
RK
1705 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1706 wrong answer, as it assumes that DECL_RTL already has the right alias
1707 info. Callers should not set DECL_RTL until after the call to
1708 set_mem_attributes. */
1709 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1710 abort ();
1711
738cc472 1712 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1713 front-end routine) and use it. */
1714 alias = get_alias_set (t);
173b24b9
RK
1715
1716 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1717 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
03bf2c23 1718 RTX_UNCHANGING_P (ref)
1285011e
RK
1719 |= ((lang_hooks.honor_readonly
1720 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1721 || (! TYPE_P (t) && TREE_CONSTANT (t)));
173b24b9 1722
8ac61af7
RK
1723 /* If we are making an object of this type, or if this is a DECL, we know
1724 that it is a scalar if the type is not an aggregate. */
1725 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
173b24b9
RK
1726 MEM_SCALAR_P (ref) = 1;
1727
c3d32120
RK
1728 /* We can set the alignment from the type if we are making an object,
1729 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1730 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1731 align = MAX (align, TYPE_ALIGN (type));
40c0668b 1732
738cc472
RK
1733 /* If the size is known, we can set that. */
1734 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1735 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1736
80965c18
RK
1737 /* If T is not a type, we may be able to deduce some more information about
1738 the expression. */
1739 if (! TYPE_P (t))
8ac61af7
RK
1740 {
1741 maybe_set_unchanging (ref, t);
1742 if (TREE_THIS_VOLATILE (t))
1743 MEM_VOLATILE_P (ref) = 1;
173b24b9 1744
c56e3582
RK
1745 /* Now remove any conversions: they don't change what the underlying
1746 object is. Likewise for SAVE_EXPR. */
8ac61af7 1747 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
c56e3582
RK
1748 || TREE_CODE (t) == NON_LVALUE_EXPR
1749 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1750 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1751 t = TREE_OPERAND (t, 0);
1752
10b76d73
RK
1753 /* If this expression can't be addressed (e.g., it contains a reference
1754 to a non-addressable field), show we don't change its alias set. */
1755 if (! can_address_p (t))
1756 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1757
8ac61af7
RK
1758 /* If this is a decl, set the attributes of the MEM from it. */
1759 if (DECL_P (t))
1760 {
998d7deb
RH
1761 expr = t;
1762 offset = const0_rtx;
8ac61af7
RK
1763 size = (DECL_SIZE_UNIT (t)
1764 && host_integerp (DECL_SIZE_UNIT (t), 1)
1765 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
68252e27 1766 align = DECL_ALIGN (t);
8ac61af7
RK
1767 }
1768
40c0668b 1769 /* If this is a constant, we know the alignment. */
9ddfb1a7
RK
1770 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1771 {
1772 align = TYPE_ALIGN (type);
1773#ifdef CONSTANT_ALIGNMENT
1774 align = CONSTANT_ALIGNMENT (t, align);
1775#endif
1776 }
998d7deb
RH
1777
1778 /* If this is a field reference and not a bit-field, record it. */
1779 /* ??? There is some information that can be gleened from bit-fields,
1780 such as the word offset in the structure that might be modified.
1781 But skip it for now. */
1782 else if (TREE_CODE (t) == COMPONENT_REF
1783 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1784 {
1785 expr = component_ref_for_mem_expr (t);
1786 offset = const0_rtx;
1787 /* ??? Any reason the field size would be different than
1788 the size we got from the type? */
1789 }
1790
1791 /* If this is an array reference, look for an outer field reference. */
1792 else if (TREE_CODE (t) == ARRAY_REF)
1793 {
1794 tree off_tree = size_zero_node;
1795
1796 do
1797 {
1798 off_tree
1799 = fold (build (PLUS_EXPR, sizetype,
1800 fold (build (MULT_EXPR, sizetype,
1801 TREE_OPERAND (t, 1),
1802 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1803 off_tree));
1804 t = TREE_OPERAND (t, 0);
1805 }
1806 while (TREE_CODE (t) == ARRAY_REF);
1807
1808 if (TREE_CODE (t) == COMPONENT_REF)
1809 {
1810 expr = component_ref_for_mem_expr (t);
1811 if (host_integerp (off_tree, 1))
1812 offset = GEN_INT (tree_low_cst (off_tree, 1));
1813 /* ??? Any reason the field size would be different than
1814 the size we got from the type? */
1815 }
1816 }
8ac61af7
RK
1817 }
1818
1819 /* Now set the attributes we computed above. */
10b76d73 1820 MEM_ATTRS (ref)
998d7deb 1821 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
8ac61af7
RK
1822
1823 /* If this is already known to be a scalar or aggregate, we are done. */
1824 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
1825 return;
1826
8ac61af7
RK
1827 /* If it is a reference into an aggregate, this is part of an aggregate.
1828 Otherwise we don't know. */
173b24b9
RK
1829 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1830 || TREE_CODE (t) == ARRAY_RANGE_REF
1831 || TREE_CODE (t) == BIT_FIELD_REF)
1832 MEM_IN_STRUCT_P (ref) = 1;
1833}
1834
1835/* Set the alias set of MEM to SET. */
1836
1837void
1838set_mem_alias_set (mem, set)
1839 rtx mem;
1840 HOST_WIDE_INT set;
1841{
68252e27 1842#ifdef ENABLE_CHECKING
173b24b9
RK
1843 /* If the new and old alias sets don't conflict, something is wrong. */
1844 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1845 abort ();
173b24b9
RK
1846#endif
1847
998d7deb 1848 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
10b76d73
RK
1849 MEM_SIZE (mem), MEM_ALIGN (mem),
1850 GET_MODE (mem));
173b24b9 1851}
738cc472 1852
d022d93e 1853/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1854
1855void
1856set_mem_align (mem, align)
1857 rtx mem;
1858 unsigned int align;
1859{
998d7deb 1860 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
10b76d73
RK
1861 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1862 GET_MODE (mem));
738cc472 1863}
1285011e 1864
998d7deb 1865/* Set the expr for MEM to EXPR. */
1285011e
RK
1866
1867void
998d7deb 1868set_mem_expr (mem, expr)
1285011e 1869 rtx mem;
998d7deb 1870 tree expr;
1285011e
RK
1871{
1872 MEM_ATTRS (mem)
998d7deb 1873 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1285011e
RK
1874 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1875}
998d7deb
RH
1876
1877/* Set the offset of MEM to OFFSET. */
1878
1879void
1880set_mem_offset (mem, offset)
1881 rtx mem, offset;
1882{
1883 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1884 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1885 GET_MODE (mem));
1886}
173b24b9 1887\f
738cc472
RK
1888/* Return a memory reference like MEMREF, but with its mode changed to MODE
1889 and its address changed to ADDR. (VOIDmode means don't change the mode.
1890 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1891 returned memory location is required to be valid. The memory
1892 attributes are not changed. */
23b2ce53 1893
738cc472 1894static rtx
f1ec5147 1895change_address_1 (memref, mode, addr, validate)
23b2ce53
RS
1896 rtx memref;
1897 enum machine_mode mode;
1898 rtx addr;
f1ec5147 1899 int validate;
23b2ce53
RS
1900{
1901 rtx new;
1902
1903 if (GET_CODE (memref) != MEM)
1904 abort ();
1905 if (mode == VOIDmode)
1906 mode = GET_MODE (memref);
1907 if (addr == 0)
1908 addr = XEXP (memref, 0);
1909
f1ec5147 1910 if (validate)
23b2ce53 1911 {
f1ec5147
RK
1912 if (reload_in_progress || reload_completed)
1913 {
1914 if (! memory_address_p (mode, addr))
1915 abort ();
1916 }
1917 else
1918 addr = memory_address (mode, addr);
23b2ce53 1919 }
750c9258 1920
9b04c6a8
RK
1921 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1922 return memref;
1923
3b80f6ca 1924 new = gen_rtx_MEM (mode, addr);
c6df88cb 1925 MEM_COPY_ATTRIBUTES (new, memref);
23b2ce53
RS
1926 return new;
1927}
792760b9 1928
738cc472
RK
1929/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1930 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
1931
1932rtx
738cc472 1933change_address (memref, mode, addr)
f4ef873c
RK
1934 rtx memref;
1935 enum machine_mode mode;
738cc472 1936 rtx addr;
f4ef873c 1937{
738cc472
RK
1938 rtx new = change_address_1 (memref, mode, addr, 1);
1939 enum machine_mode mmode = GET_MODE (new);
c2f7bcc3 1940
738cc472
RK
1941 MEM_ATTRS (new)
1942 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1943 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
a06ef755
RK
1944 (mmode == BLKmode ? BITS_PER_UNIT
1945 : GET_MODE_ALIGNMENT (mmode)),
10b76d73 1946 mmode);
823e3574 1947
738cc472 1948 return new;
f4ef873c 1949}
792760b9 1950
738cc472
RK
1951/* Return a memory reference like MEMREF, but with its mode changed
1952 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
1953 nonzero, the memory address is forced to be valid.
1954 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1955 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
1956
1957rtx
630036c6 1958adjust_address_1 (memref, mode, offset, validate, adjust)
f1ec5147
RK
1959 rtx memref;
1960 enum machine_mode mode;
1961 HOST_WIDE_INT offset;
630036c6 1962 int validate, adjust;
f1ec5147 1963{
823e3574 1964 rtx addr = XEXP (memref, 0);
738cc472
RK
1965 rtx new;
1966 rtx memoffset = MEM_OFFSET (memref);
10b76d73 1967 rtx size = 0;
738cc472 1968 unsigned int memalign = MEM_ALIGN (memref);
823e3574 1969
d14419e4 1970 /* ??? Prefer to create garbage instead of creating shared rtl.
4a78c787 1971 This may happen even if offset is non-zero -- consider
d14419e4
RH
1972 (plus (plus reg reg) const_int) -- so do this always. */
1973 addr = copy_rtx (addr);
1974
4a78c787
RH
1975 if (adjust)
1976 {
1977 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1978 object, we can merge it into the LO_SUM. */
1979 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1980 && offset >= 0
1981 && (unsigned HOST_WIDE_INT) offset
1982 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1983 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1984 plus_constant (XEXP (addr, 1), offset));
1985 else
1986 addr = plus_constant (addr, offset);
1987 }
823e3574 1988
738cc472
RK
1989 new = change_address_1 (memref, mode, addr, validate);
1990
1991 /* Compute the new values of the memory attributes due to this adjustment.
1992 We add the offsets and update the alignment. */
1993 if (memoffset)
1994 memoffset = GEN_INT (offset + INTVAL (memoffset));
1995
03bf2c23
RK
1996 /* Compute the new alignment by taking the MIN of the alignment and the
1997 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1998 if zero. */
1999 if (offset != 0)
3bf1e984
RK
2000 memalign
2001 = MIN (memalign,
2002 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
738cc472 2003
10b76d73 2004 /* We can compute the size in a number of ways. */
a06ef755
RK
2005 if (GET_MODE (new) != BLKmode)
2006 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
10b76d73
RK
2007 else if (MEM_SIZE (memref))
2008 size = plus_constant (MEM_SIZE (memref), -offset);
2009
998d7deb 2010 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
10b76d73 2011 memoffset, size, memalign, GET_MODE (new));
738cc472
RK
2012
2013 /* At some point, we should validate that this offset is within the object,
2014 if all the appropriate values are known. */
2015 return new;
f1ec5147
RK
2016}
2017
630036c6
JJ
2018/* Return a memory reference like MEMREF, but with its mode changed
2019 to MODE and its address changed to ADDR, which is assumed to be
2020 MEMREF offseted by OFFSET bytes. If VALIDATE is
2021 nonzero, the memory address is forced to be valid. */
2022
2023rtx
2024adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2025 rtx memref;
2026 enum machine_mode mode;
2027 rtx addr;
2028 HOST_WIDE_INT offset;
2029 int validate;
2030{
2031 memref = change_address_1 (memref, VOIDmode, addr, validate);
2032 return adjust_address_1 (memref, mode, offset, validate, 0);
2033}
2034
8ac61af7
RK
2035/* Return a memory reference like MEMREF, but whose address is changed by
2036 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2037 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2038
2039rtx
2040offset_address (memref, offset, pow2)
2041 rtx memref;
2042 rtx offset;
2043 HOST_WIDE_INT pow2;
2044{
e3c8ea67
RH
2045 rtx new, addr = XEXP (memref, 0);
2046
2047 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2048
68252e27 2049 /* At this point we don't know _why_ the address is invalid. It
e3c8ea67
RH
2050 could have secondary memory refereces, multiplies or anything.
2051
2052 However, if we did go and rearrange things, we can wind up not
2053 being able to recognize the magic around pic_offset_table_rtx.
