]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
rtl_data.x_parm_birth_insn is an insn
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
23a5b65a 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
23b2ce53 3
1322177d 4This file is part of GCC.
23b2ce53 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
23b2ce53 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
23b2ce53
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
23b2ce53
RS
19
20
21/* Middle-to-low level generation of rtx code and insns.
22
f822fcf7
KH
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
23b2ce53
RS
33
34#include "config.h"
670ee920 35#include "system.h"
4977bab6
ZW
36#include "coretypes.h"
37#include "tm.h"
718f9c0f 38#include "diagnostic-core.h"
23b2ce53 39#include "rtl.h"
a25c7971 40#include "tree.h"
d8a2d370 41#include "varasm.h"
2fb9a547
AM
42#include "basic-block.h"
43#include "tree-eh.h"
6baf1cc8 44#include "tm_p.h"
23b2ce53
RS
45#include "flags.h"
46#include "function.h"
d8a2d370 47#include "stringpool.h"
23b2ce53
RS
48#include "expr.h"
49#include "regs.h"
aff48bca 50#include "hard-reg-set.h"
c13e8210 51#include "hashtab.h"
23b2ce53 52#include "insn-config.h"
e9a25f70 53#include "recog.h"
0dfa1860 54#include "bitmap.h"
e1772ac0 55#include "debug.h"
d23c55c2 56#include "langhooks.h"
6fb5fa3c 57#include "df.h"
b5b8b0ac 58#include "params.h"
d4ebfa65 59#include "target.h"
9b2b7279 60#include "builtins.h"
ca695ac9 61
5fb0e246
RS
62struct target_rtl default_target_rtl;
63#if SWITCHABLE_TARGET
64struct target_rtl *this_target_rtl = &default_target_rtl;
65#endif
66
67#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
68
1d445e9e
ILT
69/* Commonly used modes. */
70
0f41302f
MS
71enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
72enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 73enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 74enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 75
bd60bab2
JH
76/* Datastructures maintained for currently processed function in RTL form. */
77
3e029763 78struct rtl_data x_rtl;
bd60bab2
JH
79
80/* Indexed by pseudo register number, gives the rtx for that pseudo.
b8698a0f 81 Allocated in parallel with regno_pointer_align.
bd60bab2
JH
82 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
83 with length attribute nested in top level structures. */
84
85rtx * regno_reg_rtx;
23b2ce53
RS
86
87/* This is *not* reset after each function. It gives each CODE_LABEL
88 in the entire compilation a unique label number. */
89
044b4de3 90static GTY(()) int label_num = 1;
23b2ce53 91
23b2ce53
RS
92/* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
e7c82a99
JJ
94 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
95 is set only for MODE_INT and MODE_VECTOR_INT modes. */
23b2ce53 96
e7c82a99 97rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
23b2ce53 98
68d75312
JC
99rtx const_true_rtx;
100
23b2ce53
RS
101REAL_VALUE_TYPE dconst0;
102REAL_VALUE_TYPE dconst1;
103REAL_VALUE_TYPE dconst2;
104REAL_VALUE_TYPE dconstm1;
03f2ea93 105REAL_VALUE_TYPE dconsthalf;
23b2ce53 106
325217ed
CF
107/* Record fixed-point constant 0 and 1. */
108FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
109FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
110
23b2ce53
RS
111/* We make one copy of (const_int C) where C is in
112 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
113 to save space during the compilation and simplify comparisons of
114 integers. */
115
5da077de 116rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 117
ca4adc91
RS
118/* Standard pieces of rtx, to be substituted directly into things. */
119rtx pc_rtx;
120rtx ret_rtx;
121rtx simple_return_rtx;
122rtx cc0_rtx;
123
c13e8210
MM
124/* A hash table storing CONST_INTs whose absolute value is greater
125 than MAX_SAVED_CONST_INT. */
126
e2500fed
GK
127static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t const_int_htab;
c13e8210 129
807e902e
KZ
130static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t const_wide_int_htab;
132
a560d4d4
JH
133/* A hash table storing register attribute structures. */
134static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
135 htab_t reg_attrs_htab;
136
5692c7bc 137/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
138static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_double_htab;
5692c7bc 140
091a3ac7
CF
141/* A hash table storing all CONST_FIXEDs. */
142static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
143 htab_t const_fixed_htab;
144
3e029763 145#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
b5b8b0ac 146#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
3e029763 147#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 148
5eb2a9f2 149static void set_used_decls (tree);
502b8322
AJ
150static void mark_label_nuses (rtx);
151static hashval_t const_int_htab_hash (const void *);
152static int const_int_htab_eq (const void *, const void *);
807e902e
KZ
153#if TARGET_SUPPORTS_WIDE_INT
154static hashval_t const_wide_int_htab_hash (const void *);
155static int const_wide_int_htab_eq (const void *, const void *);
156static rtx lookup_const_wide_int (rtx);
157#endif
502b8322
AJ
158static hashval_t const_double_htab_hash (const void *);
159static int const_double_htab_eq (const void *, const void *);
160static rtx lookup_const_double (rtx);
091a3ac7
CF
161static hashval_t const_fixed_htab_hash (const void *);
162static int const_fixed_htab_eq (const void *, const void *);
163static rtx lookup_const_fixed (rtx);
502b8322
AJ
164static hashval_t reg_attrs_htab_hash (const void *);
165static int reg_attrs_htab_eq (const void *, const void *);
166static reg_attrs *get_reg_attrs (tree, int);
a73b091d 167static rtx gen_const_vector (enum machine_mode, int);
32b32b16 168static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 169
6b24c259
JH
170/* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172int split_branch_probability = -1;
ca695ac9 173\f
c13e8210
MM
174/* Returns a hash code for X (which is a really a CONST_INT). */
175
176static hashval_t
502b8322 177const_int_htab_hash (const void *x)
c13e8210 178{
f7d504c2 179 return (hashval_t) INTVAL ((const_rtx) x);
c13e8210
MM
180}
181
cc2902df 182/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
185
186static int
502b8322 187const_int_htab_eq (const void *x, const void *y)
c13e8210 188{
f7d504c2 189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
5692c7bc
ZW
190}
191
807e902e
KZ
192#if TARGET_SUPPORTS_WIDE_INT
193/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
194
195static hashval_t
196const_wide_int_htab_hash (const void *x)
197{
198 int i;
199 HOST_WIDE_INT hash = 0;
200 const_rtx xr = (const_rtx) x;
201
202 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
203 hash += CONST_WIDE_INT_ELT (xr, i);
204
205 return (hashval_t) hash;
206}
207
208/* Returns nonzero if the value represented by X (which is really a
209 CONST_WIDE_INT) is the same as that given by Y (which is really a
210 CONST_WIDE_INT). */
211
212static int
213const_wide_int_htab_eq (const void *x, const void *y)
214{
215 int i;
216 const_rtx xr = (const_rtx) x;
217 const_rtx yr = (const_rtx) y;
218 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
219 return 0;
220
221 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
222 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
223 return 0;
224
225 return 1;
226}
227#endif
228
5692c7bc
ZW
229/* Returns a hash code for X (which is really a CONST_DOUBLE). */
230static hashval_t
502b8322 231const_double_htab_hash (const void *x)
5692c7bc 232{
f7d504c2 233 const_rtx const value = (const_rtx) x;
46b33600 234 hashval_t h;
5692c7bc 235
807e902e 236 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
46b33600
RH
237 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
238 else
fe352c29 239 {
15c812e3 240 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
241 /* MODE is used in the comparison, so it should be in the hash. */
242 h ^= GET_MODE (value);
243 }
5692c7bc
ZW
244 return h;
245}
246
cc2902df 247/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
248 is the same as that represented by Y (really a ...) */
249static int
502b8322 250const_double_htab_eq (const void *x, const void *y)
5692c7bc 251{
f7d504c2 252 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
5692c7bc
ZW
253
254 if (GET_MODE (a) != GET_MODE (b))
255 return 0;
807e902e 256 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
8580f7a0
RH
257 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
258 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
259 else
260 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
261 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
262}
263
091a3ac7
CF
264/* Returns a hash code for X (which is really a CONST_FIXED). */
265
266static hashval_t
267const_fixed_htab_hash (const void *x)
268{
3101faab 269 const_rtx const value = (const_rtx) x;
091a3ac7
CF
270 hashval_t h;
271
272 h = fixed_hash (CONST_FIXED_VALUE (value));
273 /* MODE is used in the comparison, so it should be in the hash. */
274 h ^= GET_MODE (value);
275 return h;
276}
277
278/* Returns nonzero if the value represented by X (really a ...)
279 is the same as that represented by Y (really a ...). */
280
281static int
282const_fixed_htab_eq (const void *x, const void *y)
283{
3101faab 284 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
091a3ac7
CF
285
286 if (GET_MODE (a) != GET_MODE (b))
287 return 0;
288 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
289}
290
f12144dd 291/* Return true if the given memory attributes are equal. */
c13e8210 292
96b3c03f 293bool
f12144dd 294mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
c13e8210 295{
96b3c03f
RB
296 if (p == q)
297 return true;
298 if (!p || !q)
299 return false;
754c3d5d
RS
300 return (p->alias == q->alias
301 && p->offset_known_p == q->offset_known_p
302 && (!p->offset_known_p || p->offset == q->offset)
303 && p->size_known_p == q->size_known_p
304 && (!p->size_known_p || p->size == q->size)
305 && p->align == q->align
09e881c9 306 && p->addrspace == q->addrspace
78b76d08
SB
307 && (p->expr == q->expr
308 || (p->expr != NULL_TREE && q->expr != NULL_TREE
309 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
310}
311
f12144dd 312/* Set MEM's memory attributes so that they are the same as ATTRS. */
10b76d73 313
f12144dd
RS
314static void
315set_mem_attrs (rtx mem, mem_attrs *attrs)
316{
f12144dd
RS
317 /* If everything is the default, we can just clear the attributes. */
318 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
319 {
320 MEM_ATTRS (mem) = 0;
321 return;
322 }
173b24b9 323
84053e02
RB
324 if (!MEM_ATTRS (mem)
325 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
173b24b9 326 {
766090c2 327 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
84053e02 328 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
173b24b9 329 }
c13e8210
MM
330}
331
a560d4d4
JH
332/* Returns a hash code for X (which is a really a reg_attrs *). */
333
334static hashval_t
502b8322 335reg_attrs_htab_hash (const void *x)
a560d4d4 336{
741ac903 337 const reg_attrs *const p = (const reg_attrs *) x;
a560d4d4 338
9841210f 339 return ((p->offset * 1000) ^ (intptr_t) p->decl);
a560d4d4
JH
340}
341
6356f892 342/* Returns nonzero if the value represented by X (which is really a
a560d4d4
JH
343 reg_attrs *) is the same as that given by Y (which is also really a
344 reg_attrs *). */
345
346static int
502b8322 347reg_attrs_htab_eq (const void *x, const void *y)
a560d4d4 348{
741ac903
KG
349 const reg_attrs *const p = (const reg_attrs *) x;
350 const reg_attrs *const q = (const reg_attrs *) y;
a560d4d4
JH
351
352 return (p->decl == q->decl && p->offset == q->offset);
353}
354/* Allocate a new reg_attrs structure and insert it into the hash table if
355 one identical to it is not already in the table. We are doing this for
356 MEM of mode MODE. */
357
358static reg_attrs *
502b8322 359get_reg_attrs (tree decl, int offset)
a560d4d4
JH
360{
361 reg_attrs attrs;
362 void **slot;
363
364 /* If everything is the default, we can just return zero. */
365 if (decl == 0 && offset == 0)
366 return 0;
367
368 attrs.decl = decl;
369 attrs.offset = offset;
370
371 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
372 if (*slot == 0)
373 {
766090c2 374 *slot = ggc_alloc<reg_attrs> ();
a560d4d4
JH
375 memcpy (*slot, &attrs, sizeof (reg_attrs));
376 }
377
1b4572a8 378 return (reg_attrs *) *slot;
a560d4d4
JH
379}
380
6fb5fa3c
DB
381
382#if !HAVE_blockage
adddc347
HPN
383/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
384 and to block register equivalences to be seen across this insn. */
6fb5fa3c
DB
385
386rtx
387gen_blockage (void)
388{
389 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
390 MEM_VOLATILE_P (x) = true;
391 return x;
392}
393#endif
394
395
08394eef
BS
396/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
397 don't attempt to share with the various global pieces of rtl (such as
398 frame_pointer_rtx). */
399
400rtx
502b8322 401gen_raw_REG (enum machine_mode mode, int regno)
08394eef
BS
402{
403 rtx x = gen_rtx_raw_REG (mode, regno);
404 ORIGINAL_REGNO (x) = regno;
405 return x;
406}
407
c5c76735
JL
408/* There are some RTL codes that require special attention; the generation
409 functions do the raw handling. If you add to this list, modify
410 special_rtx in gengenrtl.c as well. */
411
3b80f6ca 412rtx
502b8322 413gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca 414{
c13e8210
MM
415 void **slot;
416
3b80f6ca 417 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 418 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
419
420#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
421 if (const_true_rtx && arg == STORE_FLAG_VALUE)
422 return const_true_rtx;
423#endif
424
c13e8210 425 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
426 slot = htab_find_slot_with_hash (const_int_htab, &arg,
427 (hashval_t) arg, INSERT);
29105cea 428 if (*slot == 0)
1f8f4a0b 429 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
430
431 return (rtx) *slot;
3b80f6ca
RH
432}
433
2496c7bd 434rtx
502b8322 435gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2496c7bd
LB
436{
437 return GEN_INT (trunc_int_for_mode (c, mode));
438}
439
5692c7bc
ZW
440/* CONST_DOUBLEs might be created from pairs of integers, or from
441 REAL_VALUE_TYPEs. Also, their length is known only at run time,
442 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
443
444/* Determine whether REAL, a CONST_DOUBLE, already exists in the
445 hash table. If so, return its counterpart; otherwise add it
446 to the hash table and return it. */
447static rtx
502b8322 448lookup_const_double (rtx real)
5692c7bc
ZW
449{
450 void **slot = htab_find_slot (const_double_htab, real, INSERT);
451 if (*slot == 0)
452 *slot = real;
453
454 return (rtx) *slot;
455}
29105cea 456
5692c7bc
ZW
457/* Return a CONST_DOUBLE rtx for a floating-point value specified by
458 VALUE in mode MODE. */
0133b7d9 459rtx
502b8322 460const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
0133b7d9 461{
5692c7bc
ZW
462 rtx real = rtx_alloc (CONST_DOUBLE);
463 PUT_MODE (real, mode);
464
9e254451 465 real->u.rv = value;
5692c7bc
ZW
466
467 return lookup_const_double (real);
468}
469
091a3ac7
CF
470/* Determine whether FIXED, a CONST_FIXED, already exists in the
471 hash table. If so, return its counterpart; otherwise add it
472 to the hash table and return it. */
473
474static rtx
475lookup_const_fixed (rtx fixed)
476{
477 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
478 if (*slot == 0)
479 *slot = fixed;
480
481 return (rtx) *slot;
482}
483
484/* Return a CONST_FIXED rtx for a fixed-point value specified by
485 VALUE in mode MODE. */
486
487rtx
488const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
489{
490 rtx fixed = rtx_alloc (CONST_FIXED);
491 PUT_MODE (fixed, mode);
492
493 fixed->u.fv = value;
494
495 return lookup_const_fixed (fixed);
496}
497
807e902e 498#if TARGET_SUPPORTS_WIDE_INT == 0
3e93ff81
AS
499/* Constructs double_int from rtx CST. */
500
501double_int
502rtx_to_double_int (const_rtx cst)
503{
504 double_int r;
505
506 if (CONST_INT_P (cst))
27bcd47c 507 r = double_int::from_shwi (INTVAL (cst));
48175537 508 else if (CONST_DOUBLE_AS_INT_P (cst))
3e93ff81
AS
509 {
510 r.low = CONST_DOUBLE_LOW (cst);
511 r.high = CONST_DOUBLE_HIGH (cst);
512 }
513 else
514 gcc_unreachable ();
515
516 return r;
517}
807e902e 518#endif
3e93ff81 519
807e902e
KZ
520#if TARGET_SUPPORTS_WIDE_INT
521/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
522 If so, return its counterpart; otherwise add it to the hash table and
523 return it. */
3e93ff81 524
807e902e
KZ
525static rtx
526lookup_const_wide_int (rtx wint)
527{
528 void **slot = htab_find_slot (const_wide_int_htab, wint, INSERT);
529 if (*slot == 0)
530 *slot = wint;
531
532 return (rtx) *slot;
533}
534#endif
535
536/* Return an rtx constant for V, given that the constant has mode MODE.
537 The returned rtx will be a CONST_INT if V fits, otherwise it will be
538 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
539 (if TARGET_SUPPORTS_WIDE_INT). */
54fb1ae0
AS
540
541rtx
807e902e 542immed_wide_int_const (const wide_int_ref &v, enum machine_mode mode)
54fb1ae0 543{
807e902e
KZ
544 unsigned int len = v.get_len ();
545 unsigned int prec = GET_MODE_PRECISION (mode);
546
547 /* Allow truncation but not extension since we do not know if the
548 number is signed or unsigned. */
549 gcc_assert (prec <= v.get_precision ());
550
551 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
552 return gen_int_mode (v.elt (0), mode);
553
554#if TARGET_SUPPORTS_WIDE_INT
555 {
556 unsigned int i;
557 rtx value;
558 unsigned int blocks_needed
559 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
560
561 if (len > blocks_needed)
562 len = blocks_needed;
563
564 value = const_wide_int_alloc (len);
565
566 /* It is so tempting to just put the mode in here. Must control
567 myself ... */
568 PUT_MODE (value, VOIDmode);
569 CWI_PUT_NUM_ELEM (value, len);
570
571 for (i = 0; i < len; i++)
572 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
573
574 return lookup_const_wide_int (value);
575 }
576#else
577 return immed_double_const (v.elt (0), v.elt (1), mode);
578#endif
54fb1ae0
AS
579}
580
807e902e 581#if TARGET_SUPPORTS_WIDE_INT == 0
5692c7bc
ZW
582/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
583 of ints: I0 is the low-order word and I1 is the high-order word.
49ab6098 584 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
929e10f4
MS
585 implied upper bits are copies of the high bit of i1. The value
586 itself is neither signed nor unsigned. Do not use this routine for
587 non-integer modes; convert to REAL_VALUE_TYPE and use
588 CONST_DOUBLE_FROM_REAL_VALUE. */
5692c7bc
ZW
589
590rtx
502b8322 591immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
5692c7bc
ZW
592{
593 rtx value;
594 unsigned int i;
595
65acccdd 596 /* There are the following cases (note that there are no modes with
49ab6098 597 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
65acccdd
ZD
598
599 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
600 gen_int_mode.
929e10f4
MS
601 2) If the value of the integer fits into HOST_WIDE_INT anyway
602 (i.e., i1 consists only from copies of the sign bit, and sign
603 of i0 and i1 are the same), then we return a CONST_INT for i0.
65acccdd 604 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
5692c7bc
ZW
605 if (mode != VOIDmode)
606 {
5b0264cb
NS
607 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
608 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
609 /* We can get a 0 for an error mark. */
610 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
611 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
5692c7bc 612
65acccdd
ZD
613 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
614 return gen_int_mode (i0, mode);
5692c7bc
ZW
615 }
616
617 /* If this integer fits in one word, return a CONST_INT. */
618 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
619 return GEN_INT (i0);
620
621 /* We use VOIDmode for integers. */
622 value = rtx_alloc (CONST_DOUBLE);
623 PUT_MODE (value, VOIDmode);
624
625 CONST_DOUBLE_LOW (value) = i0;
626 CONST_DOUBLE_HIGH (value) = i1;
627
628 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
629 XWINT (value, i) = 0;
630
631 return lookup_const_double (value);
0133b7d9 632}
807e902e 633#endif
0133b7d9 634
3b80f6ca 635rtx
502b8322 636gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3b80f6ca
RH
637{
638 /* In case the MD file explicitly references the frame pointer, have
639 all such references point to the same frame pointer. This is
640 used during frame pointer elimination to distinguish the explicit
641 references to these registers from pseudos that happened to be
642 assigned to them.
643
644 If we have eliminated the frame pointer or arg pointer, we will
645 be using it as a normal register, for example as a spill
646 register. In such cases, we might be accessing it in a mode that
647 is not Pmode and therefore cannot use the pre-allocated rtx.
648
649 Also don't do this when we are making new REGs in reload, since
650 we don't want to get confused with the real pointers. */
651
55a2c322 652 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3b80f6ca 653 {
e10c79fe
LB
654 if (regno == FRAME_POINTER_REGNUM
655 && (!reload_completed || frame_pointer_needed))
3b80f6ca 656 return frame_pointer_rtx;
e3339d0f 657#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
e10c79fe
LB
658 if (regno == HARD_FRAME_POINTER_REGNUM
659 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
660 return hard_frame_pointer_rtx;
661#endif
e3339d0f 662#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
bcb33994 663 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
664 return arg_pointer_rtx;
665#endif
666#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 667 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
668 return return_address_pointer_rtx;
669#endif
fc555370 670 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
bf9412cd 671 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
2d67bd7b 672 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 673 return pic_offset_table_rtx;
bcb33994 674 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
675 return stack_pointer_rtx;
676 }
677
006a94b0 678#if 0
6cde4876 679 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
680 an existing entry in that table to avoid useless generation of RTL.
681
682 This code is disabled for now until we can fix the various backends
683 which depend on having non-shared hard registers in some cases. Long
684 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
685 on the amount of useless RTL that gets generated.
686
687 We'll also need to fix some code that runs after reload that wants to
688 set ORIGINAL_REGNO. */
689
6cde4876
JL
690 if (cfun
691 && cfun->emit
692 && regno_reg_rtx
693 && regno < FIRST_PSEUDO_REGISTER
694 && reg_raw_mode[regno] == mode)
695 return regno_reg_rtx[regno];
006a94b0 696#endif
6cde4876 697
08394eef 698 return gen_raw_REG (mode, regno);
3b80f6ca
RH
699}
700
41472af8 701rtx
502b8322 702gen_rtx_MEM (enum machine_mode mode, rtx addr)
41472af8
MM
703{
704 rtx rt = gen_rtx_raw_MEM (mode, addr);
705
706 /* This field is not cleared by the mere allocation of the rtx, so
707 we clear it here. */
173b24b9 708 MEM_ATTRS (rt) = 0;
41472af8
MM
709
710 return rt;
711}
ddef6bc7 712
542a8afa
RH
713/* Generate a memory referring to non-trapping constant memory. */
714
715rtx
716gen_const_mem (enum machine_mode mode, rtx addr)
717{
718 rtx mem = gen_rtx_MEM (mode, addr);
719 MEM_READONLY_P (mem) = 1;
720 MEM_NOTRAP_P (mem) = 1;
721 return mem;
722}
723
bf877a76
R
724/* Generate a MEM referring to fixed portions of the frame, e.g., register
725 save areas. */
726
727rtx
728gen_frame_mem (enum machine_mode mode, rtx addr)
729{
730 rtx mem = gen_rtx_MEM (mode, addr);
731 MEM_NOTRAP_P (mem) = 1;
732 set_mem_alias_set (mem, get_frame_alias_set ());
733 return mem;
734}
735
736/* Generate a MEM referring to a temporary use of the stack, not part
737 of the fixed stack frame. For example, something which is pushed
738 by a target splitter. */
739rtx
740gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
741{
742 rtx mem = gen_rtx_MEM (mode, addr);
743 MEM_NOTRAP_P (mem) = 1;
e3b5732b 744 if (!cfun->calls_alloca)
bf877a76
R
745 set_mem_alias_set (mem, get_frame_alias_set ());
746 return mem;
747}
748
beb72684
RH
749/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
750 this construct would be valid, and false otherwise. */
751
752bool
753validate_subreg (enum machine_mode omode, enum machine_mode imode,
ed7a4b4b 754 const_rtx reg, unsigned int offset)
ddef6bc7 755{
beb72684
RH
756 unsigned int isize = GET_MODE_SIZE (imode);
757 unsigned int osize = GET_MODE_SIZE (omode);
758
759 /* All subregs must be aligned. */
760 if (offset % osize != 0)
761 return false;
762
763 /* The subreg offset cannot be outside the inner object. */
764 if (offset >= isize)
765 return false;
766
767 /* ??? This should not be here. Temporarily continue to allow word_mode
768 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
769 Generally, backends are doing something sketchy but it'll take time to
770 fix them all. */
771 if (omode == word_mode)
772 ;
773 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
774 is the culprit here, and not the backends. */
775 else if (osize >= UNITS_PER_WORD && isize >= osize)
776 ;
777 /* Allow component subregs of complex and vector. Though given the below
778 extraction rules, it's not always clear what that means. */
779 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
780 && GET_MODE_INNER (imode) == omode)
781 ;
782 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
783 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
784 represent this. It's questionable if this ought to be represented at
785 all -- why can't this all be hidden in post-reload splitters that make
786 arbitrarily mode changes to the registers themselves. */
787 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
788 ;
789 /* Subregs involving floating point modes are not allowed to
790 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
791 (subreg:SI (reg:DF) 0) isn't. */
792 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
793 {
55a2c322
VM
794 if (! (isize == osize
795 /* LRA can use subreg to store a floating point value in
796 an integer mode. Although the floating point and the
797 integer modes need the same number of hard registers,
798 the size of floating point mode can be less than the
799 integer mode. LRA also uses subregs for a register
800 should be used in different mode in on insn. */
801 || lra_in_progress))
beb72684
RH
802 return false;
803 }
ddef6bc7 804
beb72684
RH
805 /* Paradoxical subregs must have offset zero. */
806 if (osize > isize)
807 return offset == 0;
808
809 /* This is a normal subreg. Verify that the offset is representable. */
810
811 /* For hard registers, we already have most of these rules collected in
812 subreg_offset_representable_p. */
813 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
814 {
815 unsigned int regno = REGNO (reg);
816
817#ifdef CANNOT_CHANGE_MODE_CLASS
818 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
819 && GET_MODE_INNER (imode) == omode)
820 ;
821 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
822 return false;
ddef6bc7 823#endif
beb72684
RH
824
825 return subreg_offset_representable_p (regno, imode, offset, omode);
826 }
827
828 /* For pseudo registers, we want most of the same checks. Namely:
829 If the register no larger than a word, the subreg must be lowpart.
830 If the register is larger than a word, the subreg must be the lowpart
831 of a subword. A subreg does *not* perform arbitrary bit extraction.
