]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
Correctly count substitutions if eliminations are going on.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
23b2ce53 1/* Emit RTL for the GNU C-Compiler expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
90a74703 3 1999, 2000, 2001 Free Software Foundation, Inc.
23b2ce53
RS
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
670ee920 39#include "system.h"
01198c2f 40#include "toplev.h"
23b2ce53 41#include "rtl.h"
a25c7971 42#include "tree.h"
6baf1cc8 43#include "tm_p.h"
23b2ce53
RS
44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
aff48bca 48#include "hard-reg-set.h"
c13e8210 49#include "hashtab.h"
23b2ce53 50#include "insn-config.h"
e9a25f70 51#include "recog.h"
23b2ce53 52#include "real.h"
ca695ac9 53#include "obstack.h"
0dfa1860 54#include "bitmap.h"
a05924f9 55#include "basic-block.h"
87ff9c8e 56#include "ggc.h"
ca695ac9 57
1d445e9e
ILT
58/* Commonly used modes. */
59
0f41302f
MS
60enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
61enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 62enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 63enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 64
23b2ce53
RS
65
66/* This is *not* reset after each function. It gives each CODE_LABEL
67 in the entire compilation a unique label number. */
68
69static int label_num = 1;
70
23b2ce53
RS
71/* Highest label number in current function.
72 Zero means use the value of label_num instead.
73 This is nonzero only when belatedly compiling an inline function. */
74
75static int last_label_num;
76
77/* Value label_num had when set_new_first_and_last_label_number was called.
78 If label_num has not changed since then, last_label_num is valid. */
79
80static int base_label_num;
81
82/* Nonzero means do not generate NOTEs for source line numbers. */
83
84static int no_line_numbers;
85
86/* Commonly used rtx's, so that we only need space for one copy.
87 These are initialized once for the entire compilation.
88 All of these except perhaps the floating-point CONST_DOUBLEs
89 are unique; no other rtx-object will be equal to any of these. */
90
5da077de 91rtx global_rtl[GR_MAX];
23b2ce53
RS
92
93/* We record floating-point CONST_DOUBLEs in each floating-point mode for
94 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
95 record a copy of const[012]_rtx. */
96
97rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
98
68d75312
JC
99rtx const_true_rtx;
100
23b2ce53
RS
101REAL_VALUE_TYPE dconst0;
102REAL_VALUE_TYPE dconst1;
103REAL_VALUE_TYPE dconst2;
104REAL_VALUE_TYPE dconstm1;
105
106/* All references to the following fixed hard registers go through
107 these unique rtl objects. On machines where the frame-pointer and
108 arg-pointer are the same register, they use the same unique object.
109
110 After register allocation, other rtl objects which used to be pseudo-regs
111 may be clobbered to refer to the frame-pointer register.
112 But references that were originally to the frame-pointer can be
113 distinguished from the others because they contain frame_pointer_rtx.
114
ac6f08b0
DE
115 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
116 tricky: until register elimination has taken place hard_frame_pointer_rtx
117 should be used if it is being set, and frame_pointer_rtx otherwise. After
118 register elimination hard_frame_pointer_rtx should always be used.
119 On machines where the two registers are same (most) then these are the
120 same.
121
23b2ce53
RS
122 In an inline procedure, the stack and frame pointer rtxs may not be
123 used for anything else. */
23b2ce53
RS
124rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
125rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
126rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
127rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
128rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
129
a4417a86
JW
130/* This is used to implement __builtin_return_address for some machines.
131 See for instance the MIPS port. */
132rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
133
23b2ce53
RS
134/* We make one copy of (const_int C) where C is in
135 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
136 to save space during the compilation and simplify comparisons of
137 integers. */
138
5da077de 139rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 140
c13e8210
MM
141/* A hash table storing CONST_INTs whose absolute value is greater
142 than MAX_SAVED_CONST_INT. */
143
144static htab_t const_int_htab;
145
23b2ce53
RS
146/* start_sequence and gen_sequence can make a lot of rtx expressions which are
147 shortly thrown away. We use two mechanisms to prevent this waste:
148
a3770a81
RH
149 For sizes up to 5 elements, we keep a SEQUENCE and its associated
150 rtvec for use by gen_sequence. One entry for each size is
151 sufficient because most cases are calls to gen_sequence followed by
152 immediately emitting the SEQUENCE. Reuse is safe since emitting a
153 sequence is destructive on the insn in it anyway and hence can't be
154 redone.
23b2ce53
RS
155
156 We do not bother to save this cached data over nested function calls.
157 Instead, we just reinitialize them. */
158
159#define SEQUENCE_RESULT_SIZE 5
160
23b2ce53
RS
161static rtx sequence_result[SEQUENCE_RESULT_SIZE];
162
0f41302f 163/* During RTL generation, we also keep a list of free INSN rtl codes. */
43127294
RK
164static rtx free_insn;
165
01d939e8
BS
166#define first_insn (cfun->emit->x_first_insn)
167#define last_insn (cfun->emit->x_last_insn)
168#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
169#define last_linenum (cfun->emit->x_last_linenum)
170#define last_filename (cfun->emit->x_last_filename)
171#define first_label_num (cfun->emit->x_first_label_num)
23b2ce53 172
711d877c
KG
173static rtx make_jump_insn_raw PARAMS ((rtx));
174static rtx make_call_insn_raw PARAMS ((rtx));
175static rtx find_line_note PARAMS ((rtx));
176static void mark_sequence_stack PARAMS ((struct sequence_stack *));
d1b81779 177static void unshare_all_rtl_1 PARAMS ((rtx));
5c6df058 178static void unshare_all_decls PARAMS ((tree));
2d4aecb3 179static void reset_used_decls PARAMS ((tree));
e5bef2e4 180static void mark_label_nuses PARAMS ((rtx));
c13e8210
MM
181static hashval_t const_int_htab_hash PARAMS ((const void *));
182static int const_int_htab_eq PARAMS ((const void *,
183 const void *));
184static int rtx_htab_mark_1 PARAMS ((void **, void *));
185static void rtx_htab_mark PARAMS ((void *));
186
ca695ac9 187\f
c13e8210
MM
188/* Returns a hash code for X (which is a really a CONST_INT). */
189
190static hashval_t
191const_int_htab_hash (x)
192 const void *x;
193{
e77d72cb 194 return (hashval_t) INTVAL ((const struct rtx_def *) x);
c13e8210
MM
195}
196
197/* Returns non-zero if the value represented by X (which is really a
198 CONST_INT) is the same as that given by Y (which is really a
199 HOST_WIDE_INT *). */
200
201static int
202const_int_htab_eq (x, y)
203 const void *x;
204 const void *y;
205{
e77d72cb 206 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
c13e8210
MM
207}
208
209/* Mark the hash-table element X (which is really a pointer to an
210 rtx). */
211
212static int
213rtx_htab_mark_1 (x, data)
214 void **x;
215 void *data ATTRIBUTE_UNUSED;
216{
217 ggc_mark_rtx (*x);
218 return 1;
219}
220
221/* Mark all the elements of HTAB (which is really an htab_t full of
222 rtxs). */
223
224static void
225rtx_htab_mark (htab)
226 void *htab;
227{
228 htab_traverse (*((htab_t *) htab), rtx_htab_mark_1, NULL);
229}
230
08394eef
BS
231/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
232 don't attempt to share with the various global pieces of rtl (such as
233 frame_pointer_rtx). */
234
235rtx
236gen_raw_REG (mode, regno)
237 enum machine_mode mode;
238 int regno;
239{
240 rtx x = gen_rtx_raw_REG (mode, regno);
241 ORIGINAL_REGNO (x) = regno;
242 return x;
243}
244
c5c76735
JL
245/* There are some RTL codes that require special attention; the generation
246 functions do the raw handling. If you add to this list, modify
247 special_rtx in gengenrtl.c as well. */
248
3b80f6ca
RH
249rtx
250gen_rtx_CONST_INT (mode, arg)
c13e8210 251 enum machine_mode mode ATTRIBUTE_UNUSED;
3b80f6ca
RH
252 HOST_WIDE_INT arg;
253{
c13e8210
MM
254 void **slot;
255
3b80f6ca 256 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 257 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
258
259#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
260 if (const_true_rtx && arg == STORE_FLAG_VALUE)
261 return const_true_rtx;
262#endif
263
c13e8210 264 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
265 slot = htab_find_slot_with_hash (const_int_htab, &arg,
266 (hashval_t) arg, INSERT);
29105cea 267 if (*slot == 0)
1f8f4a0b 268 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
269
270 return (rtx) *slot;
3b80f6ca
RH
271}
272
29105cea 273/* CONST_DOUBLEs needs special handling because their length is known
0133b7d9 274 only at run-time. */
29105cea 275
0133b7d9
RH
276rtx
277gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
278 enum machine_mode mode;
279 rtx arg0;
280 HOST_WIDE_INT arg1, arg2;
281{
282 rtx r = rtx_alloc (CONST_DOUBLE);
2454beaf
RH
283 int i;
284
0133b7d9
RH
285 PUT_MODE (r, mode);
286 XEXP (r, 0) = arg0;
ef178af3 287 X0EXP (r, 1) = NULL_RTX;
2454beaf
RH
288 XWINT (r, 2) = arg1;
289 XWINT (r, 3) = arg2;
290
291 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
292 XWINT (r, i) = 0;
293
0133b7d9
RH
294 return r;
295}
296
3b80f6ca
RH
297rtx
298gen_rtx_REG (mode, regno)
299 enum machine_mode mode;
300 int regno;
301{
302 /* In case the MD file explicitly references the frame pointer, have
303 all such references point to the same frame pointer. This is
304 used during frame pointer elimination to distinguish the explicit
305 references to these registers from pseudos that happened to be
306 assigned to them.
307
308 If we have eliminated the frame pointer or arg pointer, we will
309 be using it as a normal register, for example as a spill
310 register. In such cases, we might be accessing it in a mode that
311 is not Pmode and therefore cannot use the pre-allocated rtx.
312
313 Also don't do this when we are making new REGs in reload, since
314 we don't want to get confused with the real pointers. */
315
316 if (mode == Pmode && !reload_in_progress)
317 {
bcb33994 318 if (regno == FRAME_POINTER_REGNUM)
3b80f6ca
RH
319 return frame_pointer_rtx;
320#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
bcb33994 321 if (regno == HARD_FRAME_POINTER_REGNUM)
3b80f6ca
RH
322 return hard_frame_pointer_rtx;
323#endif
324#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 325 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
326 return arg_pointer_rtx;
327#endif
328#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 329 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
330 return return_address_pointer_rtx;
331#endif
bcb33994 332 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
333 return stack_pointer_rtx;
334 }
335
08394eef 336 return gen_raw_REG (mode, regno);
3b80f6ca
RH
337}
338
41472af8
MM
339rtx
340gen_rtx_MEM (mode, addr)
341 enum machine_mode mode;
342 rtx addr;
343{
344 rtx rt = gen_rtx_raw_MEM (mode, addr);
345
346 /* This field is not cleared by the mere allocation of the rtx, so
347 we clear it here. */
348 MEM_ALIAS_SET (rt) = 0;
349
350 return rt;
351}
ddef6bc7
JJ
352
353rtx
354gen_rtx_SUBREG (mode, reg, offset)
355 enum machine_mode mode;
356 rtx reg;
357 int offset;
358{
359 /* This is the most common failure type.
360 Catch it early so we can see who does it. */
361 if ((offset % GET_MODE_SIZE (mode)) != 0)
362 abort ();
363
364 /* This check isn't usable right now because combine will
365 throw arbitrary crap like a CALL into a SUBREG in
366 gen_lowpart_for_combine so we must just eat it. */
367#if 0
368 /* Check for this too. */
369 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
370 abort ();
371#endif
372 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
373}
374
375/* Generate a SUBREG representing the least-significant part
376 * of REG if MODE is smaller than mode of REG, otherwise
377 * paradoxical SUBREG. */
378rtx
379gen_lowpart_SUBREG (mode, reg)
380 enum machine_mode mode;
381 rtx reg;
382{
383 enum machine_mode inmode;
384 int offset;
385
386 inmode = GET_MODE (reg);
387 if (inmode == VOIDmode)
388 inmode = mode;
389 offset = 0;
390 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (inmode)
391 && (WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN))
392 {
393 offset = GET_MODE_SIZE (inmode) - GET_MODE_SIZE (mode);
394 if (! BYTES_BIG_ENDIAN)
395 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
396 else if (! WORDS_BIG_ENDIAN)
397 offset %= UNITS_PER_WORD;
398 }
399 return gen_rtx_SUBREG (mode, reg, offset);
400}
c5c76735 401\f
23b2ce53
RS
402/* rtx gen_rtx (code, mode, [element1, ..., elementn])
403**
404** This routine generates an RTX of the size specified by
405** <code>, which is an RTX code. The RTX structure is initialized
406** from the arguments <element1> through <elementn>, which are
407** interpreted according to the specific RTX type's format. The
408** special machine mode associated with the rtx (if any) is specified
409** in <mode>.
410**
1632afca 411** gen_rtx can be invoked in a way which resembles the lisp-like
23b2ce53
RS
412** rtx it will generate. For example, the following rtx structure:
413**
414** (plus:QI (mem:QI (reg:SI 1))
415** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
416**
417** ...would be generated by the following C code:
418**
419** gen_rtx (PLUS, QImode,
420** gen_rtx (MEM, QImode,
421** gen_rtx (REG, SImode, 1)),
422** gen_rtx (MEM, QImode,
423** gen_rtx (PLUS, SImode,
424** gen_rtx (REG, SImode, 2),
425** gen_rtx (REG, SImode, 3)))),
426*/
427
428/*VARARGS2*/
429rtx
711d877c 430gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
23b2ce53 431{
5148a72b 432#ifndef ANSI_PROTOTYPES
23b2ce53
RS
433 enum rtx_code code;
434 enum machine_mode mode;
4f90e4a0
RK
435#endif
436 va_list p;
23b2ce53 437 register int i; /* Array indices... */
6f7d635c 438 register const char *fmt; /* Current rtx's format... */
23b2ce53
RS
439 register rtx rt_val; /* RTX to return to caller... */
440
4f90e4a0
RK
441 VA_START (p, mode);
442
5148a72b 443#ifndef ANSI_PROTOTYPES
23b2ce53
RS
444 code = va_arg (p, enum rtx_code);
445 mode = va_arg (p, enum machine_mode);
4f90e4a0 446#endif
23b2ce53 447
0133b7d9 448 switch (code)
23b2ce53 449 {
0133b7d9
RH
450 case CONST_INT:
451 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
452 break;
453
454 case CONST_DOUBLE:
455 {
456 rtx arg0 = va_arg (p, rtx);
457 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
458 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
459 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
460 }
461 break;
462
463 case REG:
464 rt_val = gen_rtx_REG (mode, va_arg (p, int));
465 break;
466
467 case MEM:
468 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
469 break;
470
471 default:
23b2ce53
RS
472 rt_val = rtx_alloc (code); /* Allocate the storage space. */
473 rt_val->mode = mode; /* Store the machine mode... */
474
475 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
476 for (i = 0; i < GET_RTX_LENGTH (code); i++)
477 {
478 switch (*fmt++)
479 {
480 case '0': /* Unused field. */
481 break;
482
483 case 'i': /* An integer? */
484 XINT (rt_val, i) = va_arg (p, int);
485 break;
486
906c4e36
RK
487 case 'w': /* A wide integer? */
488 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
489 break;
490
23b2ce53
RS
491 case 's': /* A string? */
492 XSTR (rt_val, i) = va_arg (p, char *);
493 break;
494
495 case 'e': /* An expression? */
496 case 'u': /* An insn? Same except when printing. */
497 XEXP (rt_val, i) = va_arg (p, rtx);
498 break;
499
500 case 'E': /* An RTX vector? */
501 XVEC (rt_val, i) = va_arg (p, rtvec);
502 break;
503
0dfa1860
MM
504 case 'b': /* A bitmap? */
505 XBITMAP (rt_val, i) = va_arg (p, bitmap);
506 break;
507
508 case 't': /* A tree? */
509 XTREE (rt_val, i) = va_arg (p, tree);
510 break;
511
23b2ce53 512 default:
1632afca 513 abort ();
23b2ce53
RS
514 }
515 }
0133b7d9 516 break;
23b2ce53 517 }
0133b7d9 518
23b2ce53 519 va_end (p);
0133b7d9 520 return rt_val;
23b2ce53
RS
521}
522
523/* gen_rtvec (n, [rt1, ..., rtn])
524**
525** This routine creates an rtvec and stores within it the
526** pointers to rtx's which are its arguments.
527*/
528
529/*VARARGS1*/
530rtvec
711d877c 531gen_rtvec VPARAMS ((int n, ...))
23b2ce53 532{
5148a72b 533#ifndef ANSI_PROTOTYPES
4f90e4a0
RK
534 int n;
535#endif
536 int i;
23b2ce53
RS
537 va_list p;
538 rtx *vector;
539
4f90e4a0
RK
540 VA_START (p, n);
541
5148a72b 542#ifndef ANSI_PROTOTYPES
23b2ce53 543 n = va_arg (p, int);
4f90e4a0 544#endif
23b2ce53
RS
545
546 if (n == 0)
547 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
548
549 vector = (rtx *) alloca (n * sizeof (rtx));
4f90e4a0 550
23b2ce53
RS
551 for (i = 0; i < n; i++)
552 vector[i] = va_arg (p, rtx);
553 va_end (p);
554
555 return gen_rtvec_v (n, vector);
556}
557
558rtvec
559gen_rtvec_v (n, argp)
560 int n;
561 rtx *argp;
562{
563 register int i;
564 register rtvec rt_val;
565
566 if (n == 0)
567 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
568
569 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
570
571 for (i = 0; i < n; i++)
8f985ec4 572 rt_val->elem[i] = *argp++;
23b2ce53
RS
573
574 return rt_val;
575}
ba444f92 576
23b2ce53
RS
577\f
578/* Generate a REG rtx for a new pseudo register of mode MODE.
