]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
cfgexpand.c (expand_debug_expr): For unused non-addressable parameters passed in...
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
54fb1ae0 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
c2969d8e 4 2010, 2011
b6f65e3c 5 Free Software Foundation, Inc.
23b2ce53 6
1322177d 7This file is part of GCC.
23b2ce53 8
1322177d
LB
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
1322177d 12version.
23b2ce53 13
1322177d
LB
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
23b2ce53
RS
18
19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
23b2ce53
RS
22
23
24/* Middle-to-low level generation of rtx code and insns.
25
f822fcf7
KH
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
28
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
23b2ce53
RS
36
37#include "config.h"
670ee920 38#include "system.h"
4977bab6
ZW
39#include "coretypes.h"
40#include "tm.h"
718f9c0f 41#include "diagnostic-core.h"
23b2ce53 42#include "rtl.h"
a25c7971 43#include "tree.h"
6baf1cc8 44#include "tm_p.h"
23b2ce53
RS
45#include "flags.h"
46#include "function.h"
47#include "expr.h"
48#include "regs.h"
aff48bca 49#include "hard-reg-set.h"
c13e8210 50#include "hashtab.h"
23b2ce53 51#include "insn-config.h"
e9a25f70 52#include "recog.h"
0dfa1860 53#include "bitmap.h"
a05924f9 54#include "basic-block.h"
87ff9c8e 55#include "ggc.h"
e1772ac0 56#include "debug.h"
d23c55c2 57#include "langhooks.h"
ef330312 58#include "tree-pass.h"
6fb5fa3c 59#include "df.h"
b5b8b0ac 60#include "params.h"
d4ebfa65 61#include "target.h"
4994da65 62#include "tree-flow.h"
ca695ac9 63
5fb0e246
RS
64struct target_rtl default_target_rtl;
65#if SWITCHABLE_TARGET
66struct target_rtl *this_target_rtl = &default_target_rtl;
67#endif
68
69#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
1d445e9e
ILT
71/* Commonly used modes. */
72
0f41302f
MS
73enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 75enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 76enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 77
bd60bab2
JH
78/* Datastructures maintained for currently processed function in RTL form. */
79
3e029763 80struct rtl_data x_rtl;
bd60bab2
JH
81
82/* Indexed by pseudo register number, gives the rtx for that pseudo.
b8698a0f 83 Allocated in parallel with regno_pointer_align.
bd60bab2
JH
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
86
87rtx * regno_reg_rtx;
23b2ce53
RS
88
89/* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
91
044b4de3 92static GTY(()) int label_num = 1;
23b2ce53 93
23b2ce53
RS
94/* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
97
98rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99
68d75312
JC
100rtx const_true_rtx;
101
23b2ce53
RS
102REAL_VALUE_TYPE dconst0;
103REAL_VALUE_TYPE dconst1;
104REAL_VALUE_TYPE dconst2;
105REAL_VALUE_TYPE dconstm1;
03f2ea93 106REAL_VALUE_TYPE dconsthalf;
23b2ce53 107
325217ed
CF
108/* Record fixed-point constant 0 and 1. */
109FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
23b2ce53
RS
112/* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
5da077de 117rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 118
c13e8210
MM
119/* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
121
e2500fed
GK
122static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
123 htab_t const_int_htab;
c13e8210 124
173b24b9 125/* A hash table storing memory attribute structures. */
e2500fed
GK
126static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
127 htab_t mem_attrs_htab;
173b24b9 128
a560d4d4
JH
129/* A hash table storing register attribute structures. */
130static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
131 htab_t reg_attrs_htab;
132
5692c7bc 133/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
134static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
135 htab_t const_double_htab;
5692c7bc 136
091a3ac7
CF
137/* A hash table storing all CONST_FIXEDs. */
138static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_fixed_htab;
140
3e029763 141#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
b5b8b0ac 142#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
3e029763
JH
143#define last_location (crtl->emit.x_last_location)
144#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 145
502b8322 146static rtx make_call_insn_raw (rtx);
502b8322 147static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
5eb2a9f2 148static void set_used_decls (tree);
502b8322
AJ
149static void mark_label_nuses (rtx);
150static hashval_t const_int_htab_hash (const void *);
151static int const_int_htab_eq (const void *, const void *);
152static hashval_t const_double_htab_hash (const void *);
153static int const_double_htab_eq (const void *, const void *);
154static rtx lookup_const_double (rtx);
091a3ac7
CF
155static hashval_t const_fixed_htab_hash (const void *);
156static int const_fixed_htab_eq (const void *, const void *);
157static rtx lookup_const_fixed (rtx);
502b8322
AJ
158static hashval_t mem_attrs_htab_hash (const void *);
159static int mem_attrs_htab_eq (const void *, const void *);
4862826d 160static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
09e881c9 161 addr_space_t, enum machine_mode);
502b8322
AJ
162static hashval_t reg_attrs_htab_hash (const void *);
163static int reg_attrs_htab_eq (const void *, const void *);
164static reg_attrs *get_reg_attrs (tree, int);
a73b091d 165static rtx gen_const_vector (enum machine_mode, int);
32b32b16 166static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 167
6b24c259
JH
168/* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170int split_branch_probability = -1;
ca695ac9 171\f
c13e8210
MM
172/* Returns a hash code for X (which is a really a CONST_INT). */
173
174static hashval_t
502b8322 175const_int_htab_hash (const void *x)
c13e8210 176{
f7d504c2 177 return (hashval_t) INTVAL ((const_rtx) x);
c13e8210
MM
178}
179
cc2902df 180/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
181 CONST_INT) is the same as that given by Y (which is really a
182 HOST_WIDE_INT *). */
183
184static int
502b8322 185const_int_htab_eq (const void *x, const void *y)
c13e8210 186{
f7d504c2 187 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
5692c7bc
ZW
188}
189
190/* Returns a hash code for X (which is really a CONST_DOUBLE). */
191static hashval_t
502b8322 192const_double_htab_hash (const void *x)
5692c7bc 193{
f7d504c2 194 const_rtx const value = (const_rtx) x;
46b33600 195 hashval_t h;
5692c7bc 196
46b33600
RH
197 if (GET_MODE (value) == VOIDmode)
198 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
199 else
fe352c29 200 {
15c812e3 201 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h ^= GET_MODE (value);
204 }
5692c7bc
ZW
205 return h;
206}
207
cc2902df 208/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
209 is the same as that represented by Y (really a ...) */
210static int
502b8322 211const_double_htab_eq (const void *x, const void *y)
5692c7bc 212{
f7d504c2 213 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
5692c7bc
ZW
214
215 if (GET_MODE (a) != GET_MODE (b))
216 return 0;
8580f7a0
RH
217 if (GET_MODE (a) == VOIDmode)
218 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
219 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
220 else
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
222 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
223}
224
091a3ac7
CF
225/* Returns a hash code for X (which is really a CONST_FIXED). */
226
227static hashval_t
228const_fixed_htab_hash (const void *x)
229{
3101faab 230 const_rtx const value = (const_rtx) x;
091a3ac7
CF
231 hashval_t h;
232
233 h = fixed_hash (CONST_FIXED_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 return h;
237}
238
239/* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
241
242static int
243const_fixed_htab_eq (const void *x, const void *y)
244{
3101faab 245 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
091a3ac7
CF
246
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
250}
251
173b24b9
RK
252/* Returns a hash code for X (which is a really a mem_attrs *). */
253
254static hashval_t
502b8322 255mem_attrs_htab_hash (const void *x)
173b24b9 256{
f7d504c2 257 const mem_attrs *const p = (const mem_attrs *) x;
173b24b9
RK
258
259 return (p->alias ^ (p->align * 1000)
09e881c9 260 ^ (p->addrspace * 4000)
173b24b9
RK
261 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
262 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
78b76d08 263 ^ (size_t) iterative_hash_expr (p->expr, 0));
173b24b9
RK
264}
265
cc2902df 266/* Returns nonzero if the value represented by X (which is really a
173b24b9
RK
267 mem_attrs *) is the same as that given by Y (which is also really a
268 mem_attrs *). */
c13e8210
MM
269
270static int
502b8322 271mem_attrs_htab_eq (const void *x, const void *y)
c13e8210 272{
741ac903
KG
273 const mem_attrs *const p = (const mem_attrs *) x;
274 const mem_attrs *const q = (const mem_attrs *) y;
173b24b9 275
78b76d08
SB
276 return (p->alias == q->alias && p->offset == q->offset
277 && p->size == q->size && p->align == q->align
09e881c9 278 && p->addrspace == q->addrspace
78b76d08
SB
279 && (p->expr == q->expr
280 || (p->expr != NULL_TREE && q->expr != NULL_TREE
281 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
282}
283
173b24b9 284/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
173b24b9
RK
287
288static mem_attrs *
4862826d 289get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
09e881c9 290 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
173b24b9
RK
291{
292 mem_attrs attrs;
293 void **slot;
294
bb056a77
OH
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
09e881c9 298 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
10b76d73
RK
299 && (size == 0
300 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
bb056a77
OH
301 && (STRICT_ALIGNMENT && mode != BLKmode
302 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
10b76d73
RK
303 return 0;
304
173b24b9 305 attrs.alias = alias;
998d7deb 306 attrs.expr = expr;
173b24b9
RK
307 attrs.offset = offset;
308 attrs.size = size;
309 attrs.align = align;
09e881c9 310 attrs.addrspace = addrspace;
173b24b9
RK
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
a9429e29 315 *slot = ggc_alloc_mem_attrs ();
173b24b9
RK
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
1b4572a8 319 return (mem_attrs *) *slot;
c13e8210
MM
320}
321
a560d4d4
JH
322/* Returns a hash code for X (which is a really a reg_attrs *). */
323
324static hashval_t
502b8322 325reg_attrs_htab_hash (const void *x)
a560d4d4 326{
741ac903 327 const reg_attrs *const p = (const reg_attrs *) x;
a560d4d4 328
9841210f 329 return ((p->offset * 1000) ^ (intptr_t) p->decl);
a560d4d4
JH
330}
331
6356f892 332/* Returns nonzero if the value represented by X (which is really a
a560d4d4
JH
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336static int
502b8322 337reg_attrs_htab_eq (const void *x, const void *y)
a560d4d4 338{
741ac903
KG
339 const reg_attrs *const p = (const reg_attrs *) x;
340 const reg_attrs *const q = (const reg_attrs *) y;
a560d4d4
JH
341
342 return (p->decl == q->decl && p->offset == q->offset);
343}
344/* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348static reg_attrs *
502b8322 349get_reg_attrs (tree decl, int offset)
a560d4d4
JH
350{
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
a9429e29 364 *slot = ggc_alloc_reg_attrs ();
a560d4d4
JH
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
1b4572a8 368 return (reg_attrs *) *slot;
a560d4d4
JH
369}
370
6fb5fa3c
DB
371
372#if !HAVE_blockage
373/* Generate an empty ASM_INPUT, which is used to block attempts to schedule
374 across this insn. */
375
376rtx
377gen_blockage (void)
378{
379 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
380 MEM_VOLATILE_P (x) = true;
381 return x;
382}
383#endif
384
385
08394eef
BS
386/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
389
390rtx
502b8322 391gen_raw_REG (enum machine_mode mode, int regno)
08394eef
BS
392{
393 rtx x = gen_rtx_raw_REG (mode, regno);
394 ORIGINAL_REGNO (x) = regno;
395 return x;
396}
397
c5c76735
JL
398/* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
401
3b80f6ca 402rtx
502b8322 403gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca 404{
c13e8210
MM
405 void **slot;
406
3b80f6ca 407 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 408 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
409
410#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx && arg == STORE_FLAG_VALUE)
412 return const_true_rtx;
413#endif
414
c13e8210 415 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
416 slot = htab_find_slot_with_hash (const_int_htab, &arg,
417 (hashval_t) arg, INSERT);
29105cea 418 if (*slot == 0)
1f8f4a0b 419 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
420
421 return (rtx) *slot;
3b80f6ca
RH
422}
423
2496c7bd 424rtx
502b8322 425gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2496c7bd
LB
426{
427 return GEN_INT (trunc_int_for_mode (c, mode));
428}
429
5692c7bc
ZW
430/* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
433
434/* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
437static rtx
502b8322 438lookup_const_double (rtx real)
5692c7bc
ZW
439{
440 void **slot = htab_find_slot (const_double_htab, real, INSERT);
441 if (*slot == 0)
442 *slot = real;
443
444 return (rtx) *slot;
445}
29105cea 446
5692c7bc
ZW
447/* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
0133b7d9 449rtx
502b8322 450const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
0133b7d9 451{
5692c7bc
ZW
452 rtx real = rtx_alloc (CONST_DOUBLE);
453 PUT_MODE (real, mode);
454
9e254451 455 real->u.rv = value;
5692c7bc
ZW
456
457 return lookup_const_double (real);
458}
459
091a3ac7
CF
460/* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
463
464static rtx
465lookup_const_fixed (rtx fixed)
466{
467 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
468 if (*slot == 0)
469 *slot = fixed;
470
471 return (rtx) *slot;
472}
473
474/* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
476
477rtx
478const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
479{
480 rtx fixed = rtx_alloc (CONST_FIXED);
481 PUT_MODE (fixed, mode);
482
483 fixed->u.fv = value;
484
485 return lookup_const_fixed (fixed);
486}
487
3e93ff81
AS
488/* Constructs double_int from rtx CST. */
489
490double_int
491rtx_to_double_int (const_rtx cst)
492{
493 double_int r;
494
495 if (CONST_INT_P (cst))
496 r = shwi_to_double_int (INTVAL (cst));
497 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
498 {
499 r.low = CONST_DOUBLE_LOW (cst);
500 r.high = CONST_DOUBLE_HIGH (cst);
501 }
502 else
503 gcc_unreachable ();
504
505 return r;
506}
507
508
54fb1ae0
AS
509/* Return a CONST_DOUBLE or CONST_INT for a value specified as
510 a double_int. */
511
512rtx
513immed_double_int_const (double_int i, enum machine_mode mode)
514{
515 return immed_double_const (i.low, i.high, mode);
516}
517
5692c7bc
ZW
518/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
522
523rtx
502b8322 524immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
5692c7bc
ZW
525{
526 rtx value;
527 unsigned int i;
528
65acccdd
ZD
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
531
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
b8698a0f 536 from copies of the sign bit, and sign of i0 and i1 are the same), then
65acccdd
ZD
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
5692c7bc
ZW
539 if (mode != VOIDmode)
540 {
5b0264cb
NS
541 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
542 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
5692c7bc 546
65acccdd
ZD
547 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
548 return gen_int_mode (i0, mode);
549
550 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
5692c7bc
ZW
551 }
552
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
555 return GEN_INT (i0);
556
557 /* We use VOIDmode for integers. */
558 value = rtx_alloc (CONST_DOUBLE);
559 PUT_MODE (value, VOIDmode);
560
561 CONST_DOUBLE_LOW (value) = i0;
562 CONST_DOUBLE_HIGH (value) = i1;
563
564 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
565 XWINT (value, i) = 0;
566
567 return lookup_const_double (value);
0133b7d9
RH
568}
569
3b80f6ca 570rtx
502b8322 571gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3b80f6ca
RH
572{
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
577 assigned to them.
578
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
583
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
586
587 if (mode == Pmode && !reload_in_progress)
588 {
e10c79fe
LB
589 if (regno == FRAME_POINTER_REGNUM
590 && (!reload_completed || frame_pointer_needed))
3b80f6ca 591 return frame_pointer_rtx;
e3339d0f 592#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
e10c79fe
LB
593 if (regno == HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
595 return hard_frame_pointer_rtx;
596#endif
e3339d0f 597#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
bcb33994 598 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
599 return arg_pointer_rtx;
600#endif
601#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 602 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
603 return return_address_pointer_rtx;
604#endif
fc555370 605 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
bf9412cd 606 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
2d67bd7b 607 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 608 return pic_offset_table_rtx;
bcb33994 609 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
610 return stack_pointer_rtx;
611 }
612
006a94b0 613#if 0
6cde4876 614 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
615 an existing entry in that table to avoid useless generation of RTL.
616
617 This code is disabled for now until we can fix the various backends
618 which depend on having non-shared hard registers in some cases. Long
619 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
620 on the amount of useless RTL that gets generated.
621
622 We'll also need to fix some code that runs after reload that wants to
623 set ORIGINAL_REGNO. */
624
6cde4876
JL
625 if (cfun
626 && cfun->emit
627 && regno_reg_rtx
628 && regno < FIRST_PSEUDO_REGISTER
629 && reg_raw_mode[regno] == mode)
630 return regno_reg_rtx[regno];
006a94b0 631#endif
6cde4876 632
08394eef 633 return gen_raw_REG (mode, regno);
3b80f6ca
RH
634}
635
41472af8 636rtx
502b8322 637gen_rtx_MEM (enum machine_mode mode, rtx addr)
41472af8
MM
638{
639 rtx rt = gen_rtx_raw_MEM (mode, addr);
640
641 /* This field is not cleared by the mere allocation of the rtx, so
642 we clear it here. */
173b24b9 643 MEM_ATTRS (rt) = 0;
41472af8
MM
644
645 return rt;
646}
ddef6bc7 647
542a8afa
RH
648/* Generate a memory referring to non-trapping constant memory. */
649
650rtx
651gen_const_mem (enum machine_mode mode, rtx addr)
652{
653 rtx mem = gen_rtx_MEM (mode, addr);
654 MEM_READONLY_P (mem) = 1;
655 MEM_NOTRAP_P (mem) = 1;
656 return mem;
657}
658
bf877a76
R
659/* Generate a MEM referring to fixed portions of the frame, e.g., register
660 save areas. */
661
662rtx
663gen_frame_mem (enum machine_mode mode, rtx addr)
664{
665 rtx mem = gen_rtx_MEM (mode, addr);
666 MEM_NOTRAP_P (mem) = 1;
667 set_mem_alias_set (mem, get_frame_alias_set ());
668 return mem;
669}
670
671/* Generate a MEM referring to a temporary use of the stack, not part
672 of the fixed stack frame. For example, something which is pushed
673 by a target splitter. */
674rtx
675gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
676{
677 rtx mem = gen_rtx_MEM (mode, addr);
678 MEM_NOTRAP_P (mem) = 1;
e3b5732b 679 if (!cfun->calls_alloca)
bf877a76
R
680 set_mem_alias_set (mem, get_frame_alias_set ());
681 return mem;
682}
683
beb72684
RH
684/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
685 this construct would be valid, and false otherwise. */
686
687bool
688validate_subreg (enum machine_mode omode, enum machine_mode imode,
ed7a4b4b 689 const_rtx reg, unsigned int offset)
ddef6bc7 690{
beb72684
RH
691 unsigned int isize = GET_MODE_SIZE (imode);
692 unsigned int osize = GET_MODE_SIZE (omode);
693
694 /* All subregs must be aligned. */
695 if (offset % osize != 0)
696 return false;
697
698 /* The subreg offset cannot be outside the inner object. */
699 if (offset >= isize)
700 return false;
701
702 /* ??? This should not be here. Temporarily continue to allow word_mode
703 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
704 Generally, backends are doing something sketchy but it'll take time to
705 fix them all. */
706 if (omode == word_mode)
707 ;
708 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
709 is the culprit here, and not the backends. */
710 else if (osize >= UNITS_PER_WORD && isize >= osize)
711 ;
712 /* Allow component subregs of complex and vector. Though given the below
713 extraction rules, it's not always clear what that means. */
714 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
715 && GET_MODE_INNER (imode) == omode)
716 ;
717 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
718 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
719 represent this. It's questionable if this ought to be represented at
720 all -- why can't this all be hidden in post-reload splitters that make
721 arbitrarily mode changes to the registers themselves. */
722 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
723 ;
724 /* Subregs involving floating point modes are not allowed to
725 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
726 (subreg:SI (reg:DF) 0) isn't. */
727 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
728 {
729 if (isize != osize)
730 return false;
731 }
ddef6bc7 732
beb72684
RH
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
736
737 /* This is a normal subreg. Verify that the offset is representable. */
738
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
742 {
743 unsigned int regno = REGNO (reg);
744
745#ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
748 ;
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
ddef6bc7 751#endif
beb72684
RH
752
753 return subreg_offset_representable_p (regno, imode, offset, omode);
754 }
755
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
762 if (osize < UNITS_PER_WORD)
763 {
764 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
765 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
766 if (offset % UNITS_PER_WORD != low_off)
767 return false;
768 }
769 return true;
770}
771
772rtx
773gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
774{
775 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 776 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
777}
778
173b24b9
RK
779/* Generate a SUBREG representing the least-significant part of REG if MODE
780 is smaller than mode of REG, otherwise paradoxical SUBREG. */
781
ddef6bc7 782rtx
502b8322 783gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
ddef6bc7
JJ
784{
785 enum machine_mode inmode;
ddef6bc7
JJ
786
787 inmode = GET_MODE (reg);
788 if (inmode == VOIDmode)
789 inmode = mode;
e0e08ac2
JH
790 return gen_rtx_SUBREG (mode, reg,
791 subreg_lowpart_offset (mode, inmode));
ddef6bc7 792}
c5c76735 793\f
23b2ce53 794
80379f51
PB
795/* Create an rtvec and stores within it the RTXen passed in the arguments. */
796
23b2ce53 797rtvec
e34d07f2 798gen_rtvec (int n, ...)
23b2ce53 799{
80379f51
PB
800 int i;
801 rtvec rt_val;
e34d07f2 802 va_list p;
23b2ce53 803
e34d07f2 804 va_start (p, n);
23b2ce53 805
80379f51 806 /* Don't allocate an empty rtvec... */
23b2ce53 807 if (n == 0)
0edf1bb2
JL
808 {
809 va_end (p);
810 return NULL_RTVEC;
811 }
23b2ce53 812
80379f51 813 rt_val = rtvec_alloc (n);
4f90e4a0 814
23b2ce53 815 for (i = 0; i < n; i++)
80379f51 816 rt_val->elem[i] = va_arg (p, rtx);
6268b922 817
e34d07f2 818 va_end (p);
80379f51 819 return rt_val;
23b2ce53
RS
820}
821
822rtvec
502b8322 823gen_rtvec_v (int n, rtx *argp)
23b2ce53 824{
b3694847
SS
825 int i;
826 rtvec rt_val;
23b2ce53 827
80379f51 828 /* Don't allocate an empty rtvec... */
23b2ce53 829 if (n == 0)
80379f51 830 return NULL_RTVEC;
23b2ce53 831
80379f51 832 rt_val = rtvec_alloc (n);
23b2ce53
RS
833
834 for (i = 0; i < n; i++)
8f985ec4 835 rt_val->elem[i] = *argp++;
23b2ce53
RS
836
837 return rt_val;
838}
839\f
38ae7651
RS
840/* Return the number of bytes between the start of an OUTER_MODE
841 in-memory value and the start of an INNER_MODE in-memory value,
842 given that the former is a lowpart of the latter. It may be a
843 paradoxical lowpart, in which case the offset will be negative
844 on big-endian targets. */
845
846int
847byte_lowpart_offset (enum machine_mode outer_mode,
848 enum machine_mode inner_mode)
849{
850 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
851 return subreg_lowpart_offset (outer_mode, inner_mode);
852 else
853 return -subreg_lowpart_offset (inner_mode, outer_mode);
854}
855\f
23b2ce53
RS
856/* Generate a REG rtx for a new pseudo register of mode MODE.