832 Given that we've already checked mode/offset alignment, we only have
833 to check subword subregs here. */
55a2c322
VM
834 if (osize < UNITS_PER_WORD
835 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
beb72684
RH
836 {
837 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
838 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
839 if (offset % UNITS_PER_WORD != low_off)
840 return false;
841 }
842 return true;
843}
844
845rtx
846gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
847{
848 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 849 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
850}
851
173b24b9
RK
852/* Generate a SUBREG representing the least-significant part of REG if MODE
853 is smaller than mode of REG, otherwise paradoxical SUBREG. */
854
ddef6bc7 855rtx
502b8322 856gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
ddef6bc7
JJ
857{
858 enum machine_mode inmode;
ddef6bc7
JJ
859
860 inmode = GET_MODE (reg);
861 if (inmode == VOIDmode)
862 inmode = mode;
e0e08ac2
JH
863 return gen_rtx_SUBREG (mode, reg,
864 subreg_lowpart_offset (mode, inmode));
ddef6bc7 865}
fcc74520
RS
866
867rtx
868gen_rtx_VAR_LOCATION (enum machine_mode mode, tree decl, rtx loc,
869 enum var_init_status status)
870{
871 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
872 PAT_VAR_LOCATION_STATUS (x) = status;
873 return x;
874}
c5c76735 875\f
23b2ce53 876
80379f51
PB
877/* Create an rtvec and stores within it the RTXen passed in the arguments. */
878
23b2ce53 879rtvec
e34d07f2 880gen_rtvec (int n, ...)
23b2ce53 881{
80379f51
PB
882 int i;
883 rtvec rt_val;
e34d07f2 884 va_list p;
23b2ce53 885
e34d07f2 886 va_start (p, n);
23b2ce53 887
80379f51 888 /* Don't allocate an empty rtvec... */
23b2ce53 889 if (n == 0)
0edf1bb2
JL
890 {
891 va_end (p);
892 return NULL_RTVEC;
893 }
23b2ce53 894
80379f51 895 rt_val = rtvec_alloc (n);
4f90e4a0 896
23b2ce53 897 for (i = 0; i < n; i++)
80379f51 898 rt_val->elem[i] = va_arg (p, rtx);
6268b922 899
e34d07f2 900 va_end (p);
80379f51 901 return rt_val;
23b2ce53
RS
902}
903
904rtvec
502b8322 905gen_rtvec_v (int n, rtx *argp)
23b2ce53 906{
b3694847
SS
907 int i;
908 rtvec rt_val;
23b2ce53 909
80379f51 910 /* Don't allocate an empty rtvec... */
23b2ce53 911 if (n == 0)
80379f51 912 return NULL_RTVEC;
23b2ce53 913
80379f51 914 rt_val = rtvec_alloc (n);
23b2ce53
RS
915
916 for (i = 0; i < n; i++)
8f985ec4 917 rt_val->elem[i] = *argp++;
23b2ce53
RS
918
919 return rt_val;
920}
921\f
38ae7651
RS
922/* Return the number of bytes between the start of an OUTER_MODE
923 in-memory value and the start of an INNER_MODE in-memory value,
924 given that the former is a lowpart of the latter. It may be a
925 paradoxical lowpart, in which case the offset will be negative
926 on big-endian targets. */
927
928int
929byte_lowpart_offset (enum machine_mode outer_mode,
930 enum machine_mode inner_mode)
931{
932 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
933 return subreg_lowpart_offset (outer_mode, inner_mode);
934 else
935 return -subreg_lowpart_offset (inner_mode, outer_mode);
936}
937\f
23b2ce53
RS
938/* Generate a REG rtx for a new pseudo register of mode MODE.
939 This pseudo is assigned the next sequential register number. */
940
941rtx
502b8322 942gen_reg_rtx (enum machine_mode mode)
23b2ce53 943{
b3694847 944 rtx val;
2e3f842f 945 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 946
f8335a4f 947 gcc_assert (can_create_pseudo_p ());
23b2ce53 948
2e3f842f
L
949 /* If a virtual register with bigger mode alignment is generated,
950 increase stack alignment estimation because it might be spilled
951 to stack later. */
b8698a0f 952 if (SUPPORTS_STACK_ALIGNMENT
2e3f842f
L
953 && crtl->stack_alignment_estimated < align
954 && !crtl->stack_realign_processed)
ae58e548
JJ
955 {
956 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
957 if (crtl->stack_alignment_estimated < min_align)
958 crtl->stack_alignment_estimated = min_align;
959 }
2e3f842f 960
1b3d8f8a
GK
961 if (generating_concat_p
962 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
963 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
964 {
965 /* For complex modes, don't make a single pseudo.
966 Instead, make a CONCAT of two pseudos.
967 This allows noncontiguous allocation of the real and imaginary parts,
968 which makes much better code. Besides, allocating DCmode
969 pseudos overstrains reload on some machines like the 386. */
970 rtx realpart, imagpart;
27e58a70 971 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
972
973 realpart = gen_reg_rtx (partmode);
974 imagpart = gen_reg_rtx (partmode);
3b80f6ca 975 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
976 }
977
004a7e45
UB
978 /* Do not call gen_reg_rtx with uninitialized crtl. */
979 gcc_assert (crtl->emit.regno_pointer_align_length);
980
a560d4d4 981 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 982 enough to have an element for this pseudo reg number. */
23b2ce53 983
3e029763 984 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
23b2ce53 985 {
3e029763 986 int old_size = crtl->emit.regno_pointer_align_length;
60564289 987 char *tmp;
0d4903b8 988 rtx *new1;
0d4903b8 989
60564289
KG
990 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
991 memset (tmp + old_size, 0, old_size);
992 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
49ad7cfa 993
1b4572a8 994 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
49ad7cfa 995 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
996 regno_reg_rtx = new1;
997
3e029763 998 crtl->emit.regno_pointer_align_length = old_size * 2;
23b2ce53
RS
999 }
1000
08394eef 1001 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
1002 regno_reg_rtx[reg_rtx_no++] = val;
1003 return val;
1004}
1005
a698cc03
JL
1006/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1007
1008bool
1009reg_is_parm_p (rtx reg)
1010{
1011 tree decl;
1012
1013 gcc_assert (REG_P (reg));
1014 decl = REG_EXPR (reg);
1015 return (decl && TREE_CODE (decl) == PARM_DECL);
1016}
1017
38ae7651
RS
1018/* Update NEW with the same attributes as REG, but with OFFSET added
1019 to the REG_OFFSET. */
a560d4d4 1020
e53a16e7 1021static void
60564289 1022update_reg_offset (rtx new_rtx, rtx reg, int offset)
a560d4d4 1023{
60564289 1024 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
502b8322 1025 REG_OFFSET (reg) + offset);
e53a16e7
ILT
1026}
1027
38ae7651
RS
1028/* Generate a register with same attributes as REG, but with OFFSET
1029 added to the REG_OFFSET. */
e53a16e7
ILT
1030
1031rtx
1032gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
1033 int offset)
1034{
60564289 1035 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 1036
60564289
KG
1037 update_reg_offset (new_rtx, reg, offset);
1038 return new_rtx;
e53a16e7
ILT
1039}
1040
1041/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 1042 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
1043
1044rtx
1045gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1046{
60564289 1047 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 1048
60564289
KG
1049 update_reg_offset (new_rtx, reg, offset);
1050 return new_rtx;
a560d4d4
JH
1051}
1052
38ae7651
RS
1053/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1054 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
1055
1056void
38ae7651 1057adjust_reg_mode (rtx reg, enum machine_mode mode)
a560d4d4 1058{
38ae7651
RS
1059 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1060 PUT_MODE (reg, mode);
1061}
1062
1063/* Copy REG's attributes from X, if X has any attributes. If REG and X
1064 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1065
1066void
1067set_reg_attrs_from_value (rtx reg, rtx x)
1068{
1069 int offset;
de6f3f7a
L
1070 bool can_be_reg_pointer = true;
1071
1072 /* Don't call mark_reg_pointer for incompatible pointer sign
1073 extension. */
1074 while (GET_CODE (x) == SIGN_EXTEND
1075 || GET_CODE (x) == ZERO_EXTEND
1076 || GET_CODE (x) == TRUNCATE
1077 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1078 {
1079#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1080 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1081 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1082 can_be_reg_pointer = false;
1083#endif
1084 x = XEXP (x, 0);
1085 }
38ae7651 1086
923ba36f
JJ
1087 /* Hard registers can be reused for multiple purposes within the same
1088 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1089 on them is wrong. */
1090 if (HARD_REGISTER_P (reg))
1091 return;
1092
38ae7651 1093 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
1094 if (MEM_P (x))
1095 {
527210c4
RS
1096 if (MEM_OFFSET_KNOWN_P (x))
1097 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1098 MEM_OFFSET (x) + offset);
de6f3f7a 1099 if (can_be_reg_pointer && MEM_POINTER (x))
0a317111 1100 mark_reg_pointer (reg, 0);
46b71b03
PB
1101 }
1102 else if (REG_P (x))
1103 {
1104 if (REG_ATTRS (x))
1105 update_reg_offset (reg, x, offset);
de6f3f7a 1106 if (can_be_reg_pointer && REG_POINTER (x))
46b71b03
PB
1107 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1108 }
1109}
1110
1111/* Generate a REG rtx for a new pseudo register, copying the mode
1112 and attributes from X. */
1113
1114rtx
1115gen_reg_rtx_and_attrs (rtx x)
1116{
1117 rtx reg = gen_reg_rtx (GET_MODE (x));
1118 set_reg_attrs_from_value (reg, x);
1119 return reg;
a560d4d4
JH
1120}
1121
9d18e06b
JZ
1122/* Set the register attributes for registers contained in PARM_RTX.
1123 Use needed values from memory attributes of MEM. */
1124
1125void
502b8322 1126set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1127{
f8cfc6aa 1128 if (REG_P (parm_rtx))
38ae7651 1129 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1130 else if (GET_CODE (parm_rtx) == PARALLEL)
1131 {
1132 /* Check for a NULL entry in the first slot, used to indicate that the
1133 parameter goes both on the stack and in registers. */
1134 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1135 for (; i < XVECLEN (parm_rtx, 0); i++)
1136 {
1137 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1138 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1139 REG_ATTRS (XEXP (x, 0))
1140 = get_reg_attrs (MEM_EXPR (mem),
1141 INTVAL (XEXP (x, 1)));
1142 }
1143 }
1144}
1145
38ae7651
RS
1146/* Set the REG_ATTRS for registers in value X, given that X represents
1147 decl T. */
a560d4d4 1148
4e3825db 1149void
38ae7651
RS
1150set_reg_attrs_for_decl_rtl (tree t, rtx x)
1151{
1152 if (GET_CODE (x) == SUBREG)
fbe6ec81 1153 {
38ae7651
RS
1154 gcc_assert (subreg_lowpart_p (x));
1155 x = SUBREG_REG (x);
fbe6ec81 1156 }
f8cfc6aa 1157 if (REG_P (x))
38ae7651
RS
1158 REG_ATTRS (x)
1159 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
726612d2 1160 DECL_MODE (t)));
a560d4d4
JH
1161 if (GET_CODE (x) == CONCAT)
1162 {
1163 if (REG_P (XEXP (x, 0)))
1164 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1165 if (REG_P (XEXP (x, 1)))
1166 REG_ATTRS (XEXP (x, 1))
1167 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1168 }
1169 if (GET_CODE (x) == PARALLEL)
1170 {
d4afac5b
JZ
1171 int i, start;
1172
1173 /* Check for a NULL entry, used to indicate that the parameter goes
1174 both on the stack and in registers. */
1175 if (XEXP (XVECEXP (x, 0, 0), 0))
1176 start = 0;
1177 else
1178 start = 1;
1179
1180 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1181 {
1182 rtx y = XVECEXP (x, 0, i);
1183 if (REG_P (XEXP (y, 0)))
1184 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1185 }
1186 }
1187}
1188
38ae7651
RS
1189/* Assign the RTX X to declaration T. */
1190
1191void
1192set_decl_rtl (tree t, rtx x)
1193{
1194 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1195 if (x)
1196 set_reg_attrs_for_decl_rtl (t, x);
1197}
1198
5141868d
RS
1199/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1200 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1201
1202void
5141868d 1203set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1204{
1205 DECL_INCOMING_RTL (t) = x;
5141868d 1206 if (x && !by_reference_p)
38ae7651
RS
1207 set_reg_attrs_for_decl_rtl (t, x);
1208}
1209
754fdcca
RK
1210/* Identify REG (which may be a CONCAT) as a user register. */
1211
1212void
502b8322 1213mark_user_reg (rtx reg)
754fdcca
RK
1214{
1215 if (GET_CODE (reg) == CONCAT)
1216 {
1217 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1218 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1219 }
754fdcca 1220 else
5b0264cb
NS
1221 {
1222 gcc_assert (REG_P (reg));
1223 REG_USERVAR_P (reg) = 1;
1224 }
754fdcca
RK
1225}
1226
86fe05e0
RK
1227/* Identify REG as a probable pointer register and show its alignment
1228 as ALIGN, if nonzero. */
23b2ce53
RS
1229
1230void
502b8322 1231mark_reg_pointer (rtx reg, int align)
23b2ce53 1232{
3502dc9c 1233 if (! REG_POINTER (reg))
00995e78 1234 {
3502dc9c 1235 REG_POINTER (reg) = 1;
86fe05e0 1236
00995e78
RE
1237 if (align)
1238 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1239 }
1240 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1241 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1242 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1243}
1244
1245/* Return 1 plus largest pseudo reg number used in the current function. */
1246
1247int
502b8322 1248max_reg_num (void)
23b2ce53
RS
1249{
1250 return reg_rtx_no;
1251}
1252
1253/* Return 1 + the largest label number used so far in the current function. */
1254
1255int
502b8322 1256max_label_num (void)
23b2ce53 1257{
23b2ce53
RS
1258 return label_num;
1259}
1260
1261/* Return first label number used in this function (if any were used). */
1262
1263int
502b8322 1264get_first_label_num (void)
23b2ce53
RS
1265{
1266 return first_label_num;
1267}
6de9cd9a
DN
1268
1269/* If the rtx for label was created during the expansion of a nested
1270 function, then first_label_num won't include this label number.
fa10beec 1271 Fix this now so that array indices work later. */
6de9cd9a
DN
1272
1273void
1274maybe_set_first_label_num (rtx x)
1275{
1276 if (CODE_LABEL_NUMBER (x) < first_label_num)
1277 first_label_num = CODE_LABEL_NUMBER (x);
1278}
23b2ce53
RS
1279\f
1280/* Return a value representing some low-order bits of X, where the number
1281 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1282 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1283 representation is returned.
1284
1285 This function handles the cases in common between gen_lowpart, below,
1286 and two variants in cse.c and combine.c. These are the cases that can
1287 be safely handled at all points in the compilation.
1288
1289 If this is not a case we can handle, return 0. */
1290
1291rtx
502b8322 1292gen_lowpart_common (enum machine_mode mode, rtx x)
23b2ce53 1293{
ddef6bc7 1294 int msize = GET_MODE_SIZE (mode);
550d1387 1295 int xsize;
ddef6bc7 1296 int offset = 0;
550d1387
GK
1297 enum machine_mode innermode;
1298
1299 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1300 so we have to make one up. Yuk. */
1301 innermode = GET_MODE (x);
481683e1 1302 if (CONST_INT_P (x)
db487452 1303 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
550d1387
GK
1304 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1305 else if (innermode == VOIDmode)
49ab6098 1306 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
b8698a0f 1307
550d1387
GK
1308 xsize = GET_MODE_SIZE (innermode);
1309
5b0264cb 1310 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1311
550d1387 1312 if (innermode == mode)
23b2ce53
RS
1313 return x;
1314
1315 /* MODE must occupy no more words than the mode of X. */
550d1387
GK
1316 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1317 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
23b2ce53
RS
1318 return 0;
1319
53501a19 1320 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
3d8bf70f 1321 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
53501a19
BS
1322 return 0;
1323
550d1387 1324 offset = subreg_lowpart_offset (mode, innermode);
23b2ce53
RS
1325
1326 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1327 && (GET_MODE_CLASS (mode) == MODE_INT
1328 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1329 {
1330 /* If we are getting the low-order part of something that has been
1331 sign- or zero-extended, we can either just use the object being
1332 extended or make a narrower extension. If we want an even smaller
1333 piece than the size of the object being extended, call ourselves
1334 recursively.
1335
1336 This case is used mostly by combine and cse. */
1337
1338 if (GET_MODE (XEXP (x, 0)) == mode)
1339 return XEXP (x, 0);
550d1387 1340 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
23b2ce53 1341 return gen_lowpart_common (mode, XEXP (x, 0));
550d1387 1342 else if (msize < xsize)
3b80f6ca 1343 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1344 }
f8cfc6aa 1345 else if (GET_CODE (x) == SUBREG || REG_P (x)
550d1387 1346 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
33ffb5c5 1347 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
550d1387 1348 return simplify_gen_subreg (mode, x, innermode, offset);
8aada4ad 1349
23b2ce53
RS
1350 /* Otherwise, we can't do this. */
1351 return 0;
1352}
1353\f
ccba022b 1354rtx
502b8322 1355gen_highpart (enum machine_mode mode, rtx x)
ccba022b 1356{
ddef6bc7 1357 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1358 rtx result;
ddef6bc7 1359
ccba022b
RS
1360 /* This case loses if X is a subreg. To catch bugs early,
1361 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1362 gcc_assert (msize <= UNITS_PER_WORD
1363 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1364
e0e08ac2
JH
1365 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1366 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb 1367 gcc_assert (result);
b8698a0f 1368
09482e0d
JW
1369 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1370 the target if we have a MEM. gen_highpart must return a valid operand,
1371 emitting code if necessary to do so. */
5b0264cb
NS
1372 if (MEM_P (result))
1373 {
1374 result = validize_mem (result);
1375 gcc_assert (result);
1376 }
b8698a0f 1377
e0e08ac2
JH
1378 return result;
1379}
5222e470 1380
26d249eb 1381/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1382 be VOIDmode constant. */
1383rtx
502b8322 1384gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
5222e470
JH
1385{
1386 if (GET_MODE (exp) != VOIDmode)
1387 {
5b0264cb 1388 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1389 return gen_highpart (outermode, exp);
1390 }
1391 return simplify_gen_subreg (outermode, exp, innermode,
1392 subreg_highpart_offset (outermode, innermode));
1393}
68252e27 1394
38ae7651 1395/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
8698cce3 1396
e0e08ac2 1397unsigned int
502b8322 1398subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
e0e08ac2
JH
1399{
1400 unsigned int offset = 0;
1401 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1402
e0e08ac2 1403 if (difference > 0)
ccba022b 1404 {
e0e08ac2
JH
1405 if (WORDS_BIG_ENDIAN)
1406 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1407 if (BYTES_BIG_ENDIAN)
1408 offset += difference % UNITS_PER_WORD;
ccba022b 1409 }
ddef6bc7 1410
e0e08ac2 1411 return offset;
ccba022b 1412}
eea50aa0 1413
e0e08ac2
JH
1414/* Return offset in bytes to get OUTERMODE high part
1415 of the value in mode INNERMODE stored in memory in target format. */
1416unsigned int
502b8322 1417subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
eea50aa0
JH
1418{
1419 unsigned int offset = 0;
1420 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1421
5b0264cb 1422 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
e0e08ac2 1423
eea50aa0
JH
1424 if (difference > 0)
1425 {
e0e08ac2 1426 if (! WORDS_BIG_ENDIAN)
eea50aa0 1427 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1428 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1429 offset += difference % UNITS_PER_WORD;
1430 }
1431
e0e08ac2 1432 return offset;
eea50aa0 1433}
ccba022b 1434
23b2ce53
RS
1435/* Return 1 iff X, assumed to be a SUBREG,
1436 refers to the least significant part of its containing reg.
1437 If X is not a SUBREG, always return 1 (it is its own low part!). */
1438
1439int
fa233e34 1440subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1441{
1442 if (GET_CODE (x) != SUBREG)
1443 return 1;
a3a03040
RK
1444 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1445 return 0;
23b2ce53 1446
e0e08ac2
JH
1447 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1448 == SUBREG_BYTE (x));
23b2ce53 1449}
6a4bdc79
BS
1450
1451/* Return true if X is a paradoxical subreg, false otherwise. */
1452bool
1453paradoxical_subreg_p (const_rtx x)
1454{
1455 if (GET_CODE (x) != SUBREG)
1456 return false;
1457 return (GET_MODE_PRECISION (GET_MODE (x))
1458 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1459}
23b2ce53 1460\f
ddef6bc7
JJ
1461/* Return subword OFFSET of operand OP.
1462 The word number, OFFSET, is interpreted as the word number starting
1463 at the low-order address. OFFSET 0 is the low-order word if not
1464 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1465
1466 If we cannot extract the required word, we return zero. Otherwise,
1467 an rtx corresponding to the requested word will be returned.
1468
1469 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1470 reload has completed, a valid address will always be returned. After
1471 reload, if a valid address cannot be returned, we return zero.
1472
1473 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1474 it is the responsibility of the caller.
1475
1476 MODE is the mode of OP in case it is a CONST_INT.
1477
1478 ??? This is still rather broken for some cases. The problem for the
1479 moment is that all callers of this thing provide no 'goal mode' to
1480 tell us to work with. This exists because all callers were written
0631e0bf
JH
1481 in a word based SUBREG world.
1482 Now use of this function can be deprecated by simplify_subreg in most
1483 cases.
1484 */
ddef6bc7
JJ
1485
1486rtx
502b8322 1487operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
ddef6bc7
JJ
1488{
1489 if (mode == VOIDmode)
1490 mode = GET_MODE (op);
1491
5b0264cb 1492 gcc_assert (mode != VOIDmode);
ddef6bc7 1493
30f7a378 1494 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1495 if (mode != BLKmode
1496 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1497 return 0;
1498
30f7a378 1499 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1500 if (mode != BLKmode
1501 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1502 return const0_rtx;
1503
ddef6bc7 1504 /* Form a new MEM at the requested address. */
3c0cb5de 1505 if (MEM_P (op))
ddef6bc7 1506 {
60564289 1507 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1508
f1ec5147 1509 if (! validate_address)
60564289 1510 return new_rtx;
f1ec5147
RK
1511
1512 else if (reload_completed)
ddef6bc7 1513 {
09e881c9
BE
1514 if (! strict_memory_address_addr_space_p (word_mode,
1515 XEXP (new_rtx, 0),
1516 MEM_ADDR_SPACE (op)))
f1ec5147 1517 return 0;
ddef6bc7 1518 }
f1ec5147 1519 else
60564289 1520 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1521 }
1522
0631e0bf
JH
1523 /* Rest can be handled by simplify_subreg. */
1524 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1525}
1526
535a42b1
NS
1527/* Similar to `operand_subword', but never return 0. If we can't
1528 extract the required subword, put OP into a register and try again.
1529 The second attempt must succeed. We always validate the address in
1530 this case.