579 This pseudo is assigned the next sequential register number. */
580
581rtx
582gen_reg_rtx (mode)
583 enum machine_mode mode;
584{
01d939e8 585 struct function *f = cfun;
23b2ce53
RS
586 register rtx val;
587
f1db3576
JL
588 /* Don't let anything called after initial flow analysis create new
589 registers. */
590 if (no_new_pseudos)
23b2ce53
RS
591 abort ();
592
1b3d8f8a
GK
593 if (generating_concat_p
594 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
595 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
596 {
597 /* For complex modes, don't make a single pseudo.
598 Instead, make a CONCAT of two pseudos.
599 This allows noncontiguous allocation of the real and imaginary parts,
600 which makes much better code. Besides, allocating DCmode
601 pseudos overstrains reload on some machines like the 386. */
602 rtx realpart, imagpart;
603 int size = GET_MODE_UNIT_SIZE (mode);
604 enum machine_mode partmode
605 = mode_for_size (size * BITS_PER_UNIT,
606 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
607 ? MODE_FLOAT : MODE_INT),
608 0);
609
610 realpart = gen_reg_rtx (partmode);
611 imagpart = gen_reg_rtx (partmode);
3b80f6ca 612 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
613 }
614
3502dc9c
JDA
615 /* Make sure regno_pointer_align and regno_reg_rtx are large enough
616 to have an element for this pseudo reg number. */
23b2ce53 617
3502dc9c 618 if (reg_rtx_no == f->emit->regno_pointer_align_length)
23b2ce53 619 {
3502dc9c 620 int old_size = f->emit->regno_pointer_align_length;
23b2ce53 621 rtx *new1;
e2ecd91c 622 char *new;
e2ecd91c 623 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
49ad7cfa 624 memset (new + old_size, 0, old_size);
f9e158c3 625 f->emit->regno_pointer_align = (unsigned char *) new;
49ad7cfa 626
e2ecd91c
BS
627 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
628 old_size * 2 * sizeof (rtx));
49ad7cfa 629 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
630 regno_reg_rtx = new1;
631
3502dc9c 632 f->emit->regno_pointer_align_length = old_size * 2;
23b2ce53
RS
633 }
634
08394eef 635 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
636 regno_reg_rtx[reg_rtx_no++] = val;
637 return val;
638}
639
754fdcca
RK
640/* Identify REG (which may be a CONCAT) as a user register. */
641
642void
643mark_user_reg (reg)
644 rtx reg;
645{
646 if (GET_CODE (reg) == CONCAT)
647 {
648 REG_USERVAR_P (XEXP (reg, 0)) = 1;
649 REG_USERVAR_P (XEXP (reg, 1)) = 1;
650 }
651 else if (GET_CODE (reg) == REG)
652 REG_USERVAR_P (reg) = 1;
653 else
654 abort ();
655}
656
86fe05e0
RK
657/* Identify REG as a probable pointer register and show its alignment
658 as ALIGN, if nonzero. */
23b2ce53
RS
659
660void
86fe05e0 661mark_reg_pointer (reg, align)
23b2ce53 662 rtx reg;
86fe05e0 663 int align;
23b2ce53 664{
3502dc9c 665 if (! REG_POINTER (reg))
00995e78 666 {
3502dc9c 667 REG_POINTER (reg) = 1;
86fe05e0 668
00995e78
RE
669 if (align)
670 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
671 }
672 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
673 /* We can no-longer be sure just how aligned this pointer is */
86fe05e0 674 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
675}
676
677/* Return 1 plus largest pseudo reg number used in the current function. */
678
679int
680max_reg_num ()
681{
682 return reg_rtx_no;
683}
684
685/* Return 1 + the largest label number used so far in the current function. */
686
687int
688max_label_num ()
689{
690 if (last_label_num && label_num == base_label_num)
691 return last_label_num;
692 return label_num;
693}
694
695/* Return first label number used in this function (if any were used). */
696
697int
698get_first_label_num ()
699{
700 return first_label_num;
701}
702\f
ddef6bc7
JJ
703/* Return the final regno of X, which is a SUBREG of a hard
704 register. */
705int
706subreg_hard_regno (x, check_mode)
707 register rtx x;
708 int check_mode;
709{
710 enum machine_mode mode = GET_MODE (x);
711 unsigned int byte_offset, base_regno, final_regno;
712 rtx reg = SUBREG_REG (x);
713
714 /* This is where we attempt to catch illegal subregs
715 created by the compiler. */
716 if (GET_CODE (x) != SUBREG
717 || GET_CODE (reg) != REG)
718 abort ();
719 base_regno = REGNO (reg);
720 if (base_regno >= FIRST_PSEUDO_REGISTER)
721 abort ();
0607953c 722 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
ddef6bc7
JJ
723 abort ();
724
725 /* Catch non-congruent offsets too. */
726 byte_offset = SUBREG_BYTE (x);
727 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
728 abort ();
729
730 final_regno = subreg_regno (x);
731
732 return final_regno;
733}
734
23b2ce53
RS
735/* Return a value representing some low-order bits of X, where the number
736 of low-order bits is given by MODE. Note that no conversion is done
737 between floating-point and fixed-point values, rather, the bit
738 representation is returned.
739
740 This function handles the cases in common between gen_lowpart, below,
741 and two variants in cse.c and combine.c. These are the cases that can
742 be safely handled at all points in the compilation.
743
744 If this is not a case we can handle, return 0. */
745
746rtx
747gen_lowpart_common (mode, x)
748 enum machine_mode mode;
749 register rtx x;
750{
ddef6bc7
JJ
751 int msize = GET_MODE_SIZE (mode);
752 int xsize = GET_MODE_SIZE (GET_MODE (x));
753 int offset = 0;
23b2ce53
RS
754
755 if (GET_MODE (x) == mode)
756 return x;
757
758 /* MODE must occupy no more words than the mode of X. */
759 if (GET_MODE (x) != VOIDmode
ddef6bc7
JJ
760 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
761 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
23b2ce53
RS
762 return 0;
763
ddef6bc7
JJ
764 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
765 && xsize > msize)
766 {
767 int difference = xsize - msize;
768
769 if (WORDS_BIG_ENDIAN)
770 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
771 if (BYTES_BIG_ENDIAN)
772 offset += difference % UNITS_PER_WORD;
773 }
23b2ce53
RS
774
775 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
776 && (GET_MODE_CLASS (mode) == MODE_INT
777 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
778 {
779 /* If we are getting the low-order part of something that has been
780 sign- or zero-extended, we can either just use the object being
781 extended or make a narrower extension. If we want an even smaller
782 piece than the size of the object being extended, call ourselves
783 recursively.
784
785 This case is used mostly by combine and cse. */
786
787 if (GET_MODE (XEXP (x, 0)) == mode)
788 return XEXP (x, 0);
789 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
790 return gen_lowpart_common (mode, XEXP (x, 0));
791 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3b80f6ca 792 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53
RS
793 }
794 else if (GET_CODE (x) == SUBREG
ddef6bc7 795 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
23b2ce53 796 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
ddef6bc7
JJ
797 {
798 int final_offset;
799
800 if (GET_MODE (SUBREG_REG (x)) == mode && subreg_lowpart_p (x))
801 return SUBREG_REG (x);
802
803 /* When working with SUBREGs the rule is that the byte
804 offset must be a multiple of the SUBREG's mode. */
805 final_offset = SUBREG_BYTE (x) + offset;
806 final_offset = (final_offset / GET_MODE_SIZE (mode));
807 final_offset = (final_offset * GET_MODE_SIZE (mode));
808 return gen_rtx_SUBREG (mode, SUBREG_REG (x), final_offset);
809 }
23b2ce53
RS
810 else if (GET_CODE (x) == REG)
811 {
ddef6bc7
JJ
812 /* Hard registers are done specially in certain cases. */
813 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
814 {
815 int final_regno = REGNO (x) +
816 subreg_regno_offset (REGNO (x), GET_MODE (x),
817 offset, mode);
818
819 /* If the final regno is not valid for MODE, punt. */
820 /* ??? We do allow it if the current REG is not valid for
821 ??? it's mode. It is a kludge to work around how float/complex
822 ??? arguments are passed on 32-bit Sparc and should be fixed. */
823 if (! HARD_REGNO_MODE_OK (final_regno, mode)
824 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
825 return 0;
826
23b2ce53 827 /* integrate.c can't handle parts of a return value register. */
ddef6bc7 828 if ((! REG_FUNCTION_VALUE_P (x)
cb00f51a 829 || ! rtx_equal_function_value_matters)
02188693
RH
830#ifdef CLASS_CANNOT_CHANGE_MODE
831 && ! (CLASS_CANNOT_CHANGE_MODE_P (mode, GET_MODE (x))
aff48bca
JL
832 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_INT
833 && GET_MODE_CLASS (GET_MODE (x)) != MODE_COMPLEX_FLOAT
834 && (TEST_HARD_REG_BIT
02188693 835 (reg_class_contents[(int) CLASS_CANNOT_CHANGE_MODE],
aff48bca
JL
836 REGNO (x))))
837#endif
cb00f51a
RK
838 /* We want to keep the stack, frame, and arg pointers
839 special. */
65e8fe02 840 && x != frame_pointer_rtx
cb00f51a 841#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
65e8fe02 842 && x != arg_pointer_rtx
cb00f51a 843#endif
65e8fe02 844 && x != stack_pointer_rtx)
ddef6bc7
JJ
845 return gen_rtx_REG (mode, final_regno);
846 }
847 return gen_rtx_SUBREG (mode, x, offset);
23b2ce53 848 }
23b2ce53
RS
849 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
850 from the low-order part of the constant. */
83e9c679
RK
851 else if ((GET_MODE_CLASS (mode) == MODE_INT
852 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
853 && GET_MODE (x) == VOIDmode
23b2ce53 854 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1a5b457d
RK
855 {
856 /* If MODE is twice the host word size, X is already the desired
857 representation. Otherwise, if MODE is wider than a word, we can't
e1389cac 858 do this. If MODE is exactly a word, return just one CONST_INT. */
1a5b457d 859
a8dd0e73 860 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1a5b457d 861 return x;
906c4e36 862 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1a5b457d 863 return 0;
906c4e36 864 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1a5b457d 865 return (GET_CODE (x) == CONST_INT ? x
906c4e36 866 : GEN_INT (CONST_DOUBLE_LOW (x)));
1a5b457d
RK
867 else
868 {
27eef9ce 869 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
906c4e36
RK
870 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
871 : CONST_DOUBLE_LOW (x));
1a5b457d 872
27eef9ce 873 /* Sign extend to HOST_WIDE_INT. */
e1389cac 874 val = trunc_int_for_mode (val, mode);
1a5b457d
RK
875
876 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
906c4e36 877 : GEN_INT (val));
1a5b457d
RK
878 }
879 }
23b2ce53 880
a2061c0d 881#ifndef REAL_ARITHMETIC
8aada4ad
RK
882 /* If X is an integral constant but we want it in floating-point, it
883 must be the case that we have a union of an integer and a floating-point
884 value. If the machine-parameters allow it, simulate that union here
d6020413
RK
885 and return the result. The two-word and single-word cases are
886 different. */
8aada4ad 887
b3bf132d 888 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 889 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 890 || flag_pretend_float)
8aada4ad 891 && GET_MODE_CLASS (mode) == MODE_FLOAT
d6020413
RK
892 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
893 && GET_CODE (x) == CONST_INT
906c4e36 894 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
d6020413 895 {
906c4e36 896 union {HOST_WIDE_INT i; float d; } u;
d6020413
RK
897
898 u.i = INTVAL (x);
53596fba 899 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
d6020413 900 }
d6020413 901 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 902 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
d6020413
RK
903 || flag_pretend_float)
904 && GET_MODE_CLASS (mode) == MODE_FLOAT
905 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
8aada4ad
RK
906 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
907 && GET_MODE (x) == VOIDmode
906c4e36
RK
908 && (sizeof (double) * HOST_BITS_PER_CHAR
909 == 2 * HOST_BITS_PER_WIDE_INT))
8aada4ad 910 {
906c4e36
RK
911 union {HOST_WIDE_INT i[2]; double d; } u;
912 HOST_WIDE_INT low, high;
8aada4ad
RK
913
914 if (GET_CODE (x) == CONST_INT)
906c4e36 915 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
8aada4ad
RK
916 else
917 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
918
919#ifdef HOST_WORDS_BIG_ENDIAN
920 u.i[0] = high, u.i[1] = low;
921#else
922 u.i[0] = low, u.i[1] = high;
923#endif
924
53596fba 925 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
8aada4ad 926 }
a6a503ed 927
b3bf132d
RK
928 /* Similarly, if this is converting a floating-point value into a
929 single-word integer. Only do this is the host and target parameters are
930 compatible. */
931
932 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 933 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 934 || flag_pretend_float)
83e9c679
RK
935 && (GET_MODE_CLASS (mode) == MODE_INT
936 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
b3bf132d
RK
937 && GET_CODE (x) == CONST_DOUBLE
938 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
939 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
ddef6bc7 940 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
b3bf132d 941
8aada4ad
RK
942 /* Similarly, if this is converting a floating-point value into a
943 two-word integer, we can do this one word at a time and make an
944 integer. Only do this is the host and target parameters are
945 compatible. */
946
b3bf132d 947 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 948 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 949 || flag_pretend_float)
83e9c679 950 && (GET_MODE_CLASS (mode) == MODE_INT
f5a2fb25 951 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
8aada4ad
RK
952 && GET_CODE (x) == CONST_DOUBLE
953 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
954 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
955 {
ddef6bc7
JJ
956 rtx lowpart, highpart;
957
958 lowpart = constant_subword (x,
959 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
960 GET_MODE (x));
961 highpart = constant_subword (x,
962 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
963 GET_MODE (x));
8aada4ad
RK
964 if (lowpart && GET_CODE (lowpart) == CONST_INT
965 && highpart && GET_CODE (highpart) == CONST_INT)
966 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
967 }
a2061c0d
GK
968#else /* ifndef REAL_ARITHMETIC */
969
970 /* When we have a FP emulator, we can handle all conversions between
971 FP and integer operands. This simplifies reload because it
972 doesn't have to deal with constructs like (subreg:DI
973 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
974
975 else if (mode == SFmode
976 && GET_CODE (x) == CONST_INT)
977 {
978 REAL_VALUE_TYPE r;
979 HOST_WIDE_INT i;
980
981 i = INTVAL (x);
982 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
983 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
984 }
985 else if (mode == DFmode
986 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
987 && GET_MODE (x) == VOIDmode)
988 {
989 REAL_VALUE_TYPE r;
990 HOST_WIDE_INT i[2];
991 HOST_WIDE_INT low, high;
992
993 if (GET_CODE (x) == CONST_INT)
994 {
995 low = INTVAL (x);
996 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
997 }
998 else
999 {
1000 low = CONST_DOUBLE_LOW (x);
1001 high = CONST_DOUBLE_HIGH (x);
1002 }
1003
1004 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1005 target machine. */
1006 if (WORDS_BIG_ENDIAN)
1007 i[0] = high, i[1] = low;
1008 else
1009 i[0] = low, i[1] = high;
1010
1011 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1012 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1013 }
1014 else if ((GET_MODE_CLASS (mode) == MODE_INT
1015 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1016 && GET_CODE (x) == CONST_DOUBLE
1017 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1018 {
1019 REAL_VALUE_TYPE r;
1020 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1021 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1022
1023 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1024 switch (GET_MODE (x))
1025 {
1026 case SFmode:
1027 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
1156b23c 1028 i[1 - endian] = 0;
a2061c0d
GK
1029 break;
1030 case DFmode:
1031 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
1032 break;
1033#if LONG_DOUBLE_TYPE_SIZE == 96
1034 case XFmode:
e389897b
JJ
1035 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1036 i[3-3*endian] = 0;
a2061c0d
GK
1037#else
1038 case TFmode:
a2061c0d 1039 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
e389897b 1040#endif
a2061c0d
GK
1041 break;
1042 default:
1156b23c 1043 abort ();
a2061c0d
GK
1044 }
1045
1046 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1047 and return it. */
1048#if HOST_BITS_PER_WIDE_INT == 32
1156b23c 1049 return immed_double_const (i[endian], i[1 - endian], mode);
a2061c0d 1050#else
50e60bc3
ZW
1051 {
1052 int c;
1053
1054 if (HOST_BITS_PER_WIDE_INT != 64)
1156b23c
RK
1055 abort ();
1056
50e60bc3 1057 for (c = 0; c < 4; c++)
1156b23c 1058 i[c] &= ~ (0L);
e389897b
JJ
1059
1060 switch (GET_MODE (x))
1061 {
1062 case SFmode:
1063 case DFmode:
1064 return immed_double_const (((unsigned long) i[endian]) |
1065 (((HOST_WIDE_INT) i[1-endian]) << 32),
1066 0, mode);
1067 default:
1068 return immed_double_const (((unsigned long) i[endian*3]) |
1069 (((HOST_WIDE_INT) i[1+endian]) << 32),
1070 ((unsigned long) i[2-endian]) |
1071 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
1072 mode);
1073 }
50e60bc3 1074 }
a2061c0d
GK
1075#endif
1076 }
1077#endif /* ifndef REAL_ARITHMETIC */
8aada4ad 1078
23b2ce53
RS
1079 /* Otherwise, we can't do this. */
1080 return 0;
1081}
1082\f
280194b0
RS
1083/* Return the real part (which has mode MODE) of a complex value X.