857 This pseudo is assigned the next sequential register number. */
858
859rtx
502b8322 860gen_reg_rtx (enum machine_mode mode)
23b2ce53 861{
b3694847 862 rtx val;
2e3f842f 863 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 864
f8335a4f 865 gcc_assert (can_create_pseudo_p ());
23b2ce53 866
2e3f842f
L
867 /* If a virtual register with bigger mode alignment is generated,
868 increase stack alignment estimation because it might be spilled
869 to stack later. */
b8698a0f 870 if (SUPPORTS_STACK_ALIGNMENT
2e3f842f
L
871 && crtl->stack_alignment_estimated < align
872 && !crtl->stack_realign_processed)
ae58e548
JJ
873 {
874 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
875 if (crtl->stack_alignment_estimated < min_align)
876 crtl->stack_alignment_estimated = min_align;
877 }
2e3f842f 878
1b3d8f8a
GK
879 if (generating_concat_p
880 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
881 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
882 {
883 /* For complex modes, don't make a single pseudo.
884 Instead, make a CONCAT of two pseudos.
885 This allows noncontiguous allocation of the real and imaginary parts,
886 which makes much better code. Besides, allocating DCmode
887 pseudos overstrains reload on some machines like the 386. */
888 rtx realpart, imagpart;
27e58a70 889 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
890
891 realpart = gen_reg_rtx (partmode);
892 imagpart = gen_reg_rtx (partmode);
3b80f6ca 893 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
894 }
895
a560d4d4 896 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 897 enough to have an element for this pseudo reg number. */
23b2ce53 898
3e029763 899 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
23b2ce53 900 {
3e029763 901 int old_size = crtl->emit.regno_pointer_align_length;
60564289 902 char *tmp;
0d4903b8 903 rtx *new1;
0d4903b8 904
60564289
KG
905 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
906 memset (tmp + old_size, 0, old_size);
907 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
49ad7cfa 908
1b4572a8 909 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
49ad7cfa 910 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
911 regno_reg_rtx = new1;
912
3e029763 913 crtl->emit.regno_pointer_align_length = old_size * 2;
23b2ce53
RS
914 }
915
08394eef 916 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
917 regno_reg_rtx[reg_rtx_no++] = val;
918 return val;
919}
920
38ae7651
RS
921/* Update NEW with the same attributes as REG, but with OFFSET added
922 to the REG_OFFSET. */
a560d4d4 923
e53a16e7 924static void
60564289 925update_reg_offset (rtx new_rtx, rtx reg, int offset)
a560d4d4 926{
60564289 927 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
502b8322 928 REG_OFFSET (reg) + offset);
e53a16e7
ILT
929}
930
38ae7651
RS
931/* Generate a register with same attributes as REG, but with OFFSET
932 added to the REG_OFFSET. */
e53a16e7
ILT
933
934rtx
935gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
936 int offset)
937{
60564289 938 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 939
60564289
KG
940 update_reg_offset (new_rtx, reg, offset);
941 return new_rtx;
e53a16e7
ILT
942}
943
944/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 945 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
946
947rtx
948gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
949{
60564289 950 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 951
60564289
KG
952 update_reg_offset (new_rtx, reg, offset);
953 return new_rtx;
a560d4d4
JH
954}
955
38ae7651
RS
956/* Adjust REG in-place so that it has mode MODE. It is assumed that the
957 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
958
959void
38ae7651 960adjust_reg_mode (rtx reg, enum machine_mode mode)
a560d4d4 961{
38ae7651
RS
962 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
963 PUT_MODE (reg, mode);
964}
965
966/* Copy REG's attributes from X, if X has any attributes. If REG and X
967 have different modes, REG is a (possibly paradoxical) lowpart of X. */
968
969void
970set_reg_attrs_from_value (rtx reg, rtx x)
971{
972 int offset;
973
923ba36f
JJ
974 /* Hard registers can be reused for multiple purposes within the same
975 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
976 on them is wrong. */
977 if (HARD_REGISTER_P (reg))
978 return;
979
38ae7651 980 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
981 if (MEM_P (x))
982 {
481683e1 983 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
46b71b03
PB
984 REG_ATTRS (reg)
985 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
986 if (MEM_POINTER (x))
0a317111 987 mark_reg_pointer (reg, 0);
46b71b03
PB
988 }
989 else if (REG_P (x))
990 {
991 if (REG_ATTRS (x))
992 update_reg_offset (reg, x, offset);
993 if (REG_POINTER (x))
994 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
995 }
996}
997
998/* Generate a REG rtx for a new pseudo register, copying the mode
999 and attributes from X. */
1000
1001rtx
1002gen_reg_rtx_and_attrs (rtx x)
1003{
1004 rtx reg = gen_reg_rtx (GET_MODE (x));
1005 set_reg_attrs_from_value (reg, x);
1006 return reg;
a560d4d4
JH
1007}
1008
9d18e06b
JZ
1009/* Set the register attributes for registers contained in PARM_RTX.
1010 Use needed values from memory attributes of MEM. */
1011
1012void
502b8322 1013set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1014{
f8cfc6aa 1015 if (REG_P (parm_rtx))
38ae7651 1016 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1017 else if (GET_CODE (parm_rtx) == PARALLEL)
1018 {
1019 /* Check for a NULL entry in the first slot, used to indicate that the
1020 parameter goes both on the stack and in registers. */
1021 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1022 for (; i < XVECLEN (parm_rtx, 0); i++)
1023 {
1024 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1025 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1026 REG_ATTRS (XEXP (x, 0))
1027 = get_reg_attrs (MEM_EXPR (mem),
1028 INTVAL (XEXP (x, 1)));
1029 }
1030 }
1031}
1032
38ae7651
RS
1033/* Set the REG_ATTRS for registers in value X, given that X represents
1034 decl T. */
a560d4d4 1035
4e3825db 1036void
38ae7651
RS
1037set_reg_attrs_for_decl_rtl (tree t, rtx x)
1038{
1039 if (GET_CODE (x) == SUBREG)
fbe6ec81 1040 {
38ae7651
RS
1041 gcc_assert (subreg_lowpart_p (x));
1042 x = SUBREG_REG (x);
fbe6ec81 1043 }
f8cfc6aa 1044 if (REG_P (x))
38ae7651
RS
1045 REG_ATTRS (x)
1046 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
726612d2 1047 DECL_MODE (t)));
a560d4d4
JH
1048 if (GET_CODE (x) == CONCAT)
1049 {
1050 if (REG_P (XEXP (x, 0)))
1051 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1052 if (REG_P (XEXP (x, 1)))
1053 REG_ATTRS (XEXP (x, 1))
1054 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1055 }
1056 if (GET_CODE (x) == PARALLEL)
1057 {
d4afac5b
JZ
1058 int i, start;
1059
1060 /* Check for a NULL entry, used to indicate that the parameter goes
1061 both on the stack and in registers. */
1062 if (XEXP (XVECEXP (x, 0, 0), 0))
1063 start = 0;
1064 else
1065 start = 1;
1066
1067 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1068 {
1069 rtx y = XVECEXP (x, 0, i);
1070 if (REG_P (XEXP (y, 0)))
1071 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1072 }
1073 }
1074}
1075
38ae7651
RS
1076/* Assign the RTX X to declaration T. */
1077
1078void
1079set_decl_rtl (tree t, rtx x)
1080{
1081 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1082 if (x)
1083 set_reg_attrs_for_decl_rtl (t, x);
1084}
1085
5141868d
RS
1086/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1087 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1088
1089void
5141868d 1090set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1091{
1092 DECL_INCOMING_RTL (t) = x;
5141868d 1093 if (x && !by_reference_p)
38ae7651
RS
1094 set_reg_attrs_for_decl_rtl (t, x);
1095}
1096
754fdcca
RK
1097/* Identify REG (which may be a CONCAT) as a user register. */
1098
1099void
502b8322 1100mark_user_reg (rtx reg)
754fdcca
RK
1101{
1102 if (GET_CODE (reg) == CONCAT)
1103 {
1104 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1105 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1106 }
754fdcca 1107 else
5b0264cb
NS
1108 {
1109 gcc_assert (REG_P (reg));
1110 REG_USERVAR_P (reg) = 1;
1111 }
754fdcca
RK
1112}
1113
86fe05e0
RK
1114/* Identify REG as a probable pointer register and show its alignment
1115 as ALIGN, if nonzero. */
23b2ce53
RS
1116
1117void
502b8322 1118mark_reg_pointer (rtx reg, int align)
23b2ce53 1119{
3502dc9c 1120 if (! REG_POINTER (reg))
00995e78 1121 {
3502dc9c 1122 REG_POINTER (reg) = 1;
86fe05e0 1123
00995e78
RE
1124 if (align)
1125 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1126 }
1127 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1128 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1129 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1130}
1131
1132/* Return 1 plus largest pseudo reg number used in the current function. */
1133
1134int
502b8322 1135max_reg_num (void)
23b2ce53
RS
1136{
1137 return reg_rtx_no;
1138}
1139
1140/* Return 1 + the largest label number used so far in the current function. */
1141
1142int
502b8322 1143max_label_num (void)
23b2ce53 1144{
23b2ce53
RS
1145 return label_num;
1146}
1147
1148/* Return first label number used in this function (if any were used). */
1149
1150int
502b8322 1151get_first_label_num (void)
23b2ce53
RS
1152{
1153 return first_label_num;
1154}
6de9cd9a
DN
1155
1156/* If the rtx for label was created during the expansion of a nested
1157 function, then first_label_num won't include this label number.
fa10beec 1158 Fix this now so that array indices work later. */
6de9cd9a
DN
1159
1160void
1161maybe_set_first_label_num (rtx x)
1162{
1163 if (CODE_LABEL_NUMBER (x) < first_label_num)
1164 first_label_num = CODE_LABEL_NUMBER (x);
1165}
23b2ce53
RS
1166\f
1167/* Return a value representing some low-order bits of X, where the number
1168 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1169 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1170 representation is returned.
1171
1172 This function handles the cases in common between gen_lowpart, below,
1173 and two variants in cse.c and combine.c. These are the cases that can
1174 be safely handled at all points in the compilation.
1175
1176 If this is not a case we can handle, return 0. */
1177
1178rtx
502b8322 1179gen_lowpart_common (enum machine_mode mode, rtx x)
23b2ce53 1180{
ddef6bc7 1181 int msize = GET_MODE_SIZE (mode);
550d1387 1182 int xsize;
ddef6bc7 1183 int offset = 0;
550d1387
GK
1184 enum machine_mode innermode;
1185
1186 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1187 so we have to make one up. Yuk. */
1188 innermode = GET_MODE (x);
481683e1 1189 if (CONST_INT_P (x)
db487452 1190 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
550d1387
GK
1191 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1192 else if (innermode == VOIDmode)
1193 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
b8698a0f 1194
550d1387
GK
1195 xsize = GET_MODE_SIZE (innermode);
1196
5b0264cb 1197 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1198
550d1387 1199 if (innermode == mode)
23b2ce53
RS
1200 return x;
1201
1202 /* MODE must occupy no more words than the mode of X. */
550d1387
GK
1203 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1204 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
23b2ce53
RS
1205 return 0;
1206
53501a19 1207 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
3d8bf70f 1208 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
53501a19
BS
1209 return 0;
1210
550d1387 1211 offset = subreg_lowpart_offset (mode, innermode);
23b2ce53
RS
1212
1213 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1214 && (GET_MODE_CLASS (mode) == MODE_INT
1215 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1216 {
1217 /* If we are getting the low-order part of something that has been
1218 sign- or zero-extended, we can either just use the object being
1219 extended or make a narrower extension. If we want an even smaller
1220 piece than the size of the object being extended, call ourselves
1221 recursively.
1222
1223 This case is used mostly by combine and cse. */
1224
1225 if (GET_MODE (XEXP (x, 0)) == mode)
1226 return XEXP (x, 0);
550d1387 1227 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
23b2ce53 1228 return gen_lowpart_common (mode, XEXP (x, 0));
550d1387 1229 else if (msize < xsize)
3b80f6ca 1230 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1231 }
f8cfc6aa 1232 else if (GET_CODE (x) == SUBREG || REG_P (x)
550d1387 1233 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
481683e1 1234 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
550d1387 1235 return simplify_gen_subreg (mode, x, innermode, offset);
8aada4ad 1236
23b2ce53
RS
1237 /* Otherwise, we can't do this. */
1238 return 0;
1239}
1240\f
ccba022b 1241rtx
502b8322 1242gen_highpart (enum machine_mode mode, rtx x)
ccba022b 1243{
ddef6bc7 1244 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1245 rtx result;
ddef6bc7 1246
ccba022b
RS
1247 /* This case loses if X is a subreg. To catch bugs early,
1248 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1249 gcc_assert (msize <= UNITS_PER_WORD
1250 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1251
e0e08ac2
JH
1252 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1253 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb 1254 gcc_assert (result);
b8698a0f 1255
09482e0d
JW
1256 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1257 the target if we have a MEM. gen_highpart must return a valid operand,
1258 emitting code if necessary to do so. */
5b0264cb
NS
1259 if (MEM_P (result))
1260 {
1261 result = validize_mem (result);
1262 gcc_assert (result);
1263 }
b8698a0f 1264
e0e08ac2
JH
1265 return result;
1266}
5222e470 1267
26d249eb 1268/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1269 be VOIDmode constant. */
1270rtx
502b8322 1271gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
5222e470
JH
1272{
1273 if (GET_MODE (exp) != VOIDmode)
1274 {
5b0264cb 1275 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1276 return gen_highpart (outermode, exp);
1277 }
1278 return simplify_gen_subreg (outermode, exp, innermode,
1279 subreg_highpart_offset (outermode, innermode));
1280}
68252e27 1281
38ae7651 1282/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
8698cce3 1283
e0e08ac2 1284unsigned int
502b8322 1285subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
e0e08ac2
JH
1286{
1287 unsigned int offset = 0;
1288 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1289
e0e08ac2 1290 if (difference > 0)
ccba022b 1291 {
e0e08ac2
JH
1292 if (WORDS_BIG_ENDIAN)
1293 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1294 if (BYTES_BIG_ENDIAN)
1295 offset += difference % UNITS_PER_WORD;
ccba022b 1296 }
ddef6bc7 1297
e0e08ac2 1298 return offset;
ccba022b 1299}
eea50aa0 1300
e0e08ac2
JH
1301/* Return offset in bytes to get OUTERMODE high part
1302 of the value in mode INNERMODE stored in memory in target format. */
1303unsigned int
502b8322 1304subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
eea50aa0
JH
1305{
1306 unsigned int offset = 0;
1307 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1308
5b0264cb 1309 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
e0e08ac2 1310
eea50aa0
JH
1311 if (difference > 0)
1312 {
e0e08ac2 1313 if (! WORDS_BIG_ENDIAN)
eea50aa0 1314 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1315 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1316 offset += difference % UNITS_PER_WORD;
1317 }
1318
e0e08ac2 1319 return offset;
eea50aa0 1320}
ccba022b 1321
23b2ce53
RS
1322/* Return 1 iff X, assumed to be a SUBREG,
1323 refers to the least significant part of its containing reg.
1324 If X is not a SUBREG, always return 1 (it is its own low part!). */
1325
1326int
fa233e34 1327subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1328{
1329 if (GET_CODE (x) != SUBREG)
1330 return 1;
a3a03040
RK
1331 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1332 return 0;
23b2ce53 1333
e0e08ac2
JH
1334 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1335 == SUBREG_BYTE (x));
23b2ce53
RS
1336}
1337\f
ddef6bc7
JJ
1338/* Return subword OFFSET of operand OP.
1339 The word number, OFFSET, is interpreted as the word number starting
1340 at the low-order address. OFFSET 0 is the low-order word if not
1341 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1342
1343 If we cannot extract the required word, we return zero. Otherwise,
1344 an rtx corresponding to the requested word will be returned.
1345
1346 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1347 reload has completed, a valid address will always be returned. After
1348 reload, if a valid address cannot be returned, we return zero.
1349
1350 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1351 it is the responsibility of the caller.
1352
1353 MODE is the mode of OP in case it is a CONST_INT.
1354
1355 ??? This is still rather broken for some cases. The problem for the
1356 moment is that all callers of this thing provide no 'goal mode' to
1357 tell us to work with. This exists because all callers were written
0631e0bf
JH
1358 in a word based SUBREG world.
1359 Now use of this function can be deprecated by simplify_subreg in most
1360 cases.
1361 */
ddef6bc7
JJ
1362
1363rtx
502b8322 1364operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
ddef6bc7
JJ
1365{
1366 if (mode == VOIDmode)
1367 mode = GET_MODE (op);
1368
5b0264cb 1369 gcc_assert (mode != VOIDmode);
ddef6bc7 1370
30f7a378 1371 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1372 if (mode != BLKmode
1373 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1374 return 0;
1375
30f7a378 1376 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1377 if (mode != BLKmode
1378 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1379 return const0_rtx;
1380
ddef6bc7 1381 /* Form a new MEM at the requested address. */
3c0cb5de 1382 if (MEM_P (op))
ddef6bc7 1383 {
60564289 1384 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1385
f1ec5147 1386 if (! validate_address)
60564289 1387 return new_rtx;
f1ec5147
RK
1388
1389 else if (reload_completed)
ddef6bc7 1390 {
09e881c9
BE
1391 if (! strict_memory_address_addr_space_p (word_mode,
1392 XEXP (new_rtx, 0),
1393 MEM_ADDR_SPACE (op)))
f1ec5147 1394 return 0;
ddef6bc7 1395 }
f1ec5147 1396 else
60564289 1397 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1398 }
1399
0631e0bf
JH
1400 /* Rest can be handled by simplify_subreg. */
1401 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1402}
1403
535a42b1
NS
1404/* Similar to `operand_subword', but never return 0. If we can't
1405 extract the required subword, put OP into a register and try again.
1406 The second attempt must succeed. We always validate the address in
1407 this case.