23b2ce53
RS
1531
1532 MODE is the mode of OP, in case it is CONST_INT. */
1533
1534rtx
502b8322 1535operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
23b2ce53 1536{
ddef6bc7 1537 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1538
1539 if (result)
1540 return result;
1541
1542 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1543 {
1544 /* If this is a register which can not be accessed by words, copy it
1545 to a pseudo register. */
f8cfc6aa 1546 if (REG_P (op))
77e6b0eb
JC
1547 op = copy_to_reg (op);
1548 else
1549 op = force_reg (mode, op);
1550 }
23b2ce53 1551
ddef6bc7 1552 result = operand_subword (op, offset, 1, mode);
5b0264cb 1553 gcc_assert (result);
23b2ce53
RS
1554
1555 return result;
1556}
1557\f
2b3493c8
AK
1558/* Returns 1 if both MEM_EXPR can be considered equal
1559 and 0 otherwise. */
1560
1561int
4f588890 1562mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1563{
1564 if (expr1 == expr2)
1565 return 1;
1566
1567 if (! expr1 || ! expr2)
1568 return 0;
1569
1570 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1571 return 0;
1572
55b34b5f 1573 return operand_equal_p (expr1, expr2, 0);
2b3493c8
AK
1574}
1575
805903b5
JJ
1576/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1577 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1578 -1 if not known. */
1579
1580int
d9223014 1581get_mem_align_offset (rtx mem, unsigned int align)
805903b5
JJ
1582{
1583 tree expr;
1584 unsigned HOST_WIDE_INT offset;
1585
1586 /* This function can't use
527210c4 1587 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
e80c2726 1588 || (MAX (MEM_ALIGN (mem),
0eb77834 1589 MAX (align, get_object_alignment (MEM_EXPR (mem))))
805903b5
JJ
1590 < align))
1591 return -1;
1592 else
527210c4 1593 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
805903b5
JJ
1594 for two reasons:
1595 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1596 for <variable>. get_inner_reference doesn't handle it and
1597 even if it did, the alignment in that case needs to be determined
1598 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1599 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1600 isn't sufficiently aligned, the object it is in might be. */
1601 gcc_assert (MEM_P (mem));
1602 expr = MEM_EXPR (mem);
527210c4 1603 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
805903b5
JJ
1604 return -1;
1605
527210c4 1606 offset = MEM_OFFSET (mem);
805903b5
JJ
1607 if (DECL_P (expr))
1608 {
1609 if (DECL_ALIGN (expr) < align)
1610 return -1;
1611 }
1612 else if (INDIRECT_REF_P (expr))
1613 {
1614 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1615 return -1;
1616 }
1617 else if (TREE_CODE (expr) == COMPONENT_REF)
1618 {
1619 while (1)
1620 {
1621 tree inner = TREE_OPERAND (expr, 0);
1622 tree field = TREE_OPERAND (expr, 1);
1623 tree byte_offset = component_ref_field_offset (expr);
1624 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1625
1626 if (!byte_offset
cc269bb6
RS
1627 || !tree_fits_uhwi_p (byte_offset)
1628 || !tree_fits_uhwi_p (bit_offset))
805903b5
JJ
1629 return -1;
1630
ae7e9ddd
RS
1631 offset += tree_to_uhwi (byte_offset);
1632 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
805903b5
JJ
1633
1634 if (inner == NULL_TREE)
1635 {
1636 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1637 < (unsigned int) align)
1638 return -1;
1639 break;
1640 }
1641 else if (DECL_P (inner))
1642 {
1643 if (DECL_ALIGN (inner) < align)
1644 return -1;
1645 break;
1646 }
1647 else if (TREE_CODE (inner) != COMPONENT_REF)
1648 return -1;
1649 expr = inner;
1650 }
1651 }
1652 else
1653 return -1;
1654
1655 return offset & ((align / BITS_PER_UNIT) - 1);
1656}
1657
6926c713 1658/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1659 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1660 if we are making a new object of this type. BITPOS is nonzero if
1661 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1662
1663void
502b8322
AJ
1664set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1665 HOST_WIDE_INT bitpos)
173b24b9 1666{
6f1087be 1667 HOST_WIDE_INT apply_bitpos = 0;
173b24b9 1668 tree type;
f12144dd 1669 struct mem_attrs attrs, *defattrs, *refattrs;
f18a7b25 1670 addr_space_t as;
173b24b9
RK
1671
1672 /* It can happen that type_for_mode was given a mode for which there
1673 is no language-level type. In which case it returns NULL, which
1674 we can see here. */
1675 if (t == NULL_TREE)
1676 return;
1677
1678 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1679 if (type == error_mark_node)
1680 return;
173b24b9 1681
173b24b9
RK
1682 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1683 wrong answer, as it assumes that DECL_RTL already has the right alias
1684 info. Callers should not set DECL_RTL until after the call to
1685 set_mem_attributes. */
5b0264cb 1686 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1687
f12144dd
RS
1688 memset (&attrs, 0, sizeof (attrs));
1689
738cc472 1690 /* Get the alias set from the expression or type (perhaps using a
8ac61af7 1691 front-end routine) and use it. */
f12144dd 1692 attrs.alias = get_alias_set (t);
173b24b9 1693
a5e9c810 1694 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
f8ad8d7c 1695 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1696
268f7033 1697 /* Default values from pre-existing memory attributes if present. */
f12144dd
RS
1698 refattrs = MEM_ATTRS (ref);
1699 if (refattrs)
268f7033
UW
1700 {
1701 /* ??? Can this ever happen? Calling this routine on a MEM that
1702 already carries memory attributes should probably be invalid. */
f12144dd 1703 attrs.expr = refattrs->expr;
754c3d5d 1704 attrs.offset_known_p = refattrs->offset_known_p;
f12144dd 1705 attrs.offset = refattrs->offset;
754c3d5d 1706 attrs.size_known_p = refattrs->size_known_p;
f12144dd
RS
1707 attrs.size = refattrs->size;
1708 attrs.align = refattrs->align;
268f7033
UW
1709 }
1710
1711 /* Otherwise, default values from the mode of the MEM reference. */
f12144dd 1712 else
268f7033 1713 {
f12144dd
RS
1714 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1715 gcc_assert (!defattrs->expr);
754c3d5d 1716 gcc_assert (!defattrs->offset_known_p);
f12144dd 1717
268f7033 1718 /* Respect mode size. */
754c3d5d 1719 attrs.size_known_p = defattrs->size_known_p;
f12144dd 1720 attrs.size = defattrs->size;
268f7033
UW
1721 /* ??? Is this really necessary? We probably should always get
1722 the size from the type below. */
1723
1724 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1725 if T is an object, always compute the object alignment below. */
f12144dd
RS
1726 if (TYPE_P (t))
1727 attrs.align = defattrs->align;
1728 else
1729 attrs.align = BITS_PER_UNIT;
268f7033
UW
1730 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1731 e.g. if the type carries an alignment attribute. Should we be
1732 able to simply always use TYPE_ALIGN? */
1733 }
1734
c3d32120
RK
1735 /* We can set the alignment from the type if we are making an object,
1736 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
a80903ff 1737 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
f12144dd 1738 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
a80903ff 1739
738cc472 1740 /* If the size is known, we can set that. */
a787ccc3 1741 tree new_size = TYPE_SIZE_UNIT (type);
738cc472 1742
30b0317c
RB
1743 /* The address-space is that of the type. */
1744 as = TYPE_ADDR_SPACE (type);
1745
80965c18
RK
1746 /* If T is not a type, we may be able to deduce some more information about
1747 the expression. */
1748 if (! TYPE_P (t))
8ac61af7 1749 {
8476af98 1750 tree base;
389fdba0 1751
8ac61af7
RK
1752 if (TREE_THIS_VOLATILE (t))
1753 MEM_VOLATILE_P (ref) = 1;
173b24b9 1754
c56e3582
RK
1755 /* Now remove any conversions: they don't change what the underlying
1756 object is. Likewise for SAVE_EXPR. */
1043771b 1757 while (CONVERT_EXPR_P (t)
c56e3582
RK
1758 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1759 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1760 t = TREE_OPERAND (t, 0);
1761
4994da65
RG
1762 /* Note whether this expression can trap. */
1763 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1764
1765 base = get_base_address (t);
f18a7b25
MJ
1766 if (base)
1767 {
1768 if (DECL_P (base)
1769 && TREE_READONLY (base)
1770 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1771 && !TREE_THIS_VOLATILE (base))
1772 MEM_READONLY_P (ref) = 1;
1773
1774 /* Mark static const strings readonly as well. */
1775 if (TREE_CODE (base) == STRING_CST
1776 && TREE_READONLY (base)
1777 && TREE_STATIC (base))
1778 MEM_READONLY_P (ref) = 1;
1779
30b0317c 1780 /* Address-space information is on the base object. */
f18a7b25
MJ
1781 if (TREE_CODE (base) == MEM_REF
1782 || TREE_CODE (base) == TARGET_MEM_REF)
1783 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1784 0))));
1785 else
1786 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1787 }
ba30e50d 1788
2039d7aa
RH
1789 /* If this expression uses it's parent's alias set, mark it such
1790 that we won't change it. */
b4ada065 1791 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
10b76d73
RK
1792 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1793
8ac61af7
RK
1794 /* If this is a decl, set the attributes of the MEM from it. */
1795 if (DECL_P (t))
1796 {
f12144dd 1797 attrs.expr = t;
754c3d5d
RS
1798 attrs.offset_known_p = true;
1799 attrs.offset = 0;
6f1087be 1800 apply_bitpos = bitpos;
a787ccc3 1801 new_size = DECL_SIZE_UNIT (t);
8ac61af7
RK
1802 }
1803
30b0317c 1804 /* ??? If we end up with a constant here do record a MEM_EXPR. */
6615c446 1805 else if (CONSTANT_CLASS_P (t))
30b0317c 1806 ;
998d7deb 1807
a787ccc3
RS
1808 /* If this is a field reference, record it. */
1809 else if (TREE_CODE (t) == COMPONENT_REF)
998d7deb 1810 {
f12144dd 1811 attrs.expr = t;
754c3d5d
RS
1812 attrs.offset_known_p = true;
1813 attrs.offset = 0;
6f1087be 1814 apply_bitpos = bitpos;
a787ccc3
RS
1815 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1816 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
998d7deb
RH
1817 }
1818
1819 /* If this is an array reference, look for an outer field reference. */
1820 else if (TREE_CODE (t) == ARRAY_REF)
1821 {
1822 tree off_tree = size_zero_node;
1b1838b6
JW
1823 /* We can't modify t, because we use it at the end of the
1824 function. */
1825 tree t2 = t;
998d7deb
RH
1826
1827 do
1828 {
1b1838b6 1829 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1830 tree low_bound = array_ref_low_bound (t2);
1831 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1832
1833 /* We assume all arrays have sizes that are a multiple of a byte.
1834 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1835 index, then convert to sizetype and multiply by the size of
1836 the array element. */
1837 if (! integer_zerop (low_bound))
4845b383
KH
1838 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1839 index, low_bound);
2567406a 1840
44de5aeb 1841 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1842 size_binop (MULT_EXPR,
1843 fold_convert (sizetype,
1844 index),
44de5aeb
RK
1845 unit_size),
1846 off_tree);
1b1838b6 1847 t2 = TREE_OPERAND (t2, 0);
998d7deb 1848 }
1b1838b6 1849 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1850
30b0317c
RB
1851 if (DECL_P (t2)
1852 || TREE_CODE (t2) == COMPONENT_REF)
998d7deb 1853 {
f12144dd 1854 attrs.expr = t2;
754c3d5d 1855 attrs.offset_known_p = false;
cc269bb6 1856 if (tree_fits_uhwi_p (off_tree))
6f1087be 1857 {
754c3d5d 1858 attrs.offset_known_p = true;
ae7e9ddd 1859 attrs.offset = tree_to_uhwi (off_tree);
6f1087be
RH
1860 apply_bitpos = bitpos;
1861 }
998d7deb 1862 }
30b0317c 1863 /* Else do not record a MEM_EXPR. */
c67a1cf6
RH
1864 }
1865
56c47f22 1866 /* If this is an indirect reference, record it. */
70f34814 1867 else if (TREE_CODE (t) == MEM_REF
be1ac4ec 1868 || TREE_CODE (t) == TARGET_MEM_REF)
56c47f22 1869 {
f12144dd 1870 attrs.expr = t;
754c3d5d
RS
1871 attrs.offset_known_p = true;
1872 attrs.offset = 0;
56c47f22
RG
1873 apply_bitpos = bitpos;
1874 }
1875
30b0317c
RB
1876 /* Compute the alignment. */
1877 unsigned int obj_align;
1878 unsigned HOST_WIDE_INT obj_bitpos;
1879 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1880 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1881 if (obj_bitpos != 0)
1882 obj_align = (obj_bitpos & -obj_bitpos);
1883 attrs.align = MAX (attrs.align, obj_align);
8ac61af7
RK
1884 }
1885
cc269bb6 1886 if (tree_fits_uhwi_p (new_size))
a787ccc3
RS
1887 {
1888 attrs.size_known_p = true;
ae7e9ddd 1889 attrs.size = tree_to_uhwi (new_size);
a787ccc3
RS
1890 }
1891
15c812e3 1892 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1893 bit position offset. Similarly, increase the size of the accessed
1894 object to contain the negative offset. */
6f1087be 1895 if (apply_bitpos)
8c317c5f 1896 {
754c3d5d
RS
1897 gcc_assert (attrs.offset_known_p);
1898 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1899 if (attrs.size_known_p)
1900 attrs.size += apply_bitpos / BITS_PER_UNIT;
8c317c5f 1901 }
6f1087be 1902
8ac61af7 1903 /* Now set the attributes we computed above. */
f18a7b25 1904 attrs.addrspace = as;
f12144dd 1905 set_mem_attrs (ref, &attrs);
173b24b9
RK
1906}
1907
6f1087be 1908void
502b8322 1909set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
1910{
1911 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1912}
1913
173b24b9
RK
1914/* Set the alias set of MEM to SET. */
1915
1916void
4862826d 1917set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 1918{
f12144dd
RS
1919 struct mem_attrs attrs;
1920
173b24b9 1921 /* If the new and old alias sets don't conflict, something is wrong. */
77a74ed7 1922 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
f12144dd
RS
1923 attrs = *get_mem_attrs (mem);
1924 attrs.alias = set;
1925 set_mem_attrs (mem, &attrs);
09e881c9
BE
1926}
1927
1928/* Set the address space of MEM to ADDRSPACE (target-defined). */
1929
1930void
1931set_mem_addr_space (rtx mem, addr_space_t addrspace)
1932{
f12144dd
RS
1933 struct mem_attrs attrs;
1934
1935 attrs = *get_mem_attrs (mem);
1936 attrs.addrspace = addrspace;
1937 set_mem_attrs (mem, &attrs);
173b24b9 1938}
738cc472 1939
d022d93e 1940/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1941
1942void
502b8322 1943set_mem_align (rtx mem, unsigned int align)
738cc472 1944{
f12144dd
RS
1945 struct mem_attrs attrs;
1946
1947 attrs = *get_mem_attrs (mem);
1948 attrs.align = align;
1949 set_mem_attrs (mem, &attrs);
738cc472 1950}
1285011e 1951
998d7deb 1952/* Set the expr for MEM to EXPR. */
1285011e
RK
1953
1954void
502b8322 1955set_mem_expr (rtx mem, tree expr)
1285011e 1956{
f12144dd
RS
1957 struct mem_attrs attrs;
1958
1959 attrs = *get_mem_attrs (mem);
1960 attrs.expr = expr;
1961 set_mem_attrs (mem, &attrs);
1285011e 1962}
998d7deb
RH
1963
1964/* Set the offset of MEM to OFFSET. */
1965
1966void
527210c4 1967set_mem_offset (rtx mem, HOST_WIDE_INT offset)
998d7deb 1968{
f12144dd
RS
1969 struct mem_attrs attrs;
1970
1971 attrs = *get_mem_attrs (mem);
754c3d5d
RS
1972 attrs.offset_known_p = true;
1973 attrs.offset = offset;
527210c4
RS
1974 set_mem_attrs (mem, &attrs);
1975}
1976
1977/* Clear the offset of MEM. */
1978
1979void
1980clear_mem_offset (rtx mem)
1981{
1982 struct mem_attrs attrs;
1983
1984 attrs = *get_mem_attrs (mem);
754c3d5d 1985 attrs.offset_known_p = false;
f12144dd 1986 set_mem_attrs (mem, &attrs);
35aff10b
AM
1987}
1988
1989/* Set the size of MEM to SIZE. */
1990
1991void
f5541398 1992set_mem_size (rtx mem, HOST_WIDE_INT size)
35aff10b 1993{
f12144dd
RS
1994 struct mem_attrs attrs;
1995
1996 attrs = *get_mem_attrs (mem);
754c3d5d
RS
1997 attrs.size_known_p = true;
1998 attrs.size = size;
f5541398
RS
1999 set_mem_attrs (mem, &attrs);
2000}
2001
2002/* Clear the size of MEM. */
2003
2004void
2005clear_mem_size (rtx mem)
2006{
2007 struct mem_attrs attrs;
2008
2009 attrs = *get_mem_attrs (mem);
754c3d5d 2010 attrs.size_known_p = false;
f12144dd 2011 set_mem_attrs (mem, &attrs);
998d7deb 2012}
173b24b9 2013\f
738cc472
RK
2014/* Return a memory reference like MEMREF, but with its mode changed to MODE
2015 and its address changed to ADDR. (VOIDmode means don't change the mode.
2016 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
23b33725
RS
2017 returned memory location is required to be valid. INPLACE is true if any
2018 changes can be made directly to MEMREF or false if MEMREF must be treated
2019 as immutable.
2020
2021 The memory attributes are not changed. */
23b2ce53 2022
738cc472 2023static rtx
23b33725
RS
2024change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate,
2025 bool inplace)
23b2ce53 2026{
09e881c9 2027 addr_space_t as;
60564289 2028 rtx new_rtx;
23b2ce53 2029
5b0264cb 2030 gcc_assert (MEM_P (memref));
09e881c9 2031 as = MEM_ADDR_SPACE (memref);
23b2ce53
RS
2032 if (mode == VOIDmode)
2033 mode = GET_MODE (memref);
2034 if (addr == 0)
2035 addr = XEXP (memref, 0);
a74ff877 2036 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
09e881c9 2037 && (!validate || memory_address_addr_space_p (mode, addr, as)))
a74ff877 2038 return memref;
23b2ce53 2039
91c5ee5b
VM
2040 /* Don't validate address for LRA. LRA can make the address valid
2041 by itself in most efficient way. */
2042 if (validate && !lra_in_progress)
23b2ce53 2043 {
f1ec5147 2044 if (reload_in_progress || reload_completed)
09e881c9 2045 gcc_assert (memory_address_addr_space_p (mode, addr, as));
f1ec5147 2046 else
09e881c9 2047 addr = memory_address_addr_space (mode, addr, as);
23b2ce53 2048 }
750c9258 2049
9b04c6a8
RK
2050 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2051 return memref;
2052
23b33725
RS
2053 if (inplace)
2054 {
2055 XEXP (memref, 0) = addr;
2056 return memref;
2057 }
2058
60564289
KG
2059 new_rtx = gen_rtx_MEM (mode, addr);
2060 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2061 return new_rtx;
23b2ce53 2062}
792760b9 2063
738cc472
RK
2064/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2065 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
2066
2067rtx
502b8322 2068change_address (rtx memref, enum machine_mode mode, rtx addr)
f4ef873c 2069{
23b33725 2070 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
60564289 2071 enum machine_mode mmode = GET_MODE (new_rtx);
f12144dd 2072 struct mem_attrs attrs, *defattrs;
4e44c1ef 2073
f12144dd
RS
2074 attrs = *get_mem_attrs (memref);
2075 defattrs = mode_mem_attrs[(int) mmode];
754c3d5d
RS
2076 attrs.expr = NULL_TREE;
2077 attrs.offset_known_p = false;
2078 attrs.size_known_p = defattrs->size_known_p;
f12144dd
RS
2079 attrs.size = defattrs->size;
2080 attrs.align = defattrs->align;
c2f7bcc3 2081
fdb1c7b3 2082 /* If there are no changes, just return the original memory reference. */
60564289 2083 if (new_rtx == memref)
4e44c1ef 2084 {
f12144dd 2085 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
60564289 2086 return new_rtx;
4e44c1ef 2087
60564289
KG
2088 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2089 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 2090 }
fdb1c7b3 2091
f12144dd 2092 set_mem_attrs (new_rtx, &attrs);
60564289 2093 return new_rtx;
f4ef873c 2094}
792760b9 2095
738cc472
RK
2096/* Return a memory reference like MEMREF, but with its mode changed
2097 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6 2098 nonzero, the memory address is forced to be valid.
5ef0b50d
EB
2099 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2100 and the caller is responsible for adjusting MEMREF base register.
2101 If ADJUST_OBJECT is zero, the underlying object associated with the
2102 memory reference is left unchanged and the caller is responsible for
2103 dealing with it. Otherwise, if the new memory reference is outside
5f2cbd0d
RS
2104 the underlying object, even partially, then the object is dropped.
2105 SIZE, if nonzero, is the size of an access in cases where MODE
2106 has no inherent size. */
f1ec5147
RK
2107
2108rtx
502b8322 2109adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
5f2cbd0d
RS
2110 int validate, int adjust_address, int adjust_object,
2111 HOST_WIDE_INT size)
f1ec5147 2112{
823e3574 2113 rtx addr = XEXP (memref, 0);
60564289 2114 rtx new_rtx;
f12144dd 2115 enum machine_mode address_mode;
a6fe9ed4 2116 int pbits;
0207fa90 2117 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
f12144dd 2118 unsigned HOST_WIDE_INT max_align;
0207fa90
EB
2119#ifdef POINTERS_EXTEND_UNSIGNED
2120 enum machine_mode pointer_mode
2121 = targetm.addr_space.pointer_mode (attrs.addrspace);
2122#endif
823e3574 2123
ee88e690
EB
2124 /* VOIDmode means no mode change for change_address_1. */
2125 if (mode == VOIDmode)
2126 mode = GET_MODE (memref);
2127
5f2cbd0d
RS
2128 /* Take the size of non-BLKmode accesses from the mode. */
2129 defattrs = mode_mem_attrs[(int) mode];
2130 if (defattrs->size_known_p)
2131 size = defattrs->size;
2132
fdb1c7b3
JH
2133 /* If there are no changes, just return the original memory reference. */
2134 if (mode == GET_MODE (memref) && !offset
5f2cbd0d 2135 && (size == 0 || (attrs.size_known_p && attrs.size == size))
f12144dd
RS
2136 && (!validate || memory_address_addr_space_p (mode, addr,
2137 attrs.addrspace)))
fdb1c7b3
JH
2138 return memref;
2139
d14419e4 2140 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2141 This may happen even if offset is nonzero -- consider
d14419e4
RH
2142 (plus (plus reg reg) const_int) -- so do this always. */
2143 addr = copy_rtx (addr);
2144
a6fe9ed4
JM
2145 /* Convert a possibly large offset to a signed value within the
2146 range of the target address space. */
372d6395 2147 address_mode = get_address_mode (memref);
d4ebfa65 2148 pbits = GET_MODE_BITSIZE (address_mode);
a6fe9ed4
JM
2149 if (HOST_BITS_PER_WIDE_INT > pbits)
2150 {
2151 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2152 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2153 >> shift);
2154 }
2155
5ef0b50d 2156 if (adjust_address)
4a78c787
RH
2157 {
2158 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2159 object, we can merge it into the LO_SUM. */
2160 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2161 && offset >= 0
2162 && (unsigned HOST_WIDE_INT) offset
2163 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
d4ebfa65 2164 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
0a81f074
RS
2165 plus_constant (address_mode,
2166 XEXP (addr, 1), offset));
0207fa90
EB
2167#ifdef POINTERS_EXTEND_UNSIGNED
2168 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2169 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2170 the fact that pointers are not allowed to overflow. */
2171 else if (POINTERS_EXTEND_UNSIGNED > 0
2172 && GET_CODE (addr) == ZERO_EXTEND
2173 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2174 && trunc_int_for_mode (offset, pointer_mode) == offset)
2175 addr = gen_rtx_ZERO_EXTEND (address_mode,
2176 plus_constant (pointer_mode,
2177 XEXP (addr, 0), offset));
2178#endif
4a78c787 2179 else
0a81f074 2180 addr = plus_constant (address_mode, addr, offset);
4a78c787 2181 }
823e3574 2182
23b33725 2183 new_rtx = change_address_1 (memref, mode, addr, validate, false);
738cc472 2184
09efeca1
PB
2185 /* If the address is a REG, change_address_1 rightfully returns memref,
2186 but this would destroy memref's MEM_ATTRS. */
2187 if (new_rtx == memref && offset != 0)
2188 new_rtx = copy_rtx (new_rtx);
2189
5ef0b50d
EB
2190 /* Conservatively drop the object if we don't know where we start from. */
2191 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2192 {
2193 attrs.expr = NULL_TREE;
2194 attrs.alias = 0;
2195 }
2196
738cc472
RK
2197 /* Compute the new values of the memory attributes due to this adjustment.
2198 We add the offsets and update the alignment. */
754c3d5d 2199 if (attrs.offset_known_p)
5ef0b50d
EB
2200 {
2201 attrs.offset += offset;
2202
2203 /* Drop the object if the new left end is not within its bounds. */
2204 if (adjust_object && attrs.offset < 0)
2205 {
2206 attrs.expr = NULL_TREE;
2207 attrs.alias = 0;
2208 }
2209 }
738cc472 2210
03bf2c23
RK
2211 /* Compute the new alignment by taking the MIN of the alignment and the
2212 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2213 if zero. */
2214 if (offset != 0)
f12144dd
RS
2215 {
2216 max_align = (offset & -offset) * BITS_PER_UNIT;
2217 attrs.align = MIN (attrs.align, max_align);
2218 }
738cc472 2219
5f2cbd0d 2220 if (size)
754c3d5d 2221 {
5ef0b50d 2222 /* Drop the object if the new right end is not within its bounds. */
5f2cbd0d 2223 if (adjust_object && (offset + size) > attrs.size)
5ef0b50d
EB
2224 {
2225 attrs.expr = NULL_TREE;
2226 attrs.alias = 0;
2227 }
754c3d5d 2228 attrs.size_known_p = true;
5f2cbd0d 2229 attrs.size = size;
754c3d5d
RS
2230 }
2231 else if (attrs.size_known_p)
5ef0b50d 2232 {
5f2cbd0d 2233 gcc_assert (!adjust_object);
5ef0b50d 2234 attrs.size -= offset;
5f2cbd0d
RS
2235 /* ??? The store_by_pieces machinery generates negative sizes,
2236 so don't assert for that here. */
5ef0b50d 2237 }
10b76d73 2238
f12144dd 2239 set_mem_attrs (new_rtx, &attrs);
738cc472 2240
60564289 2241 return new_rtx;
f1ec5147
RK
2242}
2243
630036c6
JJ
2244/* Return a memory reference like MEMREF, but with its mode changed
2245 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 2246 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2247 nonzero, the memory address is forced to be valid. */
2248
2249rtx
502b8322
AJ
2250adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2251 HOST_WIDE_INT offset, int validate)
630036c6 2252{
23b33725 2253 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
5f2cbd0d 2254 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
630036c6
JJ
2255}
2256
8ac61af7
RK
2257/* Return a memory reference like MEMREF, but whose address is changed by
2258 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2259 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2260
2261rtx
502b8322 2262offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2263{
60564289 2264 rtx new_rtx, addr = XEXP (memref, 0);
f12144dd 2265 enum machine_mode address_mode;
754c3d5d 2266 struct mem_attrs attrs, *defattrs;
e3c8ea67 2267
f12144dd 2268 attrs = *get_mem_attrs (memref);
372d6395 2269 address_mode = get_address_mode (memref);
d4ebfa65 2270 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67 2271
68252e27 2272 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2273 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2274
2275 However, if we did go and rearrange things, we can wind up not
2276 being able to recognize the magic around pic_offset_table_rtx.