1084 This always comes at the low address in memory. */
1085
1086rtx
1087gen_realpart (mode, x)
1088 enum machine_mode mode;
1089 register rtx x;
1090{
dc139c90
RK
1091 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1092 return XEXP (x, 0);
40c0c3cf
JL
1093 else if (WORDS_BIG_ENDIAN
1094 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1095 && REG_P (x)
1096 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4
RK
1097 internal_error
1098 ("Can't access real part of complex value in hard register");
dc139c90 1099 else if (WORDS_BIG_ENDIAN)
280194b0
RS
1100 return gen_highpart (mode, x);
1101 else
1102 return gen_lowpart (mode, x);
1103}
1104
1105/* Return the imaginary part (which has mode MODE) of a complex value X.
1106 This always comes at the high address in memory. */
1107
1108rtx
1109gen_imagpart (mode, x)
1110 enum machine_mode mode;
1111 register rtx x;
1112{
dc139c90
RK
1113 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
1114 return XEXP (x, 1);
1115 else if (WORDS_BIG_ENDIAN)
280194b0 1116 return gen_lowpart (mode, x);
ddef6bc7 1117 else if (! WORDS_BIG_ENDIAN
40c0c3cf
JL
1118 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1119 && REG_P (x)
1120 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4
RK
1121 internal_error
1122 ("can't access imaginary part of complex value in hard register");
280194b0
RS
1123 else
1124 return gen_highpart (mode, x);
1125}
81284a6a
JW
1126
1127/* Return 1 iff X, assumed to be a SUBREG,
1128 refers to the real part of the complex value in its containing reg.
1129 Complex values are always stored with the real part in the first word,
1130 regardless of WORDS_BIG_ENDIAN. */
1131
1132int
1133subreg_realpart_p (x)
1134 rtx x;
1135{
1136 if (GET_CODE (x) != SUBREG)
1137 abort ();
1138
ddef6bc7 1139 return ((unsigned int) SUBREG_BYTE (x)
770ae6cc 1140 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
81284a6a 1141}
280194b0 1142\f
23b2ce53
RS
1143/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1144 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1145 least-significant part of X.
1146 MODE specifies how big a part of X to return;
1147 it usually should not be larger than a word.
1148 If X is a MEM whose address is a QUEUED, the value may be so also. */
1149
1150rtx
1151gen_lowpart (mode, x)
1152 enum machine_mode mode;
1153 register rtx x;
1154{
1155 rtx result = gen_lowpart_common (mode, x);
1156
1157 if (result)
1158 return result;
ea8262b0
RK
1159 else if (GET_CODE (x) == REG)
1160 {
1161 /* Must be a hard reg that's not valid in MODE. */
1162 result = gen_lowpart_common (mode, copy_to_reg (x));
1163 if (result == 0)
1164 abort ();
72c3833b 1165 return result;
ea8262b0 1166 }
23b2ce53
RS
1167 else if (GET_CODE (x) == MEM)
1168 {
1169 /* The only additional case we can do is MEM. */
1170 register int offset = 0;
1171 if (WORDS_BIG_ENDIAN)
1172 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1173 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1174
1175 if (BYTES_BIG_ENDIAN)
1176 /* Adjust the address so that the address-after-the-data
1177 is unchanged. */
1178 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1179 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1180
1181 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1182 }
e9a25f70
JL
1183 else if (GET_CODE (x) == ADDRESSOF)
1184 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
23b2ce53
RS
1185 else
1186 abort ();
1187}
1188
ccba022b
RS
1189/* Like `gen_lowpart', but refer to the most significant part.
1190 This is used to access the imaginary part of a complex number. */
1191
1192rtx
1193gen_highpart (mode, x)
1194 enum machine_mode mode;
1195 register rtx x;
1196{
ddef6bc7
JJ
1197 unsigned int msize = GET_MODE_SIZE (mode);
1198 unsigned int xsize = GET_MODE_SIZE (GET_MODE (x));
1199
ccba022b
RS
1200 /* This case loses if X is a subreg. To catch bugs early,
1201 complain if an invalid MODE is used even in other cases. */
ddef6bc7
JJ
1202 if (msize > UNITS_PER_WORD
1203 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
ccba022b
RS
1204 abort ();
1205 if (GET_CODE (x) == CONST_DOUBLE
1632afca 1206#if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
ccba022b
RS
1207 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
1208#endif
1209 )
3b80f6ca 1210 return GEN_INT (CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
ccba022b 1211 else if (GET_CODE (x) == CONST_INT)
27eef9ce
JC
1212 {
1213 if (HOST_BITS_PER_WIDE_INT <= BITS_PER_WORD)
1214 return const0_rtx;
1215 return GEN_INT (INTVAL (x) >> (HOST_BITS_PER_WIDE_INT - BITS_PER_WORD));
1216 }
ccba022b
RS
1217 else if (GET_CODE (x) == MEM)
1218 {
1219 register int offset = 0;
ddef6bc7 1220
8698cce3 1221 if (! WORDS_BIG_ENDIAN)
ddef6bc7
JJ
1222 offset = (MAX (xsize, UNITS_PER_WORD)
1223 - MAX (msize, UNITS_PER_WORD));
8698cce3
RK
1224
1225 if (! BYTES_BIG_ENDIAN
ddef6bc7
JJ
1226 && msize < UNITS_PER_WORD)
1227 offset -= (msize - MIN (UNITS_PER_WORD, xsize));
8698cce3 1228
ccba022b
RS
1229 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1230 }
1231 else if (GET_CODE (x) == SUBREG)
1232 {
1233 /* The only time this should occur is when we are looking at a
1234 multi-word item with a SUBREG whose mode is the same as that of the
1235 item. It isn't clear what we would do if it wasn't. */
ddef6bc7 1236 if (SUBREG_BYTE (x) != 0)
ccba022b
RS
1237 abort ();
1238 return gen_highpart (mode, SUBREG_REG (x));
1239 }
1240 else if (GET_CODE (x) == REG)
1241 {
ddef6bc7 1242 int offset = 0;
4901a643 1243
69295d6d
AO
1244 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode))
1245 abort ();
ddef6bc7
JJ
1246
1247 if ((! WORDS_BIG_ENDIAN || ! BYTES_BIG_ENDIAN)
1248 && xsize > msize)
1249 {
1250 int difference = xsize - msize;
1251
1252 if (! WORDS_BIG_ENDIAN)
1253 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1254 if (! BYTES_BIG_ENDIAN)
1255 offset += difference % UNITS_PER_WORD;
1256 }
1257 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
1258 {
1259 int final_regno = REGNO (x) +
1260 subreg_regno_offset (REGNO (x), GET_MODE (x), offset, mode);
1261
1262 /* integrate.c can't handle parts of a return value register.
1263 ??? Then integrate.c should be fixed!
1264 ??? What about CLASS_CANNOT_CHANGE_SIZE? */
1265 if ((! REG_FUNCTION_VALUE_P (x)
1266 || ! rtx_equal_function_value_matters)
cb00f51a 1267 /* We want to keep the stack, frame, and arg pointers special. */
ddef6bc7
JJ
1268 && x != frame_pointer_rtx
1269#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1270 && x != arg_pointer_rtx
cb00f51a 1271#endif
ddef6bc7
JJ
1272 && x != stack_pointer_rtx)
1273 return gen_rtx_REG (mode, final_regno);
1274 }
1275 /* Just generate a normal SUBREG. */
1276 return gen_rtx_SUBREG (mode, x, offset);
ccba022b
RS
1277 }
1278 else
1279 abort ();
1280}
1281
23b2ce53
RS
1282/* Return 1 iff X, assumed to be a SUBREG,
1283 refers to the least significant part of its containing reg.
1284 If X is not a SUBREG, always return 1 (it is its own low part!). */
1285
1286int
1287subreg_lowpart_p (x)
1288 rtx x;
1289{
ddef6bc7
JJ
1290 unsigned int offset = 0;
1291 int difference = (GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1292 - GET_MODE_SIZE (GET_MODE (x)));
1293
23b2ce53
RS
1294 if (GET_CODE (x) != SUBREG)
1295 return 1;
a3a03040
RK
1296 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1297 return 0;
23b2ce53 1298
ddef6bc7
JJ
1299 if (difference > 0)
1300 {
1301 if (WORDS_BIG_ENDIAN)
1302 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1303 if (BYTES_BIG_ENDIAN)
1304 offset += difference % UNITS_PER_WORD;
1305 }
23b2ce53 1306
ddef6bc7 1307 return SUBREG_BYTE (x) == offset;
23b2ce53
RS
1308}
1309\f
23b2ce53 1310
ddef6bc7
JJ
1311/* Helper routine for all the constant cases of operand_subword.
1312 Some places invoke this directly. */
23b2ce53
RS
1313
1314rtx
ddef6bc7 1315constant_subword (op, offset, mode)
23b2ce53 1316 rtx op;
ddef6bc7 1317 int offset;
23b2ce53
RS
1318 enum machine_mode mode;
1319{
906c4e36 1320 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
ddef6bc7 1321 HOST_WIDE_INT val;
23b2ce53
RS
1322
1323 /* If OP is already an integer word, return it. */
1324 if (GET_MODE_CLASS (mode) == MODE_INT
1325 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1326 return op;
1327
1632afca 1328#ifdef REAL_ARITHMETIC
5495cc55
RH
1329 /* The output is some bits, the width of the target machine's word.
1330 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1331 host can't. */
9847c2f6 1332 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1632afca 1333 && GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1334 && GET_MODE_BITSIZE (mode) == 64
1632afca
RS
1335 && GET_CODE (op) == CONST_DOUBLE)
1336 {
9847c2f6 1337 long k[2];
1632afca
RS
1338 REAL_VALUE_TYPE rv;
1339
1340 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1341 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
7677ffa4 1342
9847c2f6 1343 /* We handle 32-bit and >= 64-bit words here. Note that the order in
7677ffa4 1344 which the words are written depends on the word endianness.
7677ffa4 1345 ??? This is a potential portability problem and should
7cae975e
RH
1346 be fixed at some point.
1347
1348 We must excercise caution with the sign bit. By definition there
1349 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1350 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1351 So we explicitly mask and sign-extend as necessary. */
9847c2f6 1352 if (BITS_PER_WORD == 32)
7cae975e 1353 {
ddef6bc7 1354 val = k[offset];
7cae975e
RH
1355 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1356 return GEN_INT (val);
1357 }
1358#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1359 else if (BITS_PER_WORD >= 64 && offset == 0)
7cae975e
RH
1360 {
1361 val = k[! WORDS_BIG_ENDIAN];
1362 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1363 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1364 return GEN_INT (val);
1365 }
9847c2f6 1366#endif
47b34d40
JW
1367 else if (BITS_PER_WORD == 16)
1368 {
ddef6bc7
JJ
1369 val = k[offset >> 1];
1370 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1371 val >>= 16;
73de376f 1372 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
7cae975e 1373 return GEN_INT (val);
47b34d40 1374 }
7677ffa4
RK
1375 else
1376 abort ();
1632afca 1377 }
a5559dbc
RE
1378 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1379 && GET_MODE_CLASS (mode) == MODE_FLOAT
1380 && GET_MODE_BITSIZE (mode) > 64
1381 && GET_CODE (op) == CONST_DOUBLE)
5495cc55
RH
1382 {
1383 long k[4];
1384 REAL_VALUE_TYPE rv;
a5559dbc 1385
5495cc55
RH
1386 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1387 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
a5559dbc 1388
5495cc55
RH
1389 if (BITS_PER_WORD == 32)
1390 {
ddef6bc7 1391 val = k[offset];
5495cc55
RH
1392 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1393 return GEN_INT (val);
1394 }
1395#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1396 else if (BITS_PER_WORD >= 64 && offset <= 1)
5495cc55 1397 {
ddef6bc7 1398 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
5495cc55 1399 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
ddef6bc7 1400 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
5495cc55
RH
1401 return GEN_INT (val);
1402 }
1403#endif
1404 else
1405 abort ();
1406 }
1632afca 1407#else /* no REAL_ARITHMETIC */
23b2ce53 1408 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 1409 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
23b2ce53
RS
1410 || flag_pretend_float)
1411 && GET_MODE_CLASS (mode) == MODE_FLOAT
1412 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1413 && GET_CODE (op) == CONST_DOUBLE)
7529ac93
CH
1414 {
1415 /* The constant is stored in the host's word-ordering,
1416 but we want to access it in the target's word-ordering. Some
1417 compilers don't like a conditional inside macro args, so we have two
1418 copies of the return. */
2fe02d7e 1419#ifdef HOST_WORDS_BIG_ENDIAN
ddef6bc7 1420 return GEN_INT (offset == WORDS_BIG_ENDIAN
7529ac93 1421 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
2fe02d7e 1422#else
ddef6bc7 1423 return GEN_INT (offset != WORDS_BIG_ENDIAN
7529ac93 1424 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
2fe02d7e 1425#endif
7529ac93 1426 }
1632afca 1427#endif /* no REAL_ARITHMETIC */
23b2ce53
RS
1428
1429 /* Single word float is a little harder, since single- and double-word
1430 values often do not have the same high-order bits. We have already
1431 verified that we want the only defined word of the single-word value. */
1632afca 1432#ifdef REAL_ARITHMETIC
9847c2f6 1433 if (GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1434 && GET_MODE_BITSIZE (mode) == 32
1632afca
RS
1435 && GET_CODE (op) == CONST_DOUBLE)
1436 {
9847c2f6 1437 long l;
1632afca
RS
1438 REAL_VALUE_TYPE rv;
1439
1440 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1441 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
aa2ae679 1442
7cae975e
RH
1443 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1444 val = l;
1445 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
b5a3eb84 1446
aa2ae679
JL
1447 if (BITS_PER_WORD == 16)
1448 {
ddef6bc7 1449 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1450 val >>= 16;
73de376f 1451 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
aa2ae679 1452 }
7cae975e
RH
1453
1454 return GEN_INT (val);
1632afca
RS
1455 }
1456#else
23b2ce53 1457 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 1458 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
23b2ce53 1459 || flag_pretend_float)
e01a2cec 1460 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
23b2ce53
RS
1461 && GET_MODE_CLASS (mode) == MODE_FLOAT
1462 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1463 && GET_CODE (op) == CONST_DOUBLE)
1464 {
1465 double d;
906c4e36 1466 union {float f; HOST_WIDE_INT i; } u;
23b2ce53
RS
1467
1468 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1469
1470 u.f = d;
906c4e36 1471 return GEN_INT (u.i);
23b2ce53 1472 }
e01a2cec
RK
1473 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1474 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1475 || flag_pretend_float)
1476 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1477 && GET_MODE_CLASS (mode) == MODE_FLOAT
1478 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1479 && GET_CODE (op) == CONST_DOUBLE)
1480 {
1481 double d;
1482 union {double d; HOST_WIDE_INT i; } u;
1483
1484 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1485
1486 u.d = d;
1487 return GEN_INT (u.i);
1488 }
1632afca 1489#endif /* no REAL_ARITHMETIC */
23b2ce53
RS
1490
1491 /* The only remaining cases that we can handle are integers.
1492 Convert to proper endianness now since these cases need it.
ddef6bc7 1493 At this point, offset == 0 means the low-order word.
23b2ce53 1494
2d4f57f8
RK
1495 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1496 in general. However, if OP is (const_int 0), we can just return
1497 it for any word. */
1498
1499 if (op == const0_rtx)
1500 return op;
23b2ce53
RS
1501
1502 if (GET_MODE_CLASS (mode) != MODE_INT
2d4f57f8 1503 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
0cf214a0 1504 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
23b2ce53
RS
1505 return 0;
1506
1507 if (WORDS_BIG_ENDIAN)
ddef6bc7 1508 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
23b2ce53
RS
1509
1510 /* Find out which word on the host machine this value is in and get
1511 it from the constant. */
ddef6bc7 1512 val = (offset / size_ratio == 0
23b2ce53
RS
1513 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1514 : (GET_CODE (op) == CONST_INT
1515 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1516
3f518020 1517 /* Get the value we want into the low bits of val. */
906c4e36 1518 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
ddef6bc7 1519 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
3f518020 1520
7e4ce834 1521 val = trunc_int_for_mode (val, word_mode);
23b2ce53 1522
906c4e36 1523 return GEN_INT (val);
23b2ce53
RS
1524}
1525
ddef6bc7
JJ
1526/* Return subword OFFSET of operand OP.
1527 The word number, OFFSET, is interpreted as the word number starting
1528 at the low-order address. OFFSET 0 is the low-order word if not
1529 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1530
1531 If we cannot extract the required word, we return zero. Otherwise,
1532 an rtx corresponding to the requested word will be returned.
1533
1534 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1535 reload has completed, a valid address will always be returned. After
1536 reload, if a valid address cannot be returned, we return zero.
1537
1538 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1539 it is the responsibility of the caller.