2054 This stuff is fragile, and is yet another example of why it is
2055 bad to expose PIC machinery too early. */
2056 if (! memory_address_p (GET_MODE (memref), new)
2057 && GET_CODE (addr) == PLUS
2058 && XEXP (addr, 0) == pic_offset_table_rtx)
2059 {
2060 addr = force_reg (GET_MODE (addr), addr);
2061 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2062 }
2063
f6041ed8 2064 update_temp_slot_address (XEXP (memref, 0), new);
e3c8ea67 2065 new = change_address_1 (memref, VOIDmode, new, 1);
0d4903b8
RK
2066
2067 /* Update the alignment to reflect the offset. Reset the offset, which
2068 we don't know. */
2cc2d4bb
RK
2069 MEM_ATTRS (new)
2070 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2071 MIN (MEM_ALIGN (memref),
3bf1e984 2072 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2cc2d4bb 2073 GET_MODE (new));
0d4903b8
RK
2074 return new;
2075}
68252e27 2076
792760b9
RK
2077/* Return a memory reference like MEMREF, but with its address changed to
2078 ADDR. The caller is asserting that the actual piece of memory pointed
2079 to is the same, just the form of the address is being changed, such as
2080 by putting something into a register. */
2081
2082rtx
2083replace_equiv_address (memref, addr)
2084 rtx memref;
2085 rtx addr;
2086{
738cc472
RK
2087 /* change_address_1 copies the memory attribute structure without change
2088 and that's exactly what we want here. */
40c0668b 2089 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2090 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2091}
738cc472 2092
f1ec5147
RK
2093/* Likewise, but the reference is not required to be valid. */
2094
2095rtx
2096replace_equiv_address_nv (memref, addr)
2097 rtx memref;
2098 rtx addr;
2099{
f1ec5147
RK
2100 return change_address_1 (memref, VOIDmode, addr, 0);
2101}
e7dfe4bb
RH
2102
2103/* Return a memory reference like MEMREF, but with its mode widened to
2104 MODE and offset by OFFSET. This would be used by targets that e.g.
2105 cannot issue QImode memory operations and have to use SImode memory
2106 operations plus masking logic. */
2107
2108rtx
2109widen_memory_access (memref, mode, offset)
2110 rtx memref;
2111 enum machine_mode mode;
2112 HOST_WIDE_INT offset;
2113{
2114 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2115 tree expr = MEM_EXPR (new);
2116 rtx memoffset = MEM_OFFSET (new);
2117 unsigned int size = GET_MODE_SIZE (mode);
2118
2119 /* If we don't know what offset we were at within the expression, then
2120 we can't know if we've overstepped the bounds. */
fa1591cb 2121 if (! memoffset)
e7dfe4bb
RH
2122 expr = NULL_TREE;
2123
2124 while (expr)
2125 {
2126 if (TREE_CODE (expr) == COMPONENT_REF)
2127 {
2128 tree field = TREE_OPERAND (expr, 1);
2129
2130 if (! DECL_SIZE_UNIT (field))
2131 {
2132 expr = NULL_TREE;
2133 break;
2134 }
2135
2136 /* Is the field at least as large as the access? If so, ok,
2137 otherwise strip back to the containing structure. */
03667700
RK
2138 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2139 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
e7dfe4bb
RH
2140 && INTVAL (memoffset) >= 0)
2141 break;
2142
2143 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2144 {
2145 expr = NULL_TREE;
2146 break;
2147 }
2148
2149 expr = TREE_OPERAND (expr, 0);
2150 memoffset = (GEN_INT (INTVAL (memoffset)
2151 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2152 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2153 / BITS_PER_UNIT)));
2154 }
2155 /* Similarly for the decl. */
2156 else if (DECL_P (expr)
2157 && DECL_SIZE_UNIT (expr)
45f79783 2158 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
e7dfe4bb
RH
2159 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2160 && (! memoffset || INTVAL (memoffset) >= 0))
2161 break;
2162 else
2163 {
2164 /* The widened memory access overflows the expression, which means
2165 that it could alias another expression. Zap it. */
2166 expr = NULL_TREE;
2167 break;
2168 }
2169 }
2170
2171 if (! expr)
2172 memoffset = NULL_RTX;
2173
2174 /* The widened memory may alias other stuff, so zap the alias set. */
2175 /* ??? Maybe use get_alias_set on any remaining expression. */
2176
2177 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2178 MEM_ALIGN (new), mode);
2179
2180 return new;
2181}
23b2ce53
RS
2182\f
2183/* Return a newly created CODE_LABEL rtx with a unique label number. */
2184
2185rtx
2186gen_label_rtx ()
2187{
b3694847 2188 rtx label;
ca695ac9 2189
ba4f7968
JH
2190 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2191 NULL, label_num++, NULL, NULL);
ca695ac9 2192
23b2ce53 2193 LABEL_NUSES (label) = 0;
8cd0faaf 2194 LABEL_ALTERNATE_NAME (label) = NULL;
23b2ce53
RS
2195 return label;
2196}
2197\f
2198/* For procedure integration. */
2199
23b2ce53 2200/* Install new pointers to the first and last insns in the chain.
86fe05e0 2201 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2202 Used for an inline-procedure after copying the insn chain. */
2203
2204void
2205set_new_first_and_last_insn (first, last)
2206 rtx first, last;
2207{
86fe05e0
RK
2208 rtx insn;
2209
23b2ce53
RS
2210 first_insn = first;
2211 last_insn = last;
86fe05e0
RK
2212 cur_insn_uid = 0;
2213
2214 for (insn = first; insn; insn = NEXT_INSN (insn))
2215 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2216
2217 cur_insn_uid++;
23b2ce53
RS
2218}
2219
2220/* Set the range of label numbers found in the current function.
2221 This is used when belatedly compiling an inline function. */
2222
2223void
2224set_new_first_and_last_label_num (first, last)
2225 int first, last;
2226{
2227 base_label_num = label_num;
2228 first_label_num = first;
2229 last_label_num = last;
2230}
49ad7cfa
BS
2231
2232/* Set the last label number found in the current function.
2233 This is used when belatedly compiling an inline function. */
23b2ce53
RS
2234
2235void
49ad7cfa
BS
2236set_new_last_label_num (last)
2237 int last;
23b2ce53 2238{
49ad7cfa
BS
2239 base_label_num = label_num;
2240 last_label_num = last;
23b2ce53 2241}
49ad7cfa 2242\f
23b2ce53
RS
2243/* Restore all variables describing the current status from the structure *P.
2244 This is used after a nested function. */
2245
2246void
2247restore_emit_status (p)
272df862 2248 struct function *p ATTRIBUTE_UNUSED;
23b2ce53 2249{
457a2d9c 2250 last_label_num = 0;
23b2ce53
RS
2251}
2252\f
750c9258 2253/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2254 structure. This routine should only be called once. */
23b2ce53
RS
2255
2256void
d1b81779
GK
2257unshare_all_rtl (fndecl, insn)
2258 tree fndecl;
2259 rtx insn;
23b2ce53 2260{
d1b81779 2261 tree decl;
23b2ce53 2262
d1b81779
GK
2263 /* Make sure that virtual parameters are not shared. */
2264 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
19e7881c 2265 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
d1b81779 2266
5c6df058
AO
2267 /* Make sure that virtual stack slots are not shared. */
2268 unshare_all_decls (DECL_INITIAL (fndecl));
2269
d1b81779
GK
2270 /* Unshare just about everything else. */
2271 unshare_all_rtl_1 (insn);
750c9258 2272
23b2ce53
RS
2273 /* Make sure the addresses of stack slots found outside the insn chain
2274 (such as, in DECL_RTL of a variable) are not shared
2275 with the insn chain.
2276
2277 This special care is necessary when the stack slot MEM does not
2278 actually appear in the insn chain. If it does appear, its address
2279 is unshared from all else at that point. */
242b0ce6 2280 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2281}
2282
750c9258 2283/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2284 structure, again. This is a fairly expensive thing to do so it
2285 should be done sparingly. */
2286
2287void
2288unshare_all_rtl_again (insn)
2289 rtx insn;
2290{
2291 rtx p;
624c87aa
RE
2292 tree decl;
2293
d1b81779 2294 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2295 if (INSN_P (p))
d1b81779
GK
2296 {
2297 reset_used_flags (PATTERN (p));
2298 reset_used_flags (REG_NOTES (p));
2299 reset_used_flags (LOG_LINKS (p));
2300 }
624c87aa 2301
2d4aecb3
AO
2302 /* Make sure that virtual stack slots are not shared. */
2303 reset_used_decls (DECL_INITIAL (cfun->decl));
2304
624c87aa
RE
2305 /* Make sure that virtual parameters are not shared. */
2306 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2307 reset_used_flags (DECL_RTL (decl));
2308
2309 reset_used_flags (stack_slot_list);
2310
2311 unshare_all_rtl (cfun->decl, insn);
d1b81779
GK
2312}
2313
2314/* Go through all the RTL insn bodies and copy any invalid shared structure.
2315 Assumes the mark bits are cleared at entry. */
2316
2317static void
2318unshare_all_rtl_1 (insn)
2319 rtx insn;
2320{
2321 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2322 if (INSN_P (insn))
d1b81779
GK
2323 {
2324 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2325 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2326 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2327 }
2328}
2329
5c6df058
AO
2330/* Go through all virtual stack slots of a function and copy any
2331 shared structure. */
2332static void
2333unshare_all_decls (blk)
2334 tree blk;
2335{
2336 tree t;
2337
2338 /* Copy shared decls. */
2339 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
2340 if (DECL_RTL_SET_P (t))
2341 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
5c6df058
AO
2342
2343 /* Now process sub-blocks. */
2344 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2345 unshare_all_decls (t);
2346}
2347
2d4aecb3 2348/* Go through all virtual stack slots of a function and mark them as
30f7a378 2349 not shared. */
2d4aecb3
AO
2350static void
2351reset_used_decls (blk)
2352 tree blk;
2353{
2354 tree t;
2355
2356 /* Mark decls. */
2357 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
2358 if (DECL_RTL_SET_P (t))
2359 reset_used_flags (DECL_RTL (t));
2d4aecb3
AO
2360
2361 /* Now process sub-blocks. */
2362 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2363 reset_used_decls (t);
2364}
2365
127c1ba5 2366/* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
93fe8e92
RK
2367 placed in the result directly, rather than being copied. MAY_SHARE is
2368 either a MEM of an EXPR_LIST of MEMs. */
127c1ba5
RK
2369
2370rtx
2371copy_most_rtx (orig, may_share)
2372 rtx orig;
2373 rtx may_share;
2374{
2375 rtx copy;
2376 int i, j;
2377 RTX_CODE code;
2378 const char *format_ptr;
2379
93fe8e92
RK
2380 if (orig == may_share
2381 || (GET_CODE (may_share) == EXPR_LIST
2382 && in_expr_list_p (may_share, orig)))
127c1ba5
RK
2383 return orig;
2384
2385 code = GET_CODE (orig);
2386
2387 switch (code)
2388 {
2389 case REG:
2390 case QUEUED:
2391 case CONST_INT:
2392 case CONST_DOUBLE:
2393 case CONST_VECTOR:
2394 case SYMBOL_REF:
2395 case CODE_LABEL:
2396 case PC:
2397 case CC0:
2398 return orig;
2399 default:
2400 break;
2401 }
2402
2403 copy = rtx_alloc (code);
2404 PUT_MODE (copy, GET_MODE (orig));
2adc7f12
JJ
2405 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2406 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2407 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2408 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2409 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
127c1ba5
RK
2410
2411 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2412
2413 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2414 {
2415 switch (*format_ptr++)
2416 {
2417 case 'e':
2418 XEXP (copy, i) = XEXP (orig, i);
2419 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2420 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2421 break;
2422
2423 case 'u':
2424 XEXP (copy, i) = XEXP (orig, i);
2425 break;
2426
2427 case 'E':
2428 case 'V':
2429 XVEC (copy, i) = XVEC (orig, i);
2430 if (XVEC (orig, i) != NULL)
2431 {
2432 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2433 for (j = 0; j < XVECLEN (copy, i); j++)
2434 XVECEXP (copy, i, j)
2435 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2436 }
2437 break;
2438
2439 case 'w':
2440 XWINT (copy, i) = XWINT (orig, i);
2441 break;
2442
2443 case 'n':
2444 case 'i':
2445 XINT (copy, i) = XINT (orig, i);
2446 break;
2447
2448 case 't':
2449 XTREE (copy, i) = XTREE (orig, i);
2450 break;
2451
2452 case 's':
2453 case 'S':
2454 XSTR (copy, i) = XSTR (orig, i);
2455 break;
2456
2457 case '0':
2458 /* Copy this through the wide int field; that's safest. */
2459 X0WINT (copy, i) = X0WINT (orig, i);
2460 break;
2461
2462 default:
2463 abort ();
2464 }
2465 }
2466 return copy;
2467}
2468
23b2ce53
RS
2469/* Mark ORIG as in use, and return a copy of it if it was already in use.
2470 Recursively does the same for subexpressions. */
2471
2472rtx
2473copy_rtx_if_shared (orig)
2474 rtx orig;
2475{
b3694847
SS
2476 rtx x = orig;
2477 int i;
2478 enum rtx_code code;
2479 const char *format_ptr;
23b2ce53
RS
2480 int copied = 0;
2481
2482 if (x == 0)
2483 return 0;
2484
2485 code = GET_CODE (x);
2486
2487 /* These types may be freely shared. */
2488
2489 switch (code)
2490 {
2491 case REG:
2492 case QUEUED:
2493 case CONST_INT:
2494 case CONST_DOUBLE:
69ef87e2 2495 case CONST_VECTOR:
23b2ce53
RS
2496 case SYMBOL_REF:
2497 case CODE_LABEL:
2498 case PC:
2499 case CC0:
2500 case SCRATCH:
0f41302f 2501 /* SCRATCH must be shared because they represent distinct values. */
23b2ce53
RS
2502 return x;
2503
b851ea09
RK
2504 case CONST:
2505 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2506 a LABEL_REF, it isn't sharable. */
2507 if (GET_CODE (XEXP (x, 0)) == PLUS
2508 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2509 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2510 return x;
2511 break;
2512
23b2ce53
RS
2513 case INSN:
2514 case JUMP_INSN:
2515 case CALL_INSN:
2516 case NOTE:
23b2ce53
RS
2517 case BARRIER:
2518 /* The chain of insns is not being copied. */
2519 return x;
2520
2521 case MEM:
83512665
JL
2522 /* A MEM is allowed to be shared if its address is constant.
2523
750c9258 2524 We used to allow sharing of MEMs which referenced
83512665
JL
2525 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2526 that can lose. instantiate_virtual_regs will not unshare
2527 the MEMs, and combine may change the structure of the address
2528 because it looks safe and profitable in one context, but
2529 in some other context it creates unrecognizable RTL. */
2530 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
23b2ce53
RS
2531 return x;
2532
e9a25f70
JL
2533 break;
2534
2535 default:
2536 break;
23b2ce53
RS
2537 }
2538
2539 /* This rtx may not be shared. If it has already been seen,
2540 replace it with a copy of itself. */
2541
2adc7f12 2542 if (RTX_FLAG (x, used))
23b2ce53 2543 {
b3694847 2544 rtx copy;
23b2ce53
RS
2545
2546 copy = rtx_alloc (code);
4e135bdd 2547 memcpy (copy, x,
4c9a05bc
RK
2548 (sizeof (*copy) - sizeof (copy->fld)
2549 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
23b2ce53
RS
2550 x = copy;
2551 copied = 1;
2552 }
2adc7f12 2553 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2554
2555 /* Now scan the subexpressions recursively.