23b2ce53
RS
1408
1409 MODE is the mode of OP, in case it is CONST_INT. */
1410
1411rtx
502b8322 1412operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
23b2ce53 1413{
ddef6bc7 1414 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1415
1416 if (result)
1417 return result;
1418
1419 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1420 {
1421 /* If this is a register which can not be accessed by words, copy it
1422 to a pseudo register. */
f8cfc6aa 1423 if (REG_P (op))
77e6b0eb
JC
1424 op = copy_to_reg (op);
1425 else
1426 op = force_reg (mode, op);
1427 }
23b2ce53 1428
ddef6bc7 1429 result = operand_subword (op, offset, 1, mode);
5b0264cb 1430 gcc_assert (result);
23b2ce53
RS
1431
1432 return result;
1433}
1434\f
2b3493c8
AK
1435/* Returns 1 if both MEM_EXPR can be considered equal
1436 and 0 otherwise. */
1437
1438int
4f588890 1439mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1440{
1441 if (expr1 == expr2)
1442 return 1;
1443
1444 if (! expr1 || ! expr2)
1445 return 0;
1446
1447 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1448 return 0;
1449
55b34b5f 1450 return operand_equal_p (expr1, expr2, 0);
2b3493c8
AK
1451}
1452
805903b5
JJ
1453/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1454 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1455 -1 if not known. */
1456
1457int
d9223014 1458get_mem_align_offset (rtx mem, unsigned int align)
805903b5
JJ
1459{
1460 tree expr;
1461 unsigned HOST_WIDE_INT offset;
1462
1463 /* This function can't use
1464 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1465 || !CONST_INT_P (MEM_OFFSET (mem))
e80c2726
RG
1466 || (MAX (MEM_ALIGN (mem),
1467 get_object_alignment (MEM_EXPR (mem), align))
805903b5
JJ
1468 < align))
1469 return -1;
1470 else
1471 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1472 for two reasons:
1473 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1474 for <variable>. get_inner_reference doesn't handle it and
1475 even if it did, the alignment in that case needs to be determined
1476 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1477 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1478 isn't sufficiently aligned, the object it is in might be. */
1479 gcc_assert (MEM_P (mem));
1480 expr = MEM_EXPR (mem);
1481 if (expr == NULL_TREE
1482 || MEM_OFFSET (mem) == NULL_RTX
1483 || !CONST_INT_P (MEM_OFFSET (mem)))
1484 return -1;
1485
1486 offset = INTVAL (MEM_OFFSET (mem));
1487 if (DECL_P (expr))
1488 {
1489 if (DECL_ALIGN (expr) < align)
1490 return -1;
1491 }
1492 else if (INDIRECT_REF_P (expr))
1493 {
1494 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1495 return -1;
1496 }
1497 else if (TREE_CODE (expr) == COMPONENT_REF)
1498 {
1499 while (1)
1500 {
1501 tree inner = TREE_OPERAND (expr, 0);
1502 tree field = TREE_OPERAND (expr, 1);
1503 tree byte_offset = component_ref_field_offset (expr);
1504 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1505
1506 if (!byte_offset
1507 || !host_integerp (byte_offset, 1)
1508 || !host_integerp (bit_offset, 1))
1509 return -1;
1510
1511 offset += tree_low_cst (byte_offset, 1);
1512 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1513
1514 if (inner == NULL_TREE)
1515 {
1516 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1517 < (unsigned int) align)
1518 return -1;
1519 break;
1520 }
1521 else if (DECL_P (inner))
1522 {
1523 if (DECL_ALIGN (inner) < align)
1524 return -1;
1525 break;
1526 }
1527 else if (TREE_CODE (inner) != COMPONENT_REF)
1528 return -1;
1529 expr = inner;
1530 }
1531 }
1532 else
1533 return -1;
1534
1535 return offset & ((align / BITS_PER_UNIT) - 1);
1536}
1537
6926c713 1538/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1539 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1540 if we are making a new object of this type. BITPOS is nonzero if
1541 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1542
1543void
502b8322
AJ
1544set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1545 HOST_WIDE_INT bitpos)
173b24b9 1546{
268f7033
UW
1547 alias_set_type alias;
1548 tree expr = NULL;
1549 rtx offset = NULL_RTX;
1550 rtx size = NULL_RTX;
1551 unsigned int align = BITS_PER_UNIT;
6f1087be 1552 HOST_WIDE_INT apply_bitpos = 0;
173b24b9
RK
1553 tree type;
1554
1555 /* It can happen that type_for_mode was given a mode for which there
1556 is no language-level type. In which case it returns NULL, which
1557 we can see here. */
1558 if (t == NULL_TREE)
1559 return;
1560
1561 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1562 if (type == error_mark_node)
1563 return;
173b24b9 1564
173b24b9
RK
1565 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1566 wrong answer, as it assumes that DECL_RTL already has the right alias
1567 info. Callers should not set DECL_RTL until after the call to
1568 set_mem_attributes. */
5b0264cb 1569 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1570
738cc472 1571 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1572 front-end routine) and use it. */
1573 alias = get_alias_set (t);
173b24b9 1574
a5e9c810 1575 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
07cb6e8c
JM
1576 MEM_IN_STRUCT_P (ref)
1577 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
f8ad8d7c 1578 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1579
8ac61af7
RK
1580 /* If we are making an object of this type, or if this is a DECL, we know
1581 that it is a scalar if the type is not an aggregate. */
07cb6e8c
JM
1582 if ((objectp || DECL_P (t))
1583 && ! AGGREGATE_TYPE_P (type)
1584 && TREE_CODE (type) != COMPLEX_TYPE)
173b24b9
RK
1585 MEM_SCALAR_P (ref) = 1;
1586
268f7033
UW
1587 /* Default values from pre-existing memory attributes if present. */
1588 if (MEM_ATTRS (ref))
1589 {
1590 /* ??? Can this ever happen? Calling this routine on a MEM that
1591 already carries memory attributes should probably be invalid. */
1592 expr = MEM_EXPR (ref);
1593 offset = MEM_OFFSET (ref);
1594 size = MEM_SIZE (ref);
1595 align = MEM_ALIGN (ref);
1596 }
1597
1598 /* Otherwise, default values from the mode of the MEM reference. */
1599 else if (GET_MODE (ref) != BLKmode)
1600 {
1601 /* Respect mode size. */
1602 size = GEN_INT (GET_MODE_SIZE (GET_MODE (ref)));
1603 /* ??? Is this really necessary? We probably should always get
1604 the size from the type below. */
1605
1606 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1607 if T is an object, always compute the object alignment below. */
1608 if (STRICT_ALIGNMENT && TYPE_P (t))
1609 align = GET_MODE_ALIGNMENT (GET_MODE (ref));
1610 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1611 e.g. if the type carries an alignment attribute. Should we be
1612 able to simply always use TYPE_ALIGN? */
1613 }
1614
c3d32120
RK
1615 /* We can set the alignment from the type if we are making an object,
1616 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
a80903ff 1617 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
c3d32120 1618 align = MAX (align, TYPE_ALIGN (type));
a80903ff 1619
70f34814
RG
1620 else if (TREE_CODE (t) == MEM_REF)
1621 {
a80903ff 1622 tree op0 = TREE_OPERAND (t, 0);
3e32c761
RG
1623 if (TREE_CODE (op0) == ADDR_EXPR
1624 && (DECL_P (TREE_OPERAND (op0, 0))
1625 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
70f34814 1626 {
3e32c761
RG
1627 if (DECL_P (TREE_OPERAND (op0, 0)))
1628 align = DECL_ALIGN (TREE_OPERAND (op0, 0));
1629 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1630 {
1631 align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
70f34814 1632#ifdef CONSTANT_ALIGNMENT
3e32c761 1633 align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0), align);
70f34814 1634#endif
3e32c761
RG
1635 }
1636 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1637 {
1638 unsigned HOST_WIDE_INT ioff
1639 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1640 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1641 align = MIN (aoff, align);
1642 }
70f34814
RG
1643 }
1644 else
5951297a
EB
1645 /* ??? This isn't fully correct, we can't set the alignment from the
1646 type in all cases. */
1647 align = MAX (align, TYPE_ALIGN (type));
70f34814 1648 }
a80903ff 1649
9407f6bc
RG
1650 else if (TREE_CODE (t) == TARGET_MEM_REF)
1651 /* ??? This isn't fully correct, we can't set the alignment from the
1652 type in all cases. */
1653 align = MAX (align, TYPE_ALIGN (type));
1654
738cc472
RK
1655 /* If the size is known, we can set that. */
1656 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1657 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1658
80965c18
RK
1659 /* If T is not a type, we may be able to deduce some more information about
1660 the expression. */
1661 if (! TYPE_P (t))
8ac61af7 1662 {
8476af98 1663 tree base;
df96b059 1664 bool align_computed = false;
389fdba0 1665
8ac61af7
RK
1666 if (TREE_THIS_VOLATILE (t))
1667 MEM_VOLATILE_P (ref) = 1;
173b24b9 1668
c56e3582
RK
1669 /* Now remove any conversions: they don't change what the underlying
1670 object is. Likewise for SAVE_EXPR. */
1043771b 1671 while (CONVERT_EXPR_P (t)
c56e3582
RK
1672 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1673 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1674 t = TREE_OPERAND (t, 0);
1675
4994da65
RG
1676 /* Note whether this expression can trap. */
1677 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1678
1679 base = get_base_address (t);
8476af98
RH
1680 if (base && DECL_P (base)
1681 && TREE_READONLY (base)
b1923f0a
RG
1682 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1683 && !TREE_THIS_VOLATILE (base))
21d9971a 1684 MEM_READONLY_P (ref) = 1;
8476af98 1685
2039d7aa
RH
1686 /* If this expression uses it's parent's alias set, mark it such
1687 that we won't change it. */
1688 if (component_uses_parent_alias_set (t))
10b76d73
RK
1689 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1690
8ac61af7
RK
1691 /* If this is a decl, set the attributes of the MEM from it. */
1692 if (DECL_P (t))
1693 {
998d7deb
RH
1694 expr = t;
1695 offset = const0_rtx;
6f1087be 1696 apply_bitpos = bitpos;
8ac61af7
RK
1697 size = (DECL_SIZE_UNIT (t)
1698 && host_integerp (DECL_SIZE_UNIT (t), 1)
1699 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
68252e27 1700 align = DECL_ALIGN (t);
df96b059 1701 align_computed = true;
8ac61af7
RK
1702 }
1703
40c0668b 1704 /* If this is a constant, we know the alignment. */
6615c446 1705 else if (CONSTANT_CLASS_P (t))
9ddfb1a7
RK
1706 {
1707 align = TYPE_ALIGN (type);
1708#ifdef CONSTANT_ALIGNMENT
1709 align = CONSTANT_ALIGNMENT (t, align);
1710#endif
df96b059 1711 align_computed = true;
9ddfb1a7 1712 }
998d7deb
RH
1713
1714 /* If this is a field reference and not a bit-field, record it. */
fa10beec 1715 /* ??? There is some information that can be gleaned from bit-fields,
998d7deb
RH
1716 such as the word offset in the structure that might be modified.
1717 But skip it for now. */
1718 else if (TREE_CODE (t) == COMPONENT_REF
1719 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1720 {
55b34b5f 1721 expr = t;
998d7deb 1722 offset = const0_rtx;
6f1087be 1723 apply_bitpos = bitpos;
998d7deb
RH
1724 /* ??? Any reason the field size would be different than
1725 the size we got from the type? */
1726 }
1727
1728 /* If this is an array reference, look for an outer field reference. */
1729 else if (TREE_CODE (t) == ARRAY_REF)
1730 {
1731 tree off_tree = size_zero_node;
1b1838b6
JW
1732 /* We can't modify t, because we use it at the end of the
1733 function. */
1734 tree t2 = t;
998d7deb
RH
1735
1736 do
1737 {
1b1838b6 1738 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1739 tree low_bound = array_ref_low_bound (t2);
1740 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1741
1742 /* We assume all arrays have sizes that are a multiple of a byte.
1743 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1744 index, then convert to sizetype and multiply by the size of
1745 the array element. */
1746 if (! integer_zerop (low_bound))
4845b383
KH
1747 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1748 index, low_bound);
2567406a 1749
44de5aeb 1750 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1751 size_binop (MULT_EXPR,
1752 fold_convert (sizetype,
1753 index),
44de5aeb
RK
1754 unit_size),
1755 off_tree);
1b1838b6 1756 t2 = TREE_OPERAND (t2, 0);
998d7deb 1757 }
1b1838b6 1758 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1759
1b1838b6 1760 if (DECL_P (t2))
c67a1cf6 1761 {
1b1838b6 1762 expr = t2;
40cb04f1 1763 offset = NULL;
c67a1cf6 1764 if (host_integerp (off_tree, 1))
40cb04f1
RH
1765 {
1766 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1767 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1b1838b6 1768 align = DECL_ALIGN (t2);
fc555370 1769 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
40cb04f1 1770 align = aoff;
df96b059 1771 align_computed = true;
40cb04f1 1772 offset = GEN_INT (ioff);
6f1087be 1773 apply_bitpos = bitpos;
40cb04f1 1774 }
c67a1cf6 1775 }
1b1838b6 1776 else if (TREE_CODE (t2) == COMPONENT_REF)
998d7deb 1777 {
55b34b5f
RG
1778 expr = t2;
1779 offset = NULL;
998d7deb 1780 if (host_integerp (off_tree, 1))
6f1087be
RH
1781 {
1782 offset = GEN_INT (tree_low_cst (off_tree, 1));
1783 apply_bitpos = bitpos;
1784 }
998d7deb
RH
1785 /* ??? Any reason the field size would be different than
1786 the size we got from the type? */
1787 }
56c47f22 1788
56c47f22 1789 /* If this is an indirect reference, record it. */
be1ac4ec 1790 else if (TREE_CODE (t) == MEM_REF)
56c47f22
RG
1791 {
1792 expr = t;
1793 offset = const0_rtx;
1794 apply_bitpos = bitpos;
1795 }
c67a1cf6
RH
1796 }
1797
56c47f22 1798 /* If this is an indirect reference, record it. */
70f34814 1799 else if (TREE_CODE (t) == MEM_REF
be1ac4ec 1800 || TREE_CODE (t) == TARGET_MEM_REF)
56c47f22
RG
1801 {
1802 expr = t;
1803 offset = const0_rtx;
1804 apply_bitpos = bitpos;
1805 }
1806
df96b059
JJ
1807 if (!align_computed && !INDIRECT_REF_P (t))
1808 {
e80c2726 1809 unsigned int obj_align = get_object_alignment (t, BIGGEST_ALIGNMENT);
df96b059
JJ
1810 align = MAX (align, obj_align);
1811 }
8ac61af7
RK
1812 }
1813
15c812e3 1814 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1815 bit position offset. Similarly, increase the size of the accessed
1816 object to contain the negative offset. */
6f1087be 1817 if (apply_bitpos)
8c317c5f
RH
1818 {
1819 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1820 if (size)
1821 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1822 }
6f1087be 1823
8ac61af7 1824 /* Now set the attributes we computed above. */
10b76d73 1825 MEM_ATTRS (ref)
09e881c9
BE
1826 = get_mem_attrs (alias, expr, offset, size, align,
1827 TYPE_ADDR_SPACE (type), GET_MODE (ref));
8ac61af7
RK
1828
1829 /* If this is already known to be a scalar or aggregate, we are done. */
1830 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
1831 return;
1832
8ac61af7
RK
1833 /* If it is a reference into an aggregate, this is part of an aggregate.
1834 Otherwise we don't know. */
173b24b9
RK
1835 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1836 || TREE_CODE (t) == ARRAY_RANGE_REF
1837 || TREE_CODE (t) == BIT_FIELD_REF)
1838 MEM_IN_STRUCT_P (ref) = 1;
1839}
1840
6f1087be 1841void
502b8322 1842set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
1843{
1844 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1845}
1846
173b24b9
RK
1847/* Set the alias set of MEM to SET. */
1848
1849void
4862826d 1850set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 1851{
173b24b9 1852 /* If the new and old alias sets don't conflict, something is wrong. */
77a74ed7 1853 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
173b24b9 1854
998d7deb 1855 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
10b76d73 1856 MEM_SIZE (mem), MEM_ALIGN (mem),
09e881c9
BE
1857 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1858}
1859
1860/* Set the address space of MEM to ADDRSPACE (target-defined). */
1861
1862void
1863set_mem_addr_space (rtx mem, addr_space_t addrspace)
1864{
1865 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1866 MEM_OFFSET (mem), MEM_SIZE (mem),
1867 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
173b24b9 1868}
738cc472 1869
d022d93e 1870/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1871
1872void
502b8322 1873set_mem_align (rtx mem, unsigned int align)
738cc472 1874{
998d7deb 1875 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
10b76d73 1876 MEM_OFFSET (mem), MEM_SIZE (mem), align,
09e881c9 1877 MEM_ADDR_SPACE (mem), GET_MODE (mem));
738cc472 1878}
1285011e 1879
998d7deb 1880/* Set the expr for MEM to EXPR. */
1285011e
RK
1881
1882void
502b8322 1883set_mem_expr (rtx mem, tree expr)
1285011e
RK
1884{
1885 MEM_ATTRS (mem)
998d7deb 1886 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
09e881c9
BE
1887 MEM_SIZE (mem), MEM_ALIGN (mem),
1888 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1285011e 1889}
998d7deb
RH
1890
1891/* Set the offset of MEM to OFFSET. */
1892
1893void
502b8322 1894set_mem_offset (rtx mem, rtx offset)
998d7deb
RH
1895{
1896 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1897 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
09e881c9 1898 MEM_ADDR_SPACE (mem), GET_MODE (mem));
35aff10b
AM
1899}
1900
1901/* Set the size of MEM to SIZE. */
1902
1903void
502b8322 1904set_mem_size (rtx mem, rtx size)
35aff10b
AM
1905{
1906 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1907 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
09e881c9 1908 MEM_ADDR_SPACE (mem), GET_MODE (mem));
998d7deb 1909}
173b24b9 1910\f
738cc472
RK
1911/* Return a memory reference like MEMREF, but with its mode changed to MODE
1912 and its address changed to ADDR. (VOIDmode means don't change the mode.
1913 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1914 returned memory location is required to be valid. The memory
1915 attributes are not changed. */
23b2ce53 1916
738cc472 1917static rtx
502b8322 1918change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
23b2ce53 1919{
09e881c9 1920 addr_space_t as;
60564289 1921 rtx new_rtx;
23b2ce53 1922
5b0264cb 1923 gcc_assert (MEM_P (memref));
09e881c9 1924 as = MEM_ADDR_SPACE (memref);
23b2ce53
RS
1925 if (mode == VOIDmode)
1926 mode = GET_MODE (memref);
1927 if (addr == 0)
1928 addr = XEXP (memref, 0);
a74ff877 1929 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
09e881c9 1930 && (!validate || memory_address_addr_space_p (mode, addr, as)))
a74ff877 1931 return memref;
23b2ce53 1932
f1ec5147 1933 if (validate)
23b2ce53 1934 {
f1ec5147 1935 if (reload_in_progress || reload_completed)
09e881c9 1936 gcc_assert (memory_address_addr_space_p (mode, addr, as));
f1ec5147 1937 else
09e881c9 1938 addr = memory_address_addr_space (mode, addr, as);
23b2ce53 1939 }
750c9258 1940
9b04c6a8
RK
1941 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1942 return memref;
1943
60564289
KG
1944 new_rtx = gen_rtx_MEM (mode, addr);
1945 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1946 return new_rtx;
23b2ce53 1947}
792760b9 1948
738cc472
RK
1949/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1950 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
1951
1952rtx
502b8322 1953change_address (rtx memref, enum machine_mode mode, rtx addr)
f4ef873c 1954{
60564289
KG
1955 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1956 enum machine_mode mmode = GET_MODE (new_rtx);
4e44c1ef
JJ
1957 unsigned int align;
1958
1959 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1960 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
c2f7bcc3 1961
fdb1c7b3 1962 /* If there are no changes, just return the original memory reference. */
60564289 1963 if (new_rtx == memref)
4e44c1ef
JJ
1964 {
1965 if (MEM_ATTRS (memref) == 0
1966 || (MEM_EXPR (memref) == NULL
1967 && MEM_OFFSET (memref) == NULL
1968 && MEM_SIZE (memref) == size
1969 && MEM_ALIGN (memref) == align))
60564289 1970 return new_rtx;
4e44c1ef 1971
60564289
KG
1972 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1973 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 1974 }
fdb1c7b3 1975
60564289 1976 MEM_ATTRS (new_rtx)
09e881c9
BE
1977 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1978 MEM_ADDR_SPACE (memref), mmode);
823e3574 1979
60564289 1980 return new_rtx;
f4ef873c 1981}
792760b9 1982
738cc472
RK
1983/* Return a memory reference like MEMREF, but with its mode changed
1984 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
1985 nonzero, the memory address is forced to be valid.
1986 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1987 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
1988
1989rtx
502b8322
AJ
1990adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1991 int validate, int adjust)
f1ec5147 1992{
823e3574 1993 rtx addr = XEXP (memref, 0);
60564289 1994 rtx new_rtx;
738cc472 1995 rtx memoffset = MEM_OFFSET (memref);
10b76d73 1996 rtx size = 0;
738cc472 1997 unsigned int memalign = MEM_ALIGN (memref);
09e881c9 1998 addr_space_t as = MEM_ADDR_SPACE (memref);
d4ebfa65 1999 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
a6fe9ed4 2000 int pbits;
823e3574 2001
fdb1c7b3
JH
2002 /* If there are no changes, just return the original memory reference. */
2003 if (mode == GET_MODE (memref) && !offset
09e881c9 2004 && (!validate || memory_address_addr_space_p (mode, addr, as)))
fdb1c7b3
JH
2005 return memref;
2006
d14419e4 2007 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2008 This may happen even if offset is nonzero -- consider
d14419e4
RH
2009 (plus (plus reg reg) const_int) -- so do this always. */
2010 addr = copy_rtx (addr);
2011
a6fe9ed4
JM
2012 /* Convert a possibly large offset to a signed value within the
2013 range of the target address space. */
d4ebfa65 2014 pbits = GET_MODE_BITSIZE (address_mode);
a6fe9ed4
JM
2015 if (HOST_BITS_PER_WIDE_INT > pbits)
2016 {
2017 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2018 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2019 >> shift);
2020 }
2021
4a78c787
RH
2022 if (adjust)
2023 {
2024 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2025 object, we can merge it into the LO_SUM. */
2026 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2027 && offset >= 0
2028 && (unsigned HOST_WIDE_INT) offset
2029 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
d4ebfa65 2030 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
4a78c787
RH
2031 plus_constant (XEXP (addr, 1), offset));
2032 else
2033 addr = plus_constant (addr, offset);
2034 }
823e3574 2035
60564289 2036 new_rtx = change_address_1 (memref, mode, addr, validate);
738cc472 2037
09efeca1
PB
2038 /* If the address is a REG, change_address_1 rightfully returns memref,
2039 but this would destroy memref's MEM_ATTRS. */
2040 if (new_rtx == memref && offset != 0)
2041 new_rtx = copy_rtx (new_rtx);
2042
738cc472
RK
2043 /* Compute the new values of the memory attributes due to this adjustment.
2044 We add the offsets and update the alignment. */
2045 if (memoffset)
2046 memoffset = GEN_INT (offset + INTVAL (memoffset));
2047
03bf2c23
RK
2048 /* Compute the new alignment by taking the MIN of the alignment and the
2049 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2050 if zero. */
2051 if (offset != 0)
3bf1e984
RK
2052 memalign
2053 = MIN (memalign,
2054 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
738cc472 2055
10b76d73 2056 /* We can compute the size in a number of ways. */
60564289
KG
2057 if (GET_MODE (new_rtx) != BLKmode)
2058 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
10b76d73
RK
2059 else if (MEM_SIZE (memref))
2060 size = plus_constant (MEM_SIZE (memref), -offset);
2061
60564289 2062 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
09e881c9
BE
2063 memoffset, size, memalign, as,
2064 GET_MODE (new_rtx));
738cc472
RK
2065
2066 /* At some point, we should validate that this offset is within the object,
2067 if all the appropriate values are known. */
60564289 2068 return new_rtx;
f1ec5147
RK
2069}
2070
630036c6
JJ
2071/* Return a memory reference like MEMREF, but with its mode changed
2072 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 2073 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2074 nonzero, the memory address is forced to be valid. */
2075
2076rtx
502b8322
AJ
2077adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2078 HOST_WIDE_INT offset, int validate)
630036c6
JJ
2079{
2080 memref = change_address_1 (memref, VOIDmode, addr, validate);
2081 return adjust_address_1 (memref, mode, offset, validate, 0);
2082}
2083
8ac61af7
RK
2084/* Return a memory reference like MEMREF, but whose address is changed by
2085 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2086 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2087
2088rtx
502b8322 2089offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2090{
60564289 2091 rtx new_rtx, addr = XEXP (memref, 0);
09e881c9 2092 addr_space_t as = MEM_ADDR_SPACE (memref);
d4ebfa65 2093 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
e3c8ea67 2094
d4ebfa65 2095 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67 2096
68252e27 2097 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2098 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2099
2100 However, if we did go and rearrange things, we can wind up not
2101 being able to recognize the magic around pic_offset_table_rtx.
