]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
Daily bump.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
15bbde2b 1/* Emit RTL for the GNU C-Compiler expander.
ddca3e9d 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
5377f687 3 1999, 2000, 2001 Free Software Foundation, Inc.
15bbde2b 4
f12b58b3 5This file is part of GCC.
15bbde2b 6
f12b58b3 7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
15bbde2b 11
f12b58b3 12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
15bbde2b 16
17You should have received a copy of the GNU General Public License
f12b58b3 18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
15bbde2b 21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
405711de 39#include "system.h"
d3b64f2d 40#include "toplev.h"
15bbde2b 41#include "rtl.h"
3fd7e17f 42#include "tree.h"
7953c610 43#include "tm_p.h"
15bbde2b 44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
c6b6c51f 48#include "hard-reg-set.h"
73f5c1e3 49#include "hashtab.h"
15bbde2b 50#include "insn-config.h"
0dbd1c74 51#include "recog.h"
15bbde2b 52#include "real.h"
649d8da6 53#include "obstack.h"
a3426c4c 54#include "bitmap.h"
f3d96a58 55#include "basic-block.h"
a7b0c170 56#include "ggc.h"
b29760a8 57#include "debug.h"
b0278d39 58#include "langhooks.h"
649d8da6 59
399d45d3 60/* Commonly used modes. */
61
a92771b8 62enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
63enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9e042f31 64enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
a92771b8 65enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
399d45d3 66
15bbde2b 67
68/* This is *not* reset after each function. It gives each CODE_LABEL
69 in the entire compilation a unique label number. */
70
71static int label_num = 1;
72
15bbde2b 73/* Highest label number in current function.
74 Zero means use the value of label_num instead.
75 This is nonzero only when belatedly compiling an inline function. */
76
77static int last_label_num;
78
79/* Value label_num had when set_new_first_and_last_label_number was called.
80 If label_num has not changed since then, last_label_num is valid. */
81
82static int base_label_num;
83
84/* Nonzero means do not generate NOTEs for source line numbers. */
85
86static int no_line_numbers;
87
88/* Commonly used rtx's, so that we only need space for one copy.
89 These are initialized once for the entire compilation.
90 All of these except perhaps the floating-point CONST_DOUBLEs
91 are unique; no other rtx-object will be equal to any of these. */
92
57c097d5 93rtx global_rtl[GR_MAX];
15bbde2b 94
95/* We record floating-point CONST_DOUBLEs in each floating-point mode for
96 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
97 record a copy of const[012]_rtx. */
98
99rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
100
1a60f06a 101rtx const_true_rtx;
102
15bbde2b 103REAL_VALUE_TYPE dconst0;
104REAL_VALUE_TYPE dconst1;
105REAL_VALUE_TYPE dconst2;
106REAL_VALUE_TYPE dconstm1;
107
108/* All references to the following fixed hard registers go through
109 these unique rtl objects. On machines where the frame-pointer and
110 arg-pointer are the same register, they use the same unique object.
111
112 After register allocation, other rtl objects which used to be pseudo-regs
113 may be clobbered to refer to the frame-pointer register.
114 But references that were originally to the frame-pointer can be
115 distinguished from the others because they contain frame_pointer_rtx.
116
90c25824 117 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
118 tricky: until register elimination has taken place hard_frame_pointer_rtx
d823ba47 119 should be used if it is being set, and frame_pointer_rtx otherwise. After
90c25824 120 register elimination hard_frame_pointer_rtx should always be used.
121 On machines where the two registers are same (most) then these are the
122 same.
123
15bbde2b 124 In an inline procedure, the stack and frame pointer rtxs may not be
125 used for anything else. */
15bbde2b 126rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
127rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
128rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
129rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
130rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
131
4b0c5859 132/* This is used to implement __builtin_return_address for some machines.
133 See for instance the MIPS port. */
134rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
135
15bbde2b 136/* We make one copy of (const_int C) where C is in
137 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
138 to save space during the compilation and simplify comparisons of
139 integers. */
140
57c097d5 141rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
15bbde2b 142
73f5c1e3 143/* A hash table storing CONST_INTs whose absolute value is greater
144 than MAX_SAVED_CONST_INT. */
145
146static htab_t const_int_htab;
147
c6259b83 148/* A hash table storing memory attribute structures. */
149static htab_t mem_attrs_htab;
150
15bbde2b 151/* start_sequence and gen_sequence can make a lot of rtx expressions which are
152 shortly thrown away. We use two mechanisms to prevent this waste:
153
1bfd55c5 154 For sizes up to 5 elements, we keep a SEQUENCE and its associated
155 rtvec for use by gen_sequence. One entry for each size is
156 sufficient because most cases are calls to gen_sequence followed by
157 immediately emitting the SEQUENCE. Reuse is safe since emitting a
158 sequence is destructive on the insn in it anyway and hence can't be
159 redone.
15bbde2b 160
161 We do not bother to save this cached data over nested function calls.
162 Instead, we just reinitialize them. */
163
164#define SEQUENCE_RESULT_SIZE 5
165
15bbde2b 166static rtx sequence_result[SEQUENCE_RESULT_SIZE];
167
a92771b8 168/* During RTL generation, we also keep a list of free INSN rtl codes. */
575333f9 169static rtx free_insn;
170
08513b52 171#define first_insn (cfun->emit->x_first_insn)
172#define last_insn (cfun->emit->x_last_insn)
173#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
174#define last_linenum (cfun->emit->x_last_linenum)
175#define last_filename (cfun->emit->x_last_filename)
176#define first_label_num (cfun->emit->x_first_label_num)
15bbde2b 177
621f6678 178static rtx make_jump_insn_raw PARAMS ((rtx));
179static rtx make_call_insn_raw PARAMS ((rtx));
180static rtx find_line_note PARAMS ((rtx));
181static void mark_sequence_stack PARAMS ((struct sequence_stack *));
96216d37 182static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
183 int));
2d96a59a 184static void unshare_all_rtl_1 PARAMS ((rtx));
72ec8878 185static void unshare_all_decls PARAMS ((tree));
01dc9f0c 186static void reset_used_decls PARAMS ((tree));
344dc2fa 187static void mark_label_nuses PARAMS ((rtx));
73f5c1e3 188static hashval_t const_int_htab_hash PARAMS ((const void *));
189static int const_int_htab_eq PARAMS ((const void *,
190 const void *));
c6259b83 191static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
192static int mem_attrs_htab_eq PARAMS ((const void *,
193 const void *));
194static void mem_attrs_mark PARAMS ((const void *));
195static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
5cc193e7 196 rtx, unsigned int,
197 enum machine_mode));
b10dbbca 198static tree component_ref_for_mem_expr PARAMS ((tree));
73f5c1e3 199
3cd757b1 200/* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202int split_branch_probability = -1;
649d8da6 203\f
73f5c1e3 204/* Returns a hash code for X (which is a really a CONST_INT). */
205
206static hashval_t
207const_int_htab_hash (x)
208 const void *x;
209{
5e431971 210 return (hashval_t) INTVAL ((const struct rtx_def *) x);
73f5c1e3 211}
212
213/* Returns non-zero if the value represented by X (which is really a
214 CONST_INT) is the same as that given by Y (which is really a
215 HOST_WIDE_INT *). */
216
217static int
218const_int_htab_eq (x, y)
219 const void *x;
220 const void *y;
221{
5e431971 222 return (INTVAL ((const struct rtx_def *) x) == *((const HOST_WIDE_INT *) y));
73f5c1e3 223}
224
c6259b83 225/* Returns a hash code for X (which is a really a mem_attrs *). */
226
227static hashval_t
228mem_attrs_htab_hash (x)
229 const void *x;
230{
231 mem_attrs *p = (mem_attrs *) x;
232
233 return (p->alias ^ (p->align * 1000)
234 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
235 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
b10dbbca 236 ^ (size_t) p->expr);
c6259b83 237}
238
239/* Returns non-zero if the value represented by X (which is really a
240 mem_attrs *) is the same as that given by Y (which is also really a
241 mem_attrs *). */
73f5c1e3 242
243static int
c6259b83 244mem_attrs_htab_eq (x, y)
245 const void *x;
246 const void *y;
73f5c1e3 247{
c6259b83 248 mem_attrs *p = (mem_attrs *) x;
249 mem_attrs *q = (mem_attrs *) y;
250
b10dbbca 251 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
c6259b83 252 && p->size == q->size && p->align == q->align);
73f5c1e3 253}
254
c6259b83 255/* This routine is called when we determine that we need a mem_attrs entry.
256 It marks the associated decl and RTL as being used, if present. */
73f5c1e3 257
258static void
c6259b83 259mem_attrs_mark (x)
260 const void *x;
73f5c1e3 261{
c6259b83 262 mem_attrs *p = (mem_attrs *) x;
263
b10dbbca 264 if (p->expr)
265 ggc_mark_tree (p->expr);
c6259b83 266
267 if (p->offset)
268 ggc_mark_rtx (p->offset);
269
270 if (p->size)
271 ggc_mark_rtx (p->size);
272}
273
274/* Allocate a new mem_attrs structure and insert it into the hash table if
5cc193e7 275 one identical to it is not already in the table. We are doing this for
276 MEM of mode MODE. */
c6259b83 277
278static mem_attrs *
b10dbbca 279get_mem_attrs (alias, expr, offset, size, align, mode)
c6259b83 280 HOST_WIDE_INT alias;
b10dbbca 281 tree expr;
c6259b83 282 rtx offset;
283 rtx size;
284 unsigned int align;
5cc193e7 285 enum machine_mode mode;
c6259b83 286{
287 mem_attrs attrs;
288 void **slot;
289
5cc193e7 290 /* If everything is the default, we can just return zero. */
b10dbbca 291 if (alias == 0 && expr == 0 && offset == 0
5cc193e7 292 && (size == 0
293 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
675ffff3 294 && (align == BITS_PER_UNIT
5cc193e7 295 || (mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
296 return 0;
297
c6259b83 298 attrs.alias = alias;
b10dbbca 299 attrs.expr = expr;
c6259b83 300 attrs.offset = offset;
301 attrs.size = size;
302 attrs.align = align;
303
304 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
305 if (*slot == 0)
306 {
307 *slot = ggc_alloc (sizeof (mem_attrs));
308 memcpy (*slot, &attrs, sizeof (mem_attrs));
309 }
310
311 return *slot;
73f5c1e3 312}
313
22cf44bc 314/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
315 don't attempt to share with the various global pieces of rtl (such as
316 frame_pointer_rtx). */
317
318rtx
319gen_raw_REG (mode, regno)
320 enum machine_mode mode;
321 int regno;
322{
323 rtx x = gen_rtx_raw_REG (mode, regno);
324 ORIGINAL_REGNO (x) = regno;
325 return x;
326}
327
7014838c 328/* There are some RTL codes that require special attention; the generation
329 functions do the raw handling. If you add to this list, modify
330 special_rtx in gengenrtl.c as well. */
331
3ad7bb1c 332rtx
333gen_rtx_CONST_INT (mode, arg)
73f5c1e3 334 enum machine_mode mode ATTRIBUTE_UNUSED;
3ad7bb1c 335 HOST_WIDE_INT arg;
336{
73f5c1e3 337 void **slot;
338
3ad7bb1c 339 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
57c097d5 340 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3ad7bb1c 341
342#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
343 if (const_true_rtx && arg == STORE_FLAG_VALUE)
344 return const_true_rtx;
345#endif
346
73f5c1e3 347 /* Look up the CONST_INT in the hash table. */
2b3dbc20 348 slot = htab_find_slot_with_hash (const_int_htab, &arg,
349 (hashval_t) arg, INSERT);
7f2875d3 350 if (*slot == 0)
d7c47c0e 351 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
73f5c1e3 352
353 return (rtx) *slot;
3ad7bb1c 354}
355
7f2875d3 356/* CONST_DOUBLEs needs special handling because their length is known
67f2a2eb 357 only at run-time. */
7f2875d3 358
67f2a2eb 359rtx
ebde4c17 360gen_rtx_CONST_DOUBLE (mode, arg0, arg1)
67f2a2eb 361 enum machine_mode mode;
ebde4c17 362 HOST_WIDE_INT arg0, arg1;
67f2a2eb 363{
364 rtx r = rtx_alloc (CONST_DOUBLE);
4e929432 365 int i;
366
67f2a2eb 367 PUT_MODE (r, mode);
ebde4c17 368 X0EXP (r, 0) = NULL_RTX;
369 XWINT (r, 1) = arg0;
4e929432 370 XWINT (r, 2) = arg1;
4e929432 371
ebde4c17 372 for (i = GET_RTX_LENGTH (CONST_DOUBLE) - 1; i > 2; --i)
4e929432 373 XWINT (r, i) = 0;
374
67f2a2eb 375 return r;
376}
377
3ad7bb1c 378rtx
379gen_rtx_REG (mode, regno)
380 enum machine_mode mode;
381 int regno;
382{
383 /* In case the MD file explicitly references the frame pointer, have
384 all such references point to the same frame pointer. This is
385 used during frame pointer elimination to distinguish the explicit
386 references to these registers from pseudos that happened to be
387 assigned to them.
388
389 If we have eliminated the frame pointer or arg pointer, we will
390 be using it as a normal register, for example as a spill
391 register. In such cases, we might be accessing it in a mode that
392 is not Pmode and therefore cannot use the pre-allocated rtx.
393
394 Also don't do this when we are making new REGs in reload, since
395 we don't want to get confused with the real pointers. */
396
397 if (mode == Pmode && !reload_in_progress)
398 {
e8b59353 399 if (regno == FRAME_POINTER_REGNUM)
3ad7bb1c 400 return frame_pointer_rtx;
401#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e8b59353 402 if (regno == HARD_FRAME_POINTER_REGNUM)
3ad7bb1c 403 return hard_frame_pointer_rtx;
404#endif
405#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
e8b59353 406 if (regno == ARG_POINTER_REGNUM)
3ad7bb1c 407 return arg_pointer_rtx;
408#endif
409#ifdef RETURN_ADDRESS_POINTER_REGNUM
e8b59353 410 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3ad7bb1c 411 return return_address_pointer_rtx;
412#endif
e8b59353 413 if (regno == STACK_POINTER_REGNUM)
3ad7bb1c 414 return stack_pointer_rtx;
415 }
416
22cf44bc 417 return gen_raw_REG (mode, regno);
3ad7bb1c 418}
419
b5ba9f3a 420rtx
421gen_rtx_MEM (mode, addr)
422 enum machine_mode mode;
423 rtx addr;
424{
425 rtx rt = gen_rtx_raw_MEM (mode, addr);
426
427 /* This field is not cleared by the mere allocation of the rtx, so
428 we clear it here. */
c6259b83 429 MEM_ATTRS (rt) = 0;
b5ba9f3a 430
431 return rt;
432}
701e46d0 433
434rtx
435gen_rtx_SUBREG (mode, reg, offset)
436 enum machine_mode mode;
437 rtx reg;
438 int offset;
439{
440 /* This is the most common failure type.
441 Catch it early so we can see who does it. */
442 if ((offset % GET_MODE_SIZE (mode)) != 0)
443 abort ();
444
445 /* This check isn't usable right now because combine will
446 throw arbitrary crap like a CALL into a SUBREG in
447 gen_lowpart_for_combine so we must just eat it. */
448#if 0
449 /* Check for this too. */
450 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
451 abort ();
452#endif
453 return gen_rtx_fmt_ei (SUBREG, mode, reg, offset);
454}
455
c6259b83 456/* Generate a SUBREG representing the least-significant part of REG if MODE
457 is smaller than mode of REG, otherwise paradoxical SUBREG. */
458
701e46d0 459rtx
460gen_lowpart_SUBREG (mode, reg)
461 enum machine_mode mode;
462 rtx reg;
463{
464 enum machine_mode inmode;
701e46d0 465
466 inmode = GET_MODE (reg);
467 if (inmode == VOIDmode)
468 inmode = mode;
81802af6 469 return gen_rtx_SUBREG (mode, reg,
470 subreg_lowpart_offset (mode, inmode));
701e46d0 471}
7014838c 472\f
15bbde2b 473/* rtx gen_rtx (code, mode, [element1, ..., elementn])
474**
475** This routine generates an RTX of the size specified by
476** <code>, which is an RTX code. The RTX structure is initialized
477** from the arguments <element1> through <elementn>, which are
478** interpreted according to the specific RTX type's format. The
479** special machine mode associated with the rtx (if any) is specified
480** in <mode>.
481**
fc92fa61 482** gen_rtx can be invoked in a way which resembles the lisp-like
15bbde2b 483** rtx it will generate. For example, the following rtx structure:
484**
485** (plus:QI (mem:QI (reg:SI 1))
486** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
487**
488** ...would be generated by the following C code:
489**
d823ba47 490** gen_rtx (PLUS, QImode,
15bbde2b 491** gen_rtx (MEM, QImode,
492** gen_rtx (REG, SImode, 1)),
493** gen_rtx (MEM, QImode,
494** gen_rtx (PLUS, SImode,
495** gen_rtx (REG, SImode, 2),
496** gen_rtx (REG, SImode, 3)))),
497*/
498
499/*VARARGS2*/
500rtx
621f6678 501gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
15bbde2b 502{
19cb6b50 503 int i; /* Array indices... */
504 const char *fmt; /* Current rtx's format... */
505 rtx rt_val; /* RTX to return to caller... */
15bbde2b 506
0903457a 507 VA_OPEN (p, mode);
508 VA_FIXEDARG (p, enum rtx_code, code);
509 VA_FIXEDARG (p, enum machine_mode, mode);
15bbde2b 510
67f2a2eb 511 switch (code)
15bbde2b 512 {
67f2a2eb 513 case CONST_INT:
514 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
515 break;
516
517 case CONST_DOUBLE:
518 {
ebde4c17 519 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
67f2a2eb 520 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
ebde4c17 521
522 rt_val = gen_rtx_CONST_DOUBLE (mode, arg0, arg1);
67f2a2eb 523 }
524 break;
525
526 case REG:
527 rt_val = gen_rtx_REG (mode, va_arg (p, int));
528 break;
529
530 case MEM:
531 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
532 break;
533
534 default:
15bbde2b 535 rt_val = rtx_alloc (code); /* Allocate the storage space. */
536 rt_val->mode = mode; /* Store the machine mode... */
537
538 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
539 for (i = 0; i < GET_RTX_LENGTH (code); i++)
540 {
541 switch (*fmt++)
542 {
543 case '0': /* Unused field. */
544 break;
545
546 case 'i': /* An integer? */
547 XINT (rt_val, i) = va_arg (p, int);
548 break;
549
b572011e 550 case 'w': /* A wide integer? */
551 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
552 break;
553
15bbde2b 554 case 's': /* A string? */
555 XSTR (rt_val, i) = va_arg (p, char *);
556 break;
557
558 case 'e': /* An expression? */
559 case 'u': /* An insn? Same except when printing. */
560 XEXP (rt_val, i) = va_arg (p, rtx);
561 break;
562
563 case 'E': /* An RTX vector? */
564 XVEC (rt_val, i) = va_arg (p, rtvec);
565 break;
566
a3426c4c 567 case 'b': /* A bitmap? */
568 XBITMAP (rt_val, i) = va_arg (p, bitmap);
569 break;
570
571 case 't': /* A tree? */
572 XTREE (rt_val, i) = va_arg (p, tree);
573 break;
574
15bbde2b 575 default:
fc92fa61 576 abort ();
15bbde2b 577 }
578 }
67f2a2eb 579 break;
15bbde2b 580 }
67f2a2eb 581
0903457a 582 VA_CLOSE (p);
67f2a2eb 583 return rt_val;
15bbde2b 584}
585
586/* gen_rtvec (n, [rt1, ..., rtn])
587**
588** This routine creates an rtvec and stores within it the
589** pointers to rtx's which are its arguments.
590*/
591
592/*VARARGS1*/
593rtvec
621f6678 594gen_rtvec VPARAMS ((int n, ...))