2556 We can store any replaced subexpressions directly into X
2557 since we know X is not shared! Any vectors in X
2558 must be copied if X was copied. */
2559
2560 format_ptr = GET_RTX_FORMAT (code);
2561
2562 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2563 {
2564 switch (*format_ptr++)
2565 {
2566 case 'e':
2567 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2568 break;
2569
2570 case 'E':
2571 if (XVEC (x, i) != NULL)
2572 {
b3694847 2573 int j;
f0722107 2574 int len = XVECLEN (x, i);
23b2ce53 2575
f0722107 2576 if (copied && len > 0)
8f985ec4 2577 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
f0722107
RS
2578 for (j = 0; j < len; j++)
2579 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
23b2ce53
RS
2580 }
2581 break;
2582 }
2583 }
2584 return x;
2585}
2586
2587/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2588 to look for shared sub-parts. */
2589
2590void
2591reset_used_flags (x)
2592 rtx x;
2593{
b3694847
SS
2594 int i, j;
2595 enum rtx_code code;
2596 const char *format_ptr;
23b2ce53
RS
2597
2598 if (x == 0)
2599 return;
2600
2601 code = GET_CODE (x);
2602
9faa82d8 2603 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2604 for them. */
2605
2606 switch (code)
2607 {
2608 case REG:
2609 case QUEUED:
2610 case CONST_INT:
2611 case CONST_DOUBLE:
69ef87e2 2612 case CONST_VECTOR:
23b2ce53
RS
2613 case SYMBOL_REF:
2614 case CODE_LABEL:
2615 case PC:
2616 case CC0:
2617 return;
2618
2619 case INSN:
2620 case JUMP_INSN:
2621 case CALL_INSN:
2622 case NOTE:
2623 case LABEL_REF:
2624 case BARRIER:
2625 /* The chain of insns is not being copied. */
2626 return;
750c9258 2627
e9a25f70
JL
2628 default:
2629 break;
23b2ce53
RS
2630 }
2631
2adc7f12 2632 RTX_FLAG (x, used) = 0;
23b2ce53
RS
2633
2634 format_ptr = GET_RTX_FORMAT (code);
2635 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2636 {
2637 switch (*format_ptr++)
2638 {
2639 case 'e':
2640 reset_used_flags (XEXP (x, i));
2641 break;
2642
2643 case 'E':
2644 for (j = 0; j < XVECLEN (x, i); j++)
2645 reset_used_flags (XVECEXP (x, i, j));
2646 break;
2647 }
2648 }
2649}
2650\f
2651/* Copy X if necessary so that it won't be altered by changes in OTHER.
2652 Return X or the rtx for the pseudo reg the value of X was copied into.
2653 OTHER must be valid as a SET_DEST. */
2654
2655rtx
2656make_safe_from (x, other)
2657 rtx x, other;
2658{
2659 while (1)
2660 switch (GET_CODE (other))
2661 {
2662 case SUBREG:
2663 other = SUBREG_REG (other);
2664 break;
2665 case STRICT_LOW_PART:
2666 case SIGN_EXTEND:
2667 case ZERO_EXTEND:
2668 other = XEXP (other, 0);
2669 break;
2670 default:
2671 goto done;
2672 }
2673 done:
2674 if ((GET_CODE (other) == MEM
2675 && ! CONSTANT_P (x)
2676 && GET_CODE (x) != REG
2677 && GET_CODE (x) != SUBREG)
2678 || (GET_CODE (other) == REG
2679 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2680 || reg_mentioned_p (other, x))))
2681 {
2682 rtx temp = gen_reg_rtx (GET_MODE (x));
2683 emit_move_insn (temp, x);
2684 return temp;
2685 }
2686 return x;
2687}
2688\f
2689/* Emission of insns (adding them to the doubly-linked list). */
2690
2691/* Return the first insn of the current sequence or current function. */
2692
2693rtx
2694get_insns ()
2695{
2696 return first_insn;
2697}
2698
3dec4024
JH
2699/* Specify a new insn as the first in the chain. */
2700
2701void
2702set_first_insn (insn)
2703 rtx insn;
2704{
2705 if (PREV_INSN (insn) != 0)
2706 abort ();
2707 first_insn = insn;
2708}
2709
23b2ce53
RS
2710/* Return the last insn emitted in current sequence or current function. */
2711
2712rtx
2713get_last_insn ()
2714{
2715 return last_insn;
2716}
2717
2718/* Specify a new insn as the last in the chain. */
2719
2720void
2721set_last_insn (insn)
2722 rtx insn;
2723{
2724 if (NEXT_INSN (insn) != 0)
2725 abort ();
2726 last_insn = insn;
2727}
2728
2729/* Return the last insn emitted, even if it is in a sequence now pushed. */
2730
2731rtx
2732get_last_insn_anywhere ()
2733{
2734 struct sequence_stack *stack;
2735 if (last_insn)
2736 return last_insn;
49ad7cfa 2737 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2738 if (stack->last != 0)
2739 return stack->last;
2740 return 0;
2741}
2742
2a496e8b
JDA
2743/* Return the first nonnote insn emitted in current sequence or current
2744 function. This routine looks inside SEQUENCEs. */
2745
2746rtx
2747get_first_nonnote_insn ()
2748{
2749 rtx insn = first_insn;
2750
2751 while (insn)
2752 {
2753 insn = next_insn (insn);
2754 if (insn == 0 || GET_CODE (insn) != NOTE)
2755 break;
2756 }
2757
2758 return insn;
2759}
2760
2761/* Return the last nonnote insn emitted in current sequence or current
2762 function. This routine looks inside SEQUENCEs. */
2763
2764rtx
2765get_last_nonnote_insn ()
2766{
2767 rtx insn = last_insn;
2768
2769 while (insn)
2770 {
2771 insn = previous_insn (insn);
2772 if (insn == 0 || GET_CODE (insn) != NOTE)
2773 break;
2774 }
2775
2776 return insn;
2777}
2778
23b2ce53
RS
2779/* Return a number larger than any instruction's uid in this function. */
2780
2781int
2782get_max_uid ()
2783{
2784 return cur_insn_uid;
2785}
aeeeda03 2786
673b5311
MM
2787/* Renumber instructions so that no instruction UIDs are wasted. */
2788
aeeeda03 2789void
673b5311
MM
2790renumber_insns (stream)
2791 FILE *stream;
aeeeda03
MM
2792{
2793 rtx insn;
aeeeda03 2794
673b5311
MM
2795 /* If we're not supposed to renumber instructions, don't. */
2796 if (!flag_renumber_insns)
2797 return;
2798
aeeeda03
MM
2799 /* If there aren't that many instructions, then it's not really
2800 worth renumbering them. */
673b5311 2801 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
aeeeda03
MM
2802 return;
2803
2804 cur_insn_uid = 1;
2805
2806 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
673b5311
MM
2807 {
2808 if (stream)
750c9258 2809 fprintf (stream, "Renumbering insn %d to %d\n",
673b5311
MM
2810 INSN_UID (insn), cur_insn_uid);
2811 INSN_UID (insn) = cur_insn_uid++;
2812 }
aeeeda03 2813}
23b2ce53
RS
2814\f
2815/* Return the next insn. If it is a SEQUENCE, return the first insn
2816 of the sequence. */
2817
2818rtx
2819next_insn (insn)
2820 rtx insn;
2821{
2822 if (insn)
2823 {
2824 insn = NEXT_INSN (insn);
2825 if (insn && GET_CODE (insn) == INSN
2826 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2827 insn = XVECEXP (PATTERN (insn), 0, 0);
2828 }
2829
2830 return insn;
2831}
2832
2833/* Return the previous insn. If it is a SEQUENCE, return the last insn
2834 of the sequence. */
2835
2836rtx
2837previous_insn (insn)
2838 rtx insn;
2839{
2840 if (insn)
2841 {
2842 insn = PREV_INSN (insn);
2843 if (insn && GET_CODE (insn) == INSN
2844 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2845 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2846 }
2847
2848 return insn;
2849}
2850
2851/* Return the next insn after INSN that is not a NOTE. This routine does not
2852 look inside SEQUENCEs. */
2853
2854rtx
2855next_nonnote_insn (insn)
2856 rtx insn;
2857{
2858 while (insn)
2859 {
2860 insn = NEXT_INSN (insn);
2861 if (insn == 0 || GET_CODE (insn) != NOTE)
2862 break;
2863 }
2864
2865 return insn;
2866}
2867
2868/* Return the previous insn before INSN that is not a NOTE. This routine does
2869 not look inside SEQUENCEs. */
2870
2871rtx
2872prev_nonnote_insn (insn)
2873 rtx insn;
2874{
2875 while (insn)
2876 {
2877 insn = PREV_INSN (insn);
2878 if (insn == 0 || GET_CODE (insn) != NOTE)
2879 break;
2880 }
2881
2882 return insn;
2883}
2884
2885/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2886 or 0, if there is none. This routine does not look inside
0f41302f 2887 SEQUENCEs. */
23b2ce53
RS
2888
2889rtx
2890next_real_insn (insn)
2891 rtx insn;
2892{
2893 while (insn)
2894 {
2895 insn = NEXT_INSN (insn);
2896 if (insn == 0 || GET_CODE (insn) == INSN
2897 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2898 break;
2899 }
2900
2901 return insn;
2902}
2903
2904/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2905 or 0, if there is none. This routine does not look inside
2906 SEQUENCEs. */
2907
2908rtx
2909prev_real_insn (insn)
2910 rtx insn;
2911{
2912 while (insn)
2913 {
2914 insn = PREV_INSN (insn);
2915 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2916 || GET_CODE (insn) == JUMP_INSN)
2917 break;
2918 }
2919
2920 return insn;
2921}
2922
2923/* Find the next insn after INSN that really does something. This routine
2924 does not look inside SEQUENCEs. Until reload has completed, this is the
2925 same as next_real_insn. */
2926
69732dcb
RH
2927int
2928active_insn_p (insn)
2929 rtx insn;
2930{
2931 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2932 || (GET_CODE (insn) == INSN
2933 && (! reload_completed
2934 || (GET_CODE (PATTERN (insn)) != USE
2935 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2936}
2937
23b2ce53
RS
2938rtx
2939next_active_insn (insn)
2940 rtx insn;
2941{
2942 while (insn)
2943 {
2944 insn = NEXT_INSN (insn);
69732dcb 2945 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
2946 break;
2947 }
2948
2949 return insn;
2950}
2951
2952/* Find the last insn before INSN that really does something. This routine
2953 does not look inside SEQUENCEs. Until reload has completed, this is the
2954 same as prev_real_insn. */
2955
2956rtx
2957prev_active_insn (insn)
2958 rtx insn;
2959{
2960 while (insn)
2961 {
2962 insn = PREV_INSN (insn);
69732dcb 2963 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
2964 break;
2965 }
2966
2967 return insn;
2968}
2969
2970/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2971
2972rtx
2973next_label (insn)
2974 rtx insn;
2975{
2976 while (insn)
2977 {
2978 insn = NEXT_INSN (insn);
2979 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2980 break;
2981 }
2982
2983 return insn;
2984}
2985
2986/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2987
2988rtx
2989prev_label (insn)
2990 rtx insn;
2991{
2992 while (insn)
2993 {
2994 insn = PREV_INSN (insn);
2995 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2996 break;
2997 }
2998
2999 return insn;
3000}
3001\f
3002#ifdef HAVE_cc0
c572e5ba
JVA
3003/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3004 and REG_CC_USER notes so we can find it. */
3005
3006void
3007link_cc0_insns (insn)
3008 rtx insn;
3009{
3010 rtx user = next_nonnote_insn (insn);
3011
3012 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3013 user = XVECEXP (PATTERN (user), 0, 0);
3014
c5c76735
JL
3015 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3016 REG_NOTES (user));
3b80f6ca 3017 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
c572e5ba
JVA
3018}
3019
23b2ce53
RS
3020/* Return the next insn that uses CC0 after INSN, which is assumed to
3021 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3022 applied to the result of this function should yield INSN).
3023
3024 Normally, this is simply the next insn. However, if a REG_CC_USER note
3025 is present, it contains the insn that uses CC0.
3026
3027 Return 0 if we can't find the insn. */
3028
3029rtx
3030next_cc0_user (insn)
3031 rtx insn;
3032{
906c4e36 3033 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3034
3035 if (note)
3036 return XEXP (note, 0);
3037
3038 insn = next_nonnote_insn (insn);
3039 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3040 insn = XVECEXP (PATTERN (insn), 0, 0);
3041
2c3c49de 3042 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3043 return insn;
3044
3045 return 0;
3046}
3047
3048/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3049 note, it is the previous insn. */
3050
3051rtx
3052prev_cc0_setter (insn)
3053 rtx insn;
3054{
906c4e36 3055 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3056
3057 if (note)
3058 return XEXP (note, 0);
3059
3060 insn = prev_nonnote_insn (insn);
3061 if (! sets_cc0_p (PATTERN (insn)))
3062 abort ();
3063
3064 return insn;
3065}
3066#endif
e5bef2e4
HB
3067
3068/* Increment the label uses for all labels present in rtx. */
3069
3070static void
68252e27
KH
3071mark_label_nuses (x)
3072 rtx x;
e5bef2e4 3073{
b3694847
SS
3074 enum rtx_code code;
3075 int i, j;
3076 const char *fmt;
e5bef2e4
HB
3077
3078 code = GET_CODE (x);
3079 if (code == LABEL_REF)
3080 LABEL_NUSES (XEXP (x, 0))++;
3081
3082 fmt = GET_RTX_FORMAT (code);
3083 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3084 {
3085 if (fmt[i] == 'e')
0fb7aeda 3086 mark_label_nuses (XEXP (x, i));
e5bef2e4 3087 else if (fmt[i] == 'E')
0fb7aeda 3088 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3089 mark_label_nuses (XVECEXP (x, i, j));
3090 }
3091}
3092
23b2ce53
RS
3093\f
3094/* Try splitting insns that can be split for better scheduling.
3095 PAT is the pattern which might split.
3096 TRIAL is the insn providing PAT.
11147ebe 3097 LAST is non-zero if we should return the last insn of the sequence produced.
