]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
* Makefile.in (rtlanal.o): Depend on $(TM_P_H).
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
15bbde2b 1/* Emit RTL for the GNU C-Compiler expander.
ddca3e9d 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
5377f687 3 1999, 2000, 2001 Free Software Foundation, Inc.
15bbde2b 4
f12b58b3 5This file is part of GCC.
15bbde2b 6
f12b58b3 7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
15bbde2b 11
f12b58b3 12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
15bbde2b 16
17You should have received a copy of the GNU General Public License
f12b58b3 18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
15bbde2b 21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
405711de 39#include "system.h"
d3b64f2d 40#include "toplev.h"
15bbde2b 41#include "rtl.h"
3fd7e17f 42#include "tree.h"
7953c610 43#include "tm_p.h"
15bbde2b 44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
c6b6c51f 48#include "hard-reg-set.h"
73f5c1e3 49#include "hashtab.h"
15bbde2b 50#include "insn-config.h"
0dbd1c74 51#include "recog.h"
15bbde2b 52#include "real.h"
649d8da6 53#include "obstack.h"
a3426c4c 54#include "bitmap.h"
f3d96a58 55#include "basic-block.h"
a7b0c170 56#include "ggc.h"
b29760a8 57#include "debug.h"
649d8da6 58
399d45d3 59/* Commonly used modes. */
60
a92771b8 61enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
62enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9e042f31 63enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
a92771b8 64enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
399d45d3 65
15bbde2b 66
67/* This is *not* reset after each function. It gives each CODE_LABEL
68 in the entire compilation a unique label number. */
69
70static int label_num = 1;
71
15bbde2b 72/* Highest label number in current function.
73 Zero means use the value of label_num instead.
74 This is nonzero only when belatedly compiling an inline function. */
75
76static int last_label_num;
77
78/* Value label_num had when set_new_first_and_last_label_number was called.
79 If label_num has not changed since then, last_label_num is valid. */
80
81static int base_label_num;
82
83/* Nonzero means do not generate NOTEs for source line numbers. */
84
85static int no_line_numbers;
86
87/* Commonly used rtx's, so that we only need space for one copy.
88 These are initialized once for the entire compilation.
89 All of these except perhaps the floating-point CONST_DOUBLEs
90 are unique; no other rtx-object will be equal to any of these. */
91
57c097d5 92rtx global_rtl[GR_MAX];
15bbde2b 93
94/* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
97
98rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99
1a60f06a 100rtx const_true_rtx;
101
15bbde2b 102REAL_VALUE_TYPE dconst0;
103REAL_VALUE_TYPE dconst1;
104REAL_VALUE_TYPE dconst2;
105REAL_VALUE_TYPE dconstm1;
106
107/* All references to the following fixed hard registers go through
108 these unique rtl objects. On machines where the frame-pointer and
109 arg-pointer are the same register, they use the same unique object.
110
111 After register allocation, other rtl objects which used to be pseudo-regs
112 may be clobbered to refer to the frame-pointer register.
113 But references that were originally to the frame-pointer can be
114 distinguished from the others because they contain frame_pointer_rtx.
115
90c25824 116 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
117 tricky: until register elimination has taken place hard_frame_pointer_rtx
d823ba47 118 should be used if it is being set, and frame_pointer_rtx otherwise. After
90c25824 119 register elimination hard_frame_pointer_rtx should always be used.
120 On machines where the two registers are same (most) then these are the
121 same.
122
15bbde2b 123 In an inline procedure, the stack and frame pointer rtxs may not be
124 used for anything else. */
15bbde2b 125rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
126rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
127rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
128rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
129rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
130
4b0c5859 131/* This is used to implement __builtin_return_address for some machines.
132 See for instance the MIPS port. */
133rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
134
15bbde2b 135/* We make one copy of (const_int C) where C is in
136 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
137 to save space during the compilation and simplify comparisons of
138 integers. */
139
57c097d5 140rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
15bbde2b 141
73f5c1e3 142/* A hash table storing CONST_INTs whose absolute value is greater
143 than MAX_SAVED_CONST_INT. */
144
145static htab_t const_int_htab;
146
c6259b83 147/* A hash table storing memory attribute structures. */
148static htab_t mem_attrs_htab;
149
15bbde2b 150/* start_sequence and gen_sequence can make a lot of rtx expressions which are
151 shortly thrown away. We use two mechanisms to prevent this waste:
152
1bfd55c5 153 For sizes up to 5 elements, we keep a SEQUENCE and its associated
154 rtvec for use by gen_sequence. One entry for each size is
155 sufficient because most cases are calls to gen_sequence followed by
156 immediately emitting the SEQUENCE. Reuse is safe since emitting a
157 sequence is destructive on the insn in it anyway and hence can't be
158 redone.
15bbde2b 159
160 We do not bother to save this cached data over nested function calls.
161 Instead, we just reinitialize them. */
162
163#define SEQUENCE_RESULT_SIZE 5
164
15bbde2b 165static rtx sequence_result[SEQUENCE_RESULT_SIZE];
166
a92771b8 167/* During RTL generation, we also keep a list of free INSN rtl codes. */
575333f9 168static rtx free_insn;
169
08513b52 170#define first_insn (cfun->emit->x_first_insn)
171#define last_insn (cfun->emit->x_last_insn)
172#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
173#define last_linenum (cfun->emit->x_last_linenum)
174#define last_filename (cfun->emit->x_last_filename)
175#define first_label_num (cfun->emit->x_first_label_num)
15bbde2b 176
621f6678 177static rtx make_jump_insn_raw PARAMS ((rtx));
178static rtx make_call_insn_raw PARAMS ((rtx));
179static rtx find_line_note PARAMS ((rtx));
180static void mark_sequence_stack PARAMS ((struct sequence_stack *));
96216d37 181static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
182 int));
2d96a59a 183static void unshare_all_rtl_1 PARAMS ((rtx));
72ec8878 184static void unshare_all_decls PARAMS ((tree));
01dc9f0c 185static void reset_used_decls PARAMS ((tree));
344dc2fa 186static void mark_label_nuses PARAMS ((rtx));
73f5c1e3 187static hashval_t const_int_htab_hash PARAMS ((const void *));
188static int const_int_htab_eq PARAMS ((const void *,
189 const void *));
c6259b83 190static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
191static int mem_attrs_htab_eq PARAMS ((const void *,
192 const void *));
193static void mem_attrs_mark PARAMS ((const void *));
194static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
195 rtx, unsigned int));
73f5c1e3 196
3cd757b1 197/* Probability of the conditional branch currently proceeded by try_split.
198 Set to -1 otherwise. */
199int split_branch_probability = -1;
649d8da6 200\f
73f5c1e3 201/* Returns a hash code for X (which is a really a CONST_INT). */
202
203static hashval_t
204const_int_htab_hash (x)
205 const void *x;
206{
5e431971 207 return (hashval_t) INTVAL ((const struct rtx_def *) x);
73f5c1e3 208}
209
210/* Returns non-zero if the value represented by X (which is really a
211 CONST_INT) is the same as that given by Y (which is really a
212 HOST_WIDE_INT *). */
213
214static int
215const_int_htab_eq (x, y)
216 const void *x;
217 const void *y;
218{
5e431971 219 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
73f5c1e3 220}
221
c6259b83 222/* Returns a hash code for X (which is a really a mem_attrs *). */
223
224static hashval_t
225mem_attrs_htab_hash (x)
226 const void *x;
227{
228 mem_attrs *p = (mem_attrs *) x;
229
230 return (p->alias ^ (p->align * 1000)
231 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
232 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
233 ^ (long) p->decl);
234}
235
236/* Returns non-zero if the value represented by X (which is really a
237 mem_attrs *) is the same as that given by Y (which is also really a
238 mem_attrs *). */
73f5c1e3 239
240static int
c6259b83 241mem_attrs_htab_eq (x, y)
242 const void *x;
243 const void *y;
73f5c1e3 244{
c6259b83 245 mem_attrs *p = (mem_attrs *) x;
246 mem_attrs *q = (mem_attrs *) y;
247
248 return (p->alias == q->alias && p->decl == q->decl && p->offset == q->offset
249 && p->size == q->size && p->align == q->align);
73f5c1e3 250}
251
c6259b83 252/* This routine is called when we determine that we need a mem_attrs entry.
253 It marks the associated decl and RTL as being used, if present. */
73f5c1e3 254
255static void
c6259b83 256mem_attrs_mark (x)
257 const void *x;
73f5c1e3 258{
c6259b83 259 mem_attrs *p = (mem_attrs *) x;
260
261 if (p->decl)
262 ggc_mark_tree (p->decl);
263
264 if (p->offset)
265 ggc_mark_rtx (p->offset);
266
267 if (p->size)
268 ggc_mark_rtx (p->size);
269}
270
271/* Allocate a new mem_attrs structure and insert it into the hash table if
272 one identical to it is not already in the table. */
273
274static mem_attrs *
275get_mem_attrs (alias, decl, offset, size, align)
276 HOST_WIDE_INT alias;
277 tree decl;
278 rtx offset;
279 rtx size;
280 unsigned int align;
281{
282 mem_attrs attrs;
283 void **slot;
284
285 attrs.alias = alias;
286 attrs.decl = decl;
287 attrs.offset = offset;
288 attrs.size = size;
289 attrs.align = align;
290
291 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
292 if (*slot == 0)
293 {
294 *slot = ggc_alloc (sizeof (mem_attrs));
295 memcpy (*slot, &attrs, sizeof (mem_attrs));
296 }
297
298 return *slot;
73f5c1e3 299}
300
22cf44bc 301/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
302 don't attempt to share with the various global pieces of rtl (such as
303 frame_pointer_rtx). */
304
305rtx
306gen_raw_REG (mode, regno)
307 enum machine_mode mode;
308 int regno;
309{
310 rtx x = gen_rtx_raw_REG (mode, regno);
311 ORIGINAL_REGNO (x) = regno;
312 return x;
313}
314
7014838c 315/* There are some RTL codes that require special attention; the generation
316 functions do the raw handling. If you add to this list, modify
317 special_rtx in gengenrtl.c as well. */
318
3ad7bb1c 319rtx
320gen_rtx_CONST_INT (mode, arg)
73f5c1e3 321 enum machine_mode mode ATTRIBUTE_UNUSED;
3ad7bb1c 322 HOST_WIDE_INT arg;
323{
73f5c1e3 324 void **slot;
325
3ad7bb1c 326 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
57c097d5 327 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3ad7bb1c 328
329#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
330 if (const_true_rtx && arg == STORE_FLAG_VALUE)
331 return const_true_rtx;
332#endif
333
73f5c1e3 334 /* Look up the CONST_INT in the hash table. */
2b3dbc20 335 slot = htab_find_slot_with_hash (const_int_htab, &arg,
336 (hashval_t) arg, INSERT);
7f2875d3 337 if (*slot == 0)
d7c47c0e 338 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
73f5c1e3 339
340 return (rtx) *slot;
3ad7bb1c 341}
342
7f2875d3 343/* CONST_DOUBLEs needs special handling because their length is known
67f2a2eb 344 only at run-time. */
7f2875d3 345
67f2a2eb 346rtx
347gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2)
348 enum machine_mode mode;
349 rtx arg0;
350 HOST_WIDE_INT arg1, arg2;
351{
352 rtx r = rtx_alloc (CONST_DOUBLE);
4e929432 353 int i;
354
67f2a2eb 355 PUT_MODE (r, mode);
356 XEXP (r, 0) = arg0;
25999090 357 X0EXP (r, 1) = NULL_RTX;
4e929432 358 XWINT (r, 2) = arg1;
359 XWINT (r, 3) = arg2;
360
361 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 3; --i)
362 XWINT (r, i) = 0;
363
67f2a2eb 364 return r;
365}
366
3ad7bb1c 367rtx
368gen_rtx_REG (mode, regno)
369 enum machine_mode mode;
370 int regno;
371{
372 /* In case the MD file explicitly references the frame pointer, have
373 all such references point to the same frame pointer. This is
374 used during frame pointer elimination to distinguish the explicit
375 references to these registers from pseudos that happened to be
376 assigned to them.
377
378 If we have eliminated the frame pointer or arg pointer, we will
379 be using it as a normal register, for example as a spill
380 register. In such cases, we might be accessing it in a mode that
381 is not Pmode and therefore cannot use the pre-allocated rtx.
382
383 Also don't do this when we are making new REGs in reload, since
384 we don't want to get confused with the real pointers. */
385
386 if (mode == Pmode && !reload_in_progress)
387 {
e8b59353 388 if (regno == FRAME_POINTER_REGNUM)
3ad7bb1c 389 return frame_pointer_rtx;
390#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e8b59353 391 if (regno == HARD_FRAME_POINTER_REGNUM)
3ad7bb1c 392 return hard_frame_pointer_rtx;
393#endif
394#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
e8b59353 395 if (regno == ARG_POINTER_REGNUM)
3ad7bb1c 396 return arg_pointer_rtx;
397#endif
398#ifdef RETURN_ADDRESS_POINTER_REGNUM
e8b59353 399 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3ad7bb1c 400 return return_address_pointer_rtx;
401#endif
e8b59353 402 if (regno == STACK_POINTER_REGNUM)
3ad7bb1c 403 return stack_pointer_rtx;
404 }
405
22cf44bc 406 return gen_raw_REG (mode, regno);
3ad7bb1c 407}
408
b5ba9f3a 409rtx
410gen_rtx_MEM (mode, addr)
411 enum machine_mode mode;
412 rtx addr;
413{
414 rtx rt = gen_rtx_raw_MEM (mode, addr);
415
416 /* This field is not cleared by the mere allocation of the rtx, so
417 we clear it here. */
c6259b83 418 MEM_ATTRS (rt) = 0;
b5ba9f3a 419
420 return rt;
421}
701e46d0 422
423rtx
424gen_rtx_SUBREG (mode, reg, offset)
425 enum machine_mode mode;
426 rtx reg;
427 int offset;
428{
429 /* This is the most common failure type.
430 Catch it early so we can see who does it. */
431 if ((offset % GET_MODE_SIZE (mode)) != 0)
432 abort ();
433
434 /* This check isn't usable right now because combine will
435 throw arbitrary crap like a CALL into a SUBREG in
436 gen_lowpart_for_combine so we must just eat it. */
437#if 0
438 /* Check for this too. */
439 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
440 abort ();
441#endif
442 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
443}
444
c6259b83 445/* Generate a SUBREG representing the least-significant part of REG if MODE
446 is smaller than mode of REG, otherwise paradoxical SUBREG. */
447
701e46d0 448rtx
449gen_lowpart_SUBREG (mode, reg)
450 enum machine_mode mode;
451 rtx reg;
452{
453 enum machine_mode inmode;
701e46d0 454
455 inmode = GET_MODE (reg);
456 if (inmode == VOIDmode)
457 inmode = mode;
81802af6 458 return gen_rtx_SUBREG (mode, reg,
459 subreg_lowpart_offset (mode, inmode));
701e46d0 460}
7014838c 461\f
15bbde2b 462/* rtx gen_rtx (code, mode, [element1, ..., elementn])
463**
464** This routine generates an RTX of the size specified by
465** <code>, which is an RTX code. The RTX structure is initialized
466** from the arguments <element1> through <elementn>, which are
467** interpreted according to the specific RTX type's format. The
468** special machine mode associated with the rtx (if any) is specified
469** in <mode>.
470**
fc92fa61 471** gen_rtx can be invoked in a way which resembles the lisp-like
15bbde2b 472** rtx it will generate. For example, the following rtx structure:
473**
474** (plus:QI (mem:QI (reg:SI 1))
475** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
476**
477** ...would be generated by the following C code:
478**
d823ba47 479** gen_rtx (PLUS, QImode,
15bbde2b 480** gen_rtx (MEM, QImode,
481** gen_rtx (REG, SImode, 1)),
482** gen_rtx (MEM, QImode,
483** gen_rtx (PLUS, SImode,
484** gen_rtx (REG, SImode, 2),
485** gen_rtx (REG, SImode, 3)))),
486*/
487
488/*VARARGS2*/
489rtx
621f6678 490gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
15bbde2b 491{
19cb6b50 492 int i; /* Array indices... */
493 const char *fmt; /* Current rtx's format... */
494 rtx rt_val; /* RTX to return to caller... */
15bbde2b 495
0903457a 496 VA_OPEN (p, mode);
497 VA_FIXEDARG (p, enum rtx_code, code);
498 VA_FIXEDARG (p, enum machine_mode, mode);
15bbde2b 499
67f2a2eb 500 switch (code)
15bbde2b 501 {
67f2a2eb 502 case CONST_INT:
503 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
504 break;
505
506 case CONST_DOUBLE:
507 {
508 rtx arg0 = va_arg (p, rtx);
509 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
510 HOST_WIDE_INT arg2 = va_arg (p, HOST_WIDE_INT);
511 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1, arg2);
512 }
513 break;
514
515 case REG:
516 rt_val = gen_rtx_REG (mode, va_arg (p, int));
517 break;
518
519 case MEM:
520 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
521 break;
522
523 default:
15bbde2b 524 rt_val = rtx_alloc (code); /* Allocate the storage space. */
525 rt_val->mode = mode; /* Store the machine mode... */
526
527 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
528 for (i = 0; i < GET_RTX_LENGTH (code); i++)
529 {
530 switch (*fmt++)
531 {
532 case '0': /* Unused field. */
533 break;
534
535 case 'i': /* An integer? */
536 XINT (rt_val, i) = va_arg (p, int);
537 break;
538
b572011e 539 case 'w': /* A wide integer? */
540 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
541 break;
542
15bbde2b 543 case 's': /* A string? */
544 XSTR (rt_val, i) = va_arg (p, char *);
545 break;
546
547 case 'e': /* An expression? */
548 case 'u': /* An insn? Same except when printing. */
549 XEXP (rt_val, i) = va_arg (p, rtx);
550 break;
551
552 case 'E': /* An RTX vector? */
553 XVEC (rt_val, i) = va_arg (p, rtvec);
554 break;
555
a3426c4c 556 case 'b': /* A bitmap? */
557 XBITMAP (rt_val, i) = va_arg (p, bitmap);
558 break;
559
560 case 't': /* A tree? */
561 XTREE (rt_val, i) = va_arg (p, tree);
562 break;
563
15bbde2b 564 default:
fc92fa61 565 abort ();
15bbde2b 566 }
567 }
67f2a2eb 568 break;
15bbde2b 569 }
67f2a2eb 570
0903457a 571 VA_CLOSE (p);
67f2a2eb 572 return rt_val;
15bbde2b 573}
574
575/* gen_rtvec (n, [rt1, ..., rtn])
576**
577** This routine creates an rtvec and stores within it the
578** pointers to rtx's which are its arguments.
579*/
580
581/*VARARGS1*/
582rtvec
621f6678 583gen_rtvec VPARAMS ((int n, ...))