15bbde2b 595{
7ad77798 596 int i, save_n;
15bbde2b 597 rtx *vector;
598
0903457a 599 VA_OPEN (p, n);
600 VA_FIXEDARG (p, int, n);
15bbde2b 601
602 if (n == 0)
603 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
604
605 vector = (rtx *) alloca (n * sizeof (rtx));
e5fcd76a 606
15bbde2b 607 for (i = 0; i < n; i++)
608 vector[i] = va_arg (p, rtx);
7ad77798 609
610 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
611 save_n = n;
0903457a 612 VA_CLOSE (p);
15bbde2b 613
7ad77798 614 return gen_rtvec_v (save_n, vector);
15bbde2b 615}
616
617rtvec
618gen_rtvec_v (n, argp)
619 int n;
620 rtx *argp;
621{
19cb6b50 622 int i;
623 rtvec rt_val;
15bbde2b 624
625 if (n == 0)
626 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
627
628 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
629
630 for (i = 0; i < n; i++)
a4070a91 631 rt_val->elem[i] = *argp++;
15bbde2b 632
633 return rt_val;
634}
635\f
636/* Generate a REG rtx for a new pseudo register of mode MODE.
637 This pseudo is assigned the next sequential register number. */
638
639rtx
640gen_reg_rtx (mode)
641 enum machine_mode mode;
642{
08513b52 643 struct function *f = cfun;
19cb6b50 644 rtx val;
15bbde2b 645
9e519b97 646 /* Don't let anything called after initial flow analysis create new
647 registers. */
648 if (no_new_pseudos)
15bbde2b 649 abort ();
650
316bc009 651 if (generating_concat_p
652 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
653 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
76c37538 654 {
655 /* For complex modes, don't make a single pseudo.
656 Instead, make a CONCAT of two pseudos.
657 This allows noncontiguous allocation of the real and imaginary parts,
658 which makes much better code. Besides, allocating DCmode
659 pseudos overstrains reload on some machines like the 386. */
660 rtx realpart, imagpart;
661 int size = GET_MODE_UNIT_SIZE (mode);
662 enum machine_mode partmode
663 = mode_for_size (size * BITS_PER_UNIT,
664 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
665 ? MODE_FLOAT : MODE_INT),
666 0);
667
668 realpart = gen_reg_rtx (partmode);
669 imagpart = gen_reg_rtx (partmode);
3ad7bb1c 670 return gen_rtx_CONCAT (mode, realpart, imagpart);
76c37538 671 }
672
fcdc122e 673 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
674 enough to have an element for this pseudo reg number. */
15bbde2b 675
e61a0a7f 676 if (reg_rtx_no == f->emit->regno_pointer_align_length)
15bbde2b 677 {
e61a0a7f 678 int old_size = f->emit->regno_pointer_align_length;
26df1c5e 679 char *new;
fcdc122e 680 rtx *new1;
681 tree *new2;
682
26df1c5e 683 new = xrealloc (f->emit->regno_pointer_align, old_size * 2);
0a893c29 684 memset (new + old_size, 0, old_size);
4491f79f 685 f->emit->regno_pointer_align = (unsigned char *) new;
0a893c29 686
26df1c5e 687 new1 = (rtx *) xrealloc (f->emit->x_regno_reg_rtx,
688 old_size * 2 * sizeof (rtx));
0a893c29 689 memset (new1 + old_size, 0, old_size * sizeof (rtx));
15bbde2b 690 regno_reg_rtx = new1;
691
fcdc122e 692 new2 = (tree *) xrealloc (f->emit->regno_decl,
693 old_size * 2 * sizeof (tree));
694 memset (new2 + old_size, 0, old_size * sizeof (tree));
695 f->emit->regno_decl = new2;
696
e61a0a7f 697 f->emit->regno_pointer_align_length = old_size * 2;
15bbde2b 698 }
699
22cf44bc 700 val = gen_raw_REG (mode, reg_rtx_no);
15bbde2b 701 regno_reg_rtx[reg_rtx_no++] = val;
702 return val;
703}
704
de8ecfb5 705/* Identify REG (which may be a CONCAT) as a user register. */
706
707void
708mark_user_reg (reg)
709 rtx reg;
710{
711 if (GET_CODE (reg) == CONCAT)
712 {
713 REG_USERVAR_P (XEXP (reg, 0)) = 1;
714 REG_USERVAR_P (XEXP (reg, 1)) = 1;
715 }
716 else if (GET_CODE (reg) == REG)
717 REG_USERVAR_P (reg) = 1;
718 else
719 abort ();
720}
721
d4c332ff 722/* Identify REG as a probable pointer register and show its alignment
723 as ALIGN, if nonzero. */
15bbde2b 724
725void
d4c332ff 726mark_reg_pointer (reg, align)
15bbde2b 727 rtx reg;
d4c332ff 728 int align;
15bbde2b 729{
e61a0a7f 730 if (! REG_POINTER (reg))
612409a6 731 {
e61a0a7f 732 REG_POINTER (reg) = 1;
d4c332ff 733
612409a6 734 if (align)
735 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
736 }
737 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
738 /* We can no-longer be sure just how aligned this pointer is */
d4c332ff 739 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
15bbde2b 740}
741
742/* Return 1 plus largest pseudo reg number used in the current function. */
743
744int
745max_reg_num ()
746{
747 return reg_rtx_no;
748}
749
750/* Return 1 + the largest label number used so far in the current function. */
751
752int
753max_label_num ()
754{
755 if (last_label_num && label_num == base_label_num)
756 return last_label_num;
757 return label_num;
758}
759
760/* Return first label number used in this function (if any were used). */
761
762int
763get_first_label_num ()
764{
765 return first_label_num;
766}
767\f
701e46d0 768/* Return the final regno of X, which is a SUBREG of a hard
769 register. */
770int
771subreg_hard_regno (x, check_mode)
19cb6b50 772 rtx x;
701e46d0 773 int check_mode;
774{
775 enum machine_mode mode = GET_MODE (x);
776 unsigned int byte_offset, base_regno, final_regno;
777 rtx reg = SUBREG_REG (x);
778
779 /* This is where we attempt to catch illegal subregs
780 created by the compiler. */
781 if (GET_CODE (x) != SUBREG
782 || GET_CODE (reg) != REG)
783 abort ();
784 base_regno = REGNO (reg);
785 if (base_regno >= FIRST_PSEUDO_REGISTER)
786 abort ();
475fa9bd 787 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
701e46d0 788 abort ();
789
790 /* Catch non-congruent offsets too. */
791 byte_offset = SUBREG_BYTE (x);
792 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
793 abort ();
794
795 final_regno = subreg_regno (x);
796
797 return final_regno;
798}
799
15bbde2b 800/* Return a value representing some low-order bits of X, where the number
801 of low-order bits is given by MODE. Note that no conversion is done
d823ba47 802 between floating-point and fixed-point values, rather, the bit
15bbde2b 803 representation is returned.
804
805 This function handles the cases in common between gen_lowpart, below,
806 and two variants in cse.c and combine.c. These are the cases that can
807 be safely handled at all points in the compilation.
808
809 If this is not a case we can handle, return 0. */
810
811rtx
812gen_lowpart_common (mode, x)
813 enum machine_mode mode;
19cb6b50 814 rtx x;
15bbde2b 815{
701e46d0 816 int msize = GET_MODE_SIZE (mode);
817 int xsize = GET_MODE_SIZE (GET_MODE (x));
818 int offset = 0;
15bbde2b 819
820 if (GET_MODE (x) == mode)
821 return x;
822
823 /* MODE must occupy no more words than the mode of X. */
824 if (GET_MODE (x) != VOIDmode
701e46d0 825 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
826 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
15bbde2b 827 return 0;
828
81802af6 829 offset = subreg_lowpart_offset (mode, GET_MODE (x));
15bbde2b 830
831 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
64115b39 832 && (GET_MODE_CLASS (mode) == MODE_INT
833 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
15bbde2b 834 {
835 /* If we are getting the low-order part of something that has been
836 sign- or zero-extended, we can either just use the object being
837 extended or make a narrower extension. If we want an even smaller
838 piece than the size of the object being extended, call ourselves
839 recursively.
840
841 This case is used mostly by combine and cse. */
842
843 if (GET_MODE (XEXP (x, 0)) == mode)
844 return XEXP (x, 0);
845 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
846 return gen_lowpart_common (mode, XEXP (x, 0));
847 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3ad7bb1c 848 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
15bbde2b 849 }
3c27c2b2 850 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
851 || GET_CODE (x) == CONCAT)
81802af6 852 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
15bbde2b 853 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
854 from the low-order part of the constant. */
64115b39 855 else if ((GET_MODE_CLASS (mode) == MODE_INT
856 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
857 && GET_MODE (x) == VOIDmode
15bbde2b 858 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
99e0010b 859 {
860 /* If MODE is twice the host word size, X is already the desired
861 representation. Otherwise, if MODE is wider than a word, we can't
b3b27b2a 862 do this. If MODE is exactly a word, return just one CONST_INT. */
99e0010b 863
d347deeb 864 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
99e0010b 865 return x;
b572011e 866 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
99e0010b 867 return 0;
b572011e 868 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
99e0010b 869 return (GET_CODE (x) == CONST_INT ? x
b572011e 870 : GEN_INT (CONST_DOUBLE_LOW (x)));
99e0010b 871 else
872 {
a0d52dee 873 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
b572011e 874 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
875 : CONST_DOUBLE_LOW (x));
99e0010b 876
a0d52dee 877 /* Sign extend to HOST_WIDE_INT. */
b3b27b2a 878 val = trunc_int_for_mode (val, mode);
99e0010b 879
880 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
b572011e 881 : GEN_INT (val));
99e0010b 882 }
883 }
15bbde2b 884
c8971cad 885#ifndef REAL_ARITHMETIC
4a307dd5 886 /* If X is an integral constant but we want it in floating-point, it
887 must be the case that we have a union of an integer and a floating-point
888 value. If the machine-parameters allow it, simulate that union here
d823ba47 889 and return the result. The two-word and single-word cases are
414a3664 890 different. */
4a307dd5 891
f51cb679 892 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 893 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 894 || flag_pretend_float)
4a307dd5 895 && GET_MODE_CLASS (mode) == MODE_FLOAT
414a3664 896 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
897 && GET_CODE (x) == CONST_INT
b572011e 898 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
414a3664 899 {
b572011e 900 union {HOST_WIDE_INT i; float d; } u;
414a3664 901
902 u.i = INTVAL (x);
715907c0 903 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
414a3664 904 }
414a3664 905 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 906 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
414a3664 907 || flag_pretend_float)
908 && GET_MODE_CLASS (mode) == MODE_FLOAT
909 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
4a307dd5 910 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
911 && GET_MODE (x) == VOIDmode
b572011e 912 && (sizeof (double) * HOST_BITS_PER_CHAR
913 == 2 * HOST_BITS_PER_WIDE_INT))
4a307dd5 914 {
b572011e 915 union {HOST_WIDE_INT i[2]; double d; } u;
916 HOST_WIDE_INT low, high;
4a307dd5 917
918 if (GET_CODE (x) == CONST_INT)
b572011e 919 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
4a307dd5 920 else
921 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
922
923#ifdef HOST_WORDS_BIG_ENDIAN
924 u.i[0] = high, u.i[1] = low;
925#else
926 u.i[0] = low, u.i[1] = high;
927#endif
928
715907c0 929 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
4a307dd5 930 }
e21bed9e 931
f51cb679 932 /* Similarly, if this is converting a floating-point value into a
933 single-word integer. Only do this is the host and target parameters are
934 compatible. */
935
936 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 937 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 938 || flag_pretend_float)
64115b39 939 && (GET_MODE_CLASS (mode) == MODE_INT
940 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
f51cb679 941 && GET_CODE (x) == CONST_DOUBLE
942 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
943 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
701e46d0 944 return constant_subword (x, (offset / UNITS_PER_WORD), GET_MODE (x));
f51cb679 945
4a307dd5 946 /* Similarly, if this is converting a floating-point value into a
947 two-word integer, we can do this one word at a time and make an
948 integer. Only do this is the host and target parameters are
949 compatible. */
950
f51cb679 951 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 952 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
f51cb679 953 || flag_pretend_float)
64115b39 954 && (GET_MODE_CLASS (mode) == MODE_INT
6ff0332a 955 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4a307dd5 956 && GET_CODE (x) == CONST_DOUBLE
957 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
958 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
959 {
701e46d0 960 rtx lowpart, highpart;
961
962 lowpart = constant_subword (x,
963 (offset / UNITS_PER_WORD) + WORDS_BIG_ENDIAN,
964 GET_MODE (x));
965 highpart = constant_subword (x,
966 (offset / UNITS_PER_WORD) + (! WORDS_BIG_ENDIAN),
967 GET_MODE (x));
4a307dd5 968 if (lowpart && GET_CODE (lowpart) == CONST_INT
969 && highpart && GET_CODE (highpart) == CONST_INT)
970 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
971 }
c8971cad 972#else /* ifndef REAL_ARITHMETIC */
973
974 /* When we have a FP emulator, we can handle all conversions between
975 FP and integer operands. This simplifies reload because it
976 doesn't have to deal with constructs like (subreg:DI
977 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
7547817f 978 /* Single-precision floats are always 32-bits and double-precision
979 floats are always 64-bits. */
c8971cad 980
3c27c2b2 981 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
7547817f 982 && GET_MODE_BITSIZE (mode) == 32
c8971cad 983 && GET_CODE (x) == CONST_INT)
3c27c2b2 984 {
c8971cad 985 REAL_VALUE_TYPE r;
986 HOST_WIDE_INT i;
987
988 i = INTVAL (x);
989 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
990 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
3c27c2b2 991 }
992 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
7547817f 993 && GET_MODE_BITSIZE (mode) == 64
c8971cad 994 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
995 && GET_MODE (x) == VOIDmode)
996 {
997 REAL_VALUE_TYPE r;
998 HOST_WIDE_INT i[2];
999 HOST_WIDE_INT low, high;
1000
1001 if (GET_CODE (x) == CONST_INT)
1002 {
1003 low = INTVAL (x);
1004 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1005 }
1006 else
1007 {
d823ba47 1008 low = CONST_DOUBLE_LOW (x);
c8971cad 1009 high = CONST_DOUBLE_HIGH (x);
1010 }
1011
1012 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1013 target machine. */
1014 if (WORDS_BIG_ENDIAN)
1015 i[0] = high, i[1] = low;
1016 else
1017 i[0] = low, i[1] = high;
1018
1019 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
1020 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1021 }
1022 else if ((GET_MODE_CLASS (mode) == MODE_INT
1023 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1024 && GET_CODE (x) == CONST_DOUBLE
1025 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1026 {
1027 REAL_VALUE_TYPE r;
1028 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1029 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1030
db6bf7a6 1031 /* Convert 'r' into an array of four 32-bit words in target word
1032 order. */
c8971cad 1033 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
7547817f 1034 switch (GET_MODE_BITSIZE (GET_MODE (x)))
c8971cad 1035 {
7547817f 1036 case 32:
db6bf7a6 1037 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
1038 i[1] = 0;
1039 i[2] = 0;
1040 i[3 - 3 * endian] = 0;
1041 break;
7547817f 1042 case 64:
db6bf7a6 1043 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
1044 i[2 - 2 * endian] = 0;
1045 i[3 - 2 * endian] = 0;
1046 break;
7547817f 1047 case 96:
3f980cf7 1048 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
db6bf7a6 1049 i[3 - 3 * endian] = 0;
3c27c2b2 1050 break;
7547817f 1051 case 128:
c8971cad 1052 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1053 break;
1054 default:
a774762c 1055 abort ();
c8971cad 1056 }
c8971cad 1057 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1058 and return it. */
1059#if HOST_BITS_PER_WIDE_INT == 32
db6bf7a6 1060 return immed_double_const (i[3 * endian], i[1 + endian], mode);
c8971cad 1061#else
db6bf7a6 1062 if (HOST_BITS_PER_WIDE_INT != 64)
1063 abort ();
83e32a86 1064
23f63ace 1065 return immed_double_const ((((unsigned long) i[3 * endian])
1066 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1067 (((unsigned long) i[2 - endian])
1068 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
db6bf7a6 1069 mode);
c8971cad 1070#endif
1071 }
1072#endif /* ifndef REAL_ARITHMETIC */
4a307dd5 1073
15bbde2b 1074 /* Otherwise, we can't do this. */
1075 return 0;
1076}
1077\f
568f439b 1078/* Return the real part (which has mode MODE) of a complex value X.
1079 This always comes at the low address in memory. */
1080
1081rtx
1082gen_realpart (mode, x)
1083 enum machine_mode mode;
19cb6b50 1084 rtx x;
568f439b 1085{
81802af6 1086 if (WORDS_BIG_ENDIAN
1087 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1088 && REG_P (x)
1089 && REGNO (x) < FIRST_PSEUDO_REGISTER)
f060a027 1090 internal_error
68435912 1091 ("can't access real part of complex value in hard register");
0864dc1b 1092 else if (WORDS_BIG_ENDIAN)
568f439b 1093 return gen_highpart (mode, x);
1094 else
1095 return gen_lowpart (mode, x);
1096}
1097
1098/* Return the imaginary part (which has mode MODE) of a complex value X.
1099 This always comes at the high address in memory. */
1100
1101rtx
1102gen_imagpart (mode, x)
1103 enum machine_mode mode;
19cb6b50 1104 rtx x;
568f439b 1105{
81802af6 1106 if (WORDS_BIG_ENDIAN)
568f439b 1107 return gen_lowpart (mode, x);
701e46d0 1108 else if (! WORDS_BIG_ENDIAN
ea9a92b6 1109 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1110 && REG_P (x)
1111 && REGNO (x) < FIRST_PSEUDO_REGISTER)
f060a027 1112 internal_error
1113 ("can't access imaginary part of complex value in hard register");
568f439b 1114 else
1115 return gen_highpart (mode, x);
1116}
48c70a46 1117
1118/* Return 1 iff X, assumed to be a SUBREG,
1119 refers to the real part of the complex value in its containing reg.
1120 Complex values are always stored with the real part in the first word,
1121 regardless of WORDS_BIG_ENDIAN. */
1122
1123int
1124subreg_realpart_p (x)
1125 rtx x;
1126{
1127 if (GET_CODE (x) != SUBREG)
1128 abort ();
1129
701e46d0 1130 return ((unsigned int) SUBREG_BYTE (x)
02e7a332 1131 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
48c70a46 1132}
568f439b 1133\f
15bbde2b 1134/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1135 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1136 least-significant part of X.
1137 MODE specifies how big a part of X to return;
1138 it usually should not be larger than a word.