23b2ce53
RS
3098
3099 If this routine succeeds in splitting, it returns the first or last
11147ebe 3100 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3101 returns TRIAL. If the insn to be returned can be split, it will be. */
3102
3103rtx
11147ebe 3104try_split (pat, trial, last)
23b2ce53 3105 rtx pat, trial;
11147ebe 3106 int last;
23b2ce53
RS
3107{
3108 rtx before = PREV_INSN (trial);
3109 rtx after = NEXT_INSN (trial);
23b2ce53
RS
3110 int has_barrier = 0;
3111 rtx tem;
6b24c259
JH
3112 rtx note, seq;
3113 int probability;
3114
3115 if (any_condjump_p (trial)
3116 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3117 split_branch_probability = INTVAL (XEXP (note, 0));
3118 probability = split_branch_probability;
3119
3120 seq = split_insns (pat, trial);
3121
3122 split_branch_probability = -1;
23b2ce53
RS
3123
3124 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3125 We may need to handle this specially. */
3126 if (after && GET_CODE (after) == BARRIER)
3127 {
3128 has_barrier = 1;
3129 after = NEXT_INSN (after);
3130 }
3131
3132 if (seq)
3133 {
2f937369
DM
3134 /* Sometimes there will be only one insn in that list, this case will
3135 normally arise only when we want it in turn to be split (SFmode on
3136 the 29k is an example). */
3137 if (NEXT_INSN (seq) != NULL_RTX)
23b2ce53 3138 {
2f937369
DM
3139 rtx insn_last, insn;
3140 int njumps = 0;
750c9258
AJ
3141
3142 /* Avoid infinite loop if any insn of the result matches
4b5e8abe 3143 the original pattern. */
2f937369
DM
3144 insn_last = seq;
3145 while (1)
3146 {
6f9703af
DM
3147 if (INSN_P (insn_last)
3148 && rtx_equal_p (PATTERN (insn_last), pat))
2f937369
DM
3149 return trial;
3150 if (NEXT_INSN (insn_last) == NULL_RTX)
3151 break;
3152 insn_last = NEXT_INSN (insn_last);
3153 }
4b5e8abe 3154
90a74703 3155 /* Mark labels. */
2f937369
DM
3156 insn = insn_last;
3157 while (insn != NULL_RTX)
3158 {
3159 if (GET_CODE (insn) == JUMP_INSN)
3160 {
3161 mark_jump_label (PATTERN (insn), insn, 0);
3162 njumps++;
3163 if (probability != -1
3164 && any_condjump_p (insn)
3165 && !find_reg_note (insn, REG_BR_PROB, 0))
3166 {
3167 /* We can preserve the REG_BR_PROB notes only if exactly
3168 one jump is created, otherwise the machine description
3169 is responsible for this step using
3170 split_branch_probability variable. */
3171 if (njumps != 1)
3172 abort ();
3173 REG_NOTES (insn)
3174 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3175 GEN_INT (probability),
3176 REG_NOTES (insn));
3177 }
3178 }
3179
3180 insn = PREV_INSN (insn);
3181 }
216183ce 3182
2d01e445
AO
3183 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3184 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3185 if (GET_CODE (trial) == CALL_INSN)
2f937369
DM
3186 {
3187 insn = insn_last;
3188 while (insn != NULL_RTX)
3189 {
3190 if (GET_CODE (insn) == CALL_INSN)
3191 CALL_INSN_FUNCTION_USAGE (insn)
3192 = CALL_INSN_FUNCTION_USAGE (trial);
3193
3194 insn = PREV_INSN (insn);
3195 }
3196 }
2d01e445 3197
216183ce 3198 /* Copy notes, particularly those related to the CFG. */
68252e27 3199 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
216183ce
RH
3200 {
3201 switch (REG_NOTE_KIND (note))
3202 {
3203 case REG_EH_REGION:
2f937369
DM
3204 insn = insn_last;
3205 while (insn != NULL_RTX)
216183ce 3206 {
216183ce
RH
3207 if (GET_CODE (insn) == CALL_INSN
3208 || (flag_non_call_exceptions
3209 && may_trap_p (PATTERN (insn))))
3210 REG_NOTES (insn)
3211 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3212 XEXP (note, 0),
3213 REG_NOTES (insn));
2f937369 3214 insn = PREV_INSN (insn);
216183ce
RH
3215 }
3216 break;
3217
3218 case REG_NORETURN:
3219 case REG_SETJMP:
3220 case REG_ALWAYS_RETURN:
2f937369
DM
3221 insn = insn_last;
3222 while (insn != NULL_RTX)
216183ce 3223 {
216183ce
RH
3224 if (GET_CODE (insn) == CALL_INSN)
3225 REG_NOTES (insn)
3226 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3227 XEXP (note, 0),
3228 REG_NOTES (insn));
2f937369 3229 insn = PREV_INSN (insn);
216183ce
RH
3230 }
3231 break;
3232
3233 case REG_NON_LOCAL_GOTO:
2f937369
DM
3234 insn = insn_last;
3235 while (insn != NULL_RTX)
216183ce 3236 {
216183ce
RH
3237 if (GET_CODE (insn) == JUMP_INSN)
3238 REG_NOTES (insn)
3239 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3240 XEXP (note, 0),
3241 REG_NOTES (insn));
2f937369 3242 insn = PREV_INSN (insn);
216183ce
RH
3243 }
3244 break;
3245
3246 default:
3247 break;
3248 }
3249 }
d6e95df8 3250
e5bef2e4
HB
3251 /* If there are LABELS inside the split insns increment the
3252 usage count so we don't delete the label. */
3253 if (GET_CODE (trial) == INSN)
2f937369 3254 {
c6a3fcf0 3255 insn = insn_last;
2f937369
DM
3256 while (insn != NULL_RTX)
3257 {
3258 if (GET_CODE (insn) == INSN)
3259 mark_label_nuses (PATTERN (insn));
3260
3261 insn = PREV_INSN (insn);
3262 }
3263 }
e5bef2e4 3264
0d682900 3265 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
23b2ce53 3266
83a49407 3267 delete_insn (trial);
23b2ce53
RS
3268 if (has_barrier)
3269 emit_barrier_after (tem);
11147ebe
RK
3270
3271 /* Recursively call try_split for each new insn created; by the
3272 time control returns here that insn will be fully split, so
3273 set LAST and continue from the insn after the one returned.
f4a3cd05 3274 We can't use next_active_insn here since AFTER may be a note.
23886015 3275 Ignore deleted insns, which can be occur if not optimizing. */
2c3c49de
RB
3276 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3277 if (! INSN_DELETED_P (tem) && INSN_P (tem))
f4a3cd05 3278 tem = try_split (PATTERN (tem), tem, 1);
23b2ce53
RS
3279 }
3280 /* Avoid infinite loop if the result matches the original pattern. */
2f937369 3281 else if (rtx_equal_p (PATTERN (seq), pat))
23b2ce53
RS
3282 return trial;
3283 else
3284 {
2f937369 3285 PATTERN (trial) = PATTERN (seq);
23b2ce53 3286 INSN_CODE (trial) = -1;
2f937369 3287 try_split (PATTERN (trial), trial, last);
23b2ce53
RS
3288 }
3289
11147ebe
RK
3290 /* Return either the first or the last insn, depending on which was
3291 requested. */
750c9258 3292 return last
6b24c259
JH
3293 ? (after ? PREV_INSN (after) : last_insn)
3294 : NEXT_INSN (before);
23b2ce53
RS
3295 }
3296
3297 return trial;
3298}
3299\f
3300/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3301 Store PATTERN in the pattern slots. */
23b2ce53
RS
3302
3303rtx
4b1f5e8c 3304make_insn_raw (pattern)
23b2ce53 3305 rtx pattern;
23b2ce53 3306{
b3694847 3307 rtx insn;
23b2ce53 3308
1f8f4a0b 3309 insn = rtx_alloc (INSN);
23b2ce53 3310
43127294 3311 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3312 PATTERN (insn) = pattern;
3313 INSN_CODE (insn) = -1;
1632afca
RS
3314 LOG_LINKS (insn) = NULL;
3315 REG_NOTES (insn) = NULL;
ba4f7968
JH
3316 INSN_SCOPE (insn) = NULL;
3317 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3318
47984720
NC
3319#ifdef ENABLE_RTL_CHECKING
3320 if (insn
2c3c49de 3321 && INSN_P (insn)
47984720
NC
3322 && (returnjump_p (insn)
3323 || (GET_CODE (insn) == SET
3324 && SET_DEST (insn) == pc_rtx)))
3325 {
3326 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3327 debug_rtx (insn);
3328 }
3329#endif
750c9258 3330
23b2ce53
RS
3331 return insn;
3332}
3333
2f937369 3334/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53
RS
3335
3336static rtx
4b1f5e8c 3337make_jump_insn_raw (pattern)
23b2ce53 3338 rtx pattern;
23b2ce53 3339{
b3694847 3340 rtx insn;
23b2ce53 3341
4b1f5e8c 3342 insn = rtx_alloc (JUMP_INSN);
1632afca 3343 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3344
3345 PATTERN (insn) = pattern;
3346 INSN_CODE (insn) = -1;
1632afca
RS
3347 LOG_LINKS (insn) = NULL;
3348 REG_NOTES (insn) = NULL;
3349 JUMP_LABEL (insn) = NULL;
ba4f7968
JH
3350 INSN_SCOPE (insn) = NULL;
3351 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3352
3353 return insn;
3354}
aff507f4 3355
2f937369 3356/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3357
3358static rtx
3359make_call_insn_raw (pattern)
3360 rtx pattern;
3361{
b3694847 3362 rtx insn;
aff507f4
RK
3363
3364 insn = rtx_alloc (CALL_INSN);
3365 INSN_UID (insn) = cur_insn_uid++;
3366
3367 PATTERN (insn) = pattern;
3368 INSN_CODE (insn) = -1;
3369 LOG_LINKS (insn) = NULL;
3370 REG_NOTES (insn) = NULL;
3371 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
ba4f7968
JH
3372 INSN_SCOPE (insn) = NULL;
3373 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3374
3375 return insn;
3376}
23b2ce53
RS
3377\f
3378/* Add INSN to the end of the doubly-linked list.
3379 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3380
3381void
3382add_insn (insn)
b3694847 3383 rtx insn;
23b2ce53
RS
3384{
3385 PREV_INSN (insn) = last_insn;
3386 NEXT_INSN (insn) = 0;
3387
3388 if (NULL != last_insn)
3389 NEXT_INSN (last_insn) = insn;
3390
3391 if (NULL == first_insn)
3392 first_insn = insn;
3393
3394 last_insn = insn;
3395}
3396
a0ae8e8d
RK
3397/* Add INSN into the doubly-linked list after insn AFTER. This and
3398 the next should be the only functions called to insert an insn once
ba213285 3399 delay slots have been filled since only they know how to update a
a0ae8e8d 3400 SEQUENCE. */
23b2ce53
RS
3401
3402void
3403add_insn_after (insn, after)
3404 rtx insn, after;
3405{
3406 rtx next = NEXT_INSN (after);
3c030e88 3407 basic_block bb;
23b2ce53 3408
6782074d 3409 if (optimize && INSN_DELETED_P (after))
ba213285
RK
3410 abort ();
3411
23b2ce53
RS
3412 NEXT_INSN (insn) = next;
3413 PREV_INSN (insn) = after;
3414
3415 if (next)
3416 {
3417 PREV_INSN (next) = insn;
3418 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3419 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3420 }
3421 else if (last_insn == after)
3422 last_insn = insn;
3423 else
3424 {
49ad7cfa 3425 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3426 /* Scan all pending sequences too. */
3427 for (; stack; stack = stack->next)
3428 if (after == stack->last)
fef0509b
RK
3429 {
3430 stack->last = insn;
3431 break;
3432 }
a0ae8e8d
RK
3433
3434 if (stack == 0)
3435 abort ();
23b2ce53
RS
3436 }
3437
ba4f7968
JH
3438 if (GET_CODE (after) != BARRIER
3439 && GET_CODE (insn) != BARRIER
3c030e88
JH
3440 && (bb = BLOCK_FOR_INSN (after)))
3441 {
3442 set_block_for_insn (insn, bb);
38c1593d 3443 if (INSN_P (insn))
68252e27 3444 bb->flags |= BB_DIRTY;
3c030e88 3445 /* Should not happen as first in the BB is always
a1f300c0 3446 either NOTE or LABEL. */
3c030e88
JH
3447 if (bb->end == after
3448 /* Avoid clobbering of structure when creating new BB. */
3449 && GET_CODE (insn) != BARRIER
3450 && (GET_CODE (insn) != NOTE
3451 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3452 bb->end = insn;
3453 }
3454
23b2ce53
RS
3455 NEXT_INSN (after) = insn;
3456 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3457 {
3458 rtx sequence = PATTERN (after);
3459 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3460 }
3461}
3462
a0ae8e8d
RK
3463/* Add INSN into the doubly-linked list before insn BEFORE. This and
3464 the previous should be the only functions called to insert an insn once
ba213285 3465 delay slots have been filled since only they know how to update a
a0ae8e8d
RK
3466 SEQUENCE. */
3467
3468void
3469add_insn_before (insn, before)
3470 rtx insn, before;
3471{
3472 rtx prev = PREV_INSN (before);
3c030e88 3473 basic_block bb;
a0ae8e8d 3474
6782074d 3475 if (optimize && INSN_DELETED_P (before))
ba213285
RK
3476 abort ();
3477
a0ae8e8d
RK
3478 PREV_INSN (insn) = prev;
3479 NEXT_INSN (insn) = before;
3480
3481 if (prev)
3482 {
3483 NEXT_INSN (prev) = insn;
3484 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3485 {
3486 rtx sequence = PATTERN (prev);
3487 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3488 }
3489 }
3490 else if (first_insn == before)
3491 first_insn = insn;
3492 else
3493 {
49ad7cfa 3494 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3495 /* Scan all pending sequences too. */
3496 for (; stack; stack = stack->next)
3497 if (before == stack->first)
fef0509b
RK
3498 {
3499 stack->first = insn;
3500 break;
3501 }
a0ae8e8d
RK
3502
3503 if (stack == 0)
3504 abort ();
3505 }
3506
ba4f7968
JH
3507 if (GET_CODE (before) != BARRIER
3508 && GET_CODE (insn) != BARRIER
3c030e88
JH
3509 && (bb = BLOCK_FOR_INSN (before)))
3510 {
3511 set_block_for_insn (insn, bb);
38c1593d 3512 if (INSN_P (insn))
68252e27 3513 bb->flags |= BB_DIRTY;
3c030e88 3514 /* Should not happen as first in the BB is always
a1f300c0 3515 either NOTE or LABEl. */
3c030e88
JH
3516 if (bb->head == insn
3517 /* Avoid clobbering of structure when creating new BB. */
3518 && GET_CODE (insn) != BARRIER
3519 && (GET_CODE (insn) != NOTE
3520 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3521 abort ();
3522 }
3523
a0ae8e8d
RK
3524 PREV_INSN (before) = insn;
3525 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3526 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3527}
3528
89e99eea
DB
3529/* Remove an insn from its doubly-linked list. This function knows how
3530 to handle sequences. */
3531void
3532remove_insn (insn)
3533 rtx insn;
3534{
3535 rtx next = NEXT_INSN (insn);
3536 rtx prev = PREV_INSN (insn);
53c17031
JH
3537 basic_block bb;
3538
89e99eea
DB
3539 if (prev)
3540 {
3541 NEXT_INSN (prev) = next;
3542 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3543 {
3544 rtx sequence = PATTERN (prev);
3545 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3546 }
3547 }
3548 else if (first_insn == insn)
3549 first_insn = next;
3550 else
3551 {
49ad7cfa 3552 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3553 /* Scan all pending sequences too. */
3554 for (; stack; stack = stack->next)
3555 if (insn == stack->first)
3556 {
3557 stack->first = next;
3558 break;
3559 }
3560
3561 if (stack == 0)
3562 abort ();
3563 }
3564
3565 if (next)
3566 {
3567 PREV_INSN (next) = prev;
3568 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3569 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3570 }
3571 else if (last_insn == insn)
3572 last_insn = prev;
3573 else
3574 {
49ad7cfa 3575 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3576 /* Scan all pending sequences too. */
3577 for (; stack; stack = stack->next)
3578 if (insn == stack->last)
3579 {
3580 stack->last = prev;
3581 break;
3582 }
3583
3584 if (stack == 0)
3585 abort ();
3586 }
ba4f7968 3587 if (GET_CODE (insn) != BARRIER
53c17031
JH
3588 && (bb = BLOCK_FOR_INSN (insn)))
3589 {
38c1593d 3590 if (INSN_P (insn))
68252e27 3591 bb->flags |= BB_DIRTY;
53c17031
JH
3592 if (bb->head == insn)
3593 {
3bf1e984
RK
3594 /* Never ever delete the basic block note without deleting whole
3595 basic block. */
53c17031
JH
3596 if (GET_CODE (insn) == NOTE)
3597 abort ();
3598 bb->head = next;
3599 }
3600 if (bb->end == insn)
3601 bb->end = prev;
3602 }
89e99eea
DB
3603}
3604
23b2ce53
RS
3605/* Delete all insns made since FROM.