2277 This stuff is fragile, and is yet another example of why it is
2278 bad to expose PIC machinery too early. */
f12144dd
RS
2279 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2280 attrs.addrspace)
e3c8ea67
RH
2281 && GET_CODE (addr) == PLUS
2282 && XEXP (addr, 0) == pic_offset_table_rtx)
2283 {
2284 addr = force_reg (GET_MODE (addr), addr);
d4ebfa65 2285 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67
RH
2286 }
2287
60564289 2288 update_temp_slot_address (XEXP (memref, 0), new_rtx);
23b33725 2289 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
0d4903b8 2290
fdb1c7b3 2291 /* If there are no changes, just return the original memory reference. */
60564289
KG
2292 if (new_rtx == memref)
2293 return new_rtx;
fdb1c7b3 2294
0d4903b8
RK
2295 /* Update the alignment to reflect the offset. Reset the offset, which
2296 we don't know. */
754c3d5d
RS
2297 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2298 attrs.offset_known_p = false;
2299 attrs.size_known_p = defattrs->size_known_p;
2300 attrs.size = defattrs->size;
f12144dd
RS
2301 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2302 set_mem_attrs (new_rtx, &attrs);
60564289 2303 return new_rtx;
0d4903b8 2304}
68252e27 2305
792760b9
RK
2306/* Return a memory reference like MEMREF, but with its address changed to
2307 ADDR. The caller is asserting that the actual piece of memory pointed
2308 to is the same, just the form of the address is being changed, such as
23b33725
RS
2309 by putting something into a register. INPLACE is true if any changes
2310 can be made directly to MEMREF or false if MEMREF must be treated as
2311 immutable. */
792760b9
RK
2312
2313rtx
23b33725 2314replace_equiv_address (rtx memref, rtx addr, bool inplace)
792760b9 2315{
738cc472
RK
2316 /* change_address_1 copies the memory attribute structure without change
2317 and that's exactly what we want here. */
40c0668b 2318 update_temp_slot_address (XEXP (memref, 0), addr);
23b33725 2319 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
792760b9 2320}
738cc472 2321
f1ec5147
RK
2322/* Likewise, but the reference is not required to be valid. */
2323
2324rtx
23b33725 2325replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
f1ec5147 2326{
23b33725 2327 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
f1ec5147 2328}
e7dfe4bb
RH
2329
2330/* Return a memory reference like MEMREF, but with its mode widened to
2331 MODE and offset by OFFSET. This would be used by targets that e.g.
2332 cannot issue QImode memory operations and have to use SImode memory
2333 operations plus masking logic. */
2334
2335rtx
502b8322 2336widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb 2337{
5f2cbd0d 2338 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
f12144dd 2339 struct mem_attrs attrs;
e7dfe4bb
RH
2340 unsigned int size = GET_MODE_SIZE (mode);
2341
fdb1c7b3 2342 /* If there are no changes, just return the original memory reference. */
60564289
KG
2343 if (new_rtx == memref)
2344 return new_rtx;
fdb1c7b3 2345
f12144dd
RS
2346 attrs = *get_mem_attrs (new_rtx);
2347
e7dfe4bb
RH
2348 /* If we don't know what offset we were at within the expression, then
2349 we can't know if we've overstepped the bounds. */
754c3d5d 2350 if (! attrs.offset_known_p)
f12144dd 2351 attrs.expr = NULL_TREE;
e7dfe4bb 2352
f12144dd 2353 while (attrs.expr)
e7dfe4bb 2354 {
f12144dd 2355 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
e7dfe4bb 2356 {
f12144dd
RS
2357 tree field = TREE_OPERAND (attrs.expr, 1);
2358 tree offset = component_ref_field_offset (attrs.expr);
e7dfe4bb
RH
2359
2360 if (! DECL_SIZE_UNIT (field))
2361 {
f12144dd 2362 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2363 break;
2364 }
2365
2366 /* Is the field at least as large as the access? If so, ok,
2367 otherwise strip back to the containing structure. */
03667700
RK
2368 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2369 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
754c3d5d 2370 && attrs.offset >= 0)
e7dfe4bb
RH
2371 break;
2372
cc269bb6 2373 if (! tree_fits_uhwi_p (offset))
e7dfe4bb 2374 {
f12144dd 2375 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2376 break;
2377 }
2378
f12144dd 2379 attrs.expr = TREE_OPERAND (attrs.expr, 0);
ae7e9ddd
RS
2380 attrs.offset += tree_to_uhwi (offset);
2381 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
754c3d5d 2382 / BITS_PER_UNIT);
e7dfe4bb
RH
2383 }
2384 /* Similarly for the decl. */
f12144dd
RS
2385 else if (DECL_P (attrs.expr)
2386 && DECL_SIZE_UNIT (attrs.expr)
2387 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2388 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
754c3d5d 2389 && (! attrs.offset_known_p || attrs.offset >= 0))
e7dfe4bb
RH
2390 break;
2391 else
2392 {
2393 /* The widened memory access overflows the expression, which means
2394 that it could alias another expression. Zap it. */
f12144dd 2395 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2396 break;
2397 }
2398 }
2399
f12144dd 2400 if (! attrs.expr)
754c3d5d 2401 attrs.offset_known_p = false;
e7dfe4bb
RH
2402
2403 /* The widened memory may alias other stuff, so zap the alias set. */
2404 /* ??? Maybe use get_alias_set on any remaining expression. */
f12144dd 2405 attrs.alias = 0;
754c3d5d
RS
2406 attrs.size_known_p = true;
2407 attrs.size = size;
f12144dd 2408 set_mem_attrs (new_rtx, &attrs);
60564289 2409 return new_rtx;
e7dfe4bb 2410}
23b2ce53 2411\f
f6129d66
RH
2412/* A fake decl that is used as the MEM_EXPR of spill slots. */
2413static GTY(()) tree spill_slot_decl;
2414
3d7e23f6
RH
2415tree
2416get_spill_slot_decl (bool force_build_p)
f6129d66
RH
2417{
2418 tree d = spill_slot_decl;
2419 rtx rd;
f12144dd 2420 struct mem_attrs attrs;
f6129d66 2421
3d7e23f6 2422 if (d || !force_build_p)
f6129d66
RH
2423 return d;
2424
c2255bc4
AH
2425 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2426 VAR_DECL, get_identifier ("%sfp"), void_type_node);
f6129d66
RH
2427 DECL_ARTIFICIAL (d) = 1;
2428 DECL_IGNORED_P (d) = 1;
2429 TREE_USED (d) = 1;
f6129d66
RH
2430 spill_slot_decl = d;
2431
2432 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2433 MEM_NOTRAP_P (rd) = 1;
f12144dd
RS
2434 attrs = *mode_mem_attrs[(int) BLKmode];
2435 attrs.alias = new_alias_set ();
2436 attrs.expr = d;
2437 set_mem_attrs (rd, &attrs);
f6129d66
RH
2438 SET_DECL_RTL (d, rd);
2439
2440 return d;
2441}
2442
2443/* Given MEM, a result from assign_stack_local, fill in the memory
2444 attributes as appropriate for a register allocator spill slot.
2445 These slots are not aliasable by other memory. We arrange for
2446 them all to use a single MEM_EXPR, so that the aliasing code can
2447 work properly in the case of shared spill slots. */
2448
2449void
2450set_mem_attrs_for_spill (rtx mem)
2451{
f12144dd
RS
2452 struct mem_attrs attrs;
2453 rtx addr;
f6129d66 2454
f12144dd
RS
2455 attrs = *get_mem_attrs (mem);
2456 attrs.expr = get_spill_slot_decl (true);
2457 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2458 attrs.addrspace = ADDR_SPACE_GENERIC;
f6129d66
RH
2459
2460 /* We expect the incoming memory to be of the form:
2461 (mem:MODE (plus (reg sfp) (const_int offset)))
2462 with perhaps the plus missing for offset = 0. */
2463 addr = XEXP (mem, 0);
754c3d5d
RS
2464 attrs.offset_known_p = true;
2465 attrs.offset = 0;
f6129d66 2466 if (GET_CODE (addr) == PLUS
481683e1 2467 && CONST_INT_P (XEXP (addr, 1)))
754c3d5d 2468 attrs.offset = INTVAL (XEXP (addr, 1));
f6129d66 2469
f12144dd 2470 set_mem_attrs (mem, &attrs);
f6129d66
RH
2471 MEM_NOTRAP_P (mem) = 1;
2472}
2473\f
23b2ce53
RS
2474/* Return a newly created CODE_LABEL rtx with a unique label number. */
2475
7dcc3ab5 2476rtx_code_label *
502b8322 2477gen_label_rtx (void)
23b2ce53 2478{
7dcc3ab5
DM
2479 return as_a <rtx_code_label *> (
2480 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2481 NULL, label_num++, NULL));
23b2ce53
RS
2482}
2483\f
2484/* For procedure integration. */
2485
23b2ce53 2486/* Install new pointers to the first and last insns in the chain.
86fe05e0 2487 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2488 Used for an inline-procedure after copying the insn chain. */
2489
2490void
502b8322 2491set_new_first_and_last_insn (rtx first, rtx last)
23b2ce53 2492{
86fe05e0
RK
2493 rtx insn;
2494
5936d944
JH
2495 set_first_insn (first);
2496 set_last_insn (last);
86fe05e0
RK
2497 cur_insn_uid = 0;
2498
b5b8b0ac
AO
2499 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2500 {
2501 int debug_count = 0;
2502
2503 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2504 cur_debug_insn_uid = 0;
2505
2506 for (insn = first; insn; insn = NEXT_INSN (insn))
2507 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2508 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2509 else
2510 {
2511 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2512 if (DEBUG_INSN_P (insn))
2513 debug_count++;
2514 }
2515
2516 if (debug_count)
2517 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2518 else
2519 cur_debug_insn_uid++;
2520 }
2521 else
2522 for (insn = first; insn; insn = NEXT_INSN (insn))
2523 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
86fe05e0
RK
2524
2525 cur_insn_uid++;
23b2ce53 2526}
23b2ce53 2527\f
750c9258 2528/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2529 structure. This routine should only be called once. */
23b2ce53 2530
fd743bc1 2531static void
b4aaa77b 2532unshare_all_rtl_1 (rtx insn)
23b2ce53 2533{
d1b81779 2534 /* Unshare just about everything else. */
2c07f13b 2535 unshare_all_rtl_in_chain (insn);
750c9258 2536
23b2ce53
RS
2537 /* Make sure the addresses of stack slots found outside the insn chain
2538 (such as, in DECL_RTL of a variable) are not shared
2539 with the insn chain.
2540
2541 This special care is necessary when the stack slot MEM does not
2542 actually appear in the insn chain. If it does appear, its address
2543 is unshared from all else at that point. */
242b0ce6 2544 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2545}
2546
750c9258 2547/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2548 structure, again. This is a fairly expensive thing to do so it
2549 should be done sparingly. */
2550
2551void
502b8322 2552unshare_all_rtl_again (rtx insn)
d1b81779
GK
2553{
2554 rtx p;
624c87aa
RE
2555 tree decl;
2556
d1b81779 2557 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2558 if (INSN_P (p))
d1b81779
GK
2559 {
2560 reset_used_flags (PATTERN (p));
2561 reset_used_flags (REG_NOTES (p));
776bebcd
JJ
2562 if (CALL_P (p))
2563 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
d1b81779 2564 }
624c87aa 2565
2d4aecb3 2566 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2567 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2568
624c87aa 2569 /* Make sure that virtual parameters are not shared. */
910ad8de 2570 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
5eb2a9f2 2571 set_used_flags (DECL_RTL (decl));
624c87aa
RE
2572
2573 reset_used_flags (stack_slot_list);
2574
b4aaa77b 2575 unshare_all_rtl_1 (insn);
fd743bc1
PB
2576}
2577
c2924966 2578unsigned int
fd743bc1
PB
2579unshare_all_rtl (void)
2580{
b4aaa77b 2581 unshare_all_rtl_1 (get_insns ());
c2924966 2582 return 0;
d1b81779
GK
2583}
2584
ef330312 2585
2c07f13b
JH
2586/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2587 Recursively does the same for subexpressions. */
2588
2589static void
2590verify_rtx_sharing (rtx orig, rtx insn)
2591{
2592 rtx x = orig;
2593 int i;
2594 enum rtx_code code;
2595 const char *format_ptr;
2596
2597 if (x == 0)
2598 return;
2599
2600 code = GET_CODE (x);
2601
2602 /* These types may be freely shared. */
2603
2604 switch (code)
2605 {
2606 case REG:
0ca5af51
AO
2607 case DEBUG_EXPR:
2608 case VALUE:
d8116890 2609 CASE_CONST_ANY:
2c07f13b
JH
2610 case SYMBOL_REF:
2611 case LABEL_REF:
2612 case CODE_LABEL:
2613 case PC:
2614 case CC0:
3810076b 2615 case RETURN:
26898771 2616 case SIMPLE_RETURN:
2c07f13b 2617 case SCRATCH:
3e89ed8d 2618 /* SCRATCH must be shared because they represent distinct values. */
c5c5ba89 2619 return;
3e89ed8d 2620 case CLOBBER:
c5c5ba89
JH
2621 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2622 clobbers or clobbers of hard registers that originated as pseudos.
2623 This is needed to allow safe register renaming. */
2624 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2625 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
3e89ed8d
JH
2626 return;
2627 break;
2c07f13b
JH
2628
2629 case CONST:
6fb5fa3c 2630 if (shared_const_p (orig))
2c07f13b
JH
2631 return;
2632 break;
2633
2634 case MEM:
2635 /* A MEM is allowed to be shared if its address is constant. */
2636 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2637 || reload_completed || reload_in_progress)
2638 return;
2639
2640 break;
2641
2642 default:
2643 break;
2644 }
2645
2646 /* This rtx may not be shared. If it has already been seen,
2647 replace it with a copy of itself. */
1a2caa7a 2648#ifdef ENABLE_CHECKING
2c07f13b
JH
2649 if (RTX_FLAG (x, used))
2650 {
ab532386 2651 error ("invalid rtl sharing found in the insn");
2c07f13b 2652 debug_rtx (insn);
ab532386 2653 error ("shared rtx");
2c07f13b 2654 debug_rtx (x);
ab532386 2655 internal_error ("internal consistency failure");
2c07f13b 2656 }
1a2caa7a
NS
2657#endif
2658 gcc_assert (!RTX_FLAG (x, used));
b8698a0f 2659
2c07f13b
JH
2660 RTX_FLAG (x, used) = 1;
2661
6614fd40 2662 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2663
2664 format_ptr = GET_RTX_FORMAT (code);
2665
2666 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2667 {
2668 switch (*format_ptr++)
2669 {
2670 case 'e':
2671 verify_rtx_sharing (XEXP (x, i), insn);
2672 break;
2673
2674 case 'E':
2675 if (XVEC (x, i) != NULL)
2676 {
2677 int j;
2678 int len = XVECLEN (x, i);
2679
2680 for (j = 0; j < len; j++)
2681 {
1a2caa7a
NS
2682 /* We allow sharing of ASM_OPERANDS inside single
2683 instruction. */
2c07f13b 2684 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2685 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2686 == ASM_OPERANDS))
2c07f13b
JH
2687 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2688 else
2689 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2690 }
2691 }
2692 break;
2693 }
2694 }
2695 return;
2696}
2697
0e0f87d4
SB
2698/* Reset used-flags for INSN. */
2699
2700static void
2701reset_insn_used_flags (rtx insn)
2702{
2703 gcc_assert (INSN_P (insn));
2704 reset_used_flags (PATTERN (insn));
2705 reset_used_flags (REG_NOTES (insn));
2706 if (CALL_P (insn))
2707 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2708}
2709
a24243a0 2710/* Go through all the RTL insn bodies and clear all the USED bits. */
2c07f13b 2711
a24243a0
AK
2712static void
2713reset_all_used_flags (void)
2c07f13b
JH
2714{
2715 rtx p;
2716
2717 for (p = get_insns (); p; p = NEXT_INSN (p))
2718 if (INSN_P (p))
2719 {
0e0f87d4
SB
2720 rtx pat = PATTERN (p);
2721 if (GET_CODE (pat) != SEQUENCE)
2722 reset_insn_used_flags (p);
2723 else
2954a813 2724 {
0e0f87d4
SB
2725 gcc_assert (REG_NOTES (p) == NULL);
2726 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
2727 {
2728 rtx insn = XVECEXP (pat, 0, i);
2729 if (INSN_P (insn))
2730 reset_insn_used_flags (insn);
2731 }
2954a813 2732 }
2c07f13b 2733 }
a24243a0
AK
2734}
2735
0e0f87d4
SB
2736/* Verify sharing in INSN. */
2737
2738static void
2739verify_insn_sharing (rtx insn)
2740{
2741 gcc_assert (INSN_P (insn));
2742 reset_used_flags (PATTERN (insn));
2743 reset_used_flags (REG_NOTES (insn));
2744 if (CALL_P (insn))
2745 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2746}
2747
a24243a0
AK
2748/* Go through all the RTL insn bodies and check that there is no unexpected
2749 sharing in between the subexpressions. */
2750
2751DEBUG_FUNCTION void
2752verify_rtl_sharing (void)
2753{
2754 rtx p;
2755
2756 timevar_push (TV_VERIFY_RTL_SHARING);
2757
2758 reset_all_used_flags ();
2c07f13b
JH
2759
2760 for (p = get_insns (); p; p = NEXT_INSN (p))
2761 if (INSN_P (p))
2762 {
0e0f87d4
SB
2763 rtx pat = PATTERN (p);
2764 if (GET_CODE (pat) != SEQUENCE)
2765 verify_insn_sharing (p);
2766 else
2767 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
2768 {
2769 rtx insn = XVECEXP (pat, 0, i);
2770 if (INSN_P (insn))
2771 verify_insn_sharing (insn);
2772 }
2c07f13b 2773 }
a222c01a 2774
a24243a0
AK
2775 reset_all_used_flags ();
2776
a222c01a 2777 timevar_pop (TV_VERIFY_RTL_SHARING);
2c07f13b
JH
2778}
2779
d1b81779
GK
2780/* Go through all the RTL insn bodies and copy any invalid shared structure.
2781 Assumes the mark bits are cleared at entry. */
2782
2c07f13b
JH
2783void
2784unshare_all_rtl_in_chain (rtx insn)
d1b81779
GK
2785{
2786 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2787 if (INSN_P (insn))
d1b81779
GK
2788 {
2789 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2790 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
776bebcd
JJ
2791 if (CALL_P (insn))
2792 CALL_INSN_FUNCTION_USAGE (insn)
2793 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
d1b81779
GK
2794 }
2795}
2796
2d4aecb3 2797/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2798 shared. We never replace the DECL_RTLs themselves with a copy,
2799 but expressions mentioned into a DECL_RTL cannot be shared with
2800 expressions in the instruction stream.
2801
2802 Note that reload may convert pseudo registers into memories in-place.
2803 Pseudo registers are always shared, but MEMs never are. Thus if we
2804 reset the used flags on MEMs in the instruction stream, we must set
2805 them again on MEMs that appear in DECL_RTLs. */
2806
2d4aecb3 2807static void
5eb2a9f2 2808set_used_decls (tree blk)
2d4aecb3
AO
2809{
2810 tree t;
2811
2812 /* Mark decls. */
910ad8de 2813 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
19e7881c 2814 if (DECL_RTL_SET_P (t))
5eb2a9f2 2815 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2816
2817 /* Now process sub-blocks. */
87caf699 2818 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 2819 set_used_decls (t);
2d4aecb3
AO
2820}
2821
23b2ce53 2822/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2823 Recursively does the same for subexpressions. Uses
2824 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2825
2826rtx
502b8322 2827copy_rtx_if_shared (rtx orig)
23b2ce53 2828{
32b32b16
AP
2829 copy_rtx_if_shared_1 (&orig);
2830 return orig;
2831}
2832
ff954f39
AP
2833/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2834 use. Recursively does the same for subexpressions. */
2835
32b32b16
AP
2836static void
2837copy_rtx_if_shared_1 (rtx *orig1)
2838{
2839 rtx x;
b3694847
SS
2840 int i;
2841 enum rtx_code code;
32b32b16 2842 rtx *last_ptr;
b3694847 2843 const char *format_ptr;
23b2ce53 2844 int copied = 0;
32b32b16
AP
2845 int length;
2846
2847 /* Repeat is used to turn tail-recursion into iteration. */
2848repeat:
2849 x = *orig1;
23b2ce53
RS
2850
2851 if (x == 0)
32b32b16 2852 return;
23b2ce53
RS
2853
2854 code = GET_CODE (x);
2855
2856 /* These types may be freely shared. */
2857
2858 switch (code)
2859 {
2860 case REG:
0ca5af51
AO
2861 case DEBUG_EXPR:
2862 case VALUE:
d8116890 2863 CASE_CONST_ANY:
23b2ce53 2864 case SYMBOL_REF:
2c07f13b 2865 case LABEL_REF:
23b2ce53
RS
2866 case CODE_LABEL:
2867 case PC:
2868 case CC0:
276e0224 2869 case RETURN:
26898771 2870 case SIMPLE_RETURN:
23b2ce53 2871 case SCRATCH:
0f41302f 2872 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 2873 return;
3e89ed8d 2874 case CLOBBER:
c5c5ba89
JH
2875 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2876 clobbers or clobbers of hard registers that originated as pseudos.
2877 This is needed to allow safe register renaming. */
2878 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2879 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
3e89ed8d
JH
2880 return;
2881 break;
23b2ce53 2882
b851ea09 2883 case CONST:
6fb5fa3c 2884 if (shared_const_p (x))
32b32b16 2885 return;
b851ea09
RK
2886 break;
2887
b5b8b0ac 2888 case DEBUG_INSN:
23b2ce53
RS
2889 case INSN:
2890 case JUMP_INSN:
2891 case CALL_INSN:
2892 case NOTE:
23b2ce53
RS
2893 case BARRIER:
2894 /* The chain of insns is not being copied. */
32b32b16 2895 return;
23b2ce53 2896
e9a25f70
JL
2897 default:
2898 break;
23b2ce53
RS
2899 }
2900
2901 /* This rtx may not be shared. If it has already been seen,
2902 replace it with a copy of itself. */
2903
2adc7f12 2904 if (RTX_FLAG (x, used))
23b2ce53 2905 {
aacd3885 2906 x = shallow_copy_rtx (x);
23b2ce53
RS
2907 copied = 1;
2908 }
2adc7f12 2909 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2910
2911 /* Now scan the subexpressions recursively.
2912 We can store any replaced subexpressions directly into X
2913 since we know X is not shared! Any vectors in X
2914 must be copied if X was copied. */
2915
2916 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2917 length = GET_RTX_LENGTH (code);
2918 last_ptr = NULL;
b8698a0f 2919
32b32b16 2920 for (i = 0; i < length; i++)
23b2ce53
RS
2921 {
2922 switch (*format_ptr++)
2923 {
2924 case 'e':
32b32b16
AP
2925 if (last_ptr)
2926 copy_rtx_if_shared_1 (last_ptr);
2927 last_ptr = &XEXP (x, i);
23b2ce53
RS
2928 break;
2929
2930 case 'E':
2931 if (XVEC (x, i) != NULL)
2932 {
b3694847 2933 int j;
f0722107 2934 int len = XVECLEN (x, i);
b8698a0f 2935
6614fd40
KH
2936 /* Copy the vector iff I copied the rtx and the length
2937 is nonzero. */
f0722107 2938 if (copied && len > 0)
8f985ec4 2939 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
b8698a0f 2940
5d3cc252 2941 /* Call recursively on all inside the vector. */
f0722107 2942 for (j = 0; j < len; j++)
32b32b16
AP
2943 {
2944 if (last_ptr)
2945 copy_rtx_if_shared_1 (last_ptr);
2946 last_ptr = &XVECEXP (x, i, j);
2947 }
23b2ce53
RS
2948 }
2949 break;
2950 }
2951 }
32b32b16
AP
2952 *orig1 = x;
2953 if (last_ptr)
2954 {
2955 orig1 = last_ptr;
2956 goto repeat;
2957 }
2958 return;
23b2ce53
RS
2959}
2960
76369a82 2961/* Set the USED bit in X and its non-shareable subparts to FLAG. */
23b2ce53 2962
76369a82
NF
2963static void
2964mark_used_flags (rtx x, int flag)
23b2ce53 2965{
b3694847
SS
2966 int i, j;
2967 enum rtx_code code;
2968 const char *format_ptr;
32b32b16 2969 int length;
23b2ce53 2970
32b32b16
AP
2971 /* Repeat is used to turn tail-recursion into iteration. */
2972repeat:
23b2ce53
RS
2973 if (x == 0)
2974 return;
2975
2976 code = GET_CODE (x);
2977
9faa82d8 2978 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2979 for them. */
2980
2981 switch (code)
2982 {
2983 case REG:
0ca5af51
AO
2984 case DEBUG_EXPR:
2985 case VALUE:
d8116890 2986 CASE_CONST_ANY:
23b2ce53
RS
2987 case SYMBOL_REF:
2988 case CODE_LABEL:
2989 case PC:
2990 case CC0:
276e0224 2991 case RETURN:
26898771 2992 case SIMPLE_RETURN:
23b2ce53
RS
2993 return;
2994
b5b8b0ac 2995 case DEBUG_INSN:
23b2ce53
RS
2996 case INSN:
2997 case JUMP_INSN:
2998 case CALL_INSN:
2999 case NOTE:
3000 case LABEL_REF:
3001 case BARRIER:
3002 /* The chain of insns is not being copied. */
3003 return;
750c9258 3004
e9a25f70
JL
3005 default:
3006 break;
23b2ce53
RS
3007 }
3008
76369a82 3009 RTX_FLAG (x, used) = flag;
23b2ce53
RS
3010
3011 format_ptr = GET_RTX_FORMAT (code);
32b32b16 3012 length = GET_RTX_LENGTH (code);
b8698a0f 3013
32b32b16 3014 for (i = 0; i < length; i++)
23b2ce53
RS
3015 {
3016 switch (*format_ptr++)
3017 {
3018 case 'e':
32b32b16
AP
3019 if (i == length-1)
3020 {
3021 x = XEXP (x, i);
3022 goto repeat;
3023 }
76369a82 3024 mark_used_flags (XEXP (x, i), flag);
23b2ce53
RS
3025 break;
3026
3027 case 'E':
3028 for (j = 0; j < XVECLEN (x, i); j++)
76369a82 3029 mark_used_flags (XVECEXP (x, i, j), flag);
23b2ce53
RS
3030 break;
3031 }
3032 }
3033}
2c07f13b 3034
76369a82 3035/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2c07f13b
JH
3036 to look for shared sub-parts. */
3037
3038void
76369a82 3039reset_used_flags (rtx x)
2c07f13b 3040{
76369a82
NF
3041 mark_used_flags (x, 0);
3042}
2c07f13b 3043
76369a82
NF
3044/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3045 to look for shared sub-parts. */
2c07f13b 3046
76369a82
NF
3047void
3048set_used_flags (rtx x)
3049{
3050 mark_used_flags (x, 1);
2c07f13b 3051}
23b2ce53
RS
3052\f
3053/* Copy X if necessary so that it won't be altered by changes in OTHER.