1139 If X is a MEM whose address is a QUEUED, the value may be so also. */
1140
1141rtx
1142gen_lowpart (mode, x)
1143 enum machine_mode mode;
19cb6b50 1144 rtx x;
15bbde2b 1145{
1146 rtx result = gen_lowpart_common (mode, x);
1147
1148 if (result)
1149 return result;
365c9063 1150 else if (GET_CODE (x) == REG)
1151 {
1152 /* Must be a hard reg that's not valid in MODE. */
1153 result = gen_lowpart_common (mode, copy_to_reg (x));
1154 if (result == 0)
1155 abort ();
314d6ec8 1156 return result;
365c9063 1157 }
15bbde2b 1158 else if (GET_CODE (x) == MEM)
1159 {
1160 /* The only additional case we can do is MEM. */
19cb6b50 1161 int offset = 0;
15bbde2b 1162 if (WORDS_BIG_ENDIAN)
1163 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1164 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1165
1166 if (BYTES_BIG_ENDIAN)
1167 /* Adjust the address so that the address-after-the-data
1168 is unchanged. */
1169 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1170 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1171
e513d163 1172 return adjust_address (x, mode, offset);
15bbde2b 1173 }
0dbd1c74 1174 else if (GET_CODE (x) == ADDRESSOF)
1175 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
15bbde2b 1176 else
1177 abort ();
1178}
1179
d823ba47 1180/* Like `gen_lowpart', but refer to the most significant part.
d56d0ca2 1181 This is used to access the imaginary part of a complex number. */
1182
1183rtx
1184gen_highpart (mode, x)
1185 enum machine_mode mode;
19cb6b50 1186 rtx x;
d56d0ca2 1187{
701e46d0 1188 unsigned int msize = GET_MODE_SIZE (mode);
81802af6 1189 rtx result;
701e46d0 1190
d56d0ca2 1191 /* This case loses if X is a subreg. To catch bugs early,
1192 complain if an invalid MODE is used even in other cases. */
701e46d0 1193 if (msize > UNITS_PER_WORD
1194 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
d56d0ca2 1195 abort ();
701e46d0 1196
81802af6 1197 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1198 subreg_highpart_offset (mode, GET_MODE (x)));
a8c36ab2 1199
1200 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1201 the target if we have a MEM. gen_highpart must return a valid operand,
1202 emitting code if necessary to do so. */
1203 if (GET_CODE (result) == MEM)
1204 result = validize_mem (result);
1205
81802af6 1206 if (!result)
1207 abort ();
1208 return result;
1209}
704fcf2b 1210
1211/* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1212 be VOIDmode constant. */
1213rtx
1214gen_highpart_mode (outermode, innermode, exp)
1215 enum machine_mode outermode, innermode;
1216 rtx exp;
1217{
1218 if (GET_MODE (exp) != VOIDmode)
1219 {
1220 if (GET_MODE (exp) != innermode)
1221 abort ();
1222 return gen_highpart (outermode, exp);
1223 }
1224 return simplify_gen_subreg (outermode, exp, innermode,
1225 subreg_highpart_offset (outermode, innermode));
1226}
81802af6 1227/* Return offset in bytes to get OUTERMODE low part
1228 of the value in mode INNERMODE stored in memory in target format. */
10ef59ac 1229
81802af6 1230unsigned int
1231subreg_lowpart_offset (outermode, innermode)
1232 enum machine_mode outermode, innermode;
1233{
1234 unsigned int offset = 0;
1235 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
10ef59ac 1236
81802af6 1237 if (difference > 0)
d56d0ca2 1238 {
81802af6 1239 if (WORDS_BIG_ENDIAN)
1240 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1241 if (BYTES_BIG_ENDIAN)
1242 offset += difference % UNITS_PER_WORD;
d56d0ca2 1243 }
701e46d0 1244
81802af6 1245 return offset;
d56d0ca2 1246}
64ab453f 1247
81802af6 1248/* Return offset in bytes to get OUTERMODE high part
1249 of the value in mode INNERMODE stored in memory in target format. */
1250unsigned int
1251subreg_highpart_offset (outermode, innermode)
64ab453f 1252 enum machine_mode outermode, innermode;
64ab453f 1253{
1254 unsigned int offset = 0;
1255 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1256
81802af6 1257 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
1258 abort ();
1259
64ab453f 1260 if (difference > 0)
1261 {
81802af6 1262 if (! WORDS_BIG_ENDIAN)
64ab453f 1263 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
81802af6 1264 if (! BYTES_BIG_ENDIAN)
64ab453f 1265 offset += difference % UNITS_PER_WORD;
1266 }
1267
81802af6 1268 return offset;
64ab453f 1269}
d56d0ca2 1270
15bbde2b 1271/* Return 1 iff X, assumed to be a SUBREG,
1272 refers to the least significant part of its containing reg.
1273 If X is not a SUBREG, always return 1 (it is its own low part!). */
1274
1275int
1276subreg_lowpart_p (x)
1277 rtx x;
1278{
1279 if (GET_CODE (x) != SUBREG)
1280 return 1;
7e14c1bf 1281 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1282 return 0;
15bbde2b 1283
81802af6 1284 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1285 == SUBREG_BYTE (x));
15bbde2b 1286}
1287\f
15bbde2b 1288
701e46d0 1289/* Helper routine for all the constant cases of operand_subword.
1290 Some places invoke this directly. */
15bbde2b 1291
1292rtx
701e46d0 1293constant_subword (op, offset, mode)
15bbde2b 1294 rtx op;
701e46d0 1295 int offset;
15bbde2b 1296 enum machine_mode mode;
1297{
b572011e 1298 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
701e46d0 1299 HOST_WIDE_INT val;
15bbde2b 1300
1301 /* If OP is already an integer word, return it. */
1302 if (GET_MODE_CLASS (mode) == MODE_INT
1303 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1304 return op;
1305
fc92fa61 1306#ifdef REAL_ARITHMETIC
915c336f 1307 /* The output is some bits, the width of the target machine's word.
1308 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1309 host can't. */
0477aa9f 1310 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
fc92fa61 1311 && GET_MODE_CLASS (mode) == MODE_FLOAT
48509d90 1312 && GET_MODE_BITSIZE (mode) == 64
fc92fa61 1313 && GET_CODE (op) == CONST_DOUBLE)
1314 {
0477aa9f 1315 long k[2];
fc92fa61 1316 REAL_VALUE_TYPE rv;
1317
1318 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1319 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
48509d90 1320
0477aa9f 1321 /* We handle 32-bit and >= 64-bit words here. Note that the order in
48509d90 1322 which the words are written depends on the word endianness.
48509d90 1323 ??? This is a potential portability problem and should
cd1091f4 1324 be fixed at some point.
1325
3fb1e43b 1326 We must exercise caution with the sign bit. By definition there
cd1091f4 1327 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1328 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1329 So we explicitly mask and sign-extend as necessary. */
0477aa9f 1330 if (BITS_PER_WORD == 32)
cd1091f4 1331 {
701e46d0 1332 val = k[offset];
cd1091f4 1333 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1334 return GEN_INT (val);
1335 }
1336#if HOST_BITS_PER_WIDE_INT >= 64
701e46d0 1337 else if (BITS_PER_WORD >= 64 && offset == 0)
cd1091f4 1338 {
1339 val = k[! WORDS_BIG_ENDIAN];
1340 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1341 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1342 return GEN_INT (val);
1343 }
0477aa9f 1344#endif
de8de626 1345 else if (BITS_PER_WORD == 16)
1346 {
701e46d0 1347 val = k[offset >> 1];
1348 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
cd1091f4 1349 val >>= 16;
bfc60c50 1350 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
cd1091f4 1351 return GEN_INT (val);
de8de626 1352 }
48509d90 1353 else
1354 abort ();
fc92fa61 1355 }
61f41e95 1356 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1357 && GET_MODE_CLASS (mode) == MODE_FLOAT
1358 && GET_MODE_BITSIZE (mode) > 64
1359 && GET_CODE (op) == CONST_DOUBLE)
915c336f 1360 {
1361 long k[4];
1362 REAL_VALUE_TYPE rv;
61f41e95 1363
915c336f 1364 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1365 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
61f41e95 1366
915c336f 1367 if (BITS_PER_WORD == 32)
1368 {
701e46d0 1369 val = k[offset];
915c336f 1370 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1371 return GEN_INT (val);
1372 }
1373#if HOST_BITS_PER_WIDE_INT >= 64
701e46d0 1374 else if (BITS_PER_WORD >= 64 && offset <= 1)
915c336f 1375 {
701e46d0 1376 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
915c336f 1377 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
701e46d0 1378 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
915c336f 1379 return GEN_INT (val);
1380 }
1381#endif
1382 else
1383 abort ();
1384 }
fc92fa61 1385#else /* no REAL_ARITHMETIC */
15bbde2b 1386 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 1387 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
15bbde2b 1388 || flag_pretend_float)
1389 && GET_MODE_CLASS (mode) == MODE_FLOAT
1390 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1391 && GET_CODE (op) == CONST_DOUBLE)
35bb04fc 1392 {
1393 /* The constant is stored in the host's word-ordering,
1394 but we want to access it in the target's word-ordering. Some
1395 compilers don't like a conditional inside macro args, so we have two
1396 copies of the return. */
06683233 1397#ifdef HOST_WORDS_BIG_ENDIAN
701e46d0 1398 return GEN_INT (offset == WORDS_BIG_ENDIAN
35bb04fc 1399 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
06683233 1400#else
701e46d0 1401 return GEN_INT (offset != WORDS_BIG_ENDIAN
35bb04fc 1402 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
06683233 1403#endif
35bb04fc 1404 }
fc92fa61 1405#endif /* no REAL_ARITHMETIC */
15bbde2b 1406
1407 /* Single word float is a little harder, since single- and double-word
1408 values often do not have the same high-order bits. We have already
1409 verified that we want the only defined word of the single-word value. */
fc92fa61 1410#ifdef REAL_ARITHMETIC
0477aa9f 1411 if (GET_MODE_CLASS (mode) == MODE_FLOAT
48509d90 1412 && GET_MODE_BITSIZE (mode) == 32
fc92fa61 1413 && GET_CODE (op) == CONST_DOUBLE)
1414 {
0477aa9f 1415 long l;
fc92fa61 1416 REAL_VALUE_TYPE rv;
1417
1418 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1419 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
587a9fdf 1420
cd1091f4 1421 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1422 val = l;
1423 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
eb294a2f 1424
587a9fdf 1425 if (BITS_PER_WORD == 16)
1426 {
701e46d0 1427 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
cd1091f4 1428 val >>= 16;
bfc60c50 1429 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
587a9fdf 1430 }
cd1091f4 1431
1432 return GEN_INT (val);
fc92fa61 1433 }
1434#else
15bbde2b 1435 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
b572011e 1436 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
15bbde2b 1437 || flag_pretend_float)
dc611f66 1438 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
15bbde2b 1439 && GET_MODE_CLASS (mode) == MODE_FLOAT
1440 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1441 && GET_CODE (op) == CONST_DOUBLE)
1442 {
1443 double d;
b572011e 1444 union {float f; HOST_WIDE_INT i; } u;
15bbde2b 1445
1446 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1447
1448 u.f = d;
b572011e 1449 return GEN_INT (u.i);
15bbde2b 1450 }
dc611f66 1451 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1452 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1453 || flag_pretend_float)
1454 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1455 && GET_MODE_CLASS (mode) == MODE_FLOAT
1456 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1457 && GET_CODE (op) == CONST_DOUBLE)
1458 {
1459 double d;
1460 union {double d; HOST_WIDE_INT i; } u;
1461
1462 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1463
1464 u.d = d;
1465 return GEN_INT (u.i);
1466 }
fc92fa61 1467#endif /* no REAL_ARITHMETIC */
d823ba47 1468
15bbde2b 1469 /* The only remaining cases that we can handle are integers.
1470 Convert to proper endianness now since these cases need it.
d823ba47 1471 At this point, offset == 0 means the low-order word.
15bbde2b 1472
870288ea 1473 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1474 in general. However, if OP is (const_int 0), we can just return
1475 it for any word. */
1476
1477 if (op == const0_rtx)
1478 return op;
15bbde2b 1479
1480 if (GET_MODE_CLASS (mode) != MODE_INT
870288ea 1481 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
5c1fd70d 1482 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
15bbde2b 1483 return 0;
1484
1485 if (WORDS_BIG_ENDIAN)
701e46d0 1486 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
15bbde2b 1487
1488 /* Find out which word on the host machine this value is in and get
1489 it from the constant. */
701e46d0 1490 val = (offset / size_ratio == 0
15bbde2b 1491 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1492 : (GET_CODE (op) == CONST_INT
1493 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1494
5418f2a8 1495 /* Get the value we want into the low bits of val. */
b572011e 1496 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
701e46d0 1497 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
5418f2a8 1498
b2345915 1499 val = trunc_int_for_mode (val, word_mode);
15bbde2b 1500
b572011e 1501 return GEN_INT (val);
15bbde2b 1502}
1503
701e46d0 1504/* Return subword OFFSET of operand OP.
1505 The word number, OFFSET, is interpreted as the word number starting
1506 at the low-order address. OFFSET 0 is the low-order word if not
1507 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1508
1509 If we cannot extract the required word, we return zero. Otherwise,
1510 an rtx corresponding to the requested word will be returned.
1511
1512 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1513 reload has completed, a valid address will always be returned. After
1514 reload, if a valid address cannot be returned, we return zero.
1515
1516 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1517 it is the responsibility of the caller.
1518
1519 MODE is the mode of OP in case it is a CONST_INT.
1520
1521 ??? This is still rather broken for some cases. The problem for the
1522 moment is that all callers of this thing provide no 'goal mode' to
1523 tell us to work with. This exists because all callers were written
84e81e84 1524 in a word based SUBREG world.
1525 Now use of this function can be deprecated by simplify_subreg in most
1526 cases.
1527 */
701e46d0 1528
1529rtx
1530operand_subword (op, offset, validate_address, mode)
1531 rtx op;
1532 unsigned int offset;
1533 int validate_address;
1534 enum machine_mode mode;
1535{
1536 if (mode == VOIDmode)
1537 mode = GET_MODE (op);
1538
1539 if (mode == VOIDmode)
1540 abort ();
1541
6312a35e 1542 /* If OP is narrower than a word, fail. */
701e46d0 1543 if (mode != BLKmode
1544 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1545 return 0;
1546
6312a35e 1547 /* If we want a word outside OP, return zero. */
701e46d0 1548 if (mode != BLKmode
1549 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1550 return const0_rtx;
1551
701e46d0 1552 /* Form a new MEM at the requested address. */
1553 if (GET_CODE (op) == MEM)
1554 {
e4e86ec5 1555 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
701e46d0 1556
e4e86ec5 1557 if (! validate_address)
1558 return new;
1559
1560 else if (reload_completed)
701e46d0 1561 {
e4e86ec5 1562 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1563 return 0;
701e46d0 1564 }
e4e86ec5 1565 else
1566 return replace_equiv_address (new, XEXP (new, 0));
701e46d0 1567 }
1568
84e81e84 1569 /* Rest can be handled by simplify_subreg. */
1570 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
701e46d0 1571}
1572
15bbde2b 1573/* Similar to `operand_subword', but never return 0. If we can't extract
1574 the required subword, put OP into a register and try again. If that fails,
d823ba47 1575 abort. We always validate the address in this case.
15bbde2b 1576
1577 MODE is the mode of OP, in case it is CONST_INT. */
1578
1579rtx
701e46d0 1580operand_subword_force (op, offset, mode)
15bbde2b 1581 rtx op;
701e46d0 1582 unsigned int offset;
15bbde2b 1583 enum machine_mode mode;
1584{
701e46d0 1585 rtx result = operand_subword (op, offset, 1, mode);
15bbde2b 1586
1587 if (result)
1588 return result;
1589
1590 if (mode != BLKmode && mode != VOIDmode)
ac825d29 1591 {
1592 /* If this is a register which can not be accessed by words, copy it
1593 to a pseudo register. */
1594 if (GET_CODE (op) == REG)
1595 op = copy_to_reg (op);
1596 else
1597 op = force_reg (mode, op);
1598 }
15bbde2b 1599
701e46d0 1600 result = operand_subword (op, offset, 1, mode);
15bbde2b 1601 if (result == 0)
1602 abort ();
1603
1604 return result;
1605}
1606\f
1607/* Given a compare instruction, swap the operands.
1608 A test instruction is changed into a compare of 0 against the operand. */
1609
1610void
1611reverse_comparison (insn)
1612 rtx insn;
1613{
1614 rtx body = PATTERN (insn);
1615 rtx comp;
1616
1617 if (GET_CODE (body) == SET)
1618 comp = SET_SRC (body);
1619 else
1620 comp = SET_SRC (XVECEXP (body, 0, 0));
1621
1622 if (GET_CODE (comp) == COMPARE)
1623 {
1624 rtx op0 = XEXP (comp, 0);
1625 rtx op1 = XEXP (comp, 1);
1626 XEXP (comp, 0) = op1;
1627 XEXP (comp, 1) = op0;
1628 }
1629 else
1630 {
7014838c 1631 rtx new = gen_rtx_COMPARE (VOIDmode,
1632 CONST0_RTX (GET_MODE (comp)), comp);
15bbde2b 1633 if (GET_CODE (body) == SET)
1634 SET_SRC (body) = new;
1635 else
1636 SET_SRC (XVECEXP (body, 0, 0)) = new;
1637 }
1638}
1639\f
b10dbbca 1640/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1641 or (2) a component ref of something variable. Represent the later with
1642 a NULL expression. */
1643
1644static tree
1645component_ref_for_mem_expr (ref)
1646 tree ref;
1647{
1648 tree inner = TREE_OPERAND (ref, 0);
1649
1650 if (TREE_CODE (inner) == COMPONENT_REF)
1651 inner = component_ref_for_mem_expr (inner);
1652 else if (! DECL_P (inner))
1653 inner = NULL_TREE;
1654
1655 if (inner == TREE_OPERAND (ref, 0))
1656 return ref;
1657 else
1658 return build (COMPONENT_REF, TREE_TYPE (ref), inner, TREE_OPERAND (ref, 1));
1659}
c6259b83 1660
1661/* Given REF, a MEM, and T, either the type of X or the expression
1662 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1663 if we are making a new object of this type. */
1664
1665void
1666set_mem_attributes (ref, t, objectp)
1667 rtx ref;
1668 tree t;
1669 int objectp;
1670{
2a631e19 1671 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
b10dbbca 1672 tree expr = MEM_EXPR (ref);
2a631e19 1673 rtx offset = MEM_OFFSET (ref);
1674 rtx size = MEM_SIZE (ref);
1675 unsigned int align = MEM_ALIGN (ref);
c6259b83 1676 tree type;
1677
1678 /* It can happen that type_for_mode was given a mode for which there
1679 is no language-level type. In which case it returns NULL, which
1680 we can see here. */
1681 if (t == NULL_TREE)
1682 return;
1683
1684 type = TYPE_P (t) ? t : TREE_TYPE (t);
1685
c6259b83 1686 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1687 wrong answer, as it assumes that DECL_RTL already has the right alias
1688 info. Callers should not set DECL_RTL until after the call to
1689 set_mem_attributes. */
1690 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1691 abort ();
1692
96216d37 1693 /* Get the alias set from the expression or type (perhaps using a
2a631e19 1694 front-end routine) and use it. */
1695 alias = get_alias_set (t);
c6259b83 1696
1697 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1698 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
b8098e5b 1699 RTX_UNCHANGING_P (ref)
278fe152 1700 |= ((lang_hooks.honor_readonly
1701 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1702 || (! TYPE_P (t) && TREE_CONSTANT (t)));
c6259b83 1703
2a631e19 1704 /* If we are making an object of this type, or if this is a DECL, we know
1705 that it is a scalar if the type is not an aggregate. */
1706 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
c6259b83 1707 MEM_SCALAR_P (ref) = 1;
1708
a9d9ab08 1709 /* We can set the alignment from the type if we are making an object,
1710 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1711 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1712 align = MAX (align, TYPE_ALIGN (type));
ecfe4ca9 1713
96216d37 1714 /* If the size is known, we can set that. */
1715 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
2a631e19 1716 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
96216d37 1717
579bccf9 1718 /* If T is not a type, we may be able to deduce some more information about
1719 the expression. */
1720 if (! TYPE_P (t))
2a631e19 1721 {
1722 maybe_set_unchanging (ref, t);
1723 if (TREE_THIS_VOLATILE (t))
1724 MEM_VOLATILE_P (ref) = 1;
c6259b83 1725
2a631e19 1726 /* Now remove any NOPs: they don't change what the underlying object is.
579bccf9 1727 Likewise for SAVE_EXPR. */
2a631e19 1728 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
1729 || TREE_CODE (t) == NON_LVALUE_EXPR || TREE_CODE (t) == SAVE_EXPR)
1730 t = TREE_OPERAND (t, 0);
1731
5cc193e7 1732 /* If this expression can't be addressed (e.g., it contains a reference
1733 to a non-addressable field), show we don't change its alias set. */
1734 if (! can_address_p (t))
1735 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1736
2a631e19 1737 /* If this is a decl, set the attributes of the MEM from it. */
1738 if (DECL_P (t))
1739 {
b10dbbca 1740 expr = t;
1741 offset = const0_rtx;
2a631e19 1742 size = (DECL_SIZE_UNIT (t)
1743 && host_integerp (DECL_SIZE_UNIT (t), 1)
1744 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
1745 align = DECL_ALIGN (t);
1746 }
1747
ecfe4ca9 1748 /* If this is a constant, we know the alignment. */
42f6f447 1749 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1750 {
1751 align = TYPE_ALIGN (type);
1752#ifdef CONSTANT_ALIGNMENT
1753 align = CONSTANT_ALIGNMENT (t, align);
1754#endif
1755 }
b10dbbca 1756
1757 /* If this is a field reference and not a bit-field, record it. */
1758 /* ??? There is some information that can be gleened from bit-fields,
1759 such as the word offset in the structure that might be modified.