3606 FROM becomes the new last instruction. */
3607
3608void
3609delete_insns_since (from)
3610 rtx from;
3611{
3612 if (from == 0)
3613 first_insn = 0;
3614 else
3615 NEXT_INSN (from) = 0;
3616 last_insn = from;
3617}
3618
5dab5552
MS
3619/* This function is deprecated, please use sequences instead.
3620
3621 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3622 The insns to be moved are those between FROM and TO.
3623 They are moved to a new position after the insn AFTER.
3624 AFTER must not be FROM or TO or any insn in between.
3625
3626 This function does not know about SEQUENCEs and hence should not be
3627 called after delay-slot filling has been done. */
3628
3629void
3c030e88 3630reorder_insns_nobb (from, to, after)
23b2ce53
RS
3631 rtx from, to, after;
3632{
3633 /* Splice this bunch out of where it is now. */
3634 if (PREV_INSN (from))
3635 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3636 if (NEXT_INSN (to))
3637 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3638 if (last_insn == to)
3639 last_insn = PREV_INSN (from);
3640 if (first_insn == from)
3641 first_insn = NEXT_INSN (to);
3642
3643 /* Make the new neighbors point to it and it to them. */
3644 if (NEXT_INSN (after))
3645 PREV_INSN (NEXT_INSN (after)) = to;
3646
3647 NEXT_INSN (to) = NEXT_INSN (after);
3648 PREV_INSN (from) = after;
3649 NEXT_INSN (after) = from;
3650 if (after == last_insn)
3651 last_insn = to;
3652}
3653
3c030e88
JH
3654/* Same as function above, but take care to update BB boundaries. */
3655void
3656reorder_insns (from, to, after)
3657 rtx from, to, after;
3658{
3659 rtx prev = PREV_INSN (from);
3660 basic_block bb, bb2;
3661
3662 reorder_insns_nobb (from, to, after);
3663
ba4f7968 3664 if (GET_CODE (after) != BARRIER
3c030e88
JH
3665 && (bb = BLOCK_FOR_INSN (after)))
3666 {
3667 rtx x;
38c1593d 3668 bb->flags |= BB_DIRTY;
68252e27 3669
ba4f7968 3670 if (GET_CODE (from) != BARRIER
3c030e88
JH
3671 && (bb2 = BLOCK_FOR_INSN (from)))
3672 {
3673 if (bb2->end == to)
3674 bb2->end = prev;
38c1593d 3675 bb2->flags |= BB_DIRTY;
3c030e88
JH
3676 }
3677
3678 if (bb->end == after)
3679 bb->end = to;
3680
3681 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3682 set_block_for_insn (x, bb);
3683 }
3684}
3685
23b2ce53
RS
3686/* Return the line note insn preceding INSN. */
3687
3688static rtx
3689find_line_note (insn)
3690 rtx insn;
3691{
3692 if (no_line_numbers)
3693 return 0;
3694
3695 for (; insn; insn = PREV_INSN (insn))
3696 if (GET_CODE (insn) == NOTE
0fb7aeda 3697 && NOTE_LINE_NUMBER (insn) >= 0)
23b2ce53
RS
3698 break;
3699
3700 return insn;
3701}
3702
3703/* Like reorder_insns, but inserts line notes to preserve the line numbers
3704 of the moved insns when debugging. This may insert a note between AFTER
3705 and FROM, and another one after TO. */
3706
3707void
3708reorder_insns_with_line_notes (from, to, after)
3709 rtx from, to, after;
3710{
3711 rtx from_line = find_line_note (from);
3712 rtx after_line = find_line_note (after);
3713
3714 reorder_insns (from, to, after);
3715
3716 if (from_line == after_line)
3717 return;
3718
3719 if (from_line)
3720 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3721 NOTE_LINE_NUMBER (from_line),
3722 after);
3723 if (after_line)
3724 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3725 NOTE_LINE_NUMBER (after_line),
3726 to);
3727}
aeeeda03 3728
64b59a80 3729/* Remove unnecessary notes from the instruction stream. */
aeeeda03
MM
3730
3731void
64b59a80 3732remove_unnecessary_notes ()
aeeeda03 3733{
542d73ae
RH
3734 rtx block_stack = NULL_RTX;
3735 rtx eh_stack = NULL_RTX;
aeeeda03
MM
3736 rtx insn;
3737 rtx next;
542d73ae 3738 rtx tmp;
aeeeda03 3739
116eebd6
MM
3740 /* We must not remove the first instruction in the function because
3741 the compiler depends on the first instruction being a note. */
aeeeda03
MM
3742 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3743 {
3744 /* Remember what's next. */
3745 next = NEXT_INSN (insn);
3746
3747 /* We're only interested in notes. */
3748 if (GET_CODE (insn) != NOTE)
3749 continue;
3750
542d73ae 3751 switch (NOTE_LINE_NUMBER (insn))
18c038b9 3752 {
542d73ae 3753 case NOTE_INSN_DELETED:
e803a64b 3754 case NOTE_INSN_LOOP_END_TOP_COND:
542d73ae
RH
3755 remove_insn (insn);
3756 break;
3757
3758 case NOTE_INSN_EH_REGION_BEG:
3759 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3760 break;
3761
3762 case NOTE_INSN_EH_REGION_END:
3763 /* Too many end notes. */
3764 if (eh_stack == NULL_RTX)
3765 abort ();
3766 /* Mismatched nesting. */
3767 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3768 abort ();
3769 tmp = eh_stack;
3770 eh_stack = XEXP (eh_stack, 1);
3771 free_INSN_LIST_node (tmp);
3772 break;
3773
3774 case NOTE_INSN_BLOCK_BEG:
3775 /* By now, all notes indicating lexical blocks should have
3776 NOTE_BLOCK filled in. */
3777 if (NOTE_BLOCK (insn) == NULL_TREE)
3778 abort ();
3779 block_stack = alloc_INSN_LIST (insn, block_stack);
3780 break;
3781
3782 case NOTE_INSN_BLOCK_END:
3783 /* Too many end notes. */
3784 if (block_stack == NULL_RTX)
3785 abort ();
3786 /* Mismatched nesting. */
3787 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3788 abort ();
3789 tmp = block_stack;
3790 block_stack = XEXP (block_stack, 1);
3791 free_INSN_LIST_node (tmp);
3792
18c038b9
MM
3793 /* Scan back to see if there are any non-note instructions
3794 between INSN and the beginning of this block. If not,
3795 then there is no PC range in the generated code that will
3796 actually be in this block, so there's no point in
3797 remembering the existence of the block. */
68252e27 3798 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
18c038b9
MM
3799 {
3800 /* This block contains a real instruction. Note that we
3801 don't include labels; if the only thing in the block
3802 is a label, then there are still no PC values that
3803 lie within the block. */
542d73ae 3804 if (INSN_P (tmp))
18c038b9
MM
3805 break;
3806
3807 /* We're only interested in NOTEs. */
542d73ae 3808 if (GET_CODE (tmp) != NOTE)
18c038b9
MM
3809 continue;
3810
542d73ae 3811 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
18c038b9 3812 {
e1772ac0
NB
3813 /* We just verified that this BLOCK matches us with
3814 the block_stack check above. Never delete the
3815 BLOCK for the outermost scope of the function; we
3816 can refer to names from that scope even if the
3817 block notes are messed up. */
3818 if (! is_body_block (NOTE_BLOCK (insn))
3819 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
deb5e280 3820 {
542d73ae 3821 remove_insn (tmp);
deb5e280
JM
3822 remove_insn (insn);
3823 }
18c038b9
MM
3824 break;
3825 }
542d73ae 3826 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
18c038b9
MM
3827 /* There's a nested block. We need to leave the
3828 current block in place since otherwise the debugger
3829 wouldn't be able to show symbols from our block in
3830 the nested block. */
3831 break;
3832 }
3833 }
aeeeda03 3834 }
542d73ae
RH
3835
3836 /* Too many begin notes. */
3837 if (block_stack || eh_stack)
3838 abort ();
aeeeda03
MM
3839}
3840
23b2ce53 3841\f
2f937369
DM
3842/* Emit insn(s) of given code and pattern
3843 at a specified place within the doubly-linked list.
23b2ce53 3844
2f937369
DM
3845 All of the emit_foo global entry points accept an object
3846 X which is either an insn list or a PATTERN of a single
3847 instruction.
23b2ce53 3848
2f937369
DM
3849 There are thus a few canonical ways to generate code and
3850 emit it at a specific place in the instruction stream. For
3851 example, consider the instruction named SPOT and the fact that
3852 we would like to emit some instructions before SPOT. We might
3853 do it like this:
23b2ce53 3854
2f937369
DM
3855 start_sequence ();
3856 ... emit the new instructions ...
3857 insns_head = get_insns ();
3858 end_sequence ();
23b2ce53 3859
2f937369 3860 emit_insn_before (insns_head, SPOT);
23b2ce53 3861
2f937369
DM
3862 It used to be common to generate SEQUENCE rtl instead, but that
3863 is a relic of the past which no longer occurs. The reason is that
3864 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3865 generated would almost certainly die right after it was created. */
23b2ce53 3866
2f937369 3867/* Make X be output before the instruction BEFORE. */
23b2ce53
RS
3868
3869rtx
2f937369
DM
3870emit_insn_before (x, before)
3871 rtx x, before;
23b2ce53 3872{
2f937369 3873 rtx last = before;
b3694847 3874 rtx insn;
23b2ce53 3875
2f937369
DM
3876#ifdef ENABLE_RTL_CHECKING
3877 if (before == NULL_RTX)
3878 abort ();
3879#endif
3880
3881 if (x == NULL_RTX)
3882 return last;
3883
3884 switch (GET_CODE (x))
23b2ce53 3885 {
2f937369
DM
3886 case INSN:
3887 case JUMP_INSN:
3888 case CALL_INSN:
3889 case CODE_LABEL:
3890 case BARRIER:
3891 case NOTE:
3892 insn = x;
3893 while (insn)
3894 {
3895 rtx next = NEXT_INSN (insn);
3896 add_insn_before (insn, before);
3897 last = insn;
3898 insn = next;
3899 }
3900 break;
3901
3902#ifdef ENABLE_RTL_CHECKING
3903 case SEQUENCE:
3904 abort ();
3905 break;
3906#endif
3907
3908 default:
3909 last = make_insn_raw (x);
3910 add_insn_before (last, before);
3911 break;
23b2ce53
RS
3912 }
3913
2f937369 3914 return last;
23b2ce53
RS
3915}
3916
2f937369 3917/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
3918 and output it before the instruction BEFORE. */
3919
3920rtx
2f937369
DM
3921emit_jump_insn_before (x, before)
3922 rtx x, before;
23b2ce53 3923{
2f937369 3924 rtx insn, last;
aff507f4 3925
2f937369
DM
3926#ifdef ENABLE_RTL_CHECKING
3927 if (before == NULL_RTX)
3928 abort ();
3929#endif
3930
3931 switch (GET_CODE (x))
aff507f4 3932 {
2f937369
DM
3933 case INSN:
3934 case JUMP_INSN:
3935 case CALL_INSN:
3936 case CODE_LABEL:
3937 case BARRIER:
3938 case NOTE:
3939 insn = x;
3940 while (insn)
3941 {
3942 rtx next = NEXT_INSN (insn);
3943 add_insn_before (insn, before);
3944 last = insn;
3945 insn = next;
3946 }
3947 break;
3948
3949#ifdef ENABLE_RTL_CHECKING
3950 case SEQUENCE:
3951 abort ();
3952 break;
3953#endif
3954
3955 default:
3956 last = make_jump_insn_raw (x);
3957 add_insn_before (last, before);
3958 break;
aff507f4
RK
3959 }
3960
2f937369 3961 return last;
23b2ce53
RS
3962}
3963
2f937369 3964/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
3965 and output it before the instruction BEFORE. */
3966
3967rtx
2f937369
DM
3968emit_call_insn_before (x, before)
3969 rtx x, before;
969d70ca 3970{
2f937369 3971 rtx last, insn;
969d70ca 3972
2f937369
DM
3973#ifdef ENABLE_RTL_CHECKING
3974 if (before == NULL_RTX)
3975 abort ();
3976#endif
3977
3978 switch (GET_CODE (x))
969d70ca 3979 {
2f937369
DM
3980 case INSN:
3981 case JUMP_INSN:
3982 case CALL_INSN:
3983 case CODE_LABEL:
3984 case BARRIER:
3985 case NOTE:
3986 insn = x;
3987 while (insn)
3988 {
3989 rtx next = NEXT_INSN (insn);
3990 add_insn_before (insn, before);
3991 last = insn;
3992 insn = next;
3993 }
3994 break;
3995
3996#ifdef ENABLE_RTL_CHECKING
3997 case SEQUENCE:
3998 abort ();
3999 break;
4000#endif
4001
4002 default:
4003 last = make_call_insn_raw (x);
4004 add_insn_before (last, before);
4005 break;
969d70ca
JH
4006 }
4007
2f937369 4008 return last;
969d70ca
JH
4009}
4010
23b2ce53 4011/* Make an insn of code BARRIER
e881bb1b 4012 and output it before the insn BEFORE. */
23b2ce53
RS
4013
4014rtx
4015emit_barrier_before (before)
b3694847 4016 rtx before;
23b2ce53 4017{
b3694847 4018 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4019
4020 INSN_UID (insn) = cur_insn_uid++;
4021
a0ae8e8d 4022 add_insn_before (insn, before);
23b2ce53
RS
4023 return insn;
4024}
4025
e881bb1b
RH
4026/* Emit the label LABEL before the insn BEFORE. */
4027
4028rtx
4029emit_label_before (label, before)
4030 rtx label, before;
4031{