15bbde2b 584{
7ad77798 585 int i, save_n;
15bbde2b 586 rtx *vector;
587
0903457a 588 VA_OPEN (p, n);
589 VA_FIXEDARG (p, int, n);
15bbde2b 590
591 if (n == 0)
592 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
593
594 vector = (rtx *) alloca (n * sizeof (rtx));
e5fcd76a 595
15bbde2b 596 for (i = 0; i < n; i++)
597 vector[i] = va_arg (p, rtx);
7ad77798 598
599 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
600 save_n = n;
0903457a 601 VA_CLOSE (p);
15bbde2b 602
7ad77798 603 return gen_rtvec_v (save_n, vector);
15bbde2b 604}
605
606rtvec
607gen_rtvec_v (n, argp)
608 int n;
609 rtx *argp;
610{
19cb6b50 611 int i;
612 rtvec rt_val;
15bbde2b 613
614 if (n == 0)
615 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
616
617 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
618
619 for (i = 0; i < n; i++)
a4070a91 620 rt_val->elem[i] = *argp++;
15bbde2b 621
622 return rt_val;
623}
624\f
625/* Generate a REG rtx for a new pseudo register of mode MODE.
626 This pseudo is assigned the next sequential register number. */
627
628rtx
629gen_reg_rtx (mode)
630 enum machine_mode mode;
631{
08513b52 632 struct function *f = cfun;
19cb6b50 633 rtx val;
15bbde2b 634
9e519b97 635 /* Don't let anything called after initial flow analysis create new
636 registers. */
637 if (no_new_pseudos)
15bbde2b 638 abort ();
639
316bc009 640 if (generating_concat_p
641 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
642 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
76c37538 643 {
644 /* For complex modes, don't make a single pseudo.
645 Instead, make a CONCAT of two pseudos.
646 This allows noncontiguous allocation of the real and imaginary parts,
647 which makes much better code. Besides, allocating DCmode
648 pseudos overstrains reload on some machines like the 386. */
649 rtx realpart, imagpart;
650 int size = GET_MODE_UNIT_SIZE (mode);
651 enum machine_mode partmode
652 = mode_for_size (size * BITS_PER_UNIT,
653 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
654 ? MODE_FLOAT : MODE_INT),
655 0);
656
657 realpart = gen_reg_rtx (partmode);
658 imagpart = gen_reg_rtx (partmode);
3ad7bb1c 659 return gen_rtx_CONCAT (mode, realpart, imagpart);
76c37538 660 }
661
fcdc122e 662 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
663 enough to have an element for this pseudo reg number. */
15bbde2b 664
e61a0a7f 665 if (reg_rtx_no == f->emit->regno_pointer_align_length)
15bbde2b 666 {
e61a0a7f 667 int old_size = f->emit->regno_pointer_align_length;
26df1c5e 668 char *new;
fcdc122e 669 rtx *new1;
670 tree *new2;
671
26df1c5e 672 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
0a893c29 673 memset (new + old_size, 0, old_size);
4491f79f 674 f->emit->regno_pointer_align = (unsigned char *) new;
0a893c29 675
26df1c5e 676 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
677 old_size * 2 * sizeof (rtx));
0a893c29 678 memset (new1 + old_size, 0, old_size * sizeof (rtx));
15bbde2b 679 regno_reg_rtx = new1;
680
fcdc122e 681 new2 = (tree *) xrealloc (f->emit->regno_decl,
682 old_size * 2 * sizeof (tree));
683 memset (new2 + old_size, 0, old_size * sizeof (tree));
684 f->emit->regno_decl = new2;
685
e61a0a7f 686 f->emit->regno_pointer_align_length = old_size * 2;
15bbde2b 687 }
688
22cf44bc 689 val = gen_raw_REG (mode, reg_rtx_no);
15bbde2b 690 regno_reg_rtx[reg_rtx_no++] = val;
691 return val;
692}
693
de8ecfb5 694/* Identify REG (which may be a CONCAT) as a user register. */
695
696void
697mark_user_reg (reg)
698 rtx reg;
699{
700 if (GET_CODE (reg) == CONCAT)
701 {
702 REG_USERVAR_P (XEXP (reg, 0)) = 1;
703 REG_USERVAR_P (XEXP (reg, 1)) = 1;
704 }
705 else if (GET_CODE (reg) == REG)
706 REG_USERVAR_P (reg) = 1;
707 else
708 abort ();
709}
710
d4c332ff 711/* Identify REG as a probable pointer register and show its alignment
712 as ALIGN, if nonzero. */
15bbde2b 713
714void
d4c332ff 715mark_reg_pointer (reg, align)
15bbde2b 716 rtx reg;
d4c332ff 717 int align;
15bbde2b 718{
e61a0a7f 719 if (! REG_POINTER (reg))
612409a6 720 {
e61a0a7f 721 REG_POINTER (reg) = 1;
d4c332ff 722
612409a6 723 if (align)
724 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
725 }
726 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
727 /* We can no-longer be sure just how aligned this pointer is */
d4c332ff 728 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
15bbde2b 729}
730
731/* Return 1 plus largest pseudo reg number used in the current function. */
732
733int
734max_reg_num ()
735{
736 return reg_rtx_no;
737}
738
739/* Return 1 + the largest label number used so far in the current function. */
740
741int
742max_label_num ()
743{
744 if (last_label_num && label_num == base_label_num)
745 return last_label_num;
746 return label_num;
747}
748
749/* Return first label number used in this function (if any were used). */
750
751int
752get_first_label_num ()
753{
754 return first_label_num;
755}
756\f
701e46d0 757/* Return the final regno of X, which is a SUBREG of a hard
758 register. */
759int
760subreg_hard_regno (x, check_mode)
19cb6b50 761 rtx x;
701e46d0 762 int check_mode;
763{
764 enum machine_mode mode = GET_MODE (x);
765 unsigned int byte_offset, base_regno, final_regno;
766 rtx reg = SUBREG_REG (x);
767
768 /* This is where we attempt to catch illegal subregs
769 created by the compiler. */
770 if (GET_CODE (x) != SUBREG
771 || GET_CODE (reg) != REG)
772 abort ();
773 base_regno = REGNO (reg);
774 if (base_regno >= FIRST_PSEUDO_REGISTER)
775 abort ();
475fa9bd 776 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
701e46d0 777 abort ();
778
779 /* Catch non-congruent offsets too. */
780 byte_offset = SUBREG_BYTE (x);
781 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
782 abort ();
783
784 final_regno = subreg_regno (x);
785
786 return final_regno;
787}
788
15bbde2b 789/* Return a value representing some low-order bits of X, where the number
790 of low-order bits is given by MODE. Note that no conversion is done
d823ba47 791 between floating-point and fixed-point values, rather, the bit
15bbde2b 792 representation is returned.
793
794 This function handles the cases in common between gen_lowpart, below,
795 and two variants in cse.c and combine.c. These are the cases that can
796 be safely handled at all points in the compilation.
797
798 If this is not a case we can handle, return 0. */
799
800rtx
801gen_lowpart_common (mode, x)
802 enum machine_mode mode;
19cb6b50 803 rtx x;
15bbde2b 804{
701e46d0 805 int msize = GET_MODE_SIZE (mode);
806 int xsize = GET_MODE_SIZE (GET_MODE (x));
807 int offset = 0;
15bbde2b 808
809 if (GET_MODE (x) == mode)
810 return x;
811
812 /* MODE must occupy no more words than the mode of X. */
813 if (GET_MODE (x) != VOIDmode
701e46d0 814 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
815 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
15bbde2b 816 return 0;
817
81802af6 818 offset = subreg_lowpart_offset (mode, GET_MODE (x));
15bbde2b 819
820 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
64115b39 821 && (GET_MODE_CLASS (mode) == MODE_INT
822 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
15bbde2b 823 {
824 /* If we are getting the low-order part of something that has been
825 sign- or zero-extended, we can either just use the object being
826 extended or make a narrower extension. If we want an even smaller
827 piece than the size of the object being extended, call ourselves
828 recursively.
829
830 This case is used mostly by combine and cse. */
831
832 if (GET_MODE (XEXP (x, 0)) == mode)
833 return XEXP (x, 0);
834 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
835 return gen_lowpart_common (mode, XEXP (x, 0));
836 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3ad7bb1c 837 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
15bbde2b 838 }
3c27c2b2 839 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
840 || GET_CODE (x) == CONCAT)
81802af6 841 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
15bbde2b 842 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
843 from the low-order part of the constant. */
64115b39 844 else if ((GET_MODE_CLASS (mode) == MODE_INT
845 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
846 && GET_MODE (x) == VOIDmode
15bbde2b 847 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
99e0010b 848 {
849 /* If MODE is twice the host word size, X is already the desired
850 representation. Otherwise, if MODE is wider than a word, we can't
b3b27b2a 851 do this. If MODE is exactly a word, return just one CONST_INT. */
99e0010b 852
d347deeb 853 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
99e0010b 854 return x;
b572011e 855 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
99e0010b 856 return 0;
b572011e 857 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
99e0010b 858 return (GET_CODE (x) == CONST_INT ? x
b572011e 859 : GEN_INT (CONST_DOUBLE_LOW (x)));
99e0010b 860 else
861 {
a0d52dee 862 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
b572011e 863 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
864 : CONST_DOUBLE_LOW (x));
99e0010b 865
a0d52dee 866 /* Sign extend to HOST_WIDE_INT. */
b3b27b2a 867 val = trunc_int_for_mode (val, mode);
99e0010b 868
869 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
b572011e 870 : GEN_INT (val));
99e0010b 871 }
872 }
15bbde2b 873
c8971cad 874#ifndef REAL_ARITHMETIC
4a307dd5 875 /* If X is an integral constant but we want it in floating-point, it
876 must be the case that we have a union of an integer and a floating-point
877 value. If the machine-parameters allow it, simulate that union here
d823ba47 878 and return the result. The two-word and single-word cases are
414a3664 879 different. */
4a307dd5 880
f51cb679 881 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 882 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 883 || flag_pretend_float)
4a307dd5 884 && GET_MODE_CLASS (mode) == MODE_FLOAT
414a3664 885 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
886 && GET_CODE (x) == CONST_INT
b572011e 887 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
414a3664 888 {
b572011e 889 union {HOST_WIDE_INT i; float d; } u;
414a3664 890
891 u.i = INTVAL (x);
715907c0 892 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
414a3664 893 }
414a3664 894 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 895 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
414a3664 896 || flag_pretend_float)
897 && GET_MODE_CLASS (mode) == MODE_FLOAT
898 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
4a307dd5 899 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
900 && GET_MODE (x) == VOIDmode
b572011e 901 && (sizeof (double) * HOST_BITS_PER_CHAR
902 == 2 * HOST_BITS_PER_WIDE_INT))
4a307dd5 903 {
b572011e 904 union {HOST_WIDE_INT i[2]; double d; } u;
905 HOST_WIDE_INT low, high;
4a307dd5 906
907 if (GET_CODE (x) == CONST_INT)
b572011e 908 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
4a307dd5 909 else
910 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
911
912#ifdef HOST_WORDS_BIG_ENDIAN
913 u.i[0] = high, u.i[1] = low;
914#else
915 u.i[0] = low, u.i[1] = high;
916#endif
917
715907c0 918 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
4a307dd5 919 }
e21bed9e 920
f51cb679 921 /* Similarly, if this is converting a floating-point value into a
922 single-word integer. Only do this is the host and target parameters are
923 compatible. */
924
925 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 926 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 927 || flag_pretend_float)
64115b39 928 && (GET_MODE_CLASS (mode) == MODE_INT
929 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
f51cb679 930 && GET_CODE (x) == CONST_DOUBLE
931 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
932 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
701e46d0 933 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
f51cb679 934
4a307dd5 935 /* Similarly, if this is converting a floating-point value into a
936 two-word integer, we can do this one word at a time and make an
937 integer. Only do this is the host and target parameters are
938 compatible. */
939
f51cb679 940 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 941 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 942 || flag_pretend_float)
64115b39 943 && (GET_MODE_CLASS (mode) == MODE_INT
6ff0332a 944 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4a307dd5 945 && GET_CODE (x) == CONST_DOUBLE
946 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
947 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
948 {
701e46d0 949 rtx lowpart, highpart;
950
951 lowpart = constant_subword (x,
952 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
953 GET_MODE (x));
954 highpart = constant_subword (x,
955 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
956 GET_MODE (x));
4a307dd5 957 if (lowpart && GET_CODE (lowpart) == CONST_INT
958 && highpart && GET_CODE (highpart) == CONST_INT)
959 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
960 }
c8971cad 961#else /* ifndef REAL_ARITHMETIC */
962
963 /* When we have a FP emulator, we can handle all conversions between
964 FP and integer operands. This simplifies reload because it
965 doesn't have to deal with constructs like (subreg:DI
966 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
7547817f 967 /* Single-precision floats are always 32-bits and double-precision
968 floats are always 64-bits. */
c8971cad 969
3c27c2b2 970 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
7547817f 971 && GET_MODE_BITSIZE (mode) == 32
c8971cad 972 && GET_CODE (x) == CONST_INT)
3c27c2b2 973 {
c8971cad 974 REAL_VALUE_TYPE r;
975 HOST_WIDE_INT i;
976
977 i = INTVAL (x);
978 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
979 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
3c27c2b2 980 }
981 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
7547817f 982 && GET_MODE_BITSIZE (mode) == 64
c8971cad 983 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
984 && GET_MODE (x) == VOIDmode)
985 {
986 REAL_VALUE_TYPE r;
987 HOST_WIDE_INT i[2];
988 HOST_WIDE_INT low, high;
989
990 if (GET_CODE (x) == CONST_INT)
991 {
992 low = INTVAL (x);
993 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
994 }
995 else
996 {
d823ba47 997 low = CONST_DOUBLE_LOW (x);
c8971cad 998 high = CONST_DOUBLE_HIGH (x);
999 }
1000
1001 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1002 target machine. */
1003 if (WORDS_BIG_ENDIAN)
1004 i[0] = high, i[1] = low;
1005 else
1006 i[0] = low, i[1] = high;
1007
1008 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1009 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1010 }
1011 else if ((GET_MODE_CLASS (mode) == MODE_INT
1012 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1013 && GET_CODE (x) == CONST_DOUBLE
1014 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1015 {
1016 REAL_VALUE_TYPE r;
1017 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1018 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1019
1020 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
7547817f 1021 switch (GET_MODE_BITSIZE (GET_MODE (x)))
c8971cad 1022 {
7547817f 1023 case 32:
c8971cad 1024 REAL_VALUE_TO_TARGET_SINGLE (r, i[endian]);
a774762c 1025 i[1 - endian] = 0;
c8971cad 1026 break;
7547817f 1027 case 64:
c8971cad 1028 REAL_VALUE_TO_TARGET_DOUBLE (r, i);
1029 break;
7547817f 1030 case 96:
3f980cf7 1031 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
1032 i[3-3*endian] = 0;
3c27c2b2 1033 break;
7547817f 1034 case 128:
c8971cad 1035 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1036 break;
1037 default:
a774762c 1038 abort ();
c8971cad 1039 }
1040
1041 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1042 and return it. */
1043#if HOST_BITS_PER_WIDE_INT == 32
a774762c 1044 return immed_double_const (i[endian], i[1 - endian], mode);
c8971cad 1045#else
83e32a86 1046 {
1047 int c;
1048
1049 if (HOST_BITS_PER_WIDE_INT != 64)
a774762c 1050 abort ();
1051
83e32a86 1052 for (c = 0; c < 4; c++)
a774762c 1053 i[c] &= ~ (0L);
3f980cf7 1054
7547817f 1055 switch (GET_MODE_BITSIZE (GET_MODE (x)))
3f980cf7 1056 {
7547817f 1057 case 32:
1058 case 64:
3f980cf7 1059 return immed_double_const (((unsigned long) i[endian]) |
1060 (((HOST_WIDE_INT) i[1-endian]) << 32),
1061 0, mode);
7547817f 1062 case 96:
1063 case 128:
3f980cf7 1064 return immed_double_const (((unsigned long) i[endian*3]) |
1065 (((HOST_WIDE_INT) i[1+endian]) << 32),
1066 ((unsigned long) i[2-endian]) |
1067 (((HOST_WIDE_INT) i[3-endian*3]) << 32),
1068 mode);
3c27c2b2 1069 default:
1070 abort ();
3f980cf7 1071 }
83e32a86 1072 }
c8971cad 1073#endif
1074 }
1075#endif /* ifndef REAL_ARITHMETIC */
4a307dd5 1076
15bbde2b 1077 /* Otherwise, we can't do this. */
1078 return 0;
1079}
1080\f
568f439b 1081/* Return the real part (which has mode MODE) of a complex value X.
1082 This always comes at the low address in memory. */
1083
1084rtx
1085gen_realpart (mode, x)
1086 enum machine_mode mode;
19cb6b50 1087 rtx x;
568f439b 1088{
81802af6 1089 if (WORDS_BIG_ENDIAN
1090 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1091 && REG_P (x)
1092 && REGNO (x) < FIRST_PSEUDO_REGISTER)
f060a027 1093 internal_error
1094 ("Can't access real part of complex value in hard register");
0864dc1b 1095 else if (WORDS_BIG_ENDIAN)
568f439b 1096 return gen_highpart (mode, x);
1097 else
1098 return gen_lowpart (mode, x);
1099}
1100
1101/* Return the imaginary part (which has mode MODE) of a complex value X.
1102 This always comes at the high address in memory. */
1103
1104rtx
1105gen_imagpart (mode, x)
1106 enum machine_mode mode;
19cb6b50 1107 rtx x;
568f439b 1108{
81802af6 1109 if (WORDS_BIG_ENDIAN)
568f439b 1110 return gen_lowpart (mode, x);
701e46d0 1111 else if (! WORDS_BIG_ENDIAN
ea9a92b6 1112 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1113 && REG_P (x)
1114 && REGNO (x) < FIRST_PSEUDO_REGISTER)
f060a027 1115 internal_error
1116 ("can't access imaginary part of complex value in hard register");
568f439b 1117 else
1118 return gen_highpart (mode, x);
1119}
48c70a46 1120
1121/* Return 1 iff X, assumed to be a SUBREG,
1122 refers to the real part of the complex value in its containing reg.
1123 Complex values are always stored with the real part in the first word,
1124 regardless of WORDS_BIG_ENDIAN. */
1125
1126int
1127subreg_realpart_p (x)
1128 rtx x;
1129{
1130 if (GET_CODE (x) != SUBREG)
1131 abort ();
1132
701e46d0 1133 return ((unsigned int) SUBREG_BYTE (x)
02e7a332 1134 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
48c70a46 1135}
568f439b 1136\f
15bbde2b 1137/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1138 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1139 least-significant part of X.
1140 MODE specifies how big a part of X to return;
1141 it usually should not be larger than a word.