1760 But skip it for now. */
1761 else if (TREE_CODE (t) == COMPONENT_REF
1762 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1763 {
1764 expr = component_ref_for_mem_expr (t);
1765 offset = const0_rtx;
1766 /* ??? Any reason the field size would be different than
1767 the size we got from the type? */
1768 }
1769
1770 /* If this is an array reference, look for an outer field reference. */
1771 else if (TREE_CODE (t) == ARRAY_REF)
1772 {
1773 tree off_tree = size_zero_node;
1774
1775 do
1776 {
1777 off_tree
1778 = fold (build (PLUS_EXPR, sizetype,
1779 fold (build (MULT_EXPR, sizetype,
1780 TREE_OPERAND (t, 1),
1781 TYPE_SIZE_UNIT (TREE_TYPE (t)))),
1782 off_tree));
1783 t = TREE_OPERAND (t, 0);
1784 }
1785 while (TREE_CODE (t) == ARRAY_REF);
1786
1787 if (TREE_CODE (t) == COMPONENT_REF)
1788 {
1789 expr = component_ref_for_mem_expr (t);
1790 if (host_integerp (off_tree, 1))
1791 offset = GEN_INT (tree_low_cst (off_tree, 1));
1792 /* ??? Any reason the field size would be different than
1793 the size we got from the type? */
1794 }
1795 }
2a631e19 1796 }
1797
1798 /* Now set the attributes we computed above. */
5cc193e7 1799 MEM_ATTRS (ref)
b10dbbca 1800 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
2a631e19 1801
1802 /* If this is already known to be a scalar or aggregate, we are done. */
1803 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
96216d37 1804 return;
1805
2a631e19 1806 /* If it is a reference into an aggregate, this is part of an aggregate.
1807 Otherwise we don't know. */
c6259b83 1808 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1809 || TREE_CODE (t) == ARRAY_RANGE_REF
1810 || TREE_CODE (t) == BIT_FIELD_REF)
1811 MEM_IN_STRUCT_P (ref) = 1;
1812}
1813
1814/* Set the alias set of MEM to SET. */
1815
1816void
1817set_mem_alias_set (mem, set)
1818 rtx mem;
1819 HOST_WIDE_INT set;
1820{
c6259b83 1821#ifdef ENABLE_CHECKING
1822 /* If the new and old alias sets don't conflict, something is wrong. */
1823 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1824 abort ();
c6259b83 1825#endif
1826
b10dbbca 1827 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
5cc193e7 1828 MEM_SIZE (mem), MEM_ALIGN (mem),
1829 GET_MODE (mem));
c6259b83 1830}
96216d37 1831
1c4512da 1832/* Set the alignment of MEM to ALIGN bits. */
96216d37 1833
1834void
1835set_mem_align (mem, align)
1836 rtx mem;
1837 unsigned int align;
1838{
b10dbbca 1839 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
5cc193e7 1840 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1841 GET_MODE (mem));
96216d37 1842}
278fe152 1843
b10dbbca 1844/* Set the expr for MEM to EXPR. */
278fe152 1845
1846void
b10dbbca 1847set_mem_expr (mem, expr)
278fe152 1848 rtx mem;
b10dbbca 1849 tree expr;
278fe152 1850{
1851 MEM_ATTRS (mem)
b10dbbca 1852 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
278fe152 1853 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1854}
b10dbbca 1855
1856/* Set the offset of MEM to OFFSET. */
1857
1858void
1859set_mem_offset (mem, offset)
1860 rtx mem, offset;
1861{
1862 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1863 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1864 GET_MODE (mem));
1865}
c6259b83 1866\f
96216d37 1867/* Return a memory reference like MEMREF, but with its mode changed to MODE
1868 and its address changed to ADDR. (VOIDmode means don't change the mode.
1869 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1870 returned memory location is required to be valid. The memory
1871 attributes are not changed. */
15bbde2b 1872
96216d37 1873static rtx
e4e86ec5 1874change_address_1 (memref, mode, addr, validate)
15bbde2b 1875 rtx memref;
1876 enum machine_mode mode;
1877 rtx addr;
e4e86ec5 1878 int validate;
15bbde2b 1879{
1880 rtx new;
1881
1882 if (GET_CODE (memref) != MEM)
1883 abort ();
1884 if (mode == VOIDmode)
1885 mode = GET_MODE (memref);
1886 if (addr == 0)
1887 addr = XEXP (memref, 0);
1888
e4e86ec5 1889 if (validate)
15bbde2b 1890 {
e4e86ec5 1891 if (reload_in_progress || reload_completed)
1892 {
1893 if (! memory_address_p (mode, addr))
1894 abort ();
1895 }
1896 else
1897 addr = memory_address (mode, addr);
15bbde2b 1898 }
d823ba47 1899
e8976cd7 1900 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1901 return memref;
1902
3ad7bb1c 1903 new = gen_rtx_MEM (mode, addr);
6a0934dd 1904 MEM_COPY_ATTRIBUTES (new, memref);
15bbde2b 1905 return new;
1906}
537ffcfc 1907
96216d37 1908/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1909 way we are changing MEMREF, so we only preserve the alias set. */
e513d163 1910
1911rtx
96216d37 1912change_address (memref, mode, addr)
e513d163 1913 rtx memref;
1914 enum machine_mode mode;
96216d37 1915 rtx addr;
e513d163 1916{
96216d37 1917 rtx new = change_address_1 (memref, mode, addr, 1);
1918 enum machine_mode mmode = GET_MODE (new);
6cc60c4d 1919
96216d37 1920 MEM_ATTRS (new)
1921 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
1922 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
2b96c5f6 1923 (mmode == BLKmode ? BITS_PER_UNIT
1924 : GET_MODE_ALIGNMENT (mmode)),
5cc193e7 1925 mmode);
fb257ae6 1926
96216d37 1927 return new;
e513d163 1928}
537ffcfc 1929
96216d37 1930/* Return a memory reference like MEMREF, but with its mode changed
1931 to MODE and its address offset by OFFSET bytes. If VALIDATE is
bf42c62d 1932 nonzero, the memory address is forced to be valid.
1933 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1934 and caller is responsible for adjusting MEMREF base register. */
e4e86ec5 1935
1936rtx
bf42c62d 1937adjust_address_1 (memref, mode, offset, validate, adjust)
e4e86ec5 1938 rtx memref;
1939 enum machine_mode mode;
1940 HOST_WIDE_INT offset;
bf42c62d 1941 int validate, adjust;
e4e86ec5 1942{
fb257ae6 1943 rtx addr = XEXP (memref, 0);
96216d37 1944 rtx new;
1945 rtx memoffset = MEM_OFFSET (memref);
5cc193e7 1946 rtx size = 0;
96216d37 1947 unsigned int memalign = MEM_ALIGN (memref);
fb257ae6 1948
bf42c62d 1949 if (adjust == 0 || offset == 0)
1950 /* ??? Prefer to create garbage instead of creating shared rtl. */
1951 addr = copy_rtx (addr);
96216d37 1952 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
fb257ae6 1953 object, we can merge it into the LO_SUM. */
bf42c62d 1954 else if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1955 && offset >= 0
1956 && (unsigned HOST_WIDE_INT) offset
1957 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
96216d37 1958 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
fb257ae6 1959 plus_constant (XEXP (addr, 1), offset));
1960 else
1961 addr = plus_constant (addr, offset);
1962
96216d37 1963 new = change_address_1 (memref, mode, addr, validate);
1964
1965 /* Compute the new values of the memory attributes due to this adjustment.
1966 We add the offsets and update the alignment. */
1967 if (memoffset)
1968 memoffset = GEN_INT (offset + INTVAL (memoffset));
1969
b8098e5b 1970 /* Compute the new alignment by taking the MIN of the alignment and the
1971 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1972 if zero. */
1973 if (offset != 0)
1c4512da 1974 memalign = MIN (memalign, (offset & -offset) * BITS_PER_UNIT);
96216d37 1975
5cc193e7 1976 /* We can compute the size in a number of ways. */
2b96c5f6 1977 if (GET_MODE (new) != BLKmode)
1978 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
5cc193e7 1979 else if (MEM_SIZE (memref))
1980 size = plus_constant (MEM_SIZE (memref), -offset);
1981
b10dbbca 1982 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
5cc193e7 1983 memoffset, size, memalign, GET_MODE (new));
96216d37 1984
1985 /* At some point, we should validate that this offset is within the object,
1986 if all the appropriate values are known. */
1987 return new;
e4e86ec5 1988}
1989
bf42c62d 1990/* Return a memory reference like MEMREF, but with its mode changed
1991 to MODE and its address changed to ADDR, which is assumed to be
1992 MEMREF offseted by OFFSET bytes. If VALIDATE is
1993 nonzero, the memory address is forced to be valid. */
1994
1995rtx
1996adjust_automodify_address_1 (memref, mode, addr, offset, validate)
1997 rtx memref;
1998 enum machine_mode mode;
1999 rtx addr;
2000 HOST_WIDE_INT offset;
2001 int validate;
2002{
2003 memref = change_address_1 (memref, VOIDmode, addr, validate);
2004 return adjust_address_1 (memref, mode, offset, validate, 0);
2005}
2006
2a631e19 2007/* Return a memory reference like MEMREF, but whose address is changed by
2008 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2009 known to be in OFFSET (possibly 1). */
fcdc122e 2010
2011rtx
2012offset_address (memref, offset, pow2)
2013 rtx memref;
2014 rtx offset;
2015 HOST_WIDE_INT pow2;
2016{
2017 rtx new = change_address_1 (memref, VOIDmode,
2018 gen_rtx_PLUS (Pmode, XEXP (memref, 0),
2019 force_reg (Pmode, offset)), 1);
fcdc122e 2020
2021 /* Update the alignment to reflect the offset. Reset the offset, which
2022 we don't know. */
b10dbbca 2023 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
1c4512da 2024 0, 0, MIN (MEM_ALIGN (memref),
5cc193e7 2025 pow2 * BITS_PER_UNIT),
2026 GET_MODE (new));
fcdc122e 2027 return new;
2028}
2029
537ffcfc 2030/* Return a memory reference like MEMREF, but with its address changed to
2031 ADDR. The caller is asserting that the actual piece of memory pointed
2032 to is the same, just the form of the address is being changed, such as
2033 by putting something into a register. */
2034
2035rtx
2036replace_equiv_address (memref, addr)
2037 rtx memref;
2038 rtx addr;
2039{
96216d37 2040 /* change_address_1 copies the memory attribute structure without change
2041 and that's exactly what we want here. */
ecfe4ca9 2042 update_temp_slot_address (XEXP (memref, 0), addr);
96216d37 2043 return change_address_1 (memref, VOIDmode, addr, 1);
537ffcfc 2044}
96216d37 2045
e4e86ec5 2046/* Likewise, but the reference is not required to be valid. */
2047
2048rtx
2049replace_equiv_address_nv (memref, addr)
2050 rtx memref;
2051 rtx addr;
2052{
e4e86ec5 2053 return change_address_1 (memref, VOIDmode, addr, 0);
2054}
15bbde2b 2055\f
2056/* Return a newly created CODE_LABEL rtx with a unique label number. */
2057
2058rtx
2059gen_label_rtx ()
2060{
19cb6b50 2061 rtx label;
649d8da6 2062
b54842d8 2063 label = gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX,
4679ade3 2064 NULL_RTX, label_num++, NULL, NULL);
649d8da6 2065
15bbde2b 2066 LABEL_NUSES (label) = 0;
bfee5366 2067 LABEL_ALTERNATE_NAME (label) = NULL;
15bbde2b 2068 return label;
2069}
2070\f
2071/* For procedure integration. */
2072
15bbde2b 2073/* Install new pointers to the first and last insns in the chain.
d4c332ff 2074 Also, set cur_insn_uid to one higher than the last in use.
15bbde2b 2075 Used for an inline-procedure after copying the insn chain. */
2076
2077void
2078set_new_first_and_last_insn (first, last)
2079 rtx first, last;
2080{
d4c332ff 2081 rtx insn;
2082
15bbde2b 2083 first_insn = first;
2084 last_insn = last;
d4c332ff 2085 cur_insn_uid = 0;
2086
2087 for (insn = first; insn; insn = NEXT_INSN (insn))
2088 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2089
2090 cur_insn_uid++;
15bbde2b 2091}
2092
2093/* Set the range of label numbers found in the current function.
2094 This is used when belatedly compiling an inline function. */
2095
2096void
2097set_new_first_and_last_label_num (first, last)
2098 int first, last;
2099{
2100 base_label_num = label_num;
2101 first_label_num = first;
2102 last_label_num = last;
2103}
0a893c29 2104
2105/* Set the last label number found in the current function.
2106 This is used when belatedly compiling an inline function. */
15bbde2b 2107
2108void
0a893c29 2109set_new_last_label_num (last)
2110 int last;
15bbde2b 2111{
0a893c29 2112 base_label_num = label_num;
2113 last_label_num = last;
15bbde2b 2114}
0a893c29 2115\f
15bbde2b 2116/* Restore all variables describing the current status from the structure *P.
2117 This is used after a nested function. */
2118
2119void
2120restore_emit_status (p)
c5b89159 2121 struct function *p ATTRIBUTE_UNUSED;
15bbde2b 2122{
bb9d6298 2123 last_label_num = 0;
0a893c29 2124 clear_emit_caches ();
15bbde2b 2125}
26df1c5e 2126
c788feb1 2127/* Clear out all parts of the state in F that can safely be discarded
26df1c5e 2128 after the function has been compiled, to let garbage collection
a57bcb3b 2129 reclaim the memory. */
c788feb1 2130
26df1c5e 2131void
a57bcb3b 2132free_emit_status (f)
26df1c5e 2133 struct function *f;
2134{
2135 free (f->emit->x_regno_reg_rtx);
26df1c5e 2136 free (f->emit->regno_pointer_align);
fcdc122e 2137 free (f->emit->regno_decl);
3c3bb268 2138 free (f->emit);
2139 f->emit = NULL;
26df1c5e 2140}
15bbde2b 2141\f
d823ba47 2142/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2143 structure. This routine should only be called once. */
15bbde2b 2144
2145void
2d96a59a 2146unshare_all_rtl (fndecl, insn)
2147 tree fndecl;
2148 rtx insn;
15bbde2b 2149{
2d96a59a 2150 tree decl;
15bbde2b 2151
2d96a59a 2152 /* Make sure that virtual parameters are not shared. */
2153 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
0e8e37b2 2154 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2d96a59a 2155
72ec8878 2156 /* Make sure that virtual stack slots are not shared. */
2157 unshare_all_decls (DECL_INITIAL (fndecl));
2158
2d96a59a 2159 /* Unshare just about everything else. */
2160 unshare_all_rtl_1 (insn);
d823ba47 2161
15bbde2b 2162 /* Make sure the addresses of stack slots found outside the insn chain
2163 (such as, in DECL_RTL of a variable) are not shared
2164 with the insn chain.
2165
2166 This special care is necessary when the stack slot MEM does not
2167 actually appear in the insn chain. If it does appear, its address
2168 is unshared from all else at that point. */
45733446 2169 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
15bbde2b 2170}
2171
d823ba47 2172/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2173 structure, again. This is a fairly expensive thing to do so it
2174 should be done sparingly. */
2175
2176void
2177unshare_all_rtl_again (insn)
2178 rtx insn;
2179{
2180 rtx p;
5244079b 2181 tree decl;
2182
2d96a59a 2183 for (p = insn; p; p = NEXT_INSN (p))
9204e736 2184 if (INSN_P (p))
2d96a59a 2185 {
2186 reset_used_flags (PATTERN (p));
2187 reset_used_flags (REG_NOTES (p));
2188 reset_used_flags (LOG_LINKS (p));
2189 }
5244079b 2190
01dc9f0c 2191 /* Make sure that virtual stack slots are not shared. */
2192 reset_used_decls (DECL_INITIAL (cfun->decl));
2193
5244079b 2194 /* Make sure that virtual parameters are not shared. */
2195 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2196 reset_used_flags (DECL_RTL (decl));
2197
2198 reset_used_flags (stack_slot_list);
2199
2200 unshare_all_rtl (cfun->decl, insn);
2d96a59a 2201}
2202
2203/* Go through all the RTL insn bodies and copy any invalid shared structure.
2204 Assumes the mark bits are cleared at entry. */
2205
2206static void
2207unshare_all_rtl_1 (insn)
2208 rtx insn;
2209{
2210 for (; insn; insn = NEXT_INSN (insn))
9204e736 2211 if (INSN_P (insn))
2d96a59a 2212 {
2213 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2214 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2215 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2216 }
2217}
2218
72ec8878 2219/* Go through all virtual stack slots of a function and copy any
2220 shared structure. */
2221static void
2222unshare_all_decls (blk)
2223 tree blk;
2224{
2225 tree t;
2226
2227 /* Copy shared decls. */
2228 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
0e8e37b2 2229 if (DECL_RTL_SET_P (t))
2230 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
72ec8878 2231
2232 /* Now process sub-blocks. */
2233 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2234 unshare_all_decls (t);
2235}
2236
01dc9f0c 2237/* Go through all virtual stack slots of a function and mark them as
6312a35e 2238 not shared. */
01dc9f0c 2239static void
2240reset_used_decls (blk)
2241 tree blk;
2242{
2243 tree t;
2244
2245 /* Mark decls. */
2246 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
0e8e37b2 2247 if (DECL_RTL_SET_P (t))
2248 reset_used_flags (DECL_RTL (t));
01dc9f0c 2249
2250 /* Now process sub-blocks. */
2251 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2252 reset_used_decls (t);
2253}
2254
15bbde2b 2255/* Mark ORIG as in use, and return a copy of it if it was already in use.
2256 Recursively does the same for subexpressions. */
2257
2258rtx
2259copy_rtx_if_shared (orig)
2260 rtx orig;
2261{
19cb6b50 2262 rtx x = orig;
2263 int i;
2264 enum rtx_code code;
2265 const char *format_ptr;
15bbde2b 2266 int copied = 0;
2267
2268 if (x == 0)
2269 return 0;
2270
2271 code = GET_CODE (x);
2272
2273 /* These types may be freely shared. */
2274
2275 switch (code)
2276 {
2277 case REG:
2278 case QUEUED:
2279 case CONST_INT:
2280 case CONST_DOUBLE:
2281 case SYMBOL_REF:
2282 case CODE_LABEL:
2283 case PC:
2284 case CC0:
2285 case SCRATCH:
a92771b8 2286 /* SCRATCH must be shared because they represent distinct values. */
15bbde2b 2287 return x;
2288
f63d12e3 2289 case CONST:
2290 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2291 a LABEL_REF, it isn't sharable. */
2292 if (GET_CODE (XEXP (x, 0)) == PLUS
2293 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2294 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2295 return x;
2296 break;
2297
15bbde2b 2298 case INSN:
2299 case JUMP_INSN:
2300 case CALL_INSN:
2301 case NOTE:
15bbde2b 2302 case BARRIER:
2303 /* The chain of insns is not being copied. */
2304 return x;
2305
2306 case MEM:
baf55c37 2307 /* A MEM is allowed to be shared if its address is constant.
2308
d823ba47 2309 We used to allow sharing of MEMs which referenced
baf55c37 2310 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2311 that can lose. instantiate_virtual_regs will not unshare
2312 the MEMs, and combine may change the structure of the address
2313 because it looks safe and profitable in one context, but
2314 in some other context it creates unrecognizable RTL. */
2315 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
15bbde2b 2316 return x;
2317
0dbd1c74 2318 break;
2319
2320 default:
2321 break;
15bbde2b 2322 }
2323
2324 /* This rtx may not be shared. If it has already been seen,
2325 replace it with a copy of itself. */
2326
2327 if (x->used)
2328 {
19cb6b50 2329 rtx copy;
15bbde2b 2330
2331 copy = rtx_alloc (code);
b1b63592 2332 memcpy (copy, x,
748e6d74 2333 (sizeof (*copy) - sizeof (copy->fld)
2334 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
15bbde2b 2335 x = copy;
2336 copied = 1;
2337 }
2338 x->used = 1;
2339
2340 /* Now scan the subexpressions recursively.