4032 /* This can be called twice for the same label as a result of the
4033 confusion that follows a syntax error! So make it harmless. */
4034 if (INSN_UID (label) == 0)
4035 {
4036 INSN_UID (label) = cur_insn_uid++;
4037 add_insn_before (label, before);
4038 }
4039
4040 return label;
4041}
4042
23b2ce53
RS
4043/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4044
4045rtx
4046emit_note_before (subtype, before)
4047 int subtype;
4048 rtx before;
4049{
b3694847 4050 rtx note = rtx_alloc (NOTE);
23b2ce53
RS
4051 INSN_UID (note) = cur_insn_uid++;
4052 NOTE_SOURCE_FILE (note) = 0;
4053 NOTE_LINE_NUMBER (note) = subtype;
ba4f7968 4054 BLOCK_FOR_INSN (note) = NULL;
23b2ce53 4055
a0ae8e8d 4056 add_insn_before (note, before);
23b2ce53
RS
4057 return note;
4058}
4059\f
2f937369
DM
4060/* Helper for emit_insn_after, handles lists of instructions
4061 efficiently. */
23b2ce53 4062
2f937369
DM
4063static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4064
4065static rtx
4066emit_insn_after_1 (first, after)
4067 rtx first, after;
23b2ce53 4068{
2f937369
DM
4069 rtx last;
4070 rtx after_after;
4071 basic_block bb;
23b2ce53 4072
2f937369
DM
4073 if (GET_CODE (after) != BARRIER
4074 && (bb = BLOCK_FOR_INSN (after)))
23b2ce53 4075 {
2f937369
DM
4076 bb->flags |= BB_DIRTY;
4077 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4078 if (GET_CODE (last) != BARRIER)
4079 set_block_for_insn (last, bb);
4080 if (GET_CODE (last) != BARRIER)
4081 set_block_for_insn (last, bb);
4082 if (bb->end == after)
4083 bb->end = last;
23b2ce53
RS
4084 }
4085 else
2f937369
DM
4086 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4087 continue;
4088
4089 after_after = NEXT_INSN (after);
4090
4091 NEXT_INSN (after) = first;
4092 PREV_INSN (first) = after;
4093 NEXT_INSN (last) = after_after;
4094 if (after_after)
4095 PREV_INSN (after_after) = last;
4096
4097 if (after == last_insn)
4098 last_insn = last;
4099 return last;
4100}
4101
4102/* Make X be output after the insn AFTER. */
4103
4104rtx
4105emit_insn_after (x, after)
4106 rtx x, after;
4107{
4108 rtx last = after;
4109
4110#ifdef ENABLE_RTL_CHECKING
4111 if (after == NULL_RTX)
4112 abort ();
4113#endif
4114
4115 if (x == NULL_RTX)
4116 return last;
4117
4118 switch (GET_CODE (x))
23b2ce53 4119 {
2f937369
DM
4120 case INSN:
4121 case JUMP_INSN:
4122 case CALL_INSN:
4123 case CODE_LABEL:
4124 case BARRIER:
4125 case NOTE:
4126 last = emit_insn_after_1 (x, after);
4127 break;
4128
4129#ifdef ENABLE_RTL_CHECKING
4130 case SEQUENCE:
4131 abort ();
4132 break;
4133#endif
4134
4135 default:
4136 last = make_insn_raw (x);
4137 add_insn_after (last, after);
4138 break;
23b2ce53
RS
4139 }
4140
2f937369 4141 return last;
23b2ce53
RS
4142}
4143
255680cf
RK
4144/* Similar to emit_insn_after, except that line notes are to be inserted so
4145 as to act as if this insn were at FROM. */
4146
4147void
2f937369
DM
4148emit_insn_after_with_line_notes (x, after, from)
4149 rtx x, after, from;
255680cf
RK
4150{
4151 rtx from_line = find_line_note (from);
4152 rtx after_line = find_line_note (after);
2f937369 4153 rtx insn = emit_insn_after (x, after);
255680cf
RK
4154
4155 if (from_line)
4156 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4157 NOTE_LINE_NUMBER (from_line),
4158 after);
4159
4160 if (after_line)
4161 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4162 NOTE_LINE_NUMBER (after_line),
4163 insn);
4164}
4165
2f937369 4166/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4167 and output it after the insn AFTER. */
4168
4169rtx
2f937369
DM
4170emit_jump_insn_after (x, after)
4171 rtx x, after;
23b2ce53 4172{
2f937369 4173 rtx last;
23b2ce53 4174
2f937369
DM
4175#ifdef ENABLE_RTL_CHECKING
4176 if (after == NULL_RTX)
4177 abort ();
4178#endif
4179
4180 switch (GET_CODE (x))
23b2ce53 4181 {
2f937369
DM
4182 case INSN:
4183 case JUMP_INSN:
4184 case CALL_INSN:
4185 case CODE_LABEL:
4186 case BARRIER:
4187 case NOTE:
4188 last = emit_insn_after_1 (x, after);
4189 break;
4190
4191#ifdef ENABLE_RTL_CHECKING
4192 case SEQUENCE:
4193 abort ();
4194 break;
4195#endif
4196
4197 default:
4198 last = make_jump_insn_raw (x);
4199 add_insn_after (last, after);
4200 break;
23b2ce53
RS
4201 }
4202
2f937369
DM
4203 return last;
4204}
4205
4206/* Make an instruction with body X and code CALL_INSN
4207 and output it after the instruction AFTER. */
4208
4209rtx
4210emit_call_insn_after (x, after)
4211 rtx x, after;
4212{
4213 rtx last;
4214
4215#ifdef ENABLE_RTL_CHECKING
4216 if (after == NULL_RTX)
4217 abort ();
4218#endif
4219
4220 switch (GET_CODE (x))
4221 {
4222 case INSN:
4223 case JUMP_INSN:
4224 case CALL_INSN:
4225 case CODE_LABEL:
4226 case BARRIER:
4227 case NOTE:
4228 last = emit_insn_after_1 (x, after);
4229 break;
4230
4231#ifdef ENABLE_RTL_CHECKING
4232 case SEQUENCE:
4233 abort ();
4234 break;
4235#endif
4236
4237 default:
4238 last = make_call_insn_raw (x);
4239 add_insn_after (last, after);
4240 break;
4241 }
4242
4243 return last;
23b2ce53
RS
4244}
4245
4246/* Make an insn of code BARRIER
4247 and output it after the insn AFTER. */
4248
4249rtx
4250emit_barrier_after (after)
b3694847 4251 rtx after;
23b2ce53 4252{
b3694847 4253 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4254
4255 INSN_UID (insn) = cur_insn_uid++;
4256
4257 add_insn_after (insn, after);
4258 return insn;
4259}
4260
4261/* Emit the label LABEL after the insn AFTER. */
4262
4263rtx
4264emit_label_after (label, after)
4265 rtx label, after;
4266{
4267 /* This can be called twice for the same label
4268 as a result of the confusion that follows a syntax error!
4269 So make it harmless. */
4270 if (INSN_UID (label) == 0)
4271 {
4272 INSN_UID (label) = cur_insn_uid++;
4273 add_insn_after (label, after);
4274 }
4275
4276 return label;
4277}
4278
4279/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4280
4281rtx
4282emit_note_after (subtype, after)
4283 int subtype;
4284 rtx after;
4285{
b3694847 4286 rtx note = rtx_alloc (NOTE);
23b2ce53
RS
4287 INSN_UID (note) = cur_insn_uid++;
4288 NOTE_SOURCE_FILE (note) = 0;
4289 NOTE_LINE_NUMBER (note) = subtype;
ba4f7968 4290 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4291 add_insn_after (note, after);
4292 return note;
4293}
4294
4295/* Emit a line note for FILE and LINE after the insn AFTER. */
4296
4297rtx
4298emit_line_note_after (file, line, after)
3cce094d 4299 const char *file;
23b2ce53
RS
4300 int line;
4301 rtx after;
4302{
b3694847 4303 rtx note;
23b2ce53
RS
4304
4305 if (no_line_numbers && line > 0)
4306 {
4307 cur_insn_uid++;
4308 return 0;
4309 }
4310
68252e27 4311 note = rtx_alloc (NOTE);
23b2ce53
RS
4312 INSN_UID (note) = cur_insn_uid++;
4313 NOTE_SOURCE_FILE (note) = file;
4314 NOTE_LINE_NUMBER (note) = line;
ba4f7968 4315 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4316 add_insn_after (note, after);
4317 return note;
4318}
4319\f
0d682900
JH
4320/* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4321rtx
4322emit_insn_after_scope (pattern, after, scope)
4323 rtx pattern, after;
4324 tree scope;
4325{
4326 rtx last = emit_insn_after (pattern, after);
0d682900 4327
2f937369
DM
4328 after = NEXT_INSN (after);
4329 while (1)
4330 {
d11cea13
DM
4331 if (active_insn_p (after))
4332 INSN_SCOPE (after) = scope;
2f937369
DM
4333 if (after == last)
4334 break;
4335 after = NEXT_INSN (after);
4336 }
0d682900
JH
4337 return last;
4338}
4339
4340/* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4341rtx
4342emit_jump_insn_after_scope (pattern, after, scope)
4343 rtx pattern, after;
4344 tree scope;
4345{
4346 rtx last = emit_jump_insn_after (pattern, after);
2f937369
DM
4347
4348 after = NEXT_INSN (after);
4349 while (1)
4350 {
d11cea13
DM
4351 if (active_insn_p (after))
4352 INSN_SCOPE (after) = scope;
2f937369
DM
4353 if (after == last)
4354 break;
4355 after = NEXT_INSN (after);
4356 }
0d682900
JH
4357 return last;
4358}
4359
4360/* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4361rtx
4362emit_call_insn_after_scope (pattern, after, scope)
4363 rtx pattern, after;
4364 tree scope;
4365{
4366 rtx last = emit_call_insn_after (pattern, after);
2f937369
DM
4367
4368 after = NEXT_INSN (after);
4369 while (1)
4370 {
d11cea13
DM
4371 if (active_insn_p (after))
4372 INSN_SCOPE (after) = scope;
2f937369
DM
4373 if (after == last)
4374 break;
4375 after = NEXT_INSN (after);
4376 }
0d682900
JH
4377 return last;
4378}
4379
4380/* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4381rtx
4382emit_insn_before_scope (pattern, before, scope)
4383 rtx pattern, before;
4384 tree scope;
4385{
4386 rtx first = PREV_INSN (before);
4387 rtx last = emit_insn_before (pattern, before);
4388
2f937369
DM
4389 first = NEXT_INSN (first);
4390 while (1)
4391 {
d11cea13
DM
4392 if (active_insn_p (first))
4393 INSN_SCOPE (first) = scope;
2f937369
DM
4394 if (first == last)
4395 break;
4396 first = NEXT_INSN (first);
4397 }
0d682900
JH
4398 return last;
4399}
4400\f
2f937369
DM
4401/* Take X and emit it at the end of the doubly-linked
4402 INSN list.
23b2ce53
RS
4403
4404 Returns the last insn emitted. */
4405
4406rtx
2f937369
DM
4407emit_insn (x)
4408 rtx x;
23b2ce53 4409{
2f937369
DM
4410 rtx last = last_insn;
4411 rtx insn;
23b2ce53 4412
2f937369
DM
4413 if (x == NULL_RTX)
4414 return last;
23b2ce53 4415
2f937369
DM
4416 switch (GET_CODE (x))
4417 {
4418 case INSN:
4419 case JUMP_INSN:
4420 case CALL_INSN:
4421 case CODE_LABEL:
4422 case BARRIER:
4423 case NOTE:
4424 insn = x;
4425 while (insn)
23b2ce53 4426 {
2f937369 4427 rtx next = NEXT_INSN (insn);
23b2ce53 4428 add_insn (insn);
2f937369
DM
4429 last = insn;
4430 insn = next;
23b2ce53 4431 }
2f937369 4432 break;
23b2ce53 4433
2f937369
DM
4434#ifdef ENABLE_RTL_CHECKING
4435 case SEQUENCE:
4436 abort ();
4437 break;
4438#endif
23b2ce53 4439
2f937369
DM
4440 default:
4441 last = make_insn_raw (x);
4442 add_insn (last);
4443 break;
23b2ce53
RS
4444 }
4445
4446 return last;
4447}
4448
2f937369
DM
4449/* Make an insn of code JUMP_INSN with pattern X
4450 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4451
4452rtx
2f937369
DM
4453emit_jump_insn (x)
4454 rtx x;
23b2ce53 4455{
2f937369 4456 rtx last, insn;
23b2ce53 4457
2f937369 4458 switch (GET_CODE (x))
23b2ce53 4459 {
2f937369
DM
4460 case INSN:
4461 case JUMP_INSN:
4462 case CALL_INSN:
4463 case CODE_LABEL:
4464 case BARRIER:
4465 case NOTE:
4466 insn = x;
4467 while (insn)
4468 {
4469 rtx next = NEXT_INSN (insn);
4470 add_insn (insn);
4471 last = insn;
4472 insn = next;
4473 }
4474 break;
e0a5c5eb 4475
2f937369
DM
4476#ifdef ENABLE_RTL_CHECKING
4477 case SEQUENCE:
4478 abort ();
4479 break;
4480#endif
e0a5c5eb 4481
2f937369
DM
4482 default:
4483 last = make_jump_insn_raw (x);
4484 add_insn (last);
4485 break;
3c030e88 4486 }
e0a5c5eb
RS
4487
4488 return last;
4489}
4490
2f937369 4491/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4492 and add it to the end of the doubly-linked list. */
4493
4494rtx
2f937369
DM
4495emit_call_insn (x)
4496 rtx x;
23b2ce53 4497{
2f937369
DM
4498 rtx insn;
4499
4500 switch (GET_CODE (x))
23b2ce53 4501 {
2f937369
DM
4502 case INSN:
4503 case JUMP_INSN:
4504 case CALL_INSN:
4505 case CODE_LABEL:
4506 case BARRIER:
4507 case NOTE:
4508 insn = emit_insn (x);
4509 break;
23b2ce53 4510
2f937369
DM
4511#ifdef ENABLE_RTL_CHECKING
4512 case SEQUENCE:
4513 abort ();
4514 break;
4515#endif
23b2ce53 4516
2f937369
DM
4517 default:
4518 insn = make_call_insn_raw (x);
23b2ce53 4519 add_insn (insn);
2f937369 4520 break;
23b2ce53 4521 }
2f937369
DM
4522
4523 return insn;
23b2ce53
RS
4524}
4525
4526/* Add the label LABEL to the end of the doubly-linked list. */
4527
4528rtx
4529emit_label (label)
4530 rtx label;
4531{
4532 /* This can be called twice for the same label
4533 as a result of the confusion that follows a syntax error!