2102 This stuff is fragile, and is yet another example of why it is
2103 bad to expose PIC machinery too early. */
09e881c9 2104 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
e3c8ea67
RH
2105 && GET_CODE (addr) == PLUS
2106 && XEXP (addr, 0) == pic_offset_table_rtx)
2107 {
2108 addr = force_reg (GET_MODE (addr), addr);
d4ebfa65 2109 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67
RH
2110 }
2111
60564289
KG
2112 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2113 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
0d4903b8 2114
fdb1c7b3 2115 /* If there are no changes, just return the original memory reference. */
60564289
KG
2116 if (new_rtx == memref)
2117 return new_rtx;
fdb1c7b3 2118
0d4903b8
RK
2119 /* Update the alignment to reflect the offset. Reset the offset, which
2120 we don't know. */
60564289 2121 MEM_ATTRS (new_rtx)
2cc2d4bb 2122 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
9ceca302 2123 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
09e881c9 2124 as, GET_MODE (new_rtx));
60564289 2125 return new_rtx;
0d4903b8 2126}
68252e27 2127
792760b9
RK
2128/* Return a memory reference like MEMREF, but with its address changed to
2129 ADDR. The caller is asserting that the actual piece of memory pointed
2130 to is the same, just the form of the address is being changed, such as
2131 by putting something into a register. */
2132
2133rtx
502b8322 2134replace_equiv_address (rtx memref, rtx addr)
792760b9 2135{
738cc472
RK
2136 /* change_address_1 copies the memory attribute structure without change
2137 and that's exactly what we want here. */
40c0668b 2138 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2139 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2140}
738cc472 2141
f1ec5147
RK
2142/* Likewise, but the reference is not required to be valid. */
2143
2144rtx
502b8322 2145replace_equiv_address_nv (rtx memref, rtx addr)
f1ec5147 2146{
f1ec5147
RK
2147 return change_address_1 (memref, VOIDmode, addr, 0);
2148}
e7dfe4bb
RH
2149
2150/* Return a memory reference like MEMREF, but with its mode widened to
2151 MODE and offset by OFFSET. This would be used by targets that e.g.
2152 cannot issue QImode memory operations and have to use SImode memory
2153 operations plus masking logic. */
2154
2155rtx
502b8322 2156widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb 2157{
60564289
KG
2158 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2159 tree expr = MEM_EXPR (new_rtx);
2160 rtx memoffset = MEM_OFFSET (new_rtx);
e7dfe4bb
RH
2161 unsigned int size = GET_MODE_SIZE (mode);
2162
fdb1c7b3 2163 /* If there are no changes, just return the original memory reference. */
60564289
KG
2164 if (new_rtx == memref)
2165 return new_rtx;
fdb1c7b3 2166
e7dfe4bb
RH
2167 /* If we don't know what offset we were at within the expression, then
2168 we can't know if we've overstepped the bounds. */
fa1591cb 2169 if (! memoffset)
e7dfe4bb
RH
2170 expr = NULL_TREE;
2171
2172 while (expr)
2173 {
2174 if (TREE_CODE (expr) == COMPONENT_REF)
2175 {
2176 tree field = TREE_OPERAND (expr, 1);
44de5aeb 2177 tree offset = component_ref_field_offset (expr);
e7dfe4bb
RH
2178
2179 if (! DECL_SIZE_UNIT (field))
2180 {
2181 expr = NULL_TREE;
2182 break;
2183 }
2184
2185 /* Is the field at least as large as the access? If so, ok,
2186 otherwise strip back to the containing structure. */
03667700
RK
2187 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2188 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
e7dfe4bb
RH
2189 && INTVAL (memoffset) >= 0)
2190 break;
2191
44de5aeb 2192 if (! host_integerp (offset, 1))
e7dfe4bb
RH
2193 {
2194 expr = NULL_TREE;
2195 break;
2196 }
2197
2198 expr = TREE_OPERAND (expr, 0);
44de5aeb
RK
2199 memoffset
2200 = (GEN_INT (INTVAL (memoffset)
2201 + tree_low_cst (offset, 1)
2202 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2203 / BITS_PER_UNIT)));
e7dfe4bb
RH
2204 }
2205 /* Similarly for the decl. */
2206 else if (DECL_P (expr)
2207 && DECL_SIZE_UNIT (expr)
45f79783 2208 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
e7dfe4bb
RH
2209 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2210 && (! memoffset || INTVAL (memoffset) >= 0))
2211 break;
2212 else
2213 {
2214 /* The widened memory access overflows the expression, which means
2215 that it could alias another expression. Zap it. */
2216 expr = NULL_TREE;
2217 break;
2218 }
2219 }
2220
2221 if (! expr)
2222 memoffset = NULL_RTX;
2223
2224 /* The widened memory may alias other stuff, so zap the alias set. */
2225 /* ??? Maybe use get_alias_set on any remaining expression. */
2226
60564289 2227 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
09e881c9
BE
2228 MEM_ALIGN (new_rtx),
2229 MEM_ADDR_SPACE (new_rtx), mode);
e7dfe4bb 2230
60564289 2231 return new_rtx;
e7dfe4bb 2232}
23b2ce53 2233\f
f6129d66
RH
2234/* A fake decl that is used as the MEM_EXPR of spill slots. */
2235static GTY(()) tree spill_slot_decl;
2236
3d7e23f6
RH
2237tree
2238get_spill_slot_decl (bool force_build_p)
f6129d66
RH
2239{
2240 tree d = spill_slot_decl;
2241 rtx rd;
2242
3d7e23f6 2243 if (d || !force_build_p)
f6129d66
RH
2244 return d;
2245
c2255bc4
AH
2246 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2247 VAR_DECL, get_identifier ("%sfp"), void_type_node);
f6129d66
RH
2248 DECL_ARTIFICIAL (d) = 1;
2249 DECL_IGNORED_P (d) = 1;
2250 TREE_USED (d) = 1;
f6129d66
RH
2251 spill_slot_decl = d;
2252
2253 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2254 MEM_NOTRAP_P (rd) = 1;
2255 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
09e881c9 2256 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
f6129d66
RH
2257 SET_DECL_RTL (d, rd);
2258
2259 return d;
2260}
2261
2262/* Given MEM, a result from assign_stack_local, fill in the memory
2263 attributes as appropriate for a register allocator spill slot.
2264 These slots are not aliasable by other memory. We arrange for
2265 them all to use a single MEM_EXPR, so that the aliasing code can
2266 work properly in the case of shared spill slots. */
2267
2268void
2269set_mem_attrs_for_spill (rtx mem)
2270{
2271 alias_set_type alias;
2272 rtx addr, offset;
2273 tree expr;
2274
3d7e23f6 2275 expr = get_spill_slot_decl (true);
f6129d66
RH
2276 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2277
2278 /* We expect the incoming memory to be of the form:
2279 (mem:MODE (plus (reg sfp) (const_int offset)))
2280 with perhaps the plus missing for offset = 0. */
2281 addr = XEXP (mem, 0);
2282 offset = const0_rtx;
2283 if (GET_CODE (addr) == PLUS
481683e1 2284 && CONST_INT_P (XEXP (addr, 1)))
f6129d66
RH
2285 offset = XEXP (addr, 1);
2286
2287 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2288 MEM_SIZE (mem), MEM_ALIGN (mem),
09e881c9 2289 ADDR_SPACE_GENERIC, GET_MODE (mem));
f6129d66
RH
2290 MEM_NOTRAP_P (mem) = 1;
2291}
2292\f
23b2ce53
RS
2293/* Return a newly created CODE_LABEL rtx with a unique label number. */
2294
2295rtx
502b8322 2296gen_label_rtx (void)
23b2ce53 2297{
0dc36574 2298 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
502b8322 2299 NULL, label_num++, NULL);
23b2ce53
RS
2300}
2301\f
2302/* For procedure integration. */
2303
23b2ce53 2304/* Install new pointers to the first and last insns in the chain.
86fe05e0 2305 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2306 Used for an inline-procedure after copying the insn chain. */
2307
2308void
502b8322 2309set_new_first_and_last_insn (rtx first, rtx last)
23b2ce53 2310{
86fe05e0
RK
2311 rtx insn;
2312
5936d944
JH
2313 set_first_insn (first);
2314 set_last_insn (last);
86fe05e0
RK
2315 cur_insn_uid = 0;
2316
b5b8b0ac
AO
2317 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2318 {
2319 int debug_count = 0;
2320
2321 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2322 cur_debug_insn_uid = 0;
2323
2324 for (insn = first; insn; insn = NEXT_INSN (insn))
2325 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2326 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2327 else
2328 {
2329 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2330 if (DEBUG_INSN_P (insn))
2331 debug_count++;
2332 }
2333
2334 if (debug_count)
2335 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2336 else
2337 cur_debug_insn_uid++;
2338 }
2339 else
2340 for (insn = first; insn; insn = NEXT_INSN (insn))
2341 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
86fe05e0
RK
2342
2343 cur_insn_uid++;
23b2ce53 2344}
23b2ce53 2345\f
750c9258 2346/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2347 structure. This routine should only be called once. */
23b2ce53 2348
fd743bc1 2349static void
b4aaa77b 2350unshare_all_rtl_1 (rtx insn)
23b2ce53 2351{
d1b81779 2352 /* Unshare just about everything else. */
2c07f13b 2353 unshare_all_rtl_in_chain (insn);
750c9258 2354
23b2ce53
RS
2355 /* Make sure the addresses of stack slots found outside the insn chain
2356 (such as, in DECL_RTL of a variable) are not shared
2357 with the insn chain.
2358
2359 This special care is necessary when the stack slot MEM does not
2360 actually appear in the insn chain. If it does appear, its address
2361 is unshared from all else at that point. */
242b0ce6 2362 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2363}
2364
750c9258 2365/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2366 structure, again. This is a fairly expensive thing to do so it
2367 should be done sparingly. */
2368
2369void
502b8322 2370unshare_all_rtl_again (rtx insn)
d1b81779
GK
2371{
2372 rtx p;
624c87aa
RE
2373 tree decl;
2374
d1b81779 2375 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2376 if (INSN_P (p))
d1b81779
GK
2377 {
2378 reset_used_flags (PATTERN (p));
2379 reset_used_flags (REG_NOTES (p));
d1b81779 2380 }
624c87aa 2381
2d4aecb3 2382 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2383 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2384
624c87aa 2385 /* Make sure that virtual parameters are not shared. */
910ad8de 2386 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
5eb2a9f2 2387 set_used_flags (DECL_RTL (decl));
624c87aa
RE
2388
2389 reset_used_flags (stack_slot_list);
2390
b4aaa77b 2391 unshare_all_rtl_1 (insn);
fd743bc1
PB
2392}
2393
c2924966 2394unsigned int
fd743bc1
PB
2395unshare_all_rtl (void)
2396{
b4aaa77b 2397 unshare_all_rtl_1 (get_insns ());
c2924966 2398 return 0;
d1b81779
GK
2399}
2400
8ddbbcae 2401struct rtl_opt_pass pass_unshare_all_rtl =
ef330312 2402{
8ddbbcae
JH
2403 {
2404 RTL_PASS,
defb77dc 2405 "unshare", /* name */
ef330312
PB
2406 NULL, /* gate */
2407 unshare_all_rtl, /* execute */
2408 NULL, /* sub */
2409 NULL, /* next */
2410 0, /* static_pass_number */
7072a650 2411 TV_NONE, /* tv_id */
ef330312
PB
2412 0, /* properties_required */
2413 0, /* properties_provided */
2414 0, /* properties_destroyed */
2415 0, /* todo_flags_start */
8ddbbcae
JH
2416 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2417 }
ef330312
PB
2418};
2419
2420
2c07f13b
JH
2421/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2422 Recursively does the same for subexpressions. */
2423
2424static void
2425verify_rtx_sharing (rtx orig, rtx insn)
2426{
2427 rtx x = orig;
2428 int i;
2429 enum rtx_code code;
2430 const char *format_ptr;
2431
2432 if (x == 0)
2433 return;
2434
2435 code = GET_CODE (x);
2436
2437 /* These types may be freely shared. */
2438
2439 switch (code)
2440 {
2441 case REG:
0ca5af51
AO
2442 case DEBUG_EXPR:
2443 case VALUE:
2c07f13b
JH
2444 case CONST_INT:
2445 case CONST_DOUBLE:
091a3ac7 2446 case CONST_FIXED:
2c07f13b
JH
2447 case CONST_VECTOR:
2448 case SYMBOL_REF:
2449 case LABEL_REF:
2450 case CODE_LABEL:
2451 case PC:
2452 case CC0:
3810076b 2453 case RETURN:
2c07f13b 2454 case SCRATCH:
2c07f13b 2455 return;
3e89ed8d
JH
2456 /* SCRATCH must be shared because they represent distinct values. */
2457 case CLOBBER:
2458 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2459 return;
2460 break;
2c07f13b
JH
2461
2462 case CONST:
6fb5fa3c 2463 if (shared_const_p (orig))
2c07f13b
JH
2464 return;
2465 break;
2466
2467 case MEM:
2468 /* A MEM is allowed to be shared if its address is constant. */
2469 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2470 || reload_completed || reload_in_progress)
2471 return;
2472
2473 break;
2474
2475 default:
2476 break;
2477 }
2478
2479 /* This rtx may not be shared. If it has already been seen,
2480 replace it with a copy of itself. */
1a2caa7a 2481#ifdef ENABLE_CHECKING
2c07f13b
JH
2482 if (RTX_FLAG (x, used))
2483 {
ab532386 2484 error ("invalid rtl sharing found in the insn");
2c07f13b 2485 debug_rtx (insn);
ab532386 2486 error ("shared rtx");
2c07f13b 2487 debug_rtx (x);
ab532386 2488 internal_error ("internal consistency failure");
2c07f13b 2489 }
1a2caa7a
NS
2490#endif
2491 gcc_assert (!RTX_FLAG (x, used));
b8698a0f 2492
2c07f13b
JH
2493 RTX_FLAG (x, used) = 1;
2494
6614fd40 2495 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2496
2497 format_ptr = GET_RTX_FORMAT (code);
2498
2499 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2500 {
2501 switch (*format_ptr++)
2502 {
2503 case 'e':
2504 verify_rtx_sharing (XEXP (x, i), insn);
2505 break;
2506
2507 case 'E':
2508 if (XVEC (x, i) != NULL)
2509 {
2510 int j;
2511 int len = XVECLEN (x, i);
2512
2513 for (j = 0; j < len; j++)
2514 {
1a2caa7a
NS
2515 /* We allow sharing of ASM_OPERANDS inside single
2516 instruction. */
2c07f13b 2517 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2518 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2519 == ASM_OPERANDS))
2c07f13b
JH
2520 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2521 else
2522 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2523 }
2524 }
2525 break;
2526 }
2527 }
2528 return;
2529}
2530
ba228239 2531/* Go through all the RTL insn bodies and check that there is no unexpected
2c07f13b
JH
2532 sharing in between the subexpressions. */
2533
24e47c76 2534DEBUG_FUNCTION void
2c07f13b
JH
2535verify_rtl_sharing (void)
2536{
2537 rtx p;
2538
a222c01a
MM
2539 timevar_push (TV_VERIFY_RTL_SHARING);
2540
2c07f13b
JH
2541 for (p = get_insns (); p; p = NEXT_INSN (p))
2542 if (INSN_P (p))
2543 {
2544 reset_used_flags (PATTERN (p));
2545 reset_used_flags (REG_NOTES (p));
2954a813
KK
2546 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2547 {
2548 int i;
2549 rtx q, sequence = PATTERN (p);
2550
2551 for (i = 0; i < XVECLEN (sequence, 0); i++)
2552 {
2553 q = XVECEXP (sequence, 0, i);
2554 gcc_assert (INSN_P (q));
2555 reset_used_flags (PATTERN (q));
2556 reset_used_flags (REG_NOTES (q));
2954a813
KK
2557 }
2558 }
2c07f13b
JH
2559 }
2560
2561 for (p = get_insns (); p; p = NEXT_INSN (p))
2562 if (INSN_P (p))
2563 {
2564 verify_rtx_sharing (PATTERN (p), p);
2565 verify_rtx_sharing (REG_NOTES (p), p);
2c07f13b 2566 }
a222c01a
MM
2567
2568 timevar_pop (TV_VERIFY_RTL_SHARING);
2c07f13b
JH
2569}
2570
d1b81779
GK
2571/* Go through all the RTL insn bodies and copy any invalid shared structure.
2572 Assumes the mark bits are cleared at entry. */
2573
2c07f13b
JH
2574void
2575unshare_all_rtl_in_chain (rtx insn)
d1b81779
GK
2576{
2577 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2578 if (INSN_P (insn))
d1b81779
GK
2579 {
2580 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2581 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
d1b81779
GK
2582 }
2583}
2584
2d4aecb3 2585/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2586 shared. We never replace the DECL_RTLs themselves with a copy,
2587 but expressions mentioned into a DECL_RTL cannot be shared with
2588 expressions in the instruction stream.
2589
2590 Note that reload may convert pseudo registers into memories in-place.
2591 Pseudo registers are always shared, but MEMs never are. Thus if we
2592 reset the used flags on MEMs in the instruction stream, we must set
2593 them again on MEMs that appear in DECL_RTLs. */
2594
2d4aecb3 2595static void
5eb2a9f2 2596set_used_decls (tree blk)
2d4aecb3
AO
2597{
2598 tree t;
2599
2600 /* Mark decls. */
910ad8de 2601 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
19e7881c 2602 if (DECL_RTL_SET_P (t))
5eb2a9f2 2603 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2604
2605 /* Now process sub-blocks. */
87caf699 2606 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 2607 set_used_decls (t);
2d4aecb3
AO
2608}
2609
23b2ce53 2610/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2611 Recursively does the same for subexpressions. Uses
2612 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2613
2614rtx
502b8322 2615copy_rtx_if_shared (rtx orig)
23b2ce53 2616{
32b32b16
AP
2617 copy_rtx_if_shared_1 (&orig);
2618 return orig;
2619}
2620
ff954f39
AP
2621/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2622 use. Recursively does the same for subexpressions. */
2623
32b32b16
AP
2624static void
2625copy_rtx_if_shared_1 (rtx *orig1)
2626{
2627 rtx x;
b3694847
SS
2628 int i;
2629 enum rtx_code code;
32b32b16 2630 rtx *last_ptr;
b3694847 2631 const char *format_ptr;
23b2ce53 2632 int copied = 0;
32b32b16
AP
2633 int length;
2634
2635 /* Repeat is used to turn tail-recursion into iteration. */
2636repeat:
2637 x = *orig1;
23b2ce53
RS
2638
2639 if (x == 0)
32b32b16 2640 return;
23b2ce53
RS
2641
2642 code = GET_CODE (x);
2643
2644 /* These types may be freely shared. */
2645
2646 switch (code)
2647 {
2648 case REG:
0ca5af51
AO
2649 case DEBUG_EXPR:
2650 case VALUE:
23b2ce53
RS
2651 case CONST_INT:
2652 case CONST_DOUBLE:
091a3ac7 2653 case CONST_FIXED:
69ef87e2 2654 case CONST_VECTOR:
23b2ce53 2655 case SYMBOL_REF:
2c07f13b 2656 case LABEL_REF:
23b2ce53
RS
2657 case CODE_LABEL:
2658 case PC:
2659 case CC0:
2660 case SCRATCH:
0f41302f 2661 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 2662 return;
3e89ed8d
JH
2663 case CLOBBER:
2664 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2665 return;
2666 break;
23b2ce53 2667
b851ea09 2668 case CONST:
6fb5fa3c 2669 if (shared_const_p (x))
32b32b16 2670 return;
b851ea09
RK
2671 break;
2672
b5b8b0ac 2673 case DEBUG_INSN:
23b2ce53
RS
2674 case INSN:
2675 case JUMP_INSN:
2676 case CALL_INSN:
2677 case NOTE:
23b2ce53
RS
2678 case BARRIER:
2679 /* The chain of insns is not being copied. */
32b32b16 2680 return;
23b2ce53 2681
e9a25f70
JL
2682 default:
2683 break;
23b2ce53
RS
2684 }
2685
2686 /* This rtx may not be shared. If it has already been seen,
2687 replace it with a copy of itself. */
2688
2adc7f12 2689 if (RTX_FLAG (x, used))
23b2ce53 2690 {
aacd3885 2691 x = shallow_copy_rtx (x);
23b2ce53
RS
2692 copied = 1;
2693 }
2adc7f12 2694 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2695
2696 /* Now scan the subexpressions recursively.
2697 We can store any replaced subexpressions directly into X
2698 since we know X is not shared! Any vectors in X
2699 must be copied if X was copied. */
2700
2701 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2702 length = GET_RTX_LENGTH (code);
2703 last_ptr = NULL;
b8698a0f 2704
32b32b16 2705 for (i = 0; i < length; i++)
23b2ce53
RS
2706 {
2707 switch (*format_ptr++)
2708 {
2709 case 'e':
32b32b16
AP
2710 if (last_ptr)
2711 copy_rtx_if_shared_1 (last_ptr);
2712 last_ptr = &XEXP (x, i);
23b2ce53
RS
2713 break;
2714
2715 case 'E':
2716 if (XVEC (x, i) != NULL)
2717 {
b3694847 2718 int j;
f0722107 2719 int len = XVECLEN (x, i);
b8698a0f 2720
6614fd40
KH
2721 /* Copy the vector iff I copied the rtx and the length
2722 is nonzero. */
f0722107 2723 if (copied && len > 0)
8f985ec4 2724 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
b8698a0f 2725
5d3cc252 2726 /* Call recursively on all inside the vector. */
f0722107 2727 for (j = 0; j < len; j++)
32b32b16
AP
2728 {
2729 if (last_ptr)
2730 copy_rtx_if_shared_1 (last_ptr);
2731 last_ptr = &XVECEXP (x, i, j);
2732 }
23b2ce53
RS
2733 }
2734 break;
2735 }
2736 }
32b32b16
AP
2737 *orig1 = x;
2738 if (last_ptr)
2739 {
2740 orig1 = last_ptr;
2741 goto repeat;
2742 }
2743 return;
23b2ce53
RS
2744}
2745
76369a82 2746/* Set the USED bit in X and its non-shareable subparts to FLAG. */
23b2ce53 2747
76369a82
NF
2748static void
2749mark_used_flags (rtx x, int flag)
23b2ce53 2750{
b3694847
SS
2751 int i, j;
2752 enum rtx_code code;
2753 const char *format_ptr;
32b32b16 2754 int length;
23b2ce53 2755
32b32b16
AP
2756 /* Repeat is used to turn tail-recursion into iteration. */
2757repeat:
23b2ce53
RS
2758 if (x == 0)
2759 return;
2760
2761 code = GET_CODE (x);
2762
9faa82d8 2763 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2764 for them. */
2765
2766 switch (code)
2767 {
2768 case REG:
0ca5af51
AO
2769 case DEBUG_EXPR:
2770 case VALUE:
23b2ce53
RS
2771 case CONST_INT:
2772 case CONST_DOUBLE:
091a3ac7 2773 case CONST_FIXED:
69ef87e2 2774 case CONST_VECTOR:
23b2ce53
RS
2775 case SYMBOL_REF:
2776 case CODE_LABEL:
2777 case PC:
2778 case CC0:
2779 return;
2780
b5b8b0ac 2781 case DEBUG_INSN:
23b2ce53
RS
2782 case INSN:
2783 case JUMP_INSN:
2784 case CALL_INSN:
2785 case NOTE:
2786 case LABEL_REF:
2787 case BARRIER:
2788 /* The chain of insns is not being copied. */
2789 return;
750c9258 2790
e9a25f70
JL
2791 default:
2792 break;
23b2ce53
RS
2793 }
2794
76369a82 2795 RTX_FLAG (x, used) = flag;
23b2ce53
RS
2796
2797 format_ptr = GET_RTX_FORMAT (code);
32b32b16 2798 length = GET_RTX_LENGTH (code);
b8698a0f 2799
32b32b16 2800 for (i = 0; i < length; i++)
23b2ce53
RS
2801 {
2802 switch (*format_ptr++)
2803 {
2804 case 'e':
32b32b16
AP
2805 if (i == length-1)
2806 {
2807 x = XEXP (x, i);
2808 goto repeat;
2809 }
76369a82 2810 mark_used_flags (XEXP (x, i), flag);
23b2ce53
RS
2811 break;
2812
2813 case 'E':
2814 for (j = 0; j < XVECLEN (x, i); j++)
76369a82 2815 mark_used_flags (XVECEXP (x, i, j), flag);
23b2ce53
RS
2816 break;
2817 }
2818 }
2819}
2c07f13b 2820
76369a82 2821/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2c07f13b
JH
2822 to look for shared sub-parts. */
2823
2824void
76369a82 2825reset_used_flags (rtx x)
2c07f13b 2826{
76369a82
NF
2827 mark_used_flags (x, 0);
2828}
2c07f13b 2829
76369a82
NF
2830/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2831 to look for shared sub-parts. */
2c07f13b 2832
76369a82
NF
2833void
2834set_used_flags (rtx x)
2835{
2836 mark_used_flags (x, 1);
2c07f13b 2837}
23b2ce53
RS
2838\f
2839/* Copy X if necessary so that it won't be altered by changes in OTHER.