1142 If X is a MEM whose address is a QUEUED, the value may be so also. */
1143
1144rtx
1145gen_lowpart (mode, x)
1146 enum machine_mode mode;
19cb6b50 1147 rtx x;
15bbde2b 1148{
1149 rtx result = gen_lowpart_common (mode, x);
1150
1151 if (result)
1152 return result;
365c9063 1153 else if (GET_CODE (x) == REG)
1154 {
1155 /* Must be a hard reg that's not valid in MODE. */
1156 result = gen_lowpart_common (mode, copy_to_reg (x));
1157 if (result == 0)
1158 abort ();
314d6ec8 1159 return result;
365c9063 1160 }
15bbde2b 1161 else if (GET_CODE (x) == MEM)
1162 {
1163 /* The only additional case we can do is MEM. */
19cb6b50 1164 int offset = 0;
15bbde2b 1165 if (WORDS_BIG_ENDIAN)
1166 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1167 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1168
1169 if (BYTES_BIG_ENDIAN)
1170 /* Adjust the address so that the address-after-the-data
1171 is unchanged. */
1172 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1173 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1174
e513d163 1175 return adjust_address (x, mode, offset);
15bbde2b 1176 }
0dbd1c74 1177 else if (GET_CODE (x) == ADDRESSOF)
1178 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
15bbde2b 1179 else
1180 abort ();
1181}
1182
d823ba47 1183/* Like `gen_lowpart', but refer to the most significant part.
d56d0ca2 1184 This is used to access the imaginary part of a complex number. */
1185
1186rtx
1187gen_highpart (mode, x)
1188 enum machine_mode mode;
19cb6b50 1189 rtx x;
d56d0ca2 1190{
701e46d0 1191 unsigned int msize = GET_MODE_SIZE (mode);
81802af6 1192 rtx result;
701e46d0 1193
d56d0ca2 1194 /* This case loses if X is a subreg. To catch bugs early,
1195 complain if an invalid MODE is used even in other cases. */
701e46d0 1196 if (msize > UNITS_PER_WORD
1197 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
d56d0ca2 1198 abort ();
701e46d0 1199
81802af6 1200 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1201 subreg_highpart_offset (mode, GET_MODE (x)));
a8c36ab2 1202
1203 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1204 the target if we have a MEM. gen_highpart must return a valid operand,
1205 emitting code if necessary to do so. */
1206 if (GET_CODE (result) == MEM)
1207 result = validize_mem (result);
1208
81802af6 1209 if (!result)
1210 abort ();
1211 return result;
1212}
704fcf2b 1213
1214/* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1215 be VOIDmode constant. */
1216rtx
1217gen_highpart_mode (outermode, innermode, exp)
1218 enum machine_mode outermode, innermode;
1219 rtx exp;
1220{
1221 if (GET_MODE (exp) != VOIDmode)
1222 {
1223 if (GET_MODE (exp) != innermode)
1224 abort ();
1225 return gen_highpart (outermode, exp);
1226 }
1227 return simplify_gen_subreg (outermode, exp, innermode,
1228 subreg_highpart_offset (outermode, innermode));
1229}
81802af6 1230/* Return offset in bytes to get OUTERMODE low part
1231 of the value in mode INNERMODE stored in memory in target format. */
10ef59ac 1232
81802af6 1233unsigned int
1234subreg_lowpart_offset (outermode, innermode)
1235 enum machine_mode outermode, innermode;
1236{
1237 unsigned int offset = 0;
1238 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
10ef59ac 1239
81802af6 1240 if (difference > 0)
d56d0ca2 1241 {
81802af6 1242 if (WORDS_BIG_ENDIAN)
1243 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1244 if (BYTES_BIG_ENDIAN)
1245 offset += difference % UNITS_PER_WORD;
d56d0ca2 1246 }
701e46d0 1247
81802af6 1248 return offset;
d56d0ca2 1249}
64ab453f 1250
81802af6 1251/* Return offset in bytes to get OUTERMODE high part
1252 of the value in mode INNERMODE stored in memory in target format. */
1253unsigned int
1254subreg_highpart_offset (outermode, innermode)
64ab453f 1255 enum machine_mode outermode, innermode;
64ab453f 1256{
1257 unsigned int offset = 0;
1258 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1259
81802af6 1260 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1261 abort ();
1262
64ab453f 1263 if (difference > 0)
1264 {
81802af6 1265 if (! WORDS_BIG_ENDIAN)
64ab453f 1266 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
81802af6 1267 if (! BYTES_BIG_ENDIAN)
64ab453f 1268 offset += difference % UNITS_PER_WORD;
1269 }
1270
81802af6 1271 return offset;
64ab453f 1272}
d56d0ca2 1273
15bbde2b 1274/* Return 1 iff X, assumed to be a SUBREG,
1275 refers to the least significant part of its containing reg.
1276 If X is not a SUBREG, always return 1 (it is its own low part!). */
1277
1278int
1279subreg_lowpart_p (x)
1280 rtx x;
1281{
1282 if (GET_CODE (x) != SUBREG)
1283 return 1;
7e14c1bf 1284 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1285 return 0;
15bbde2b 1286
81802af6 1287 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1288 == SUBREG_BYTE (x));
15bbde2b 1289}
1290\f
15bbde2b 1291
701e46d0 1292/* Helper routine for all the constant cases of operand_subword.
1293 Some places invoke this directly. */
15bbde2b 1294
1295rtx
701e46d0 1296constant_subword (op, offset, mode)
15bbde2b 1297 rtx op;
701e46d0 1298 int offset;
15bbde2b 1299 enum machine_mode mode;
1300{
b572011e 1301 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
701e46d0 1302 HOST_WIDE_INT val;
15bbde2b 1303
1304 /* If OP is already an integer word, return it. */
1305 if (GET_MODE_CLASS (mode) == MODE_INT
1306 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1307 return op;
1308
fc92fa61 1309#ifdef REAL_ARITHMETIC
915c336f 1310 /* The output is some bits, the width of the target machine's word.
1311 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1312 host can't. */
0477aa9f 1313 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
fc92fa61 1314 && GET_MODE_CLASS (mode) == MODE_FLOAT
48509d90 1315 && GET_MODE_BITSIZE (mode) == 64
fc92fa61 1316 && GET_CODE (op) == CONST_DOUBLE)
1317 {
0477aa9f 1318 long k[2];
fc92fa61 1319 REAL_VALUE_TYPE rv;
1320
1321 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1322 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
48509d90 1323
0477aa9f 1324 /* We handle 32-bit and >= 64-bit words here. Note that the order in
48509d90 1325 which the words are written depends on the word endianness.
48509d90 1326 ??? This is a potential portability problem and should
cd1091f4 1327 be fixed at some point.
1328
1329 We must excercise caution with the sign bit. By definition there
1330 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1331 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1332 So we explicitly mask and sign-extend as necessary. */
0477aa9f 1333 if (BITS_PER_WORD == 32)
cd1091f4 1334 {
701e46d0 1335 val = k[offset];
cd1091f4 1336 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1337 return GEN_INT (val);
1338 }
1339#if HOST_BITS_PER_WIDE_INT >= 64
701e46d0 1340 else if (BITS_PER_WORD >= 64 && offset == 0)
cd1091f4 1341 {
1342 val = k[! WORDS_BIG_ENDIAN];
1343 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1344 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1345 return GEN_INT (val);
1346 }
0477aa9f 1347#endif
de8de626 1348 else if (BITS_PER_WORD == 16)
1349 {
701e46d0 1350 val = k[offset >> 1];
1351 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
cd1091f4 1352 val >>= 16;
bfc60c50 1353 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
cd1091f4 1354 return GEN_INT (val);
de8de626 1355 }
48509d90 1356 else
1357 abort ();
fc92fa61 1358 }
61f41e95 1359 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1360 && GET_MODE_CLASS (mode) == MODE_FLOAT
1361 && GET_MODE_BITSIZE (mode) > 64
1362 && GET_CODE (op) == CONST_DOUBLE)
915c336f 1363 {
1364 long k[4];
1365 REAL_VALUE_TYPE rv;
61f41e95 1366
915c336f 1367 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1368 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
61f41e95 1369
915c336f 1370 if (BITS_PER_WORD == 32)
1371 {
701e46d0 1372 val = k[offset];
915c336f 1373 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1374 return GEN_INT (val);
1375 }
1376#if HOST_BITS_PER_WIDE_INT >= 64
701e46d0 1377 else if (BITS_PER_WORD >= 64 && offset <= 1)
915c336f 1378 {
701e46d0 1379 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
915c336f 1380 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
701e46d0 1381 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
915c336f 1382 return GEN_INT (val);
1383 }
1384#endif
1385 else
1386 abort ();
1387 }
fc92fa61 1388#else /* no REAL_ARITHMETIC */
15bbde2b 1389 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 1390 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
15bbde2b 1391 || flag_pretend_float)
1392 && GET_MODE_CLASS (mode) == MODE_FLOAT
1393 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1394 && GET_CODE (op) == CONST_DOUBLE)
35bb04fc 1395 {
1396 /* The constant is stored in the host's word-ordering,
1397 but we want to access it in the target's word-ordering. Some
1398 compilers don't like a conditional inside macro args, so we have two
1399 copies of the return. */
06683233 1400#ifdef HOST_WORDS_BIG_ENDIAN
701e46d0 1401 return GEN_INT (offset == WORDS_BIG_ENDIAN
35bb04fc 1402 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
06683233 1403#else
701e46d0 1404 return GEN_INT (offset != WORDS_BIG_ENDIAN
35bb04fc 1405 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
06683233 1406#endif
35bb04fc 1407 }
fc92fa61 1408#endif /* no REAL_ARITHMETIC */
15bbde2b 1409
1410 /* Single word float is a little harder, since single- and double-word
1411 values often do not have the same high-order bits. We have already
1412 verified that we want the only defined word of the single-word value. */
fc92fa61 1413#ifdef REAL_ARITHMETIC
0477aa9f 1414 if (GET_MODE_CLASS (mode) == MODE_FLOAT
48509d90 1415 && GET_MODE_BITSIZE (mode) == 32
fc92fa61 1416 && GET_CODE (op) == CONST_DOUBLE)
1417 {
0477aa9f 1418 long l;
fc92fa61 1419 REAL_VALUE_TYPE rv;
1420
1421 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1422 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
587a9fdf 1423
cd1091f4 1424 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1425 val = l;
1426 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
eb294a2f 1427
587a9fdf 1428 if (BITS_PER_WORD == 16)
1429 {
701e46d0 1430 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
cd1091f4 1431 val >>= 16;
bfc60c50 1432 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
587a9fdf 1433 }
cd1091f4 1434
1435 return GEN_INT (val);
fc92fa61 1436 }
1437#else
15bbde2b 1438 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 1439 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
15bbde2b 1440 || flag_pretend_float)
dc611f66 1441 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
15bbde2b 1442 && GET_MODE_CLASS (mode) == MODE_FLOAT
1443 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1444 && GET_CODE (op) == CONST_DOUBLE)
1445 {
1446 double d;
b572011e 1447 union {float f; HOST_WIDE_INT i; } u;
15bbde2b 1448
1449 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1450
1451 u.f = d;
b572011e 1452 return GEN_INT (u.i);
15bbde2b 1453 }
dc611f66 1454 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1455 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1456 || flag_pretend_float)
1457 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1458 && GET_MODE_CLASS (mode) == MODE_FLOAT
1459 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1460 && GET_CODE (op) == CONST_DOUBLE)
1461 {
1462 double d;
1463 union {double d; HOST_WIDE_INT i; } u;
1464
1465 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1466
1467 u.d = d;
1468 return GEN_INT (u.i);
1469 }
fc92fa61 1470#endif /* no REAL_ARITHMETIC */
d823ba47 1471
15bbde2b 1472 /* The only remaining cases that we can handle are integers.
1473 Convert to proper endianness now since these cases need it.
d823ba47 1474 At this point, offset == 0 means the low-order word.
15bbde2b 1475
870288ea 1476 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1477 in general. However, if OP is (const_int 0), we can just return
1478 it for any word. */
1479
1480 if (op == const0_rtx)
1481 return op;
15bbde2b 1482
1483 if (GET_MODE_CLASS (mode) != MODE_INT
870288ea 1484 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
5c1fd70d 1485 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
15bbde2b 1486 return 0;
1487
1488 if (WORDS_BIG_ENDIAN)
701e46d0 1489 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
15bbde2b 1490
1491 /* Find out which word on the host machine this value is in and get
1492 it from the constant. */
701e46d0 1493 val = (offset / size_ratio == 0
15bbde2b 1494 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1495 : (GET_CODE (op) == CONST_INT
1496 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1497
5418f2a8 1498 /* Get the value we want into the low bits of val. */
b572011e 1499 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
701e46d0 1500 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
5418f2a8 1501
b2345915 1502 val = trunc_int_for_mode (val, word_mode);
15bbde2b 1503
b572011e 1504 return GEN_INT (val);
15bbde2b 1505}
1506
701e46d0 1507/* Return subword OFFSET of operand OP.
1508 The word number, OFFSET, is interpreted as the word number starting
1509 at the low-order address. OFFSET 0 is the low-order word if not
1510 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1511
1512 If we cannot extract the required word, we return zero. Otherwise,
1513 an rtx corresponding to the requested word will be returned.
1514
1515 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1516 reload has completed, a valid address will always be returned. After
1517 reload, if a valid address cannot be returned, we return zero.
1518
1519 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1520 it is the responsibility of the caller.
1521
1522 MODE is the mode of OP in case it is a CONST_INT.
1523
1524 ??? This is still rather broken for some cases. The problem for the
1525 moment is that all callers of this thing provide no 'goal mode' to
1526 tell us to work with. This exists because all callers were written
84e81e84 1527 in a word based SUBREG world.
1528 Now use of this function can be deprecated by simplify_subreg in most
1529 cases.
1530 */
701e46d0 1531
1532rtx
1533operand_subword (op, offset, validate_address, mode)
1534 rtx op;
1535 unsigned int offset;
1536 int validate_address;
1537 enum machine_mode mode;
1538{
1539 if (mode == VOIDmode)
1540 mode = GET_MODE (op);
1541
1542 if (mode == VOIDmode)
1543 abort ();
1544
6312a35e 1545 /* If OP is narrower than a word, fail. */
701e46d0 1546 if (mode != BLKmode
1547 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1548 return 0;
1549
6312a35e 1550 /* If we want a word outside OP, return zero. */
701e46d0 1551 if (mode != BLKmode
1552 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1553 return const0_rtx;
1554
701e46d0 1555 /* Form a new MEM at the requested address. */
1556 if (GET_CODE (op) == MEM)
1557 {
e4e86ec5 1558 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
701e46d0 1559
e4e86ec5 1560 if (! validate_address)
1561 return new;
1562
1563 else if (reload_completed)
701e46d0 1564 {
e4e86ec5 1565 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1566 return 0;
701e46d0 1567 }
e4e86ec5 1568 else
1569 return replace_equiv_address (new, XEXP (new, 0));
701e46d0 1570 }
1571
84e81e84 1572 /* Rest can be handled by simplify_subreg. */
1573 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
701e46d0 1574}
1575
15bbde2b 1576/* Similar to `operand_subword', but never return 0. If we can't extract
1577 the required subword, put OP into a register and try again. If that fails,
d823ba47 1578 abort. We always validate the address in this case.
15bbde2b 1579
1580 MODE is the mode of OP, in case it is CONST_INT. */
1581
1582rtx
701e46d0 1583operand_subword_force (op, offset, mode)
15bbde2b 1584 rtx op;
701e46d0 1585 unsigned int offset;
15bbde2b 1586 enum machine_mode mode;
1587{
701e46d0 1588 rtx result = operand_subword (op, offset, 1, mode);
15bbde2b 1589
1590 if (result)
1591 return result;
1592
1593 if (mode != BLKmode && mode != VOIDmode)
ac825d29 1594 {
1595 /* If this is a register which can not be accessed by words, copy it
1596 to a pseudo register. */
1597 if (GET_CODE (op) == REG)
1598 op = copy_to_reg (op);
1599 else
1600 op = force_reg (mode, op);
1601 }
15bbde2b 1602
701e46d0 1603 result = operand_subword (op, offset, 1, mode);
15bbde2b 1604 if (result == 0)
1605 abort ();
1606
1607 return result;
1608}
1609\f
1610/* Given a compare instruction, swap the operands.
1611 A test instruction is changed into a compare of 0 against the operand. */
1612
1613void
1614reverse_comparison (insn)
1615 rtx insn;
1616{
1617 rtx body = PATTERN (insn);
1618 rtx comp;
1619
1620 if (GET_CODE (body) == SET)
1621 comp = SET_SRC (body);
1622 else
1623 comp = SET_SRC (XVECEXP (body, 0, 0));
1624
1625 if (GET_CODE (comp) == COMPARE)
1626 {
1627 rtx op0 = XEXP (comp, 0);
1628 rtx op1 = XEXP (comp, 1);
1629 XEXP (comp, 0) = op1;
1630 XEXP (comp, 1) = op0;
1631 }
1632 else
1633 {
7014838c 1634 rtx new = gen_rtx_COMPARE (VOIDmode,
1635 CONST0_RTX (GET_MODE (comp)), comp);
15bbde2b 1636 if (GET_CODE (body) == SET)
1637 SET_SRC (body) = new;
1638 else
1639 SET_SRC (XVECEXP (body, 0, 0)) = new;
1640 }
1641}
1642\f
c6259b83 1643
1644/* Given REF, a MEM, and T, either the type of X or the expression
1645 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1646 if we are making a new object of this type. */
1647
1648void
1649set_mem_attributes (ref, t, objectp)
1650 rtx ref;
1651 tree t;
1652 int objectp;
1653{
1654 tree type;
1655
1656 /* It can happen that type_for_mode was given a mode for which there
1657 is no language-level type. In which case it returns NULL, which
1658 we can see here. */
1659 if (t == NULL_TREE)
1660 return;
1661
1662 type = TYPE_P (t) ? t : TREE_TYPE (t);
1663
c6259b83 1664 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1665 wrong answer, as it assumes that DECL_RTL already has the right alias
1666 info. Callers should not set DECL_RTL until after the call to
1667 set_mem_attributes. */
1668 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1669 abort ();
1670
96216d37 1671 /* Get the alias set from the expression or type (perhaps using a
1672 front-end routine). */
c6259b83 1673 set_mem_alias_set (ref, get_alias_set (t));
1674
96216d37 1675 /* It is incorrect to set RTX_UNCHANGING_P from TREE_READONLY (type)
1676 here, because, in C and C++, the fact that a location is accessed
1677 through a const expression does not mean that the value there can
1678 never change. */
1679
c6259b83 1680 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1681 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
1682
1683 /* If we are making an object of this type, we know that it is a scalar if
1684 the type is not an aggregate. */
1685 if (objectp && ! AGGREGATE_TYPE_P (type))
1686 MEM_SCALAR_P (ref) = 1;
1687
96216d37 1688 /* If the size is known, we can set that. */
1689 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
1690 MEM_ATTRS (ref)
1691 = get_mem_attrs (MEM_ALIAS_SET (ref), MEM_DECL (ref), MEM_OFFSET (ref),
1692 GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1)),
1693 MEM_ALIGN (ref));
1694
1695 /* If T is a type, there's nothing more we can do. Otherwise, we may be able
c6259b83 1696 to deduce some more information about the expression. */
1697 if (TYPE_P (t))
1698 return;
1699
1700 maybe_set_unchanging (ref, t);
1701 if (TREE_THIS_VOLATILE (t))
1702 MEM_VOLATILE_P (ref) = 1;
1703
c6259b83 1704 /* Now remove any NOPs: they don't change what the underlying object is.