4534 So make it harmless. */
4535 if (INSN_UID (label) == 0)
4536 {
4537 INSN_UID (label) = cur_insn_uid++;
4538 add_insn (label);
4539 }
4540 return label;
4541}
4542
4543/* Make an insn of code BARRIER
4544 and add it to the end of the doubly-linked list. */
4545
4546rtx
4547emit_barrier ()
4548{
b3694847 4549 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4550 INSN_UID (barrier) = cur_insn_uid++;
4551 add_insn (barrier);
4552 return barrier;
4553}
4554
4555/* Make an insn of code NOTE
4556 with data-fields specified by FILE and LINE
4557 and add it to the end of the doubly-linked list,
4558 but only if line-numbers are desired for debugging info. */
4559
4560rtx
4561emit_line_note (file, line)
3cce094d 4562 const char *file;
23b2ce53
RS
4563 int line;
4564{
3f1d071b 4565 set_file_and_line_for_stmt (file, line);
23b2ce53
RS
4566
4567#if 0
4568 if (no_line_numbers)
4569 return 0;
4570#endif
4571
4572 return emit_note (file, line);
4573}
4574
4575/* Make an insn of code NOTE
4576 with data-fields specified by FILE and LINE
4577 and add it to the end of the doubly-linked list.
4578 If it is a line-number NOTE, omit it if it matches the previous one. */
4579
4580rtx
4581emit_note (file, line)
3cce094d 4582 const char *file;
23b2ce53
RS
4583 int line;
4584{
b3694847 4585 rtx note;
23b2ce53
RS
4586
4587 if (line > 0)
4588 {
4589 if (file && last_filename && !strcmp (file, last_filename)
4590 && line == last_linenum)
4591 return 0;
4592 last_filename = file;
4593 last_linenum = line;
4594 }
4595
4596 if (no_line_numbers && line > 0)
4597 {
4598 cur_insn_uid++;
4599 return 0;
4600 }
4601
4602 note = rtx_alloc (NOTE);
4603 INSN_UID (note) = cur_insn_uid++;
4604 NOTE_SOURCE_FILE (note) = file;
4605 NOTE_LINE_NUMBER (note) = line;
ba4f7968 4606 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4607 add_insn (note);
4608 return note;
4609}
4610
fe77a034 4611/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
23b2ce53
RS
4612
4613rtx
4614emit_line_note_force (file, line)
3cce094d 4615 const char *file;
23b2ce53
RS
4616 int line;
4617{
4618 last_linenum = -1;
4619 return emit_line_note (file, line);
4620}
4621
4622/* Cause next statement to emit a line note even if the line number
4623 has not changed. This is used at the beginning of a function. */
4624
4625void
4626force_next_line_note ()
4627{
4628 last_linenum = -1;
4629}
87b47c85
AM
4630
4631/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 4632 note of this type already exists, remove it first. */
87b47c85 4633
3d238248 4634rtx
87b47c85
AM
4635set_unique_reg_note (insn, kind, datum)
4636 rtx insn;
4637 enum reg_note kind;
4638 rtx datum;
4639{
4640 rtx note = find_reg_note (insn, kind, NULL_RTX);
4641
52488da1
JW
4642 switch (kind)
4643 {
4644 case REG_EQUAL:
4645 case REG_EQUIV:
4646 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4647 has multiple sets (some callers assume single_set
4648 means the insn only has one set, when in fact it
4649 means the insn only has one * useful * set). */
4650 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4651 {
4652 if (note)
4653 abort ();
4654 return NULL_RTX;
4655 }
4656
4657 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4658 It serves no useful purpose and breaks eliminate_regs. */
4659 if (GET_CODE (datum) == ASM_OPERANDS)
4660 return NULL_RTX;
4661 break;
4662
4663 default:
4664 break;
4665 }
3d238248 4666
750c9258 4667 if (note)
3d238248
JJ
4668 {
4669 XEXP (note, 0) = datum;
4670 return note;
4671 }
87b47c85
AM
4672
4673 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3d238248 4674 return REG_NOTES (insn);
87b47c85 4675}
23b2ce53
RS
4676\f
4677/* Return an indication of which type of insn should have X as a body.
4678 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4679
4680enum rtx_code
4681classify_insn (x)
4682 rtx x;
4683{
4684 if (GET_CODE (x) == CODE_LABEL)
4685 return CODE_LABEL;
4686 if (GET_CODE (x) == CALL)
4687 return CALL_INSN;
4688 if (GET_CODE (x) == RETURN)
4689 return JUMP_INSN;
4690 if (GET_CODE (x) == SET)
4691 {
4692 if (SET_DEST (x) == pc_rtx)
4693 return JUMP_INSN;
4694 else if (GET_CODE (SET_SRC (x)) == CALL)
4695 return CALL_INSN;
4696 else
4697 return INSN;
4698 }
4699 if (GET_CODE (x) == PARALLEL)
4700 {
b3694847 4701 int j;
23b2ce53
RS
4702 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4703 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4704 return CALL_INSN;
4705 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4706 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4707 return JUMP_INSN;
4708 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4709 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4710 return CALL_INSN;
4711 }
4712 return INSN;
4713}
4714
4715/* Emit the rtl pattern X as an appropriate kind of insn.
4716 If X is a label, it is simply added into the insn chain. */
4717
4718rtx
4719emit (x)
4720 rtx x;
4721{
4722 enum rtx_code code = classify_insn (x);
4723
4724 if (code == CODE_LABEL)
4725 return emit_label (x);
4726 else if (code == INSN)
4727 return emit_insn (x);
4728 else if (code == JUMP_INSN)
4729 {
b3694847 4730 rtx insn = emit_jump_insn (x);
7f1c097d 4731 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
23b2ce53
RS
4732 return emit_barrier ();
4733 return insn;
4734 }
4735 else if (code == CALL_INSN)
4736 return emit_call_insn (x);
4737 else
4738 abort ();
4739}
4740\f
e2500fed
GK
4741/* Space for free sequence stack entries. */
4742static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4743
5c7a310f
MM
4744/* Begin emitting insns to a sequence which can be packaged in an
4745 RTL_EXPR. If this sequence will contain something that might cause
4746 the compiler to pop arguments to function calls (because those
4747 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4748 details), use do_pending_stack_adjust before calling this function.
4749 That will ensure that the deferred pops are not accidentally
4eb00163 4750 emitted in the middle of this sequence. */
23b2ce53
RS
4751
4752void
4753start_sequence ()
4754{
4755 struct sequence_stack *tem;
4756
e2500fed
GK
4757 if (free_sequence_stack != NULL)
4758 {
4759 tem = free_sequence_stack;
4760 free_sequence_stack = tem->next;
4761 }
4762 else
4763 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
23b2ce53 4764
49ad7cfa 4765 tem->next = seq_stack;
23b2ce53
RS
4766 tem->first = first_insn;
4767 tem->last = last_insn;
591ccf92 4768 tem->sequence_rtl_expr = seq_rtl_expr;
23b2ce53 4769
49ad7cfa 4770 seq_stack = tem;
23b2ce53
RS
4771
4772 first_insn = 0;
4773 last_insn = 0;
4774}
4775
591ccf92
MM
4776/* Similarly, but indicate that this sequence will be placed in T, an
4777 RTL_EXPR. See the documentation for start_sequence for more
4778 information about how to use this function. */
4779
4780void
4781start_sequence_for_rtl_expr (t)
4782 tree t;
4783{
4784 start_sequence ();
4785
4786 seq_rtl_expr = t;
4787}
4788
5c7a310f
MM
4789/* Set up the insn chain starting with FIRST as the current sequence,
4790 saving the previously current one. See the documentation for
4791 start_sequence for more information about how to use this function. */
23b2ce53
RS
4792
4793void
4794push_to_sequence (first)
4795 rtx first;
4796{
4797 rtx last;
4798
4799 start_sequence ();
4800
4801 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4802
4803 first_insn = first;
4804 last_insn = last;
4805}
4806
c14f7160
ML
4807/* Set up the insn chain from a chain stort in FIRST to LAST. */
4808
4809void
4810push_to_full_sequence (first, last)
4811 rtx first, last;
4812{
4813 start_sequence ();
4814 first_insn = first;
4815 last_insn = last;
4816 /* We really should have the end of the insn chain here. */
4817 if (last && NEXT_INSN (last))
4818 abort ();
4819}
4820
f15ae3a1
TW
4821/* Set up the outer-level insn chain
4822 as the current sequence, saving the previously current one. */
4823
4824void
4825push_topmost_sequence ()
4826{
aefdd5ab 4827 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
4828
4829 start_sequence ();
4830
49ad7cfa 4831 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4832 top = stack;
4833
4834 first_insn = top->first;
4835 last_insn = top->last;
591ccf92 4836 seq_rtl_expr = top->sequence_rtl_expr;
f15ae3a1
TW
4837}
4838
4839/* After emitting to the outer-level insn chain, update the outer-level
4840 insn chain, and restore the previous saved state. */
4841
4842void
4843pop_topmost_sequence ()
4844{
aefdd5ab 4845 struct sequence_stack *stack, *top = NULL;
f15ae3a1 4846
49ad7cfa 4847 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4848 top = stack;
4849
4850 top->first = first_insn;
4851 top->last = last_insn;
591ccf92 4852 /* ??? Why don't we save seq_rtl_expr here? */
f15ae3a1
TW
4853
4854 end_sequence ();
4855}
4856
23b2ce53
RS
4857/* After emitting to a sequence, restore previous saved state.
4858
5c7a310f 4859 To get the contents of the sequence just made, you must call
2f937369 4860 `get_insns' *before* calling here.
5c7a310f
MM
4861
4862 If the compiler might have deferred popping arguments while
4863 generating this sequence, and this sequence will not be immediately
4864 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 4865 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
4866 pops are inserted into this sequence, and not into some random
4867 location in the instruction stream. See INHIBIT_DEFER_POP for more
4868 information about deferred popping of arguments. */
23b2ce53
RS
4869
4870void
4871end_sequence ()
4872{
49ad7cfa 4873 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
4874
4875 first_insn = tem->first;
4876 last_insn = tem->last;
591ccf92 4877 seq_rtl_expr = tem->sequence_rtl_expr;
49ad7cfa 4878 seq_stack = tem->next;
23b2ce53 4879
e2500fed
GK
4880 memset (tem, 0, sizeof (*tem));
4881 tem->next = free_sequence_stack;
4882 free_sequence_stack = tem;
23b2ce53
RS
4883}
4884
c14f7160
ML
4885/* This works like end_sequence, but records the old sequence in FIRST
4886 and LAST. */
4887
4888void
4889end_full_sequence (first, last)
4890 rtx *first, *last;
4891{
4892 *first = first_insn;
4893 *last = last_insn;
68252e27 4894 end_sequence ();
c14f7160
ML
4895}
4896
23b2ce53
RS
4897/* Return 1 if currently emitting into a sequence. */
4898
4899int
4900in_sequence_p ()
4901{
49ad7cfa 4902 return seq_stack != 0;
23b2ce53 4903}
23b2ce53 4904\f
59ec66dc
MM
4905/* Put the various virtual registers into REGNO_REG_RTX. */
4906
4907void
49ad7cfa
BS
4908init_virtual_regs (es)
4909 struct emit_status *es;
59ec66dc 4910{
49ad7cfa
BS
4911 rtx *ptr = es->x_regno_reg_rtx;
4912 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4913 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4914 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4915 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4916 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4917}
4918
da43a810
BS
4919\f
4920/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4921static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4922static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4923static int copy_insn_n_scratches;
4924
4925/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4926 copied an ASM_OPERANDS.
4927 In that case, it is the original input-operand vector. */
4928static rtvec orig_asm_operands_vector;
4929
4930/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4931 copied an ASM_OPERANDS.
4932 In that case, it is the copied input-operand vector. */
4933static rtvec copy_asm_operands_vector;
4934
4935/* Likewise for the constraints vector. */
4936static rtvec orig_asm_constraints_vector;
4937static rtvec copy_asm_constraints_vector;
4938
4939/* Recursively create a new copy of an rtx for copy_insn.