2840 Return X or the rtx for the pseudo reg the value of X was copied into.
2841 OTHER must be valid as a SET_DEST. */
2842
2843rtx
502b8322 2844make_safe_from (rtx x, rtx other)
23b2ce53
RS
2845{
2846 while (1)
2847 switch (GET_CODE (other))
2848 {
2849 case SUBREG:
2850 other = SUBREG_REG (other);
2851 break;
2852 case STRICT_LOW_PART:
2853 case SIGN_EXTEND:
2854 case ZERO_EXTEND:
2855 other = XEXP (other, 0);
2856 break;
2857 default:
2858 goto done;
2859 }
2860 done:
3c0cb5de 2861 if ((MEM_P (other)
23b2ce53 2862 && ! CONSTANT_P (x)
f8cfc6aa 2863 && !REG_P (x)
23b2ce53 2864 && GET_CODE (x) != SUBREG)
f8cfc6aa 2865 || (REG_P (other)
23b2ce53
RS
2866 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2867 || reg_mentioned_p (other, x))))
2868 {
2869 rtx temp = gen_reg_rtx (GET_MODE (x));
2870 emit_move_insn (temp, x);
2871 return temp;
2872 }
2873 return x;
2874}
2875\f
2876/* Emission of insns (adding them to the doubly-linked list). */
2877
23b2ce53
RS
2878/* Return the last insn emitted, even if it is in a sequence now pushed. */
2879
2880rtx
502b8322 2881get_last_insn_anywhere (void)
23b2ce53
RS
2882{
2883 struct sequence_stack *stack;
5936d944
JH
2884 if (get_last_insn ())
2885 return get_last_insn ();
49ad7cfa 2886 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2887 if (stack->last != 0)
2888 return stack->last;
2889 return 0;
2890}
2891
2a496e8b
JDA
2892/* Return the first nonnote insn emitted in current sequence or current
2893 function. This routine looks inside SEQUENCEs. */
2894
2895rtx
502b8322 2896get_first_nonnote_insn (void)
2a496e8b 2897{
5936d944 2898 rtx insn = get_insns ();
91373fe8
JDA
2899
2900 if (insn)
2901 {
2902 if (NOTE_P (insn))
2903 for (insn = next_insn (insn);
2904 insn && NOTE_P (insn);
2905 insn = next_insn (insn))
2906 continue;
2907 else
2908 {
2ca202e7 2909 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2910 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2911 insn = XVECEXP (PATTERN (insn), 0, 0);
2912 }
2913 }
2a496e8b
JDA
2914
2915 return insn;
2916}
2917
2918/* Return the last nonnote insn emitted in current sequence or current
2919 function. This routine looks inside SEQUENCEs. */
2920
2921rtx
502b8322 2922get_last_nonnote_insn (void)
2a496e8b 2923{
5936d944 2924 rtx insn = get_last_insn ();
91373fe8
JDA
2925
2926 if (insn)
2927 {
2928 if (NOTE_P (insn))
2929 for (insn = previous_insn (insn);
2930 insn && NOTE_P (insn);
2931 insn = previous_insn (insn))
2932 continue;
2933 else
2934 {
2ca202e7 2935 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2936 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2937 insn = XVECEXP (PATTERN (insn), 0,
2938 XVECLEN (PATTERN (insn), 0) - 1);
2939 }
2940 }
2a496e8b
JDA
2941
2942 return insn;
2943}
2944
b5b8b0ac
AO
2945/* Return the number of actual (non-debug) insns emitted in this
2946 function. */
2947
2948int
2949get_max_insn_count (void)
2950{
2951 int n = cur_insn_uid;
2952
2953 /* The table size must be stable across -g, to avoid codegen
2954 differences due to debug insns, and not be affected by
2955 -fmin-insn-uid, to avoid excessive table size and to simplify
2956 debugging of -fcompare-debug failures. */
2957 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
2958 n -= cur_debug_insn_uid;
2959 else
2960 n -= MIN_NONDEBUG_INSN_UID;
2961
2962 return n;
2963}
2964
23b2ce53
RS
2965\f
2966/* Return the next insn. If it is a SEQUENCE, return the first insn
2967 of the sequence. */
2968
2969rtx
502b8322 2970next_insn (rtx insn)
23b2ce53 2971{
75547801
KG
2972 if (insn)
2973 {
2974 insn = NEXT_INSN (insn);
2975 if (insn && NONJUMP_INSN_P (insn)
2976 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2977 insn = XVECEXP (PATTERN (insn), 0, 0);
2978 }
23b2ce53 2979
75547801 2980 return insn;
23b2ce53
RS
2981}
2982
2983/* Return the previous insn. If it is a SEQUENCE, return the last insn
2984 of the sequence. */
2985
2986rtx
502b8322 2987previous_insn (rtx insn)
23b2ce53 2988{
75547801
KG
2989 if (insn)
2990 {
2991 insn = PREV_INSN (insn);
2992 if (insn && NONJUMP_INSN_P (insn)
2993 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2994 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2995 }
23b2ce53 2996
75547801 2997 return insn;
23b2ce53
RS
2998}
2999
3000/* Return the next insn after INSN that is not a NOTE. This routine does not
3001 look inside SEQUENCEs. */
3002
3003rtx
502b8322 3004next_nonnote_insn (rtx insn)
23b2ce53 3005{
75547801
KG
3006 while (insn)
3007 {
3008 insn = NEXT_INSN (insn);
3009 if (insn == 0 || !NOTE_P (insn))
3010 break;
3011 }
23b2ce53 3012
75547801 3013 return insn;
23b2ce53
RS
3014}
3015
1e211590
DD
3016/* Return the next insn after INSN that is not a NOTE, but stop the
3017 search before we enter another basic block. This routine does not
3018 look inside SEQUENCEs. */
3019
3020rtx
3021next_nonnote_insn_bb (rtx insn)
3022{
3023 while (insn)
3024 {
3025 insn = NEXT_INSN (insn);
3026 if (insn == 0 || !NOTE_P (insn))
3027 break;
3028 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3029 return NULL_RTX;
3030 }
3031
3032 return insn;
3033}
3034
23b2ce53
RS
3035/* Return the previous insn before INSN that is not a NOTE. This routine does
3036 not look inside SEQUENCEs. */
3037
3038rtx
502b8322 3039prev_nonnote_insn (rtx insn)
23b2ce53 3040{
75547801
KG
3041 while (insn)
3042 {
3043 insn = PREV_INSN (insn);
3044 if (insn == 0 || !NOTE_P (insn))
3045 break;
3046 }
23b2ce53 3047
75547801 3048 return insn;
23b2ce53
RS
3049}
3050
896aa4ea
DD
3051/* Return the previous insn before INSN that is not a NOTE, but stop
3052 the search before we enter another basic block. This routine does
3053 not look inside SEQUENCEs. */
3054
3055rtx
3056prev_nonnote_insn_bb (rtx insn)
3057{
3058 while (insn)
3059 {
3060 insn = PREV_INSN (insn);
3061 if (insn == 0 || !NOTE_P (insn))
3062 break;
3063 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3064 return NULL_RTX;
3065 }
3066
3067 return insn;
3068}
3069
b5b8b0ac
AO
3070/* Return the next insn after INSN that is not a DEBUG_INSN. This
3071 routine does not look inside SEQUENCEs. */
3072
3073rtx
3074next_nondebug_insn (rtx insn)
3075{
3076 while (insn)
3077 {
3078 insn = NEXT_INSN (insn);
3079 if (insn == 0 || !DEBUG_INSN_P (insn))
3080 break;
3081 }
3082
3083 return insn;
3084}
3085
3086/* Return the previous insn before INSN that is not a DEBUG_INSN.
3087 This routine does not look inside SEQUENCEs. */
3088
3089rtx
3090prev_nondebug_insn (rtx insn)
3091{
3092 while (insn)
3093 {
3094 insn = PREV_INSN (insn);
3095 if (insn == 0 || !DEBUG_INSN_P (insn))
3096 break;
3097 }
3098
3099 return insn;
3100}
3101
f0fc0803
JJ
3102/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3103 This routine does not look inside SEQUENCEs. */
3104
3105rtx
3106next_nonnote_nondebug_insn (rtx insn)
3107{
3108 while (insn)
3109 {
3110 insn = NEXT_INSN (insn);
3111 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3112 break;
3113 }
3114
3115 return insn;
3116}
3117
3118/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3119 This routine does not look inside SEQUENCEs. */
3120
3121rtx
3122prev_nonnote_nondebug_insn (rtx insn)
3123{
3124 while (insn)
3125 {
3126 insn = PREV_INSN (insn);
3127 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3128 break;
3129 }
3130
3131 return insn;
3132}
3133
23b2ce53
RS
3134/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3135 or 0, if there is none. This routine does not look inside
0f41302f 3136 SEQUENCEs. */
23b2ce53
RS
3137
3138rtx
502b8322 3139next_real_insn (rtx insn)
23b2ce53 3140{
75547801
KG
3141 while (insn)
3142 {
3143 insn = NEXT_INSN (insn);
3144 if (insn == 0 || INSN_P (insn))
3145 break;
3146 }
23b2ce53 3147
75547801 3148 return insn;
23b2ce53
RS
3149}
3150
3151/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3152 or 0, if there is none. This routine does not look inside
3153 SEQUENCEs. */
3154
3155rtx
502b8322 3156prev_real_insn (rtx insn)
23b2ce53 3157{
75547801
KG
3158 while (insn)
3159 {
3160 insn = PREV_INSN (insn);
3161 if (insn == 0 || INSN_P (insn))
3162 break;
3163 }
23b2ce53 3164
75547801 3165 return insn;
23b2ce53
RS
3166}
3167
ee960939
OH
3168/* Return the last CALL_INSN in the current list, or 0 if there is none.
3169 This routine does not look inside SEQUENCEs. */
3170
3171rtx
502b8322 3172last_call_insn (void)
ee960939
OH
3173{
3174 rtx insn;
3175
3176 for (insn = get_last_insn ();
4b4bf941 3177 insn && !CALL_P (insn);
ee960939
OH
3178 insn = PREV_INSN (insn))
3179 ;
3180
3181 return insn;
3182}
3183
23b2ce53 3184/* Find the next insn after INSN that really does something. This routine
9c517bf3
AK
3185 does not look inside SEQUENCEs. After reload this also skips over
3186 standalone USE and CLOBBER insn. */
23b2ce53 3187
69732dcb 3188int
4f588890 3189active_insn_p (const_rtx insn)
69732dcb 3190{
4b4bf941
JQ
3191 return (CALL_P (insn) || JUMP_P (insn)
3192 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3193 && (! reload_completed
3194 || (GET_CODE (PATTERN (insn)) != USE
3195 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3196}
3197
23b2ce53 3198rtx
502b8322 3199next_active_insn (rtx insn)
23b2ce53 3200{
75547801
KG
3201 while (insn)
3202 {
3203 insn = NEXT_INSN (insn);
3204 if (insn == 0 || active_insn_p (insn))
3205 break;
3206 }
23b2ce53 3207
75547801 3208 return insn;
23b2ce53
RS
3209}
3210
3211/* Find the last insn before INSN that really does something. This routine
9c517bf3
AK
3212 does not look inside SEQUENCEs. After reload this also skips over
3213 standalone USE and CLOBBER insn. */
23b2ce53
RS
3214
3215rtx
502b8322 3216prev_active_insn (rtx insn)
23b2ce53 3217{
75547801
KG
3218 while (insn)
3219 {
3220 insn = PREV_INSN (insn);
3221 if (insn == 0 || active_insn_p (insn))
3222 break;
3223 }
23b2ce53 3224
75547801 3225 return insn;
23b2ce53
RS
3226}
3227
3228/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3229
3230rtx
502b8322 3231next_label (rtx insn)
23b2ce53 3232{
75547801
KG
3233 while (insn)
3234 {
3235 insn = NEXT_INSN (insn);
3236 if (insn == 0 || LABEL_P (insn))
3237 break;
3238 }
23b2ce53 3239
75547801 3240 return insn;
23b2ce53
RS
3241}
3242
3243/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3244
3245rtx
502b8322 3246prev_label (rtx insn)
23b2ce53 3247{
75547801
KG
3248 while (insn)
3249 {
3250 insn = PREV_INSN (insn);
3251 if (insn == 0 || LABEL_P (insn))
3252 break;
3253 }
23b2ce53 3254
75547801 3255 return insn;
23b2ce53 3256}
6c2511d3
RS
3257
3258/* Return the last label to mark the same position as LABEL. Return null
3259 if LABEL itself is null. */
3260
3261rtx
3262skip_consecutive_labels (rtx label)
3263{
3264 rtx insn;
3265
3266 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3267 if (LABEL_P (insn))
3268 label = insn;
3269
3270 return label;
3271}
23b2ce53
RS
3272\f
3273#ifdef HAVE_cc0
c572e5ba
JVA
3274/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3275 and REG_CC_USER notes so we can find it. */
3276
3277void
502b8322 3278link_cc0_insns (rtx insn)
c572e5ba
JVA
3279{
3280 rtx user = next_nonnote_insn (insn);
3281
4b4bf941 3282 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
c572e5ba
JVA
3283 user = XVECEXP (PATTERN (user), 0, 0);
3284
65c5f2a6
ILT
3285 add_reg_note (user, REG_CC_SETTER, insn);
3286 add_reg_note (insn, REG_CC_USER, user);
c572e5ba
JVA
3287}
3288
23b2ce53
RS
3289/* Return the next insn that uses CC0 after INSN, which is assumed to
3290 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3291 applied to the result of this function should yield INSN).
3292
3293 Normally, this is simply the next insn. However, if a REG_CC_USER note
3294 is present, it contains the insn that uses CC0.
3295
3296 Return 0 if we can't find the insn. */
3297
3298rtx
502b8322 3299next_cc0_user (rtx insn)
23b2ce53 3300{
906c4e36 3301 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3302
3303 if (note)
3304 return XEXP (note, 0);
3305
3306 insn = next_nonnote_insn (insn);
4b4bf941 3307 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
23b2ce53
RS
3308 insn = XVECEXP (PATTERN (insn), 0, 0);
3309
2c3c49de 3310 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3311 return insn;
3312
3313 return 0;
3314}
3315
3316/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3317 note, it is the previous insn. */
3318
3319rtx
502b8322 3320prev_cc0_setter (rtx insn)
23b2ce53 3321{
906c4e36 3322 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3323
3324 if (note)
3325 return XEXP (note, 0);
3326
3327 insn = prev_nonnote_insn (insn);
5b0264cb 3328 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53
RS
3329
3330 return insn;
3331}
3332#endif
e5bef2e4 3333
594f8779
RZ
3334#ifdef AUTO_INC_DEC
3335/* Find a RTX_AUTOINC class rtx which matches DATA. */
3336
3337static int
3338find_auto_inc (rtx *xp, void *data)
3339{
3340 rtx x = *xp;
5ead67f6 3341 rtx reg = (rtx) data;
594f8779
RZ
3342
3343 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3344 return 0;
3345
3346 switch (GET_CODE (x))
3347 {
3348 case PRE_DEC:
3349 case PRE_INC:
3350 case POST_DEC:
3351 case POST_INC:
3352 case PRE_MODIFY:
3353 case POST_MODIFY:
3354 if (rtx_equal_p (reg, XEXP (x, 0)))
3355 return 1;
3356 break;
3357
3358 default:
3359 gcc_unreachable ();
3360 }
3361 return -1;
3362}
3363#endif
3364
e5bef2e4
HB
3365/* Increment the label uses for all labels present in rtx. */
3366
3367static void
502b8322 3368mark_label_nuses (rtx x)
e5bef2e4 3369{
b3694847
SS
3370 enum rtx_code code;
3371 int i, j;
3372 const char *fmt;
e5bef2e4
HB
3373
3374 code = GET_CODE (x);
7537fc90 3375 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
e5bef2e4
HB
3376 LABEL_NUSES (XEXP (x, 0))++;
3377
3378 fmt = GET_RTX_FORMAT (code);
3379 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3380 {
3381 if (fmt[i] == 'e')
0fb7aeda 3382 mark_label_nuses (XEXP (x, i));
e5bef2e4 3383 else if (fmt[i] == 'E')
0fb7aeda 3384 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3385 mark_label_nuses (XVECEXP (x, i, j));
3386 }
3387}
3388
23b2ce53
RS
3389\f
3390/* Try splitting insns that can be split for better scheduling.
3391 PAT is the pattern which might split.
3392 TRIAL is the insn providing PAT.
cc2902df 3393 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3394
3395 If this routine succeeds in splitting, it returns the first or last
11147ebe 3396 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3397 returns TRIAL. If the insn to be returned can be split, it will be. */
3398
3399rtx
502b8322 3400try_split (rtx pat, rtx trial, int last)
23b2ce53
RS
3401{
3402 rtx before = PREV_INSN (trial);
3403 rtx after = NEXT_INSN (trial);
23b2ce53 3404 int has_barrier = 0;
4a8cae83 3405 rtx note, seq, tem;
6b24c259 3406 int probability;
599aedd9
RH
3407 rtx insn_last, insn;
3408 int njumps = 0;
6b24c259 3409
cd9c1ca8
RH
3410 /* We're not good at redistributing frame information. */
3411 if (RTX_FRAME_RELATED_P (trial))
3412 return trial;
3413
6b24c259
JH
3414 if (any_condjump_p (trial)
3415 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3416 split_branch_probability = INTVAL (XEXP (note, 0));
3417 probability = split_branch_probability;
3418
3419 seq = split_insns (pat, trial);
3420
3421 split_branch_probability = -1;
23b2ce53
RS
3422
3423 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3424 We may need to handle this specially. */
4b4bf941 3425 if (after && BARRIER_P (after))
23b2ce53
RS
3426 {
3427 has_barrier = 1;
3428 after = NEXT_INSN (after);
3429 }
3430
599aedd9
RH
3431 if (!seq)
3432 return trial;
3433
3434 /* Avoid infinite loop if any insn of the result matches
3435 the original pattern. */
3436 insn_last = seq;
3437 while (1)
23b2ce53 3438 {
599aedd9
RH
3439 if (INSN_P (insn_last)
3440 && rtx_equal_p (PATTERN (insn_last), pat))
3441 return trial;
3442 if (!NEXT_INSN (insn_last))
3443 break;
3444 insn_last = NEXT_INSN (insn_last);
3445 }
750c9258 3446
6fb5fa3c
DB
3447 /* We will be adding the new sequence to the function. The splitters
3448 may have introduced invalid RTL sharing, so unshare the sequence now. */
3449 unshare_all_rtl_in_chain (seq);
3450
599aedd9
RH
3451 /* Mark labels. */
3452 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3453 {
4b4bf941 3454 if (JUMP_P (insn))
599aedd9
RH
3455 {
3456 mark_jump_label (PATTERN (insn), insn, 0);
3457 njumps++;
3458 if (probability != -1
3459 && any_condjump_p (insn)
3460 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3461 {
599aedd9
RH
3462 /* We can preserve the REG_BR_PROB notes only if exactly
3463 one jump is created, otherwise the machine description
3464 is responsible for this step using
3465 split_branch_probability variable. */
5b0264cb 3466 gcc_assert (njumps == 1);
65c5f2a6 3467 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
2f937369 3468 }
599aedd9
RH
3469 }
3470 }
3471
3472 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3473 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
4b4bf941 3474 if (CALL_P (trial))
599aedd9
RH
3475 {
3476 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3477 if (CALL_P (insn))
599aedd9 3478 {
f6a1f3f6
RH
3479 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3480 while (*p)
3481 p = &XEXP (*p, 1);
3482 *p = CALL_INSN_FUNCTION_USAGE (trial);
599aedd9
RH
3483 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3484 }
3485 }
4b5e8abe 3486
599aedd9
RH
3487 /* Copy notes, particularly those related to the CFG. */
3488 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3489 {
3490 switch (REG_NOTE_KIND (note))
3491 {
3492 case REG_EH_REGION:
1d65f45c 3493 copy_reg_eh_region_note_backward (note, insn_last, NULL);
599aedd9 3494 break;
216183ce 3495
599aedd9
RH
3496 case REG_NORETURN:
3497 case REG_SETJMP:
594f8779 3498 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3499 {
4b4bf941 3500 if (CALL_P (insn))
65c5f2a6 3501 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3502 }
599aedd9 3503 break;
d6e95df8 3504
599aedd9 3505 case REG_NON_LOCAL_GOTO:
594f8779 3506 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3507 {
4b4bf941 3508 if (JUMP_P (insn))
65c5f2a6 3509 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3510 }
599aedd9 3511 break;
e5bef2e4 3512
594f8779
RZ
3513#ifdef AUTO_INC_DEC
3514 case REG_INC:
3515 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3516 {
3517 rtx reg = XEXP (note, 0);
3518 if (!FIND_REG_INC_NOTE (insn, reg)
3519 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
65c5f2a6 3520 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3521 }
3522 break;
3523#endif
3524
599aedd9
RH
3525 default:
3526 break;
23b2ce53 3527 }
599aedd9
RH
3528 }
3529
3530 /* If there are LABELS inside the split insns increment the
3531 usage count so we don't delete the label. */
cf7c4aa6 3532 if (INSN_P (trial))
599aedd9
RH
3533 {
3534 insn = insn_last;
3535 while (insn != NULL_RTX)
23b2ce53 3536 {
cf7c4aa6 3537 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3538 if (NONJUMP_INSN_P (insn))
599aedd9 3539 mark_label_nuses (PATTERN (insn));
23b2ce53 3540
599aedd9
RH
3541 insn = PREV_INSN (insn);
3542 }
23b2ce53
RS
3543 }
3544
0435312e 3545 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
599aedd9
RH
3546
3547 delete_insn (trial);
3548 if (has_barrier)
3549 emit_barrier_after (tem);
3550
3551 /* Recursively call try_split for each new insn created; by the
3552 time control returns here that insn will be fully split, so
3553 set LAST and continue from the insn after the one returned.