1705 Likewise for SAVE_EXPR. */
1706 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1707 || TREE_CODE (t) == NON_LVALUE_EXPR || TREE_CODE (t) == SAVE_EXPR)
1708 t = TREE_OPERAND (t, 0);
1709
96216d37 1710 /* If this is a decl, set the attributes of the MEM from it. */
1711 if (DECL_P (t))
1712 MEM_ATTRS (ref)
1713 = get_mem_attrs
1714 (MEM_ALIAS_SET (ref), t, GEN_INT (0),
1715 (TYPE_SIZE_UNIT (TREE_TYPE (t))
1716 && host_integerp (TYPE_SIZE_UNIT (TREE_TYPE (t)), 1))
1717 ? GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (TREE_TYPE (t)), 1))
1718 : 0, DECL_ALIGN (t) / BITS_PER_UNIT);
1719
1720 /* Now see if we can say more about whether it's an aggregate or
1721 scalar. If we already know it's an aggregate, don't bother. */
1722 if (MEM_IN_STRUCT_P (ref))
1723 return;
1724
c6259b83 1725 /* Since we already know the type isn't an aggregate, if this is a decl,
1726 it must be a scalar. Or if it is a reference into an aggregate,
1727 this is part of an aggregate. Otherwise we don't know. */
1728 if (DECL_P (t))
1729 MEM_SCALAR_P (ref) = 1;
1730 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1731 || TREE_CODE (t) == ARRAY_RANGE_REF
1732 || TREE_CODE (t) == BIT_FIELD_REF)
1733 MEM_IN_STRUCT_P (ref) = 1;
1734}
1735
1736/* Set the alias set of MEM to SET. */
1737
1738void
1739set_mem_alias_set (mem, set)
1740 rtx mem;
1741 HOST_WIDE_INT set;
1742{
c6259b83 1743#ifdef ENABLE_CHECKING
1744 /* If the new and old alias sets don't conflict, something is wrong. */
1745 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1746 abort ();
c6259b83 1747#endif
1748
1749 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_DECL (mem), MEM_OFFSET (mem),
1750 MEM_SIZE (mem), MEM_ALIGN (mem));
1751}
96216d37 1752
1753/* Set the alignment of MEM to ALIGN. */
1754
1755void
1756set_mem_align (mem, align)
1757 rtx mem;
1758 unsigned int align;
1759{
1760 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_DECL (mem),
1761 MEM_OFFSET (mem), MEM_SIZE (mem), align);
1762}
c6259b83 1763\f
96216d37 1764/* Return a memory reference like MEMREF, but with its mode changed to MODE
1765 and its address changed to ADDR. (VOIDmode means don't change the mode.
1766 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1767 returned memory location is required to be valid. The memory
1768 attributes are not changed. */
15bbde2b 1769
96216d37 1770static rtx
e4e86ec5 1771change_address_1 (memref, mode, addr, validate)
15bbde2b 1772 rtx memref;
1773 enum machine_mode mode;
1774 rtx addr;
e4e86ec5 1775 int validate;
15bbde2b 1776{
1777 rtx new;
1778
1779 if (GET_CODE (memref) != MEM)
1780 abort ();
1781 if (mode == VOIDmode)
1782 mode = GET_MODE (memref);
1783 if (addr == 0)
1784 addr = XEXP (memref, 0);
1785
e4e86ec5 1786 if (validate)
15bbde2b 1787 {
e4e86ec5 1788 if (reload_in_progress || reload_completed)
1789 {
1790 if (! memory_address_p (mode, addr))
1791 abort ();
1792 }
1793 else
1794 addr = memory_address (mode, addr);
15bbde2b 1795 }
d823ba47 1796
e8976cd7 1797 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1798 return memref;
1799
3ad7bb1c 1800 new = gen_rtx_MEM (mode, addr);
6a0934dd 1801 MEM_COPY_ATTRIBUTES (new, memref);
15bbde2b 1802 return new;
1803}
537ffcfc 1804
96216d37 1805/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1806 way we are changing MEMREF, so we only preserve the alias set. */
e513d163 1807
1808rtx
96216d37 1809change_address (memref, mode, addr)
e513d163 1810 rtx memref;
1811 enum machine_mode mode;
96216d37 1812 rtx addr;
e513d163 1813{
96216d37 1814 rtx new = change_address_1 (memref, mode, addr, 1);
1815 enum machine_mode mmode = GET_MODE (new);
6cc60c4d 1816
96216d37 1817 MEM_ATTRS (new)
1818 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1819 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
1820 (mmode == BLKmode ? 1
1821 : GET_MODE_ALIGNMENT (mmode) / BITS_PER_UNIT));
fb257ae6 1822
96216d37 1823 return new;
e513d163 1824}
537ffcfc 1825
96216d37 1826/* Return a memory reference like MEMREF, but with its mode changed
1827 to MODE and its address offset by OFFSET bytes. If VALIDATE is
1828 nonzero, the memory address is forced to be valid. */
e4e86ec5 1829
1830rtx
96216d37 1831adjust_address_1 (memref, mode, offset, validate)
e4e86ec5 1832 rtx memref;
1833 enum machine_mode mode;
1834 HOST_WIDE_INT offset;
96216d37 1835 int validate;
e4e86ec5 1836{
fb257ae6 1837 rtx addr = XEXP (memref, 0);
96216d37 1838 rtx new;
1839 rtx memoffset = MEM_OFFSET (memref);
1840 unsigned int memalign = MEM_ALIGN (memref);
fb257ae6 1841
96216d37 1842 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
fb257ae6 1843 object, we can merge it into the LO_SUM. */
1844 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
9c5033bb 1845 && offset >= 0
eca1c9c0 1846 && (unsigned HOST_WIDE_INT) offset
1847 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
96216d37 1848 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
fb257ae6 1849 plus_constant (XEXP (addr, 1), offset));
96216d37 1850 else if (offset == 0)
1851 /* ??? Prefer to create garbage instead of creating shared rtl. */
1852 addr = copy_rtx (addr);
fb257ae6 1853 else
1854 addr = plus_constant (addr, offset);
1855
96216d37 1856 new = change_address_1 (memref, mode, addr, validate);
1857
1858 /* Compute the new values of the memory attributes due to this adjustment.
1859 We add the offsets and update the alignment. */
1860 if (memoffset)
1861 memoffset = GEN_INT (offset + INTVAL (memoffset));
1862
1863 /* If the offset is negative, don't try to update the alignment. If it's
1864 zero, the alignment hasn't changed. Otherwise, the known alignment may
1865 be less strict. */
1866 if (offset < 0)
1867 memalign = 1;
1868
1869 while (offset > 0 && (offset % memalign) != 0)
1870 memalign >>= 1;
1871
1872 MEM_ATTRS (new)
1873 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_DECL (memref), memoffset,
1874 mode == BLKmode
1875 ? 0 : GEN_INT (GET_MODE_SIZE (mode)), memalign);
1876
1877 /* At some point, we should validate that this offset is within the object,
1878 if all the appropriate values are known. */
1879 return new;
e4e86ec5 1880}
1881
fcdc122e 1882/* Return a memory reference like MEMREF, but with its address changed to
1883 ADDR. The caller is asserting that the actual piece of memory pointed
1884 to is the same, just the form of the address is being changed, such as
1885 by putting something into a register. */
1886
1887rtx
1888offset_address (memref, offset, pow2)
1889 rtx memref;
1890 rtx offset;
1891 HOST_WIDE_INT pow2;
1892{
1893 rtx new = change_address_1 (memref, VOIDmode,
1894 gen_rtx_PLUS (Pmode, XEXP (memref, 0),
1895 force_reg (Pmode, offset)), 1);
1896 unsigned int memalign = MEM_ALIGN (memref);
1897
1898 /* Update the alignment to reflect the offset. Reset the offset, which
1899 we don't know. */
1900 while (pow2 % memalign != 0)
1901 memalign >>= 1;
1902
1903 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_DECL (memref),
1904 0, 0, memalign);
1905 return new;
1906}
1907
537ffcfc 1908/* Return a memory reference like MEMREF, but with its address changed to
1909 ADDR. The caller is asserting that the actual piece of memory pointed
1910 to is the same, just the form of the address is being changed, such as
1911 by putting something into a register. */
1912
1913rtx
1914replace_equiv_address (memref, addr)
1915 rtx memref;
1916 rtx addr;
1917{
96216d37 1918 /* change_address_1 copies the memory attribute structure without change
1919 and that's exactly what we want here. */
1920 return change_address_1 (memref, VOIDmode, addr, 1);
537ffcfc 1921}
96216d37 1922
e4e86ec5 1923/* Likewise, but the reference is not required to be valid. */
1924
1925rtx
1926replace_equiv_address_nv (memref, addr)
1927 rtx memref;
1928 rtx addr;
1929{
e4e86ec5 1930 return change_address_1 (memref, VOIDmode, addr, 0);
1931}
15bbde2b 1932\f
1933/* Return a newly created CODE_LABEL rtx with a unique label number. */
1934
1935rtx
1936gen_label_rtx ()
1937{
19cb6b50 1938 rtx label;
649d8da6 1939
b54842d8 1940 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
4679ade3 1941 NULL_RTX, label_num++, NULL, NULL);
649d8da6 1942
15bbde2b 1943 LABEL_NUSES (label) = 0;
bfee5366 1944 LABEL_ALTERNATE_NAME (label) = NULL;
15bbde2b 1945 return label;
1946}
1947\f
1948/* For procedure integration. */
1949
15bbde2b 1950/* Install new pointers to the first and last insns in the chain.
d4c332ff 1951 Also, set cur_insn_uid to one higher than the last in use.
15bbde2b 1952 Used for an inline-procedure after copying the insn chain. */
1953
1954void
1955set_new_first_and_last_insn (first, last)
1956 rtx first, last;
1957{
d4c332ff 1958 rtx insn;
1959
15bbde2b 1960 first_insn = first;
1961 last_insn = last;
d4c332ff 1962 cur_insn_uid = 0;
1963
1964 for (insn = first; insn; insn = NEXT_INSN (insn))
1965 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1966
1967 cur_insn_uid++;
15bbde2b 1968}
1969
1970/* Set the range of label numbers found in the current function.
1971 This is used when belatedly compiling an inline function. */
1972
1973void
1974set_new_first_and_last_label_num (first, last)
1975 int first, last;
1976{
1977 base_label_num = label_num;
1978 first_label_num = first;
1979 last_label_num = last;
1980}
0a893c29 1981
1982/* Set the last label number found in the current function.
1983 This is used when belatedly compiling an inline function. */
15bbde2b 1984
1985void
0a893c29 1986set_new_last_label_num (last)
1987 int last;
15bbde2b 1988{
0a893c29 1989 base_label_num = label_num;
1990 last_label_num = last;
15bbde2b 1991}
0a893c29 1992\f
15bbde2b 1993/* Restore all variables describing the current status from the structure *P.
1994 This is used after a nested function. */
1995
1996void
1997restore_emit_status (p)
c5b89159 1998 struct function *p ATTRIBUTE_UNUSED;
15bbde2b 1999{
bb9d6298 2000 last_label_num = 0;
0a893c29 2001 clear_emit_caches ();
15bbde2b 2002}
26df1c5e 2003
c788feb1 2004/* Clear out all parts of the state in F that can safely be discarded
26df1c5e 2005 after the function has been compiled, to let garbage collection
a57bcb3b 2006 reclaim the memory. */
c788feb1 2007
26df1c5e 2008void
a57bcb3b 2009free_emit_status (f)
26df1c5e 2010 struct function *f;
2011{
2012 free (f->emit->x_regno_reg_rtx);
26df1c5e 2013 free (f->emit->regno_pointer_align);
fcdc122e 2014 free (f->emit->regno_decl);
3c3bb268 2015 free (f->emit);
2016 f->emit = NULL;
26df1c5e 2017}
15bbde2b 2018\f
d823ba47 2019/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2020 structure. This routine should only be called once. */
15bbde2b 2021
2022void
2d96a59a 2023unshare_all_rtl (fndecl, insn)
2024 tree fndecl;
2025 rtx insn;
15bbde2b 2026{
2d96a59a 2027 tree decl;
15bbde2b 2028
2d96a59a 2029 /* Make sure that virtual parameters are not shared. */
2030 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
0e8e37b2 2031 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2d96a59a 2032
72ec8878 2033 /* Make sure that virtual stack slots are not shared. */
2034 unshare_all_decls (DECL_INITIAL (fndecl));
2035
2d96a59a 2036 /* Unshare just about everything else. */
2037 unshare_all_rtl_1 (insn);
d823ba47 2038
15bbde2b 2039 /* Make sure the addresses of stack slots found outside the insn chain
2040 (such as, in DECL_RTL of a variable) are not shared
2041 with the insn chain.
2042
2043 This special care is necessary when the stack slot MEM does not
2044 actually appear in the insn chain. If it does appear, its address
2045 is unshared from all else at that point. */
45733446 2046 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
15bbde2b 2047}
2048
d823ba47 2049/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2050 structure, again. This is a fairly expensive thing to do so it
2051 should be done sparingly. */
2052
2053void
2054unshare_all_rtl_again (insn)
2055 rtx insn;
2056{
2057 rtx p;
5244079b 2058 tree decl;
2059
2d96a59a 2060 for (p = insn; p; p = NEXT_INSN (p))
9204e736 2061 if (INSN_P (p))
2d96a59a 2062 {
2063 reset_used_flags (PATTERN (p));
2064 reset_used_flags (REG_NOTES (p));
2065 reset_used_flags (LOG_LINKS (p));
2066 }
5244079b 2067
01dc9f0c 2068 /* Make sure that virtual stack slots are not shared. */
2069 reset_used_decls (DECL_INITIAL (cfun->decl));
2070
5244079b 2071 /* Make sure that virtual parameters are not shared. */
2072 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2073 reset_used_flags (DECL_RTL (decl));
2074
2075 reset_used_flags (stack_slot_list);
2076
2077 unshare_all_rtl (cfun->decl, insn);
2d96a59a 2078}
2079
2080/* Go through all the RTL insn bodies and copy any invalid shared structure.
2081 Assumes the mark bits are cleared at entry. */
2082
2083static void
2084unshare_all_rtl_1 (insn)
2085 rtx insn;
2086{
2087 for (; insn; insn = NEXT_INSN (insn))
9204e736 2088 if (INSN_P (insn))
2d96a59a 2089 {
2090 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2091 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2092 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2093 }
2094}
2095
72ec8878 2096/* Go through all virtual stack slots of a function and copy any
2097 shared structure. */
2098static void
2099unshare_all_decls (blk)
2100 tree blk;
2101{
2102 tree t;
2103
2104 /* Copy shared decls. */
2105 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
0e8e37b2 2106 if (DECL_RTL_SET_P (t))
2107 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
72ec8878 2108
2109 /* Now process sub-blocks. */
2110 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2111 unshare_all_decls (t);
2112}
2113
01dc9f0c 2114/* Go through all virtual stack slots of a function and mark them as
6312a35e 2115 not shared. */
01dc9f0c 2116static void
2117reset_used_decls (blk)
2118 tree blk;
2119{
2120 tree t;
2121
2122 /* Mark decls. */
2123 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
0e8e37b2 2124 if (DECL_RTL_SET_P (t))
2125 reset_used_flags (DECL_RTL (t));
01dc9f0c 2126
2127 /* Now process sub-blocks. */
2128 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2129 reset_used_decls (t);
2130}
2131
15bbde2b 2132/* Mark ORIG as in use, and return a copy of it if it was already in use.
2133 Recursively does the same for subexpressions. */
2134
2135rtx
2136copy_rtx_if_shared (orig)
2137 rtx orig;
2138{
19cb6b50 2139 rtx x = orig;
2140 int i;
2141 enum rtx_code code;
2142 const char *format_ptr;
15bbde2b 2143 int copied = 0;
2144
2145 if (x == 0)
2146 return 0;
2147
2148 code = GET_CODE (x);
2149
2150 /* These types may be freely shared. */
2151
2152 switch (code)
2153 {
2154 case REG:
2155 case QUEUED:
2156 case CONST_INT:
2157 case CONST_DOUBLE:
2158 case SYMBOL_REF:
2159 case CODE_LABEL:
2160 case PC:
2161 case CC0:
2162 case SCRATCH:
a92771b8 2163 /* SCRATCH must be shared because they represent distinct values. */
15bbde2b 2164 return x;
2165
f63d12e3 2166 case CONST:
2167 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2168 a LABEL_REF, it isn't sharable. */
2169 if (GET_CODE (XEXP (x, 0)) == PLUS
2170 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2171 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2172 return x;
2173 break;
2174
15bbde2b 2175 case INSN:
2176 case JUMP_INSN:
2177 case CALL_INSN:
2178 case NOTE:
15bbde2b 2179 case BARRIER:
2180 /* The chain of insns is not being copied. */
2181 return x;
2182
2183 case MEM:
baf55c37 2184 /* A MEM is allowed to be shared if its address is constant.
2185
d823ba47 2186 We used to allow sharing of MEMs which referenced
baf55c37 2187 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2188 that can lose. instantiate_virtual_regs will not unshare
2189 the MEMs, and combine may change the structure of the address
2190 because it looks safe and profitable in one context, but
2191 in some other context it creates unrecognizable RTL. */
2192 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
15bbde2b 2193 return x;
2194
0dbd1c74 2195 break;
2196
2197 default:
2198 break;
15bbde2b 2199 }
2200
2201 /* This rtx may not be shared. If it has already been seen,
2202 replace it with a copy of itself. */
2203
2204 if (x->used)
2205 {
19cb6b50 2206 rtx copy;
15bbde2b 2207
2208 copy = rtx_alloc (code);
b1b63592 2209 memcpy (copy, x,
748e6d74 2210 (sizeof (*copy) - sizeof (copy->fld)
2211 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
15bbde2b 2212 x = copy;
2213 copied = 1;
2214 }
2215 x->used = 1;
2216
2217 /* Now scan the subexpressions recursively.