4940 This function differs from copy_rtx in that it handles SCRATCHes and
4941 ASM_OPERANDs properly.
4942 Normally, this function is not used directly; use copy_insn as front end.
4943 However, you could first copy an insn pattern with copy_insn and then use
4944 this function afterwards to properly copy any REG_NOTEs containing
4945 SCRATCHes. */
4946
4947rtx
4948copy_insn_1 (orig)
b3694847 4949 rtx orig;
da43a810 4950{
b3694847
SS
4951 rtx copy;
4952 int i, j;
4953 RTX_CODE code;
4954 const char *format_ptr;
da43a810
BS
4955
4956 code = GET_CODE (orig);
4957
4958 switch (code)
4959 {
4960 case REG:
4961 case QUEUED:
4962 case CONST_INT:
4963 case CONST_DOUBLE:
69ef87e2 4964 case CONST_VECTOR:
da43a810
BS
4965 case SYMBOL_REF:
4966 case CODE_LABEL:
4967 case PC:
4968 case CC0:
4969 case ADDRESSOF:
4970 return orig;
4971
4972 case SCRATCH:
4973 for (i = 0; i < copy_insn_n_scratches; i++)
4974 if (copy_insn_scratch_in[i] == orig)
4975 return copy_insn_scratch_out[i];
4976 break;
4977
4978 case CONST:
4979 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4980 a LABEL_REF, it isn't sharable. */
4981 if (GET_CODE (XEXP (orig, 0)) == PLUS
4982 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4983 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4984 return orig;
4985 break;
750c9258 4986
da43a810
BS
4987 /* A MEM with a constant address is not sharable. The problem is that
4988 the constant address may need to be reloaded. If the mem is shared,
4989 then reloading one copy of this mem will cause all copies to appear
4990 to have been reloaded. */
4991
4992 default:
4993 break;
4994 }
4995
4996 copy = rtx_alloc (code);
4997
4998 /* Copy the various flags, and other information. We assume that
4999 all fields need copying, and then clear the fields that should
5000 not be copied. That is the sensible default behavior, and forces
5001 us to explicitly document why we are *not* copying a flag. */
5002 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5003
5004 /* We do not copy the USED flag, which is used as a mark bit during
5005 walks over the RTL. */
2adc7f12 5006 RTX_FLAG (copy, used) = 0;
da43a810
BS
5007
5008 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5009 if (GET_RTX_CLASS (code) == 'i')
5010 {
2adc7f12
JJ
5011 RTX_FLAG (copy, jump) = 0;
5012 RTX_FLAG (copy, call) = 0;
5013 RTX_FLAG (copy, frame_related) = 0;
da43a810 5014 }
750c9258 5015
da43a810
BS
5016 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5017
5018 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5019 {
e63db8f6 5020 copy->fld[i] = orig->fld[i];
da43a810
BS
5021 switch (*format_ptr++)
5022 {
5023 case 'e':
da43a810
BS
5024 if (XEXP (orig, i) != NULL)
5025 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5026 break;
5027
da43a810
BS
5028 case 'E':
5029 case 'V':
da43a810
BS
5030 if (XVEC (orig, i) == orig_asm_constraints_vector)
5031 XVEC (copy, i) = copy_asm_constraints_vector;
5032 else if (XVEC (orig, i) == orig_asm_operands_vector)
5033 XVEC (copy, i) = copy_asm_operands_vector;
5034 else if (XVEC (orig, i) != NULL)
5035 {
5036 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5037 for (j = 0; j < XVECLEN (copy, i); j++)
5038 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5039 }
5040 break;
5041
da43a810 5042 case 't':
da43a810 5043 case 'w':
da43a810 5044 case 'i':
da43a810
BS
5045 case 's':
5046 case 'S':
e63db8f6
BS
5047 case 'u':
5048 case '0':
5049 /* These are left unchanged. */
da43a810
BS
5050 break;
5051
5052 default:
5053 abort ();
5054 }
5055 }
5056
5057 if (code == SCRATCH)
5058 {
5059 i = copy_insn_n_scratches++;
5060 if (i >= MAX_RECOG_OPERANDS)
5061 abort ();
5062 copy_insn_scratch_in[i] = orig;
5063 copy_insn_scratch_out[i] = copy;
5064 }
5065 else if (code == ASM_OPERANDS)
5066 {
6462bb43
AO
5067 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5068 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5069 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5070 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5071 }
5072
5073 return copy;
5074}
5075
5076/* Create a new copy of an rtx.
5077 This function differs from copy_rtx in that it handles SCRATCHes and
5078 ASM_OPERANDs properly.
5079 INSN doesn't really have to be a full INSN; it could be just the
5080 pattern. */
5081rtx
5082copy_insn (insn)
5083 rtx insn;
5084{
5085 copy_insn_n_scratches = 0;
5086 orig_asm_operands_vector = 0;
5087 orig_asm_constraints_vector = 0;
5088 copy_asm_operands_vector = 0;
5089 copy_asm_constraints_vector = 0;
5090 return copy_insn_1 (insn);
5091}
59ec66dc 5092
23b2ce53
RS
5093/* Initialize data structures and variables in this file
5094 before generating rtl for each function. */
5095
5096void
5097init_emit ()
5098{
01d939e8 5099 struct function *f = cfun;
23b2ce53 5100
e2500fed 5101 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
23b2ce53
RS
5102 first_insn = NULL;
5103 last_insn = NULL;
591ccf92 5104 seq_rtl_expr = NULL;
23b2ce53
RS
5105 cur_insn_uid = 1;
5106 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5107 last_linenum = 0;
5108 last_filename = 0;
5109 first_label_num = label_num;
5110 last_label_num = 0;
49ad7cfa 5111 seq_stack = NULL;
23b2ce53 5112
23b2ce53
RS
5113 /* Init the tables that describe all the pseudo regs. */
5114
3502dc9c 5115 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5116
49ad7cfa 5117 f->emit->regno_pointer_align
e2500fed
GK
5118 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5119 * sizeof (unsigned char));
86fe05e0 5120
750c9258 5121 regno_reg_rtx
e2500fed
GK
5122 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5123 * sizeof (rtx));
0d4903b8
RK
5124
5125 f->emit->regno_decl
e2500fed
GK
5126 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5127 * sizeof (tree));
23b2ce53 5128
e50126e8 5129 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876
JL
5130 memcpy (regno_reg_rtx,
5131 static_regno_reg_rtx,
5132 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5133
23b2ce53 5134 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
49ad7cfa 5135 init_virtual_regs (f->emit);
740ab4a2
RK
5136
5137 /* Indicate that the virtual registers and stack locations are
5138 all pointers. */
3502dc9c
JDA
5139 REG_POINTER (stack_pointer_rtx) = 1;
5140 REG_POINTER (frame_pointer_rtx) = 1;
5141 REG_POINTER (hard_frame_pointer_rtx) = 1;
5142 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5143
3502dc9c
JDA
5144 REG_POINTER (virtual_incoming_args_rtx) = 1;
5145 REG_POINTER (virtual_stack_vars_rtx) = 1;
5146 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5147 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5148 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5149
86fe05e0 5150#ifdef STACK_BOUNDARY
bdb429a5
RK
5151 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5152 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5153 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5154 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5155
5156 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5157 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5158 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5159 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5160 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5161#endif
5162
5e82e7bd
JVA
5163#ifdef INIT_EXPANDERS
5164 INIT_EXPANDERS;
5165#endif
23b2ce53
RS
5166}
5167
ff88fe10 5168/* Generate the constant 0. */
69ef87e2
AH
5169
5170static rtx
ff88fe10 5171gen_const_vector_0 (mode)
69ef87e2
AH
5172 enum machine_mode mode;
5173{
5174 rtx tem;
5175 rtvec v;
5176 int units, i;
5177 enum machine_mode inner;
5178
5179 units = GET_MODE_NUNITS (mode);
5180 inner = GET_MODE_INNER (mode);
5181
5182 v = rtvec_alloc (units);
5183
5184 /* We need to call this function after we to set CONST0_RTX first. */
5185 if (!CONST0_RTX (inner))
5186 abort ();
5187
5188 for (i = 0; i < units; ++i)
5189 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5190
5191 tem = gen_rtx_CONST_VECTOR (mode, v);
5192 return tem;
5193}
5194
23b2ce53
RS
5195/* Create some permanent unique rtl objects shared between all functions.
5196 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5197
5198void
5199init_emit_once (line_numbers)
5200 int line_numbers;
5201{
5202 int i;
5203 enum machine_mode mode;
9ec36da5 5204 enum machine_mode double_mode;
23b2ce53 5205
5692c7bc
ZW
5206 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5207 tables. */
750c9258 5208 const_int_htab = htab_create (37, const_int_htab_hash,
67673f5c 5209 const_int_htab_eq, NULL);
173b24b9 5210
5692c7bc
ZW
5211 const_double_htab = htab_create (37, const_double_htab_hash,
5212 const_double_htab_eq, NULL);
5692c7bc 5213
173b24b9
RK
5214 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
5215 mem_attrs_htab_eq, NULL);
67673f5c 5216
23b2ce53
RS
5217 no_line_numbers = ! line_numbers;
5218
43fa6302
AS
5219 /* Compute the word and byte modes. */
5220
5221 byte_mode = VOIDmode;
5222 word_mode = VOIDmode;
5223 double_mode = VOIDmode;
5224
5225 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5226 mode = GET_MODE_WIDER_MODE (mode))
5227 {
5228 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5229 && byte_mode == VOIDmode)
5230 byte_mode = mode;
5231
5232 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5233 && word_mode == VOIDmode)
5234 word_mode = mode;
5235 }
5236
43fa6302
AS
5237 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5238 mode = GET_MODE_WIDER_MODE (mode))
5239 {
5240 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5241 && double_mode == VOIDmode)
5242 double_mode = mode;
5243 }
5244
5245 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5246
5da077de
AS
5247 /* Assign register numbers to the globally defined register rtx.
5248 This must be done at runtime because the register number field
5249 is in a union and some compilers can't initialize unions. */
5250
5251 pc_rtx = gen_rtx (PC, VOIDmode);
5252 cc0_rtx = gen_rtx (CC0, VOIDmode);
08394eef
BS
5253 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5254 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5da077de 5255 if (hard_frame_pointer_rtx == 0)
750c9258 5256 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
08394eef 5257 HARD_FRAME_POINTER_REGNUM);
5da077de 5258 if (arg_pointer_rtx == 0)
08394eef 5259 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
750c9258 5260 virtual_incoming_args_rtx =
08394eef 5261 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
750c9258 5262 virtual_stack_vars_rtx =
08394eef 5263 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
750c9258 5264 virtual_stack_dynamic_rtx =
08394eef 5265 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
750c9258
AJ
5266 virtual_outgoing_args_rtx =
5267 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
08394eef 5268 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5da077de 5269
6cde4876
JL
5270 /* Initialize RTL for commonly used hard registers. These are
5271 copied into regno_reg_rtx as we begin to compile each function. */
5272 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5273 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5274
5da077de 5275#ifdef INIT_EXPANDERS
414c4dc4
NC
5276 /* This is to initialize {init|mark|free}_machine_status before the first
5277 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5278 end which calls push_function_context_to before the first call to
5da077de
AS
5279 init_function_start. */
5280 INIT_EXPANDERS;
5281#endif
5282
23b2ce53
RS
5283 /* Create the unique rtx's for certain rtx codes and operand values. */
5284
c5c76735
JL
5285 /* Don't use gen_rtx here since gen_rtx in this case
5286 tries to use these variables. */
23b2ce53 5287 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5288 const_int_rtx[i + MAX_SAVED_CONST_INT] =
5da077de 5289 gen_rtx_raw_CONST_INT (VOIDmode, i);
23b2ce53 5290
68d75312
JC
5291 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5292 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5293 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5294 else
3b80f6ca 5295 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5296
5692c7bc
ZW
5297 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5298 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5299 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5300 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
23b2ce53
RS
5301
5302 for (i = 0; i <= 2; i++)
5303 {
b216cd4a
ZW
5304 REAL_VALUE_TYPE *r =
5305 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5306
23b2ce53
RS
5307 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5308 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5309 const_tiny_rtx[i][(int) mode] =
5310 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5311
906c4e36 5312 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53
RS
5313
5314 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5315 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5316 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
5317
5318 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5319 mode != VOIDmode;
5320 mode = GET_MODE_WIDER_MODE (mode))
5321 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5322 }
5323
69ef87e2
AH
5324 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5325 mode != VOIDmode;
5326 mode = GET_MODE_WIDER_MODE (mode))
ff88fe10 5327 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
69ef87e2
AH
5328
5329 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5330 mode != VOIDmode;
5331 mode = GET_MODE_WIDER_MODE (mode))
ff88fe10 5332 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
69ef87e2 5333
dbbbbf3b
JDA
5334 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5335 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5336 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5337
f0417c82
RH
5338 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5339 if (STORE_FLAG_VALUE == 1)
5340 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5341
a7e1e2ac
AO
5342#ifdef RETURN_ADDRESS_POINTER_REGNUM
5343 return_address_pointer_rtx
08394eef 5344 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
a7e1e2ac
AO
5345#endif
5346
5347#ifdef STRUCT_VALUE
5348 struct_value_rtx = STRUCT_VALUE;
5349#else
5350 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5351#endif
5352
5353#ifdef STRUCT_VALUE_INCOMING
5354 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5355#else
5356#ifdef STRUCT_VALUE_INCOMING_REGNUM
5357 struct_value_incoming_rtx
5358 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5359#else
5360 struct_value_incoming_rtx = struct_value_rtx;
5361#endif
5362#endif
5363
5364#ifdef STATIC_CHAIN_REGNUM
5365 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5366
5367#ifdef STATIC_CHAIN_INCOMING_REGNUM
5368 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5369 static_chain_incoming_rtx
5370 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5371 else
5372#endif
5373 static_chain_incoming_rtx = static_chain_rtx;
5374#endif
5375
5376#ifdef STATIC_CHAIN
5377 static_chain_rtx = STATIC_CHAIN;
5378
5379#ifdef STATIC_CHAIN_INCOMING
5380 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5381#else
5382 static_chain_incoming_rtx = static_chain_rtx;
5383#endif
5384#endif
5385
848e0190 5386 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
751551d5 5387 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
23b2ce53 5388}
a11759a3
JR
5389\f
5390/* Query and clear/ restore no_line_numbers. This is used by the
5391 switch / case handling in stmt.c to give proper line numbers in
5392 warnings about unreachable code. */
5393
5394int
5395force_line_numbers ()
5396{
5397 int old = no_line_numbers;
5398
5399 no_line_numbers = 0;
5400 if (old)
5401 force_next_line_note ();
5402 return old;
5403}
5404
5405void
5406restore_line_number_status (old_value)
5407 int old_value;
5408{
5409 no_line_numbers = old_value;
5410}
969d70ca
JH
5411
5412/* Produce exact duplicate of insn INSN after AFTER.
5413 Care updating of libcall regions if present. */
5414
5415rtx
5416emit_copy_of_insn_after (insn, after)
5417 rtx insn, after;
5418{
5419 rtx new;
5420 rtx note1, note2, link;
5421
5422 switch (GET_CODE (insn))
5423 {
5424 case INSN:
5425 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5426 break;
5427
5428 case JUMP_INSN:
5429 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5430 break;
5431
5432 case CALL_INSN:
5433 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5434 if (CALL_INSN_FUNCTION_USAGE (insn))
5435 CALL_INSN_FUNCTION_USAGE (new)
5436 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5437 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5438 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5439 break;
5440
5441 default:
5442 abort ();
5443 }
5444
5445 /* Update LABEL_NUSES. */
5446 mark_jump_label (PATTERN (new), new, 0);
5447
ba4f7968
JH
5448 INSN_SCOPE (new) = INSN_SCOPE (insn);
5449
969d70ca
JH
5450 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5451 make them. */
5452 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5453 if (REG_NOTE_KIND (link) != REG_LABEL)
5454 {
5455 if (GET_CODE (link) == EXPR_LIST)
5456 REG_NOTES (new)
5457 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5458 XEXP (link, 0),
5459 REG_NOTES (new)));
5460 else
5461 REG_NOTES (new)
5462 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5463 XEXP (link, 0),
5464 REG_NOTES (new)));
5465 }
5466
5467 /* Fix the libcall sequences. */
5468 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5469 {
5470 rtx p = new;
5471 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5472 p = PREV_INSN (p);
5473 XEXP (note1, 0) = p;
5474 XEXP (note2, 0) = new;
5475 }
5476 return new;
5477}
e2500fed
GK
5478
5479#include "gt-emit-rtl.h"