1540
1541 MODE is the mode of OP in case it is a CONST_INT.
1542
1543 ??? This is still rather broken for some cases. The problem for the
1544 moment is that all callers of this thing provide no 'goal mode' to
1545 tell us to work with. This exists because all callers were written
1546 in a word based SUBREG world. */
1547
1548rtx
1549operand_subword (op, offset, validate_address, mode)
1550 rtx op;
1551 unsigned int offset;
1552 int validate_address;
1553 enum machine_mode mode;
1554{
1555 if (mode == VOIDmode)
1556 mode = GET_MODE (op);
1557
1558 if (mode == VOIDmode)
1559 abort ();
1560
1561 /* If OP is narrower than a word, fail. */
1562 if (mode != BLKmode
1563 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1564 return 0;
1565
1566 /* If we want a word outside OP, return zero. */
1567 if (mode != BLKmode
1568 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1569 return const0_rtx;
1570
1571 switch (GET_CODE (op))
1572 {
1573 case REG:
1574 case SUBREG:
1575 case CONCAT:
1576 case MEM:
1577 break;
1578
1579 default:
1580 /* The only remaining cases are when OP is a constant. If the host and
1581 target floating formats are the same, handling two-word floating
1582 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
1583 are defined as returning one or two 32 bit values, respectively,
1584 and not values of BITS_PER_WORD bits. */
1585 return constant_subword (op, offset, mode);
1586 }
1587
1588 /* If OP is already an integer word, return it. */
1589 if (GET_MODE_CLASS (mode) == MODE_INT
1590 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1591 return op;
1592
1593 /* If OP is a REG or SUBREG, we can handle it very simply. */
1594 if (GET_CODE (op) == REG)
1595 {
1596 if (REGNO (op) < FIRST_PSEUDO_REGISTER)
1597 {
1598 int final_regno = REGNO (op) +
1599 subreg_regno_offset (REGNO (op), GET_MODE (op),
1600 offset * UNITS_PER_WORD,
1601 word_mode);
1602
1603 /* If the register is not valid for MODE, return 0. If we don't
1604 do this, there is no way to fix up the resulting REG later. */
1605 if (! HARD_REGNO_MODE_OK (final_regno, word_mode))
1606 return 0;
1607
1608 /* integrate.c can't handle parts of a return value register.
1609 ??? Then integrate.c should be fixed!
1610 ??? What about CLASS_CANNOT_CHANGE_SIZE? */
1611 if ((! REG_FUNCTION_VALUE_P (op)
1612 || ! rtx_equal_function_value_matters)
1613 /* ??? What about CLASS_CANNOT_CHANGE_SIZE? */
1614 /* We want to keep the stack, frame, and arg pointers
1615 special. */
1616 && op != frame_pointer_rtx
1617#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1618 && op != arg_pointer_rtx
1619#endif
1620 && op != stack_pointer_rtx)
1621 return gen_rtx_REG (word_mode, final_regno);
1622 }
1623
1624 /* Just return a normal SUBREG. */
1625 return gen_rtx_SUBREG (word_mode, op,
1626 (offset * UNITS_PER_WORD));
1627 }
1628 else if (GET_CODE (op) == SUBREG)
1629 {
1630 int final_offset = ((offset * UNITS_PER_WORD) + SUBREG_BYTE (op));
1631
1632 /* When working with SUBREGs the rule is that the byte
1633 offset must be a multiple of the SUBREG's mode. */
1634 final_offset = (final_offset / GET_MODE_SIZE (word_mode));
1635 final_offset = (final_offset * GET_MODE_SIZE (word_mode));
1636 return gen_rtx_SUBREG (word_mode, SUBREG_REG (op), final_offset);
1637 }
1638 else if (GET_CODE (op) == CONCAT)
1639 {
1640 unsigned int partwords = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1641 if (offset < partwords)
1642 return operand_subword (XEXP (op, 0), offset, validate_address, mode);
1643 return operand_subword (XEXP (op, 1), offset - partwords,
1644 validate_address, mode);
1645 }
1646
1647 /* Form a new MEM at the requested address. */
1648 if (GET_CODE (op) == MEM)
1649 {
1650 rtx addr = plus_constant (XEXP (op, 0), (offset * UNITS_PER_WORD));
1651 rtx new;
1652
1653 if (validate_address)
1654 {
1655 if (reload_completed)
1656 {
1657 if (! strict_memory_address_p (word_mode, addr))
1658 return 0;
1659 }
1660 else
1661 addr = memory_address (word_mode, addr);
1662 }
1663
1664 new = gen_rtx_MEM (word_mode, addr);
1665 MEM_COPY_ATTRIBUTES (new, op);
1666 return new;
1667 }
1668
1669 /* Unreachable... (famous last words) */
1670 abort ();
1671}
1672
23b2ce53
RS
1673/* Similar to `operand_subword', but never return 0. If we can't extract
1674 the required subword, put OP into a register and try again. If that fails,
ddef6bc7 1675 abort. We always validate the address in this case.
23b2ce53
RS
1676
1677 MODE is the mode of OP, in case it is CONST_INT. */
1678
1679rtx
ddef6bc7 1680operand_subword_force (op, offset, mode)
23b2ce53 1681 rtx op;
ddef6bc7 1682 unsigned int offset;
23b2ce53
RS
1683 enum machine_mode mode;
1684{
ddef6bc7 1685 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1686
1687 if (result)
1688 return result;
1689
1690 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1691 {
1692 /* If this is a register which can not be accessed by words, copy it
1693 to a pseudo register. */
1694 if (GET_CODE (op) == REG)
1695 op = copy_to_reg (op);
1696 else
1697 op = force_reg (mode, op);
1698 }
23b2ce53 1699
ddef6bc7 1700 result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1701 if (result == 0)
1702 abort ();
1703
1704 return result;
1705}
1706\f
1707/* Given a compare instruction, swap the operands.
1708 A test instruction is changed into a compare of 0 against the operand. */
1709
1710void
1711reverse_comparison (insn)
1712 rtx insn;
1713{
1714 rtx body = PATTERN (insn);
1715 rtx comp;
1716
1717 if (GET_CODE (body) == SET)
1718 comp = SET_SRC (body);
1719 else
1720 comp = SET_SRC (XVECEXP (body, 0, 0));
1721
1722 if (GET_CODE (comp) == COMPARE)
1723 {
1724 rtx op0 = XEXP (comp, 0);
1725 rtx op1 = XEXP (comp, 1);
1726 XEXP (comp, 0) = op1;
1727 XEXP (comp, 1) = op0;
1728 }
1729 else
1730 {
c5c76735
JL
1731 rtx new = gen_rtx_COMPARE (VOIDmode,
1732 CONST0_RTX (GET_MODE (comp)), comp);
23b2ce53
RS
1733 if (GET_CODE (body) == SET)
1734 SET_SRC (body) = new;
1735 else
1736 SET_SRC (XVECEXP (body, 0, 0)) = new;
1737 }
1738}
1739\f
1740/* Return a memory reference like MEMREF, but with its mode changed
1741 to MODE and its address changed to ADDR.
1742 (VOIDmode means don't change the mode.
1743 NULL for ADDR means don't change the address.) */
1744
1745rtx
1746change_address (memref, mode, addr)
1747 rtx memref;
1748 enum machine_mode mode;
1749 rtx addr;
1750{
1751 rtx new;
1752
1753 if (GET_CODE (memref) != MEM)
1754 abort ();
1755 if (mode == VOIDmode)
1756 mode = GET_MODE (memref);
1757 if (addr == 0)
1758 addr = XEXP (memref, 0);
1759
1760 /* If reload is in progress or has completed, ADDR must be valid.
1761 Otherwise, we can call memory_address to make it valid. */
1762 if (reload_completed || reload_in_progress)
1763 {
1764 if (! memory_address_p (mode, addr))
1765 abort ();
1766 }
1767 else
1768 addr = memory_address (mode, addr);
1769
9b04c6a8
RK
1770 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1771 return memref;
1772
3b80f6ca 1773 new = gen_rtx_MEM (mode, addr);
c6df88cb 1774 MEM_COPY_ATTRIBUTES (new, memref);
23b2ce53
RS
1775 return new;
1776}
1777\f
1778/* Return a newly created CODE_LABEL rtx with a unique label number. */
1779
1780rtx
1781gen_label_rtx ()
1782{
ca695ac9
JB
1783 register rtx label;
1784
b93a436e 1785 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
9714cf43 1786 NULL_RTX, label_num++, NULL, NULL);
ca695ac9 1787
23b2ce53 1788 LABEL_NUSES (label) = 0;
8cd0faaf 1789 LABEL_ALTERNATE_NAME (label) = NULL;
23b2ce53
RS
1790 return label;
1791}
1792\f
1793/* For procedure integration. */
1794
23b2ce53 1795/* Install new pointers to the first and last insns in the chain.
86fe05e0 1796 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
1797 Used for an inline-procedure after copying the insn chain. */
1798
1799void
1800set_new_first_and_last_insn (first, last)
1801 rtx first, last;
1802{
86fe05e0
RK
1803 rtx insn;
1804
23b2ce53
RS
1805 first_insn = first;
1806 last_insn = last;
86fe05e0
RK
1807 cur_insn_uid = 0;
1808
1809 for (insn = first; insn; insn = NEXT_INSN (insn))
1810 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1811
1812 cur_insn_uid++;
23b2ce53
RS
1813}
1814
1815/* Set the range of label numbers found in the current function.
1816 This is used when belatedly compiling an inline function. */
1817
1818void
1819set_new_first_and_last_label_num (first, last)
1820 int first, last;
1821{
1822 base_label_num = label_num;
1823 first_label_num = first;
1824 last_label_num = last;
1825}
49ad7cfa
BS
1826
1827/* Set the last label number found in the current function.
1828 This is used when belatedly compiling an inline function. */
23b2ce53
RS
1829
1830void
49ad7cfa
BS
1831set_new_last_label_num (last)
1832 int last;
23b2ce53 1833{
49ad7cfa
BS
1834 base_label_num = label_num;
1835 last_label_num = last;
23b2ce53 1836}
49ad7cfa 1837\f
23b2ce53
RS
1838/* Restore all variables describing the current status from the structure *P.
1839 This is used after a nested function. */
1840
1841void
1842restore_emit_status (p)
272df862 1843 struct function *p ATTRIBUTE_UNUSED;
23b2ce53 1844{
457a2d9c 1845 last_label_num = 0;
49ad7cfa 1846 clear_emit_caches ();
23b2ce53 1847}
e2ecd91c 1848
21cd906e 1849/* Clear out all parts of the state in F that can safely be discarded
e2ecd91c 1850 after the function has been compiled, to let garbage collection
0a8a198c 1851 reclaim the memory. */
21cd906e 1852
e2ecd91c 1853void
0a8a198c 1854free_emit_status (f)
e2ecd91c
BS
1855 struct function *f;
1856{
1857 free (f->emit->x_regno_reg_rtx);
e2ecd91c 1858 free (f->emit->regno_pointer_align);
fa51b01b
RH
1859 free (f->emit);
1860 f->emit = NULL;
e2ecd91c 1861}
23b2ce53 1862\f
d1b81779
GK
1863/* Go through all the RTL insn bodies and copy any invalid shared
1864 structure. This routine should only be called once. */
23b2ce53
RS
1865
1866void
d1b81779
GK
1867unshare_all_rtl (fndecl, insn)
1868 tree fndecl;
1869 rtx insn;
23b2ce53 1870{
d1b81779 1871 tree decl;
23b2ce53 1872
d1b81779
GK
1873 /* Make sure that virtual parameters are not shared. */
1874 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
19e7881c 1875 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
d1b81779 1876
5c6df058
AO
1877 /* Make sure that virtual stack slots are not shared. */
1878 unshare_all_decls (DECL_INITIAL (fndecl));
1879
d1b81779
GK
1880 /* Unshare just about everything else. */
1881 unshare_all_rtl_1 (insn);
1882
23b2ce53
RS
1883 /* Make sure the addresses of stack slots found outside the insn chain
1884 (such as, in DECL_RTL of a variable) are not shared
1885 with the insn chain.
1886
1887 This special care is necessary when the stack slot MEM does not
1888 actually appear in the insn chain. If it does appear, its address
1889 is unshared from all else at that point. */
242b0ce6 1890 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
1891}
1892
d1b81779
GK
1893/* Go through all the RTL insn bodies and copy any invalid shared
1894 structure, again. This is a fairly expensive thing to do so it
1895 should be done sparingly. */
1896
1897void
1898unshare_all_rtl_again (insn)
1899 rtx insn;
1900{
1901 rtx p;
624c87aa
RE
1902 tree decl;
1903
d1b81779 1904 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 1905 if (INSN_P (p))
d1b81779
GK
1906 {
1907 reset_used_flags (PATTERN (p));
1908 reset_used_flags (REG_NOTES (p));
1909 reset_used_flags (LOG_LINKS (p));
1910 }
624c87aa 1911
2d4aecb3
AO
1912 /* Make sure that virtual stack slots are not shared. */
1913 reset_used_decls (DECL_INITIAL (cfun->decl));
1914
624c87aa
RE
1915 /* Make sure that virtual parameters are not shared. */
1916 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
1917 reset_used_flags (DECL_RTL (decl));
1918
1919 reset_used_flags (stack_slot_list);
1920
1921 unshare_all_rtl (cfun->decl, insn);
d1b81779
GK
1922}
1923
1924/* Go through all the RTL insn bodies and copy any invalid shared structure.
1925 Assumes the mark bits are cleared at entry. */
1926
1927static void
1928unshare_all_rtl_1 (insn)
1929 rtx insn;
1930{
1931 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 1932 if (INSN_P (insn))
d1b81779
GK
1933 {
1934 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1935 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1936 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1937 }
1938}
1939
5c6df058
AO
1940/* Go through all virtual stack slots of a function and copy any
1941 shared structure. */
1942static void
1943unshare_all_decls (blk)
1944 tree blk;
1945{
1946 tree t;
1947
1948 /* Copy shared decls. */
1949 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
1950 if (DECL_RTL_SET_P (t))
1951 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
5c6df058
AO
1952
1953 /* Now process sub-blocks. */
1954 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1955 unshare_all_decls (t);
1956}
1957
2d4aecb3
AO
1958/* Go through all virtual stack slots of a function and mark them as
1959 not shared. */
1960static void
1961reset_used_decls (blk)
1962 tree blk;
1963{
1964 tree t;
1965
1966 /* Mark decls. */
1967 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
1968 if (DECL_RTL_SET_P (t))
1969 reset_used_flags (DECL_RTL (t));
2d4aecb3
AO
1970
1971 /* Now process sub-blocks. */
1972 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
1973 reset_used_decls (t);
1974}
1975
23b2ce53
RS
1976/* Mark ORIG as in use, and return a copy of it if it was already in use.
1977 Recursively does the same for subexpressions. */
1978
1979rtx
1980copy_rtx_if_shared (orig)
1981 rtx orig;
1982{
1983 register rtx x = orig;
1984 register int i;
1985 register enum rtx_code code;
6f7d635c 1986 register const char *format_ptr;
23b2ce53
RS
1987 int copied = 0;
1988
1989 if (x == 0)
1990 return 0;
1991
1992 code = GET_CODE (x);
1993
1994 /* These types may be freely shared. */
1995
1996 switch (code)
1997 {
1998 case REG:
1999 case QUEUED:
2000 case CONST_INT:
2001 case CONST_DOUBLE:
2002 case SYMBOL_REF:
2003 case CODE_LABEL:
2004 case PC:
2005 case CC0:
2006 case SCRATCH:
0f41302f 2007 /* SCRATCH must be shared because they represent distinct values. */
23b2ce53
RS
2008 return x;
2009
b851ea09
RK
2010 case CONST:
2011 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2012 a LABEL_REF, it isn't sharable. */
2013 if (GET_CODE (XEXP (x, 0)) == PLUS
2014 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2015 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2016 return x;
2017 break;
2018
23b2ce53
RS
2019 case INSN:
2020 case JUMP_INSN:
2021 case CALL_INSN:
2022 case NOTE:
23b2ce53
RS
2023 case BARRIER:
2024 /* The chain of insns is not being copied. */
2025 return x;
2026
2027 case MEM:
83512665
JL
2028 /* A MEM is allowed to be shared if its address is constant.
2029
2030 We used to allow sharing of MEMs which referenced
2031 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2032 that can lose. instantiate_virtual_regs will not unshare
2033 the MEMs, and combine may change the structure of the address
2034 because it looks safe and profitable in one context, but
2035 in some other context it creates unrecognizable RTL. */
2036 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
23b2ce53
RS
2037 return x;
2038
e9a25f70
JL
2039 break;
2040
2041 default:
2042 break;
23b2ce53
RS
2043 }
2044
2045 /* This rtx may not be shared. If it has already been seen,
2046 replace it with a copy of itself. */
2047
2048 if (x->used)
2049 {
2050 register rtx copy;
2051
2052 copy = rtx_alloc (code);
4e135bdd 2053 memcpy (copy, x,
4c9a05bc
RK
2054 (sizeof (*copy) - sizeof (copy->fld)
2055 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
23b2ce53
RS
2056 x = copy;
2057 copied = 1;
2058 }
2059 x->used = 1;
2060
2061 /* Now scan the subexpressions recursively.