2341 We can store any replaced subexpressions directly into X
2342 since we know X is not shared! Any vectors in X
2343 must be copied if X was copied. */
2344
2345 format_ptr = GET_RTX_FORMAT (code);
2346
2347 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2348 {
2349 switch (*format_ptr++)
2350 {
2351 case 'e':
2352 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2353 break;
2354
2355 case 'E':
2356 if (XVEC (x, i) != NULL)
2357 {
19cb6b50 2358 int j;
ffe0869b 2359 int len = XVECLEN (x, i);
15bbde2b 2360
ffe0869b 2361 if (copied && len > 0)
a4070a91 2362 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
ffe0869b 2363 for (j = 0; j < len; j++)
2364 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
15bbde2b 2365 }
2366 break;
2367 }
2368 }
2369 return x;
2370}
2371
2372/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2373 to look for shared sub-parts. */
2374
2375void
2376reset_used_flags (x)
2377 rtx x;
2378{
19cb6b50 2379 int i, j;
2380 enum rtx_code code;
2381 const char *format_ptr;
15bbde2b 2382
2383 if (x == 0)
2384 return;
2385
2386 code = GET_CODE (x);
2387
c3418f42 2388 /* These types may be freely shared so we needn't do any resetting
15bbde2b 2389 for them. */
2390
2391 switch (code)
2392 {
2393 case REG:
2394 case QUEUED:
2395 case CONST_INT:
2396 case CONST_DOUBLE:
2397 case SYMBOL_REF:
2398 case CODE_LABEL:
2399 case PC:
2400 case CC0:
2401 return;
2402
2403 case INSN:
2404 case JUMP_INSN:
2405 case CALL_INSN:
2406 case NOTE:
2407 case LABEL_REF:
2408 case BARRIER:
2409 /* The chain of insns is not being copied. */
2410 return;
d823ba47 2411
0dbd1c74 2412 default:
2413 break;
15bbde2b 2414 }
2415
2416 x->used = 0;
2417
2418 format_ptr = GET_RTX_FORMAT (code);
2419 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2420 {
2421 switch (*format_ptr++)
2422 {
2423 case 'e':
2424 reset_used_flags (XEXP (x, i));
2425 break;
2426
2427 case 'E':
2428 for (j = 0; j < XVECLEN (x, i); j++)
2429 reset_used_flags (XVECEXP (x, i, j));
2430 break;
2431 }
2432 }
2433}
2434\f
2435/* Copy X if necessary so that it won't be altered by changes in OTHER.
2436 Return X or the rtx for the pseudo reg the value of X was copied into.
2437 OTHER must be valid as a SET_DEST. */
2438
2439rtx
2440make_safe_from (x, other)
2441 rtx x, other;
2442{
2443 while (1)
2444 switch (GET_CODE (other))
2445 {
2446 case SUBREG:
2447 other = SUBREG_REG (other);
2448 break;
2449 case STRICT_LOW_PART:
2450 case SIGN_EXTEND:
2451 case ZERO_EXTEND:
2452 other = XEXP (other, 0);
2453 break;
2454 default:
2455 goto done;
2456 }
2457 done:
2458 if ((GET_CODE (other) == MEM
2459 && ! CONSTANT_P (x)
2460 && GET_CODE (x) != REG
2461 && GET_CODE (x) != SUBREG)
2462 || (GET_CODE (other) == REG
2463 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2464 || reg_mentioned_p (other, x))))
2465 {
2466 rtx temp = gen_reg_rtx (GET_MODE (x));
2467 emit_move_insn (temp, x);
2468 return temp;
2469 }
2470 return x;
2471}
2472\f
2473/* Emission of insns (adding them to the doubly-linked list). */
2474
2475/* Return the first insn of the current sequence or current function. */
2476
2477rtx
2478get_insns ()
2479{
2480 return first_insn;
2481}
2482
2483/* Return the last insn emitted in current sequence or current function. */
2484
2485rtx
2486get_last_insn ()
2487{
2488 return last_insn;
2489}
2490
2491/* Specify a new insn as the last in the chain. */
2492
2493void
2494set_last_insn (insn)
2495 rtx insn;
2496{
2497 if (NEXT_INSN (insn) != 0)
2498 abort ();
2499 last_insn = insn;
2500}
2501
2502/* Return the last insn emitted, even if it is in a sequence now pushed. */
2503
2504rtx
2505get_last_insn_anywhere ()
2506{
2507 struct sequence_stack *stack;
2508 if (last_insn)
2509 return last_insn;
0a893c29 2510 for (stack = seq_stack; stack; stack = stack->next)
15bbde2b 2511 if (stack->last != 0)
2512 return stack->last;
2513 return 0;
2514}
2515
2516/* Return a number larger than any instruction's uid in this function. */
2517
2518int
2519get_max_uid ()
2520{
2521 return cur_insn_uid;
2522}
90b89d2c 2523
214d02d0 2524/* Renumber instructions so that no instruction UIDs are wasted. */
2525
90b89d2c 2526void
214d02d0 2527renumber_insns (stream)
2528 FILE *stream;
90b89d2c 2529{
2530 rtx insn;
90b89d2c 2531
214d02d0 2532 /* If we're not supposed to renumber instructions, don't. */
2533 if (!flag_renumber_insns)
2534 return;
2535
90b89d2c 2536 /* If there aren't that many instructions, then it's not really
2537 worth renumbering them. */
214d02d0 2538 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
90b89d2c 2539 return;
2540
2541 cur_insn_uid = 1;
2542
2543 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
214d02d0 2544 {
2545 if (stream)
d823ba47 2546 fprintf (stream, "Renumbering insn %d to %d\n",
214d02d0 2547 INSN_UID (insn), cur_insn_uid);
2548 INSN_UID (insn) = cur_insn_uid++;
2549 }
90b89d2c 2550}
15bbde2b 2551\f
2552/* Return the next insn. If it is a SEQUENCE, return the first insn
2553 of the sequence. */
2554
2555rtx
2556next_insn (insn)
2557 rtx insn;
2558{
2559 if (insn)
2560 {
2561 insn = NEXT_INSN (insn);
2562 if (insn && GET_CODE (insn) == INSN
2563 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2564 insn = XVECEXP (PATTERN (insn), 0, 0);
2565 }
2566
2567 return insn;
2568}
2569
2570/* Return the previous insn. If it is a SEQUENCE, return the last insn
2571 of the sequence. */
2572
2573rtx
2574previous_insn (insn)
2575 rtx insn;
2576{
2577 if (insn)
2578 {
2579 insn = PREV_INSN (insn);
2580 if (insn && GET_CODE (insn) == INSN
2581 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2582 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2583 }
2584
2585 return insn;
2586}
2587
2588/* Return the next insn after INSN that is not a NOTE. This routine does not
2589 look inside SEQUENCEs. */
2590
2591rtx
2592next_nonnote_insn (insn)
2593 rtx insn;
2594{
2595 while (insn)
2596 {
2597 insn = NEXT_INSN (insn);
2598 if (insn == 0 || GET_CODE (insn) != NOTE)
2599 break;
2600 }
2601
2602 return insn;
2603}
2604
2605/* Return the previous insn before INSN that is not a NOTE. This routine does
2606 not look inside SEQUENCEs. */
2607
2608rtx
2609prev_nonnote_insn (insn)
2610 rtx insn;
2611{
2612 while (insn)
2613 {
2614 insn = PREV_INSN (insn);
2615 if (insn == 0 || GET_CODE (insn) != NOTE)
2616 break;
2617 }
2618
2619 return insn;
2620}
2621
2622/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2623 or 0, if there is none. This routine does not look inside
a92771b8 2624 SEQUENCEs. */
15bbde2b 2625
2626rtx
2627next_real_insn (insn)
2628 rtx insn;
2629{
2630 while (insn)
2631 {
2632 insn = NEXT_INSN (insn);
2633 if (insn == 0 || GET_CODE (insn) == INSN
2634 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2635 break;
2636 }
2637
2638 return insn;
2639}
2640
2641/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2642 or 0, if there is none. This routine does not look inside
2643 SEQUENCEs. */
2644
2645rtx
2646prev_real_insn (insn)
2647 rtx insn;
2648{
2649 while (insn)
2650 {
2651 insn = PREV_INSN (insn);
2652 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
2653 || GET_CODE (insn) == JUMP_INSN)
2654 break;
2655 }
2656
2657 return insn;
2658}
2659
2660/* Find the next insn after INSN that really does something. This routine
2661 does not look inside SEQUENCEs. Until reload has completed, this is the
2662 same as next_real_insn. */
2663
2215ca0d 2664int
2665active_insn_p (insn)
2666 rtx insn;
2667{
2668 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2669 || (GET_CODE (insn) == INSN
2670 && (! reload_completed
2671 || (GET_CODE (PATTERN (insn)) != USE
2672 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2673}
2674
15bbde2b 2675rtx
2676next_active_insn (insn)
2677 rtx insn;
2678{
2679 while (insn)
2680 {
2681 insn = NEXT_INSN (insn);
2215ca0d 2682 if (insn == 0 || active_insn_p (insn))
15bbde2b 2683 break;
2684 }
2685
2686 return insn;
2687}
2688
2689/* Find the last insn before INSN that really does something. This routine
2690 does not look inside SEQUENCEs. Until reload has completed, this is the
2691 same as prev_real_insn. */
2692
2693rtx
2694prev_active_insn (insn)
2695 rtx insn;
2696{
2697 while (insn)
2698 {
2699 insn = PREV_INSN (insn);
2215ca0d 2700 if (insn == 0 || active_insn_p (insn))
15bbde2b 2701 break;
2702 }
2703
2704 return insn;
2705}
2706
2707/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2708
2709rtx
2710next_label (insn)
2711 rtx insn;
2712{
2713 while (insn)
2714 {
2715 insn = NEXT_INSN (insn);
2716 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2717 break;
2718 }
2719
2720 return insn;
2721}
2722
2723/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2724
2725rtx
2726prev_label (insn)
2727 rtx insn;
2728{
2729 while (insn)
2730 {
2731 insn = PREV_INSN (insn);
2732 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2733 break;
2734 }
2735
2736 return insn;
2737}
2738\f
2739#ifdef HAVE_cc0
b15e0bba 2740/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2741 and REG_CC_USER notes so we can find it. */
2742
2743void
2744link_cc0_insns (insn)
2745 rtx insn;
2746{
2747 rtx user = next_nonnote_insn (insn);
2748
2749 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2750 user = XVECEXP (PATTERN (user), 0, 0);
2751
7014838c 2752 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
2753 REG_NOTES (user));
3ad7bb1c 2754 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
b15e0bba 2755}
2756
15bbde2b 2757/* Return the next insn that uses CC0 after INSN, which is assumed to
2758 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2759 applied to the result of this function should yield INSN).
2760
2761 Normally, this is simply the next insn. However, if a REG_CC_USER note
2762 is present, it contains the insn that uses CC0.
2763
2764 Return 0 if we can't find the insn. */
2765
2766rtx
2767next_cc0_user (insn)
2768 rtx insn;
2769{
b572011e 2770 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
15bbde2b 2771
2772 if (note)
2773 return XEXP (note, 0);
2774
2775 insn = next_nonnote_insn (insn);
2776 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2777 insn = XVECEXP (PATTERN (insn), 0, 0);
2778
9204e736 2779 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
15bbde2b 2780 return insn;
2781
2782 return 0;
2783}
2784
2785/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2786 note, it is the previous insn. */
2787
2788rtx
2789prev_cc0_setter (insn)
2790 rtx insn;
2791{
b572011e 2792 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
15bbde2b 2793
2794 if (note)
2795 return XEXP (note, 0);
2796
2797 insn = prev_nonnote_insn (insn);
2798 if (! sets_cc0_p (PATTERN (insn)))
2799 abort ();
2800
2801 return insn;
2802}
2803#endif
344dc2fa 2804
2805/* Increment the label uses for all labels present in rtx. */
2806
2807static void
2808mark_label_nuses(x)
2809 rtx x;
2810{
19cb6b50 2811 enum rtx_code code;
2812 int i, j;
2813 const char *fmt;
344dc2fa 2814
2815 code = GET_CODE (x);
2816 if (code == LABEL_REF)
2817 LABEL_NUSES (XEXP (x, 0))++;
2818
2819 fmt = GET_RTX_FORMAT (code);
2820 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2821 {
2822 if (fmt[i] == 'e')
2823 mark_label_nuses (XEXP (x, i));
2824 else if (fmt[i] == 'E')
2825 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2826 mark_label_nuses (XVECEXP (x, i, j));
2827 }
2828}
2829
15bbde2b 2830\f
2831/* Try splitting insns that can be split for better scheduling.
2832 PAT is the pattern which might split.
2833 TRIAL is the insn providing PAT.
0e69a50a 2834 LAST is non-zero if we should return the last insn of the sequence produced.
15bbde2b 2835
2836 If this routine succeeds in splitting, it returns the first or last
0e69a50a 2837 replacement insn depending on the value of LAST. Otherwise, it
15bbde2b 2838 returns TRIAL. If the insn to be returned can be split, it will be. */
2839
2840rtx
0e69a50a 2841try_split (pat, trial, last)
15bbde2b 2842 rtx pat, trial;
0e69a50a 2843 int last;
15bbde2b 2844{
2845 rtx before = PREV_INSN (trial);
2846 rtx after = NEXT_INSN (trial);
15bbde2b 2847 int has_barrier = 0;
2848 rtx tem;
3cd757b1 2849 rtx note, seq;
2850 int probability;
2851
2852 if (any_condjump_p (trial)
2853 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
2854 split_branch_probability = INTVAL (XEXP (note, 0));
2855 probability = split_branch_probability;
2856
2857 seq = split_insns (pat, trial);
2858
2859 split_branch_probability = -1;
15bbde2b 2860
2861 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2862 We may need to handle this specially. */
2863 if (after && GET_CODE (after) == BARRIER)
2864 {
2865 has_barrier = 1;
2866 after = NEXT_INSN (after);
2867 }
2868
2869 if (seq)
2870 {
2871 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2872 The latter case will normally arise only when being done so that
2873 it, in turn, will be split (SFmode on the 29k is an example). */
2874 if (GET_CODE (seq) == SEQUENCE)
2875 {
3cd757b1 2876 int i, njumps = 0;
d823ba47 2877
2878 /* Avoid infinite loop if any insn of the result matches
5262c253 2879 the original pattern. */
2880 for (i = 0; i < XVECLEN (seq, 0); i++)
d823ba47 2881 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN
5262c253 2882 && rtx_equal_p (PATTERN (XVECEXP (seq, 0, i)), pat))
d823ba47 2883 return trial;
5262c253 2884
5377f687 2885 /* Mark labels. */
2886 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2887 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
3cd757b1 2888 {
2889 rtx insn = XVECEXP (seq, 0, i);
2890 mark_jump_label (PATTERN (insn),
2891 XVECEXP (seq, 0, i), 0);
2892 njumps++;
2893 if (probability != -1
2894 && any_condjump_p (insn)
2895 && !find_reg_note (insn, REG_BR_PROB, 0))
2896 {
2897 /* We can preserve the REG_BR_PROB notes only if exactly
3fb1e43b 2898 one jump is created, otherwise the machine description
3cd757b1 2899 is responsible for this step using
2900 split_branch_probability variable. */
2901 if (njumps != 1)
2902 abort ();
2903 REG_NOTES (insn)
2904 = gen_rtx_EXPR_LIST (REG_BR_PROB,
2905 GEN_INT (probability),
2906 REG_NOTES (insn));
2907 }
2908 }
381eb1e7 2909
1b3a64a8 2910 /* If we are splitting a CALL_INSN, look for the CALL_INSN
2911 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
2912 if (GET_CODE (trial) == CALL_INSN)
2913 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2914 if (GET_CODE (XVECEXP (seq, 0, i)) == CALL_INSN)
2915 CALL_INSN_FUNCTION_USAGE (XVECEXP (seq, 0, i))
2916 = CALL_INSN_FUNCTION_USAGE (trial);
2917
381eb1e7 2918 /* Copy notes, particularly those related to the CFG. */
2919 for (note = REG_NOTES (trial); note ; note = XEXP (note, 1))
2920 {
2921 switch (REG_NOTE_KIND (note))
2922 {
2923 case REG_EH_REGION:
2924 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2925 {
2926 rtx insn = XVECEXP (seq, 0, i);
2927 if (GET_CODE (insn) == CALL_INSN
2928 || (flag_non_call_exceptions
2929 && may_trap_p (PATTERN (insn))))
2930 REG_NOTES (insn)
2931 = gen_rtx_EXPR_LIST (REG_EH_REGION,
2932 XEXP (note, 0),
2933 REG_NOTES (insn));
2934 }
2935 break;
2936
2937 case REG_NORETURN:
2938 case REG_SETJMP:
2939 case REG_ALWAYS_RETURN:
2940 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2941 {
2942 rtx insn = XVECEXP (seq, 0, i);
2943 if (GET_CODE (insn) == CALL_INSN)
2944 REG_NOTES (insn)
2945 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2946 XEXP (note, 0),
2947 REG_NOTES (insn));
2948 }
2949 break;
2950
2951 case REG_NON_LOCAL_GOTO:
2952 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2953 {
2954 rtx insn = XVECEXP (seq, 0, i);
2955 if (GET_CODE (insn) == JUMP_INSN)
2956 REG_NOTES (insn)
2957 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
2958 XEXP (note, 0),
2959 REG_NOTES (insn));
2960 }
2961 break;
2962
2963 default:
2964 break;
2965 }
2966 }
5bb27a4b 2967
344dc2fa 2968 /* If there are LABELS inside the split insns increment the
2969 usage count so we don't delete the label. */
2970 if (GET_CODE (trial) == INSN)
2971 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2972 if (GET_CODE (XVECEXP (seq, 0, i)) == INSN)
2973 mark_label_nuses (PATTERN (XVECEXP (seq, 0, i)));
2974
9dda7915 2975 tem = emit_insn_after (seq, trial);
15bbde2b 2976
e4bf866d 2977 delete_related_insns (trial);
15bbde2b 2978 if (has_barrier)
2979 emit_barrier_after (tem);
0e69a50a 2980
2981 /* Recursively call try_split for each new insn created; by the
2982 time control returns here that insn will be fully split, so
2983 set LAST and continue from the insn after the one returned.
06343e77 2984 We can't use next_active_insn here since AFTER may be a note.
ab6683d6 2985 Ignore deleted insns, which can be occur if not optimizing. */
9204e736 2986 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
2987 if (! INSN_DELETED_P (tem) && INSN_P (tem))
06343e77 2988 tem = try_split (PATTERN (tem), tem, 1);
15bbde2b 2989 }
2990 /* Avoid infinite loop if the result matches the original pattern. */
2991 else if (rtx_equal_p (seq, pat))
2992 return trial;
2993 else
2994 {
2995 PATTERN (trial) = seq;
2996 INSN_CODE (trial) = -1;
0e69a50a 2997 try_split (seq, trial, last);
15bbde2b 2998 }
2999
0e69a50a 3000 /* Return either the first or the last insn, depending on which was
3001 requested. */
d823ba47 3002 return last
3cd757b1 3003 ? (after ? PREV_INSN (after) : last_insn)
3004 : NEXT_INSN (before);
15bbde2b 3005 }
3006
3007 return trial;
3008}
3009\f
3010/* Make and return an INSN rtx, initializing all its slots.