2218 We can store any replaced subexpressions directly into X
2219 since we know X is not shared! Any vectors in X
2220 must be copied if X was copied. */
2221
2222 format_ptr = GET_RTX_FORMAT (code);
2223
2224 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2225 {
2226 switch (*format_ptr++)
2227 {
2228 case 'e':
2229 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2230 break;
2231
2232 case 'E':
2233 if (XVEC (x, i) != NULL)
2234 {
19cb6b50 2235 int j;
ffe0869b 2236 int len = XVECLEN (x, i);
15bbde2b 2237
ffe0869b 2238 if (copied && len > 0)
a4070a91 2239 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
ffe0869b 2240 for (j = 0; j < len; j++)
2241 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
15bbde2b 2242 }
2243 break;
2244 }
2245 }
2246 return x;
2247}
2248
2249/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2250 to look for shared sub-parts. */
2251
2252void
2253reset_used_flags (x)
2254 rtx x;
2255{
19cb6b50 2256 int i, j;
2257 enum rtx_code code;
2258 const char *format_ptr;
15bbde2b 2259
2260 if (x == 0)
2261 return;
2262
2263 code = GET_CODE (x);
2264
c3418f42 2265 /* These types may be freely shared so we needn't do any resetting
15bbde2b 2266 for them. */
2267
2268 switch (code)
2269 {
2270 case REG:
2271 case QUEUED:
2272 case CONST_INT:
2273 case CONST_DOUBLE:
2274 case SYMBOL_REF:
2275 case CODE_LABEL:
2276 case PC:
2277 case CC0:
2278 return;
2279
2280 case INSN:
2281 case JUMP_INSN:
2282 case CALL_INSN:
2283 case NOTE:
2284 case LABEL_REF:
2285 case BARRIER:
2286 /* The chain of insns is not being copied. */
2287 return;
d823ba47 2288
0dbd1c74 2289 default:
2290 break;
15bbde2b 2291 }
2292
2293 x->used = 0;
2294
2295 format_ptr = GET_RTX_FORMAT (code);
2296 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2297 {
2298 switch (*format_ptr++)
2299 {
2300 case 'e':
2301 reset_used_flags (XEXP (x, i));
2302 break;
2303
2304 case 'E':
2305 for (j = 0; j < XVECLEN (x, i); j++)
2306 reset_used_flags (XVECEXP (x, i, j));
2307 break;
2308 }
2309 }
2310}
2311\f
2312/* Copy X if necessary so that it won't be altered by changes in OTHER.
2313 Return X or the rtx for the pseudo reg the value of X was copied into.
2314 OTHER must be valid as a SET_DEST. */
2315
2316rtx
2317make_safe_from (x, other)
2318 rtx x, other;
2319{
2320 while (1)
2321 switch (GET_CODE (other))
2322 {
2323 case SUBREG:
2324 other = SUBREG_REG (other);
2325 break;
2326 case STRICT_LOW_PART:
2327 case SIGN_EXTEND:
2328 case ZERO_EXTEND:
2329 other = XEXP (other, 0);
2330 break;
2331 default:
2332 goto done;
2333 }
2334 done:
2335 if ((GET_CODE (other) == MEM
2336 && ! CONSTANT_P (x)
2337 && GET_CODE (x) != REG
2338 && GET_CODE (x) != SUBREG)
2339 || (GET_CODE (other) == REG
2340 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2341 || reg_mentioned_p (other, x))))
2342 {
2343 rtx temp = gen_reg_rtx (GET_MODE (x));
2344 emit_move_insn (temp, x);
2345 return temp;
2346 }
2347 return x;
2348}
2349\f
2350/* Emission of insns (adding them to the doubly-linked list). */
2351
2352/* Return the first insn of the current sequence or current function. */
2353
2354rtx
2355get_insns ()
2356{
2357 return first_insn;
2358}
2359
2360/* Return the last insn emitted in current sequence or current function. */
2361
2362rtx
2363get_last_insn ()
2364{
2365 return last_insn;
2366}
2367
2368/* Specify a new insn as the last in the chain. */
2369
2370void
2371set_last_insn (insn)
2372 rtx insn;
2373{
2374 if (NEXT_INSN (insn) != 0)
2375 abort ();
2376 last_insn = insn;
2377}
2378
2379/* Return the last insn emitted, even if it is in a sequence now pushed. */
2380
2381rtx
2382get_last_insn_anywhere ()
2383{
2384 struct sequence_stack *stack;
2385 if (last_insn)
2386 return last_insn;
0a893c29 2387 for (stack = seq_stack; stack; stack = stack->next)
15bbde2b 2388 if (stack->last != 0)
2389 return stack->last;
2390 return 0;
2391}
2392
2393/* Return a number larger than any instruction's uid in this function. */
2394
2395int
2396get_max_uid ()
2397{
2398 return cur_insn_uid;
2399}
90b89d2c 2400
214d02d0 2401/* Renumber instructions so that no instruction UIDs are wasted. */
2402
90b89d2c 2403void
214d02d0 2404renumber_insns (stream)
2405 FILE *stream;
90b89d2c 2406{
2407 rtx insn;
90b89d2c 2408
214d02d0 2409 /* If we're not supposed to renumber instructions, don't. */
2410 if (!flag_renumber_insns)
2411 return;
2412
90b89d2c 2413 /* If there aren't that many instructions, then it's not really
2414 worth renumbering them. */
214d02d0 2415 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
90b89d2c 2416 return;
2417
2418 cur_insn_uid = 1;
2419
2420 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
214d02d0 2421 {
2422 if (stream)
d823ba47 2423 fprintf (stream, "Renumbering insn %d to %d\n",
214d02d0 2424 INSN_UID (insn), cur_insn_uid);
2425 INSN_UID (insn) = cur_insn_uid++;
2426 }
90b89d2c 2427}
15bbde2b 2428\f
2429/* Return the next insn. If it is a SEQUENCE, return the first insn
2430 of the sequence. */
2431
2432rtx
2433next_insn (insn)
2434 rtx insn;
2435{
2436 if (insn)
2437 {
2438 insn = NEXT_INSN (insn);
2439 if (insn && GET_CODE (insn) == INSN
2440 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2441 insn = XVECEXP (PATTERN (insn), 0, 0);
2442 }
2443
2444 return insn;
2445}
2446
2447/* Return the previous insn. If it is a SEQUENCE, return the last insn
2448 of the sequence. */
2449
2450rtx
2451previous_insn (insn)
2452 rtx insn;
2453{
2454 if (insn)
2455 {
2456 insn = PREV_INSN (insn);
2457 if (insn && GET_CODE (insn) == INSN
2458 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2459 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2460 }
2461
2462 return insn;
2463}
2464
2465/* Return the next insn after INSN that is not a NOTE. This routine does not
2466 look inside SEQUENCEs. */
2467
2468rtx
2469next_nonnote_insn (insn)
2470 rtx insn;
2471{
2472 while (insn)
2473 {
2474 insn = NEXT_INSN (insn);
2475 if (insn == 0 || GET_CODE (insn) != NOTE)
2476 break;
2477 }
2478
2479 return insn;
2480}
2481
2482/* Return the previous insn before INSN that is not a NOTE. This routine does
2483 not look inside SEQUENCEs. */
2484
2485rtx
2486prev_nonnote_insn (insn)
2487 rtx insn;
2488{
2489 while (insn)
2490 {
2491 insn = PREV_INSN (insn);
2492 if (insn == 0 || GET_CODE (insn) != NOTE)
2493 break;
2494 }
2495
2496 return insn;
2497}
2498
2499/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2500 or 0, if there is none. This routine does not look inside
a92771b8 2501 SEQUENCEs. */
15bbde2b 2502
2503rtx
2504next_real_insn (insn)
2505 rtx insn;
2506{
2507 while (insn)
2508 {
2509 insn = NEXT_INSN (insn);
2510 if (insn == 0 || GET_CODE (insn) == INSN
2511 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2512 break;
2513 }
2514
2515 return insn;
2516}
2517
2518/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2519 or 0, if there is none. This routine does not look inside
2520 SEQUENCEs. */
2521
2522rtx
2523prev_real_insn (insn)
2524 rtx insn;
2525{
2526 while (insn)
2527 {
2528 insn = PREV_INSN (insn);
2529 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2530 || GET_CODE (insn) == JUMP_INSN)
2531 break;
2532 }
2533
2534 return insn;
2535}
2536
2537/* Find the next insn after INSN that really does something. This routine
2538 does not look inside SEQUENCEs. Until reload has completed, this is the
2539 same as next_real_insn. */
2540
2215ca0d 2541int
2542active_insn_p (insn)
2543 rtx insn;
2544{
2545 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2546 || (GET_CODE (insn) == INSN
2547 && (! reload_completed
2548 || (GET_CODE (PATTERN (insn)) != USE
2549 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2550}
2551
15bbde2b 2552rtx
2553next_active_insn (insn)
2554 rtx insn;
2555{
2556 while (insn)
2557 {
2558 insn = NEXT_INSN (insn);
2215ca0d 2559 if (insn == 0 || active_insn_p (insn))
15bbde2b 2560 break;
2561 }
2562
2563 return insn;
2564}
2565
2566/* Find the last insn before INSN that really does something. This routine
2567 does not look inside SEQUENCEs. Until reload has completed, this is the
2568 same as prev_real_insn. */
2569
2570rtx
2571prev_active_insn (insn)
2572 rtx insn;
2573{
2574 while (insn)
2575 {
2576 insn = PREV_INSN (insn);
2215ca0d 2577 if (insn == 0 || active_insn_p (insn))
15bbde2b 2578 break;
2579 }
2580
2581 return insn;
2582}
2583
2584/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2585
2586rtx
2587next_label (insn)
2588 rtx insn;
2589{
2590 while (insn)
2591 {
2592 insn = NEXT_INSN (insn);
2593 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2594 break;
2595 }
2596
2597 return insn;
2598}
2599
2600/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2601
2602rtx
2603prev_label (insn)
2604 rtx insn;
2605{
2606 while (insn)
2607 {
2608 insn = PREV_INSN (insn);
2609 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2610 break;
2611 }
2612
2613 return insn;
2614}
2615\f
2616#ifdef HAVE_cc0
b15e0bba 2617/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2618 and REG_CC_USER notes so we can find it. */
2619
2620void
2621link_cc0_insns (insn)
2622 rtx insn;
2623{
2624 rtx user = next_nonnote_insn (insn);
2625
2626 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2627 user = XVECEXP (PATTERN (user), 0, 0);
2628
7014838c 2629 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2630 REG_NOTES (user));
3ad7bb1c 2631 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
b15e0bba 2632}
2633
15bbde2b 2634/* Return the next insn that uses CC0 after INSN, which is assumed to
2635 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2636 applied to the result of this function should yield INSN).
2637
2638 Normally, this is simply the next insn. However, if a REG_CC_USER note
2639 is present, it contains the insn that uses CC0.
2640
2641 Return 0 if we can't find the insn. */
2642
2643rtx
2644next_cc0_user (insn)
2645 rtx insn;
2646{
b572011e 2647 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
15bbde2b 2648
2649 if (note)
2650 return XEXP (note, 0);
2651
2652 insn = next_nonnote_insn (insn);
2653 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2654 insn = XVECEXP (PATTERN (insn), 0, 0);
2655
9204e736 2656 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
15bbde2b 2657 return insn;
2658
2659 return 0;
2660}
2661
2662/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2663 note, it is the previous insn. */
2664
2665rtx
2666prev_cc0_setter (insn)
2667 rtx insn;
2668{
b572011e 2669 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
15bbde2b 2670
2671 if (note)
2672 return XEXP (note, 0);
2673
2674 insn = prev_nonnote_insn (insn);
2675 if (! sets_cc0_p (PATTERN (insn)))
2676 abort ();
2677
2678 return insn;
2679}
2680#endif
344dc2fa 2681
2682/* Increment the label uses for all labels present in rtx. */
2683
2684static void
2685mark_label_nuses(x)
2686 rtx x;
2687{
19cb6b50 2688 enum rtx_code code;
2689 int i, j;
2690 const char *fmt;
344dc2fa 2691
2692 code = GET_CODE (x);
2693 if (code == LABEL_REF)
2694 LABEL_NUSES (XEXP (x, 0))++;
2695
2696 fmt = GET_RTX_FORMAT (code);
2697 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2698 {
2699 if (fmt[i] == 'e')
2700 mark_label_nuses (XEXP (x, i));
2701 else if (fmt[i] == 'E')
2702 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2703 mark_label_nuses (XVECEXP (x, i, j));
2704 }
2705}
2706
15bbde2b 2707\f
2708/* Try splitting insns that can be split for better scheduling.
2709 PAT is the pattern which might split.
2710 TRIAL is the insn providing PAT.
0e69a50a 2711 LAST is non-zero if we should return the last insn of the sequence produced.
15bbde2b 2712
2713 If this routine succeeds in splitting, it returns the first or last
0e69a50a 2714 replacement insn depending on the value of LAST. Otherwise, it
15bbde2b 2715 returns TRIAL. If the insn to be returned can be split, it will be. */
2716
2717rtx
0e69a50a 2718try_split (pat, trial, last)
15bbde2b 2719 rtx pat, trial;
0e69a50a 2720 int last;
15bbde2b 2721{
2722 rtx before = PREV_INSN (trial);
2723 rtx after = NEXT_INSN (trial);
15bbde2b 2724 int has_barrier = 0;
2725 rtx tem;
3cd757b1 2726 rtx note, seq;
2727 int probability;
2728
2729 if (any_condjump_p (trial)
2730 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2731 split_branch_probability = INTVAL (XEXP (note, 0));
2732 probability = split_branch_probability;
2733
2734 seq = split_insns (pat, trial);
2735
2736 split_branch_probability = -1;
15bbde2b 2737
2738 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2739 We may need to handle this specially. */
2740 if (after && GET_CODE (after) == BARRIER)
2741 {
2742 has_barrier = 1;
2743 after = NEXT_INSN (after);
2744 }
2745
2746 if (seq)
2747 {
2748 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2749 The latter case will normally arise only when being done so that
2750 it, in turn, will be split (SFmode on the 29k is an example). */
2751 if (GET_CODE (seq) == SEQUENCE)
2752 {
3cd757b1 2753 int i, njumps = 0;
d823ba47 2754
2755 /* Avoid infinite loop if any insn of the result matches
5262c253 2756 the original pattern. */
2757 for (i = 0; i < XVECLEN (seq, 0); i++)
d823ba47 2758 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
5262c253 2759 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
d823ba47 2760 return trial;
5262c253 2761
5377f687 2762 /* Mark labels. */
2763 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2764 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
3cd757b1 2765 {
2766 rtx insn = XVECEXP (seq, 0, i);
2767 mark_jump_label (PATTERN (insn),
2768 XVECEXP (seq, 0, i), 0);
2769 njumps++;
2770 if (probability != -1
2771 && any_condjump_p (insn)
2772 && !find_reg_note (insn, REG_BR_PROB, 0))
2773 {
2774 /* We can preserve the REG_BR_PROB notes only if exactly
2775 one jump is created, otherwise the machinde description
2776 is responsible for this step using
2777 split_branch_probability variable. */
2778 if (njumps != 1)
2779 abort ();
2780 REG_NOTES (insn)
2781 = gen_rtx_EXPR_LIST (REG_BR_PROB,
2782 GEN_INT (probability),
2783 REG_NOTES (insn));
2784 }
2785 }
381eb1e7 2786
1b3a64a8 2787 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2788 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2789 if (GET_CODE (trial) == CALL_INSN)
2790 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2791 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2792 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2793 = CALL_INSN_FUNCTION_USAGE (trial);
2794
381eb1e7 2795 /* Copy notes, particularly those related to the CFG. */
2796 for (note = REG_NOTES (trial); note ; note = XEXP (note, 1))
2797 {
2798 switch (REG_NOTE_KIND (note))
2799 {
2800 case REG_EH_REGION:
2801 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2802 {
2803 rtx insn = XVECEXP (seq, 0, i);
2804 if (GET_CODE (insn) == CALL_INSN
2805 || (flag_non_call_exceptions
2806 && may_trap_p (PATTERN (insn))))
2807 REG_NOTES (insn)
2808 = gen_rtx_EXPR_LIST (REG_EH_REGION,
2809 XEXP (note, 0),
2810 REG_NOTES (insn));
2811 }
2812 break;
2813
2814 case REG_NORETURN:
2815 case REG_SETJMP:
2816 case REG_ALWAYS_RETURN:
2817 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2818 {
2819 rtx insn = XVECEXP (seq, 0, i);
2820 if (GET_CODE (insn) == CALL_INSN)
2821 REG_NOTES (insn)
2822 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2823 XEXP (note, 0),
2824 REG_NOTES (insn));
2825 }
2826 break;
2827
2828 case REG_NON_LOCAL_GOTO:
2829 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2830 {
2831 rtx insn = XVECEXP (seq, 0, i);
2832 if (GET_CODE (insn) == JUMP_INSN)
2833 REG_NOTES (insn)
2834 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2835 XEXP (note, 0),
2836 REG_NOTES (insn));
2837 }
2838 break;
2839
2840 default:
2841 break;
2842 }
2843 }
5bb27a4b 2844
344dc2fa 2845 /* If there are LABELS inside the split insns increment the
2846 usage count so we don't delete the label. */
2847 if (GET_CODE (trial) == INSN)
2848 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2849 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2850 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2851
9dda7915 2852 tem = emit_insn_after (seq, trial);
15bbde2b 2853
e4bf866d 2854 delete_related_insns (trial);
15bbde2b 2855 if (has_barrier)
2856 emit_barrier_after (tem);
0e69a50a 2857
2858 /* Recursively call try_split for each new insn created; by the
2859 time control returns here that insn will be fully split, so
2860 set LAST and continue from the insn after the one returned.
06343e77 2861 We can't use next_active_insn here since AFTER may be a note.
ab6683d6 2862 Ignore deleted insns, which can be occur if not optimizing. */
9204e736 2863 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2864 if (! INSN_DELETED_P (tem) && INSN_P (tem))
06343e77 2865 tem = try_split (PATTERN (tem), tem, 1);
15bbde2b 2866 }
2867 /* Avoid infinite loop if the result matches the original pattern. */
2868 else if (rtx_equal_p (seq, pat))
2869 return trial;
2870 else
2871 {
2872 PATTERN (trial) = seq;
2873 INSN_CODE (trial) = -1;
0e69a50a 2874 try_split (seq, trial, last);
15bbde2b 2875 }
2876
0e69a50a 2877 /* Return either the first or the last insn, depending on which was
2878 requested. */
d823ba47 2879 return last
3cd757b1 2880 ? (after ? PREV_INSN (after) : last_insn)
2881 : NEXT_INSN (before);
15bbde2b 2882 }
2883
2884 return trial;
2885}
2886\f
2887/* Make and return an INSN rtx, initializing all its slots.