2062 We can store any replaced subexpressions directly into X
2063 since we know X is not shared! Any vectors in X
2064 must be copied if X was copied. */
2065
2066 format_ptr = GET_RTX_FORMAT (code);
2067
2068 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2069 {
2070 switch (*format_ptr++)
2071 {
2072 case 'e':
2073 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2074 break;
2075
2076 case 'E':
2077 if (XVEC (x, i) != NULL)
2078 {
2079 register int j;
f0722107 2080 int len = XVECLEN (x, i);
23b2ce53 2081
f0722107 2082 if (copied && len > 0)
8f985ec4 2083 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
f0722107
RS
2084 for (j = 0; j < len; j++)
2085 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
23b2ce53
RS
2086 }
2087 break;
2088 }
2089 }
2090 return x;
2091}
2092
2093/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2094 to look for shared sub-parts. */
2095
2096void
2097reset_used_flags (x)
2098 rtx x;
2099{
2100 register int i, j;
2101 register enum rtx_code code;
6f7d635c 2102 register const char *format_ptr;
23b2ce53
RS
2103
2104 if (x == 0)
2105 return;
2106
2107 code = GET_CODE (x);
2108
9faa82d8 2109 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2110 for them. */
2111
2112 switch (code)
2113 {
2114 case REG:
2115 case QUEUED:
2116 case CONST_INT:
2117 case CONST_DOUBLE:
2118 case SYMBOL_REF:
2119 case CODE_LABEL:
2120 case PC:
2121 case CC0:
2122 return;
2123
2124 case INSN:
2125 case JUMP_INSN:
2126 case CALL_INSN:
2127 case NOTE:
2128 case LABEL_REF:
2129 case BARRIER:
2130 /* The chain of insns is not being copied. */
2131 return;
e9a25f70
JL
2132
2133 default:
2134 break;
23b2ce53
RS
2135 }
2136
2137 x->used = 0;
2138
2139 format_ptr = GET_RTX_FORMAT (code);
2140 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2141 {
2142 switch (*format_ptr++)
2143 {
2144 case 'e':
2145 reset_used_flags (XEXP (x, i));
2146 break;
2147
2148 case 'E':
2149 for (j = 0; j < XVECLEN (x, i); j++)
2150 reset_used_flags (XVECEXP (x, i, j));
2151 break;
2152 }
2153 }
2154}
2155\f
2156/* Copy X if necessary so that it won't be altered by changes in OTHER.
2157 Return X or the rtx for the pseudo reg the value of X was copied into.
2158 OTHER must be valid as a SET_DEST. */
2159
2160rtx
2161make_safe_from (x, other)
2162 rtx x, other;
2163{
2164 while (1)
2165 switch (GET_CODE (other))
2166 {
2167 case SUBREG:
2168 other = SUBREG_REG (other);
2169 break;
2170 case STRICT_LOW_PART:
2171 case SIGN_EXTEND:
2172 case ZERO_EXTEND:
2173 other = XEXP (other, 0);
2174 break;
2175 default:
2176 goto done;
2177 }
2178 done:
2179 if ((GET_CODE (other) == MEM
2180 && ! CONSTANT_P (x)
2181 && GET_CODE (x) != REG
2182 && GET_CODE (x) != SUBREG)
2183 || (GET_CODE (other) == REG
2184 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2185 || reg_mentioned_p (other, x))))
2186 {
2187 rtx temp = gen_reg_rtx (GET_MODE (x));
2188 emit_move_insn (temp, x);
2189 return temp;
2190 }
2191 return x;
2192}
2193\f
2194/* Emission of insns (adding them to the doubly-linked list). */
2195
2196/* Return the first insn of the current sequence or current function. */
2197
2198rtx
2199get_insns ()
2200{
2201 return first_insn;
2202}
2203
2204/* Return the last insn emitted in current sequence or current function. */
2205
2206rtx
2207get_last_insn ()
2208{
2209 return last_insn;
2210}
2211
2212/* Specify a new insn as the last in the chain. */
2213
2214void
2215set_last_insn (insn)
2216 rtx insn;
2217{
2218 if (NEXT_INSN (insn) != 0)
2219 abort ();
2220 last_insn = insn;
2221}
2222
2223/* Return the last insn emitted, even if it is in a sequence now pushed. */
2224
2225rtx
2226get_last_insn_anywhere ()
2227{
2228 struct sequence_stack *stack;
2229 if (last_insn)
2230 return last_insn;
49ad7cfa 2231 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2232 if (stack->last != 0)
2233 return stack->last;
2234 return 0;
2235}
2236
2237/* Return a number larger than any instruction's uid in this function. */
2238
2239int
2240get_max_uid ()
2241{
2242 return cur_insn_uid;
2243}
aeeeda03 2244
673b5311
MM
2245/* Renumber instructions so that no instruction UIDs are wasted. */
2246
aeeeda03 2247void
673b5311
MM
2248renumber_insns (stream)
2249 FILE *stream;
aeeeda03
MM
2250{
2251 rtx insn;
aeeeda03 2252
673b5311
MM
2253 /* If we're not supposed to renumber instructions, don't. */
2254 if (!flag_renumber_insns)
2255 return;
2256
aeeeda03
MM
2257 /* If there aren't that many instructions, then it's not really
2258 worth renumbering them. */
673b5311 2259 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
aeeeda03
MM
2260 return;
2261
2262 cur_insn_uid = 1;
2263
2264 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
673b5311
MM
2265 {
2266 if (stream)
2267 fprintf (stream, "Renumbering insn %d to %d\n",
2268 INSN_UID (insn), cur_insn_uid);
2269 INSN_UID (insn) = cur_insn_uid++;
2270 }
aeeeda03 2271}
23b2ce53
RS
2272\f
2273/* Return the next insn. If it is a SEQUENCE, return the first insn
2274 of the sequence. */
2275
2276rtx
2277next_insn (insn)
2278 rtx insn;
2279{
2280 if (insn)
2281 {
2282 insn = NEXT_INSN (insn);
2283 if (insn && GET_CODE (insn) == INSN
2284 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2285 insn = XVECEXP (PATTERN (insn), 0, 0);
2286 }
2287
2288 return insn;
2289}
2290
2291/* Return the previous insn. If it is a SEQUENCE, return the last insn
2292 of the sequence. */
2293
2294rtx
2295previous_insn (insn)
2296 rtx insn;
2297{
2298 if (insn)
2299 {
2300 insn = PREV_INSN (insn);
2301 if (insn && GET_CODE (insn) == INSN
2302 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2303 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2304 }
2305
2306 return insn;
2307}
2308
2309/* Return the next insn after INSN that is not a NOTE. This routine does not
2310 look inside SEQUENCEs. */
2311
2312rtx
2313next_nonnote_insn (insn)
2314 rtx insn;
2315{
2316 while (insn)
2317 {
2318 insn = NEXT_INSN (insn);
2319 if (insn == 0 || GET_CODE (insn) != NOTE)
2320 break;
2321 }
2322
2323 return insn;
2324}
2325
2326/* Return the previous insn before INSN that is not a NOTE. This routine does
2327 not look inside SEQUENCEs. */
2328
2329rtx
2330prev_nonnote_insn (insn)
2331 rtx insn;
2332{
2333 while (insn)
2334 {
2335 insn = PREV_INSN (insn);
2336 if (insn == 0 || GET_CODE (insn) != NOTE)
2337 break;
2338 }
2339
2340 return insn;
2341}
2342
2343/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2344 or 0, if there is none. This routine does not look inside
0f41302f 2345 SEQUENCEs. */
23b2ce53
RS
2346
2347rtx
2348next_real_insn (insn)
2349 rtx insn;
2350{
2351 while (insn)
2352 {
2353 insn = NEXT_INSN (insn);
2354 if (insn == 0 || GET_CODE (insn) == INSN
2355 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2356 break;
2357 }
2358
2359 return insn;
2360}
2361
2362/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2363 or 0, if there is none. This routine does not look inside
2364 SEQUENCEs. */
2365
2366rtx
2367prev_real_insn (insn)
2368 rtx insn;
2369{
2370 while (insn)
2371 {
2372 insn = PREV_INSN (insn);
2373 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2374 || GET_CODE (insn) == JUMP_INSN)
2375 break;
2376 }
2377
2378 return insn;
2379}
2380
2381/* Find the next insn after INSN that really does something. This routine
2382 does not look inside SEQUENCEs. Until reload has completed, this is the
2383 same as next_real_insn. */
2384
69732dcb
RH
2385int
2386active_insn_p (insn)
2387 rtx insn;
2388{
2389 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2390 || (GET_CODE (insn) == INSN
2391 && (! reload_completed
2392 || (GET_CODE (PATTERN (insn)) != USE
2393 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2394}
2395
23b2ce53
RS
2396rtx
2397next_active_insn (insn)
2398 rtx insn;
2399{
2400 while (insn)
2401 {
2402 insn = NEXT_INSN (insn);
69732dcb 2403 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
2404 break;
2405 }
2406
2407 return insn;
2408}
2409
2410/* Find the last insn before INSN that really does something. This routine
2411 does not look inside SEQUENCEs. Until reload has completed, this is the
2412 same as prev_real_insn. */
2413
2414rtx
2415prev_active_insn (insn)
2416 rtx insn;
2417{
2418 while (insn)
2419 {
2420 insn = PREV_INSN (insn);
69732dcb 2421 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
2422 break;
2423 }
2424
2425 return insn;
2426}
2427
2428/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2429
2430rtx
2431next_label (insn)
2432 rtx insn;
2433{
2434 while (insn)
2435 {
2436 insn = NEXT_INSN (insn);
2437 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2438 break;
2439 }
2440
2441 return insn;
2442}
2443
2444/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2445
2446rtx
2447prev_label (insn)
2448 rtx insn;
2449{
2450 while (insn)
2451 {
2452 insn = PREV_INSN (insn);
2453 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2454 break;
2455 }
2456
2457 return insn;
2458}
2459\f
2460#ifdef HAVE_cc0
c572e5ba
JVA
2461/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2462 and REG_CC_USER notes so we can find it. */
2463
2464void
2465link_cc0_insns (insn)
2466 rtx insn;
2467{
2468 rtx user = next_nonnote_insn (insn);
2469
2470 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2471 user = XVECEXP (PATTERN (user), 0, 0);
2472
c5c76735
JL
2473 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2474 REG_NOTES (user));
3b80f6ca 2475 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
c572e5ba
JVA
2476}
2477
23b2ce53
RS
2478/* Return the next insn that uses CC0 after INSN, which is assumed to
2479 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2480 applied to the result of this function should yield INSN).
2481
2482 Normally, this is simply the next insn. However, if a REG_CC_USER note
2483 is present, it contains the insn that uses CC0.
2484
2485 Return 0 if we can't find the insn. */
2486
2487rtx
2488next_cc0_user (insn)
2489 rtx insn;
2490{
906c4e36 2491 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
2492
2493 if (note)
2494 return XEXP (note, 0);
2495
2496 insn = next_nonnote_insn (insn);
2497 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2498 insn = XVECEXP (PATTERN (insn), 0, 0);
2499
2c3c49de 2500 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
2501 return insn;
2502
2503 return 0;
2504}
2505
2506/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2507 note, it is the previous insn. */
2508
2509rtx
2510prev_cc0_setter (insn)
2511 rtx insn;
2512{
906c4e36 2513 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
2514
2515 if (note)
2516 return XEXP (note, 0);
2517
2518 insn = prev_nonnote_insn (insn);
2519 if (! sets_cc0_p (PATTERN (insn)))
2520 abort ();
2521
2522 return insn;
2523}
2524#endif
e5bef2e4
HB
2525
2526/* Increment the label uses for all labels present in rtx. */
2527
2528static void
2529mark_label_nuses(x)
2530 rtx x;
2531{
2532 register enum rtx_code code;
2533 register int i, j;
2534 register const char *fmt;
2535
2536 code = GET_CODE (x);
2537 if (code == LABEL_REF)
2538 LABEL_NUSES (XEXP (x, 0))++;
2539
2540 fmt = GET_RTX_FORMAT (code);
2541 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2542 {
2543 if (fmt[i] == 'e')
2544 mark_label_nuses (XEXP (x, i));
2545 else if (fmt[i] == 'E')
2546 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2547 mark_label_nuses (XVECEXP (x, i, j));
2548 }
2549}
2550
23b2ce53
RS
2551\f
2552/* Try splitting insns that can be split for better scheduling.
2553 PAT is the pattern which might split.
2554 TRIAL is the insn providing PAT.
11147ebe 2555 LAST is non-zero if we should return the last insn of the sequence produced.
23b2ce53
RS
2556
2557 If this routine succeeds in splitting, it returns the first or last
11147ebe 2558 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
2559 returns TRIAL. If the insn to be returned can be split, it will be. */
2560
2561rtx
11147ebe 2562try_split (pat, trial, last)
23b2ce53 2563 rtx pat, trial;
11147ebe 2564 int last;
23b2ce53
RS
2565{
2566 rtx before = PREV_INSN (trial);
2567 rtx after = NEXT_INSN (trial);
2568 rtx seq = split_insns (pat, trial);
2569 int has_barrier = 0;
2570 rtx tem;
2571
2572 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2573 We may need to handle this specially. */
2574 if (after && GET_CODE (after) == BARRIER)
2575 {
2576 has_barrier = 1;
2577 after = NEXT_INSN (after);
2578 }
2579
2580 if (seq)
2581 {
2582 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2583 The latter case will normally arise only when being done so that
2584 it, in turn, will be split (SFmode on the 29k is an example). */
2585 if (GET_CODE (seq) == SEQUENCE)
2586 {
4b5e8abe 2587 int i;
d6e95df8
AH
2588 rtx eh_note;
2589
4b5e8abe
CP
2590 /* Avoid infinite loop if any insn of the result matches
2591 the original pattern. */
2592 for (i = 0; i < XVECLEN (seq, 0); i++)
2593 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
2594 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
2595 return trial;
2596
90a74703
JH
2597 /* Mark labels. */
2598 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2599 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2600 mark_jump_label (PATTERN (XVECEXP (seq, 0, i)),
2601 XVECEXP (seq, 0, i), 0, 0);
23b2ce53 2602
2d01e445
AO
2603 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2604 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2605 if (GET_CODE (trial) == CALL_INSN)
2606 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2607 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2608 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2609 = CALL_INSN_FUNCTION_USAGE (trial);
2610
d6e95df8
AH
2611 /* Copy EH notes. */
2612 if ((eh_note = find_reg_note (trial, REG_EH_REGION, NULL_RTX)))
2613 for (i = 0; i < XVECLEN (seq, 0); i++)
2614 {
2615 rtx insn = XVECEXP (seq, 0, i);
2616 if (GET_CODE (insn) == CALL_INSN
2617 || (flag_non_call_exceptions
2618 && may_trap_p (PATTERN (insn))))
2619 REG_NOTES (insn)
2620 = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (eh_note, 0),
2621 REG_NOTES (insn));
2622 }
2623
e5bef2e4
HB
2624 /* If there are LABELS inside the split insns increment the
2625 usage count so we don't delete the label. */
2626 if (GET_CODE (trial) == INSN)
2627 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2628 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2629 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2630
23b2ce53
RS
2631 tem = emit_insn_after (seq, before);
2632
2633 delete_insn (trial);
2634 if (has_barrier)
2635 emit_barrier_after (tem);
11147ebe
RK
2636
2637 /* Recursively call try_split for each new insn created; by the
2638 time control returns here that insn will be fully split, so
2639 set LAST and continue from the insn after the one returned.
f4a3cd05 2640 We can't use next_active_insn here since AFTER may be a note.
23886015 2641 Ignore deleted insns, which can be occur if not optimizing. */
2c3c49de
RB
2642 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2643 if (! INSN_DELETED_P (tem) && INSN_P (tem))
f4a3cd05 2644 tem = try_split (PATTERN (tem), tem, 1);
23b2ce53
RS
2645 }
2646 /* Avoid infinite loop if the result matches the original pattern. */
2647 else if (rtx_equal_p (seq, pat))
2648 return trial;
2649 else
2650 {
2651 PATTERN (trial) = seq;
2652 INSN_CODE (trial) = -1;
11147ebe 2653 try_split (seq, trial, last);
23b2ce53
RS
2654 }
2655
11147ebe
RK
2656 /* Return either the first or the last insn, depending on which was
2657 requested. */
ba52f355
CP
2658 return last
2659 ? (after ? prev_active_insn (after) : last_insn)
2660 : next_active_insn (before);
23b2ce53
RS
2661 }
2662
2663 return trial;
2664}
2665\f
2666/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 2667 Store PATTERN in the pattern slots. */
23b2ce53
RS
2668
2669rtx
4b1f5e8c 2670make_insn_raw (pattern)
23b2ce53 2671 rtx pattern;
23b2ce53
RS
2672{
2673 register rtx insn;
2674
1f8f4a0b 2675 insn = rtx_alloc (INSN);
23b2ce53 2676
43127294 2677 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
2678 PATTERN (insn) = pattern;
2679 INSN_CODE (insn) = -1;
1632afca
RS
2680 LOG_LINKS (insn) = NULL;
2681 REG_NOTES (insn) = NULL;
23b2ce53 2682
47984720
NC
2683#ifdef ENABLE_RTL_CHECKING
2684 if (insn
2c3c49de 2685 && INSN_P (insn)
47984720
NC
2686 && (returnjump_p (insn)
2687 || (GET_CODE (insn) == SET
2688 && SET_DEST (insn) == pc_rtx)))
2689 {
2690 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2691 debug_rtx (insn);
2692 }
2693#endif
2694
23b2ce53
RS
2695 return insn;
2696}
2697
2698/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2699
2700static rtx
4b1f5e8c 2701make_jump_insn_raw (pattern)
23b2ce53 2702 rtx pattern;
23b2ce53
RS
2703{
2704 register rtx insn;
2705
4b1f5e8c 2706 insn = rtx_alloc (JUMP_INSN);
1632afca 2707 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
2708
2709 PATTERN (insn) = pattern;
2710 INSN_CODE (insn) = -1;
1632afca
RS
2711 LOG_LINKS (insn) = NULL;
2712 REG_NOTES (insn) = NULL;
2713 JUMP_LABEL (insn) = NULL;
23b2ce53
RS
2714
2715 return insn;
2716}
aff507f4
RK
2717
2718/* Like `make_insn' but make a CALL_INSN instead of an insn. */
2719
2720static rtx
2721make_call_insn_raw (pattern)
2722 rtx pattern;
2723{
2724 register rtx insn;
2725
2726 insn = rtx_alloc (CALL_INSN);
2727 INSN_UID (insn) = cur_insn_uid++;
2728
2729 PATTERN (insn) = pattern;
2730 INSN_CODE (insn) = -1;
2731 LOG_LINKS (insn) = NULL;
2732 REG_NOTES (insn) = NULL;
2733 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2734
2735 return insn;
2736}
23b2ce53
RS
2737\f
2738/* Add INSN to the end of the doubly-linked list.