3054 Return X or the rtx for the pseudo reg the value of X was copied into.
3055 OTHER must be valid as a SET_DEST. */
3056
3057rtx
502b8322 3058make_safe_from (rtx x, rtx other)
23b2ce53
RS
3059{
3060 while (1)
3061 switch (GET_CODE (other))
3062 {
3063 case SUBREG:
3064 other = SUBREG_REG (other);
3065 break;
3066 case STRICT_LOW_PART:
3067 case SIGN_EXTEND:
3068 case ZERO_EXTEND:
3069 other = XEXP (other, 0);
3070 break;
3071 default:
3072 goto done;
3073 }
3074 done:
3c0cb5de 3075 if ((MEM_P (other)
23b2ce53 3076 && ! CONSTANT_P (x)
f8cfc6aa 3077 && !REG_P (x)
23b2ce53 3078 && GET_CODE (x) != SUBREG)
f8cfc6aa 3079 || (REG_P (other)
23b2ce53
RS
3080 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3081 || reg_mentioned_p (other, x))))
3082 {
3083 rtx temp = gen_reg_rtx (GET_MODE (x));
3084 emit_move_insn (temp, x);
3085 return temp;
3086 }
3087 return x;
3088}
3089\f
3090/* Emission of insns (adding them to the doubly-linked list). */
3091
23b2ce53
RS
3092/* Return the last insn emitted, even if it is in a sequence now pushed. */
3093
3094rtx
502b8322 3095get_last_insn_anywhere (void)
23b2ce53
RS
3096{
3097 struct sequence_stack *stack;
5936d944
JH
3098 if (get_last_insn ())
3099 return get_last_insn ();
49ad7cfa 3100 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
3101 if (stack->last != 0)
3102 return stack->last;
3103 return 0;
3104}
3105
2a496e8b
JDA
3106/* Return the first nonnote insn emitted in current sequence or current
3107 function. This routine looks inside SEQUENCEs. */
3108
3109rtx
502b8322 3110get_first_nonnote_insn (void)
2a496e8b 3111{
5936d944 3112 rtx insn = get_insns ();
91373fe8
JDA
3113
3114 if (insn)
3115 {
3116 if (NOTE_P (insn))
3117 for (insn = next_insn (insn);
3118 insn && NOTE_P (insn);
3119 insn = next_insn (insn))
3120 continue;
3121 else
3122 {
2ca202e7 3123 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
3124 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3125 insn = XVECEXP (PATTERN (insn), 0, 0);
3126 }
3127 }
2a496e8b
JDA
3128
3129 return insn;
3130}
3131
3132/* Return the last nonnote insn emitted in current sequence or current
3133 function. This routine looks inside SEQUENCEs. */
3134
3135rtx
502b8322 3136get_last_nonnote_insn (void)
2a496e8b 3137{
5936d944 3138 rtx insn = get_last_insn ();
91373fe8
JDA
3139
3140 if (insn)
3141 {
3142 if (NOTE_P (insn))
3143 for (insn = previous_insn (insn);
3144 insn && NOTE_P (insn);
3145 insn = previous_insn (insn))
3146 continue;
3147 else
3148 {
2ca202e7 3149 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
3150 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3151 insn = XVECEXP (PATTERN (insn), 0,
3152 XVECLEN (PATTERN (insn), 0) - 1);
3153 }
3154 }
2a496e8b
JDA
3155
3156 return insn;
3157}
3158
b5b8b0ac
AO
3159/* Return the number of actual (non-debug) insns emitted in this
3160 function. */
3161
3162int
3163get_max_insn_count (void)
3164{
3165 int n = cur_insn_uid;
3166
3167 /* The table size must be stable across -g, to avoid codegen
3168 differences due to debug insns, and not be affected by
3169 -fmin-insn-uid, to avoid excessive table size and to simplify
3170 debugging of -fcompare-debug failures. */
3171 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3172 n -= cur_debug_insn_uid;
3173 else
3174 n -= MIN_NONDEBUG_INSN_UID;
3175
3176 return n;
3177}
3178
23b2ce53
RS
3179\f
3180/* Return the next insn. If it is a SEQUENCE, return the first insn
3181 of the sequence. */
3182
eb51c837 3183rtx_insn *
502b8322 3184next_insn (rtx insn)
23b2ce53 3185{
75547801
KG
3186 if (insn)
3187 {
3188 insn = NEXT_INSN (insn);
3189 if (insn && NONJUMP_INSN_P (insn)
3190 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3191 insn = XVECEXP (PATTERN (insn), 0, 0);
3192 }
23b2ce53 3193
eb51c837 3194 return safe_as_a <rtx_insn *> (insn);
23b2ce53
RS
3195}
3196
3197/* Return the previous insn. If it is a SEQUENCE, return the last insn
3198 of the sequence. */
3199
eb51c837 3200rtx_insn *
502b8322 3201previous_insn (rtx insn)
23b2ce53 3202{
75547801
KG
3203 if (insn)
3204 {
3205 insn = PREV_INSN (insn);
3206 if (insn && NONJUMP_INSN_P (insn)
3207 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3208 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3209 }
23b2ce53 3210
eb51c837 3211 return safe_as_a <rtx_insn *> (insn);
23b2ce53
RS
3212}
3213
3214/* Return the next insn after INSN that is not a NOTE. This routine does not
3215 look inside SEQUENCEs. */
3216
eb51c837 3217rtx_insn *
502b8322 3218next_nonnote_insn (rtx insn)
23b2ce53 3219{
75547801
KG
3220 while (insn)
3221 {
3222 insn = NEXT_INSN (insn);
3223 if (insn == 0 || !NOTE_P (insn))
3224 break;
3225 }
23b2ce53 3226
eb51c837 3227 return safe_as_a <rtx_insn *> (insn);
23b2ce53
RS
3228}
3229
1e211590
DD
3230/* Return the next insn after INSN that is not a NOTE, but stop the
3231 search before we enter another basic block. This routine does not
3232 look inside SEQUENCEs. */
3233
eb51c837 3234rtx_insn *
1e211590
DD
3235next_nonnote_insn_bb (rtx insn)
3236{
3237 while (insn)
3238 {
3239 insn = NEXT_INSN (insn);
3240 if (insn == 0 || !NOTE_P (insn))
3241 break;
3242 if (NOTE_INSN_BASIC_BLOCK_P (insn))
eb51c837 3243 return NULL;
1e211590
DD
3244 }
3245
eb51c837 3246 return safe_as_a <rtx_insn *> (insn);
1e211590
DD
3247}
3248
23b2ce53
RS
3249/* Return the previous insn before INSN that is not a NOTE. This routine does
3250 not look inside SEQUENCEs. */
3251
eb51c837 3252rtx_insn *
502b8322 3253prev_nonnote_insn (rtx insn)
23b2ce53 3254{
75547801
KG
3255 while (insn)
3256 {
3257 insn = PREV_INSN (insn);
3258 if (insn == 0 || !NOTE_P (insn))
3259 break;
3260 }
23b2ce53 3261
eb51c837 3262 return safe_as_a <rtx_insn *> (insn);
23b2ce53
RS
3263}
3264
896aa4ea
DD
3265/* Return the previous insn before INSN that is not a NOTE, but stop
3266 the search before we enter another basic block. This routine does
3267 not look inside SEQUENCEs. */
3268
eb51c837 3269rtx_insn *
896aa4ea
DD
3270prev_nonnote_insn_bb (rtx insn)
3271{
3272 while (insn)
3273 {
3274 insn = PREV_INSN (insn);
3275 if (insn == 0 || !NOTE_P (insn))
3276 break;
3277 if (NOTE_INSN_BASIC_BLOCK_P (insn))
eb51c837 3278 return NULL;
896aa4ea
DD
3279 }
3280
eb51c837 3281 return safe_as_a <rtx_insn *> (insn);
896aa4ea
DD
3282}
3283
b5b8b0ac
AO
3284/* Return the next insn after INSN that is not a DEBUG_INSN. This
3285 routine does not look inside SEQUENCEs. */
3286
eb51c837 3287rtx_insn *
b5b8b0ac
AO
3288next_nondebug_insn (rtx insn)
3289{
3290 while (insn)
3291 {
3292 insn = NEXT_INSN (insn);
3293 if (insn == 0 || !DEBUG_INSN_P (insn))
3294 break;
3295 }
3296
eb51c837 3297 return safe_as_a <rtx_insn *> (insn);
b5b8b0ac
AO
3298}
3299
3300/* Return the previous insn before INSN that is not a DEBUG_INSN.
3301 This routine does not look inside SEQUENCEs. */
3302
eb51c837 3303rtx_insn *
b5b8b0ac
AO
3304prev_nondebug_insn (rtx insn)
3305{
3306 while (insn)
3307 {
3308 insn = PREV_INSN (insn);
3309 if (insn == 0 || !DEBUG_INSN_P (insn))
3310 break;
3311 }
3312
eb51c837 3313 return safe_as_a <rtx_insn *> (insn);
b5b8b0ac
AO
3314}
3315
f0fc0803
JJ
3316/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3317 This routine does not look inside SEQUENCEs. */
3318
eb51c837 3319rtx_insn *
f0fc0803
JJ
3320next_nonnote_nondebug_insn (rtx insn)
3321{
3322 while (insn)
3323 {
3324 insn = NEXT_INSN (insn);
3325 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3326 break;
3327 }
3328
eb51c837 3329 return safe_as_a <rtx_insn *> (insn);
f0fc0803
JJ
3330}
3331
3332/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3333 This routine does not look inside SEQUENCEs. */
3334
eb51c837 3335rtx_insn *
f0fc0803
JJ
3336prev_nonnote_nondebug_insn (rtx insn)
3337{
3338 while (insn)
3339 {
3340 insn = PREV_INSN (insn);
3341 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3342 break;
3343 }
3344
eb51c837 3345 return safe_as_a <rtx_insn *> (insn);
f0fc0803
JJ
3346}
3347
23b2ce53
RS
3348/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3349 or 0, if there is none. This routine does not look inside
0f41302f 3350 SEQUENCEs. */
23b2ce53 3351
eb51c837 3352rtx_insn *
502b8322 3353next_real_insn (rtx insn)
23b2ce53 3354{
75547801
KG
3355 while (insn)
3356 {
3357 insn = NEXT_INSN (insn);
3358 if (insn == 0 || INSN_P (insn))
3359 break;
3360 }
23b2ce53 3361
eb51c837 3362 return safe_as_a <rtx_insn *> (insn);
23b2ce53
RS
3363}
3364
3365/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3366 or 0, if there is none. This routine does not look inside
3367 SEQUENCEs. */
3368
eb51c837 3369rtx_insn *
502b8322 3370prev_real_insn (rtx insn)
23b2ce53 3371{
75547801
KG
3372 while (insn)
3373 {
3374 insn = PREV_INSN (insn);
3375 if (insn == 0 || INSN_P (insn))
3376 break;
3377 }
23b2ce53 3378
eb51c837 3379 return safe_as_a <rtx_insn *> (insn);
23b2ce53
RS
3380}
3381
ee960939
OH
3382/* Return the last CALL_INSN in the current list, or 0 if there is none.
3383 This routine does not look inside SEQUENCEs. */
3384
049cfc4a 3385rtx_call_insn *
502b8322 3386last_call_insn (void)
ee960939 3387{
049cfc4a 3388 rtx_insn *insn;
ee960939
OH
3389
3390 for (insn = get_last_insn ();
4b4bf941 3391 insn && !CALL_P (insn);
ee960939
OH
3392 insn = PREV_INSN (insn))
3393 ;
3394
049cfc4a 3395 return safe_as_a <rtx_call_insn *> (insn);
ee960939
OH
3396}
3397
23b2ce53 3398/* Find the next insn after INSN that really does something. This routine
9c517bf3
AK
3399 does not look inside SEQUENCEs. After reload this also skips over
3400 standalone USE and CLOBBER insn. */
23b2ce53 3401
69732dcb 3402int
4f588890 3403active_insn_p (const_rtx insn)
69732dcb 3404{
4b4bf941 3405 return (CALL_P (insn) || JUMP_P (insn)
39718607 3406 || JUMP_TABLE_DATA_P (insn) /* FIXME */
4b4bf941 3407 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3408 && (! reload_completed
3409 || (GET_CODE (PATTERN (insn)) != USE
3410 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3411}
3412
eb51c837 3413rtx_insn *
502b8322 3414next_active_insn (rtx insn)
23b2ce53 3415{
75547801
KG
3416 while (insn)
3417 {
3418 insn = NEXT_INSN (insn);
3419 if (insn == 0 || active_insn_p (insn))
3420 break;
3421 }
23b2ce53 3422
eb51c837 3423 return safe_as_a <rtx_insn *> (insn);
23b2ce53
RS
3424}
3425
3426/* Find the last insn before INSN that really does something. This routine
9c517bf3
AK
3427 does not look inside SEQUENCEs. After reload this also skips over
3428 standalone USE and CLOBBER insn. */
23b2ce53 3429
eb51c837 3430rtx_insn *
502b8322 3431prev_active_insn (rtx insn)
23b2ce53 3432{
75547801
KG
3433 while (insn)
3434 {
3435 insn = PREV_INSN (insn);
3436 if (insn == 0 || active_insn_p (insn))
3437 break;
3438 }
23b2ce53 3439
eb51c837 3440 return safe_as_a <rtx_insn *> (insn);
23b2ce53 3441}
23b2ce53
RS
3442\f
3443#ifdef HAVE_cc0
3444/* Return the next insn that uses CC0 after INSN, which is assumed to
3445 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3446 applied to the result of this function should yield INSN).
3447
3448 Normally, this is simply the next insn. However, if a REG_CC_USER note
3449 is present, it contains the insn that uses CC0.
3450
3451 Return 0 if we can't find the insn. */
3452
3453rtx
502b8322 3454next_cc0_user (rtx insn)
23b2ce53 3455{
906c4e36 3456 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3457
3458 if (note)
3459 return XEXP (note, 0);
3460
3461 insn = next_nonnote_insn (insn);
4b4bf941 3462 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
23b2ce53
RS
3463 insn = XVECEXP (PATTERN (insn), 0, 0);
3464
2c3c49de 3465 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3466 return insn;
3467
3468 return 0;
3469}
3470
3471/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3472 note, it is the previous insn. */
3473
3474rtx
502b8322 3475prev_cc0_setter (rtx insn)
23b2ce53 3476{
906c4e36 3477 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3478
3479 if (note)
3480 return XEXP (note, 0);
3481
3482 insn = prev_nonnote_insn (insn);
5b0264cb 3483 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53
RS
3484
3485 return insn;
3486}
3487#endif
e5bef2e4 3488
594f8779
RZ
3489#ifdef AUTO_INC_DEC
3490/* Find a RTX_AUTOINC class rtx which matches DATA. */
3491
3492static int
3493find_auto_inc (rtx *xp, void *data)
3494{
3495 rtx x = *xp;
5ead67f6 3496 rtx reg = (rtx) data;
594f8779
RZ
3497
3498 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3499 return 0;
3500
3501 switch (GET_CODE (x))
3502 {
3503 case PRE_DEC:
3504 case PRE_INC:
3505 case POST_DEC:
3506 case POST_INC:
3507 case PRE_MODIFY:
3508 case POST_MODIFY:
3509 if (rtx_equal_p (reg, XEXP (x, 0)))
3510 return 1;
3511 break;
3512
3513 default:
3514 gcc_unreachable ();
3515 }
3516 return -1;
3517}
3518#endif
3519
e5bef2e4
HB
3520/* Increment the label uses for all labels present in rtx. */
3521
3522static void
502b8322 3523mark_label_nuses (rtx x)
e5bef2e4 3524{
b3694847
SS
3525 enum rtx_code code;
3526 int i, j;
3527 const char *fmt;
e5bef2e4
HB
3528
3529 code = GET_CODE (x);
7537fc90 3530 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
e5bef2e4
HB
3531 LABEL_NUSES (XEXP (x, 0))++;
3532
3533 fmt = GET_RTX_FORMAT (code);
3534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3535 {
3536 if (fmt[i] == 'e')
0fb7aeda 3537 mark_label_nuses (XEXP (x, i));
e5bef2e4 3538 else if (fmt[i] == 'E')
0fb7aeda 3539 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3540 mark_label_nuses (XVECEXP (x, i, j));
3541 }
3542}
3543
23b2ce53
RS
3544\f
3545/* Try splitting insns that can be split for better scheduling.
3546 PAT is the pattern which might split.
3547 TRIAL is the insn providing PAT.
cc2902df 3548 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3549
3550 If this routine succeeds in splitting, it returns the first or last
11147ebe 3551 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3552 returns TRIAL. If the insn to be returned can be split, it will be. */
3553
3554rtx
502b8322 3555try_split (rtx pat, rtx trial, int last)
23b2ce53
RS
3556{
3557 rtx before = PREV_INSN (trial);
3558 rtx after = NEXT_INSN (trial);
23b2ce53 3559 int has_barrier = 0;
4a8cae83 3560 rtx note, seq, tem;
6b24c259 3561 int probability;
599aedd9
RH
3562 rtx insn_last, insn;
3563 int njumps = 0;
4f660b15 3564 rtx call_insn = NULL_RTX;
6b24c259 3565
cd9c1ca8
RH
3566 /* We're not good at redistributing frame information. */
3567 if (RTX_FRAME_RELATED_P (trial))
3568 return trial;
3569
6b24c259
JH
3570 if (any_condjump_p (trial)
3571 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
e5af9ddd 3572 split_branch_probability = XINT (note, 0);
6b24c259
JH
3573 probability = split_branch_probability;
3574
3575 seq = split_insns (pat, trial);
3576
3577 split_branch_probability = -1;
23b2ce53
RS
3578
3579 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3580 We may need to handle this specially. */
4b4bf941 3581 if (after && BARRIER_P (after))
23b2ce53
RS
3582 {
3583 has_barrier = 1;
3584 after = NEXT_INSN (after);
3585 }
3586
599aedd9
RH
3587 if (!seq)
3588 return trial;
3589
3590 /* Avoid infinite loop if any insn of the result matches
3591 the original pattern. */
3592 insn_last = seq;
3593 while (1)
23b2ce53 3594 {
599aedd9
RH
3595 if (INSN_P (insn_last)
3596 && rtx_equal_p (PATTERN (insn_last), pat))
3597 return trial;
3598 if (!NEXT_INSN (insn_last))
3599 break;
3600 insn_last = NEXT_INSN (insn_last);
3601 }
750c9258 3602
6fb5fa3c
DB
3603 /* We will be adding the new sequence to the function. The splitters
3604 may have introduced invalid RTL sharing, so unshare the sequence now. */
3605 unshare_all_rtl_in_chain (seq);
3606
339ba33b 3607 /* Mark labels and copy flags. */
599aedd9
RH
3608 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3609 {
4b4bf941 3610 if (JUMP_P (insn))
599aedd9 3611 {
339ba33b
RS
3612 if (JUMP_P (trial))
3613 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
599aedd9
RH
3614 mark_jump_label (PATTERN (insn), insn, 0);
3615 njumps++;
3616 if (probability != -1
3617 && any_condjump_p (insn)
3618 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3619 {
599aedd9
RH
3620 /* We can preserve the REG_BR_PROB notes only if exactly
3621 one jump is created, otherwise the machine description
3622 is responsible for this step using
3623 split_branch_probability variable. */
5b0264cb 3624 gcc_assert (njumps == 1);
e5af9ddd 3625 add_int_reg_note (insn, REG_BR_PROB, probability);
2f937369 3626 }
599aedd9
RH
3627 }
3628 }
3629
3630 /* If we are splitting a CALL_INSN, look for the CALL_INSN
65712d5c 3631 in SEQ and copy any additional information across. */
4b4bf941 3632 if (CALL_P (trial))
599aedd9
RH
3633 {
3634 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3635 if (CALL_P (insn))
599aedd9 3636 {
65712d5c
RS
3637 rtx next, *p;
3638
4f660b15
RO
3639 gcc_assert (call_insn == NULL_RTX);
3640 call_insn = insn;
3641
65712d5c
RS
3642 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3643 target may have explicitly specified. */
3644 p = &CALL_INSN_FUNCTION_USAGE (insn);
f6a1f3f6
RH
3645 while (*p)
3646 p = &XEXP (*p, 1);
3647 *p = CALL_INSN_FUNCTION_USAGE (trial);
65712d5c
RS
3648
3649 /* If the old call was a sibling call, the new one must
3650 be too. */
599aedd9 3651 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
65712d5c
RS
3652
3653 /* If the new call is the last instruction in the sequence,
3654 it will effectively replace the old call in-situ. Otherwise
3655 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3656 so that it comes immediately after the new call. */
3657 if (NEXT_INSN (insn))
65f3dedb
RS
3658 for (next = NEXT_INSN (trial);
3659 next && NOTE_P (next);
3660 next = NEXT_INSN (next))
3661 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
65712d5c
RS
3662 {
3663 remove_insn (next);
3664 add_insn_after (next, insn, NULL);
65f3dedb 3665 break;
65712d5c 3666 }
599aedd9
RH
3667 }
3668 }
4b5e8abe 3669
599aedd9
RH
3670 /* Copy notes, particularly those related to the CFG. */
3671 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3672 {
3673 switch (REG_NOTE_KIND (note))
3674 {
3675 case REG_EH_REGION:
1d65f45c 3676 copy_reg_eh_region_note_backward (note, insn_last, NULL);
599aedd9 3677 break;
216183ce 3678
599aedd9
RH
3679 case REG_NORETURN:
3680 case REG_SETJMP:
0a35513e 3681 case REG_TM:
594f8779 3682 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3683 {
4b4bf941 3684 if (CALL_P (insn))
65c5f2a6 3685 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3686 }
599aedd9 3687 break;
d6e95df8 3688
599aedd9 3689 case REG_NON_LOCAL_GOTO:
594f8779 3690 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3691 {
4b4bf941 3692 if (JUMP_P (insn))
65c5f2a6 3693 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3694 }
599aedd9 3695 break;
e5bef2e4 3696
594f8779
RZ
3697#ifdef AUTO_INC_DEC
3698 case REG_INC:
3699 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3700 {
3701 rtx reg = XEXP (note, 0);
3702 if (!FIND_REG_INC_NOTE (insn, reg)
3703 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
65c5f2a6 3704 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3705 }
3706 break;
3707#endif
3708
9a08d230
RH
3709 case REG_ARGS_SIZE:
3710 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3711 break;
3712
4f660b15
RO
3713 case REG_CALL_DECL:
3714 gcc_assert (call_insn != NULL_RTX);
3715 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3716 break;
3717
599aedd9
RH
3718 default:
3719 break;
23b2ce53 3720 }
599aedd9
RH
3721 }
3722
3723 /* If there are LABELS inside the split insns increment the
3724 usage count so we don't delete the label. */
cf7c4aa6 3725 if (INSN_P (trial))
599aedd9
RH
3726 {
3727 insn = insn_last;
3728 while (insn != NULL_RTX)
23b2ce53 3729 {
cf7c4aa6 3730 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3731 if (NONJUMP_INSN_P (insn))
599aedd9 3732 mark_label_nuses (PATTERN (insn));
23b2ce53 3733
599aedd9
RH
3734 insn = PREV_INSN (insn);
3735 }
23b2ce53
RS
3736 }
3737
5368224f 3738 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
599aedd9
RH
3739
3740 delete_insn (trial);
3741 if (has_barrier)
3742 emit_barrier_after (tem);
3743
3744 /* Recursively call try_split for each new insn created; by the
3745 time control returns here that insn will be fully split, so
3746 set LAST and continue from the insn after the one returned.