6a84e367 3011 Store PATTERN in the pattern slots. */
15bbde2b 3012
3013rtx
6a84e367 3014make_insn_raw (pattern)
15bbde2b 3015 rtx pattern;
15bbde2b 3016{
19cb6b50 3017 rtx insn;
15bbde2b 3018
d7c47c0e 3019 insn = rtx_alloc (INSN);
15bbde2b 3020
575333f9 3021 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 3022 PATTERN (insn) = pattern;
3023 INSN_CODE (insn) = -1;
fc92fa61 3024 LOG_LINKS (insn) = NULL;
3025 REG_NOTES (insn) = NULL;
15bbde2b 3026
fe7f701d 3027#ifdef ENABLE_RTL_CHECKING
3028 if (insn
9204e736 3029 && INSN_P (insn)
fe7f701d 3030 && (returnjump_p (insn)
3031 || (GET_CODE (insn) == SET
3032 && SET_DEST (insn) == pc_rtx)))
3033 {
3034 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3035 debug_rtx (insn);
3036 }
3037#endif
d823ba47 3038
15bbde2b 3039 return insn;
3040}
3041
3042/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
3043
3044static rtx
6a84e367 3045make_jump_insn_raw (pattern)
15bbde2b 3046 rtx pattern;
15bbde2b 3047{
19cb6b50 3048 rtx insn;
15bbde2b 3049
6a84e367 3050 insn = rtx_alloc (JUMP_INSN);
fc92fa61 3051 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 3052
3053 PATTERN (insn) = pattern;
3054 INSN_CODE (insn) = -1;
fc92fa61 3055 LOG_LINKS (insn) = NULL;
3056 REG_NOTES (insn) = NULL;
3057 JUMP_LABEL (insn) = NULL;
15bbde2b 3058
3059 return insn;
3060}
6e911104 3061
3062/* Like `make_insn' but make a CALL_INSN instead of an insn. */
3063
3064static rtx
3065make_call_insn_raw (pattern)
3066 rtx pattern;
3067{
19cb6b50 3068 rtx insn;
6e911104 3069
3070 insn = rtx_alloc (CALL_INSN);
3071 INSN_UID (insn) = cur_insn_uid++;
3072
3073 PATTERN (insn) = pattern;
3074 INSN_CODE (insn) = -1;
3075 LOG_LINKS (insn) = NULL;
3076 REG_NOTES (insn) = NULL;
3077 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
3078
3079 return insn;
3080}
15bbde2b 3081\f
3082/* Add INSN to the end of the doubly-linked list.
3083 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3084
3085void
3086add_insn (insn)
19cb6b50 3087 rtx insn;
15bbde2b 3088{
3089 PREV_INSN (insn) = last_insn;
3090 NEXT_INSN (insn) = 0;
3091
3092 if (NULL != last_insn)
3093 NEXT_INSN (last_insn) = insn;
3094
3095 if (NULL == first_insn)
3096 first_insn = insn;
3097
3098 last_insn = insn;
3099}
3100
312de84d 3101/* Add INSN into the doubly-linked list after insn AFTER. This and
3102 the next should be the only functions called to insert an insn once
f65c10c0 3103 delay slots have been filled since only they know how to update a
312de84d 3104 SEQUENCE. */
15bbde2b 3105
3106void
3107add_insn_after (insn, after)
3108 rtx insn, after;
3109{
3110 rtx next = NEXT_INSN (after);
9dda7915 3111 basic_block bb;
15bbde2b 3112
9ea33026 3113 if (optimize && INSN_DELETED_P (after))
f65c10c0 3114 abort ();
3115
15bbde2b 3116 NEXT_INSN (insn) = next;
3117 PREV_INSN (insn) = after;
3118
3119 if (next)
3120 {
3121 PREV_INSN (next) = insn;
3122 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3123 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3124 }
3125 else if (last_insn == after)
3126 last_insn = insn;
3127 else
3128 {
0a893c29 3129 struct sequence_stack *stack = seq_stack;
15bbde2b 3130 /* Scan all pending sequences too. */
3131 for (; stack; stack = stack->next)
3132 if (after == stack->last)
398f4855 3133 {
3134 stack->last = insn;
3135 break;
3136 }
312de84d 3137
3138 if (stack == 0)
3139 abort ();
15bbde2b 3140 }
3141
9dda7915 3142 if (basic_block_for_insn
3143 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3144 && (bb = BLOCK_FOR_INSN (after)))
3145 {
3146 set_block_for_insn (insn, bb);
3147 /* Should not happen as first in the BB is always
3fb1e43b 3148 either NOTE or LABEL. */
9dda7915 3149 if (bb->end == after
3150 /* Avoid clobbering of structure when creating new BB. */
3151 && GET_CODE (insn) != BARRIER
3152 && (GET_CODE (insn) != NOTE
3153 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3154 bb->end = insn;
3155 }
3156
15bbde2b 3157 NEXT_INSN (after) = insn;
3158 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3159 {
3160 rtx sequence = PATTERN (after);
3161 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3162 }
3163}
3164
312de84d 3165/* Add INSN into the doubly-linked list before insn BEFORE. This and
3166 the previous should be the only functions called to insert an insn once
f65c10c0 3167 delay slots have been filled since only they know how to update a
312de84d 3168 SEQUENCE. */
3169
3170void
3171add_insn_before (insn, before)
3172 rtx insn, before;
3173{
3174 rtx prev = PREV_INSN (before);
9dda7915 3175 basic_block bb;
312de84d 3176
9ea33026 3177 if (optimize && INSN_DELETED_P (before))
f65c10c0 3178 abort ();
3179
312de84d 3180 PREV_INSN (insn) = prev;
3181 NEXT_INSN (insn) = before;
3182
3183 if (prev)
3184 {
3185 NEXT_INSN (prev) = insn;
3186 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3187 {
3188 rtx sequence = PATTERN (prev);
3189 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3190 }
3191 }
3192 else if (first_insn == before)
3193 first_insn = insn;
3194 else
3195 {
0a893c29 3196 struct sequence_stack *stack = seq_stack;
312de84d 3197 /* Scan all pending sequences too. */
3198 for (; stack; stack = stack->next)
3199 if (before == stack->first)
398f4855 3200 {
3201 stack->first = insn;
3202 break;
3203 }
312de84d 3204
3205 if (stack == 0)
3206 abort ();
3207 }
3208
9dda7915 3209 if (basic_block_for_insn
3210 && (unsigned int)INSN_UID (before) < basic_block_for_insn->num_elements
3211 && (bb = BLOCK_FOR_INSN (before)))
3212 {
3213 set_block_for_insn (insn, bb);
3214 /* Should not happen as first in the BB is always
3fb1e43b 3215 either NOTE or LABEl. */
9dda7915 3216 if (bb->head == insn
3217 /* Avoid clobbering of structure when creating new BB. */
3218 && GET_CODE (insn) != BARRIER
3219 && (GET_CODE (insn) != NOTE
3220 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3221 abort ();
3222 }
3223
312de84d 3224 PREV_INSN (before) = insn;
3225 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3226 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3227}
3228
7ddcf2bf 3229/* Remove an insn from its doubly-linked list. This function knows how
3230 to handle sequences. */
3231void
3232remove_insn (insn)
3233 rtx insn;
3234{
3235 rtx next = NEXT_INSN (insn);
3236 rtx prev = PREV_INSN (insn);
e4bf866d 3237 basic_block bb;
3238
7ddcf2bf 3239 if (prev)
3240 {
3241 NEXT_INSN (prev) = next;
3242 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3243 {
3244 rtx sequence = PATTERN (prev);
3245 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3246 }
3247 }
3248 else if (first_insn == insn)
3249 first_insn = next;
3250 else
3251 {
0a893c29 3252 struct sequence_stack *stack = seq_stack;
7ddcf2bf 3253 /* Scan all pending sequences too. */
3254 for (; stack; stack = stack->next)
3255 if (insn == stack->first)
3256 {
3257 stack->first = next;
3258 break;
3259 }
3260
3261 if (stack == 0)
3262 abort ();
3263 }
3264
3265 if (next)
3266 {
3267 PREV_INSN (next) = prev;
3268 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3269 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3270 }
3271 else if (last_insn == insn)
3272 last_insn = prev;
3273 else
3274 {
0a893c29 3275 struct sequence_stack *stack = seq_stack;
7ddcf2bf 3276 /* Scan all pending sequences too. */
3277 for (; stack; stack = stack->next)
3278 if (insn == stack->last)
3279 {
3280 stack->last = prev;
3281 break;
3282 }
3283
3284 if (stack == 0)
3285 abort ();
3286 }
e4bf866d 3287 if (basic_block_for_insn
3288 && (unsigned int)INSN_UID (insn) < basic_block_for_insn->num_elements
3289 && (bb = BLOCK_FOR_INSN (insn)))
3290 {
3291 if (bb->head == insn)
3292 {
3293 /* Never ever delete the basic block note without deleting whole basic
3294 block. */
3295 if (GET_CODE (insn) == NOTE)
3296 abort ();
3297 bb->head = next;
3298 }
3299 if (bb->end == insn)
3300 bb->end = prev;
3301 }
7ddcf2bf 3302}
3303
15bbde2b 3304/* Delete all insns made since FROM.
3305 FROM becomes the new last instruction. */
3306
3307void
3308delete_insns_since (from)
3309 rtx from;
3310{
3311 if (from == 0)
3312 first_insn = 0;
3313 else
3314 NEXT_INSN (from) = 0;
3315 last_insn = from;
3316}
3317
34e2ddcd 3318/* This function is deprecated, please use sequences instead.
3319
3320 Move a consecutive bunch of insns to a different place in the chain.
15bbde2b 3321 The insns to be moved are those between FROM and TO.
3322 They are moved to a new position after the insn AFTER.
3323 AFTER must not be FROM or TO or any insn in between.
3324
3325 This function does not know about SEQUENCEs and hence should not be
3326 called after delay-slot filling has been done. */
3327
3328void
9dda7915 3329reorder_insns_nobb (from, to, after)
15bbde2b 3330 rtx from, to, after;
3331{
3332 /* Splice this bunch out of where it is now. */
3333 if (PREV_INSN (from))
3334 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3335 if (NEXT_INSN (to))
3336 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3337 if (last_insn == to)
3338 last_insn = PREV_INSN (from);
3339 if (first_insn == from)
3340 first_insn = NEXT_INSN (to);
3341
3342 /* Make the new neighbors point to it and it to them. */
3343 if (NEXT_INSN (after))
3344 PREV_INSN (NEXT_INSN (after)) = to;
3345
3346 NEXT_INSN (to) = NEXT_INSN (after);
3347 PREV_INSN (from) = after;
3348 NEXT_INSN (after) = from;
3349 if (after == last_insn)
3350 last_insn = to;
3351}
3352
9dda7915 3353/* Same as function above, but take care to update BB boundaries. */
3354void
3355reorder_insns (from, to, after)
3356 rtx from, to, after;
3357{
3358 rtx prev = PREV_INSN (from);
3359 basic_block bb, bb2;
3360
3361 reorder_insns_nobb (from, to, after);
3362
3363 if (basic_block_for_insn
3364 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3365 && (bb = BLOCK_FOR_INSN (after)))
3366 {
3367 rtx x;
3368
3369 if (basic_block_for_insn
3370 && (unsigned int)INSN_UID (from) < basic_block_for_insn->num_elements
3371 && (bb2 = BLOCK_FOR_INSN (from)))
3372 {
3373 if (bb2->end == to)
3374 bb2->end = prev;
3375 }
3376
3377 if (bb->end == after)
3378 bb->end = to;
3379
3380 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3381 set_block_for_insn (x, bb);
3382 }
3383}
3384
15bbde2b 3385/* Return the line note insn preceding INSN. */
3386
3387static rtx
3388find_line_note (insn)
3389 rtx insn;
3390{
3391 if (no_line_numbers)
3392 return 0;
3393
3394 for (; insn; insn = PREV_INSN (insn))
3395 if (GET_CODE (insn) == NOTE
3396 && NOTE_LINE_NUMBER (insn) >= 0)
3397 break;
3398
3399 return insn;
3400}
3401
3402/* Like reorder_insns, but inserts line notes to preserve the line numbers
3403 of the moved insns when debugging. This may insert a note between AFTER
3404 and FROM, and another one after TO. */
3405
3406void
3407reorder_insns_with_line_notes (from, to, after)
3408 rtx from, to, after;
3409{
3410 rtx from_line = find_line_note (from);
3411 rtx after_line = find_line_note (after);
3412
3413 reorder_insns (from, to, after);
3414
3415 if (from_line == after_line)
3416 return;
3417
3418 if (from_line)
3419 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3420 NOTE_LINE_NUMBER (from_line),
3421 after);
3422 if (after_line)
3423 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3424 NOTE_LINE_NUMBER (after_line),
3425 to);
3426}
90b89d2c 3427
0a78547b 3428/* Remove unnecessary notes from the instruction stream. */
90b89d2c 3429
3430void
0a78547b 3431remove_unnecessary_notes ()
90b89d2c 3432{
92cfc4a8 3433 rtx block_stack = NULL_RTX;
3434 rtx eh_stack = NULL_RTX;
90b89d2c 3435 rtx insn;
3436 rtx next;
92cfc4a8 3437 rtx tmp;
90b89d2c 3438
f1ab82be 3439 /* We must not remove the first instruction in the function because
3440 the compiler depends on the first instruction being a note. */
90b89d2c 3441 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3442 {
3443 /* Remember what's next. */
3444 next = NEXT_INSN (insn);
3445
3446 /* We're only interested in notes. */
3447 if (GET_CODE (insn) != NOTE)
3448 continue;
3449
92cfc4a8 3450 switch (NOTE_LINE_NUMBER (insn))
5846cb0f 3451 {
92cfc4a8 3452 case NOTE_INSN_DELETED:
3453 remove_insn (insn);
3454 break;
3455
3456 case NOTE_INSN_EH_REGION_BEG:
3457 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3458 break;
3459
3460 case NOTE_INSN_EH_REGION_END:
3461 /* Too many end notes. */
3462 if (eh_stack == NULL_RTX)
3463 abort ();
3464 /* Mismatched nesting. */
3465 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3466 abort ();
3467 tmp = eh_stack;
3468 eh_stack = XEXP (eh_stack, 1);
3469 free_INSN_LIST_node (tmp);
3470 break;
3471
3472 case NOTE_INSN_BLOCK_BEG:
3473 /* By now, all notes indicating lexical blocks should have
3474 NOTE_BLOCK filled in. */
3475 if (NOTE_BLOCK (insn) == NULL_TREE)
3476 abort ();
3477 block_stack = alloc_INSN_LIST (insn, block_stack);
3478 break;
3479
3480 case NOTE_INSN_BLOCK_END:
3481 /* Too many end notes. */
3482 if (block_stack == NULL_RTX)
3483 abort ();
3484 /* Mismatched nesting. */
3485 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3486 abort ();
3487 tmp = block_stack;
3488 block_stack = XEXP (block_stack, 1);
3489 free_INSN_LIST_node (tmp);
3490
5846cb0f 3491 /* Scan back to see if there are any non-note instructions
3492 between INSN and the beginning of this block. If not,
3493 then there is no PC range in the generated code that will
3494 actually be in this block, so there's no point in
3495 remembering the existence of the block. */
92cfc4a8 3496 for (tmp = PREV_INSN (insn); tmp ; tmp = PREV_INSN (tmp))
5846cb0f 3497 {
3498 /* This block contains a real instruction. Note that we
3499 don't include labels; if the only thing in the block
3500 is a label, then there are still no PC values that
3501 lie within the block. */
92cfc4a8 3502 if (INSN_P (tmp))
5846cb0f 3503 break;
3504
3505 /* We're only interested in NOTEs. */
92cfc4a8 3506 if (GET_CODE (tmp) != NOTE)
5846cb0f 3507 continue;
3508
92cfc4a8 3509 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
5846cb0f 3510 {
b29760a8 3511 /* We just verified that this BLOCK matches us with
3512 the block_stack check above. Never delete the
3513 BLOCK for the outermost scope of the function; we
3514 can refer to names from that scope even if the
3515 block notes are messed up. */
3516 if (! is_body_block (NOTE_BLOCK (insn))
3517 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
e33dbbdf 3518 {
92cfc4a8 3519 remove_insn (tmp);
e33dbbdf 3520 remove_insn (insn);
3521 }
5846cb0f 3522 break;
3523 }
92cfc4a8 3524 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
5846cb0f 3525 /* There's a nested block. We need to leave the
3526 current block in place since otherwise the debugger
3527 wouldn't be able to show symbols from our block in
3528 the nested block. */
3529 break;
3530 }
3531 }
90b89d2c 3532 }
92cfc4a8 3533
3534 /* Too many begin notes. */
3535 if (block_stack || eh_stack)
3536 abort ();
90b89d2c 3537}
3538
15bbde2b 3539\f
3540/* Emit an insn of given code and pattern
3541 at a specified place within the doubly-linked list. */
3542
3543/* Make an instruction with body PATTERN
3544 and output it before the instruction BEFORE. */
3545
3546rtx
3547emit_insn_before (pattern, before)
19cb6b50 3548 rtx pattern, before;
15bbde2b 3549{
19cb6b50 3550 rtx insn = before;
15bbde2b 3551
3552 if (GET_CODE (pattern) == SEQUENCE)
3553 {
19cb6b50 3554 int i;
15bbde2b 3555
3556 for (i = 0; i < XVECLEN (pattern, 0); i++)
3557 {
3558 insn = XVECEXP (pattern, 0, i);
312de84d 3559 add_insn_before (insn, before);
15bbde2b 3560 }
15bbde2b 3561 }
3562 else
3563 {
6a84e367 3564 insn = make_insn_raw (pattern);
312de84d 3565 add_insn_before (insn, before);
15bbde2b 3566 }
3567
3568 return insn;
3569}
3570
3571/* Make an instruction with body PATTERN and code JUMP_INSN
3572 and output it before the instruction BEFORE. */
3573
3574rtx
3575emit_jump_insn_before (pattern, before)
19cb6b50 3576 rtx pattern, before;
15bbde2b 3577{
19cb6b50 3578 rtx insn;
15bbde2b 3579
3580 if (GET_CODE (pattern) == SEQUENCE)
3581 insn = emit_insn_before (pattern, before);
3582 else
3583 {
8f060628 3584 insn = make_jump_insn_raw (pattern);
312de84d 3585 add_insn_before (insn, before);
15bbde2b 3586 }
3587
3588 return insn;
3589}
3590
3591/* Make an instruction with body PATTERN and code CALL_INSN
3592 and output it before the instruction BEFORE. */
3593
3594rtx
3595emit_call_insn_before (pattern, before)
19cb6b50 3596 rtx pattern, before;
15bbde2b 3597{
19cb6b50 3598 rtx insn;
6e911104 3599
3600 if (GET_CODE (pattern) == SEQUENCE)
3601 insn = emit_insn_before (pattern, before);
3602 else
3603 {
3604 insn = make_call_insn_raw (pattern);
312de84d 3605 add_insn_before (insn, before);
6e911104 3606 PUT_CODE (insn, CALL_INSN);
3607 }
3608
15bbde2b 3609 return insn;
3610}
3611
3612/* Make an insn of code BARRIER
71caadc0 3613 and output it before the insn BEFORE. */
15bbde2b 3614
3615rtx
3616emit_barrier_before (before)
19cb6b50 3617 rtx before;
15bbde2b 3618{
19cb6b50 3619 rtx insn = rtx_alloc (BARRIER);
15bbde2b 3620
3621 INSN_UID (insn) = cur_insn_uid++;
3622
312de84d 3623 add_insn_before (insn, before);
15bbde2b 3624 return insn;
3625}
3626
71caadc0 3627/* Emit the label LABEL before the insn BEFORE. */
3628
3629rtx
3630emit_label_before (label, before)
3631 rtx label, before;
3632{
3633 /* This can be called twice for the same label as a result of the
3634 confusion that follows a syntax error! So make it harmless. */
3635 if (INSN_UID (label) == 0)
3636 {
3637 INSN_UID (label) = cur_insn_uid++;
3638 add_insn_before (label, before);
3639 }
3640
3641 return label;
3642}
3643
15bbde2b 3644/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3645
3646rtx
3647emit_note_before (subtype, before)
3648 int subtype;
3649 rtx before;
3650{
19cb6b50 3651 rtx note = rtx_alloc (NOTE);
15bbde2b 3652 INSN_UID (note) = cur_insn_uid++;
3653 NOTE_SOURCE_FILE (note) = 0;
3654 NOTE_LINE_NUMBER (note) = subtype;
3655
312de84d 3656 add_insn_before (note, before);
15bbde2b 3657 return note;
3658}
3659\f
3660/* Make an insn of code INSN with body PATTERN
3661 and output it after the insn AFTER. */
3662
3663rtx
3664emit_insn_after (pattern, after)
19cb6b50 3665 rtx pattern, after;
15bbde2b 3666{
19cb6b50 3667 rtx insn = after;
15bbde2b 3668
3669 if (GET_CODE (pattern) == SEQUENCE)
3670 {
19cb6b50 3671 int i;
15bbde2b 3672
3673 for (i = 0; i < XVECLEN (pattern, 0); i++)
3674 {
3675 insn = XVECEXP (pattern, 0, i);
3676 add_insn_after (insn, after);
3677 after = insn;
3678 }
15bbde2b 3679 }
3680 else
3681 {
6a84e367 3682 insn = make_insn_raw (pattern);
15bbde2b 3683 add_insn_after (insn, after);
3684 }
3685
3686 return insn;
3687}
3688
1bea98fb 3689/* Similar to emit_insn_after, except that line notes are to be inserted so
3690 as to act as if this insn were at FROM. */
3691
3692void
3693emit_insn_after_with_line_notes (pattern, after, from)
3694 rtx pattern, after, from;
3695{
3696 rtx from_line = find_line_note (from);
3697 rtx after_line = find_line_note (after);
3698 rtx insn = emit_insn_after (pattern, after);
3699
3700 if (from_line)
3701 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3702 NOTE_LINE_NUMBER (from_line),
3703 after);
3704
3705 if (after_line)
3706 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3707 NOTE_LINE_NUMBER (after_line),
3708 insn);
3709}
3710
15bbde2b 3711/* Make an insn of code JUMP_INSN with body PATTERN
3712 and output it after the insn AFTER. */
3713
3714rtx
3715emit_jump_insn_after (pattern, after)
19cb6b50 3716 rtx pattern, after;
15bbde2b 3717{
19cb6b50 3718 rtx insn;
15bbde2b 3719
3720 if (GET_CODE (pattern) == SEQUENCE)
3721 insn = emit_insn_after (pattern, after);
3722 else
3723 {
8f060628 3724 insn = make_jump_insn_raw (pattern);
15bbde2b 3725 add_insn_after (insn, after);
3726 }
3727
3728 return insn;
3729}
3730
3731/* Make an insn of code BARRIER
3732 and output it after the insn AFTER. */
3733
3734rtx
3735emit_barrier_after (after)
19cb6b50 3736 rtx after;
15bbde2b 3737{
19cb6b50 3738 rtx insn = rtx_alloc (BARRIER);
15bbde2b 3739
3740 INSN_UID (insn) = cur_insn_uid++;
3741
3742 add_insn_after (insn, after);
3743 return insn;
3744}
3745
3746/* Emit the label LABEL after the insn AFTER. */
3747
3748rtx
3749emit_label_after (label, after)
3750 rtx label, after;
3751{
3752 /* This can be called twice for the same label
3753 as a result of the confusion that follows a syntax error!