3554 We can't use next_active_insn here since AFTER may be a note.
3555 Ignore deleted insns, which can be occur if not optimizing. */
3556 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3557 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3558 tem = try_split (PATTERN (tem), tem, 1);
3559
3560 /* Return either the first or the last insn, depending on which was
3561 requested. */
3562 return last
5936d944 3563 ? (after ? PREV_INSN (after) : get_last_insn ())
599aedd9 3564 : NEXT_INSN (before);
23b2ce53
RS
3565}
3566\f
3567/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3568 Store PATTERN in the pattern slots. */
23b2ce53
RS
3569
3570rtx
502b8322 3571make_insn_raw (rtx pattern)
23b2ce53 3572{
b3694847 3573 rtx insn;
23b2ce53 3574
1f8f4a0b 3575 insn = rtx_alloc (INSN);
23b2ce53 3576
43127294 3577 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3578 PATTERN (insn) = pattern;
3579 INSN_CODE (insn) = -1;
1632afca 3580 REG_NOTES (insn) = NULL;
55e092c4 3581 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3582 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3583
47984720
NC
3584#ifdef ENABLE_RTL_CHECKING
3585 if (insn
2c3c49de 3586 && INSN_P (insn)
47984720
NC
3587 && (returnjump_p (insn)
3588 || (GET_CODE (insn) == SET
3589 && SET_DEST (insn) == pc_rtx)))
3590 {
d4ee4d25 3591 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3592 debug_rtx (insn);
3593 }
3594#endif
750c9258 3595
23b2ce53
RS
3596 return insn;
3597}
3598
b5b8b0ac
AO
3599/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3600
3601rtx
3602make_debug_insn_raw (rtx pattern)
3603{
3604 rtx insn;
3605
3606 insn = rtx_alloc (DEBUG_INSN);
3607 INSN_UID (insn) = cur_debug_insn_uid++;
3608 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3609 INSN_UID (insn) = cur_insn_uid++;
3610
3611 PATTERN (insn) = pattern;
3612 INSN_CODE (insn) = -1;
3613 REG_NOTES (insn) = NULL;
3614 INSN_LOCATOR (insn) = curr_insn_locator ();
3615 BLOCK_FOR_INSN (insn) = NULL;
3616
3617 return insn;
3618}
3619
2f937369 3620/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3621
38109dab 3622rtx
502b8322 3623make_jump_insn_raw (rtx pattern)
23b2ce53 3624{
b3694847 3625 rtx insn;
23b2ce53 3626
4b1f5e8c 3627 insn = rtx_alloc (JUMP_INSN);
1632afca 3628 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3629
3630 PATTERN (insn) = pattern;
3631 INSN_CODE (insn) = -1;
1632afca
RS
3632 REG_NOTES (insn) = NULL;
3633 JUMP_LABEL (insn) = NULL;
55e092c4 3634 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3635 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3636
3637 return insn;
3638}
aff507f4 3639
2f937369 3640/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3641
3642static rtx
502b8322 3643make_call_insn_raw (rtx pattern)
aff507f4 3644{
b3694847 3645 rtx insn;
aff507f4
RK
3646
3647 insn = rtx_alloc (CALL_INSN);
3648 INSN_UID (insn) = cur_insn_uid++;
3649
3650 PATTERN (insn) = pattern;
3651 INSN_CODE (insn) = -1;
aff507f4
RK
3652 REG_NOTES (insn) = NULL;
3653 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
55e092c4 3654 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3655 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3656
3657 return insn;
3658}
23b2ce53
RS
3659\f
3660/* Add INSN to the end of the doubly-linked list.
3661 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3662
3663void
502b8322 3664add_insn (rtx insn)
23b2ce53 3665{
5936d944 3666 PREV_INSN (insn) = get_last_insn();
23b2ce53
RS
3667 NEXT_INSN (insn) = 0;
3668
5936d944
JH
3669 if (NULL != get_last_insn())
3670 NEXT_INSN (get_last_insn ()) = insn;
23b2ce53 3671
5936d944
JH
3672 if (NULL == get_insns ())
3673 set_first_insn (insn);
23b2ce53 3674
5936d944 3675 set_last_insn (insn);
23b2ce53
RS
3676}
3677
a0ae8e8d
RK
3678/* Add INSN into the doubly-linked list after insn AFTER. This and
3679 the next should be the only functions called to insert an insn once
ba213285 3680 delay slots have been filled since only they know how to update a
a0ae8e8d 3681 SEQUENCE. */
23b2ce53
RS
3682
3683void
6fb5fa3c 3684add_insn_after (rtx insn, rtx after, basic_block bb)
23b2ce53
RS
3685{
3686 rtx next = NEXT_INSN (after);
3687
5b0264cb 3688 gcc_assert (!optimize || !INSN_DELETED_P (after));
ba213285 3689
23b2ce53
RS
3690 NEXT_INSN (insn) = next;
3691 PREV_INSN (insn) = after;
3692
3693 if (next)
3694 {
3695 PREV_INSN (next) = insn;
4b4bf941 3696 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
23b2ce53
RS
3697 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3698 }
5936d944
JH
3699 else if (get_last_insn () == after)
3700 set_last_insn (insn);
23b2ce53
RS
3701 else
3702 {
49ad7cfa 3703 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3704 /* Scan all pending sequences too. */
3705 for (; stack; stack = stack->next)
3706 if (after == stack->last)
fef0509b
RK
3707 {
3708 stack->last = insn;
3709 break;
3710 }
a0ae8e8d 3711
5b0264cb 3712 gcc_assert (stack);
23b2ce53
RS
3713 }
3714
4b4bf941
JQ
3715 if (!BARRIER_P (after)
3716 && !BARRIER_P (insn)
3c030e88
JH
3717 && (bb = BLOCK_FOR_INSN (after)))
3718 {
3719 set_block_for_insn (insn, bb);
38c1593d 3720 if (INSN_P (insn))
6fb5fa3c 3721 df_insn_rescan (insn);
3c030e88 3722 /* Should not happen as first in the BB is always
a1f300c0 3723 either NOTE or LABEL. */
a813c111 3724 if (BB_END (bb) == after
3c030e88 3725 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 3726 && !BARRIER_P (insn)
a38e7aa5 3727 && !NOTE_INSN_BASIC_BLOCK_P (insn))
a813c111 3728 BB_END (bb) = insn;
3c030e88
JH
3729 }
3730
23b2ce53 3731 NEXT_INSN (after) = insn;
4b4bf941 3732 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
23b2ce53
RS
3733 {
3734 rtx sequence = PATTERN (after);
3735 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3736 }
3737}
3738
a0ae8e8d 3739/* Add INSN into the doubly-linked list before insn BEFORE. This and
6fb5fa3c
DB
3740 the previous should be the only functions called to insert an insn
3741 once delay slots have been filled since only they know how to
3742 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3743 bb from before. */
a0ae8e8d
RK
3744
3745void
6fb5fa3c 3746add_insn_before (rtx insn, rtx before, basic_block bb)
a0ae8e8d
RK
3747{
3748 rtx prev = PREV_INSN (before);
3749
5b0264cb 3750 gcc_assert (!optimize || !INSN_DELETED_P (before));
ba213285 3751
a0ae8e8d
RK
3752 PREV_INSN (insn) = prev;
3753 NEXT_INSN (insn) = before;
3754
3755 if (prev)
3756 {
3757 NEXT_INSN (prev) = insn;
4b4bf941 3758 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
a0ae8e8d
RK
3759 {
3760 rtx sequence = PATTERN (prev);
3761 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3762 }
3763 }
5936d944
JH
3764 else if (get_insns () == before)
3765 set_first_insn (insn);
a0ae8e8d
RK
3766 else
3767 {
49ad7cfa 3768 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3769 /* Scan all pending sequences too. */
3770 for (; stack; stack = stack->next)
3771 if (before == stack->first)
fef0509b
RK
3772 {
3773 stack->first = insn;
3774 break;
3775 }
a0ae8e8d 3776
5b0264cb 3777 gcc_assert (stack);
a0ae8e8d
RK
3778 }
3779
b8698a0f 3780 if (!bb
6fb5fa3c
DB
3781 && !BARRIER_P (before)
3782 && !BARRIER_P (insn))
3783 bb = BLOCK_FOR_INSN (before);
3784
3785 if (bb)
3c030e88
JH
3786 {
3787 set_block_for_insn (insn, bb);
38c1593d 3788 if (INSN_P (insn))
6fb5fa3c 3789 df_insn_rescan (insn);
5b0264cb 3790 /* Should not happen as first in the BB is always either NOTE or
43e05e45 3791 LABEL. */
5b0264cb
NS
3792 gcc_assert (BB_HEAD (bb) != insn
3793 /* Avoid clobbering of structure when creating new BB. */
3794 || BARRIER_P (insn)
a38e7aa5 3795 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88
JH
3796 }
3797
a0ae8e8d 3798 PREV_INSN (before) = insn;
4b4bf941 3799 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
a0ae8e8d
RK
3800 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3801}
3802
6fb5fa3c
DB
3803
3804/* Replace insn with an deleted instruction note. */
3805
0ce2b299
EB
3806void
3807set_insn_deleted (rtx insn)
6fb5fa3c
DB
3808{
3809 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3810 PUT_CODE (insn, NOTE);
3811 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3812}
3813
3814
89e99eea
DB
3815/* Remove an insn from its doubly-linked list. This function knows how
3816 to handle sequences. */
3817void
502b8322 3818remove_insn (rtx insn)
89e99eea
DB
3819{
3820 rtx next = NEXT_INSN (insn);
3821 rtx prev = PREV_INSN (insn);
53c17031
JH
3822 basic_block bb;
3823
6fb5fa3c
DB
3824 /* Later in the code, the block will be marked dirty. */
3825 df_insn_delete (NULL, INSN_UID (insn));
3826
89e99eea
DB
3827 if (prev)
3828 {
3829 NEXT_INSN (prev) = next;
4b4bf941 3830 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea
DB
3831 {
3832 rtx sequence = PATTERN (prev);
3833 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3834 }
3835 }
5936d944
JH
3836 else if (get_insns () == insn)
3837 {
fb9ef4c1
JH
3838 if (next)
3839 PREV_INSN (next) = NULL;
5936d944
JH
3840 set_first_insn (next);
3841 }
89e99eea
DB
3842 else
3843 {
49ad7cfa 3844 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3845 /* Scan all pending sequences too. */
3846 for (; stack; stack = stack->next)
3847 if (insn == stack->first)
3848 {
3849 stack->first = next;
3850 break;
3851 }
3852
5b0264cb 3853 gcc_assert (stack);
89e99eea
DB
3854 }
3855
3856 if (next)
3857 {
3858 PREV_INSN (next) = prev;
4b4bf941 3859 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
89e99eea
DB
3860 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3861 }
5936d944
JH
3862 else if (get_last_insn () == insn)
3863 set_last_insn (prev);
89e99eea
DB
3864 else
3865 {
49ad7cfa 3866 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3867 /* Scan all pending sequences too. */
3868 for (; stack; stack = stack->next)
3869 if (insn == stack->last)
3870 {
3871 stack->last = prev;
3872 break;
3873 }
3874
5b0264cb 3875 gcc_assert (stack);
89e99eea 3876 }
4b4bf941 3877 if (!BARRIER_P (insn)
53c17031
JH
3878 && (bb = BLOCK_FOR_INSN (insn)))
3879 {
4e0084e4 3880 if (NONDEBUG_INSN_P (insn))
6fb5fa3c 3881 df_set_bb_dirty (bb);
a813c111 3882 if (BB_HEAD (bb) == insn)
53c17031 3883 {
3bf1e984
RK
3884 /* Never ever delete the basic block note without deleting whole
3885 basic block. */
5b0264cb 3886 gcc_assert (!NOTE_P (insn));
a813c111 3887 BB_HEAD (bb) = next;
53c17031 3888 }
a813c111
SB
3889 if (BB_END (bb) == insn)
3890 BB_END (bb) = prev;
53c17031 3891 }
89e99eea
DB
3892}
3893
ee960939
OH
3894/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3895
3896void
502b8322 3897add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 3898{
5b0264cb 3899 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
3900
3901 /* Put the register usage information on the CALL. If there is already
3902 some usage information, put ours at the end. */
3903 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3904 {
3905 rtx link;
3906
3907 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3908 link = XEXP (link, 1))
3909 ;
3910
3911 XEXP (link, 1) = call_fusage;
3912 }
3913 else
3914 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3915}
3916
23b2ce53
RS
3917/* Delete all insns made since FROM.
3918 FROM becomes the new last instruction. */
3919
3920void
502b8322 3921delete_insns_since (rtx from)
23b2ce53
RS
3922{
3923 if (from == 0)
5936d944 3924 set_first_insn (0);
23b2ce53
RS
3925 else
3926 NEXT_INSN (from) = 0;
5936d944 3927 set_last_insn (from);
23b2ce53
RS
3928}
3929
5dab5552
MS
3930/* This function is deprecated, please use sequences instead.
3931
3932 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3933 The insns to be moved are those between FROM and TO.
3934 They are moved to a new position after the insn AFTER.
3935 AFTER must not be FROM or TO or any insn in between.
3936
3937 This function does not know about SEQUENCEs and hence should not be
3938 called after delay-slot filling has been done. */
3939
3940void
502b8322 3941reorder_insns_nobb (rtx from, rtx to, rtx after)
23b2ce53 3942{
4f8344eb
HPN
3943#ifdef ENABLE_CHECKING
3944 rtx x;
3945 for (x = from; x != to; x = NEXT_INSN (x))
3946 gcc_assert (after != x);
3947 gcc_assert (after != to);
3948#endif
3949
23b2ce53
RS
3950 /* Splice this bunch out of where it is now. */
3951 if (PREV_INSN (from))
3952 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3953 if (NEXT_INSN (to))
3954 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
5936d944
JH
3955 if (get_last_insn () == to)
3956 set_last_insn (PREV_INSN (from));
3957 if (get_insns () == from)
3958 set_first_insn (NEXT_INSN (to));
23b2ce53
RS
3959
3960 /* Make the new neighbors point to it and it to them. */
3961 if (NEXT_INSN (after))
3962 PREV_INSN (NEXT_INSN (after)) = to;
3963
3964 NEXT_INSN (to) = NEXT_INSN (after);
3965 PREV_INSN (from) = after;
3966 NEXT_INSN (after) = from;
5936d944
JH
3967 if (after == get_last_insn())
3968 set_last_insn (to);
23b2ce53
RS
3969}
3970
3c030e88
JH
3971/* Same as function above, but take care to update BB boundaries. */
3972void
502b8322 3973reorder_insns (rtx from, rtx to, rtx after)
3c030e88
JH
3974{
3975 rtx prev = PREV_INSN (from);
3976 basic_block bb, bb2;
3977
3978 reorder_insns_nobb (from, to, after);
3979
4b4bf941 3980 if (!BARRIER_P (after)
3c030e88
JH
3981 && (bb = BLOCK_FOR_INSN (after)))
3982 {
3983 rtx x;
6fb5fa3c 3984 df_set_bb_dirty (bb);
68252e27 3985
4b4bf941 3986 if (!BARRIER_P (from)
3c030e88
JH
3987 && (bb2 = BLOCK_FOR_INSN (from)))
3988 {
a813c111
SB
3989 if (BB_END (bb2) == to)
3990 BB_END (bb2) = prev;
6fb5fa3c 3991 df_set_bb_dirty (bb2);
3c030e88
JH
3992 }
3993
a813c111
SB
3994 if (BB_END (bb) == after)
3995 BB_END (bb) = to;
3c030e88
JH
3996
3997 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 3998 if (!BARRIER_P (x))
63642d5a 3999 df_insn_change_bb (x, bb);
3c030e88
JH
4000 }
4001}
4002
23b2ce53 4003\f
2f937369
DM
4004/* Emit insn(s) of given code and pattern
4005 at a specified place within the doubly-linked list.
23b2ce53 4006
2f937369
DM
4007 All of the emit_foo global entry points accept an object
4008 X which is either an insn list or a PATTERN of a single
4009 instruction.
23b2ce53 4010
2f937369
DM
4011 There are thus a few canonical ways to generate code and
4012 emit it at a specific place in the instruction stream. For
4013 example, consider the instruction named SPOT and the fact that
4014 we would like to emit some instructions before SPOT. We might
4015 do it like this:
23b2ce53 4016
2f937369
DM
4017 start_sequence ();
4018 ... emit the new instructions ...
4019 insns_head = get_insns ();
4020 end_sequence ();
23b2ce53 4021
2f937369 4022 emit_insn_before (insns_head, SPOT);
23b2ce53 4023
2f937369
DM
4024 It used to be common to generate SEQUENCE rtl instead, but that
4025 is a relic of the past which no longer occurs. The reason is that
4026 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4027 generated would almost certainly die right after it was created. */
23b2ce53 4028
5f02387d
NF
4029static rtx
4030emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4031 rtx (*make_raw) (rtx))
23b2ce53 4032{
b3694847 4033 rtx insn;
23b2ce53 4034
5b0264cb 4035 gcc_assert (before);
2f937369
DM
4036
4037 if (x == NULL_RTX)
4038 return last;
4039
4040 switch (GET_CODE (x))
23b2ce53 4041 {
b5b8b0ac 4042 case DEBUG_INSN:
2f937369
DM
4043 case INSN:
4044 case JUMP_INSN:
4045 case CALL_INSN:
4046 case CODE_LABEL:
4047 case BARRIER:
4048 case NOTE:
4049 insn = x;
4050 while (insn)
4051 {
4052 rtx next = NEXT_INSN (insn);
6fb5fa3c 4053 add_insn_before (insn, before, bb);
2f937369
DM
4054 last = insn;
4055 insn = next;
4056 }
4057 break;
4058
4059#ifdef ENABLE_RTL_CHECKING
4060 case SEQUENCE:
5b0264cb 4061 gcc_unreachable ();
2f937369
DM
4062 break;
4063#endif
4064
4065 default:
5f02387d 4066 last = (*make_raw) (x);
6fb5fa3c 4067 add_insn_before (last, before, bb);
2f937369 4068 break;
23b2ce53
RS
4069 }
4070
2f937369 4071 return last;
23b2ce53
RS
4072}
4073
5f02387d
NF
4074/* Make X be output before the instruction BEFORE. */
4075
4076rtx
4077emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4078{
4079 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4080}
4081
2f937369 4082/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4083 and output it before the instruction BEFORE. */
4084
4085rtx
a7102479 4086emit_jump_insn_before_noloc (rtx x, rtx before)
23b2ce53 4087{
5f02387d
NF
4088 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4089 make_jump_insn_raw);
23b2ce53
RS
4090}
4091
2f937369 4092/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4093 and output it before the instruction BEFORE. */
4094
4095rtx
a7102479 4096emit_call_insn_before_noloc (rtx x, rtx before)
969d70ca 4097{
5f02387d
NF
4098 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4099 make_call_insn_raw);
969d70ca
JH
4100}
4101
b5b8b0ac
AO
4102/* Make an instruction with body X and code DEBUG_INSN
4103 and output it before the instruction BEFORE. */
4104
4105rtx
4106emit_debug_insn_before_noloc (rtx x, rtx before)
4107{
5f02387d
NF
4108 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4109 make_debug_insn_raw);
b5b8b0ac
AO
4110}
4111
23b2ce53 4112/* Make an insn of code BARRIER
e881bb1b 4113 and output it before the insn BEFORE. */
23b2ce53
RS
4114
4115rtx
502b8322 4116emit_barrier_before (rtx before)
23b2ce53 4117{
b3694847 4118 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4119
4120 INSN_UID (insn) = cur_insn_uid++;
4121
6fb5fa3c 4122 add_insn_before (insn, before, NULL);
23b2ce53
RS
4123 return insn;
4124}
4125
e881bb1b
RH
4126/* Emit the label LABEL before the insn BEFORE. */
4127
4128rtx
502b8322 4129emit_label_before (rtx label, rtx before)
e881bb1b
RH
4130{
4131 /* This can be called twice for the same label as a result of the
4132 confusion that follows a syntax error! So make it harmless. */
4133 if (INSN_UID (label) == 0)
4134 {
4135 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 4136 add_insn_before (label, before, NULL);
e881bb1b
RH
4137 }
4138
4139 return label;
4140}
4141
23b2ce53
RS
4142/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4143
4144rtx
a38e7aa5 4145emit_note_before (enum insn_note subtype, rtx before)
23b2ce53 4146{
b3694847 4147 rtx note = rtx_alloc (NOTE);
23b2ce53 4148 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4149 NOTE_KIND (note) = subtype;
ba4f7968 4150 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4151 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
23b2ce53 4152
6fb5fa3c 4153 add_insn_before (note, before, NULL);
23b2ce53
RS
4154 return note;
4155}
4156\f
2f937369
DM
4157/* Helper for emit_insn_after, handles lists of instructions
4158 efficiently. */
23b2ce53 4159
2f937369 4160static rtx
6fb5fa3c 4161emit_insn_after_1 (rtx first, rtx after, basic_block bb)
23b2ce53 4162{
2f937369
DM
4163 rtx last;
4164 rtx after_after;
6fb5fa3c
DB
4165 if (!bb && !BARRIER_P (after))
4166 bb = BLOCK_FOR_INSN (after);
23b2ce53 4167
6fb5fa3c 4168 if (bb)
23b2ce53 4169 {
6fb5fa3c 4170 df_set_bb_dirty (bb);
2f937369 4171 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4172 if (!BARRIER_P (last))
6fb5fa3c
DB
4173 {
4174 set_block_for_insn (last, bb);
4175 df_insn_rescan (last);
4176 }
4b4bf941 4177 if (!BARRIER_P (last))
6fb5fa3c
DB
4178 {
4179 set_block_for_insn (last, bb);
4180 df_insn_rescan (last);
4181 }
a813c111
SB
4182 if (BB_END (bb) == after)
4183 BB_END (bb) = last;
23b2ce53
RS
4184 }
4185 else
2f937369
DM
4186 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4187 continue;
4188
4189 after_after = NEXT_INSN (after);
4190
4191 NEXT_INSN (after) = first;
4192 PREV_INSN (first) = after;
4193 NEXT_INSN (last) = after_after;
4194 if (after_after)
4195 PREV_INSN (after_after) = last;
4196
5936d944
JH
4197 if (after == get_last_insn())
4198 set_last_insn (last);
e855c69d 4199
2f937369
DM
4200 return last;
4201}
4202
5f02387d
NF
4203static rtx
4204emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4205 rtx (*make_raw)(rtx))
2f937369
DM
4206{
4207 rtx last = after;
4208
5b0264cb 4209 gcc_assert (after);
2f937369
DM
4210
4211 if (x == NULL_RTX)
4212 return last;
4213
4214 switch (GET_CODE (x))
23b2ce53 4215 {
b5b8b0ac 4216 case DEBUG_INSN:
2f937369
DM
4217 case INSN:
4218 case JUMP_INSN:
4219 case CALL_INSN:
4220 case CODE_LABEL:
4221 case BARRIER:
4222 case NOTE:
6fb5fa3c 4223 last = emit_insn_after_1 (x, after, bb);
2f937369
DM
4224 break;
4225
4226#ifdef ENABLE_RTL_CHECKING
4227 case SEQUENCE:
5b0264cb 4228 gcc_unreachable ();
2f937369
DM
4229 break;
4230#endif
4231
4232 default:
5f02387d 4233 last = (*make_raw) (x);
6fb5fa3c 4234 add_insn_after (last, after, bb);
2f937369 4235 break;
23b2ce53
RS
4236 }
4237
2f937369 4238 return last;
23b2ce53
RS
4239}
4240
5f02387d
NF
4241/* Make X be output after the insn AFTER and set the BB of insn. If
4242 BB is NULL, an attempt is made to infer the BB from AFTER. */
4243
4244rtx
4245emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4246{
4247 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4248}
4249
255680cf 4250
2f937369 4251/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4252 and output it after the insn AFTER. */
4253
4254rtx
a7102479 4255emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4256{
5f02387d 4257 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
2f937369
DM
4258}
4259
4260/* Make an instruction with body X and code CALL_INSN
4261 and output it after the instruction AFTER. */
4262
4263rtx
a7102479 4264emit_call_insn_after_noloc (rtx x, rtx after)
2f937369 4265{
5f02387d 4266 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
23b2ce53
RS
4267}
4268
b5b8b0ac
AO
4269/* Make an instruction with body X and code CALL_INSN
4270 and output it after the instruction AFTER. */
4271
4272rtx
4273emit_debug_insn_after_noloc (rtx x, rtx after)
4274{
5f02387d 4275 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
b5b8b0ac
AO
4276}
4277
23b2ce53
RS
4278/* Make an insn of code BARRIER
4279 and output it after the insn AFTER. */
4280
4281rtx
502b8322 4282emit_barrier_after (rtx after)
23b2ce53 4283{
b3694847 4284 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4285
4286 INSN_UID (insn) = cur_insn_uid++;
4287
6fb5fa3c 4288 add_insn_after (insn, after, NULL);
23b2ce53
RS
4289 return insn;
4290}
4291
4292/* Emit the label LABEL after the insn AFTER. */
4293
4294rtx
502b8322 4295emit_label_after (rtx label, rtx after)
23b2ce53
RS
4296{
4297 /* This can be called twice for the same label
4298 as a result of the confusion that follows a syntax error!