2739 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2740
2741void
2742add_insn (insn)
2743 register rtx insn;
2744{
2745 PREV_INSN (insn) = last_insn;
2746 NEXT_INSN (insn) = 0;
2747
2748 if (NULL != last_insn)
2749 NEXT_INSN (last_insn) = insn;
2750
2751 if (NULL == first_insn)
2752 first_insn = insn;
2753
2754 last_insn = insn;
2755}
2756
a0ae8e8d
RK
2757/* Add INSN into the doubly-linked list after insn AFTER. This and
2758 the next should be the only functions called to insert an insn once
ba213285 2759 delay slots have been filled since only they know how to update a
a0ae8e8d 2760 SEQUENCE. */
23b2ce53
RS
2761
2762void
2763add_insn_after (insn, after)
2764 rtx insn, after;
2765{
2766 rtx next = NEXT_INSN (after);
2767
6782074d 2768 if (optimize && INSN_DELETED_P (after))
ba213285
RK
2769 abort ();
2770
23b2ce53
RS
2771 NEXT_INSN (insn) = next;
2772 PREV_INSN (insn) = after;
2773
2774 if (next)
2775 {
2776 PREV_INSN (next) = insn;
2777 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2778 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2779 }
2780 else if (last_insn == after)
2781 last_insn = insn;
2782 else
2783 {
49ad7cfa 2784 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
2785 /* Scan all pending sequences too. */
2786 for (; stack; stack = stack->next)
2787 if (after == stack->last)
fef0509b
RK
2788 {
2789 stack->last = insn;
2790 break;
2791 }
a0ae8e8d
RK
2792
2793 if (stack == 0)
2794 abort ();
23b2ce53
RS
2795 }
2796
2797 NEXT_INSN (after) = insn;
2798 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2799 {
2800 rtx sequence = PATTERN (after);
2801 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2802 }
2803}
2804
a0ae8e8d
RK
2805/* Add INSN into the doubly-linked list before insn BEFORE. This and
2806 the previous should be the only functions called to insert an insn once
ba213285 2807 delay slots have been filled since only they know how to update a
a0ae8e8d
RK
2808 SEQUENCE. */
2809
2810void
2811add_insn_before (insn, before)
2812 rtx insn, before;
2813{
2814 rtx prev = PREV_INSN (before);
2815
6782074d 2816 if (optimize && INSN_DELETED_P (before))
ba213285
RK
2817 abort ();
2818
a0ae8e8d
RK
2819 PREV_INSN (insn) = prev;
2820 NEXT_INSN (insn) = before;
2821
2822 if (prev)
2823 {
2824 NEXT_INSN (prev) = insn;
2825 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2826 {
2827 rtx sequence = PATTERN (prev);
2828 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2829 }
2830 }
2831 else if (first_insn == before)
2832 first_insn = insn;
2833 else
2834 {
49ad7cfa 2835 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
2836 /* Scan all pending sequences too. */
2837 for (; stack; stack = stack->next)
2838 if (before == stack->first)
fef0509b
RK
2839 {
2840 stack->first = insn;
2841 break;
2842 }
a0ae8e8d
RK
2843
2844 if (stack == 0)
2845 abort ();
2846 }
2847
2848 PREV_INSN (before) = insn;
2849 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2850 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2851}
2852
89e99eea
DB
2853/* Remove an insn from its doubly-linked list. This function knows how
2854 to handle sequences. */
2855void
2856remove_insn (insn)
2857 rtx insn;
2858{
2859 rtx next = NEXT_INSN (insn);
2860 rtx prev = PREV_INSN (insn);
2861 if (prev)
2862 {
2863 NEXT_INSN (prev) = next;
2864 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2865 {
2866 rtx sequence = PATTERN (prev);
2867 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
2868 }
2869 }
2870 else if (first_insn == insn)
2871 first_insn = next;
2872 else
2873 {
49ad7cfa 2874 struct sequence_stack *stack = seq_stack;
89e99eea
DB
2875 /* Scan all pending sequences too. */
2876 for (; stack; stack = stack->next)
2877 if (insn == stack->first)
2878 {
2879 stack->first = next;
2880 break;
2881 }
2882
2883 if (stack == 0)
2884 abort ();
2885 }
2886
2887 if (next)
2888 {
2889 PREV_INSN (next) = prev;
2890 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2891 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2892 }
2893 else if (last_insn == insn)
2894 last_insn = prev;
2895 else
2896 {
49ad7cfa 2897 struct sequence_stack *stack = seq_stack;
89e99eea
DB
2898 /* Scan all pending sequences too. */
2899 for (; stack; stack = stack->next)
2900 if (insn == stack->last)
2901 {
2902 stack->last = prev;
2903 break;
2904 }
2905
2906 if (stack == 0)
2907 abort ();
2908 }
2909}
2910
23b2ce53
RS
2911/* Delete all insns made since FROM.
2912 FROM becomes the new last instruction. */
2913
2914void
2915delete_insns_since (from)
2916 rtx from;
2917{
2918 if (from == 0)
2919 first_insn = 0;
2920 else
2921 NEXT_INSN (from) = 0;
2922 last_insn = from;
2923}
2924
5dab5552
MS
2925/* This function is deprecated, please use sequences instead.
2926
2927 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
2928 The insns to be moved are those between FROM and TO.
2929 They are moved to a new position after the insn AFTER.
2930 AFTER must not be FROM or TO or any insn in between.
2931
2932 This function does not know about SEQUENCEs and hence should not be
2933 called after delay-slot filling has been done. */
2934
2935void
2936reorder_insns (from, to, after)
2937 rtx from, to, after;
2938{
2939 /* Splice this bunch out of where it is now. */
2940 if (PREV_INSN (from))
2941 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2942 if (NEXT_INSN (to))
2943 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2944 if (last_insn == to)
2945 last_insn = PREV_INSN (from);
2946 if (first_insn == from)
2947 first_insn = NEXT_INSN (to);
2948
2949 /* Make the new neighbors point to it and it to them. */
2950 if (NEXT_INSN (after))
2951 PREV_INSN (NEXT_INSN (after)) = to;
2952
2953 NEXT_INSN (to) = NEXT_INSN (after);
2954 PREV_INSN (from) = after;
2955 NEXT_INSN (after) = from;
2956 if (after == last_insn)
2957 last_insn = to;
2958}
2959
2960/* Return the line note insn preceding INSN. */
2961
2962static rtx
2963find_line_note (insn)
2964 rtx insn;
2965{
2966 if (no_line_numbers)
2967 return 0;
2968
2969 for (; insn; insn = PREV_INSN (insn))
2970 if (GET_CODE (insn) == NOTE
2971 && NOTE_LINE_NUMBER (insn) >= 0)
2972 break;
2973
2974 return insn;
2975}
2976
2977/* Like reorder_insns, but inserts line notes to preserve the line numbers
2978 of the moved insns when debugging. This may insert a note between AFTER
2979 and FROM, and another one after TO. */
2980
2981void
2982reorder_insns_with_line_notes (from, to, after)
2983 rtx from, to, after;
2984{
2985 rtx from_line = find_line_note (from);
2986 rtx after_line = find_line_note (after);
2987
2988 reorder_insns (from, to, after);
2989
2990 if (from_line == after_line)
2991 return;
2992
2993 if (from_line)
2994 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2995 NOTE_LINE_NUMBER (from_line),
2996 after);
2997 if (after_line)
2998 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2999 NOTE_LINE_NUMBER (after_line),
3000 to);
3001}
aeeeda03 3002
64b59a80 3003/* Remove unnecessary notes from the instruction stream. */
aeeeda03
MM
3004
3005void
64b59a80 3006remove_unnecessary_notes ()
aeeeda03 3007{
542d73ae
RH
3008 rtx block_stack = NULL_RTX;
3009 rtx eh_stack = NULL_RTX;
aeeeda03
MM
3010 rtx insn;
3011 rtx next;
542d73ae 3012 rtx tmp;
aeeeda03 3013
116eebd6
MM
3014 /* We must not remove the first instruction in the function because
3015 the compiler depends on the first instruction being a note. */
aeeeda03
MM
3016 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3017 {
3018 /* Remember what's next. */
3019 next = NEXT_INSN (insn);
3020
3021 /* We're only interested in notes. */
3022 if (GET_CODE (insn) != NOTE)
3023 continue;
3024
542d73ae 3025 switch (NOTE_LINE_NUMBER (insn))
18c038b9 3026 {
542d73ae
RH
3027 case NOTE_INSN_DELETED:
3028 remove_insn (insn);
3029 break;
3030
3031 case NOTE_INSN_EH_REGION_BEG:
3032 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3033 break;
3034
3035 case NOTE_INSN_EH_REGION_END:
3036 /* Too many end notes. */
3037 if (eh_stack == NULL_RTX)
3038 abort ();
3039 /* Mismatched nesting. */
3040 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3041 abort ();
3042 tmp = eh_stack;
3043 eh_stack = XEXP (eh_stack, 1);
3044 free_INSN_LIST_node (tmp);
3045 break;
3046
3047 case NOTE_INSN_BLOCK_BEG:
3048 /* By now, all notes indicating lexical blocks should have
3049 NOTE_BLOCK filled in. */
3050 if (NOTE_BLOCK (insn) == NULL_TREE)
3051 abort ();
3052 block_stack = alloc_INSN_LIST (insn, block_stack);
3053 break;
3054
3055 case NOTE_INSN_BLOCK_END:
3056 /* Too many end notes. */
3057 if (block_stack == NULL_RTX)
3058 abort ();
3059 /* Mismatched nesting. */
3060 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3061 abort ();
3062 tmp = block_stack;
3063 block_stack = XEXP (block_stack, 1);
3064 free_INSN_LIST_node (tmp);
3065
18c038b9
MM
3066 /* Scan back to see if there are any non-note instructions
3067 between INSN and the beginning of this block. If not,
3068 then there is no PC range in the generated code that will
3069 actually be in this block, so there's no point in
3070 remembering the existence of the block. */
542d73ae 3071 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
18c038b9
MM
3072 {
3073 /* This block contains a real instruction. Note that we
3074 don't include labels; if the only thing in the block
3075 is a label, then there are still no PC values that
3076 lie within the block. */
542d73ae 3077 if (INSN_P (tmp))
18c038b9
MM
3078 break;
3079
3080 /* We're only interested in NOTEs. */
542d73ae 3081 if (GET_CODE (tmp) != NOTE)
18c038b9
MM
3082 continue;
3083
542d73ae 3084 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
18c038b9 3085 {
542d73ae
RH
3086 /* We just verified that this BLOCK matches us
3087 with the block_stack check above. */
64b59a80 3088 if (debug_ignore_block (NOTE_BLOCK (insn)))
deb5e280 3089 {
542d73ae 3090 remove_insn (tmp);
deb5e280
JM
3091 remove_insn (insn);
3092 }
18c038b9
MM
3093 break;
3094 }
542d73ae 3095 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
18c038b9
MM
3096 /* There's a nested block. We need to leave the
3097 current block in place since otherwise the debugger
3098 wouldn't be able to show symbols from our block in
3099 the nested block. */
3100 break;
3101 }
3102 }
aeeeda03 3103 }
542d73ae
RH
3104
3105 /* Too many begin notes. */
3106 if (block_stack || eh_stack)
3107 abort ();
aeeeda03
MM
3108}
3109
23b2ce53
RS
3110\f
3111/* Emit an insn of given code and pattern
3112 at a specified place within the doubly-linked list. */
3113
3114/* Make an instruction with body PATTERN
3115 and output it before the instruction BEFORE. */
3116
3117rtx
3118emit_insn_before (pattern, before)
3119 register rtx pattern, before;
3120{
3121 register rtx insn = before;
3122
3123 if (GET_CODE (pattern) == SEQUENCE)
3124 {
3125 register int i;
3126
3127 for (i = 0; i < XVECLEN (pattern, 0); i++)
3128 {
3129 insn = XVECEXP (pattern, 0, i);
a0ae8e8d 3130 add_insn_before (insn, before);
23b2ce53 3131 }
23b2ce53
RS
3132 }
3133 else
3134 {
4b1f5e8c 3135 insn = make_insn_raw (pattern);
a0ae8e8d 3136 add_insn_before (insn, before);
23b2ce53
RS
3137 }
3138
3139 return insn;
3140}
3141
a05924f9
JH
3142/* Similar to emit_insn_before, but update basic block boundaries as well. */
3143
3144rtx
3145emit_block_insn_before (pattern, before, block)
3146 rtx pattern, before;
3147 basic_block block;
3148{
3149 rtx prev = PREV_INSN (before);
3150 rtx r = emit_insn_before (pattern, before);
3151 if (block && block->head == before)
3152 block->head = NEXT_INSN (prev);
3153 return r;
3154}
3155
23b2ce53
RS
3156/* Make an instruction with body PATTERN and code JUMP_INSN
3157 and output it before the instruction BEFORE. */
3158
3159rtx
3160emit_jump_insn_before (pattern, before)
3161 register rtx pattern, before;
3162{
3163 register rtx insn;
3164
3165 if (GET_CODE (pattern) == SEQUENCE)
3166 insn = emit_insn_before (pattern, before);
3167 else
3168 {
85cf32bc 3169 insn = make_jump_insn_raw (pattern);
a0ae8e8d 3170 add_insn_before (insn, before);
23b2ce53
RS
3171 }
3172
3173 return insn;
3174}
3175
3176/* Make an instruction with body PATTERN and code CALL_INSN
3177 and output it before the instruction BEFORE. */
3178
3179rtx
3180emit_call_insn_before (pattern, before)
3181 register rtx pattern, before;
3182{
aff507f4
RK
3183 register rtx insn;
3184
3185 if (GET_CODE (pattern) == SEQUENCE)
3186 insn = emit_insn_before (pattern, before);
3187 else
3188 {
3189 insn = make_call_insn_raw (pattern);
a0ae8e8d 3190 add_insn_before (insn, before);
aff507f4
RK
3191 PUT_CODE (insn, CALL_INSN);
3192 }
3193
23b2ce53
RS
3194 return insn;
3195}
3196
3197/* Make an insn of code BARRIER
e881bb1b 3198 and output it before the insn BEFORE. */
23b2ce53
RS
3199
3200rtx
3201emit_barrier_before (before)
3202 register rtx before;
3203{
3204 register rtx insn = rtx_alloc (BARRIER);
3205
3206 INSN_UID (insn) = cur_insn_uid++;
3207
a0ae8e8d 3208 add_insn_before (insn, before);
23b2ce53
RS
3209 return insn;
3210}
3211
e881bb1b
RH
3212/* Emit the label LABEL before the insn BEFORE. */
3213
3214rtx
3215emit_label_before (label, before)
3216 rtx label, before;
3217{
3218 /* This can be called twice for the same label as a result of the
3219 confusion that follows a syntax error! So make it harmless. */
3220 if (INSN_UID (label) == 0)
3221 {
3222 INSN_UID (label) = cur_insn_uid++;
3223 add_insn_before (label, before);
3224 }
3225
3226 return label;
3227}
3228
23b2ce53
RS
3229/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3230
3231rtx
3232emit_note_before (subtype, before)
3233 int subtype;
3234 rtx before;
3235{
3236 register rtx note = rtx_alloc (NOTE);
3237 INSN_UID (note) = cur_insn_uid++;
3238 NOTE_SOURCE_FILE (note) = 0;
3239 NOTE_LINE_NUMBER (note) = subtype;
3240
a0ae8e8d 3241 add_insn_before (note, before);
23b2ce53
RS
3242 return note;
3243}
3244\f
3245/* Make an insn of code INSN with body PATTERN
3246 and output it after the insn AFTER. */
3247
3248rtx
3249emit_insn_after (pattern, after)
3250 register rtx pattern, after;
3251{
3252 register rtx insn = after;
3253
3254 if (GET_CODE (pattern) == SEQUENCE)
3255 {
3256 register int i;
3257
3258 for (i = 0; i < XVECLEN (pattern, 0); i++)
3259 {
3260 insn = XVECEXP (pattern, 0, i);
3261 add_insn_after (insn, after);
3262 after = insn;
3263 }
23b2ce53
RS
3264 }
3265 else
3266 {
4b1f5e8c 3267 insn = make_insn_raw (pattern);
23b2ce53
RS
3268 add_insn_after (insn, after);
3269 }
3270
3271 return insn;
3272}
3273
255680cf
RK
3274/* Similar to emit_insn_after, except that line notes are to be inserted so
3275 as to act as if this insn were at FROM. */
3276
3277void
3278emit_insn_after_with_line_notes (pattern, after, from)
3279 rtx pattern, after, from;
3280{
3281 rtx from_line = find_line_note (from);
3282 rtx after_line = find_line_note (after);
3283 rtx insn = emit_insn_after (pattern, after);
3284
3285 if (from_line)
3286 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3287 NOTE_LINE_NUMBER (from_line),
3288 after);
3289
3290 if (after_line)
3291 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3292 NOTE_LINE_NUMBER (after_line),
3293 insn);
3294}
3295
a05924f9
JH
3296/* Similar to emit_insn_after, but update basic block boundaries as well. */
3297
3298rtx
3299emit_block_insn_after (pattern, after, block)
3300 rtx pattern, after;
3301 basic_block block;
3302{
3303 rtx r = emit_insn_after (pattern, after);
3304 if (block && block->end == after)
3305 block->end = r;
3306 return r;
3307}
3308
23b2ce53
RS
3309/* Make an insn of code JUMP_INSN with body PATTERN
3310 and output it after the insn AFTER. */
3311
3312rtx
3313emit_jump_insn_after (pattern, after)
3314 register rtx pattern, after;
3315{
3316 register rtx insn;
3317
3318 if (GET_CODE (pattern) == SEQUENCE)
3319 insn = emit_insn_after (pattern, after);
3320 else
3321 {
85cf32bc 3322 insn = make_jump_insn_raw (pattern);
23b2ce53
RS
3323 add_insn_after (insn, after);
3324 }
3325
3326 return insn;
3327}
3328
3329/* Make an insn of code BARRIER
3330 and output it after the insn AFTER. */
3331
3332rtx
3333emit_barrier_after (after)
3334 register rtx after;
3335{
3336 register rtx insn = rtx_alloc (BARRIER);
3337
3338 INSN_UID (insn) = cur_insn_uid++;
3339
3340 add_insn_after (insn, after);
3341 return insn;
3342}
3343
3344/* Emit the label LABEL after the insn AFTER. */
3345
3346rtx
3347emit_label_after (label, after)
3348 rtx label, after;
3349{
3350 /* This can be called twice for the same label
3351 as a result of the confusion that follows a syntax error!