6a84e367 2888 Store PATTERN in the pattern slots. */
15bbde2b 2889
2890rtx
6a84e367 2891make_insn_raw (pattern)
15bbde2b 2892 rtx pattern;
15bbde2b 2893{
19cb6b50 2894 rtx insn;
15bbde2b 2895
d7c47c0e 2896 insn = rtx_alloc (INSN);
15bbde2b 2897
575333f9 2898 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 2899 PATTERN (insn) = pattern;
2900 INSN_CODE (insn) = -1;
fc92fa61 2901 LOG_LINKS (insn) = NULL;
2902 REG_NOTES (insn) = NULL;
15bbde2b 2903
fe7f701d 2904#ifdef ENABLE_RTL_CHECKING
2905 if (insn
9204e736 2906 && INSN_P (insn)
fe7f701d 2907 && (returnjump_p (insn)
2908 || (GET_CODE (insn) == SET
2909 && SET_DEST (insn) == pc_rtx)))
2910 {
2911 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
2912 debug_rtx (insn);
2913 }
2914#endif
d823ba47 2915
15bbde2b 2916 return insn;
2917}
2918
2919/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2920
2921static rtx
6a84e367 2922make_jump_insn_raw (pattern)
15bbde2b 2923 rtx pattern;
15bbde2b 2924{
19cb6b50 2925 rtx insn;
15bbde2b 2926
6a84e367 2927 insn = rtx_alloc (JUMP_INSN);
fc92fa61 2928 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 2929
2930 PATTERN (insn) = pattern;
2931 INSN_CODE (insn) = -1;
fc92fa61 2932 LOG_LINKS (insn) = NULL;
2933 REG_NOTES (insn) = NULL;
2934 JUMP_LABEL (insn) = NULL;
15bbde2b 2935
2936 return insn;
2937}
6e911104 2938
2939/* Like `make_insn' but make a CALL_INSN instead of an insn. */
2940
2941static rtx
2942make_call_insn_raw (pattern)
2943 rtx pattern;
2944{
19cb6b50 2945 rtx insn;
6e911104 2946
2947 insn = rtx_alloc (CALL_INSN);
2948 INSN_UID (insn) = cur_insn_uid++;
2949
2950 PATTERN (insn) = pattern;
2951 INSN_CODE (insn) = -1;
2952 LOG_LINKS (insn) = NULL;
2953 REG_NOTES (insn) = NULL;
2954 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2955
2956 return insn;
2957}
15bbde2b 2958\f
2959/* Add INSN to the end of the doubly-linked list.
2960 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2961
2962void
2963add_insn (insn)
19cb6b50 2964 rtx insn;
15bbde2b 2965{
2966 PREV_INSN (insn) = last_insn;
2967 NEXT_INSN (insn) = 0;
2968
2969 if (NULL != last_insn)
2970 NEXT_INSN (last_insn) = insn;
2971
2972 if (NULL == first_insn)
2973 first_insn = insn;
2974
2975 last_insn = insn;
2976}
2977
312de84d 2978/* Add INSN into the doubly-linked list after insn AFTER. This and
2979 the next should be the only functions called to insert an insn once
f65c10c0 2980 delay slots have been filled since only they know how to update a
312de84d 2981 SEQUENCE. */
15bbde2b 2982
2983void
2984add_insn_after (insn, after)
2985 rtx insn, after;
2986{
2987 rtx next = NEXT_INSN (after);
9dda7915 2988 basic_block bb;
15bbde2b 2989
9ea33026 2990 if (optimize && INSN_DELETED_P (after))
f65c10c0 2991 abort ();
2992
15bbde2b 2993 NEXT_INSN (insn) = next;
2994 PREV_INSN (insn) = after;
2995
2996 if (next)
2997 {
2998 PREV_INSN (next) = insn;
2999 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3000 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3001 }
3002 else if (last_insn == after)
3003 last_insn = insn;
3004 else
3005 {
0a893c29 3006 struct sequence_stack *stack = seq_stack;
15bbde2b 3007 /* Scan all pending sequences too. */
3008 for (; stack; stack = stack->next)
3009 if (after == stack->last)
398f4855 3010 {
3011 stack->last = insn;
3012 break;
3013 }
312de84d 3014
3015 if (stack == 0)
3016 abort ();
15bbde2b 3017 }
3018
9dda7915 3019 if (basic_block_for_insn
3020 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3021 && (bb = BLOCK_FOR_INSN (after)))
3022 {
3023 set_block_for_insn (insn, bb);
3024 /* Should not happen as first in the BB is always
3025 eigther NOTE or LABEL. */
3026 if (bb->end == after
3027 /* Avoid clobbering of structure when creating new BB. */
3028 && GET_CODE (insn) != BARRIER
3029 && (GET_CODE (insn) != NOTE
3030 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3031 bb->end = insn;
3032 }
3033
15bbde2b 3034 NEXT_INSN (after) = insn;
3035 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3036 {
3037 rtx sequence = PATTERN (after);
3038 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3039 }
3040}
3041
312de84d 3042/* Add INSN into the doubly-linked list before insn BEFORE. This and
3043 the previous should be the only functions called to insert an insn once
f65c10c0 3044 delay slots have been filled since only they know how to update a
312de84d 3045 SEQUENCE. */
3046
3047void
3048add_insn_before (insn, before)
3049 rtx insn, before;
3050{
3051 rtx prev = PREV_INSN (before);
9dda7915 3052 basic_block bb;
312de84d 3053
9ea33026 3054 if (optimize && INSN_DELETED_P (before))
f65c10c0 3055 abort ();
3056
312de84d 3057 PREV_INSN (insn) = prev;
3058 NEXT_INSN (insn) = before;
3059
3060 if (prev)
3061 {
3062 NEXT_INSN (prev) = insn;
3063 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3064 {
3065 rtx sequence = PATTERN (prev);
3066 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3067 }
3068 }
3069 else if (first_insn == before)
3070 first_insn = insn;
3071 else
3072 {
0a893c29 3073 struct sequence_stack *stack = seq_stack;
312de84d 3074 /* Scan all pending sequences too. */
3075 for (; stack; stack = stack->next)
3076 if (before == stack->first)
398f4855 3077 {
3078 stack->first = insn;
3079 break;
3080 }
312de84d 3081
3082 if (stack == 0)
3083 abort ();
3084 }
3085
9dda7915 3086 if (basic_block_for_insn
3087 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
3088 && (bb = BLOCK_FOR_INSN (before)))
3089 {
3090 set_block_for_insn (insn, bb);
3091 /* Should not happen as first in the BB is always
3092 eigther NOTE or LABEl. */
3093 if (bb->head == insn
3094 /* Avoid clobbering of structure when creating new BB. */
3095 && GET_CODE (insn) != BARRIER
3096 && (GET_CODE (insn) != NOTE
3097 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3098 abort ();
3099 }
3100
312de84d 3101 PREV_INSN (before) = insn;
3102 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3103 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3104}
3105
7ddcf2bf 3106/* Remove an insn from its doubly-linked list. This function knows how
3107 to handle sequences. */
3108void
3109remove_insn (insn)
3110 rtx insn;
3111{
3112 rtx next = NEXT_INSN (insn);
3113 rtx prev = PREV_INSN (insn);
e4bf866d 3114 basic_block bb;
3115
7ddcf2bf 3116 if (prev)
3117 {
3118 NEXT_INSN (prev) = next;
3119 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3120 {
3121 rtx sequence = PATTERN (prev);
3122 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3123 }
3124 }
3125 else if (first_insn == insn)
3126 first_insn = next;
3127 else
3128 {
0a893c29 3129 struct sequence_stack *stack = seq_stack;
7ddcf2bf 3130 /* Scan all pending sequences too. */
3131 for (; stack; stack = stack->next)
3132 if (insn == stack->first)
3133 {
3134 stack->first = next;
3135 break;
3136 }
3137
3138 if (stack == 0)
3139 abort ();
3140 }
3141
3142 if (next)
3143 {
3144 PREV_INSN (next) = prev;
3145 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3146 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3147 }
3148 else if (last_insn == insn)
3149 last_insn = prev;
3150 else
3151 {
0a893c29 3152 struct sequence_stack *stack = seq_stack;
7ddcf2bf 3153 /* Scan all pending sequences too. */
3154 for (; stack; stack = stack->next)
3155 if (insn == stack->last)
3156 {
3157 stack->last = prev;
3158 break;
3159 }
3160
3161 if (stack == 0)
3162 abort ();
3163 }
e4bf866d 3164 if (basic_block_for_insn
3165 && (unsigned int)INSN_UID (insn) < basic_block_for_insn->num_elements
3166 && (bb = BLOCK_FOR_INSN (insn)))
3167 {
3168 if (bb->head == insn)
3169 {
3170 /* Never ever delete the basic block note without deleting whole basic
3171 block. */
3172 if (GET_CODE (insn) == NOTE)
3173 abort ();
3174 bb->head = next;
3175 }
3176 if (bb->end == insn)
3177 bb->end = prev;
3178 }
7ddcf2bf 3179}
3180
15bbde2b 3181/* Delete all insns made since FROM.
3182 FROM becomes the new last instruction. */
3183
3184void
3185delete_insns_since (from)
3186 rtx from;
3187{
3188 if (from == 0)
3189 first_insn = 0;
3190 else
3191 NEXT_INSN (from) = 0;
3192 last_insn = from;
3193}
3194
34e2ddcd 3195/* This function is deprecated, please use sequences instead.
3196
3197 Move a consecutive bunch of insns to a different place in the chain.
15bbde2b 3198 The insns to be moved are those between FROM and TO.
3199 They are moved to a new position after the insn AFTER.
3200 AFTER must not be FROM or TO or any insn in between.
3201
3202 This function does not know about SEQUENCEs and hence should not be
3203 called after delay-slot filling has been done. */
3204
3205void
9dda7915 3206reorder_insns_nobb (from, to, after)
15bbde2b 3207 rtx from, to, after;
3208{
3209 /* Splice this bunch out of where it is now. */
3210 if (PREV_INSN (from))
3211 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3212 if (NEXT_INSN (to))
3213 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3214 if (last_insn == to)
3215 last_insn = PREV_INSN (from);
3216 if (first_insn == from)
3217 first_insn = NEXT_INSN (to);
3218
3219 /* Make the new neighbors point to it and it to them. */
3220 if (NEXT_INSN (after))
3221 PREV_INSN (NEXT_INSN (after)) = to;
3222
3223 NEXT_INSN (to) = NEXT_INSN (after);
3224 PREV_INSN (from) = after;
3225 NEXT_INSN (after) = from;
3226 if (after == last_insn)
3227 last_insn = to;
3228}
3229
9dda7915 3230/* Same as function above, but take care to update BB boundaries. */
3231void
3232reorder_insns (from, to, after)
3233 rtx from, to, after;
3234{
3235 rtx prev = PREV_INSN (from);
3236 basic_block bb, bb2;
3237
3238 reorder_insns_nobb (from, to, after);
3239
3240 if (basic_block_for_insn
3241 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3242 && (bb = BLOCK_FOR_INSN (after)))
3243 {
3244 rtx x;
3245
3246 if (basic_block_for_insn
3247 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
3248 && (bb2 = BLOCK_FOR_INSN (from)))
3249 {
3250 if (bb2->end == to)
3251 bb2->end = prev;
3252 }
3253
3254 if (bb->end == after)
3255 bb->end = to;
3256
3257 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3258 set_block_for_insn (x, bb);
3259 }
3260}
3261
15bbde2b 3262/* Return the line note insn preceding INSN. */
3263
3264static rtx
3265find_line_note (insn)
3266 rtx insn;
3267{
3268 if (no_line_numbers)
3269 return 0;
3270
3271 for (; insn; insn = PREV_INSN (insn))
3272 if (GET_CODE (insn) == NOTE
3273 && NOTE_LINE_NUMBER (insn) >= 0)
3274 break;
3275
3276 return insn;
3277}
3278
3279/* Like reorder_insns, but inserts line notes to preserve the line numbers
3280 of the moved insns when debugging. This may insert a note between AFTER
3281 and FROM, and another one after TO. */
3282
3283void
3284reorder_insns_with_line_notes (from, to, after)
3285 rtx from, to, after;
3286{
3287 rtx from_line = find_line_note (from);
3288 rtx after_line = find_line_note (after);
3289
3290 reorder_insns (from, to, after);
3291
3292 if (from_line == after_line)
3293 return;
3294
3295 if (from_line)
3296 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3297 NOTE_LINE_NUMBER (from_line),
3298 after);
3299 if (after_line)
3300 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3301 NOTE_LINE_NUMBER (after_line),
3302 to);
3303}
90b89d2c 3304
0a78547b 3305/* Remove unnecessary notes from the instruction stream. */
90b89d2c 3306
3307void
0a78547b 3308remove_unnecessary_notes ()
90b89d2c 3309{
92cfc4a8 3310 rtx block_stack = NULL_RTX;
3311 rtx eh_stack = NULL_RTX;
90b89d2c 3312 rtx insn;
3313 rtx next;
92cfc4a8 3314 rtx tmp;
90b89d2c 3315
f1ab82be 3316 /* We must not remove the first instruction in the function because
3317 the compiler depends on the first instruction being a note. */
90b89d2c 3318 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3319 {
3320 /* Remember what's next. */
3321 next = NEXT_INSN (insn);
3322
3323 /* We're only interested in notes. */
3324 if (GET_CODE (insn) != NOTE)
3325 continue;
3326
92cfc4a8 3327 switch (NOTE_LINE_NUMBER (insn))
5846cb0f 3328 {
92cfc4a8 3329 case NOTE_INSN_DELETED:
3330 remove_insn (insn);
3331 break;
3332
3333 case NOTE_INSN_EH_REGION_BEG:
3334 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3335 break;
3336
3337 case NOTE_INSN_EH_REGION_END:
3338 /* Too many end notes. */
3339 if (eh_stack == NULL_RTX)
3340 abort ();
3341 /* Mismatched nesting. */
3342 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3343 abort ();
3344 tmp = eh_stack;
3345 eh_stack = XEXP (eh_stack, 1);
3346 free_INSN_LIST_node (tmp);
3347 break;
3348
3349 case NOTE_INSN_BLOCK_BEG:
3350 /* By now, all notes indicating lexical blocks should have
3351 NOTE_BLOCK filled in. */
3352 if (NOTE_BLOCK (insn) == NULL_TREE)
3353 abort ();
3354 block_stack = alloc_INSN_LIST (insn, block_stack);
3355 break;
3356
3357 case NOTE_INSN_BLOCK_END:
3358 /* Too many end notes. */
3359 if (block_stack == NULL_RTX)
3360 abort ();
3361 /* Mismatched nesting. */
3362 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3363 abort ();
3364 tmp = block_stack;
3365 block_stack = XEXP (block_stack, 1);
3366 free_INSN_LIST_node (tmp);
3367
5846cb0f 3368 /* Scan back to see if there are any non-note instructions
3369 between INSN and the beginning of this block. If not,
3370 then there is no PC range in the generated code that will
3371 actually be in this block, so there's no point in
3372 remembering the existence of the block. */
92cfc4a8 3373 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
5846cb0f 3374 {
3375 /* This block contains a real instruction. Note that we
3376 don't include labels; if the only thing in the block
3377 is a label, then there are still no PC values that
3378 lie within the block. */
92cfc4a8 3379 if (INSN_P (tmp))
5846cb0f 3380 break;
3381
3382 /* We're only interested in NOTEs. */
92cfc4a8 3383 if (GET_CODE (tmp) != NOTE)
5846cb0f 3384 continue;
3385
92cfc4a8 3386 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
5846cb0f 3387 {
b29760a8 3388 /* We just verified that this BLOCK matches us with
3389 the block_stack check above. Never delete the
3390 BLOCK for the outermost scope of the function; we
3391 can refer to names from that scope even if the
3392 block notes are messed up. */
3393 if (! is_body_block (NOTE_BLOCK (insn))
3394 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
e33dbbdf 3395 {
92cfc4a8 3396 remove_insn (tmp);
e33dbbdf 3397 remove_insn (insn);
3398 }
5846cb0f 3399 break;
3400 }
92cfc4a8 3401 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
5846cb0f 3402 /* There's a nested block. We need to leave the
3403 current block in place since otherwise the debugger
3404 wouldn't be able to show symbols from our block in
3405 the nested block. */
3406 break;
3407 }
3408 }
90b89d2c 3409 }
92cfc4a8 3410
3411 /* Too many begin notes. */
3412 if (block_stack || eh_stack)
3413 abort ();
90b89d2c 3414}
3415
15bbde2b 3416\f
3417/* Emit an insn of given code and pattern
3418 at a specified place within the doubly-linked list. */
3419
3420/* Make an instruction with body PATTERN
3421 and output it before the instruction BEFORE. */
3422
3423rtx
3424emit_insn_before (pattern, before)
19cb6b50 3425 rtx pattern, before;
15bbde2b 3426{
19cb6b50 3427 rtx insn = before;
15bbde2b 3428
3429 if (GET_CODE (pattern) == SEQUENCE)
3430 {
19cb6b50 3431 int i;
15bbde2b 3432
3433 for (i = 0; i < XVECLEN (pattern, 0); i++)
3434 {
3435 insn = XVECEXP (pattern, 0, i);
312de84d 3436 add_insn_before (insn, before);
15bbde2b 3437 }
15bbde2b 3438 }
3439 else
3440 {
6a84e367 3441 insn = make_insn_raw (pattern);
312de84d 3442 add_insn_before (insn, before);
15bbde2b 3443 }
3444
3445 return insn;
3446}
3447
3448/* Make an instruction with body PATTERN and code JUMP_INSN
3449 and output it before the instruction BEFORE. */
3450
3451rtx
3452emit_jump_insn_before (pattern, before)
19cb6b50 3453 rtx pattern, before;
15bbde2b 3454{
19cb6b50 3455 rtx insn;
15bbde2b 3456
3457 if (GET_CODE (pattern) == SEQUENCE)
3458 insn = emit_insn_before (pattern, before);
3459 else
3460 {
8f060628 3461 insn = make_jump_insn_raw (pattern);
312de84d 3462 add_insn_before (insn, before);
15bbde2b 3463 }
3464
3465 return insn;
3466}
3467
3468/* Make an instruction with body PATTERN and code CALL_INSN
3469 and output it before the instruction BEFORE. */
3470
3471rtx
3472emit_call_insn_before (pattern, before)
19cb6b50 3473 rtx pattern, before;
15bbde2b 3474{
19cb6b50 3475 rtx insn;
6e911104 3476
3477 if (GET_CODE (pattern) == SEQUENCE)
3478 insn = emit_insn_before (pattern, before);
3479 else
3480 {
3481 insn = make_call_insn_raw (pattern);
312de84d 3482 add_insn_before (insn, before);
6e911104 3483 PUT_CODE (insn, CALL_INSN);
3484 }
3485
15bbde2b 3486 return insn;
3487}
3488
3489/* Make an insn of code BARRIER
71caadc0 3490 and output it before the insn BEFORE. */
15bbde2b 3491
3492rtx
3493emit_barrier_before (before)
19cb6b50 3494 rtx before;
15bbde2b 3495{
19cb6b50 3496 rtx insn = rtx_alloc (BARRIER);
15bbde2b 3497
3498 INSN_UID (insn) = cur_insn_uid++;
3499
312de84d 3500 add_insn_before (insn, before);
15bbde2b 3501 return insn;
3502}
3503
71caadc0 3504/* Emit the label LABEL before the insn BEFORE. */
3505
3506rtx
3507emit_label_before (label, before)
3508 rtx label, before;
3509{
3510 /* This can be called twice for the same label as a result of the
3511 confusion that follows a syntax error! So make it harmless. */
3512 if (INSN_UID (label) == 0)
3513 {
3514 INSN_UID (label) = cur_insn_uid++;
3515 add_insn_before (label, before);
3516 }
3517
3518 return label;
3519}
3520
15bbde2b 3521/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3522
3523rtx
3524emit_note_before (subtype, before)
3525 int subtype;
3526 rtx before;
3527{
19cb6b50 3528 rtx note = rtx_alloc (NOTE);
15bbde2b 3529 INSN_UID (note) = cur_insn_uid++;
3530 NOTE_SOURCE_FILE (note) = 0;
3531 NOTE_LINE_NUMBER (note) = subtype;
3532
312de84d 3533 add_insn_before (note, before);
15bbde2b 3534 return note;
3535}
3536\f
3537/* Make an insn of code INSN with body PATTERN
3538 and output it after the insn AFTER. */
3539
3540rtx
3541emit_insn_after (pattern, after)
19cb6b50 3542 rtx pattern, after;
15bbde2b 3543{
19cb6b50 3544 rtx insn = after;
15bbde2b 3545
3546 if (GET_CODE (pattern) == SEQUENCE)
3547 {
19cb6b50 3548 int i;
15bbde2b 3549
3550 for (i = 0; i < XVECLEN (pattern, 0); i++)
3551 {
3552 insn = XVECEXP (pattern, 0, i);
3553 add_insn_after (insn, after);
3554 after = insn;
3555 }
15bbde2b 3556 }
3557 else
3558 {
6a84e367 3559 insn = make_insn_raw (pattern);
15bbde2b 3560 add_insn_after (insn, after);
3561 }
3562
3563 return insn;
3564}
3565
1bea98fb 3566/* Similar to emit_insn_after, except that line notes are to be inserted so
3567 as to act as if this insn were at FROM. */
3568
3569void
3570emit_insn_after_with_line_notes (pattern, after, from)
3571 rtx pattern, after, from;
3572{
3573 rtx from_line = find_line_note (from);
3574 rtx after_line = find_line_note (after);
3575 rtx insn = emit_insn_after (pattern, after);
3576
3577 if (from_line)
3578 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3579 NOTE_LINE_NUMBER (from_line),
3580 after);
3581
3582 if (after_line)
3583 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3584 NOTE_LINE_NUMBER (after_line),
3585 insn);
3586}
3587
15bbde2b 3588/* Make an insn of code JUMP_INSN with body PATTERN
3589 and output it after the insn AFTER. */
3590
3591rtx
3592emit_jump_insn_after (pattern, after)
19cb6b50 3593 rtx pattern, after;
15bbde2b 3594{
19cb6b50 3595 rtx insn;
15bbde2b 3596
3597 if (GET_CODE (pattern) == SEQUENCE)
3598 insn = emit_insn_after (pattern, after);
3599 else
3600 {
8f060628 3601 insn = make_jump_insn_raw (pattern);
15bbde2b 3602 add_insn_after (insn, after);
3603 }
3604
3605 return insn;
3606}
3607
3608/* Make an insn of code BARRIER
3609 and output it after the insn AFTER. */
3610
3611rtx
3612emit_barrier_after (after)
19cb6b50 3613 rtx after;
15bbde2b 3614{
19cb6b50 3615 rtx insn = rtx_alloc (BARRIER);
15bbde2b 3616
3617 INSN_UID (insn) = cur_insn_uid++;
3618
3619 add_insn_after (insn, after);
3620 return insn;
3621}
3622
3623/* Emit the label LABEL after the insn AFTER. */
3624
3625rtx
3626emit_label_after (label, after)
3627 rtx label, after;
3628{
3629 /* This can be called twice for the same label
3630 as a result of the confusion that follows a syntax error!