4299 So make it harmless. */
4300 if (INSN_UID (label) == 0)
4301 {
4302 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 4303 add_insn_after (label, after, NULL);
23b2ce53
RS
4304 }
4305
4306 return label;
4307}
4308
4309/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4310
4311rtx
a38e7aa5 4312emit_note_after (enum insn_note subtype, rtx after)
23b2ce53 4313{
b3694847 4314 rtx note = rtx_alloc (NOTE);
23b2ce53 4315 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4316 NOTE_KIND (note) = subtype;
ba4f7968 4317 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4318 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
6fb5fa3c 4319 add_insn_after (note, after, NULL);
23b2ce53
RS
4320 return note;
4321}
23b2ce53 4322\f
e8110d6f
NF
4323/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4324 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4325
4326static rtx
4327emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4328 rtx (*make_raw) (rtx))
0d682900 4329{
e8110d6f 4330 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0d682900 4331
a7102479 4332 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4333 return last;
4334
2f937369
DM
4335 after = NEXT_INSN (after);
4336 while (1)
4337 {
a7102479 4338 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4339 INSN_LOCATOR (after) = loc;
2f937369
DM
4340 if (after == last)
4341 break;
4342 after = NEXT_INSN (after);
4343 }
0d682900
JH
4344 return last;
4345}
4346
e8110d6f
NF
4347/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4348 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4349 any DEBUG_INSNs. */
4350
4351static rtx
4352emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4353 rtx (*make_raw) (rtx))
a7102479 4354{
b5b8b0ac
AO
4355 rtx prev = after;
4356
e8110d6f
NF
4357 if (skip_debug_insns)
4358 while (DEBUG_INSN_P (prev))
4359 prev = PREV_INSN (prev);
b5b8b0ac
AO
4360
4361 if (INSN_P (prev))
e8110d6f
NF
4362 return emit_pattern_after_setloc (pattern, after, INSN_LOCATOR (prev),
4363 make_raw);
a7102479 4364 else
e8110d6f 4365 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
a7102479
JH
4366}
4367
e8110d6f 4368/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
0d682900 4369rtx
e8110d6f 4370emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4371{
e8110d6f
NF
4372 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4373}
2f937369 4374
e8110d6f
NF
4375/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4376rtx
4377emit_insn_after (rtx pattern, rtx after)
4378{
4379 return emit_pattern_after (pattern, after, true, make_insn_raw);
4380}
dd3adcf8 4381
e8110d6f
NF
4382/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
4383rtx
4384emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4385{
4386 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
0d682900
JH
4387}
4388
a7102479
JH
4389/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4390rtx
4391emit_jump_insn_after (rtx pattern, rtx after)
4392{
e8110d6f 4393 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
a7102479
JH
4394}
4395
e8110d6f 4396/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
0d682900 4397rtx
502b8322 4398emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4399{
e8110d6f 4400 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
0d682900
JH
4401}
4402
a7102479
JH
4403/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4404rtx
4405emit_call_insn_after (rtx pattern, rtx after)
4406{
e8110d6f 4407 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
a7102479
JH
4408}
4409
e8110d6f 4410/* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to LOC. */
b5b8b0ac
AO
4411rtx
4412emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4413{
e8110d6f 4414 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
b5b8b0ac
AO
4415}
4416
4417/* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4418rtx
4419emit_debug_insn_after (rtx pattern, rtx after)
4420{
e8110d6f 4421 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
b5b8b0ac
AO
4422}
4423
e8110d6f
NF
4424/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4425 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4426 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4427 CALL_INSN, etc. */
4428
4429static rtx
4430emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4431 rtx (*make_raw) (rtx))
0d682900
JH
4432{
4433 rtx first = PREV_INSN (before);
e8110d6f
NF
4434 rtx last = emit_pattern_before_noloc (pattern, before,
4435 insnp ? before : NULL_RTX,
4436 NULL, make_raw);
a7102479
JH
4437
4438 if (pattern == NULL_RTX || !loc)
4439 return last;
4440
26cb3993
JH
4441 if (!first)
4442 first = get_insns ();
4443 else
4444 first = NEXT_INSN (first);
a7102479
JH
4445 while (1)
4446 {
4447 if (active_insn_p (first) && !INSN_LOCATOR (first))
4448 INSN_LOCATOR (first) = loc;
4449 if (first == last)
4450 break;
4451 first = NEXT_INSN (first);
4452 }
4453 return last;
4454}
4455
e8110d6f
NF
4456/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4457 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4458 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4459 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4460
4461static rtx
4462emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4463 bool insnp, rtx (*make_raw) (rtx))
a7102479 4464{
b5b8b0ac
AO
4465 rtx next = before;
4466
e8110d6f
NF
4467 if (skip_debug_insns)
4468 while (DEBUG_INSN_P (next))
4469 next = PREV_INSN (next);
b5b8b0ac
AO
4470
4471 if (INSN_P (next))
e8110d6f
NF
4472 return emit_pattern_before_setloc (pattern, before, INSN_LOCATOR (next),
4473 insnp, make_raw);
a7102479 4474 else
e8110d6f
NF
4475 return emit_pattern_before_noloc (pattern, before,
4476 insnp ? before : NULL_RTX,
4477 NULL, make_raw);
a7102479
JH
4478}
4479
e8110d6f 4480/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
a7102479 4481rtx
e8110d6f 4482emit_insn_before_setloc (rtx pattern, rtx before, int loc)
a7102479 4483{
e8110d6f
NF
4484 return emit_pattern_before_setloc (pattern, before, loc, true,
4485 make_insn_raw);
4486}
a7102479 4487
e8110d6f
NF
4488/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4489rtx
4490emit_insn_before (rtx pattern, rtx before)
4491{
4492 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4493}
a7102479 4494
e8110d6f
NF
4495/* like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
4496rtx
4497emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4498{
4499 return emit_pattern_before_setloc (pattern, before, loc, false,
4500 make_jump_insn_raw);
a7102479
JH
4501}
4502
4503/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4504rtx
4505emit_jump_insn_before (rtx pattern, rtx before)
4506{
e8110d6f
NF
4507 return emit_pattern_before (pattern, before, true, false,
4508 make_jump_insn_raw);
a7102479
JH
4509}
4510
e8110d6f 4511/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
a7102479
JH
4512rtx
4513emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4514{
e8110d6f
NF
4515 return emit_pattern_before_setloc (pattern, before, loc, false,
4516 make_call_insn_raw);
0d682900 4517}
a7102479 4518
e8110d6f
NF
4519/* Like emit_call_insn_before_noloc,
4520 but set insn_locator according to BEFORE. */
a7102479
JH
4521rtx
4522emit_call_insn_before (rtx pattern, rtx before)
4523{
e8110d6f
NF
4524 return emit_pattern_before (pattern, before, true, false,
4525 make_call_insn_raw);
a7102479 4526}
b5b8b0ac 4527
e8110d6f 4528/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to LOC. */
b5b8b0ac
AO
4529rtx
4530emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4531{
e8110d6f
NF
4532 return emit_pattern_before_setloc (pattern, before, loc, false,
4533 make_debug_insn_raw);
b5b8b0ac
AO
4534}
4535
e8110d6f
NF
4536/* Like emit_debug_insn_before_noloc,
4537 but set insn_locator according to BEFORE. */
b5b8b0ac
AO
4538rtx
4539emit_debug_insn_before (rtx pattern, rtx before)
4540{
e8110d6f
NF
4541 return emit_pattern_before (pattern, before, false, false,
4542 make_debug_insn_raw);
b5b8b0ac 4543}
0d682900 4544\f
2f937369
DM
4545/* Take X and emit it at the end of the doubly-linked
4546 INSN list.
23b2ce53
RS
4547
4548 Returns the last insn emitted. */
4549
4550rtx
502b8322 4551emit_insn (rtx x)
23b2ce53 4552{
5936d944 4553 rtx last = get_last_insn();
2f937369 4554 rtx insn;
23b2ce53 4555
2f937369
DM
4556 if (x == NULL_RTX)
4557 return last;
23b2ce53 4558
2f937369
DM
4559 switch (GET_CODE (x))
4560 {
b5b8b0ac 4561 case DEBUG_INSN:
2f937369
DM
4562 case INSN:
4563 case JUMP_INSN:
4564 case CALL_INSN:
4565 case CODE_LABEL:
4566 case BARRIER:
4567 case NOTE:
4568 insn = x;
4569 while (insn)
23b2ce53 4570 {
2f937369 4571 rtx next = NEXT_INSN (insn);
23b2ce53 4572 add_insn (insn);
2f937369
DM
4573 last = insn;
4574 insn = next;
23b2ce53 4575 }
2f937369 4576 break;
23b2ce53 4577
2f937369
DM
4578#ifdef ENABLE_RTL_CHECKING
4579 case SEQUENCE:
5b0264cb 4580 gcc_unreachable ();
2f937369
DM
4581 break;
4582#endif
23b2ce53 4583
2f937369
DM
4584 default:
4585 last = make_insn_raw (x);
4586 add_insn (last);
4587 break;
23b2ce53
RS
4588 }
4589
4590 return last;
4591}
4592
b5b8b0ac
AO
4593/* Make an insn of code DEBUG_INSN with pattern X
4594 and add it to the end of the doubly-linked list. */
4595
4596rtx
4597emit_debug_insn (rtx x)
4598{
5936d944 4599 rtx last = get_last_insn();
b5b8b0ac
AO
4600 rtx insn;
4601
4602 if (x == NULL_RTX)
4603 return last;
4604
4605 switch (GET_CODE (x))
4606 {
4607 case DEBUG_INSN:
4608 case INSN:
4609 case JUMP_INSN:
4610 case CALL_INSN:
4611 case CODE_LABEL:
4612 case BARRIER:
4613 case NOTE:
4614 insn = x;
4615 while (insn)
4616 {
4617 rtx next = NEXT_INSN (insn);
4618 add_insn (insn);
4619 last = insn;
4620 insn = next;
4621 }
4622 break;
4623
4624#ifdef ENABLE_RTL_CHECKING
4625 case SEQUENCE:
4626 gcc_unreachable ();
4627 break;
4628#endif
4629
4630 default:
4631 last = make_debug_insn_raw (x);
4632 add_insn (last);
4633 break;
4634 }
4635
4636 return last;
4637}
4638
2f937369
DM
4639/* Make an insn of code JUMP_INSN with pattern X
4640 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4641
4642rtx
502b8322 4643emit_jump_insn (rtx x)
23b2ce53 4644{
d950dee3 4645 rtx last = NULL_RTX, insn;
23b2ce53 4646
2f937369 4647 switch (GET_CODE (x))
23b2ce53 4648 {
b5b8b0ac 4649 case DEBUG_INSN:
2f937369
DM
4650 case INSN:
4651 case JUMP_INSN:
4652 case CALL_INSN:
4653 case CODE_LABEL:
4654 case BARRIER:
4655 case NOTE:
4656 insn = x;
4657 while (insn)
4658 {
4659 rtx next = NEXT_INSN (insn);
4660 add_insn (insn);
4661 last = insn;
4662 insn = next;
4663 }
4664 break;
e0a5c5eb 4665
2f937369
DM
4666#ifdef ENABLE_RTL_CHECKING
4667 case SEQUENCE:
5b0264cb 4668 gcc_unreachable ();
2f937369
DM
4669 break;
4670#endif
e0a5c5eb 4671
2f937369
DM
4672 default:
4673 last = make_jump_insn_raw (x);
4674 add_insn (last);
4675 break;
3c030e88 4676 }
e0a5c5eb
RS
4677
4678 return last;
4679}
4680
2f937369 4681/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4682 and add it to the end of the doubly-linked list. */
4683
4684rtx
502b8322 4685emit_call_insn (rtx x)
23b2ce53 4686{
2f937369
DM
4687 rtx insn;
4688
4689 switch (GET_CODE (x))
23b2ce53 4690 {
b5b8b0ac 4691 case DEBUG_INSN:
2f937369
DM
4692 case INSN:
4693 case JUMP_INSN:
4694 case CALL_INSN:
4695 case CODE_LABEL:
4696 case BARRIER:
4697 case NOTE:
4698 insn = emit_insn (x);
4699 break;
23b2ce53 4700
2f937369
DM
4701#ifdef ENABLE_RTL_CHECKING
4702 case SEQUENCE:
5b0264cb 4703 gcc_unreachable ();
2f937369
DM
4704 break;
4705#endif
23b2ce53 4706
2f937369
DM
4707 default:
4708 insn = make_call_insn_raw (x);
23b2ce53 4709 add_insn (insn);
2f937369 4710 break;
23b2ce53 4711 }
2f937369
DM
4712
4713 return insn;
23b2ce53
RS
4714}
4715
4716/* Add the label LABEL to the end of the doubly-linked list. */
4717
4718rtx
502b8322 4719emit_label (rtx label)
23b2ce53
RS
4720{
4721 /* This can be called twice for the same label
4722 as a result of the confusion that follows a syntax error!
4723 So make it harmless. */
4724 if (INSN_UID (label) == 0)
4725 {
4726 INSN_UID (label) = cur_insn_uid++;
4727 add_insn (label);
4728 }
4729 return label;
4730}
4731
4732/* Make an insn of code BARRIER
4733 and add it to the end of the doubly-linked list. */
4734
4735rtx
502b8322 4736emit_barrier (void)
23b2ce53 4737{
b3694847 4738 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4739 INSN_UID (barrier) = cur_insn_uid++;
4740 add_insn (barrier);
4741 return barrier;
4742}
4743
5f2fc772 4744/* Emit a copy of note ORIG. */
502b8322 4745
5f2fc772
NS
4746rtx
4747emit_note_copy (rtx orig)
4748{
4749 rtx note;
b8698a0f 4750
5f2fc772 4751 note = rtx_alloc (NOTE);
b8698a0f 4752
5f2fc772
NS
4753 INSN_UID (note) = cur_insn_uid++;
4754 NOTE_DATA (note) = NOTE_DATA (orig);
a38e7aa5 4755 NOTE_KIND (note) = NOTE_KIND (orig);
5f2fc772
NS
4756 BLOCK_FOR_INSN (note) = NULL;
4757 add_insn (note);
b8698a0f 4758
2e040219 4759 return note;
23b2ce53
RS
4760}
4761
2e040219
NS
4762/* Make an insn of code NOTE or type NOTE_NO
4763 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4764
4765rtx
a38e7aa5 4766emit_note (enum insn_note kind)
23b2ce53 4767{
b3694847 4768 rtx note;
23b2ce53 4769
23b2ce53
RS
4770 note = rtx_alloc (NOTE);
4771 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4772 NOTE_KIND (note) = kind;
dd107e66 4773 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
ba4f7968 4774 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4775 add_insn (note);
4776 return note;
4777}
4778
c41c1387
RS
4779/* Emit a clobber of lvalue X. */
4780
4781rtx
4782emit_clobber (rtx x)
4783{
4784 /* CONCATs should not appear in the insn stream. */
4785 if (GET_CODE (x) == CONCAT)
4786 {
4787 emit_clobber (XEXP (x, 0));
4788 return emit_clobber (XEXP (x, 1));
4789 }
4790 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4791}
4792
4793/* Return a sequence of insns to clobber lvalue X. */
4794
4795rtx
4796gen_clobber (rtx x)
4797{
4798 rtx seq;
4799
4800 start_sequence ();
4801 emit_clobber (x);
4802 seq = get_insns ();
4803 end_sequence ();
4804 return seq;
4805}
4806
4807/* Emit a use of rvalue X. */
4808
4809rtx
4810emit_use (rtx x)
4811{
4812 /* CONCATs should not appear in the insn stream. */
4813 if (GET_CODE (x) == CONCAT)
4814 {
4815 emit_use (XEXP (x, 0));
4816 return emit_use (XEXP (x, 1));
4817 }
4818 return emit_insn (gen_rtx_USE (VOIDmode, x));
4819}
4820
4821/* Return a sequence of insns to use rvalue X. */
4822
4823rtx
4824gen_use (rtx x)
4825{
4826 rtx seq;
4827
4828 start_sequence ();
4829 emit_use (x);
4830 seq = get_insns ();
4831 end_sequence ();
4832 return seq;
4833}
4834
23b2ce53 4835/* Cause next statement to emit a line note even if the line number
0cea056b 4836 has not changed. */
23b2ce53
RS
4837
4838void
502b8322 4839force_next_line_note (void)
23b2ce53 4840{
6773e15f 4841 last_location = -1;
23b2ce53 4842}
87b47c85
AM
4843
4844/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 4845 note of this type already exists, remove it first. */
87b47c85 4846
3d238248 4847rtx
502b8322 4848set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
4849{
4850 rtx note = find_reg_note (insn, kind, NULL_RTX);
4851
52488da1
JW
4852 switch (kind)
4853 {
4854 case REG_EQUAL:
4855 case REG_EQUIV:
4856 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4857 has multiple sets (some callers assume single_set
4858 means the insn only has one set, when in fact it
4859 means the insn only has one * useful * set). */
4860 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4861 {
5b0264cb 4862 gcc_assert (!note);
52488da1
JW
4863 return NULL_RTX;
4864 }
4865
4866 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4867 It serves no useful purpose and breaks eliminate_regs. */
4868 if (GET_CODE (datum) == ASM_OPERANDS)
4869 return NULL_RTX;
6fb5fa3c
DB
4870
4871 if (note)
4872 {
4873 XEXP (note, 0) = datum;
4874 df_notes_rescan (insn);
4875 return note;
4876 }
52488da1
JW
4877 break;
4878
4879 default:
6fb5fa3c
DB
4880 if (note)
4881 {
4882 XEXP (note, 0) = datum;
4883 return note;
4884 }
52488da1
JW
4885 break;
4886 }
3d238248 4887
65c5f2a6 4888 add_reg_note (insn, kind, datum);
6fb5fa3c
DB
4889
4890 switch (kind)
3d238248 4891 {
6fb5fa3c
DB
4892 case REG_EQUAL:
4893 case REG_EQUIV:
4894 df_notes_rescan (insn);
4895 break;
4896 default:
4897 break;
3d238248 4898 }
87b47c85 4899
3d238248 4900 return REG_NOTES (insn);
87b47c85 4901}
23b2ce53
RS
4902\f
4903/* Return an indication of which type of insn should have X as a body.
4904 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4905
d78db459 4906static enum rtx_code
502b8322 4907classify_insn (rtx x)
23b2ce53 4908{
4b4bf941 4909 if (LABEL_P (x))
23b2ce53
RS
4910 return CODE_LABEL;
4911 if (GET_CODE (x) == CALL)
4912 return CALL_INSN;
4913 if (GET_CODE (x) == RETURN)
4914 return JUMP_INSN;
4915 if (GET_CODE (x) == SET)
4916 {
4917 if (SET_DEST (x) == pc_rtx)
4918 return JUMP_INSN;
4919 else if (GET_CODE (SET_SRC (x)) == CALL)
4920 return CALL_INSN;
4921 else
4922 return INSN;
4923 }
4924 if (GET_CODE (x) == PARALLEL)
4925 {
b3694847 4926 int j;
23b2ce53
RS
4927 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4928 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4929 return CALL_INSN;
4930 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4931 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4932 return JUMP_INSN;
4933 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4934 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4935 return CALL_INSN;
4936 }
4937 return INSN;
4938}
4939
4940/* Emit the rtl pattern X as an appropriate kind of insn.