3754 So make it harmless. */
3755 if (INSN_UID (label) == 0)
3756 {
3757 INSN_UID (label) = cur_insn_uid++;
3758 add_insn_after (label, after);
3759 }
3760
3761 return label;
3762}
3763
3764/* Emit a note of subtype SUBTYPE after the insn AFTER. */
3765
3766rtx
3767emit_note_after (subtype, after)
3768 int subtype;
3769 rtx after;
3770{
19cb6b50 3771 rtx note = rtx_alloc (NOTE);
15bbde2b 3772 INSN_UID (note) = cur_insn_uid++;
3773 NOTE_SOURCE_FILE (note) = 0;
3774 NOTE_LINE_NUMBER (note) = subtype;
3775 add_insn_after (note, after);
3776 return note;
3777}
3778
3779/* Emit a line note for FILE and LINE after the insn AFTER. */
3780
3781rtx
3782emit_line_note_after (file, line, after)
9a356c3c 3783 const char *file;
15bbde2b 3784 int line;
3785 rtx after;
3786{
19cb6b50 3787 rtx note;
15bbde2b 3788
3789 if (no_line_numbers && line > 0)
3790 {
3791 cur_insn_uid++;
3792 return 0;
3793 }
3794
3795 note = rtx_alloc (NOTE);
3796 INSN_UID (note) = cur_insn_uid++;
3797 NOTE_SOURCE_FILE (note) = file;
3798 NOTE_LINE_NUMBER (note) = line;
3799 add_insn_after (note, after);
3800 return note;
3801}
3802\f
3803/* Make an insn of code INSN with pattern PATTERN
3804 and add it to the end of the doubly-linked list.
3805 If PATTERN is a SEQUENCE, take the elements of it
3806 and emit an insn for each element.
3807
3808 Returns the last insn emitted. */
3809
3810rtx
3811emit_insn (pattern)
3812 rtx pattern;
3813{
3814 rtx insn = last_insn;
3815
3816 if (GET_CODE (pattern) == SEQUENCE)
3817 {
19cb6b50 3818 int i;
15bbde2b 3819
3820 for (i = 0; i < XVECLEN (pattern, 0); i++)
3821 {
3822 insn = XVECEXP (pattern, 0, i);
3823 add_insn (insn);
3824 }
15bbde2b 3825 }
3826 else
3827 {
6a84e367 3828 insn = make_insn_raw (pattern);
15bbde2b 3829 add_insn (insn);
3830 }
3831
3832 return insn;
3833}
3834
3835/* Emit the insns in a chain starting with INSN.
3836 Return the last insn emitted. */
3837
3838rtx
3839emit_insns (insn)
3840 rtx insn;
3841{
3842 rtx last = 0;
3843
3844 while (insn)
3845 {
3846 rtx next = NEXT_INSN (insn);
3847 add_insn (insn);
3848 last = insn;
3849 insn = next;
3850 }
3851
3852 return last;
3853}
3854
3855/* Emit the insns in a chain starting with INSN and place them in front of
3856 the insn BEFORE. Return the last insn emitted. */
3857
3858rtx
3859emit_insns_before (insn, before)
3860 rtx insn;
3861 rtx before;
3862{
3863 rtx last = 0;
3864
3865 while (insn)
3866 {
3867 rtx next = NEXT_INSN (insn);
312de84d 3868 add_insn_before (insn, before);
15bbde2b 3869 last = insn;
3870 insn = next;
3871 }
3872
3873 return last;
3874}
3875
b36b07d8 3876/* Emit the insns in a chain starting with FIRST and place them in back of
3877 the insn AFTER. Return the last insn emitted. */
3878
3879rtx
3880emit_insns_after (first, after)
19cb6b50 3881 rtx first;
3882 rtx after;
b36b07d8 3883{
19cb6b50 3884 rtx last;
3885 rtx after_after;
9dda7915 3886 basic_block bb;
b36b07d8 3887
3888 if (!after)
3889 abort ();
3890
3891 if (!first)
b36d64df 3892 return after;
b36b07d8 3893
9dda7915 3894 if (basic_block_for_insn
3895 && (unsigned int)INSN_UID (after) < basic_block_for_insn->num_elements
3896 && (bb = BLOCK_FOR_INSN (after)))
3897 {
3898 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3899 set_block_for_insn (last, bb);
3900 set_block_for_insn (last, bb);
3901 if (bb->end == after)
3902 bb->end = last;
3903 }
3904 else
3905 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
3906 continue;
b36b07d8 3907
3908 after_after = NEXT_INSN (after);
3909
3910 NEXT_INSN (after) = first;
3911 PREV_INSN (first) = after;
3912 NEXT_INSN (last) = after_after;
3913 if (after_after)
3914 PREV_INSN (after_after) = last;
3915
0c905390 3916 if (after == last_insn)
3917 last_insn = last;
b36b07d8 3918 return last;
3919}
3920
15bbde2b 3921/* Make an insn of code JUMP_INSN with pattern PATTERN
3922 and add it to the end of the doubly-linked list. */
3923
3924rtx
3925emit_jump_insn (pattern)
3926 rtx pattern;
3927{
3928 if (GET_CODE (pattern) == SEQUENCE)
3929 return emit_insn (pattern);
3930 else
3931 {
19cb6b50 3932 rtx insn = make_jump_insn_raw (pattern);
15bbde2b 3933 add_insn (insn);
3934 return insn;
3935 }
3936}
3937
3938/* Make an insn of code CALL_INSN with pattern PATTERN
3939 and add it to the end of the doubly-linked list. */
3940
3941rtx
3942emit_call_insn (pattern)
3943 rtx pattern;
3944{
3945 if (GET_CODE (pattern) == SEQUENCE)
3946 return emit_insn (pattern);
3947 else
3948 {
19cb6b50 3949 rtx insn = make_call_insn_raw (pattern);
15bbde2b 3950 add_insn (insn);
3951 PUT_CODE (insn, CALL_INSN);
3952 return insn;
3953 }
3954}
3955
3956/* Add the label LABEL to the end of the doubly-linked list. */
3957
3958rtx
3959emit_label (label)
3960 rtx label;
3961{
3962 /* This can be called twice for the same label
3963 as a result of the confusion that follows a syntax error!
3964 So make it harmless. */
3965 if (INSN_UID (label) == 0)
3966 {
3967 INSN_UID (label) = cur_insn_uid++;
3968 add_insn (label);
3969 }
3970 return label;
3971}
3972
3973/* Make an insn of code BARRIER
3974 and add it to the end of the doubly-linked list. */
3975
3976rtx
3977emit_barrier ()
3978{
19cb6b50 3979 rtx barrier = rtx_alloc (BARRIER);
15bbde2b 3980 INSN_UID (barrier) = cur_insn_uid++;
3981 add_insn (barrier);
3982 return barrier;
3983}
3984
3985/* Make an insn of code NOTE
3986 with data-fields specified by FILE and LINE
3987 and add it to the end of the doubly-linked list,
3988 but only if line-numbers are desired for debugging info. */
3989
3990rtx
3991emit_line_note (file, line)
9a356c3c 3992 const char *file;
15bbde2b 3993 int line;
3994{
21b005ed 3995 set_file_and_line_for_stmt (file, line);
15bbde2b 3996
3997#if 0
3998 if (no_line_numbers)
3999 return 0;
4000#endif
4001
4002 return emit_note (file, line);
4003}
4004
4005/* Make an insn of code NOTE
4006 with data-fields specified by FILE and LINE
4007 and add it to the end of the doubly-linked list.
4008 If it is a line-number NOTE, omit it if it matches the previous one. */
4009
4010rtx
4011emit_note (file, line)
9a356c3c 4012 const char *file;
15bbde2b 4013 int line;
4014{
19cb6b50 4015 rtx note;
15bbde2b 4016
4017 if (line > 0)
4018 {
4019 if (file && last_filename && !strcmp (file, last_filename)
4020 && line == last_linenum)
4021 return 0;
4022 last_filename = file;
4023 last_linenum = line;
4024 }
4025
4026 if (no_line_numbers && line > 0)
4027 {
4028 cur_insn_uid++;
4029 return 0;
4030 }
4031
4032 note = rtx_alloc (NOTE);
4033 INSN_UID (note) = cur_insn_uid++;
4034 NOTE_SOURCE_FILE (note) = file;
4035 NOTE_LINE_NUMBER (note) = line;
4036 add_insn (note);
4037 return note;
4038}
4039
8d54063f 4040/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
15bbde2b 4041
4042rtx
4043emit_line_note_force (file, line)
9a356c3c 4044 const char *file;
15bbde2b 4045 int line;
4046{
4047 last_linenum = -1;
4048 return emit_line_note (file, line);
4049}
4050
4051/* Cause next statement to emit a line note even if the line number
4052 has not changed. This is used at the beginning of a function. */
4053
4054void
4055force_next_line_note ()
4056{
4057 last_linenum = -1;
4058}
f1934a33 4059
4060/* Place a note of KIND on insn INSN with DATUM as the datum. If a
6312a35e 4061 note of this type already exists, remove it first. */
f1934a33 4062
c080d8f0 4063rtx
f1934a33 4064set_unique_reg_note (insn, kind, datum)
4065 rtx insn;
4066 enum reg_note kind;
4067 rtx datum;
4068{
4069 rtx note = find_reg_note (insn, kind, NULL_RTX);
4070
7e6224ab 4071 switch (kind)
4072 {
4073 case REG_EQUAL:
4074 case REG_EQUIV:
4075 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4076 has multiple sets (some callers assume single_set
4077 means the insn only has one set, when in fact it
4078 means the insn only has one * useful * set). */
4079 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4080 {
4081 if (note)
4082 abort ();
4083 return NULL_RTX;
4084 }
4085
4086 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4087 It serves no useful purpose and breaks eliminate_regs. */
4088 if (GET_CODE (datum) == ASM_OPERANDS)
4089 return NULL_RTX;
4090 break;
4091
4092 default:
4093 break;
4094 }
c080d8f0 4095
d823ba47 4096 if (note)
c080d8f0 4097 {
4098 XEXP (note, 0) = datum;
4099 return note;
4100 }
f1934a33 4101
4102 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
c080d8f0 4103 return REG_NOTES (insn);
f1934a33 4104}
15bbde2b 4105\f
4106/* Return an indication of which type of insn should have X as a body.
4107 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4108
4109enum rtx_code
4110classify_insn (x)
4111 rtx x;
4112{
4113 if (GET_CODE (x) == CODE_LABEL)
4114 return CODE_LABEL;
4115 if (GET_CODE (x) == CALL)
4116 return CALL_INSN;
4117 if (GET_CODE (x) == RETURN)
4118 return JUMP_INSN;
4119 if (GET_CODE (x) == SET)
4120 {
4121 if (SET_DEST (x) == pc_rtx)
4122 return JUMP_INSN;
4123 else if (GET_CODE (SET_SRC (x)) == CALL)
4124 return CALL_INSN;
4125 else
4126 return INSN;
4127 }
4128 if (GET_CODE (x) == PARALLEL)
4129 {
19cb6b50 4130 int j;
15bbde2b 4131 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4132 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4133 return CALL_INSN;
4134 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4135 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4136 return JUMP_INSN;
4137 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4138 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4139 return CALL_INSN;
4140 }
4141 return INSN;
4142}
4143
4144/* Emit the rtl pattern X as an appropriate kind of insn.
4145 If X is a label, it is simply added into the insn chain. */
4146
4147rtx
4148emit (x)
4149 rtx x;
4150{
4151 enum rtx_code code = classify_insn (x);
4152
4153 if (code == CODE_LABEL)
4154 return emit_label (x);
4155 else if (code == INSN)
4156 return emit_insn (x);
4157 else if (code == JUMP_INSN)
4158 {
19cb6b50 4159 rtx insn = emit_jump_insn (x);
b2816317 4160 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
15bbde2b 4161 return emit_barrier ();
4162 return insn;
4163 }
4164 else if (code == CALL_INSN)
4165 return emit_call_insn (x);
4166 else
4167 abort ();
4168}
4169\f
b49854c6 4170/* Begin emitting insns to a sequence which can be packaged in an
4171 RTL_EXPR. If this sequence will contain something that might cause
4172 the compiler to pop arguments to function calls (because those
4173 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4174 details), use do_pending_stack_adjust before calling this function.
4175 That will ensure that the deferred pops are not accidentally
9588521d 4176 emitted in the middle of this sequence. */
15bbde2b 4177
4178void
4179start_sequence ()
4180{
4181 struct sequence_stack *tem;
4182
1bfd55c5 4183 tem = (struct sequence_stack *) xmalloc (sizeof (struct sequence_stack));
15bbde2b 4184
0a893c29 4185 tem->next = seq_stack;
15bbde2b 4186 tem->first = first_insn;
4187 tem->last = last_insn;
961819fb 4188 tem->sequence_rtl_expr = seq_rtl_expr;
15bbde2b 4189
0a893c29 4190 seq_stack = tem;
15bbde2b 4191
4192 first_insn = 0;
4193 last_insn = 0;
4194}
4195
961819fb 4196/* Similarly, but indicate that this sequence will be placed in T, an
4197 RTL_EXPR. See the documentation for start_sequence for more
4198 information about how to use this function. */
4199
4200void
4201start_sequence_for_rtl_expr (t)
4202 tree t;
4203{
4204 start_sequence ();
4205
4206 seq_rtl_expr = t;
4207}
4208
b49854c6 4209/* Set up the insn chain starting with FIRST as the current sequence,
4210 saving the previously current one. See the documentation for
4211 start_sequence for more information about how to use this function. */
15bbde2b 4212
4213void
4214push_to_sequence (first)
4215 rtx first;
4216{
4217 rtx last;
4218
4219 start_sequence ();
4220
4221 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4222
4223 first_insn = first;
4224 last_insn = last;
4225}
4226
78147e84 4227/* Set up the insn chain from a chain stort in FIRST to LAST. */
4228
4229void
4230push_to_full_sequence (first, last)
4231 rtx first, last;
4232{
4233 start_sequence ();
4234 first_insn = first;
4235 last_insn = last;
4236 /* We really should have the end of the insn chain here. */
4237 if (last && NEXT_INSN (last))
4238 abort ();
4239}
4240
ab74c92f 4241/* Set up the outer-level insn chain
4242 as the current sequence, saving the previously current one. */
4243
4244void
4245push_topmost_sequence ()
4246{
2041cfd9 4247 struct sequence_stack *stack, *top = NULL;
ab74c92f 4248
4249 start_sequence ();
4250
0a893c29 4251 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 4252 top = stack;
4253
4254 first_insn = top->first;
4255 last_insn = top->last;
961819fb 4256 seq_rtl_expr = top->sequence_rtl_expr;
ab74c92f 4257}
4258
4259/* After emitting to the outer-level insn chain, update the outer-level
4260 insn chain, and restore the previous saved state. */
4261
4262void
4263pop_topmost_sequence ()
4264{
2041cfd9 4265 struct sequence_stack *stack, *top = NULL;
ab74c92f 4266
0a893c29 4267 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 4268 top = stack;
4269
4270 top->first = first_insn;
4271 top->last = last_insn;
961819fb 4272 /* ??? Why don't we save seq_rtl_expr here? */
ab74c92f 4273
4274 end_sequence ();
4275}
4276
15bbde2b 4277/* After emitting to a sequence, restore previous saved state.
4278
b49854c6 4279 To get the contents of the sequence just made, you must call
d823ba47 4280 `gen_sequence' *before* calling here.
b49854c6 4281
4282 If the compiler might have deferred popping arguments while
4283 generating this sequence, and this sequence will not be immediately
4284 inserted into the instruction stream, use do_pending_stack_adjust
4285 before calling gen_sequence. That will ensure that the deferred
4286 pops are inserted into this sequence, and not into some random
4287 location in the instruction stream. See INHIBIT_DEFER_POP for more
4288 information about deferred popping of arguments. */
15bbde2b 4289
4290void
4291end_sequence ()
4292{
0a893c29 4293 struct sequence_stack *tem = seq_stack;
15bbde2b 4294
4295 first_insn = tem->first;
4296 last_insn = tem->last;
961819fb 4297 seq_rtl_expr = tem->sequence_rtl_expr;
0a893c29 4298 seq_stack = tem->next;
15bbde2b 4299
1bfd55c5 4300 free (tem);
15bbde2b 4301}
4302
78147e84 4303/* This works like end_sequence, but records the old sequence in FIRST
4304 and LAST. */
4305
4306void
4307end_full_sequence (first, last)
4308 rtx *first, *last;
4309{
4310 *first = first_insn;
4311 *last = last_insn;
4312 end_sequence();
4313}
4314
15bbde2b 4315/* Return 1 if currently emitting into a sequence. */
4316
4317int
4318in_sequence_p ()
4319{
0a893c29 4320 return seq_stack != 0;
15bbde2b 4321}
4322
4323/* Generate a SEQUENCE rtx containing the insns already emitted
4324 to the current sequence.