3631 So make it harmless. */
3632 if (INSN_UID (label) == 0)
3633 {
3634 INSN_UID (label) = cur_insn_uid++;
3635 add_insn_after (label, after);
3636 }
3637
3638 return label;
3639}
3640
3641/* Emit a note of subtype SUBTYPE after the insn AFTER. */
3642
3643rtx
3644emit_note_after (subtype, after)
3645 int subtype;
3646 rtx after;
3647{
19cb6b50 3648 rtx note = rtx_alloc (NOTE);
15bbde2b 3649 INSN_UID (note) = cur_insn_uid++;
3650 NOTE_SOURCE_FILE (note) = 0;
3651 NOTE_LINE_NUMBER (note) = subtype;
3652 add_insn_after (note, after);
3653 return note;
3654}
3655
3656/* Emit a line note for FILE and LINE after the insn AFTER. */
3657
3658rtx
3659emit_line_note_after (file, line, after)
9a356c3c 3660 const char *file;
15bbde2b 3661 int line;
3662 rtx after;
3663{
19cb6b50 3664 rtx note;
15bbde2b 3665
3666 if (no_line_numbers && line > 0)
3667 {
3668 cur_insn_uid++;
3669 return 0;
3670 }
3671
3672 note = rtx_alloc (NOTE);
3673 INSN_UID (note) = cur_insn_uid++;
3674 NOTE_SOURCE_FILE (note) = file;
3675 NOTE_LINE_NUMBER (note) = line;
3676 add_insn_after (note, after);
3677 return note;
3678}
3679\f
3680/* Make an insn of code INSN with pattern PATTERN
3681 and add it to the end of the doubly-linked list.
3682 If PATTERN is a SEQUENCE, take the elements of it
3683 and emit an insn for each element.
3684
3685 Returns the last insn emitted. */
3686
3687rtx
3688emit_insn (pattern)
3689 rtx pattern;
3690{
3691 rtx insn = last_insn;
3692
3693 if (GET_CODE (pattern) == SEQUENCE)
3694 {
19cb6b50 3695 int i;
15bbde2b 3696
3697 for (i = 0; i < XVECLEN (pattern, 0); i++)
3698 {
3699 insn = XVECEXP (pattern, 0, i);
3700 add_insn (insn);
3701 }
15bbde2b 3702 }
3703 else
3704 {
6a84e367 3705 insn = make_insn_raw (pattern);
15bbde2b 3706 add_insn (insn);
3707 }
3708
3709 return insn;
3710}
3711
3712/* Emit the insns in a chain starting with INSN.
3713 Return the last insn emitted. */
3714
3715rtx
3716emit_insns (insn)
3717 rtx insn;
3718{
3719 rtx last = 0;
3720
3721 while (insn)
3722 {
3723 rtx next = NEXT_INSN (insn);
3724 add_insn (insn);
3725 last = insn;
3726 insn = next;
3727 }
3728
3729 return last;
3730}
3731
3732/* Emit the insns in a chain starting with INSN and place them in front of
3733 the insn BEFORE. Return the last insn emitted. */
3734
3735rtx
3736emit_insns_before (insn, before)
3737 rtx insn;
3738 rtx before;
3739{
3740 rtx last = 0;
3741
3742 while (insn)
3743 {
3744 rtx next = NEXT_INSN (insn);
312de84d 3745 add_insn_before (insn, before);
15bbde2b 3746 last = insn;
3747 insn = next;
3748 }
3749
3750 return last;
3751}
3752
b36b07d8 3753/* Emit the insns in a chain starting with FIRST and place them in back of
3754 the insn AFTER. Return the last insn emitted. */
3755
3756rtx
3757emit_insns_after (first, after)
19cb6b50 3758 rtx first;
3759 rtx after;
b36b07d8 3760{
19cb6b50 3761 rtx last;
3762 rtx after_after;
9dda7915 3763 basic_block bb;
b36b07d8 3764
3765 if (!after)
3766 abort ();
3767
3768 if (!first)
b36d64df 3769 return after;
b36b07d8 3770
9dda7915 3771 if (basic_block_for_insn
3772 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3773 && (bb = BLOCK_FOR_INSN (after)))
3774 {
3775 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3776 set_block_for_insn (last, bb);
3777 set_block_for_insn (last, bb);
3778 if (bb->end == after)
3779 bb->end = last;
3780 }
3781 else
3782 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3783 continue;
b36b07d8 3784
3785 after_after = NEXT_INSN (after);
3786
3787 NEXT_INSN (after) = first;
3788 PREV_INSN (first) = after;
3789 NEXT_INSN (last) = after_after;
3790 if (after_after)
3791 PREV_INSN (after_after) = last;
3792
0c905390 3793 if (after == last_insn)
3794 last_insn = last;
b36b07d8 3795 return last;
3796}
3797
15bbde2b 3798/* Make an insn of code JUMP_INSN with pattern PATTERN
3799 and add it to the end of the doubly-linked list. */
3800
3801rtx
3802emit_jump_insn (pattern)
3803 rtx pattern;
3804{
3805 if (GET_CODE (pattern) == SEQUENCE)
3806 return emit_insn (pattern);
3807 else
3808 {
19cb6b50 3809 rtx insn = make_jump_insn_raw (pattern);
15bbde2b 3810 add_insn (insn);
3811 return insn;
3812 }
3813}
3814
3815/* Make an insn of code CALL_INSN with pattern PATTERN
3816 and add it to the end of the doubly-linked list. */
3817
3818rtx
3819emit_call_insn (pattern)
3820 rtx pattern;
3821{
3822 if (GET_CODE (pattern) == SEQUENCE)
3823 return emit_insn (pattern);
3824 else
3825 {
19cb6b50 3826 rtx insn = make_call_insn_raw (pattern);
15bbde2b 3827 add_insn (insn);
3828 PUT_CODE (insn, CALL_INSN);
3829 return insn;
3830 }
3831}
3832
3833/* Add the label LABEL to the end of the doubly-linked list. */
3834
3835rtx
3836emit_label (label)
3837 rtx label;
3838{
3839 /* This can be called twice for the same label
3840 as a result of the confusion that follows a syntax error!
3841 So make it harmless. */
3842 if (INSN_UID (label) == 0)
3843 {
3844 INSN_UID (label) = cur_insn_uid++;
3845 add_insn (label);
3846 }
3847 return label;
3848}
3849
3850/* Make an insn of code BARRIER
3851 and add it to the end of the doubly-linked list. */
3852
3853rtx
3854emit_barrier ()
3855{
19cb6b50 3856 rtx barrier = rtx_alloc (BARRIER);
15bbde2b 3857 INSN_UID (barrier) = cur_insn_uid++;
3858 add_insn (barrier);
3859 return barrier;
3860}
3861
3862/* Make an insn of code NOTE
3863 with data-fields specified by FILE and LINE
3864 and add it to the end of the doubly-linked list,
3865 but only if line-numbers are desired for debugging info. */
3866
3867rtx
3868emit_line_note (file, line)
9a356c3c 3869 const char *file;
15bbde2b 3870 int line;
3871{
21b005ed 3872 set_file_and_line_for_stmt (file, line);
15bbde2b 3873
3874#if 0
3875 if (no_line_numbers)
3876 return 0;
3877#endif
3878
3879 return emit_note (file, line);
3880}
3881
3882/* Make an insn of code NOTE
3883 with data-fields specified by FILE and LINE
3884 and add it to the end of the doubly-linked list.
3885 If it is a line-number NOTE, omit it if it matches the previous one. */
3886
3887rtx
3888emit_note (file, line)
9a356c3c 3889 const char *file;
15bbde2b 3890 int line;
3891{
19cb6b50 3892 rtx note;
15bbde2b 3893
3894 if (line > 0)
3895 {
3896 if (file && last_filename && !strcmp (file, last_filename)
3897 && line == last_linenum)
3898 return 0;
3899 last_filename = file;
3900 last_linenum = line;
3901 }
3902
3903 if (no_line_numbers && line > 0)
3904 {
3905 cur_insn_uid++;
3906 return 0;
3907 }
3908
3909 note = rtx_alloc (NOTE);
3910 INSN_UID (note) = cur_insn_uid++;
3911 NOTE_SOURCE_FILE (note) = file;
3912 NOTE_LINE_NUMBER (note) = line;
3913 add_insn (note);
3914 return note;
3915}
3916
8d54063f 3917/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
15bbde2b 3918
3919rtx
3920emit_line_note_force (file, line)
9a356c3c 3921 const char *file;
15bbde2b 3922 int line;
3923{
3924 last_linenum = -1;
3925 return emit_line_note (file, line);
3926}
3927
3928/* Cause next statement to emit a line note even if the line number
3929 has not changed. This is used at the beginning of a function. */
3930
3931void
3932force_next_line_note ()
3933{
3934 last_linenum = -1;
3935}
f1934a33 3936
3937/* Place a note of KIND on insn INSN with DATUM as the datum. If a
6312a35e 3938 note of this type already exists, remove it first. */
f1934a33 3939
d823ba47 3940void
f1934a33 3941set_unique_reg_note (insn, kind, datum)
3942 rtx insn;
3943 enum reg_note kind;
3944 rtx datum;
3945{
3946 rtx note = find_reg_note (insn, kind, NULL_RTX);
3947
3948 /* First remove the note if there already is one. */
d823ba47 3949 if (note)
f1934a33 3950 remove_note (insn, note);
3951
3952 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3953}
15bbde2b 3954\f
3955/* Return an indication of which type of insn should have X as a body.
3956 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3957
3958enum rtx_code
3959classify_insn (x)
3960 rtx x;
3961{
3962 if (GET_CODE (x) == CODE_LABEL)
3963 return CODE_LABEL;
3964 if (GET_CODE (x) == CALL)
3965 return CALL_INSN;
3966 if (GET_CODE (x) == RETURN)
3967 return JUMP_INSN;
3968 if (GET_CODE (x) == SET)
3969 {
3970 if (SET_DEST (x) == pc_rtx)
3971 return JUMP_INSN;
3972 else if (GET_CODE (SET_SRC (x)) == CALL)
3973 return CALL_INSN;
3974 else
3975 return INSN;
3976 }
3977 if (GET_CODE (x) == PARALLEL)
3978 {
19cb6b50 3979 int j;
15bbde2b 3980 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3981 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3982 return CALL_INSN;
3983 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3984 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3985 return JUMP_INSN;
3986 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3987 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3988 return CALL_INSN;
3989 }
3990 return INSN;
3991}
3992
3993/* Emit the rtl pattern X as an appropriate kind of insn.
3994 If X is a label, it is simply added into the insn chain. */
3995
3996rtx
3997emit (x)
3998 rtx x;
3999{
4000 enum rtx_code code = classify_insn (x);
4001
4002 if (code == CODE_LABEL)
4003 return emit_label (x);
4004 else if (code == INSN)
4005 return emit_insn (x);
4006 else if (code == JUMP_INSN)
4007 {
19cb6b50 4008 rtx insn = emit_jump_insn (x);
b2816317 4009 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
15bbde2b 4010 return emit_barrier ();
4011 return insn;
4012 }
4013 else if (code == CALL_INSN)
4014 return emit_call_insn (x);
4015 else
4016 abort ();
4017}
4018\f
b49854c6 4019/* Begin emitting insns to a sequence which can be packaged in an
4020 RTL_EXPR. If this sequence will contain something that might cause
4021 the compiler to pop arguments to function calls (because those
4022 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4023 details), use do_pending_stack_adjust before calling this function.
4024 That will ensure that the deferred pops are not accidentally
9588521d 4025 emitted in the middle of this sequence. */
15bbde2b 4026
4027void
4028start_sequence ()
4029{
4030 struct sequence_stack *tem;
4031
1bfd55c5 4032 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
15bbde2b 4033
0a893c29 4034 tem->next = seq_stack;
15bbde2b 4035 tem->first = first_insn;
4036 tem->last = last_insn;
961819fb 4037 tem->sequence_rtl_expr = seq_rtl_expr;
15bbde2b 4038
0a893c29 4039 seq_stack = tem;
15bbde2b 4040
4041 first_insn = 0;
4042 last_insn = 0;
4043}
4044
961819fb 4045/* Similarly, but indicate that this sequence will be placed in T, an
4046 RTL_EXPR. See the documentation for start_sequence for more
4047 information about how to use this function. */
4048
4049void
4050start_sequence_for_rtl_expr (t)
4051 tree t;
4052{
4053 start_sequence ();
4054
4055 seq_rtl_expr = t;
4056}
4057
b49854c6 4058/* Set up the insn chain starting with FIRST as the current sequence,
4059 saving the previously current one. See the documentation for
4060 start_sequence for more information about how to use this function. */
15bbde2b 4061
4062void
4063push_to_sequence (first)
4064 rtx first;
4065{
4066 rtx last;
4067
4068 start_sequence ();
4069
4070 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4071
4072 first_insn = first;
4073 last_insn = last;
4074}
4075
78147e84 4076/* Set up the insn chain from a chain stort in FIRST to LAST. */
4077
4078void
4079push_to_full_sequence (first, last)
4080 rtx first, last;
4081{
4082 start_sequence ();
4083 first_insn = first;
4084 last_insn = last;
4085 /* We really should have the end of the insn chain here. */
4086 if (last && NEXT_INSN (last))
4087 abort ();
4088}
4089
ab74c92f 4090/* Set up the outer-level insn chain
4091 as the current sequence, saving the previously current one. */
4092
4093void
4094push_topmost_sequence ()
4095{
2041cfd9 4096 struct sequence_stack *stack, *top = NULL;
ab74c92f 4097
4098 start_sequence ();
4099
0a893c29 4100 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 4101 top = stack;
4102
4103 first_insn = top->first;
4104 last_insn = top->last;
961819fb 4105 seq_rtl_expr = top->sequence_rtl_expr;
ab74c92f 4106}
4107
4108/* After emitting to the outer-level insn chain, update the outer-level
4109 insn chain, and restore the previous saved state. */
4110
4111void
4112pop_topmost_sequence ()
4113{
2041cfd9 4114 struct sequence_stack *stack, *top = NULL;
ab74c92f 4115
0a893c29 4116 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 4117 top = stack;
4118
4119 top->first = first_insn;
4120 top->last = last_insn;
961819fb 4121 /* ??? Why don't we save seq_rtl_expr here? */
ab74c92f 4122
4123 end_sequence ();
4124}
4125
15bbde2b 4126/* After emitting to a sequence, restore previous saved state.
4127
b49854c6 4128 To get the contents of the sequence just made, you must call
d823ba47 4129 `gen_sequence' *before* calling here.
b49854c6 4130
4131 If the compiler might have deferred popping arguments while
4132 generating this sequence, and this sequence will not be immediately
4133 inserted into the instruction stream, use do_pending_stack_adjust
4134 before calling gen_sequence. That will ensure that the deferred
4135 pops are inserted into this sequence, and not into some random
4136 location in the instruction stream. See INHIBIT_DEFER_POP for more
4137 information about deferred popping of arguments. */
15bbde2b 4138
4139void
4140end_sequence ()
4141{
0a893c29 4142 struct sequence_stack *tem = seq_stack;
15bbde2b 4143
4144 first_insn = tem->first;
4145 last_insn = tem->last;
961819fb 4146 seq_rtl_expr = tem->sequence_rtl_expr;
0a893c29 4147 seq_stack = tem->next;
15bbde2b 4148
1bfd55c5 4149 free (tem);
15bbde2b 4150}
4151
78147e84 4152/* This works like end_sequence, but records the old sequence in FIRST
4153 and LAST. */
4154
4155void
4156end_full_sequence (first, last)
4157 rtx *first, *last;
4158{
4159 *first = first_insn;
4160 *last = last_insn;
4161 end_sequence();
4162}
4163
15bbde2b 4164/* Return 1 if currently emitting into a sequence. */
4165
4166int
4167in_sequence_p ()
4168{
0a893c29 4169 return seq_stack != 0;
15bbde2b 4170}
4171
4172/* Generate a SEQUENCE rtx containing the insns already emitted
4173 to the current sequence.