3747 We can't use next_active_insn here since AFTER may be a note.
3748 Ignore deleted insns, which can be occur if not optimizing. */
3749 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3750 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3751 tem = try_split (PATTERN (tem), tem, 1);
3752
3753 /* Return either the first or the last insn, depending on which was
3754 requested. */
3755 return last
5936d944 3756 ? (after ? PREV_INSN (after) : get_last_insn ())
599aedd9 3757 : NEXT_INSN (before);
23b2ce53
RS
3758}
3759\f
3760/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3761 Store PATTERN in the pattern slots. */
23b2ce53 3762
167b9fae 3763rtx_insn *
502b8322 3764make_insn_raw (rtx pattern)
23b2ce53 3765{
167b9fae 3766 rtx_insn *insn;
23b2ce53 3767
167b9fae 3768 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
23b2ce53 3769
43127294 3770 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3771 PATTERN (insn) = pattern;
3772 INSN_CODE (insn) = -1;
1632afca 3773 REG_NOTES (insn) = NULL;
5368224f 3774 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3775 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3776
47984720
NC
3777#ifdef ENABLE_RTL_CHECKING
3778 if (insn
2c3c49de 3779 && INSN_P (insn)
47984720
NC
3780 && (returnjump_p (insn)
3781 || (GET_CODE (insn) == SET
3782 && SET_DEST (insn) == pc_rtx)))
3783 {
d4ee4d25 3784 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3785 debug_rtx (insn);
3786 }
3787#endif
750c9258 3788
23b2ce53
RS
3789 return insn;
3790}
3791
b5b8b0ac
AO
3792/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3793
167b9fae 3794static rtx_insn *
b5b8b0ac
AO
3795make_debug_insn_raw (rtx pattern)
3796{
167b9fae 3797 rtx_debug_insn *insn;
b5b8b0ac 3798
167b9fae 3799 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
b5b8b0ac
AO
3800 INSN_UID (insn) = cur_debug_insn_uid++;
3801 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3802 INSN_UID (insn) = cur_insn_uid++;
3803
3804 PATTERN (insn) = pattern;
3805 INSN_CODE (insn) = -1;
3806 REG_NOTES (insn) = NULL;
5368224f 3807 INSN_LOCATION (insn) = curr_insn_location ();
b5b8b0ac
AO
3808 BLOCK_FOR_INSN (insn) = NULL;
3809
3810 return insn;
3811}
3812
2f937369 3813/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3814
167b9fae 3815static rtx_insn *
502b8322 3816make_jump_insn_raw (rtx pattern)
23b2ce53 3817{
167b9fae 3818 rtx_jump_insn *insn;
23b2ce53 3819
167b9fae 3820 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
1632afca 3821 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3822
3823 PATTERN (insn) = pattern;
3824 INSN_CODE (insn) = -1;
1632afca
RS
3825 REG_NOTES (insn) = NULL;
3826 JUMP_LABEL (insn) = NULL;
5368224f 3827 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3828 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3829
3830 return insn;
3831}
aff507f4 3832
2f937369 3833/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4 3834
167b9fae 3835static rtx_insn *
502b8322 3836make_call_insn_raw (rtx pattern)
aff507f4 3837{
167b9fae 3838 rtx_call_insn *insn;
aff507f4 3839
167b9fae 3840 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
aff507f4
RK
3841 INSN_UID (insn) = cur_insn_uid++;
3842
3843 PATTERN (insn) = pattern;
3844 INSN_CODE (insn) = -1;
aff507f4
RK
3845 REG_NOTES (insn) = NULL;
3846 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5368224f 3847 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3848 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3849
3850 return insn;
3851}
96fba521
SB
3852
3853/* Like `make_insn_raw' but make a NOTE instead of an insn. */
3854
3855static rtx
3856make_note_raw (enum insn_note subtype)
3857{
3858 /* Some notes are never created this way at all. These notes are
3859 only created by patching out insns. */
3860 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3861 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3862
3863 rtx note = rtx_alloc (NOTE);
3864 INSN_UID (note) = cur_insn_uid++;
3865 NOTE_KIND (note) = subtype;
3866 BLOCK_FOR_INSN (note) = NULL;
3867 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3868 return note;
3869}
23b2ce53 3870\f
96fba521
SB
3871/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3872 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3873 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3874
3875static inline void
3876link_insn_into_chain (rtx insn, rtx prev, rtx next)
3877{
0f82e5c9
DM
3878 SET_PREV_INSN (insn) = prev;
3879 SET_NEXT_INSN (insn) = next;
96fba521
SB
3880 if (prev != NULL)
3881 {
0f82e5c9 3882 SET_NEXT_INSN (prev) = insn;
96fba521
SB
3883 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3884 {
3885 rtx sequence = PATTERN (prev);
0f82e5c9 3886 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
96fba521
SB
3887 }
3888 }
3889 if (next != NULL)
3890 {
0f82e5c9 3891 SET_PREV_INSN (next) = insn;
96fba521 3892 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
0f82e5c9 3893 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
96fba521 3894 }
3ccb989e
SB
3895
3896 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3897 {
3898 rtx sequence = PATTERN (insn);
0f82e5c9
DM
3899 SET_PREV_INSN (XVECEXP (sequence, 0, 0)) = prev;
3900 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3ccb989e 3901 }
96fba521
SB
3902}
3903
23b2ce53
RS
3904/* Add INSN to the end of the doubly-linked list.
3905 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3906
3907void
502b8322 3908add_insn (rtx insn)
23b2ce53 3909{
96fba521
SB
3910 rtx prev = get_last_insn ();
3911 link_insn_into_chain (insn, prev, NULL);
5936d944
JH
3912 if (NULL == get_insns ())
3913 set_first_insn (insn);
5936d944 3914 set_last_insn (insn);
23b2ce53
RS
3915}
3916
96fba521 3917/* Add INSN into the doubly-linked list after insn AFTER. */
23b2ce53 3918
96fba521
SB
3919static void
3920add_insn_after_nobb (rtx insn, rtx after)
23b2ce53
RS
3921{
3922 rtx next = NEXT_INSN (after);
3923
5b0264cb 3924 gcc_assert (!optimize || !INSN_DELETED_P (after));
ba213285 3925
96fba521 3926 link_insn_into_chain (insn, after, next);
23b2ce53 3927
96fba521 3928 if (next == NULL)
23b2ce53 3929 {
96fba521
SB
3930 if (get_last_insn () == after)
3931 set_last_insn (insn);
3932 else
3933 {
3934 struct sequence_stack *stack = seq_stack;
3935 /* Scan all pending sequences too. */
3936 for (; stack; stack = stack->next)
3937 if (after == stack->last)
3938 {
3939 stack->last = insn;
3940 break;
3941 }
3942 }
23b2ce53 3943 }
96fba521
SB
3944}
3945
3946/* Add INSN into the doubly-linked list before insn BEFORE. */
3947
3948static void
3949add_insn_before_nobb (rtx insn, rtx before)
3950{
3951 rtx prev = PREV_INSN (before);
3952
3953 gcc_assert (!optimize || !INSN_DELETED_P (before));
3954
3955 link_insn_into_chain (insn, prev, before);
3956
3957 if (prev == NULL)
23b2ce53 3958 {
96fba521
SB
3959 if (get_insns () == before)
3960 set_first_insn (insn);
3961 else
3962 {
3963 struct sequence_stack *stack = seq_stack;
3964 /* Scan all pending sequences too. */
3965 for (; stack; stack = stack->next)
3966 if (before == stack->first)
3967 {
3968 stack->first = insn;
3969 break;
3970 }
a0ae8e8d 3971
96fba521
SB
3972 gcc_assert (stack);
3973 }
23b2ce53 3974 }
96fba521
SB
3975}
3976
3977/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3978 If BB is NULL, an attempt is made to infer the bb from before.
3979
3980 This and the next function should be the only functions called
3981 to insert an insn once delay slots have been filled since only
3982 they know how to update a SEQUENCE. */
23b2ce53 3983
96fba521
SB
3984void
3985add_insn_after (rtx insn, rtx after, basic_block bb)
3986{
3987 add_insn_after_nobb (insn, after);
4b4bf941
JQ
3988 if (!BARRIER_P (after)
3989 && !BARRIER_P (insn)
3c030e88
JH
3990 && (bb = BLOCK_FOR_INSN (after)))
3991 {
3992 set_block_for_insn (insn, bb);
38c1593d 3993 if (INSN_P (insn))
6fb5fa3c 3994 df_insn_rescan (insn);
3c030e88 3995 /* Should not happen as first in the BB is always
a1f300c0 3996 either NOTE or LABEL. */
a813c111 3997 if (BB_END (bb) == after
3c030e88 3998 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 3999 && !BARRIER_P (insn)
a38e7aa5 4000 && !NOTE_INSN_BASIC_BLOCK_P (insn))
190bea87 4001 SET_BB_END (bb) = insn;
3c030e88 4002 }
23b2ce53
RS
4003}
4004
96fba521
SB
4005/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4006 If BB is NULL, an attempt is made to infer the bb from before.
4007
4008 This and the previous function should be the only functions called
4009 to insert an insn once delay slots have been filled since only
4010 they know how to update a SEQUENCE. */
a0ae8e8d
RK
4011
4012void
6fb5fa3c 4013add_insn_before (rtx insn, rtx before, basic_block bb)
a0ae8e8d 4014{
96fba521 4015 add_insn_before_nobb (insn, before);
a0ae8e8d 4016
b8698a0f 4017 if (!bb
6fb5fa3c
DB
4018 && !BARRIER_P (before)
4019 && !BARRIER_P (insn))
4020 bb = BLOCK_FOR_INSN (before);
4021
4022 if (bb)
3c030e88
JH
4023 {
4024 set_block_for_insn (insn, bb);
38c1593d 4025 if (INSN_P (insn))
6fb5fa3c 4026 df_insn_rescan (insn);
5b0264cb 4027 /* Should not happen as first in the BB is always either NOTE or
43e05e45 4028 LABEL. */
5b0264cb
NS
4029 gcc_assert (BB_HEAD (bb) != insn
4030 /* Avoid clobbering of structure when creating new BB. */
4031 || BARRIER_P (insn)
a38e7aa5 4032 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88 4033 }
a0ae8e8d
RK
4034}
4035
6fb5fa3c
DB
4036/* Replace insn with an deleted instruction note. */
4037
0ce2b299
EB
4038void
4039set_insn_deleted (rtx insn)
6fb5fa3c 4040{
39718607 4041 if (INSN_P (insn))
80eb8028 4042 df_insn_delete (insn);
6fb5fa3c
DB
4043 PUT_CODE (insn, NOTE);
4044 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4045}
4046
4047
1f397f45
SB
4048/* Unlink INSN from the insn chain.
4049
4050 This function knows how to handle sequences.
4051
4052 This function does not invalidate data flow information associated with
4053 INSN (i.e. does not call df_insn_delete). That makes this function
4054 usable for only disconnecting an insn from the chain, and re-emit it
4055 elsewhere later.
4056
4057 To later insert INSN elsewhere in the insn chain via add_insn and
4058 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4059 the caller. Nullifying them here breaks many insn chain walks.
4060
4061 To really delete an insn and related DF information, use delete_insn. */
4062
89e99eea 4063void
502b8322 4064remove_insn (rtx insn)
89e99eea
DB
4065{
4066 rtx next = NEXT_INSN (insn);
4067 rtx prev = PREV_INSN (insn);
53c17031
JH
4068 basic_block bb;
4069
89e99eea
DB
4070 if (prev)
4071 {
0f82e5c9 4072 SET_NEXT_INSN (prev) = next;
4b4bf941 4073 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea
DB
4074 {
4075 rtx sequence = PATTERN (prev);
0f82e5c9 4076 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
89e99eea
DB
4077 }
4078 }
5936d944
JH
4079 else if (get_insns () == insn)
4080 {
fb9ef4c1 4081 if (next)
0f82e5c9 4082 SET_PREV_INSN (next) = NULL;
5936d944
JH
4083 set_first_insn (next);
4084 }
89e99eea
DB
4085 else
4086 {
49ad7cfa 4087 struct sequence_stack *stack = seq_stack;
89e99eea
DB
4088 /* Scan all pending sequences too. */
4089 for (; stack; stack = stack->next)
4090 if (insn == stack->first)
4091 {
4092 stack->first = next;
4093 break;
4094 }
4095
5b0264cb 4096 gcc_assert (stack);
89e99eea
DB
4097 }
4098
4099 if (next)
4100 {
0f82e5c9 4101 SET_PREV_INSN (next) = prev;
4b4bf941 4102 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
0f82e5c9 4103 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
89e99eea 4104 }
5936d944
JH
4105 else if (get_last_insn () == insn)
4106 set_last_insn (prev);
89e99eea
DB
4107 else
4108 {
49ad7cfa 4109 struct sequence_stack *stack = seq_stack;
89e99eea
DB
4110 /* Scan all pending sequences too. */
4111 for (; stack; stack = stack->next)
4112 if (insn == stack->last)
4113 {
4114 stack->last = prev;
4115 break;
4116 }
4117
5b0264cb 4118 gcc_assert (stack);
89e99eea 4119 }
80eb8028 4120
80eb8028 4121 /* Fix up basic block boundaries, if necessary. */
4b4bf941 4122 if (!BARRIER_P (insn)
53c17031
JH
4123 && (bb = BLOCK_FOR_INSN (insn)))
4124 {
a813c111 4125 if (BB_HEAD (bb) == insn)
53c17031 4126 {
3bf1e984
RK
4127 /* Never ever delete the basic block note without deleting whole
4128 basic block. */
5b0264cb 4129 gcc_assert (!NOTE_P (insn));
190bea87 4130 SET_BB_HEAD (bb) = next;
53c17031 4131 }
a813c111 4132 if (BB_END (bb) == insn)
190bea87 4133 SET_BB_END (bb) = prev;
53c17031 4134 }
89e99eea
DB
4135}
4136
ee960939
OH
4137/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4138
4139void
502b8322 4140add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 4141{
5b0264cb 4142 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
4143
4144 /* Put the register usage information on the CALL. If there is already
4145 some usage information, put ours at the end. */
4146 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4147 {
4148 rtx link;
4149
4150 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4151 link = XEXP (link, 1))
4152 ;
4153
4154 XEXP (link, 1) = call_fusage;
4155 }
4156 else
4157 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4158}
4159
23b2ce53
RS
4160/* Delete all insns made since FROM.
4161 FROM becomes the new last instruction. */
4162
4163void
502b8322 4164delete_insns_since (rtx from)
23b2ce53
RS
4165{
4166 if (from == 0)
5936d944 4167 set_first_insn (0);
23b2ce53 4168 else
0f82e5c9 4169 SET_NEXT_INSN (from) = 0;
5936d944 4170 set_last_insn (from);
23b2ce53
RS
4171}
4172
5dab5552
MS
4173/* This function is deprecated, please use sequences instead.
4174
4175 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
4176 The insns to be moved are those between FROM and TO.
4177 They are moved to a new position after the insn AFTER.
4178 AFTER must not be FROM or TO or any insn in between.
4179
4180 This function does not know about SEQUENCEs and hence should not be
4181 called after delay-slot filling has been done. */
4182
4183void
502b8322 4184reorder_insns_nobb (rtx from, rtx to, rtx after)
23b2ce53 4185{
4f8344eb
HPN
4186#ifdef ENABLE_CHECKING
4187 rtx x;
4188 for (x = from; x != to; x = NEXT_INSN (x))
4189 gcc_assert (after != x);
4190 gcc_assert (after != to);
4191#endif
4192
23b2ce53
RS
4193 /* Splice this bunch out of where it is now. */
4194 if (PREV_INSN (from))
0f82e5c9 4195 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
23b2ce53 4196 if (NEXT_INSN (to))
0f82e5c9 4197 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
5936d944
JH
4198 if (get_last_insn () == to)
4199 set_last_insn (PREV_INSN (from));
4200 if (get_insns () == from)
4201 set_first_insn (NEXT_INSN (to));
23b2ce53
RS
4202
4203 /* Make the new neighbors point to it and it to them. */
4204 if (NEXT_INSN (after))
0f82e5c9 4205 SET_PREV_INSN (NEXT_INSN (after)) = to;
23b2ce53 4206
0f82e5c9
DM
4207 SET_NEXT_INSN (to) = NEXT_INSN (after);
4208 SET_PREV_INSN (from) = after;
4209 SET_NEXT_INSN (after) = from;
c3284718 4210 if (after == get_last_insn ())
5936d944 4211 set_last_insn (to);
23b2ce53
RS
4212}
4213
3c030e88
JH
4214/* Same as function above, but take care to update BB boundaries. */
4215void
502b8322 4216reorder_insns (rtx from, rtx to, rtx after)
3c030e88
JH
4217{
4218 rtx prev = PREV_INSN (from);
4219 basic_block bb, bb2;
4220
4221 reorder_insns_nobb (from, to, after);
4222
4b4bf941 4223 if (!BARRIER_P (after)
3c030e88
JH
4224 && (bb = BLOCK_FOR_INSN (after)))
4225 {
4226 rtx x;
6fb5fa3c 4227 df_set_bb_dirty (bb);
68252e27 4228
4b4bf941 4229 if (!BARRIER_P (from)
3c030e88
JH
4230 && (bb2 = BLOCK_FOR_INSN (from)))
4231 {
a813c111 4232 if (BB_END (bb2) == to)
190bea87 4233 SET_BB_END (bb2) = prev;
6fb5fa3c 4234 df_set_bb_dirty (bb2);
3c030e88
JH
4235 }
4236
a813c111 4237 if (BB_END (bb) == after)
190bea87 4238 SET_BB_END (bb) = to;
3c030e88
JH
4239
4240 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 4241 if (!BARRIER_P (x))
63642d5a 4242 df_insn_change_bb (x, bb);
3c030e88
JH
4243 }
4244}
4245
23b2ce53 4246\f
2f937369
DM
4247/* Emit insn(s) of given code and pattern
4248 at a specified place within the doubly-linked list.
23b2ce53 4249
2f937369
DM
4250 All of the emit_foo global entry points accept an object
4251 X which is either an insn list or a PATTERN of a single
4252 instruction.
23b2ce53 4253
2f937369
DM
4254 There are thus a few canonical ways to generate code and
4255 emit it at a specific place in the instruction stream. For
4256 example, consider the instruction named SPOT and the fact that
4257 we would like to emit some instructions before SPOT. We might
4258 do it like this:
23b2ce53 4259
2f937369
DM
4260 start_sequence ();
4261 ... emit the new instructions ...
4262 insns_head = get_insns ();
4263 end_sequence ();
23b2ce53 4264
2f937369 4265 emit_insn_before (insns_head, SPOT);
23b2ce53 4266
2f937369
DM
4267 It used to be common to generate SEQUENCE rtl instead, but that
4268 is a relic of the past which no longer occurs. The reason is that
4269 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4270 generated would almost certainly die right after it was created. */
23b2ce53 4271
5f02387d
NF
4272static rtx
4273emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
167b9fae 4274 rtx_insn *(*make_raw) (rtx))
23b2ce53 4275{
167b9fae 4276 rtx_insn *insn;
23b2ce53 4277
5b0264cb 4278 gcc_assert (before);
2f937369
DM
4279
4280 if (x == NULL_RTX)
4281 return last;
4282
4283 switch (GET_CODE (x))
23b2ce53 4284 {
b5b8b0ac 4285 case DEBUG_INSN:
2f937369
DM
4286 case INSN:
4287 case JUMP_INSN:
4288 case CALL_INSN:
4289 case CODE_LABEL:
4290 case BARRIER:
4291 case NOTE:
167b9fae 4292 insn = as_a <rtx_insn *> (x);
2f937369
DM
4293 while (insn)
4294 {
167b9fae 4295 rtx_insn *next = NEXT_INSN (insn);
6fb5fa3c 4296 add_insn_before (insn, before, bb);
2f937369
DM
4297 last = insn;
4298 insn = next;
4299 }
4300 break;
4301
4302#ifdef ENABLE_RTL_CHECKING
4303 case SEQUENCE:
5b0264cb 4304 gcc_unreachable ();
2f937369
DM
4305 break;
4306#endif
4307
4308 default:
5f02387d 4309 last = (*make_raw) (x);
6fb5fa3c 4310 add_insn_before (last, before, bb);
2f937369 4311 break;
23b2ce53
RS
4312 }
4313
2f937369 4314 return last;
23b2ce53
RS
4315}
4316
5f02387d
NF
4317/* Make X be output before the instruction BEFORE. */
4318
4319rtx
4320emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4321{
4322 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4323}
4324
2f937369 4325/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4326 and output it before the instruction BEFORE. */
4327
4328rtx
a7102479 4329emit_jump_insn_before_noloc (rtx x, rtx before)
23b2ce53 4330{
5f02387d
NF
4331 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4332 make_jump_insn_raw);
23b2ce53
RS
4333}
4334
2f937369 4335/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4336 and output it before the instruction BEFORE. */
4337
4338rtx
a7102479 4339emit_call_insn_before_noloc (rtx x, rtx before)
969d70ca 4340{
5f02387d
NF
4341 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4342 make_call_insn_raw);
969d70ca
JH
4343}
4344
b5b8b0ac
AO
4345/* Make an instruction with body X and code DEBUG_INSN
4346 and output it before the instruction BEFORE. */
4347
4348rtx
4349emit_debug_insn_before_noloc (rtx x, rtx before)
4350{
5f02387d
NF
4351 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4352 make_debug_insn_raw);
b5b8b0ac
AO
4353}
4354
23b2ce53 4355/* Make an insn of code BARRIER
e881bb1b 4356 and output it before the insn BEFORE. */
23b2ce53
RS
4357
4358rtx
502b8322 4359emit_barrier_before (rtx before)
23b2ce53 4360{
b3694847 4361 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4362
4363 INSN_UID (insn) = cur_insn_uid++;
4364
6fb5fa3c 4365 add_insn_before (insn, before, NULL);
23b2ce53
RS
4366 return insn;
4367}
4368
e881bb1b
RH
4369/* Emit the label LABEL before the insn BEFORE. */
4370
4371rtx
502b8322 4372emit_label_before (rtx label, rtx before)
e881bb1b 4373{
468660d3
SB
4374 gcc_checking_assert (INSN_UID (label) == 0);
4375 INSN_UID (label) = cur_insn_uid++;
4376 add_insn_before (label, before, NULL);
e881bb1b
RH
4377 return label;
4378}
23b2ce53 4379\f
2f937369
DM
4380/* Helper for emit_insn_after, handles lists of instructions
4381 efficiently. */
23b2ce53 4382
2f937369 4383static rtx
6fb5fa3c 4384emit_insn_after_1 (rtx first, rtx after, basic_block bb)
23b2ce53 4385{
2f937369
DM
4386 rtx last;
4387 rtx after_after;
6fb5fa3c
DB
4388 if (!bb && !BARRIER_P (after))
4389 bb = BLOCK_FOR_INSN (after);
23b2ce53 4390
6fb5fa3c 4391 if (bb)
23b2ce53 4392 {
6fb5fa3c 4393 df_set_bb_dirty (bb);
2f937369 4394 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4395 if (!BARRIER_P (last))
6fb5fa3c
DB
4396 {
4397 set_block_for_insn (last, bb);
4398 df_insn_rescan (last);
4399 }
4b4bf941 4400 if (!BARRIER_P (last))
6fb5fa3c
DB
4401 {
4402 set_block_for_insn (last, bb);
4403 df_insn_rescan (last);
4404 }
a813c111 4405 if (BB_END (bb) == after)
190bea87 4406 SET_BB_END (bb) = last;
23b2ce53
RS
4407 }
4408 else
2f937369
DM
4409 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4410 continue;
4411
4412 after_after = NEXT_INSN (after);
4413
0f82e5c9
DM
4414 SET_NEXT_INSN (after) = first;
4415 SET_PREV_INSN (first) = after;
4416 SET_NEXT_INSN (last) = after_after;
2f937369 4417 if (after_after)
0f82e5c9 4418 SET_PREV_INSN (after_after) = last;
2f937369 4419
c3284718 4420 if (after == get_last_insn ())
5936d944 4421 set_last_insn (last);
e855c69d 4422
2f937369
DM
4423 return last;
4424}
4425
5f02387d
NF
4426static rtx
4427emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
167b9fae 4428 rtx_insn *(*make_raw)(rtx))
2f937369
DM
4429{
4430 rtx last = after;
4431
5b0264cb 4432 gcc_assert (after);
2f937369
DM
4433
4434 if (x == NULL_RTX)
4435 return last;
4436
4437 switch (GET_CODE (x))
23b2ce53 4438 {
b5b8b0ac 4439 case DEBUG_INSN:
2f937369
DM
4440 case INSN:
4441 case JUMP_INSN:
4442 case CALL_INSN:
4443 case CODE_LABEL:
4444 case BARRIER:
4445 case NOTE:
6fb5fa3c 4446 last = emit_insn_after_1 (x, after, bb);
2f937369
DM
4447 break;
4448
4449#ifdef ENABLE_RTL_CHECKING
4450 case SEQUENCE:
5b0264cb 4451 gcc_unreachable ();
2f937369
DM
4452 break;
4453#endif
4454
4455 default:
5f02387d 4456 last = (*make_raw) (x);
6fb5fa3c 4457 add_insn_after (last, after, bb);
2f937369 4458 break;
23b2ce53
RS
4459 }
4460
2f937369 4461 return last;
23b2ce53
RS
4462}
4463
5f02387d
NF
4464/* Make X be output after the insn AFTER and set the BB of insn. If
4465 BB is NULL, an attempt is made to infer the BB from AFTER. */
4466
4467rtx
4468emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4469{
4470 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4471}
4472
255680cf 4473
2f937369 4474/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4475 and output it after the insn AFTER. */
4476
4477rtx
a7102479 4478emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4479{
5f02387d 4480 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
2f937369
DM
4481}
4482
4483/* Make an instruction with body X and code CALL_INSN
4484 and output it after the instruction AFTER. */
4485
4486rtx
a7102479 4487emit_call_insn_after_noloc (rtx x, rtx after)
2f937369 4488{
5f02387d 4489 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
23b2ce53
RS
4490}
4491
b5b8b0ac
AO
4492/* Make an instruction with body X and code CALL_INSN
4493 and output it after the instruction AFTER. */
4494
4495rtx
4496emit_debug_insn_after_noloc (rtx x, rtx after)
4497{
5f02387d 4498 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
b5b8b0ac
AO
4499}
4500
23b2ce53
RS
4501/* Make an insn of code BARRIER
4502 and output it after the insn AFTER. */
4503
4504rtx
502b8322 4505emit_barrier_after (rtx after)
23b2ce53 4506{
b3694847 4507 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4508
4509 INSN_UID (insn) = cur_insn_uid++;
4510
6fb5fa3c 4511 add_insn_after (insn, after, NULL);
23b2ce53
RS
4512 return insn;
4513}
4514
4515/* Emit the label LABEL after the insn AFTER. */
4516
4517rtx
502b8322 4518emit_label_after (rtx label, rtx after)
23b2ce53 4519{
468660d3
SB
4520 gcc_checking_assert (INSN_UID (label) == 0);
4521 INSN_UID (label) = cur_insn_uid++;
4522 add_insn_after (label, after, NULL);
23b2ce53
RS
4523 return label;
4524}
96fba521
SB
4525\f
4526/* Notes require a bit of special handling: Some notes need to have their
4527 BLOCK_FOR_INSN set, others should never have it set, and some should
4528 have it set or clear depending on the context. */
4529
4530/* Return true iff a note of kind SUBTYPE should be emitted with routines
4531 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4532 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4533
4534static bool
4535note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4536{
4537 switch (subtype)
4538 {
4539 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4540 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4541 return true;
4542
4543 /* Notes for var tracking and EH region markers can appear between or
4544 inside basic blocks. If the caller is emitting on the basic block
4545 boundary, do not set BLOCK_FOR_INSN on the new note. */
4546 case NOTE_INSN_VAR_LOCATION:
4547 case NOTE_INSN_CALL_ARG_LOCATION:
4548 case NOTE_INSN_EH_REGION_BEG:
4549 case NOTE_INSN_EH_REGION_END:
4550 return on_bb_boundary_p;
4551
4552 /* Otherwise, BLOCK_FOR_INSN must be set. */
4553 default:
4554 return false;
4555 }
4556}
23b2ce53
RS
4557
4558/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4559
4560rtx
a38e7aa5 4561emit_note_after (enum insn_note subtype, rtx after)
23b2ce53 4562{
96fba521
SB
4563 rtx note = make_note_raw (subtype);
4564 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4565 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4566
4567 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4568 add_insn_after_nobb (note, after);
4569 else
4570 add_insn_after (note, after, bb);
4571 return note;
4572}
4573
4574/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4575
4576rtx
4577emit_note_before (enum insn_note subtype, rtx before)
4578{
4579 rtx note = make_note_raw (subtype);
4580 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4581 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4582
4583 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4584 add_insn_before_nobb (note, before);
4585 else
4586 add_insn_before (note, before, bb);
23b2ce53
RS
4587 return note;
4588}
23b2ce53 4589\f
e8110d6f
NF
4590/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4591 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4592
4593static rtx
4594emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
167b9fae 4595 rtx_insn *(*make_raw) (rtx))
0d682900 4596{
e8110d6f 4597 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0d682900 4598
a7102479 4599 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4600 return last;
4601
2f937369
DM
4602 after = NEXT_INSN (after);
4603 while (1)
4604 {
5368224f
DC
4605 if (active_insn_p (after) && !INSN_LOCATION (after))
4606 INSN_LOCATION (after) = loc;
2f937369
DM
4607 if (after == last)
4608 break;
4609 after = NEXT_INSN (after);
4610 }
0d682900
JH
4611 return last;
4612}
4613
e8110d6f
NF
4614/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4615 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4616 any DEBUG_INSNs. */
4617
4618static rtx
4619emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
167b9fae 4620 rtx_insn *(*make_raw) (rtx))
a7102479 4621{
b5b8b0ac
AO
4622 rtx prev = after;
4623
e8110d6f
NF
4624 if (skip_debug_insns)
4625 while (DEBUG_INSN_P (prev))
4626 prev = PREV_INSN (prev);
b5b8b0ac
AO
4627
4628 if (INSN_P (prev))
5368224f 4629 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
e8110d6f 4630 make_raw);
a7102479 4631 else
e8110d6f 4632 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
a7102479
JH
4633}
4634
5368224f 4635/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
0d682900 4636rtx
e8110d6f 4637emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4638{
e8110d6f
NF
4639 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4640}
2f937369 4641
5368224f 4642/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
e8110d6f
NF
4643rtx
4644emit_insn_after (rtx pattern, rtx after)
4645{
4646 return emit_pattern_after (pattern, after, true, make_insn_raw);
4647}
dd3adcf8 4648
5368224f 4649/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
e8110d6f
NF
4650rtx
4651emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4652{
4653 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
0d682900
JH
4654}
4655
5368224f 4656/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
a7102479
JH
4657rtx
4658emit_jump_insn_after (rtx pattern, rtx after)
4659{
e8110d6f 4660 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
a7102479
JH
4661}
4662
5368224f 4663/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
0d682900 4664rtx
502b8322 4665emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4666{
e8110d6f 4667 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
0d682900
JH
4668}
4669
5368224f 4670/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
a7102479
JH
4671rtx
4672emit_call_insn_after (rtx pattern, rtx after)
4673{
e8110d6f 4674 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
a7102479
JH
4675}
4676
5368224f 4677/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
b5b8b0ac
AO
4678rtx
4679emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4680{
e8110d6f 4681 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
b5b8b0ac
AO
4682}
4683
5368224f 4684/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
b5b8b0ac
AO
4685rtx
4686emit_debug_insn_after (rtx pattern, rtx after)
4687{
e8110d6f 4688 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
b5b8b0ac
AO
4689}
4690
e8110d6f
NF
4691/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4692 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4693 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4694 CALL_INSN, etc. */
4695
4696static rtx
4697emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
167b9fae 4698 rtx_insn *(*make_raw) (rtx))
0d682900
JH
4699{
4700 rtx first = PREV_INSN (before);
e8110d6f
NF
4701 rtx last = emit_pattern_before_noloc (pattern, before,
4702 insnp ? before : NULL_RTX,
4703 NULL, make_raw);
a7102479
JH
4704
4705 if (pattern == NULL_RTX || !loc)
4706 return last;
4707
26cb3993
JH
4708 if (!first)
4709 first = get_insns ();
4710 else
4711 first = NEXT_INSN (first);
a7102479
JH
4712 while (1)
4713 {
5368224f
DC
4714 if (active_insn_p (first) && !INSN_LOCATION (first))
4715 INSN_LOCATION (first) = loc;
a7102479
JH
4716 if (first == last)
4717 break;
4718 first = NEXT_INSN (first);
4719 }
4720 return last;
4721}
4722
e8110d6f
NF
4723/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4724 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4725 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4726 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4727
4728static rtx
4729emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
167b9fae 4730 bool insnp, rtx_insn *(*make_raw) (rtx))
a7102479 4731{
b5b8b0ac
AO
4732 rtx next = before;
4733
e8110d6f
NF
4734 if (skip_debug_insns)
4735 while (DEBUG_INSN_P (next))
4736 next = PREV_INSN (next);
b5b8b0ac
AO
4737
4738 if (INSN_P (next))
5368224f 4739 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
e8110d6f 4740 insnp, make_raw);
a7102479 4741 else
e8110d6f
NF
4742 return emit_pattern_before_noloc (pattern, before,
4743 insnp ? before : NULL_RTX,
4744 NULL, make_raw);
a7102479
JH
4745}
4746
5368224f 4747/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
a7102479 4748rtx
e8110d6f 4749emit_insn_before_setloc (rtx pattern, rtx before, int loc)
a7102479 4750{
e8110d6f
NF
4751 return emit_pattern_before_setloc (pattern, before, loc, true,
4752 make_insn_raw);
4753}
a7102479 4754
5368224f 4755/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
e8110d6f
NF
4756rtx
4757emit_insn_before (rtx pattern, rtx before)
4758{
4759 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4760}
a7102479 4761
5368224f 4762/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
e8110d6f
NF
4763rtx
4764emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4765{
4766 return emit_pattern_before_setloc (pattern, before, loc, false,
4767 make_jump_insn_raw);
a7102479
JH
4768}
4769
5368224f 4770/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
a7102479
JH
4771rtx
4772emit_jump_insn_before (rtx pattern, rtx before)
4773{
e8110d6f
NF
4774 return emit_pattern_before (pattern, before, true, false,
4775 make_jump_insn_raw);
a7102479
JH
4776}
4777
5368224f 4778/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
a7102479
JH
4779rtx
4780emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4781{
e8110d6f
NF
4782 return emit_pattern_before_setloc (pattern, before, loc, false,
4783 make_call_insn_raw);
0d682900 4784}
a7102479 4785
e8110d6f 4786/* Like emit_call_insn_before_noloc,
5368224f 4787 but set insn_location according to BEFORE. */
a7102479
JH
4788rtx
4789emit_call_insn_before (rtx pattern, rtx before)
4790{
e8110d6f
NF
4791 return emit_pattern_before (pattern, before, true, false,
4792 make_call_insn_raw);
a7102479 4793}
b5b8b0ac 4794
5368224f 4795/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
b5b8b0ac
AO
4796rtx
4797emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4798{
e8110d6f
NF
4799 return emit_pattern_before_setloc (pattern, before, loc, false,
4800 make_debug_insn_raw);
b5b8b0ac
AO
4801}
4802
e8110d6f 4803/* Like emit_debug_insn_before_noloc,
5368224f 4804 but set insn_location according to BEFORE. */
b5b8b0ac
AO
4805rtx
4806emit_debug_insn_before (rtx pattern, rtx before)
4807{
e8110d6f
NF
4808 return emit_pattern_before (pattern, before, false, false,
4809 make_debug_insn_raw);