3352 So make it harmless. */
3353 if (INSN_UID (label) == 0)
3354 {
3355 INSN_UID (label) = cur_insn_uid++;
3356 add_insn_after (label, after);
3357 }
3358
3359 return label;
3360}
3361
3362/* Emit a note of subtype SUBTYPE after the insn AFTER. */
3363
3364rtx
3365emit_note_after (subtype, after)
3366 int subtype;
3367 rtx after;
3368{
3369 register rtx note = rtx_alloc (NOTE);
3370 INSN_UID (note) = cur_insn_uid++;
3371 NOTE_SOURCE_FILE (note) = 0;
3372 NOTE_LINE_NUMBER (note) = subtype;
3373 add_insn_after (note, after);
3374 return note;
3375}
3376
3377/* Emit a line note for FILE and LINE after the insn AFTER. */
3378
3379rtx
3380emit_line_note_after (file, line, after)
3cce094d 3381 const char *file;
23b2ce53
RS
3382 int line;
3383 rtx after;
3384{
3385 register rtx note;
3386
3387 if (no_line_numbers && line > 0)
3388 {
3389 cur_insn_uid++;
3390 return 0;
3391 }
3392
3393 note = rtx_alloc (NOTE);
3394 INSN_UID (note) = cur_insn_uid++;
3395 NOTE_SOURCE_FILE (note) = file;
3396 NOTE_LINE_NUMBER (note) = line;
3397 add_insn_after (note, after);
3398 return note;
3399}
3400\f
3401/* Make an insn of code INSN with pattern PATTERN
3402 and add it to the end of the doubly-linked list.
3403 If PATTERN is a SEQUENCE, take the elements of it
3404 and emit an insn for each element.
3405
3406 Returns the last insn emitted. */
3407
3408rtx
3409emit_insn (pattern)
3410 rtx pattern;
3411{
3412 rtx insn = last_insn;
3413
3414 if (GET_CODE (pattern) == SEQUENCE)
3415 {
3416 register int i;
3417
3418 for (i = 0; i < XVECLEN (pattern, 0); i++)
3419 {
3420 insn = XVECEXP (pattern, 0, i);
3421 add_insn (insn);
3422 }
23b2ce53
RS
3423 }
3424 else
3425 {
4b1f5e8c 3426 insn = make_insn_raw (pattern);
23b2ce53
RS
3427 add_insn (insn);
3428 }
3429
3430 return insn;
3431}
3432
3433/* Emit the insns in a chain starting with INSN.
3434 Return the last insn emitted. */
3435
3436rtx
3437emit_insns (insn)
3438 rtx insn;
3439{
3440 rtx last = 0;
3441
3442 while (insn)
3443 {
3444 rtx next = NEXT_INSN (insn);
3445 add_insn (insn);
3446 last = insn;
3447 insn = next;
3448 }
3449
3450 return last;
3451}
3452
3453/* Emit the insns in a chain starting with INSN and place them in front of
3454 the insn BEFORE. Return the last insn emitted. */
3455
3456rtx
3457emit_insns_before (insn, before)
3458 rtx insn;
3459 rtx before;
3460{
3461 rtx last = 0;
3462
3463 while (insn)
3464 {
3465 rtx next = NEXT_INSN (insn);
a0ae8e8d 3466 add_insn_before (insn, before);
23b2ce53
RS
3467 last = insn;
3468 insn = next;
3469 }
3470
3471 return last;
3472}
3473
e0a5c5eb
RS
3474/* Emit the insns in a chain starting with FIRST and place them in back of
3475 the insn AFTER. Return the last insn emitted. */
3476
3477rtx
3478emit_insns_after (first, after)
3479 register rtx first;
3480 register rtx after;
3481{
3482 register rtx last;
3483 register rtx after_after;
3484
3485 if (!after)
3486 abort ();
3487
3488 if (!first)
3489 return first;
3490
3491 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3492 continue;
3493
3494 after_after = NEXT_INSN (after);
3495
3496 NEXT_INSN (after) = first;
3497 PREV_INSN (first) = after;
3498 NEXT_INSN (last) = after_after;
3499 if (after_after)
3500 PREV_INSN (after_after) = last;
3501
c4d990db
RS
3502 if (after == last_insn)
3503 last_insn = last;
e0a5c5eb
RS
3504 return last;
3505}
3506
23b2ce53
RS
3507/* Make an insn of code JUMP_INSN with pattern PATTERN
3508 and add it to the end of the doubly-linked list. */
3509
3510rtx
3511emit_jump_insn (pattern)
3512 rtx pattern;
3513{
3514 if (GET_CODE (pattern) == SEQUENCE)
3515 return emit_insn (pattern);
3516 else
3517 {
85cf32bc 3518 register rtx insn = make_jump_insn_raw (pattern);
23b2ce53
RS
3519 add_insn (insn);
3520 return insn;
3521 }
3522}
3523
3524/* Make an insn of code CALL_INSN with pattern PATTERN
3525 and add it to the end of the doubly-linked list. */
3526
3527rtx
3528emit_call_insn (pattern)
3529 rtx pattern;
3530{
3531 if (GET_CODE (pattern) == SEQUENCE)
3532 return emit_insn (pattern);
3533 else
3534 {
aff507f4 3535 register rtx insn = make_call_insn_raw (pattern);
23b2ce53
RS
3536 add_insn (insn);
3537 PUT_CODE (insn, CALL_INSN);
3538 return insn;
3539 }
3540}
3541
3542/* Add the label LABEL to the end of the doubly-linked list. */
3543
3544rtx
3545emit_label (label)
3546 rtx label;
3547{
3548 /* This can be called twice for the same label
3549 as a result of the confusion that follows a syntax error!
3550 So make it harmless. */
3551 if (INSN_UID (label) == 0)
3552 {
3553 INSN_UID (label) = cur_insn_uid++;
3554 add_insn (label);
3555 }
3556 return label;
3557}
3558
3559/* Make an insn of code BARRIER
3560 and add it to the end of the doubly-linked list. */
3561
3562rtx
3563emit_barrier ()
3564{
3565 register rtx barrier = rtx_alloc (BARRIER);
3566 INSN_UID (barrier) = cur_insn_uid++;
3567 add_insn (barrier);
3568 return barrier;
3569}
3570
3571/* Make an insn of code NOTE
3572 with data-fields specified by FILE and LINE
3573 and add it to the end of the doubly-linked list,
3574 but only if line-numbers are desired for debugging info. */
3575
3576rtx
3577emit_line_note (file, line)
3cce094d 3578 const char *file;
23b2ce53
RS
3579 int line;
3580{
3f1d071b 3581 set_file_and_line_for_stmt (file, line);
23b2ce53
RS
3582
3583#if 0
3584 if (no_line_numbers)
3585 return 0;
3586#endif
3587
3588 return emit_note (file, line);
3589}
3590
3591/* Make an insn of code NOTE
3592 with data-fields specified by FILE and LINE
3593 and add it to the end of the doubly-linked list.
3594 If it is a line-number NOTE, omit it if it matches the previous one. */
3595
3596rtx
3597emit_note (file, line)
3cce094d 3598 const char *file;
23b2ce53
RS
3599 int line;
3600{
3601 register rtx note;
3602
3603 if (line > 0)
3604 {
3605 if (file && last_filename && !strcmp (file, last_filename)
3606 && line == last_linenum)
3607 return 0;
3608 last_filename = file;
3609 last_linenum = line;
3610 }
3611
3612 if (no_line_numbers && line > 0)
3613 {
3614 cur_insn_uid++;
3615 return 0;
3616 }
3617
3618 note = rtx_alloc (NOTE);
3619 INSN_UID (note) = cur_insn_uid++;
3620 NOTE_SOURCE_FILE (note) = file;
3621 NOTE_LINE_NUMBER (note) = line;
3622 add_insn (note);
3623 return note;
3624}
3625
fe77a034 3626/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
23b2ce53
RS
3627
3628rtx
3629emit_line_note_force (file, line)
3cce094d 3630 const char *file;
23b2ce53
RS
3631 int line;
3632{
3633 last_linenum = -1;
3634 return emit_line_note (file, line);
3635}
3636
3637/* Cause next statement to emit a line note even if the line number
3638 has not changed. This is used at the beginning of a function. */
3639
3640void
3641force_next_line_note ()
3642{
3643 last_linenum = -1;
3644}
87b47c85
AM
3645
3646/* Place a note of KIND on insn INSN with DATUM as the datum. If a
3647 note of this type already exists, remove it first. */
3648
3649void
3650set_unique_reg_note (insn, kind, datum)
3651 rtx insn;
3652 enum reg_note kind;
3653 rtx datum;
3654{
3655 rtx note = find_reg_note (insn, kind, NULL_RTX);
3656
3657 /* First remove the note if there already is one. */
3658 if (note)
3659 remove_note (insn, note);
3660
3661 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3662}
23b2ce53
RS
3663\f
3664/* Return an indication of which type of insn should have X as a body.
3665 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3666
3667enum rtx_code
3668classify_insn (x)
3669 rtx x;
3670{
3671 if (GET_CODE (x) == CODE_LABEL)
3672 return CODE_LABEL;
3673 if (GET_CODE (x) == CALL)
3674 return CALL_INSN;
3675 if (GET_CODE (x) == RETURN)
3676 return JUMP_INSN;
3677 if (GET_CODE (x) == SET)
3678 {
3679 if (SET_DEST (x) == pc_rtx)
3680 return JUMP_INSN;
3681 else if (GET_CODE (SET_SRC (x)) == CALL)
3682 return CALL_INSN;
3683 else
3684 return INSN;
3685 }
3686 if (GET_CODE (x) == PARALLEL)
3687 {
3688 register int j;
3689 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3690 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3691 return CALL_INSN;
3692 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3693 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3694 return JUMP_INSN;
3695 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3696 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3697 return CALL_INSN;
3698 }
3699 return INSN;
3700}
3701
3702/* Emit the rtl pattern X as an appropriate kind of insn.
3703 If X is a label, it is simply added into the insn chain. */
3704
3705rtx
3706emit (x)
3707 rtx x;
3708{
3709 enum rtx_code code = classify_insn (x);
3710
3711 if (code == CODE_LABEL)
3712 return emit_label (x);
3713 else if (code == INSN)
3714 return emit_insn (x);
3715 else if (code == JUMP_INSN)
3716 {
3717 register rtx insn = emit_jump_insn (x);
7f1c097d 3718 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
23b2ce53
RS
3719 return emit_barrier ();
3720 return insn;
3721 }
3722 else if (code == CALL_INSN)
3723 return emit_call_insn (x);
3724 else
3725 abort ();
3726}
3727\f
5c7a310f
MM
3728/* Begin emitting insns to a sequence which can be packaged in an
3729 RTL_EXPR. If this sequence will contain something that might cause
3730 the compiler to pop arguments to function calls (because those
3731 pops have previously been deferred; see INHIBIT_DEFER_POP for more
3732 details), use do_pending_stack_adjust before calling this function.
3733 That will ensure that the deferred pops are not accidentally
4eb00163 3734 emitted in the middle of this sequence. */
23b2ce53
RS
3735
3736void
3737start_sequence ()
3738{
3739 struct sequence_stack *tem;
3740
a3770a81 3741 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
23b2ce53 3742
49ad7cfa 3743 tem->next = seq_stack;
23b2ce53
RS
3744 tem->first = first_insn;
3745 tem->last = last_insn;
591ccf92 3746 tem->sequence_rtl_expr = seq_rtl_expr;
23b2ce53 3747
49ad7cfa 3748 seq_stack = tem;
23b2ce53
RS
3749
3750 first_insn = 0;
3751 last_insn = 0;
3752}
3753
591ccf92
MM
3754/* Similarly, but indicate that this sequence will be placed in T, an
3755 RTL_EXPR. See the documentation for start_sequence for more
3756 information about how to use this function. */
3757
3758void
3759start_sequence_for_rtl_expr (t)
3760 tree t;
3761{
3762 start_sequence ();
3763
3764 seq_rtl_expr = t;
3765}
3766
5c7a310f
MM
3767/* Set up the insn chain starting with FIRST as the current sequence,
3768 saving the previously current one. See the documentation for
3769 start_sequence for more information about how to use this function. */
23b2ce53
RS
3770
3771void
3772push_to_sequence (first)
3773 rtx first;
3774{
3775 rtx last;
3776
3777 start_sequence ();
3778
3779 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3780
3781 first_insn = first;
3782 last_insn = last;
3783}
3784
c14f7160
ML
3785/* Set up the insn chain from a chain stort in FIRST to LAST. */
3786
3787void
3788push_to_full_sequence (first, last)
3789 rtx first, last;
3790{
3791 start_sequence ();
3792 first_insn = first;
3793 last_insn = last;
3794 /* We really should have the end of the insn chain here. */
3795 if (last && NEXT_INSN (last))
3796 abort ();
3797}
3798
f15ae3a1
TW
3799/* Set up the outer-level insn chain
3800 as the current sequence, saving the previously current one. */
3801
3802void
3803push_topmost_sequence ()
3804{
aefdd5ab 3805 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
3806
3807 start_sequence ();
3808
49ad7cfa 3809 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
3810 top = stack;
3811
3812 first_insn = top->first;
3813 last_insn = top->last;
591ccf92 3814 seq_rtl_expr = top->sequence_rtl_expr;
f15ae3a1
TW
3815}
3816
3817/* After emitting to the outer-level insn chain, update the outer-level
3818 insn chain, and restore the previous saved state. */
3819
3820void
3821pop_topmost_sequence ()
3822{
aefdd5ab 3823 struct sequence_stack *stack, *top = NULL;
f15ae3a1 3824
49ad7cfa 3825 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
3826 top = stack;
3827
3828 top->first = first_insn;
3829 top->last = last_insn;
591ccf92 3830 /* ??? Why don't we save seq_rtl_expr here? */
f15ae3a1
TW
3831
3832 end_sequence ();
3833}
3834
23b2ce53
RS
3835/* After emitting to a sequence, restore previous saved state.
3836
5c7a310f
MM
3837 To get the contents of the sequence just made, you must call
3838 `gen_sequence' *before* calling here.
3839
3840 If the compiler might have deferred popping arguments while
3841 generating this sequence, and this sequence will not be immediately
3842 inserted into the instruction stream, use do_pending_stack_adjust
3843 before calling gen_sequence. That will ensure that the deferred
3844 pops are inserted into this sequence, and not into some random
3845 location in the instruction stream. See INHIBIT_DEFER_POP for more
3846 information about deferred popping of arguments. */
23b2ce53
RS
3847
3848void
3849end_sequence ()
3850{
49ad7cfa 3851 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
3852
3853 first_insn = tem->first;
3854 last_insn = tem->last;
591ccf92 3855 seq_rtl_expr = tem->sequence_rtl_expr;
49ad7cfa 3856 seq_stack = tem->next;
23b2ce53 3857
a3770a81 3858 free (tem);
23b2ce53
RS
3859}
3860
c14f7160
ML
3861/* This works like end_sequence, but records the old sequence in FIRST
3862 and LAST. */
3863
3864void
3865end_full_sequence (first, last)
3866 rtx *first, *last;
3867{
3868 *first = first_insn;
3869 *last = last_insn;
3870 end_sequence();
3871}
3872
23b2ce53
RS
3873/* Return 1 if currently emitting into a sequence. */
3874
3875int
3876in_sequence_p ()
3877{
49ad7cfa 3878 return seq_stack != 0;
23b2ce53
RS
3879}
3880
3881/* Generate a SEQUENCE rtx containing the insns already emitted
3882 to the current sequence.