4174
4175 This is how the gen_... function from a DEFINE_EXPAND
4176 constructs the SEQUENCE that it returns. */
4177
4178rtx
4179gen_sequence ()
4180{
4181 rtx result;
4182 rtx tem;
15bbde2b 4183 int i;
4184 int len;
4185
4186 /* Count the insns in the chain. */
4187 len = 0;
4188 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
4189 len++;
4190
88bbcaa6 4191 /* If only one insn, return it rather than a SEQUENCE.
15bbde2b 4192 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
d823ba47 4193 the case of an empty list.)
88bbcaa6 4194 We only return the pattern of an insn if its code is INSN and it
4195 has no notes. This ensures that no information gets lost. */
15bbde2b 4196 if (len == 1
447a9eb9 4197 && ! RTX_FRAME_RELATED_P (first_insn)
88bbcaa6 4198 && GET_CODE (first_insn) == INSN
6312a35e 4199 /* Don't throw away any reg notes. */
88bbcaa6 4200 && REG_NOTES (first_insn) == 0)
d7c47c0e 4201 return PATTERN (first_insn);
15bbde2b 4202
d7c47c0e 4203 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
15bbde2b 4204
4205 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
4206 XVECEXP (result, 0, i) = tem;
4207
4208 return result;
4209}
4210\f
02ebfa52 4211/* Put the various virtual registers into REGNO_REG_RTX. */
4212
4213void
0a893c29 4214init_virtual_regs (es)
4215 struct emit_status *es;
02ebfa52 4216{
0a893c29 4217 rtx *ptr = es->x_regno_reg_rtx;
4218 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4219 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4220 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4221 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4222 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4223}
4224
4225void
4226clear_emit_caches ()
4227{
4228 int i;
4229
4230 /* Clear the start_sequence/gen_sequence cache. */
0a893c29 4231 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
4232 sequence_result[i] = 0;
4233 free_insn = 0;
02ebfa52 4234}
928d57e3 4235\f
4236/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4237static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4238static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4239static int copy_insn_n_scratches;
4240
4241/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4242 copied an ASM_OPERANDS.
4243 In that case, it is the original input-operand vector. */
4244static rtvec orig_asm_operands_vector;
4245
4246/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4247 copied an ASM_OPERANDS.
4248 In that case, it is the copied input-operand vector. */
4249static rtvec copy_asm_operands_vector;
4250
4251/* Likewise for the constraints vector. */
4252static rtvec orig_asm_constraints_vector;
4253static rtvec copy_asm_constraints_vector;
4254
4255/* Recursively create a new copy of an rtx for copy_insn.
4256 This function differs from copy_rtx in that it handles SCRATCHes and
4257 ASM_OPERANDs properly.
4258 Normally, this function is not used directly; use copy_insn as front end.
4259 However, you could first copy an insn pattern with copy_insn and then use
4260 this function afterwards to properly copy any REG_NOTEs containing
4261 SCRATCHes. */
4262
4263rtx
4264copy_insn_1 (orig)
19cb6b50 4265 rtx orig;
928d57e3 4266{
19cb6b50 4267 rtx copy;
4268 int i, j;
4269 RTX_CODE code;
4270 const char *format_ptr;
928d57e3 4271
4272 code = GET_CODE (orig);
4273
4274 switch (code)
4275 {
4276 case REG:
4277 case QUEUED:
4278 case CONST_INT:
4279 case CONST_DOUBLE:
4280 case SYMBOL_REF:
4281 case CODE_LABEL:
4282 case PC:
4283 case CC0:
4284 case ADDRESSOF:
4285 return orig;
4286
4287 case SCRATCH:
4288 for (i = 0; i < copy_insn_n_scratches; i++)
4289 if (copy_insn_scratch_in[i] == orig)
4290 return copy_insn_scratch_out[i];
4291 break;
4292
4293 case CONST:
4294 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4295 a LABEL_REF, it isn't sharable. */
4296 if (GET_CODE (XEXP (orig, 0)) == PLUS
4297 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4298 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4299 return orig;
4300 break;
d823ba47 4301
928d57e3 4302 /* A MEM with a constant address is not sharable. The problem is that
4303 the constant address may need to be reloaded. If the mem is shared,
4304 then reloading one copy of this mem will cause all copies to appear
4305 to have been reloaded. */
4306
4307 default:
4308 break;
4309 }
4310
4311 copy = rtx_alloc (code);
4312
4313 /* Copy the various flags, and other information. We assume that
4314 all fields need copying, and then clear the fields that should
4315 not be copied. That is the sensible default behavior, and forces
4316 us to explicitly document why we are *not* copying a flag. */
4317 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4318
4319 /* We do not copy the USED flag, which is used as a mark bit during
4320 walks over the RTL. */
4321 copy->used = 0;
4322
4323 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4324 if (GET_RTX_CLASS (code) == 'i')
4325 {
4326 copy->jump = 0;
4327 copy->call = 0;
4328 copy->frame_related = 0;
4329 }
d823ba47 4330
928d57e3 4331 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4332
4333 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4334 {
d925550d 4335 copy->fld[i] = orig->fld[i];
928d57e3 4336 switch (*format_ptr++)
4337 {
4338 case 'e':
928d57e3 4339 if (XEXP (orig, i) != NULL)
4340 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4341 break;
4342
928d57e3 4343 case 'E':
4344 case 'V':
928d57e3 4345 if (XVEC (orig, i) == orig_asm_constraints_vector)
4346 XVEC (copy, i) = copy_asm_constraints_vector;
4347 else if (XVEC (orig, i) == orig_asm_operands_vector)
4348 XVEC (copy, i) = copy_asm_operands_vector;
4349 else if (XVEC (orig, i) != NULL)
4350 {
4351 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4352 for (j = 0; j < XVECLEN (copy, i); j++)
4353 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4354 }
4355 break;
4356
928d57e3 4357 case 't':
928d57e3 4358 case 'w':
928d57e3 4359 case 'i':
928d57e3 4360 case 's':
4361 case 'S':
d925550d 4362 case 'u':
4363 case '0':
4364 /* These are left unchanged. */
928d57e3 4365 break;
4366
4367 default:
4368 abort ();
4369 }
4370 }
4371
4372 if (code == SCRATCH)
4373 {
4374 i = copy_insn_n_scratches++;
4375 if (i >= MAX_RECOG_OPERANDS)
4376 abort ();
4377 copy_insn_scratch_in[i] = orig;
4378 copy_insn_scratch_out[i] = copy;
4379 }
4380 else if (code == ASM_OPERANDS)
4381 {
d91f2122 4382 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4383 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4384 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4385 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
928d57e3 4386 }
4387
4388 return copy;
4389}
4390
4391/* Create a new copy of an rtx.
4392 This function differs from copy_rtx in that it handles SCRATCHes and
4393 ASM_OPERANDs properly.
4394 INSN doesn't really have to be a full INSN; it could be just the
4395 pattern. */
4396rtx
4397copy_insn (insn)
4398 rtx insn;
4399{
4400 copy_insn_n_scratches = 0;
4401 orig_asm_operands_vector = 0;
4402 orig_asm_constraints_vector = 0;
4403 copy_asm_operands_vector = 0;
4404 copy_asm_constraints_vector = 0;
4405 return copy_insn_1 (insn);
4406}
02ebfa52 4407
15bbde2b 4408/* Initialize data structures and variables in this file
4409 before generating rtl for each function. */
4410
4411void
4412init_emit ()
4413{
08513b52 4414 struct function *f = cfun;
15bbde2b 4415
0a893c29 4416 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
15bbde2b 4417 first_insn = NULL;
4418 last_insn = NULL;
961819fb 4419 seq_rtl_expr = NULL;
15bbde2b 4420 cur_insn_uid = 1;
4421 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4422 last_linenum = 0;
4423 last_filename = 0;
4424 first_label_num = label_num;
4425 last_label_num = 0;
0a893c29 4426 seq_stack = NULL;
15bbde2b 4427
0a893c29 4428 clear_emit_caches ();
15bbde2b 4429
4430 /* Init the tables that describe all the pseudo regs. */
4431
e61a0a7f 4432 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
15bbde2b 4433
0a893c29 4434 f->emit->regno_pointer_align
e61a0a7f 4435 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4491f79f 4436 sizeof (unsigned char));
d4c332ff 4437
d823ba47 4438 regno_reg_rtx
fcdc122e 4439 = (rtx *) xcalloc (f->emit->regno_pointer_align_length, sizeof (rtx));
4440
4441 f->emit->regno_decl
4442 = (tree *) xcalloc (f->emit->regno_pointer_align_length, sizeof (tree));
15bbde2b 4443
4444 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
0a893c29 4445 init_virtual_regs (f->emit);
888e0d33 4446
4447 /* Indicate that the virtual registers and stack locations are
4448 all pointers. */
e61a0a7f 4449 REG_POINTER (stack_pointer_rtx) = 1;
4450 REG_POINTER (frame_pointer_rtx) = 1;
4451 REG_POINTER (hard_frame_pointer_rtx) = 1;
4452 REG_POINTER (arg_pointer_rtx) = 1;
888e0d33 4453
e61a0a7f 4454 REG_POINTER (virtual_incoming_args_rtx) = 1;
4455 REG_POINTER (virtual_stack_vars_rtx) = 1;
4456 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4457 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4458 REG_POINTER (virtual_cfa_rtx) = 1;
89525da0 4459
d4c332ff 4460#ifdef STACK_BOUNDARY
80909c64 4461 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4462 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4463 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4464 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4465
4466 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4467 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4468 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4469 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4470 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
d4c332ff 4471#endif
4472
89525da0 4473#ifdef INIT_EXPANDERS
4474 INIT_EXPANDERS;
4475#endif
15bbde2b 4476}
4477
a7b0c170 4478/* Mark SS for GC. */
4479
4480static void
4481mark_sequence_stack (ss)
4482 struct sequence_stack *ss;
4483{
4484 while (ss)
4485 {
4486 ggc_mark_rtx (ss->first);
961819fb 4487 ggc_mark_tree (ss->sequence_rtl_expr);
a7b0c170 4488 ss = ss->next;
4489 }
4490}
4491
4492/* Mark ES for GC. */
4493
4494void
3c3bb268 4495mark_emit_status (es)
a7b0c170 4496 struct emit_status *es;
4497{
4498 rtx *r;
fcdc122e 4499 tree *t;
a7b0c170 4500 int i;
4501
4502 if (es == 0)
4503 return;
4504
fcdc122e 4505 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx,
4506 t = es->regno_decl;
4507 i > 0; --i, ++r, ++t)
4508 {
4509 ggc_mark_rtx (*r);
4510 ggc_mark_tree (*t);
4511 }
a7b0c170 4512
4513 mark_sequence_stack (es->sequence_stack);
961819fb 4514 ggc_mark_tree (es->sequence_rtl_expr);
a7b0c170 4515 ggc_mark_rtx (es->x_first_insn);
4516}
4517
15bbde2b 4518/* Create some permanent unique rtl objects shared between all functions.
4519 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4520
4521void
4522init_emit_once (line_numbers)
4523 int line_numbers;
4524{
4525 int i;
4526 enum machine_mode mode;
9e042f31 4527 enum machine_mode double_mode;
15bbde2b 4528
c6259b83 4529 /* Initialize the CONST_INT and memory attribute hash tables. */
d823ba47 4530 const_int_htab = htab_create (37, const_int_htab_hash,
77695070 4531 const_int_htab_eq, NULL);
c6259b83 4532 ggc_add_deletable_htab (const_int_htab, 0, 0);
4533
4534 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
4535 mem_attrs_htab_eq, NULL);
4536 ggc_add_deletable_htab (mem_attrs_htab, 0, mem_attrs_mark);
77695070 4537
15bbde2b 4538 no_line_numbers = ! line_numbers;
4539
71d7daa2 4540 /* Compute the word and byte modes. */
4541
4542 byte_mode = VOIDmode;
4543 word_mode = VOIDmode;
4544 double_mode = VOIDmode;
4545
4546 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4547 mode = GET_MODE_WIDER_MODE (mode))
4548 {
4549 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4550 && byte_mode == VOIDmode)
4551 byte_mode = mode;
4552
4553 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4554 && word_mode == VOIDmode)
4555 word_mode = mode;
4556 }
4557
71d7daa2 4558 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4559 mode = GET_MODE_WIDER_MODE (mode))
4560 {
4561 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4562 && double_mode == VOIDmode)
4563 double_mode = mode;
4564 }
4565
4566 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4567
57c097d5 4568 /* Assign register numbers to the globally defined register rtx.
4569 This must be done at runtime because the register number field
4570 is in a union and some compilers can't initialize unions. */
4571
4572 pc_rtx = gen_rtx (PC, VOIDmode);
4573 cc0_rtx = gen_rtx (CC0, VOIDmode);
22cf44bc 4574 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4575 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
57c097d5 4576 if (hard_frame_pointer_rtx == 0)
d823ba47 4577 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
22cf44bc 4578 HARD_FRAME_POINTER_REGNUM);
57c097d5 4579 if (arg_pointer_rtx == 0)
22cf44bc 4580 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
d823ba47 4581 virtual_incoming_args_rtx =
22cf44bc 4582 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
d823ba47 4583 virtual_stack_vars_rtx =
22cf44bc 4584 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
d823ba47 4585 virtual_stack_dynamic_rtx =
22cf44bc 4586 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
d823ba47 4587 virtual_outgoing_args_rtx =
4588 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
22cf44bc 4589 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
57c097d5 4590
4591 /* These rtx must be roots if GC is enabled. */
d7c47c0e 4592 ggc_add_rtx_root (global_rtl, GR_MAX);
57c097d5 4593
57c097d5 4594#ifdef INIT_EXPANDERS
ab5beff9 4595 /* This is to initialize {init|mark|free}_machine_status before the first
4596 call to push_function_context_to. This is needed by the Chill front
4597 end which calls push_function_context_to before the first cal to
57c097d5 4598 init_function_start. */
4599 INIT_EXPANDERS;
4600#endif
4601
15bbde2b 4602 /* Create the unique rtx's for certain rtx codes and operand values. */
4603
7014838c 4604 /* Don't use gen_rtx here since gen_rtx in this case
4605 tries to use these variables. */
15bbde2b 4606 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
d823ba47 4607 const_int_rtx[i + MAX_SAVED_CONST_INT] =
57c097d5 4608 gen_rtx_raw_CONST_INT (VOIDmode, i);
d7c47c0e 4609 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
15bbde2b 4610
1a60f06a 4611 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4612 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
57c097d5 4613 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
1a60f06a 4614 else
3ad7bb1c 4615 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
15bbde2b 4616
9e042f31 4617 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4618 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4619 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4620 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
15bbde2b 4621
4622 for (i = 0; i <= 2; i++)
4623 {
4624 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4625 mode = GET_MODE_WIDER_MODE (mode))
4626 {
4627 rtx tem = rtx_alloc (CONST_DOUBLE);
4628 union real_extract u;
4629
fd781f88 4630 /* Zero any holes in a structure. */
4631 memset ((char *) &u, 0, sizeof u);
15bbde2b 4632 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4633
fd781f88 4634 /* Avoid trailing garbage in the rtx. */
4635 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4636 CONST_DOUBLE_LOW (tem) = 0;
4637 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4638 CONST_DOUBLE_HIGH (tem) = 0;
4639
b1b63592 4640 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
15bbde2b 4641 CONST_DOUBLE_MEM (tem) = cc0_rtx;
791ceafe 4642 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
15bbde2b 4643 PUT_MODE (tem, mode);
4644
4645 const_tiny_rtx[i][(int) mode] = tem;
4646 }
4647
b572011e 4648 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
15bbde2b 4649
4650 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4651 mode = GET_MODE_WIDER_MODE (mode))
b572011e 4652 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
7540dcc4 4653
4654 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4655 mode != VOIDmode;
4656 mode = GET_MODE_WIDER_MODE (mode))
4657 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
15bbde2b 4658 }
4659
0fd4500a 4660 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4661 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4662 const_tiny_rtx[0][i] = const0_rtx;
15bbde2b 4663
065336b4 4664 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4665 if (STORE_FLAG_VALUE == 1)
4666 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4667
3098b2d3 4668 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4669 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4670 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4671 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
c788feb1 4672 ggc_add_rtx_root (&const_true_rtx, 1);
f4bffa58 4673
4674#ifdef RETURN_ADDRESS_POINTER_REGNUM
4675 return_address_pointer_rtx
22cf44bc 4676 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
f4bffa58 4677#endif
4678
4679#ifdef STRUCT_VALUE
4680 struct_value_rtx = STRUCT_VALUE;
4681#else
4682 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4683#endif
4684
4685#ifdef STRUCT_VALUE_INCOMING
4686 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4687#else
4688#ifdef STRUCT_VALUE_INCOMING_REGNUM
4689 struct_value_incoming_rtx
4690 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4691#else
4692 struct_value_incoming_rtx = struct_value_rtx;
4693#endif
4694#endif
4695
4696#ifdef STATIC_CHAIN_REGNUM
4697 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4698
4699#ifdef STATIC_CHAIN_INCOMING_REGNUM
4700 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4701 static_chain_incoming_rtx
4702 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4703 else
4704#endif
4705 static_chain_incoming_rtx = static_chain_rtx;
4706#endif
4707
4708#ifdef STATIC_CHAIN
4709 static_chain_rtx = STATIC_CHAIN;
4710
4711#ifdef STATIC_CHAIN_INCOMING
4712 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4713#else
4714 static_chain_incoming_rtx = static_chain_rtx;
4715#endif
4716#endif
4717
14e6e4d4 4718 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4719 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
f4bffa58 4720
521dd524 4721 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4722 ggc_add_rtx_root (&struct_value_rtx, 1);
4723 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4724 ggc_add_rtx_root (&static_chain_rtx, 1);
4725 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4726 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
15bbde2b 4727}
ac6c481d 4728\f
4729/* Query and clear/ restore no_line_numbers. This is used by the
4730 switch / case handling in stmt.c to give proper line numbers in
4731 warnings about unreachable code. */
4732
4733int
4734force_line_numbers ()
4735{
4736 int old = no_line_numbers;
4737
4738 no_line_numbers = 0;
4739 if (old)
4740 force_next_line_note ();
4741 return old;
4742}
4743
4744void
4745restore_line_number_status (old_value)
4746 int old_value;
4747{
4748 no_line_numbers = old_value;
4749}