b5b8b0ac 4810}
0d682900 4811\f
2f937369
DM
4812/* Take X and emit it at the end of the doubly-linked
4813 INSN list.
23b2ce53
RS
4814
4815 Returns the last insn emitted. */
4816
4817rtx
502b8322 4818emit_insn (rtx x)
23b2ce53 4819{
c3284718 4820 rtx last = get_last_insn ();
2f937369 4821 rtx insn;
23b2ce53 4822
2f937369
DM
4823 if (x == NULL_RTX)
4824 return last;
23b2ce53 4825
2f937369
DM
4826 switch (GET_CODE (x))
4827 {
b5b8b0ac 4828 case DEBUG_INSN:
2f937369
DM
4829 case INSN:
4830 case JUMP_INSN:
4831 case CALL_INSN:
4832 case CODE_LABEL:
4833 case BARRIER:
4834 case NOTE:
4835 insn = x;
4836 while (insn)
23b2ce53 4837 {
2f937369 4838 rtx next = NEXT_INSN (insn);
23b2ce53 4839 add_insn (insn);
2f937369
DM
4840 last = insn;
4841 insn = next;
23b2ce53 4842 }
2f937369 4843 break;
23b2ce53 4844
2f937369 4845#ifdef ENABLE_RTL_CHECKING
39718607 4846 case JUMP_TABLE_DATA:
2f937369 4847 case SEQUENCE:
5b0264cb 4848 gcc_unreachable ();
2f937369
DM
4849 break;
4850#endif
23b2ce53 4851
2f937369
DM
4852 default:
4853 last = make_insn_raw (x);
4854 add_insn (last);
4855 break;
23b2ce53
RS
4856 }
4857
4858 return last;
4859}
4860
b5b8b0ac
AO
4861/* Make an insn of code DEBUG_INSN with pattern X
4862 and add it to the end of the doubly-linked list. */
4863
4864rtx
4865emit_debug_insn (rtx x)
4866{
c3284718 4867 rtx last = get_last_insn ();
b5b8b0ac
AO
4868 rtx insn;
4869
4870 if (x == NULL_RTX)
4871 return last;
4872
4873 switch (GET_CODE (x))
4874 {
4875 case DEBUG_INSN:
4876 case INSN:
4877 case JUMP_INSN:
4878 case CALL_INSN:
4879 case CODE_LABEL:
4880 case BARRIER:
4881 case NOTE:
4882 insn = x;
4883 while (insn)
4884 {
4885 rtx next = NEXT_INSN (insn);
4886 add_insn (insn);
4887 last = insn;
4888 insn = next;
4889 }
4890 break;
4891
4892#ifdef ENABLE_RTL_CHECKING
39718607 4893 case JUMP_TABLE_DATA:
b5b8b0ac
AO
4894 case SEQUENCE:
4895 gcc_unreachable ();
4896 break;
4897#endif
4898
4899 default:
4900 last = make_debug_insn_raw (x);
4901 add_insn (last);
4902 break;
4903 }
4904
4905 return last;
4906}
4907
2f937369
DM
4908/* Make an insn of code JUMP_INSN with pattern X
4909 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4910
4911rtx
502b8322 4912emit_jump_insn (rtx x)
23b2ce53 4913{
d950dee3 4914 rtx last = NULL_RTX, insn;
23b2ce53 4915
2f937369 4916 switch (GET_CODE (x))
23b2ce53 4917 {
b5b8b0ac 4918 case DEBUG_INSN:
2f937369
DM
4919 case INSN:
4920 case JUMP_INSN:
4921 case CALL_INSN:
4922 case CODE_LABEL:
4923 case BARRIER:
4924 case NOTE:
4925 insn = x;
4926 while (insn)
4927 {
4928 rtx next = NEXT_INSN (insn);
4929 add_insn (insn);
4930 last = insn;
4931 insn = next;
4932 }
4933 break;
e0a5c5eb 4934
2f937369 4935#ifdef ENABLE_RTL_CHECKING
39718607 4936 case JUMP_TABLE_DATA:
2f937369 4937 case SEQUENCE:
5b0264cb 4938 gcc_unreachable ();
2f937369
DM
4939 break;
4940#endif
e0a5c5eb 4941
2f937369
DM
4942 default:
4943 last = make_jump_insn_raw (x);
4944 add_insn (last);
4945 break;
3c030e88 4946 }
e0a5c5eb
RS
4947
4948 return last;
4949}
4950
2f937369 4951/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4952 and add it to the end of the doubly-linked list. */
4953
4954rtx
502b8322 4955emit_call_insn (rtx x)
23b2ce53 4956{
2f937369
DM
4957 rtx insn;
4958
4959 switch (GET_CODE (x))
23b2ce53 4960 {
b5b8b0ac 4961 case DEBUG_INSN:
2f937369
DM
4962 case INSN:
4963 case JUMP_INSN:
4964 case CALL_INSN:
4965 case CODE_LABEL:
4966 case BARRIER:
4967 case NOTE:
4968 insn = emit_insn (x);
4969 break;
23b2ce53 4970
2f937369
DM
4971#ifdef ENABLE_RTL_CHECKING
4972 case SEQUENCE:
39718607 4973 case JUMP_TABLE_DATA:
5b0264cb 4974 gcc_unreachable ();
2f937369
DM
4975 break;
4976#endif
23b2ce53 4977
2f937369
DM
4978 default:
4979 insn = make_call_insn_raw (x);
23b2ce53 4980 add_insn (insn);
2f937369 4981 break;
23b2ce53 4982 }
2f937369
DM
4983
4984 return insn;
23b2ce53
RS
4985}
4986
4987/* Add the label LABEL to the end of the doubly-linked list. */
4988
4989rtx
502b8322 4990emit_label (rtx label)
23b2ce53 4991{
468660d3
SB
4992 gcc_checking_assert (INSN_UID (label) == 0);
4993 INSN_UID (label) = cur_insn_uid++;
4994 add_insn (label);
23b2ce53
RS
4995 return label;
4996}
4997
39718607
SB
4998/* Make an insn of code JUMP_TABLE_DATA
4999 and add it to the end of the doubly-linked list. */
5000
5001rtx
5002emit_jump_table_data (rtx table)
5003{
5004 rtx jump_table_data = rtx_alloc (JUMP_TABLE_DATA);
5005 INSN_UID (jump_table_data) = cur_insn_uid++;
5006 PATTERN (jump_table_data) = table;
5007 BLOCK_FOR_INSN (jump_table_data) = NULL;
5008 add_insn (jump_table_data);
5009 return jump_table_data;
5010}
5011
23b2ce53
RS
5012/* Make an insn of code BARRIER
5013 and add it to the end of the doubly-linked list. */
5014
5015rtx
502b8322 5016emit_barrier (void)
23b2ce53 5017{
b3694847 5018 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
5019 INSN_UID (barrier) = cur_insn_uid++;
5020 add_insn (barrier);
5021 return barrier;
5022}
5023
5f2fc772 5024/* Emit a copy of note ORIG. */
502b8322 5025
5f2fc772
NS
5026rtx
5027emit_note_copy (rtx orig)
5028{
96fba521
SB
5029 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
5030 rtx note = make_note_raw (kind);
5f2fc772 5031 NOTE_DATA (note) = NOTE_DATA (orig);
5f2fc772 5032 add_insn (note);
2e040219 5033 return note;
23b2ce53
RS
5034}
5035
2e040219
NS
5036/* Make an insn of code NOTE or type NOTE_NO
5037 and add it to the end of the doubly-linked list. */
23b2ce53
RS
5038
5039rtx
a38e7aa5 5040emit_note (enum insn_note kind)
23b2ce53 5041{
96fba521 5042 rtx note = make_note_raw (kind);
23b2ce53
RS
5043 add_insn (note);
5044 return note;
5045}
5046
c41c1387
RS
5047/* Emit a clobber of lvalue X. */
5048
5049rtx
5050emit_clobber (rtx x)
5051{
5052 /* CONCATs should not appear in the insn stream. */
5053 if (GET_CODE (x) == CONCAT)
5054 {
5055 emit_clobber (XEXP (x, 0));
5056 return emit_clobber (XEXP (x, 1));
5057 }
5058 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5059}
5060
5061/* Return a sequence of insns to clobber lvalue X. */
5062
5063rtx
5064gen_clobber (rtx x)
5065{
5066 rtx seq;
5067
5068 start_sequence ();
5069 emit_clobber (x);
5070 seq = get_insns ();
5071 end_sequence ();
5072 return seq;
5073}
5074
5075/* Emit a use of rvalue X. */
5076
5077rtx
5078emit_use (rtx x)
5079{
5080 /* CONCATs should not appear in the insn stream. */
5081 if (GET_CODE (x) == CONCAT)
5082 {
5083 emit_use (XEXP (x, 0));
5084 return emit_use (XEXP (x, 1));
5085 }
5086 return emit_insn (gen_rtx_USE (VOIDmode, x));
5087}
5088
5089/* Return a sequence of insns to use rvalue X. */
5090
5091rtx
5092gen_use (rtx x)
5093{
5094 rtx seq;
5095
5096 start_sequence ();
5097 emit_use (x);
5098 seq = get_insns ();
5099 end_sequence ();
5100 return seq;
5101}
5102
c8912e53
RS
5103/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5104 Return the set in INSN that such notes describe, or NULL if the notes
5105 have no meaning for INSN. */
5106
5107rtx
5108set_for_reg_notes (rtx insn)
5109{
5110 rtx pat, reg;
5111
5112 if (!INSN_P (insn))
5113 return NULL_RTX;
5114
5115 pat = PATTERN (insn);
5116 if (GET_CODE (pat) == PARALLEL)
5117 {
5118 /* We do not use single_set because that ignores SETs of unused
5119 registers. REG_EQUAL and REG_EQUIV notes really do require the
5120 PARALLEL to have a single SET. */
5121 if (multiple_sets (insn))
5122 return NULL_RTX;
5123 pat = XVECEXP (pat, 0, 0);
5124 }
5125
5126 if (GET_CODE (pat) != SET)
5127 return NULL_RTX;
5128
5129 reg = SET_DEST (pat);
5130
5131 /* Notes apply to the contents of a STRICT_LOW_PART. */
5132 if (GET_CODE (reg) == STRICT_LOW_PART)
5133 reg = XEXP (reg, 0);
5134
5135 /* Check that we have a register. */
5136 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5137 return NULL_RTX;
5138
5139 return pat;
5140}
5141
87b47c85 5142/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 5143 note of this type already exists, remove it first. */
87b47c85 5144
3d238248 5145rtx
502b8322 5146set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
5147{
5148 rtx note = find_reg_note (insn, kind, NULL_RTX);
5149
52488da1
JW
5150 switch (kind)
5151 {
5152 case REG_EQUAL:
5153 case REG_EQUIV:
c8912e53
RS
5154 if (!set_for_reg_notes (insn))
5155 return NULL_RTX;
52488da1
JW
5156
5157 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5158 It serves no useful purpose and breaks eliminate_regs. */
5159 if (GET_CODE (datum) == ASM_OPERANDS)
5160 return NULL_RTX;
5161 break;
5162
5163 default:
5164 break;
5165 }
3d238248 5166
c8912e53
RS
5167 if (note)
5168 XEXP (note, 0) = datum;
5169 else
5170 {
5171 add_reg_note (insn, kind, datum);
5172 note = REG_NOTES (insn);
5173 }
6fb5fa3c
DB
5174
5175 switch (kind)
3d238248 5176 {
6fb5fa3c
DB
5177 case REG_EQUAL:
5178 case REG_EQUIV:
5179 df_notes_rescan (insn);
5180 break;
5181 default:
5182 break;
3d238248 5183 }
87b47c85 5184
c8912e53 5185 return note;
87b47c85 5186}
7543f918
JR
5187
5188/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5189rtx
5190set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5191{
c8912e53 5192 rtx set = set_for_reg_notes (insn);
7543f918
JR
5193
5194 if (set && SET_DEST (set) == dst)
5195 return set_unique_reg_note (insn, kind, datum);
5196 return NULL_RTX;
5197}
23b2ce53
RS
5198\f
5199/* Return an indication of which type of insn should have X as a body.
5200 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5201
d78db459 5202static enum rtx_code
502b8322 5203classify_insn (rtx x)
23b2ce53 5204{
4b4bf941 5205 if (LABEL_P (x))
23b2ce53
RS
5206 return CODE_LABEL;
5207 if (GET_CODE (x) == CALL)
5208 return CALL_INSN;
26898771 5209 if (ANY_RETURN_P (x))
23b2ce53
RS
5210 return JUMP_INSN;
5211 if (GET_CODE (x) == SET)
5212 {
5213 if (SET_DEST (x) == pc_rtx)
5214 return JUMP_INSN;
5215 else if (GET_CODE (SET_SRC (x)) == CALL)
5216 return CALL_INSN;
5217 else
5218 return INSN;
5219 }
5220 if (GET_CODE (x) == PARALLEL)
5221 {
b3694847 5222 int j;
23b2ce53
RS
5223 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5224 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5225 return CALL_INSN;
5226 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5227 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5228 return JUMP_INSN;
5229 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5230 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5231 return CALL_INSN;
5232 }
5233 return INSN;
5234}
5235
5236/* Emit the rtl pattern X as an appropriate kind of insn.
5237 If X is a label, it is simply added into the insn chain. */
5238
5239rtx
502b8322 5240emit (rtx x)
23b2ce53
RS
5241{
5242 enum rtx_code code = classify_insn (x);
5243
5b0264cb 5244 switch (code)
23b2ce53 5245 {
5b0264cb
NS
5246 case CODE_LABEL:
5247 return emit_label (x);
5248 case INSN:
5249 return emit_insn (x);
5250 case JUMP_INSN:
5251 {
5252 rtx insn = emit_jump_insn (x);
5253 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5254 return emit_barrier ();
5255 return insn;
5256 }
5257 case CALL_INSN:
5258 return emit_call_insn (x);
b5b8b0ac
AO
5259 case DEBUG_INSN:
5260 return emit_debug_insn (x);
5b0264cb
NS
5261 default:
5262 gcc_unreachable ();
23b2ce53 5263 }
23b2ce53
RS
5264}
5265\f
e2500fed 5266/* Space for free sequence stack entries. */
1431042e 5267static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 5268
4dfa0342
RH
5269/* Begin emitting insns to a sequence. If this sequence will contain
5270 something that might cause the compiler to pop arguments to function
5271 calls (because those pops have previously been deferred; see
5272 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5273 before calling this function. That will ensure that the deferred
5274 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
5275
5276void
502b8322 5277start_sequence (void)
23b2ce53
RS
5278{
5279 struct sequence_stack *tem;
5280
e2500fed
GK
5281 if (free_sequence_stack != NULL)
5282 {
5283 tem = free_sequence_stack;
5284 free_sequence_stack = tem->next;
5285 }
5286 else
766090c2 5287 tem = ggc_alloc<sequence_stack> ();
23b2ce53 5288
49ad7cfa 5289 tem->next = seq_stack;
5936d944
JH
5290 tem->first = get_insns ();
5291 tem->last = get_last_insn ();
23b2ce53 5292
49ad7cfa 5293 seq_stack = tem;
23b2ce53 5294
5936d944
JH
5295 set_first_insn (0);
5296 set_last_insn (0);
23b2ce53
RS
5297}
5298
5c7a310f
MM
5299/* Set up the insn chain starting with FIRST as the current sequence,
5300 saving the previously current one. See the documentation for
5301 start_sequence for more information about how to use this function. */
23b2ce53
RS
5302
5303void
502b8322 5304push_to_sequence (rtx first)
23b2ce53
RS
5305{
5306 rtx last;
5307
5308 start_sequence ();
5309
e84a58ff
EB
5310 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5311 ;
23b2ce53 5312
5936d944
JH
5313 set_first_insn (first);
5314 set_last_insn (last);
23b2ce53
RS
5315}
5316
bb27eeda
SE
5317/* Like push_to_sequence, but take the last insn as an argument to avoid
5318 looping through the list. */
5319
5320void
5321push_to_sequence2 (rtx first, rtx last)
5322{
5323 start_sequence ();
5324
5936d944
JH
5325 set_first_insn (first);
5326 set_last_insn (last);
bb27eeda
SE
5327}
5328
f15ae3a1
TW
5329/* Set up the outer-level insn chain
5330 as the current sequence, saving the previously current one. */
5331
5332void
502b8322 5333push_topmost_sequence (void)
f15ae3a1 5334{
aefdd5ab 5335 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
5336
5337 start_sequence ();
5338
49ad7cfa 5339 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
5340 top = stack;
5341
5936d944
JH
5342 set_first_insn (top->first);
5343 set_last_insn (top->last);
f15ae3a1
TW
5344}
5345
5346/* After emitting to the outer-level insn chain, update the outer-level
5347 insn chain, and restore the previous saved state. */
5348
5349void
502b8322 5350pop_topmost_sequence (void)
f15ae3a1 5351{
aefdd5ab 5352 struct sequence_stack *stack, *top = NULL;
f15ae3a1 5353
49ad7cfa 5354 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
5355 top = stack;
5356
5936d944
JH
5357 top->first = get_insns ();
5358 top->last = get_last_insn ();
f15ae3a1
TW
5359
5360 end_sequence ();
5361}
5362
23b2ce53
RS
5363/* After emitting to a sequence, restore previous saved state.
5364
5c7a310f 5365 To get the contents of the sequence just made, you must call
2f937369 5366 `get_insns' *before* calling here.
5c7a310f
MM
5367
5368 If the compiler might have deferred popping arguments while
5369 generating this sequence, and this sequence will not be immediately
5370 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 5371 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
5372 pops are inserted into this sequence, and not into some random
5373 location in the instruction stream. See INHIBIT_DEFER_POP for more
5374 information about deferred popping of arguments. */
23b2ce53
RS
5375
5376void
502b8322 5377end_sequence (void)
23b2ce53 5378{
49ad7cfa 5379 struct sequence_stack *tem = seq_stack;
23b2ce53 5380
5936d944
JH
5381 set_first_insn (tem->first);
5382 set_last_insn (tem->last);
49ad7cfa 5383 seq_stack = tem->next;
23b2ce53 5384
e2500fed
GK
5385 memset (tem, 0, sizeof (*tem));
5386 tem->next = free_sequence_stack;
5387 free_sequence_stack = tem;
23b2ce53
RS
5388}
5389
5390/* Return 1 if currently emitting into a sequence. */
5391
5392int
502b8322 5393in_sequence_p (void)
23b2ce53 5394{
49ad7cfa 5395 return seq_stack != 0;
23b2ce53 5396}
23b2ce53 5397\f
59ec66dc
MM
5398/* Put the various virtual registers into REGNO_REG_RTX. */
5399
2bbdec73 5400static void
bd60bab2 5401init_virtual_regs (void)
59ec66dc 5402{
bd60bab2
JH
5403 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5404 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5405 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5406 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5407 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
32990d5b
JJ
5408 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5409 = virtual_preferred_stack_boundary_rtx;
49ad7cfa
BS
5410}
5411
da43a810
BS
5412\f
5413/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5414static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5415static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5416static int copy_insn_n_scratches;
5417
5418/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5419 copied an ASM_OPERANDS.