4325
4326 This is how the gen_... function from a DEFINE_EXPAND
4327 constructs the SEQUENCE that it returns. */
4328
4329rtx
4330gen_sequence ()
4331{
4332 rtx result;
4333 rtx tem;
15bbde2b 4334 int i;
4335 int len;
4336
4337 /* Count the insns in the chain. */
4338 len = 0;
4339 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
4340 len++;
4341
88bbcaa6 4342 /* If only one insn, return it rather than a SEQUENCE.
15bbde2b 4343 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
d823ba47 4344 the case of an empty list.)
88bbcaa6 4345 We only return the pattern of an insn if its code is INSN and it
4346 has no notes. This ensures that no information gets lost. */
15bbde2b 4347 if (len == 1
447a9eb9 4348 && ! RTX_FRAME_RELATED_P (first_insn)
88bbcaa6 4349 && GET_CODE (first_insn) == INSN
6312a35e 4350 /* Don't throw away any reg notes. */
88bbcaa6 4351 && REG_NOTES (first_insn) == 0)
d7c47c0e 4352 return PATTERN (first_insn);
15bbde2b 4353
d7c47c0e 4354 result = gen_rtx_SEQUENCE (VOIDmode, rtvec_alloc (len));
15bbde2b 4355
4356 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
4357 XVECEXP (result, 0, i) = tem;
4358
4359 return result;
4360}
4361\f
02ebfa52 4362/* Put the various virtual registers into REGNO_REG_RTX. */
4363
4364void
0a893c29 4365init_virtual_regs (es)
4366 struct emit_status *es;
02ebfa52 4367{
0a893c29 4368 rtx *ptr = es->x_regno_reg_rtx;
4369 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4370 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4371 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4372 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4373 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4374}
4375
4376void
4377clear_emit_caches ()
4378{
4379 int i;
4380
4381 /* Clear the start_sequence/gen_sequence cache. */
0a893c29 4382 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
4383 sequence_result[i] = 0;
4384 free_insn = 0;
02ebfa52 4385}
928d57e3 4386\f
4387/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4388static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4389static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4390static int copy_insn_n_scratches;
4391
4392/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4393 copied an ASM_OPERANDS.
4394 In that case, it is the original input-operand vector. */
4395static rtvec orig_asm_operands_vector;
4396
4397/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4398 copied an ASM_OPERANDS.
4399 In that case, it is the copied input-operand vector. */
4400static rtvec copy_asm_operands_vector;
4401
4402/* Likewise for the constraints vector. */
4403static rtvec orig_asm_constraints_vector;
4404static rtvec copy_asm_constraints_vector;
4405
4406/* Recursively create a new copy of an rtx for copy_insn.
4407 This function differs from copy_rtx in that it handles SCRATCHes and
4408 ASM_OPERANDs properly.
4409 Normally, this function is not used directly; use copy_insn as front end.
4410 However, you could first copy an insn pattern with copy_insn and then use
4411 this function afterwards to properly copy any REG_NOTEs containing
4412 SCRATCHes. */
4413
4414rtx
4415copy_insn_1 (orig)
19cb6b50 4416 rtx orig;
928d57e3 4417{
19cb6b50 4418 rtx copy;
4419 int i, j;
4420 RTX_CODE code;
4421 const char *format_ptr;
928d57e3 4422
4423 code = GET_CODE (orig);
4424
4425 switch (code)
4426 {
4427 case REG:
4428 case QUEUED:
4429 case CONST_INT:
4430 case CONST_DOUBLE:
4431 case SYMBOL_REF:
4432 case CODE_LABEL:
4433 case PC:
4434 case CC0:
4435 case ADDRESSOF:
4436 return orig;
4437
4438 case SCRATCH:
4439 for (i = 0; i < copy_insn_n_scratches; i++)
4440 if (copy_insn_scratch_in[i] == orig)
4441 return copy_insn_scratch_out[i];
4442 break;
4443
4444 case CONST:
4445 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
4446 a LABEL_REF, it isn't sharable. */
4447 if (GET_CODE (XEXP (orig, 0)) == PLUS
4448 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
4449 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
4450 return orig;
4451 break;
d823ba47 4452
928d57e3 4453 /* A MEM with a constant address is not sharable. The problem is that
4454 the constant address may need to be reloaded. If the mem is shared,
4455 then reloading one copy of this mem will cause all copies to appear
4456 to have been reloaded. */
4457
4458 default:
4459 break;
4460 }
4461
4462 copy = rtx_alloc (code);
4463
4464 /* Copy the various flags, and other information. We assume that
4465 all fields need copying, and then clear the fields that should
4466 not be copied. That is the sensible default behavior, and forces
4467 us to explicitly document why we are *not* copying a flag. */
4468 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
4469
4470 /* We do not copy the USED flag, which is used as a mark bit during
4471 walks over the RTL. */
4472 copy->used = 0;
4473
4474 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
4475 if (GET_RTX_CLASS (code) == 'i')
4476 {
4477 copy->jump = 0;
4478 copy->call = 0;
4479 copy->frame_related = 0;
4480 }
d823ba47 4481
928d57e3 4482 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4483
4484 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
4485 {
d925550d 4486 copy->fld[i] = orig->fld[i];
928d57e3 4487 switch (*format_ptr++)
4488 {
4489 case 'e':
928d57e3 4490 if (XEXP (orig, i) != NULL)
4491 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4492 break;
4493
928d57e3 4494 case 'E':
4495 case 'V':
928d57e3 4496 if (XVEC (orig, i) == orig_asm_constraints_vector)
4497 XVEC (copy, i) = copy_asm_constraints_vector;
4498 else if (XVEC (orig, i) == orig_asm_operands_vector)
4499 XVEC (copy, i) = copy_asm_operands_vector;
4500 else if (XVEC (orig, i) != NULL)
4501 {
4502 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4503 for (j = 0; j < XVECLEN (copy, i); j++)
4504 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4505 }
4506 break;
4507
928d57e3 4508 case 't':
928d57e3 4509 case 'w':
928d57e3 4510 case 'i':
928d57e3 4511 case 's':
4512 case 'S':
d925550d 4513 case 'u':
4514 case '0':
4515 /* These are left unchanged. */
928d57e3 4516 break;
4517
4518 default:
4519 abort ();
4520 }
4521 }
4522
4523 if (code == SCRATCH)
4524 {
4525 i = copy_insn_n_scratches++;
4526 if (i >= MAX_RECOG_OPERANDS)
4527 abort ();
4528 copy_insn_scratch_in[i] = orig;
4529 copy_insn_scratch_out[i] = copy;
4530 }
4531 else if (code == ASM_OPERANDS)
4532 {
d91f2122 4533 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4534 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4535 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4536 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
928d57e3 4537 }
4538
4539 return copy;
4540}
4541
4542/* Create a new copy of an rtx.
4543 This function differs from copy_rtx in that it handles SCRATCHes and
4544 ASM_OPERANDs properly.
4545 INSN doesn't really have to be a full INSN; it could be just the
4546 pattern. */
4547rtx
4548copy_insn (insn)
4549 rtx insn;
4550{
4551 copy_insn_n_scratches = 0;
4552 orig_asm_operands_vector = 0;
4553 orig_asm_constraints_vector = 0;
4554 copy_asm_operands_vector = 0;
4555 copy_asm_constraints_vector = 0;
4556 return copy_insn_1 (insn);
4557}
02ebfa52 4558
15bbde2b 4559/* Initialize data structures and variables in this file
4560 before generating rtl for each function. */
4561
4562void
4563init_emit ()
4564{
08513b52 4565 struct function *f = cfun;
15bbde2b 4566
0a893c29 4567 f->emit = (struct emit_status *) xmalloc (sizeof (struct emit_status));
15bbde2b 4568 first_insn = NULL;
4569 last_insn = NULL;
961819fb 4570 seq_rtl_expr = NULL;
15bbde2b 4571 cur_insn_uid = 1;
4572 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
4573 last_linenum = 0;
4574 last_filename = 0;
4575 first_label_num = label_num;
4576 last_label_num = 0;
0a893c29 4577 seq_stack = NULL;
15bbde2b 4578
0a893c29 4579 clear_emit_caches ();
15bbde2b 4580
4581 /* Init the tables that describe all the pseudo regs. */
4582
e61a0a7f 4583 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
15bbde2b 4584
0a893c29 4585 f->emit->regno_pointer_align
e61a0a7f 4586 = (unsigned char *) xcalloc (f->emit->regno_pointer_align_length,
4491f79f 4587 sizeof (unsigned char));
d4c332ff 4588
d823ba47 4589 regno_reg_rtx
fcdc122e 4590 = (rtx *) xcalloc (f->emit->regno_pointer_align_length, sizeof (rtx));
4591
4592 f->emit->regno_decl
4593 = (tree *) xcalloc (f->emit->regno_pointer_align_length, sizeof (tree));
15bbde2b 4594
4595 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
0a893c29 4596 init_virtual_regs (f->emit);
888e0d33 4597
4598 /* Indicate that the virtual registers and stack locations are
4599 all pointers. */
e61a0a7f 4600 REG_POINTER (stack_pointer_rtx) = 1;
4601 REG_POINTER (frame_pointer_rtx) = 1;
4602 REG_POINTER (hard_frame_pointer_rtx) = 1;
4603 REG_POINTER (arg_pointer_rtx) = 1;
888e0d33 4604
e61a0a7f 4605 REG_POINTER (virtual_incoming_args_rtx) = 1;
4606 REG_POINTER (virtual_stack_vars_rtx) = 1;
4607 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
4608 REG_POINTER (virtual_outgoing_args_rtx) = 1;
4609 REG_POINTER (virtual_cfa_rtx) = 1;
89525da0 4610
d4c332ff 4611#ifdef STACK_BOUNDARY
80909c64 4612 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
4613 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4614 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
4615 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
4616
4617 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
4618 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
4619 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
4620 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
4621 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
d4c332ff 4622#endif
4623
89525da0 4624#ifdef INIT_EXPANDERS
4625 INIT_EXPANDERS;
4626#endif
15bbde2b 4627}
4628
a7b0c170 4629/* Mark SS for GC. */
4630
4631static void
4632mark_sequence_stack (ss)
4633 struct sequence_stack *ss;
4634{
4635 while (ss)
4636 {
4637 ggc_mark_rtx (ss->first);
961819fb 4638 ggc_mark_tree (ss->sequence_rtl_expr);
a7b0c170 4639 ss = ss->next;
4640 }
4641}
4642
4643/* Mark ES for GC. */
4644
4645void
3c3bb268 4646mark_emit_status (es)
a7b0c170 4647 struct emit_status *es;
4648{
4649 rtx *r;
fcdc122e 4650 tree *t;
a7b0c170 4651 int i;
4652
4653 if (es == 0)
4654 return;
4655
fcdc122e 4656 for (i = es->regno_pointer_align_length, r = es->x_regno_reg_rtx,
4657 t = es->regno_decl;
4658 i > 0; --i, ++r, ++t)
4659 {
4660 ggc_mark_rtx (*r);
4661 ggc_mark_tree (*t);
4662 }
a7b0c170 4663
4664 mark_sequence_stack (es->sequence_stack);
961819fb 4665 ggc_mark_tree (es->sequence_rtl_expr);
a7b0c170 4666 ggc_mark_rtx (es->x_first_insn);
4667}
4668
15bbde2b 4669/* Create some permanent unique rtl objects shared between all functions.
4670 LINE_NUMBERS is nonzero if line numbers are to be generated. */
4671
4672void
4673init_emit_once (line_numbers)
4674 int line_numbers;
4675{
4676 int i;
4677 enum machine_mode mode;
9e042f31 4678 enum machine_mode double_mode;
15bbde2b 4679
c6259b83 4680 /* Initialize the CONST_INT and memory attribute hash tables. */
d823ba47 4681 const_int_htab = htab_create (37, const_int_htab_hash,
77695070 4682 const_int_htab_eq, NULL);
c6259b83 4683 ggc_add_deletable_htab (const_int_htab, 0, 0);
4684
4685 mem_attrs_htab = htab_create (37, mem_attrs_htab_hash,
4686 mem_attrs_htab_eq, NULL);
4687 ggc_add_deletable_htab (mem_attrs_htab, 0, mem_attrs_mark);
77695070 4688
15bbde2b 4689 no_line_numbers = ! line_numbers;
4690
71d7daa2 4691 /* Compute the word and byte modes. */
4692
4693 byte_mode = VOIDmode;
4694 word_mode = VOIDmode;
4695 double_mode = VOIDmode;
4696
4697 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4698 mode = GET_MODE_WIDER_MODE (mode))
4699 {
4700 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
4701 && byte_mode == VOIDmode)
4702 byte_mode = mode;
4703
4704 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
4705 && word_mode == VOIDmode)
4706 word_mode = mode;
4707 }
4708
71d7daa2 4709 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4710 mode = GET_MODE_WIDER_MODE (mode))
4711 {
4712 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
4713 && double_mode == VOIDmode)
4714 double_mode = mode;
4715 }
4716
4717 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
4718
57c097d5 4719 /* Assign register numbers to the globally defined register rtx.
4720 This must be done at runtime because the register number field
4721 is in a union and some compilers can't initialize unions. */
4722
4723 pc_rtx = gen_rtx (PC, VOIDmode);
4724 cc0_rtx = gen_rtx (CC0, VOIDmode);
22cf44bc 4725 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
4726 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
57c097d5 4727 if (hard_frame_pointer_rtx == 0)
d823ba47 4728 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
22cf44bc 4729 HARD_FRAME_POINTER_REGNUM);
57c097d5 4730 if (arg_pointer_rtx == 0)
22cf44bc 4731 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
d823ba47 4732 virtual_incoming_args_rtx =
22cf44bc 4733 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
d823ba47 4734 virtual_stack_vars_rtx =
22cf44bc 4735 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
d823ba47 4736 virtual_stack_dynamic_rtx =
22cf44bc 4737 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
d823ba47 4738 virtual_outgoing_args_rtx =
4739 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
22cf44bc 4740 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
57c097d5 4741
4742 /* These rtx must be roots if GC is enabled. */
d7c47c0e 4743 ggc_add_rtx_root (global_rtl, GR_MAX);
57c097d5 4744
57c097d5 4745#ifdef INIT_EXPANDERS
ab5beff9 4746 /* This is to initialize {init|mark|free}_machine_status before the first
4747 call to push_function_context_to. This is needed by the Chill front
3fb1e43b 4748 end which calls push_function_context_to before the first call to
57c097d5 4749 init_function_start. */
4750 INIT_EXPANDERS;
4751#endif
4752
15bbde2b 4753 /* Create the unique rtx's for certain rtx codes and operand values. */
4754
7014838c 4755 /* Don't use gen_rtx here since gen_rtx in this case
4756 tries to use these variables. */
15bbde2b 4757 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
d823ba47 4758 const_int_rtx[i + MAX_SAVED_CONST_INT] =
57c097d5 4759 gen_rtx_raw_CONST_INT (VOIDmode, i);
d7c47c0e 4760 ggc_add_rtx_root (const_int_rtx, 2 * MAX_SAVED_CONST_INT + 1);
15bbde2b 4761
1a60f06a 4762 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
4763 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
57c097d5 4764 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
1a60f06a 4765 else
3ad7bb1c 4766 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
15bbde2b 4767
9e042f31 4768 dconst0 = REAL_VALUE_ATOF ("0", double_mode);
4769 dconst1 = REAL_VALUE_ATOF ("1", double_mode);
4770 dconst2 = REAL_VALUE_ATOF ("2", double_mode);
4771 dconstm1 = REAL_VALUE_ATOF ("-1", double_mode);
15bbde2b 4772
4773 for (i = 0; i <= 2; i++)
4774 {
4775 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
4776 mode = GET_MODE_WIDER_MODE (mode))
4777 {
4778 rtx tem = rtx_alloc (CONST_DOUBLE);
4779 union real_extract u;
4780
fd781f88 4781 /* Zero any holes in a structure. */
4782 memset ((char *) &u, 0, sizeof u);
15bbde2b 4783 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
4784
fd781f88 4785 /* Avoid trailing garbage in the rtx. */
4786 if (sizeof (u) < sizeof (HOST_WIDE_INT))
4787 CONST_DOUBLE_LOW (tem) = 0;
4788 if (sizeof (u) < 2 * sizeof (HOST_WIDE_INT))
4789 CONST_DOUBLE_HIGH (tem) = 0;
4790
b1b63592 4791 memcpy (&CONST_DOUBLE_LOW (tem), &u, sizeof u);
791ceafe 4792 CONST_DOUBLE_CHAIN (tem) = NULL_RTX;
15bbde2b 4793 PUT_MODE (tem, mode);
4794
4795 const_tiny_rtx[i][(int) mode] = tem;
4796 }
4797
b572011e 4798 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
15bbde2b 4799
4800 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
4801 mode = GET_MODE_WIDER_MODE (mode))
b572011e 4802 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
7540dcc4 4803
4804 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
4805 mode != VOIDmode;
4806 mode = GET_MODE_WIDER_MODE (mode))
4807 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
15bbde2b 4808 }
4809
0fd4500a 4810 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
4811 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
4812 const_tiny_rtx[0][i] = const0_rtx;
15bbde2b 4813
065336b4 4814 const_tiny_rtx[0][(int) BImode] = const0_rtx;
4815 if (STORE_FLAG_VALUE == 1)
4816 const_tiny_rtx[1][(int) BImode] = const1_rtx;
4817
3098b2d3 4818 /* For bounded pointers, `&const_tiny_rtx[0][0]' is not the same as
4819 `(rtx *) const_tiny_rtx'. The former has bounds that only cover
4820 `const_tiny_rtx[0]', whereas the latter has bounds that cover all. */
4821 ggc_add_rtx_root ((rtx *) const_tiny_rtx, sizeof const_tiny_rtx / sizeof (rtx));
c788feb1 4822 ggc_add_rtx_root (&const_true_rtx, 1);
f4bffa58 4823
4824#ifdef RETURN_ADDRESS_POINTER_REGNUM
4825 return_address_pointer_rtx
22cf44bc 4826 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
f4bffa58 4827#endif
4828
4829#ifdef STRUCT_VALUE
4830 struct_value_rtx = STRUCT_VALUE;
4831#else
4832 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
4833#endif
4834
4835#ifdef STRUCT_VALUE_INCOMING
4836 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
4837#else
4838#ifdef STRUCT_VALUE_INCOMING_REGNUM
4839 struct_value_incoming_rtx
4840 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
4841#else
4842 struct_value_incoming_rtx = struct_value_rtx;
4843#endif
4844#endif
4845
4846#ifdef STATIC_CHAIN_REGNUM
4847 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
4848
4849#ifdef STATIC_CHAIN_INCOMING_REGNUM
4850 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
4851 static_chain_incoming_rtx
4852 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
4853 else
4854#endif
4855 static_chain_incoming_rtx = static_chain_rtx;
4856#endif
4857
4858#ifdef STATIC_CHAIN
4859 static_chain_rtx = STATIC_CHAIN;
4860
4861#ifdef STATIC_CHAIN_INCOMING
4862 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
4863#else
4864 static_chain_incoming_rtx = static_chain_rtx;
4865#endif
4866#endif
4867
14e6e4d4 4868 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
4869 pic_offset_table_rtx = gen_rtx_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
f4bffa58 4870
521dd524 4871 ggc_add_rtx_root (&pic_offset_table_rtx, 1);
4872 ggc_add_rtx_root (&struct_value_rtx, 1);
4873 ggc_add_rtx_root (&struct_value_incoming_rtx, 1);
4874 ggc_add_rtx_root (&static_chain_rtx, 1);
4875 ggc_add_rtx_root (&static_chain_incoming_rtx, 1);
4876 ggc_add_rtx_root (&return_address_pointer_rtx, 1);
15bbde2b 4877}
ac6c481d 4878\f
4879/* Query and clear/ restore no_line_numbers. This is used by the
4880 switch / case handling in stmt.c to give proper line numbers in
4881 warnings about unreachable code. */
4882
4883int
4884force_line_numbers ()
4885{
4886 int old = no_line_numbers;
4887
4888 no_line_numbers = 0;
4889 if (old)
4890 force_next_line_note ();
4891 return old;
4892}
4893
4894void
4895restore_line_number_status (old_value)
4896 int old_value;
4897{
4898 no_line_numbers = old_value;
4899}