3883
3884 This is how the gen_... function from a DEFINE_EXPAND
3885 constructs the SEQUENCE that it returns. */
3886
3887rtx
3888gen_sequence ()
3889{
3890 rtx result;
3891 rtx tem;
23b2ce53
RS
3892 int i;
3893 int len;
3894
3895 /* Count the insns in the chain. */
3896 len = 0;
3897 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3898 len++;
3899
ee265800 3900 /* If only one insn, return it rather than a SEQUENCE.
23b2ce53 3901 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
ee265800
AH
3902 the case of an empty list.)
3903 We only return the pattern of an insn if its code is INSN and it
3904 has no notes. This ensures that no information gets lost. */
23b2ce53 3905 if (len == 1
ca55abae 3906 && ! RTX_FRAME_RELATED_P (first_insn)
ee265800
AH
3907 && GET_CODE (first_insn) == INSN
3908 /* Don't throw away any reg notes. */
3909 && REG_NOTES (first_insn) == 0)
1f8f4a0b 3910 return PATTERN (first_insn);
23b2ce53 3911
1f8f4a0b 3912 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
23b2ce53
RS
3913
3914 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3915 XVECEXP (result, 0, i) = tem;
3916
3917 return result;
3918}
3919\f
59ec66dc
MM
3920/* Put the various virtual registers into REGNO_REG_RTX. */
3921
3922void
49ad7cfa
BS
3923init_virtual_regs (es)
3924 struct emit_status *es;
59ec66dc 3925{
49ad7cfa
BS
3926 rtx *ptr = es->x_regno_reg_rtx;
3927 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3928 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3929 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3930 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
3931 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
3932}
3933
3934void
3935clear_emit_caches ()
3936{
3937 int i;
3938
3939 /* Clear the start_sequence/gen_sequence cache. */
49ad7cfa
BS
3940 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3941 sequence_result[i] = 0;
3942 free_insn = 0;
59ec66dc 3943}
da43a810
BS
3944\f
3945/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
3946static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
3947static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
3948static int copy_insn_n_scratches;
3949
3950/* When an insn is being copied by copy_insn_1, this is nonzero if we have
3951 copied an ASM_OPERANDS.
3952 In that case, it is the original input-operand vector. */
3953static rtvec orig_asm_operands_vector;
3954
3955/* When an insn is being copied by copy_insn_1, this is nonzero if we have
3956 copied an ASM_OPERANDS.
3957 In that case, it is the copied input-operand vector. */
3958static rtvec copy_asm_operands_vector;
3959
3960/* Likewise for the constraints vector. */
3961static rtvec orig_asm_constraints_vector;
3962static rtvec copy_asm_constraints_vector;
3963
3964/* Recursively create a new copy of an rtx for copy_insn.
3965 This function differs from copy_rtx in that it handles SCRATCHes and
3966 ASM_OPERANDs properly.
3967 Normally, this function is not used directly; use copy_insn as front end.
3968 However, you could first copy an insn pattern with copy_insn and then use
3969 this function afterwards to properly copy any REG_NOTEs containing
3970 SCRATCHes. */
3971
3972rtx
3973copy_insn_1 (orig)
3974 register rtx orig;
3975{
3976 register rtx copy;
3977 register int i, j;
3978 register RTX_CODE code;
4724334a 3979 register const char *format_ptr;
da43a810
BS
3980
3981 code = GET_CODE (orig);
3982
3983 switch (code)
3984 {
3985 case REG:
3986 case QUEUED:
3987 case CONST_INT:
3988 case CONST_DOUBLE:
3989 case SYMBOL_REF:
3990 case CODE_LABEL:
3991 case PC:
3992 case CC0:
3993 case ADDRESSOF:
3994 return orig;
3995
3996 case SCRATCH:
3997 for (i = 0; i < copy_insn_n_scratches; i++)
3998 if (copy_insn_scratch_in[i] == orig)
3999 return copy_insn_scratch_out[i];
4000 break;
4001
4002 case CONST:
4003 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4004 a LABEL_REF, it isn't sharable. */
4005 if (GET_CODE (XEXP (orig, 0)) == PLUS
4006 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4007 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4008 return orig;
4009 break;
4010
4011 /* A MEM with a constant address is not sharable. The problem is that
4012 the constant address may need to be reloaded. If the mem is shared,
4013 then reloading one copy of this mem will cause all copies to appear
4014 to have been reloaded. */
4015
4016 default:
4017 break;
4018 }
4019
4020 copy = rtx_alloc (code);
4021
4022 /* Copy the various flags, and other information. We assume that
4023 all fields need copying, and then clear the fields that should
4024 not be copied. That is the sensible default behavior, and forces
4025 us to explicitly document why we are *not* copying a flag. */
4026 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4027
4028 /* We do not copy the USED flag, which is used as a mark bit during
4029 walks over the RTL. */
4030 copy->used = 0;
4031
4032 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4033 if (GET_RTX_CLASS (code) == 'i')
4034 {
4035 copy->jump = 0;
4036 copy->call = 0;
4037 copy->frame_related = 0;
4038 }
4039
4040 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4041
4042 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4043 {
e63db8f6 4044 copy->fld[i] = orig->fld[i];
da43a810
BS
4045 switch (*format_ptr++)
4046 {
4047 case 'e':
da43a810
BS
4048 if (XEXP (orig, i) != NULL)
4049 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4050 break;
4051
da43a810
BS
4052 case 'E':
4053 case 'V':
da43a810
BS
4054 if (XVEC (orig, i) == orig_asm_constraints_vector)
4055 XVEC (copy, i) = copy_asm_constraints_vector;
4056 else if (XVEC (orig, i) == orig_asm_operands_vector)
4057 XVEC (copy, i) = copy_asm_operands_vector;
4058 else if (XVEC (orig, i) != NULL)
4059 {
4060 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4061 for (j = 0; j < XVECLEN (copy, i); j++)
4062 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4063 }
4064 break;
4065
da43a810 4066 case 't':
da43a810 4067 case 'w':
da43a810 4068 case 'i':
da43a810
BS
4069 case 's':
4070 case 'S':
e63db8f6
BS
4071 case 'u':
4072 case '0':
4073 /* These are left unchanged. */
da43a810
BS
4074 break;
4075
4076 default:
4077 abort ();
4078 }
4079 }
4080
4081 if (code == SCRATCH)
4082 {
4083 i = copy_insn_n_scratches++;
4084 if (i >= MAX_RECOG_OPERANDS)
4085 abort ();
4086 copy_insn_scratch_in[i] = orig;
4087 copy_insn_scratch_out[i] = copy;
4088 }
4089 else if (code == ASM_OPERANDS)
4090 {
6462bb43
AO
4091 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4092 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4093 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4094 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
4095 }
4096
4097 return copy;
4098}
4099
4100/* Create a new copy of an rtx.
4101 This function differs from copy_rtx in that it handles SCRATCHes and
4102 ASM_OPERANDs properly.
4103 INSN doesn't really have to be a full INSN; it could be just the
4104 pattern. */
4105rtx
4106copy_insn (insn)
4107 rtx insn;
4108{
4109 copy_insn_n_scratches = 0;
4110 orig_asm_operands_vector = 0;
4111 orig_asm_constraints_vector = 0;
4112 copy_asm_operands_vector = 0;
4113 copy_asm_constraints_vector = 0;
4114 return copy_insn_1 (insn);
4115}
59ec66dc 4116
23b2ce53
RS
4117/* Initialize data structures and variables in this file
4118 before generating rtl for each function. */
4119
4120void
4121init_emit ()
4122{
01d939e8 4123 struct function *f = cfun;
23b2ce53 4124
49ad7cfa 4125 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
23b2ce53
RS
4126 first_insn = NULL;
4127 last_insn = NULL;
591ccf92 4128 seq_rtl_expr = NULL;
23b2ce53
RS
4129 cur_insn_uid = 1;
4130 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4131 last_linenum = 0;
4132 last_filename = 0;
4133 first_label_num = label_num;
4134 last_label_num = 0;
49ad7cfa 4135 seq_stack = NULL;
23b2ce53 4136
49ad7cfa 4137 clear_emit_caches ();
23b2ce53
RS
4138
4139 /* Init the tables that describe all the pseudo regs. */
4140
3502dc9c 4141 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 4142
49ad7cfa 4143 f->emit->regno_pointer_align
3502dc9c 4144 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
f9e158c3 4145 sizeof (unsigned char));
86fe05e0 4146
23b2ce53 4147 regno_reg_rtx
3502dc9c 4148 = (rtx *) xcalloc (f->emit->regno_pointer_align_length * sizeof (rtx),
a3770a81 4149 sizeof (rtx));
23b2ce53
RS
4150
4151 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
49ad7cfa 4152 init_virtual_regs (f->emit);
740ab4a2
RK
4153
4154 /* Indicate that the virtual registers and stack locations are
4155 all pointers. */
3502dc9c
JDA
4156 REG_POINTER (stack_pointer_rtx) = 1;
4157 REG_POINTER (frame_pointer_rtx) = 1;
4158 REG_POINTER (hard_frame_pointer_rtx) = 1;
4159 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 4160
3502dc9c
JDA
4161 REG_POINTER (virtual_incoming_args_rtx) = 1;
4162 REG_POINTER (virtual_stack_vars_rtx) = 1;
4163 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4164 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4165 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 4166
86fe05e0 4167#ifdef STACK_BOUNDARY
bdb429a5
RK
4168 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4169 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4170 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4171 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4172
4173 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4174 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4175 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4176 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4177 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
4178#endif
4179
5e82e7bd
JVA
4180#ifdef INIT_EXPANDERS
4181 INIT_EXPANDERS;
4182#endif
23b2ce53
RS
4183}
4184
87ff9c8e
RH
4185/* Mark SS for GC. */
4186
4187static void
4188mark_sequence_stack (ss)
4189 struct sequence_stack *ss;
4190{
4191 while (ss)
4192 {
4193 ggc_mark_rtx (ss->first);
591ccf92 4194 ggc_mark_tree (ss->sequence_rtl_expr);
87ff9c8e
RH
4195 ss = ss->next;
4196 }
4197}
4198
4199/* Mark ES for GC. */
4200
4201void
fa51b01b 4202mark_emit_status (es)
87ff9c8e
RH
4203 struct emit_status *es;
4204{
4205 rtx *r;
4206 int i;
4207
4208 if (es == 0)
4209 return;
4210
3502dc9c 4211 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx;
87ff9c8e
RH
4212 i > 0; --i, ++r)
4213 ggc_mark_rtx (*r);
4214
4215 mark_sequence_stack (es->sequence_stack);
591ccf92 4216 ggc_mark_tree (es->sequence_rtl_expr);
87ff9c8e
RH
4217 ggc_mark_rtx (es->x_first_insn);
4218}
4219
23b2ce53
RS
4220/* Create some permanent unique rtl objects shared between all functions.
4221 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4222
4223void
4224init_emit_once (line_numbers)
4225 int line_numbers;
4226{
4227 int i;
4228 enum machine_mode mode;
9ec36da5 4229 enum machine_mode double_mode;
23b2ce53 4230
67673f5c
MM
4231 /* Initialize the CONST_INT hash table. */
4232 const_int_htab = htab_create (37, const_int_htab_hash,
4233 const_int_htab_eq, NULL);
4234 ggc_add_root (&const_int_htab, 1, sizeof (const_int_htab),
4235 rtx_htab_mark);
4236
23b2ce53
RS
4237 no_line_numbers = ! line_numbers;
4238
43fa6302
AS
4239 /* Compute the word and byte modes. */
4240
4241 byte_mode = VOIDmode;
4242 word_mode = VOIDmode;
4243 double_mode = VOIDmode;
4244
4245 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4246 mode = GET_MODE_WIDER_MODE (mode))
4247 {
4248 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4249 && byte_mode == VOIDmode)
4250 byte_mode = mode;
4251
4252 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4253 && word_mode == VOIDmode)
4254 word_mode = mode;
4255 }
4256
43fa6302
AS
4257 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4258 mode = GET_MODE_WIDER_MODE (mode))
4259 {
4260 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4261 && double_mode == VOIDmode)
4262 double_mode = mode;
4263 }
4264
4265 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4266
5da077de
AS
4267 /* Assign register numbers to the globally defined register rtx.
4268 This must be done at runtime because the register number field
4269 is in a union and some compilers can't initialize unions. */
4270
4271 pc_rtx = gen_rtx (PC, VOIDmode);
4272 cc0_rtx = gen_rtx (CC0, VOIDmode);
08394eef
BS
4273 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4274 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5da077de 4275 if (hard_frame_pointer_rtx == 0)
08394eef
BS
4276 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
4277 HARD_FRAME_POINTER_REGNUM);
5da077de 4278 if (arg_pointer_rtx == 0)
08394eef 4279 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5da077de 4280 virtual_incoming_args_rtx =
08394eef 4281 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5da077de 4282 virtual_stack_vars_rtx =
08394eef 4283 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5da077de 4284 virtual_stack_dynamic_rtx =
08394eef 4285 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5da077de 4286 virtual_outgoing_args_rtx =
08394eef
BS
4287 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
4288 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5da077de
AS
4289
4290 /* These rtx must be roots if GC is enabled. */
1f8f4a0b 4291 ggc_add_rtx_root (global_rtl, GR_MAX);
5da077de 4292
5da077de 4293#ifdef INIT_EXPANDERS
414c4dc4
NC
4294 /* This is to initialize {init|mark|free}_machine_status before the first
4295 call to push_function_context_to. This is needed by the Chill front
4296 end which calls push_function_context_to before the first cal to
5da077de
AS
4297 init_function_start. */
4298 INIT_EXPANDERS;
4299#endif
4300
23b2ce53
RS
4301 /* Create the unique rtx's for certain rtx codes and operand values. */
4302
c5c76735
JL
4303 /* Don't use gen_rtx here since gen_rtx in this case
4304 tries to use these variables. */
23b2ce53 4305 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
5da077de
AS
4306 const_int_rtx[i + MAX_SAVED_CONST_INT] =
4307 gen_rtx_raw_CONST_INT (VOIDmode, i);
1f8f4a0b 4308 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
23b2ce53 4309
68d75312
JC
4310 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4311 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 4312 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 4313 else
3b80f6ca 4314 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 4315
9ec36da5
JL
4316 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4317 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4318 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4319 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
23b2ce53
RS
4320
4321 for (i = 0; i <= 2; i++)
4322 {
4323 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4324 mode = GET_MODE_WIDER_MODE (mode))
4325 {
4326 rtx tem = rtx_alloc (CONST_DOUBLE);
4327 union real_extract u;
4328
961192e1 4329 memset ((char *) &u, 0, sizeof u); /* Zero any holes in a structure. */
23b2ce53
RS
4330 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4331
4e135bdd 4332 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
23b2ce53 4333 CONST_DOUBLE_MEM (tem) = cc0_rtx;
f8a83ee3 4334 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
23b2ce53
RS
4335 PUT_MODE (tem, mode);
4336
4337 const_tiny_rtx[i][(int) mode] = tem;
4338 }
4339
906c4e36 4340 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53
RS
4341
4342 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4343 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 4344 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
4345
4346 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4347 mode != VOIDmode;
4348 mode = GET_MODE_WIDER_MODE (mode))
4349 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
4350 }
4351
dbbbbf3b
JDA
4352 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4353 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4354 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 4355
f0417c82
RH
4356 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4357 if (STORE_FLAG_VALUE == 1)
4358 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4359
b6a1cbae
GM
4360 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4361 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4362 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4363 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
21cd906e 4364 ggc_add_rtx_root (&const_true_rtx, 1);
a7e1e2ac
AO
4365
4366#ifdef RETURN_ADDRESS_POINTER_REGNUM
4367 return_address_pointer_rtx
08394eef 4368 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
a7e1e2ac
AO
4369#endif
4370
4371#ifdef STRUCT_VALUE
4372 struct_value_rtx = STRUCT_VALUE;
4373#else
4374 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4375#endif
4376
4377#ifdef STRUCT_VALUE_INCOMING
4378 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4379#else
4380#ifdef STRUCT_VALUE_INCOMING_REGNUM
4381 struct_value_incoming_rtx
4382 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4383#else
4384 struct_value_incoming_rtx = struct_value_rtx;
4385#endif
4386#endif
4387
4388#ifdef STATIC_CHAIN_REGNUM
4389 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4390
4391#ifdef STATIC_CHAIN_INCOMING_REGNUM
4392 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4393 static_chain_incoming_rtx
4394 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4395 else
4396#endif
4397 static_chain_incoming_rtx = static_chain_rtx;
4398#endif
4399
4400#ifdef STATIC_CHAIN
4401 static_chain_rtx = STATIC_CHAIN;
4402
4403#ifdef STATIC_CHAIN_INCOMING
4404 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4405#else
4406 static_chain_incoming_rtx = static_chain_rtx;
4407#endif
4408#endif
4409
848e0190
JH
4410 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4411 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
a7e1e2ac 4412
d7db6646
RH
4413 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4414 ggc_add_rtx_root (&struct_value_rtx, 1);
4415 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4416 ggc_add_rtx_root (&static_chain_rtx, 1);
4417 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4418 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
23b2ce53 4419}
a11759a3
JR
4420\f
4421/* Query and clear/ restore no_line_numbers. This is used by the
4422 switch / case handling in stmt.c to give proper line numbers in
4423 warnings about unreachable code. */
4424
4425int
4426force_line_numbers ()
4427{
4428 int old = no_line_numbers;
4429
4430 no_line_numbers = 0;
4431 if (old)
4432 force_next_line_note ();
4433 return old;
4434}
4435
4436void
4437restore_line_number_status (old_value)
4438 int old_value;
4439{
4440 no_line_numbers = old_value;
4441}