5420 In that case, it is the original input-operand vector. */
5421static rtvec orig_asm_operands_vector;
5422
5423/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5424 copied an ASM_OPERANDS.
5425 In that case, it is the copied input-operand vector. */
5426static rtvec copy_asm_operands_vector;
5427
5428/* Likewise for the constraints vector. */
5429static rtvec orig_asm_constraints_vector;
5430static rtvec copy_asm_constraints_vector;
5431
5432/* Recursively create a new copy of an rtx for copy_insn.
5433 This function differs from copy_rtx in that it handles SCRATCHes and
5434 ASM_OPERANDs properly.
5435 Normally, this function is not used directly; use copy_insn as front end.
5436 However, you could first copy an insn pattern with copy_insn and then use
5437 this function afterwards to properly copy any REG_NOTEs containing
5438 SCRATCHes. */
5439
5440rtx
502b8322 5441copy_insn_1 (rtx orig)
da43a810 5442{
b3694847
SS
5443 rtx copy;
5444 int i, j;
5445 RTX_CODE code;
5446 const char *format_ptr;
da43a810 5447
cd9c1ca8
RH
5448 if (orig == NULL)
5449 return NULL;
5450
da43a810
BS
5451 code = GET_CODE (orig);
5452
5453 switch (code)
5454 {
5455 case REG:
a52a87c3 5456 case DEBUG_EXPR:
d8116890 5457 CASE_CONST_ANY:
da43a810
BS
5458 case SYMBOL_REF:
5459 case CODE_LABEL:
5460 case PC:
5461 case CC0:
276e0224 5462 case RETURN:
26898771 5463 case SIMPLE_RETURN:
da43a810 5464 return orig;
3e89ed8d 5465 case CLOBBER:
c5c5ba89
JH
5466 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5467 clobbers or clobbers of hard registers that originated as pseudos.
5468 This is needed to allow safe register renaming. */
5469 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5470 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
3e89ed8d
JH
5471 return orig;
5472 break;
da43a810
BS
5473
5474 case SCRATCH:
5475 for (i = 0; i < copy_insn_n_scratches; i++)
5476 if (copy_insn_scratch_in[i] == orig)
5477 return copy_insn_scratch_out[i];
5478 break;
5479
5480 case CONST:
6fb5fa3c 5481 if (shared_const_p (orig))
da43a810
BS
5482 return orig;
5483 break;
750c9258 5484
da43a810
BS
5485 /* A MEM with a constant address is not sharable. The problem is that
5486 the constant address may need to be reloaded. If the mem is shared,
5487 then reloading one copy of this mem will cause all copies to appear
5488 to have been reloaded. */
5489
5490 default:
5491 break;
5492 }
5493
aacd3885
RS
5494 /* Copy the various flags, fields, and other information. We assume
5495 that all fields need copying, and then clear the fields that should
da43a810
BS
5496 not be copied. That is the sensible default behavior, and forces
5497 us to explicitly document why we are *not* copying a flag. */
aacd3885 5498 copy = shallow_copy_rtx (orig);
da43a810
BS
5499
5500 /* We do not copy the USED flag, which is used as a mark bit during
5501 walks over the RTL. */
2adc7f12 5502 RTX_FLAG (copy, used) = 0;
da43a810
BS
5503
5504 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5505 if (INSN_P (orig))
da43a810 5506 {
2adc7f12
JJ
5507 RTX_FLAG (copy, jump) = 0;
5508 RTX_FLAG (copy, call) = 0;
5509 RTX_FLAG (copy, frame_related) = 0;
da43a810 5510 }
750c9258 5511
da43a810
BS
5512 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5513
5514 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5515 switch (*format_ptr++)
5516 {
5517 case 'e':
5518 if (XEXP (orig, i) != NULL)
5519 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5520 break;
da43a810 5521
aacd3885
RS
5522 case 'E':
5523 case 'V':
5524 if (XVEC (orig, i) == orig_asm_constraints_vector)
5525 XVEC (copy, i) = copy_asm_constraints_vector;
5526 else if (XVEC (orig, i) == orig_asm_operands_vector)
5527 XVEC (copy, i) = copy_asm_operands_vector;
5528 else if (XVEC (orig, i) != NULL)
5529 {
5530 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5531 for (j = 0; j < XVECLEN (copy, i); j++)
5532 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5533 }
5534 break;
da43a810 5535
aacd3885
RS
5536 case 't':
5537 case 'w':
5538 case 'i':
5539 case 's':
5540 case 'S':
5541 case 'u':
5542 case '0':
5543 /* These are left unchanged. */
5544 break;
da43a810 5545
aacd3885
RS
5546 default:
5547 gcc_unreachable ();
5548 }
da43a810
BS
5549
5550 if (code == SCRATCH)
5551 {
5552 i = copy_insn_n_scratches++;
5b0264cb 5553 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5554 copy_insn_scratch_in[i] = orig;
5555 copy_insn_scratch_out[i] = copy;
5556 }
5557 else if (code == ASM_OPERANDS)
5558 {
6462bb43
AO
5559 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5560 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5561 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5562 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5563 }
5564
5565 return copy;
5566}
5567
5568/* Create a new copy of an rtx.
5569 This function differs from copy_rtx in that it handles SCRATCHes and
5570 ASM_OPERANDs properly.
5571 INSN doesn't really have to be a full INSN; it could be just the
5572 pattern. */
5573rtx
502b8322 5574copy_insn (rtx insn)
da43a810
BS
5575{
5576 copy_insn_n_scratches = 0;
5577 orig_asm_operands_vector = 0;
5578 orig_asm_constraints_vector = 0;
5579 copy_asm_operands_vector = 0;
5580 copy_asm_constraints_vector = 0;
5581 return copy_insn_1 (insn);
5582}
59ec66dc 5583
8e383849
JR
5584/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5585 on that assumption that INSN itself remains in its original place. */
5586
5587rtx
5588copy_delay_slot_insn (rtx insn)
5589{
5590 /* Copy INSN with its rtx_code, all its notes, location etc. */
5591 insn = copy_rtx (insn);
5592 INSN_UID (insn) = cur_insn_uid++;
5593 return insn;
5594}
5595
23b2ce53
RS
5596/* Initialize data structures and variables in this file
5597 before generating rtl for each function. */
5598
5599void
502b8322 5600init_emit (void)
23b2ce53 5601{
5936d944
JH
5602 set_first_insn (NULL);
5603 set_last_insn (NULL);
b5b8b0ac
AO
5604 if (MIN_NONDEBUG_INSN_UID)
5605 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5606 else
5607 cur_insn_uid = 1;
5608 cur_debug_insn_uid = 1;
23b2ce53 5609 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
23b2ce53 5610 first_label_num = label_num;
49ad7cfa 5611 seq_stack = NULL;
23b2ce53 5612
23b2ce53
RS
5613 /* Init the tables that describe all the pseudo regs. */
5614
3e029763 5615 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5616
3e029763 5617 crtl->emit.regno_pointer_align
1b4572a8 5618 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5619
766090c2 5620 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
0d4903b8 5621
e50126e8 5622 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876 5623 memcpy (regno_reg_rtx,
5fb0e246 5624 initial_regno_reg_rtx,
6cde4876 5625 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5626
23b2ce53 5627 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5628 init_virtual_regs ();
740ab4a2
RK
5629
5630 /* Indicate that the virtual registers and stack locations are
5631 all pointers. */
3502dc9c
JDA
5632 REG_POINTER (stack_pointer_rtx) = 1;
5633 REG_POINTER (frame_pointer_rtx) = 1;
5634 REG_POINTER (hard_frame_pointer_rtx) = 1;
5635 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5636
3502dc9c
JDA
5637 REG_POINTER (virtual_incoming_args_rtx) = 1;
5638 REG_POINTER (virtual_stack_vars_rtx) = 1;
5639 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5640 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5641 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5642
86fe05e0 5643#ifdef STACK_BOUNDARY
bdb429a5
RK
5644 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5645 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5646 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5647 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5648
5649 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5650 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5651 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5652 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5653 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5654#endif
5655
5e82e7bd
JVA
5656#ifdef INIT_EXPANDERS
5657 INIT_EXPANDERS;
5658#endif
23b2ce53
RS
5659}
5660
a73b091d 5661/* Generate a vector constant for mode MODE and constant value CONSTANT. */
69ef87e2
AH
5662
5663static rtx
a73b091d 5664gen_const_vector (enum machine_mode mode, int constant)
69ef87e2
AH
5665{
5666 rtx tem;
5667 rtvec v;
5668 int units, i;
5669 enum machine_mode inner;
5670
5671 units = GET_MODE_NUNITS (mode);
5672 inner = GET_MODE_INNER (mode);
5673
15ed7b52
JG
5674 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5675
69ef87e2
AH
5676 v = rtvec_alloc (units);
5677
a73b091d
JW
5678 /* We need to call this function after we set the scalar const_tiny_rtx
5679 entries. */
5680 gcc_assert (const_tiny_rtx[constant][(int) inner]);
69ef87e2
AH
5681
5682 for (i = 0; i < units; ++i)
a73b091d 5683 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
69ef87e2 5684
a06e3c40 5685 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5686 return tem;
5687}
5688
a06e3c40 5689/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5690 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5691rtx
502b8322 5692gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
a06e3c40 5693{
a73b091d
JW
5694 enum machine_mode inner = GET_MODE_INNER (mode);
5695 int nunits = GET_MODE_NUNITS (mode);
5696 rtx x;
a06e3c40
R
5697 int i;
5698
a73b091d
JW
5699 /* Check to see if all of the elements have the same value. */
5700 x = RTVEC_ELT (v, nunits - 1);
5701 for (i = nunits - 2; i >= 0; i--)
5702 if (RTVEC_ELT (v, i) != x)
5703 break;
5704
5705 /* If the values are all the same, check to see if we can use one of the
5706 standard constant vectors. */
5707 if (i == -1)
5708 {
5709 if (x == CONST0_RTX (inner))
5710 return CONST0_RTX (mode);
5711 else if (x == CONST1_RTX (inner))
5712 return CONST1_RTX (mode);
e7c82a99
JJ
5713 else if (x == CONSTM1_RTX (inner))
5714 return CONSTM1_RTX (mode);
a73b091d
JW
5715 }
5716
5717 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5718}
5719
b5deb7b6
SL
5720/* Initialise global register information required by all functions. */
5721
5722void
5723init_emit_regs (void)
5724{
5725 int i;
1c3f523e
RS
5726 enum machine_mode mode;
5727 mem_attrs *attrs;
b5deb7b6
SL
5728
5729 /* Reset register attributes */
5730 htab_empty (reg_attrs_htab);
5731
5732 /* We need reg_raw_mode, so initialize the modes now. */
5733 init_reg_modes_target ();
5734
5735 /* Assign register numbers to the globally defined register rtx. */
b5deb7b6
SL
5736 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5737 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5738 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5739 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5740 virtual_incoming_args_rtx =
5741 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5742 virtual_stack_vars_rtx =
5743 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5744 virtual_stack_dynamic_rtx =
5745 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5746 virtual_outgoing_args_rtx =
5747 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5748 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
32990d5b
JJ
5749 virtual_preferred_stack_boundary_rtx =
5750 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
b5deb7b6
SL
5751
5752 /* Initialize RTL for commonly used hard registers. These are
5753 copied into regno_reg_rtx as we begin to compile each function. */
5754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5fb0e246 5755 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
b5deb7b6
SL
5756
5757#ifdef RETURN_ADDRESS_POINTER_REGNUM
5758 return_address_pointer_rtx
5759 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5760#endif
5761
b5deb7b6
SL
5762 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5763 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5764 else
5765 pic_offset_table_rtx = NULL_RTX;
1c3f523e
RS
5766
5767 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5768 {
5769 mode = (enum machine_mode) i;
766090c2 5770 attrs = ggc_cleared_alloc<mem_attrs> ();
1c3f523e
RS
5771 attrs->align = BITS_PER_UNIT;
5772 attrs->addrspace = ADDR_SPACE_GENERIC;
5773 if (mode != BLKmode)
5774 {
754c3d5d
RS
5775 attrs->size_known_p = true;
5776 attrs->size = GET_MODE_SIZE (mode);
1c3f523e
RS
5777 if (STRICT_ALIGNMENT)
5778 attrs->align = GET_MODE_ALIGNMENT (mode);
5779 }
5780 mode_mem_attrs[i] = attrs;
5781 }
b5deb7b6
SL
5782}
5783
aa3a12d6
RS
5784/* Initialize global machine_mode variables. */
5785
5786void
5787init_derived_machine_modes (void)
5788{
5789 byte_mode = VOIDmode;
5790 word_mode = VOIDmode;
5791
5792 for (enum machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5793 mode != VOIDmode;
5794 mode = GET_MODE_WIDER_MODE (mode))
5795 {
5796 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5797 && byte_mode == VOIDmode)
5798 byte_mode = mode;
5799
5800 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5801 && word_mode == VOIDmode)
5802 word_mode = mode;
5803 }
5804
5805 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5806}
5807
2d888286 5808/* Create some permanent unique rtl objects shared between all functions. */
23b2ce53
RS
5809
5810void
2d888286 5811init_emit_once (void)
23b2ce53
RS
5812{
5813 int i;
5814 enum machine_mode mode;
9ec36da5 5815 enum machine_mode double_mode;
23b2ce53 5816
807e902e
KZ
5817 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5818 CONST_FIXED, and memory attribute hash tables. */
17211ab5
GK
5819 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5820 const_int_htab_eq, NULL);
173b24b9 5821
807e902e
KZ
5822#if TARGET_SUPPORTS_WIDE_INT
5823 const_wide_int_htab = htab_create_ggc (37, const_wide_int_htab_hash,
5824 const_wide_int_htab_eq, NULL);
5825#endif
17211ab5
GK
5826 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5827 const_double_htab_eq, NULL);
5692c7bc 5828
091a3ac7
CF
5829 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5830 const_fixed_htab_eq, NULL);
5831
a560d4d4
JH
5832 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5833 reg_attrs_htab_eq, NULL);
67673f5c 5834
5da077de 5835#ifdef INIT_EXPANDERS
414c4dc4
NC
5836 /* This is to initialize {init|mark|free}_machine_status before the first
5837 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5838 end which calls push_function_context_to before the first call to
5da077de
AS
5839 init_function_start. */
5840 INIT_EXPANDERS;
5841#endif
5842
23b2ce53
RS
5843 /* Create the unique rtx's for certain rtx codes and operand values. */
5844
a2a8cc44 5845 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 5846 tries to use these variables. */
23b2ce53 5847 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5848 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5849 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5850
68d75312
JC
5851 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5852 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5853 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5854 else
3b80f6ca 5855 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5856
aa3a12d6
RS
5857 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5858
807e902e
KZ
5859 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5860 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5861 real_from_integer (&dconst2, double_mode, 2, SIGNED);
aefa9d43
KG
5862
5863 dconstm1 = dconst1;
5864 dconstm1.sign = 1;
03f2ea93
RS
5865
5866 dconsthalf = dconst1;
1e92bbb9 5867 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 5868
e7c82a99 5869 for (i = 0; i < 3; i++)
23b2ce53 5870 {
aefa9d43 5871 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
5872 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5873
15ed7b52
JG
5874 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5875 mode != VOIDmode;
5876 mode = GET_MODE_WIDER_MODE (mode))
5877 const_tiny_rtx[i][(int) mode] =
5878 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5879
5880 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5881 mode != VOIDmode;
23b2ce53 5882 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5883 const_tiny_rtx[i][(int) mode] =
5884 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5885
906c4e36 5886 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 5887
15ed7b52
JG
5888 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5889 mode != VOIDmode;
23b2ce53 5890 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5891 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559 5892
ede6c734
MS
5893 for (mode = MIN_MODE_PARTIAL_INT;
5894 mode <= MAX_MODE_PARTIAL_INT;
5895 mode = (enum machine_mode)((int)(mode) + 1))
33d3e559 5896 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5897 }
5898
e7c82a99
JJ
5899 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5900
5901 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5902 mode != VOIDmode;
5903 mode = GET_MODE_WIDER_MODE (mode))
5904 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5905
ede6c734
MS
5906 for (mode = MIN_MODE_PARTIAL_INT;
5907 mode <= MAX_MODE_PARTIAL_INT;
5908 mode = (enum machine_mode)((int)(mode) + 1))
c8a89d2a
BS
5909 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5910
e90721b1
AP
5911 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5912 mode != VOIDmode;
5913 mode = GET_MODE_WIDER_MODE (mode))
5914 {
5915 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5916 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5917 }
5918
5919 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5920 mode != VOIDmode;
5921 mode = GET_MODE_WIDER_MODE (mode))
5922 {
5923 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5924 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5925 }
5926
69ef87e2
AH
5927 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5928 mode != VOIDmode;
5929 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5930 {
5931 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5932 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
e7c82a99 5933 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
a73b091d 5934 }
69ef87e2
AH
5935
5936 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5937 mode != VOIDmode;
5938 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5939 {
5940 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5941 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5942 }
69ef87e2 5943
325217ed
CF
5944 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5945 mode != VOIDmode;
5946 mode = GET_MODE_WIDER_MODE (mode))
5947 {
c3284718
RS
5948 FCONST0 (mode).data.high = 0;
5949 FCONST0 (mode).data.low = 0;
5950 FCONST0 (mode).mode = mode;
091a3ac7
CF
5951 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5952 FCONST0 (mode), mode);
325217ed
CF
5953 }
5954
5955 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5956 mode != VOIDmode;
5957 mode = GET_MODE_WIDER_MODE (mode))
5958 {
c3284718
RS
5959 FCONST0 (mode).data.high = 0;
5960 FCONST0 (mode).data.low = 0;
5961 FCONST0 (mode).mode = mode;
091a3ac7
CF
5962 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5963 FCONST0 (mode), mode);
325217ed
CF
5964 }
5965
5966 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5967 mode != VOIDmode;
5968 mode = GET_MODE_WIDER_MODE (mode))
5969 {
c3284718
RS
5970 FCONST0 (mode).data.high = 0;
5971 FCONST0 (mode).data.low = 0;
5972 FCONST0 (mode).mode = mode;
091a3ac7
CF
5973 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5974 FCONST0 (mode), mode);
325217ed
CF
5975
5976 /* We store the value 1. */
c3284718
RS
5977 FCONST1 (mode).data.high = 0;
5978 FCONST1 (mode).data.low = 0;
5979 FCONST1 (mode).mode = mode;
5980 FCONST1 (mode).data
9be0ac8c
LC
5981 = double_int_one.lshift (GET_MODE_FBIT (mode),
5982 HOST_BITS_PER_DOUBLE_INT,
5983 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5984 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5985 FCONST1 (mode), mode);
325217ed
CF
5986 }
5987
5988 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5989 mode != VOIDmode;
5990 mode = GET_MODE_WIDER_MODE (mode))
5991 {
c3284718
RS
5992 FCONST0 (mode).data.high = 0;
5993 FCONST0 (mode).data.low = 0;
5994 FCONST0 (mode).mode = mode;
091a3ac7
CF
5995 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5996 FCONST0 (mode), mode);
325217ed
CF
5997
5998 /* We store the value 1. */
c3284718
RS
5999 FCONST1 (mode).data.high = 0;
6000 FCONST1 (mode).data.low = 0;
6001 FCONST1 (mode).mode = mode;
6002 FCONST1 (mode).data
9be0ac8c
LC
6003 = double_int_one.lshift (GET_MODE_FBIT (mode),
6004 HOST_BITS_PER_DOUBLE_INT,
6005 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
6006 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6007 FCONST1 (mode), mode);
6008 }
6009
6010 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6011 mode != VOIDmode;
6012 mode = GET_MODE_WIDER_MODE (mode))
6013 {
6014 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6015 }
6016
6017 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6018 mode != VOIDmode;
6019 mode = GET_MODE_WIDER_MODE (mode))
6020 {
6021 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6022 }
6023
6024 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6025 mode != VOIDmode;
6026 mode = GET_MODE_WIDER_MODE (mode))
6027 {
6028 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6029 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6030 }
6031
6032 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6033 mode != VOIDmode;
6034 mode = GET_MODE_WIDER_MODE (mode))
6035 {
6036 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6037 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
6038 }
6039
dbbbbf3b
JDA
6040 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6041 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
6042 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 6043
f0417c82
RH
6044 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6045 if (STORE_FLAG_VALUE == 1)
6046 const_tiny_rtx[1][(int) BImode] = const1_rtx;
ca4adc91
RS
6047
6048 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6049 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6050 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6051 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
23b2ce53 6052}
a11759a3 6053\f
969d70ca
JH
6054/* Produce exact duplicate of insn INSN after AFTER.
6055 Care updating of libcall regions if present. */
6056
6057rtx
502b8322 6058emit_copy_of_insn_after (rtx insn, rtx after)
969d70ca 6059{
60564289 6060 rtx new_rtx, link;
969d70ca
JH
6061
6062 switch (GET_CODE (insn))
6063 {
6064 case INSN:
60564289 6065 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
6066 break;
6067
6068 case JUMP_INSN:
60564289 6069 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
ec27069c 6070 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
969d70ca
JH
6071 break;
6072
b5b8b0ac
AO
6073 case DEBUG_INSN:
6074 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6075 break;
6076
969d70ca 6077 case CALL_INSN:
60564289 6078 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 6079 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 6080 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 6081 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
6082 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6083 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6084 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
b8698a0f 6085 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 6086 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
6087 break;
6088
6089 default:
5b0264cb 6090 gcc_unreachable ();
969d70ca
JH
6091 }
6092
6093 /* Update LABEL_NUSES. */
60564289 6094 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 6095
5368224f 6096 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ba4f7968 6097
0a3d71f5
JW
6098 /* If the old insn is frame related, then so is the new one. This is
6099 primarily needed for IA-64 unwind info which marks epilogue insns,
6100 which may be duplicated by the basic block reordering code. */
60564289 6101 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 6102
cf7c4aa6
HPN
6103 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6104 will make them. REG_LABEL_TARGETs are created there too, but are
6105 supposed to be sticky, so we copy them. */
969d70ca 6106 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 6107 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca
JH
6108 {
6109 if (GET_CODE (link) == EXPR_LIST)
60564289 6110 add_reg_note (new_rtx, REG_NOTE_KIND (link),
65c5f2a6 6111 copy_insn_1 (XEXP (link, 0)));
969d70ca 6112 else
e5af9ddd 6113 add_shallow_copy_of_reg_note (new_rtx, link);
969d70ca
JH
6114 }
6115
60564289
KG
6116 INSN_CODE (new_rtx) = INSN_CODE (insn);
6117 return new_rtx;
969d70ca 6118}
e2500fed 6119
1431042e 6120static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d
JH
6121rtx
6122gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6123{
6124 if (hard_reg_clobbers[mode][regno])
6125 return hard_reg_clobbers[mode][regno];
6126 else
6127 return (hard_reg_clobbers[mode][regno] =
6128 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6129}
6130
5368224f
DC
6131location_t prologue_location;
6132location_t epilogue_location;
78bde837
SB
6133
6134/* Hold current location information and last location information, so the
6135 datastructures are built lazily only when some instructions in given
6136 place are needed. */
3a50da34 6137static location_t curr_location;
78bde837 6138
5368224f 6139/* Allocate insn location datastructure. */
78bde837 6140void
5368224f 6141insn_locations_init (void)
78bde837 6142{
5368224f 6143 prologue_location = epilogue_location = 0;
78bde837 6144 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6145}
6146
6147/* At the end of emit stage, clear current location. */
6148void
5368224f 6149insn_locations_finalize (void)
78bde837 6150{
5368224f
DC
6151 epilogue_location = curr_location;
6152 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6153}
6154
6155/* Set current location. */
6156void
5368224f 6157set_curr_insn_location (location_t location)
78bde837 6158{
78bde837
SB
6159 curr_location = location;
6160}
6161
6162/* Get current location. */
6163location_t
5368224f 6164curr_insn_location (void)
78bde837
SB
6165{
6166 return curr_location;
6167}
6168
78bde837
SB
6169/* Return lexical scope block insn belongs to. */
6170tree
6171insn_scope (const_rtx insn)
6172{
5368224f 6173 return LOCATION_BLOCK (INSN_LOCATION (insn));
78bde837
SB
6174}
6175
6176/* Return line number of the statement that produced this insn. */
6177int
6178insn_line (const_rtx insn)
6179{
5368224f 6180 return LOCATION_LINE (INSN_LOCATION (insn));
78bde837
SB
6181}
6182
6183/* Return source file of the statement that produced this insn. */
6184const char *
6185insn_file (const_rtx insn)
6186{
5368224f 6187 return LOCATION_FILE (INSN_LOCATION (insn));
78bde837 6188}
8930883e 6189
ffa4602f
EB
6190/* Return expanded location of the statement that produced this insn. */
6191expanded_location
6192insn_location (const_rtx insn)
6193{
6194 return expand_location (INSN_LOCATION (insn));
6195}
6196
8930883e
MK
6197/* Return true if memory model MODEL requires a pre-operation (release-style)
6198 barrier or a post-operation (acquire-style) barrier. While not universal,
6199 this function matches behavior of several targets. */
6200
6201bool
6202need_atomic_barrier_p (enum memmodel model, bool pre)
6203{
88e784e6 6204 switch (model & MEMMODEL_MASK)
8930883e
MK
6205 {
6206 case MEMMODEL_RELAXED:
6207 case MEMMODEL_CONSUME:
6208 return false;
6209 case MEMMODEL_RELEASE:
6210 return pre;
6211 case MEMMODEL_ACQUIRE:
6212 return !pre;
6213 case MEMMODEL_ACQ_REL:
6214 case MEMMODEL_SEQ_CST:
6215 return true;
6216 default:
6217 gcc_unreachable ();
6218 }
6219}
6220\f
e2500fed 6221#include "gt-emit-rtl.h"