4941 If X is a label, it is simply added into the insn chain. */
4942
4943rtx
502b8322 4944emit (rtx x)
23b2ce53
RS
4945{
4946 enum rtx_code code = classify_insn (x);
4947
5b0264cb 4948 switch (code)
23b2ce53 4949 {
5b0264cb
NS
4950 case CODE_LABEL:
4951 return emit_label (x);
4952 case INSN:
4953 return emit_insn (x);
4954 case JUMP_INSN:
4955 {
4956 rtx insn = emit_jump_insn (x);
4957 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4958 return emit_barrier ();
4959 return insn;
4960 }
4961 case CALL_INSN:
4962 return emit_call_insn (x);
b5b8b0ac
AO
4963 case DEBUG_INSN:
4964 return emit_debug_insn (x);
5b0264cb
NS
4965 default:
4966 gcc_unreachable ();
23b2ce53 4967 }
23b2ce53
RS
4968}
4969\f
e2500fed 4970/* Space for free sequence stack entries. */
1431042e 4971static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 4972
4dfa0342
RH
4973/* Begin emitting insns to a sequence. If this sequence will contain
4974 something that might cause the compiler to pop arguments to function
4975 calls (because those pops have previously been deferred; see
4976 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4977 before calling this function. That will ensure that the deferred
4978 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
4979
4980void
502b8322 4981start_sequence (void)
23b2ce53
RS
4982{
4983 struct sequence_stack *tem;
4984
e2500fed
GK
4985 if (free_sequence_stack != NULL)
4986 {
4987 tem = free_sequence_stack;
4988 free_sequence_stack = tem->next;
4989 }
4990 else
a9429e29 4991 tem = ggc_alloc_sequence_stack ();
23b2ce53 4992
49ad7cfa 4993 tem->next = seq_stack;
5936d944
JH
4994 tem->first = get_insns ();
4995 tem->last = get_last_insn ();
23b2ce53 4996
49ad7cfa 4997 seq_stack = tem;
23b2ce53 4998
5936d944
JH
4999 set_first_insn (0);
5000 set_last_insn (0);
23b2ce53
RS
5001}
5002
5c7a310f
MM
5003/* Set up the insn chain starting with FIRST as the current sequence,
5004 saving the previously current one. See the documentation for
5005 start_sequence for more information about how to use this function. */
23b2ce53
RS
5006
5007void
502b8322 5008push_to_sequence (rtx first)
23b2ce53
RS
5009{
5010 rtx last;
5011
5012 start_sequence ();
5013
5014 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5015
5936d944
JH
5016 set_first_insn (first);
5017 set_last_insn (last);
23b2ce53
RS
5018}
5019
bb27eeda
SE
5020/* Like push_to_sequence, but take the last insn as an argument to avoid
5021 looping through the list. */
5022
5023void
5024push_to_sequence2 (rtx first, rtx last)
5025{
5026 start_sequence ();
5027
5936d944
JH
5028 set_first_insn (first);
5029 set_last_insn (last);
bb27eeda
SE
5030}
5031
f15ae3a1
TW
5032/* Set up the outer-level insn chain
5033 as the current sequence, saving the previously current one. */
5034
5035void
502b8322 5036push_topmost_sequence (void)
f15ae3a1 5037{
aefdd5ab 5038 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
5039
5040 start_sequence ();
5041
49ad7cfa 5042 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
5043 top = stack;
5044
5936d944
JH
5045 set_first_insn (top->first);
5046 set_last_insn (top->last);
f15ae3a1
TW
5047}
5048
5049/* After emitting to the outer-level insn chain, update the outer-level
5050 insn chain, and restore the previous saved state. */
5051
5052void
502b8322 5053pop_topmost_sequence (void)
f15ae3a1 5054{
aefdd5ab 5055 struct sequence_stack *stack, *top = NULL;
f15ae3a1 5056
49ad7cfa 5057 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
5058 top = stack;
5059
5936d944
JH
5060 top->first = get_insns ();
5061 top->last = get_last_insn ();
f15ae3a1
TW
5062
5063 end_sequence ();
5064}
5065
23b2ce53
RS
5066/* After emitting to a sequence, restore previous saved state.
5067
5c7a310f 5068 To get the contents of the sequence just made, you must call
2f937369 5069 `get_insns' *before* calling here.
5c7a310f
MM
5070
5071 If the compiler might have deferred popping arguments while
5072 generating this sequence, and this sequence will not be immediately
5073 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 5074 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
5075 pops are inserted into this sequence, and not into some random
5076 location in the instruction stream. See INHIBIT_DEFER_POP for more
5077 information about deferred popping of arguments. */
23b2ce53
RS
5078
5079void
502b8322 5080end_sequence (void)
23b2ce53 5081{
49ad7cfa 5082 struct sequence_stack *tem = seq_stack;
23b2ce53 5083
5936d944
JH
5084 set_first_insn (tem->first);
5085 set_last_insn (tem->last);
49ad7cfa 5086 seq_stack = tem->next;
23b2ce53 5087
e2500fed
GK
5088 memset (tem, 0, sizeof (*tem));
5089 tem->next = free_sequence_stack;
5090 free_sequence_stack = tem;
23b2ce53
RS
5091}
5092
5093/* Return 1 if currently emitting into a sequence. */
5094
5095int
502b8322 5096in_sequence_p (void)
23b2ce53 5097{
49ad7cfa 5098 return seq_stack != 0;
23b2ce53 5099}
23b2ce53 5100\f
59ec66dc
MM
5101/* Put the various virtual registers into REGNO_REG_RTX. */
5102
2bbdec73 5103static void
bd60bab2 5104init_virtual_regs (void)
59ec66dc 5105{
bd60bab2
JH
5106 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5107 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5108 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5109 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5110 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
32990d5b
JJ
5111 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5112 = virtual_preferred_stack_boundary_rtx;
49ad7cfa
BS
5113}
5114
da43a810
BS
5115\f
5116/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5117static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5118static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5119static int copy_insn_n_scratches;
5120
5121/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5122 copied an ASM_OPERANDS.
5123 In that case, it is the original input-operand vector. */
5124static rtvec orig_asm_operands_vector;
5125
5126/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5127 copied an ASM_OPERANDS.
5128 In that case, it is the copied input-operand vector. */
5129static rtvec copy_asm_operands_vector;
5130
5131/* Likewise for the constraints vector. */
5132static rtvec orig_asm_constraints_vector;
5133static rtvec copy_asm_constraints_vector;
5134
5135/* Recursively create a new copy of an rtx for copy_insn.
5136 This function differs from copy_rtx in that it handles SCRATCHes and
5137 ASM_OPERANDs properly.
5138 Normally, this function is not used directly; use copy_insn as front end.
5139 However, you could first copy an insn pattern with copy_insn and then use
5140 this function afterwards to properly copy any REG_NOTEs containing
5141 SCRATCHes. */
5142
5143rtx
502b8322 5144copy_insn_1 (rtx orig)
da43a810 5145{
b3694847
SS
5146 rtx copy;
5147 int i, j;
5148 RTX_CODE code;
5149 const char *format_ptr;
da43a810 5150
cd9c1ca8
RH
5151 if (orig == NULL)
5152 return NULL;
5153
da43a810
BS
5154 code = GET_CODE (orig);
5155
5156 switch (code)
5157 {
5158 case REG:
da43a810
BS
5159 case CONST_INT:
5160 case CONST_DOUBLE:
091a3ac7 5161 case CONST_FIXED:
69ef87e2 5162 case CONST_VECTOR:
da43a810
BS
5163 case SYMBOL_REF:
5164 case CODE_LABEL:
5165 case PC:
5166 case CC0:
da43a810 5167 return orig;
3e89ed8d
JH
5168 case CLOBBER:
5169 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5170 return orig;
5171 break;
da43a810
BS
5172
5173 case SCRATCH:
5174 for (i = 0; i < copy_insn_n_scratches; i++)
5175 if (copy_insn_scratch_in[i] == orig)
5176 return copy_insn_scratch_out[i];
5177 break;
5178
5179 case CONST:
6fb5fa3c 5180 if (shared_const_p (orig))
da43a810
BS
5181 return orig;
5182 break;
750c9258 5183
da43a810
BS
5184 /* A MEM with a constant address is not sharable. The problem is that
5185 the constant address may need to be reloaded. If the mem is shared,
5186 then reloading one copy of this mem will cause all copies to appear
5187 to have been reloaded. */
5188
5189 default:
5190 break;
5191 }
5192
aacd3885
RS
5193 /* Copy the various flags, fields, and other information. We assume
5194 that all fields need copying, and then clear the fields that should
da43a810
BS
5195 not be copied. That is the sensible default behavior, and forces
5196 us to explicitly document why we are *not* copying a flag. */
aacd3885 5197 copy = shallow_copy_rtx (orig);
da43a810
BS
5198
5199 /* We do not copy the USED flag, which is used as a mark bit during
5200 walks over the RTL. */
2adc7f12 5201 RTX_FLAG (copy, used) = 0;
da43a810
BS
5202
5203 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5204 if (INSN_P (orig))
da43a810 5205 {
2adc7f12
JJ
5206 RTX_FLAG (copy, jump) = 0;
5207 RTX_FLAG (copy, call) = 0;
5208 RTX_FLAG (copy, frame_related) = 0;
da43a810 5209 }
750c9258 5210
da43a810
BS
5211 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5212
5213 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5214 switch (*format_ptr++)
5215 {
5216 case 'e':
5217 if (XEXP (orig, i) != NULL)
5218 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5219 break;
da43a810 5220
aacd3885
RS
5221 case 'E':
5222 case 'V':
5223 if (XVEC (orig, i) == orig_asm_constraints_vector)
5224 XVEC (copy, i) = copy_asm_constraints_vector;
5225 else if (XVEC (orig, i) == orig_asm_operands_vector)
5226 XVEC (copy, i) = copy_asm_operands_vector;
5227 else if (XVEC (orig, i) != NULL)
5228 {
5229 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5230 for (j = 0; j < XVECLEN (copy, i); j++)
5231 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5232 }
5233 break;
da43a810 5234
aacd3885
RS
5235 case 't':
5236 case 'w':
5237 case 'i':
5238 case 's':
5239 case 'S':
5240 case 'u':
5241 case '0':
5242 /* These are left unchanged. */
5243 break;
da43a810 5244
aacd3885
RS
5245 default:
5246 gcc_unreachable ();
5247 }
da43a810
BS
5248
5249 if (code == SCRATCH)
5250 {
5251 i = copy_insn_n_scratches++;
5b0264cb 5252 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5253 copy_insn_scratch_in[i] = orig;
5254 copy_insn_scratch_out[i] = copy;
5255 }
5256 else if (code == ASM_OPERANDS)
5257 {
6462bb43
AO
5258 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5259 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5260 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5261 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5262 }
5263
5264 return copy;
5265}
5266
5267/* Create a new copy of an rtx.
5268 This function differs from copy_rtx in that it handles SCRATCHes and
5269 ASM_OPERANDs properly.
5270 INSN doesn't really have to be a full INSN; it could be just the
5271 pattern. */
5272rtx
502b8322 5273copy_insn (rtx insn)
da43a810
BS
5274{
5275 copy_insn_n_scratches = 0;
5276 orig_asm_operands_vector = 0;
5277 orig_asm_constraints_vector = 0;
5278 copy_asm_operands_vector = 0;
5279 copy_asm_constraints_vector = 0;
5280 return copy_insn_1 (insn);
5281}
59ec66dc 5282
23b2ce53
RS
5283/* Initialize data structures and variables in this file
5284 before generating rtl for each function. */
5285
5286void
502b8322 5287init_emit (void)
23b2ce53 5288{
5936d944
JH
5289 set_first_insn (NULL);
5290 set_last_insn (NULL);
b5b8b0ac
AO
5291 if (MIN_NONDEBUG_INSN_UID)
5292 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5293 else
5294 cur_insn_uid = 1;
5295 cur_debug_insn_uid = 1;
23b2ce53 5296 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
6773e15f 5297 last_location = UNKNOWN_LOCATION;
23b2ce53 5298 first_label_num = label_num;
49ad7cfa 5299 seq_stack = NULL;
23b2ce53 5300
23b2ce53
RS
5301 /* Init the tables that describe all the pseudo regs. */
5302
3e029763 5303 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5304
3e029763 5305 crtl->emit.regno_pointer_align
1b4572a8 5306 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5307
a9429e29 5308 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
0d4903b8 5309
e50126e8 5310 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876 5311 memcpy (regno_reg_rtx,
5fb0e246 5312 initial_regno_reg_rtx,
6cde4876 5313 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5314
23b2ce53 5315 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5316 init_virtual_regs ();
740ab4a2
RK
5317
5318 /* Indicate that the virtual registers and stack locations are
5319 all pointers. */
3502dc9c
JDA
5320 REG_POINTER (stack_pointer_rtx) = 1;
5321 REG_POINTER (frame_pointer_rtx) = 1;
5322 REG_POINTER (hard_frame_pointer_rtx) = 1;
5323 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5324
3502dc9c
JDA
5325 REG_POINTER (virtual_incoming_args_rtx) = 1;
5326 REG_POINTER (virtual_stack_vars_rtx) = 1;
5327 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5328 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5329 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5330
86fe05e0 5331#ifdef STACK_BOUNDARY
bdb429a5
RK
5332 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5333 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5334 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5335 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5336
5337 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5338 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5339 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5340 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5341 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5342#endif
5343
5e82e7bd
JVA
5344#ifdef INIT_EXPANDERS
5345 INIT_EXPANDERS;
5346#endif
23b2ce53
RS
5347}
5348
a73b091d 5349/* Generate a vector constant for mode MODE and constant value CONSTANT. */
69ef87e2
AH
5350
5351static rtx
a73b091d 5352gen_const_vector (enum machine_mode mode, int constant)
69ef87e2
AH
5353{
5354 rtx tem;
5355 rtvec v;
5356 int units, i;
5357 enum machine_mode inner;
5358
5359 units = GET_MODE_NUNITS (mode);
5360 inner = GET_MODE_INNER (mode);
5361
15ed7b52
JG
5362 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5363
69ef87e2
AH
5364 v = rtvec_alloc (units);
5365
a73b091d
JW
5366 /* We need to call this function after we set the scalar const_tiny_rtx
5367 entries. */
5368 gcc_assert (const_tiny_rtx[constant][(int) inner]);
69ef87e2
AH
5369
5370 for (i = 0; i < units; ++i)
a73b091d 5371 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
69ef87e2 5372
a06e3c40 5373 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5374 return tem;
5375}
5376
a06e3c40 5377/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5378 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5379rtx
502b8322 5380gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
a06e3c40 5381{
a73b091d
JW
5382 enum machine_mode inner = GET_MODE_INNER (mode);
5383 int nunits = GET_MODE_NUNITS (mode);
5384 rtx x;
a06e3c40
R
5385 int i;
5386
a73b091d
JW
5387 /* Check to see if all of the elements have the same value. */
5388 x = RTVEC_ELT (v, nunits - 1);
5389 for (i = nunits - 2; i >= 0; i--)
5390 if (RTVEC_ELT (v, i) != x)
5391 break;
5392
5393 /* If the values are all the same, check to see if we can use one of the
5394 standard constant vectors. */
5395 if (i == -1)
5396 {
5397 if (x == CONST0_RTX (inner))
5398 return CONST0_RTX (mode);
5399 else if (x == CONST1_RTX (inner))
5400 return CONST1_RTX (mode);
5401 }
5402
5403 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5404}
5405
b5deb7b6
SL
5406/* Initialise global register information required by all functions. */
5407
5408void
5409init_emit_regs (void)
5410{
5411 int i;
5412
5413 /* Reset register attributes */
5414 htab_empty (reg_attrs_htab);
5415
5416 /* We need reg_raw_mode, so initialize the modes now. */
5417 init_reg_modes_target ();
5418
5419 /* Assign register numbers to the globally defined register rtx. */
3810076b
BS
5420 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5421 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5422 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
b5deb7b6
SL
5423 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5424 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5425 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5426 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5427 virtual_incoming_args_rtx =
5428 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5429 virtual_stack_vars_rtx =
5430 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5431 virtual_stack_dynamic_rtx =
5432 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5433 virtual_outgoing_args_rtx =
5434 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5435 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
32990d5b
JJ
5436 virtual_preferred_stack_boundary_rtx =
5437 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
b5deb7b6
SL
5438
5439 /* Initialize RTL for commonly used hard registers. These are
5440 copied into regno_reg_rtx as we begin to compile each function. */
5441 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5fb0e246 5442 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
b5deb7b6
SL
5443
5444#ifdef RETURN_ADDRESS_POINTER_REGNUM
5445 return_address_pointer_rtx
5446 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5447#endif
5448
b5deb7b6
SL
5449 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5450 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5451 else
5452 pic_offset_table_rtx = NULL_RTX;
5453}
5454
2d888286 5455/* Create some permanent unique rtl objects shared between all functions. */
23b2ce53
RS
5456
5457void
2d888286 5458init_emit_once (void)
23b2ce53
RS
5459{
5460 int i;
5461 enum machine_mode mode;
9ec36da5 5462 enum machine_mode double_mode;
23b2ce53 5463
091a3ac7
CF
5464 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5465 hash tables. */
17211ab5
GK
5466 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5467 const_int_htab_eq, NULL);
173b24b9 5468
17211ab5
GK
5469 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5470 const_double_htab_eq, NULL);
5692c7bc 5471
091a3ac7
CF
5472 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5473 const_fixed_htab_eq, NULL);
5474
17211ab5
GK
5475 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5476 mem_attrs_htab_eq, NULL);
a560d4d4
JH
5477 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5478 reg_attrs_htab_eq, NULL);
67673f5c 5479
43fa6302
AS
5480 /* Compute the word and byte modes. */
5481
5482 byte_mode = VOIDmode;
5483 word_mode = VOIDmode;
5484 double_mode = VOIDmode;
5485
15ed7b52
JG
5486 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5487 mode != VOIDmode;
43fa6302
AS
5488 mode = GET_MODE_WIDER_MODE (mode))
5489 {
5490 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5491 && byte_mode == VOIDmode)
5492 byte_mode = mode;
5493
5494 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5495 && word_mode == VOIDmode)
5496 word_mode = mode;
5497 }
5498
15ed7b52
JG
5499 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5500 mode != VOIDmode;
43fa6302
AS
5501 mode = GET_MODE_WIDER_MODE (mode))
5502 {
5503 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5504 && double_mode == VOIDmode)
5505 double_mode = mode;
5506 }
5507
5508 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5509
5da077de 5510#ifdef INIT_EXPANDERS
414c4dc4
NC
5511 /* This is to initialize {init|mark|free}_machine_status before the first
5512 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5513 end which calls push_function_context_to before the first call to
5da077de
AS
5514 init_function_start. */
5515 INIT_EXPANDERS;
5516#endif
5517
23b2ce53
RS
5518 /* Create the unique rtx's for certain rtx codes and operand values. */
5519
a2a8cc44 5520 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 5521 tries to use these variables. */
23b2ce53 5522 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5523 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5524 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5525
68d75312
JC
5526 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5527 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5528 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5529 else
3b80f6ca 5530 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5531
5692c7bc
ZW
5532 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5533 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5534 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
aefa9d43
KG
5535
5536 dconstm1 = dconst1;
5537 dconstm1.sign = 1;
03f2ea93
RS
5538
5539 dconsthalf = dconst1;
1e92bbb9 5540 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 5541
f7657db9 5542 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
23b2ce53 5543 {
aefa9d43 5544 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
5545 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5546
15ed7b52
JG
5547 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5548 mode != VOIDmode;
5549 mode = GET_MODE_WIDER_MODE (mode))
5550 const_tiny_rtx[i][(int) mode] =
5551 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5552
5553 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5554 mode != VOIDmode;
23b2ce53 5555 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5556 const_tiny_rtx[i][(int) mode] =
5557 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5558
906c4e36 5559 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 5560
15ed7b52
JG
5561 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5562 mode != VOIDmode;
23b2ce53 5563 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5564 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
5565
5566 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5567 mode != VOIDmode;
5568 mode = GET_MODE_WIDER_MODE (mode))
5569 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5570 }
5571
e90721b1
AP
5572 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5573 mode != VOIDmode;
5574 mode = GET_MODE_WIDER_MODE (mode))
5575 {
5576 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5577 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5578 }
5579
5580 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5581 mode != VOIDmode;
5582 mode = GET_MODE_WIDER_MODE (mode))
5583 {
5584 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5585 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5586 }
5587
69ef87e2
AH
5588 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5589 mode != VOIDmode;
5590 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5591 {
5592 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5593 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5594 }
69ef87e2
AH
5595
5596 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5597 mode != VOIDmode;
5598 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5599 {
5600 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5601 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5602 }
69ef87e2 5603
325217ed
CF
5604 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5605 mode != VOIDmode;
5606 mode = GET_MODE_WIDER_MODE (mode))
5607 {
5608 FCONST0(mode).data.high = 0;
5609 FCONST0(mode).data.low = 0;
5610 FCONST0(mode).mode = mode;
091a3ac7
CF
5611 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5612 FCONST0 (mode), mode);
325217ed
CF
5613 }
5614
5615 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5616 mode != VOIDmode;
5617 mode = GET_MODE_WIDER_MODE (mode))
5618 {
5619 FCONST0(mode).data.high = 0;
5620 FCONST0(mode).data.low = 0;
5621 FCONST0(mode).mode = mode;
091a3ac7
CF
5622 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5623 FCONST0 (mode), mode);
325217ed
CF
5624 }
5625
5626 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5627 mode != VOIDmode;
5628 mode = GET_MODE_WIDER_MODE (mode))
5629 {
5630 FCONST0(mode).data.high = 0;
5631 FCONST0(mode).data.low = 0;
5632 FCONST0(mode).mode = mode;
091a3ac7
CF
5633 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5634 FCONST0 (mode), mode);
325217ed
CF
5635
5636 /* We store the value 1. */
5637 FCONST1(mode).data.high = 0;
5638 FCONST1(mode).data.low = 0;
5639 FCONST1(mode).mode = mode;
5640 lshift_double (1, 0, GET_MODE_FBIT (mode),
5641 2 * HOST_BITS_PER_WIDE_INT,
5642 &FCONST1(mode).data.low,
5643 &FCONST1(mode).data.high,
5644 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5645 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5646 FCONST1 (mode), mode);
325217ed
CF
5647 }
5648
5649 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5650 mode != VOIDmode;
5651 mode = GET_MODE_WIDER_MODE (mode))
5652 {
5653 FCONST0(mode).data.high = 0;
5654 FCONST0(mode).data.low = 0;
5655 FCONST0(mode).mode = mode;
091a3ac7
CF
5656 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5657 FCONST0 (mode), mode);
325217ed
CF
5658
5659 /* We store the value 1. */
5660 FCONST1(mode).data.high = 0;
5661 FCONST1(mode).data.low = 0;
5662 FCONST1(mode).mode = mode;
5663 lshift_double (1, 0, GET_MODE_FBIT (mode),
5664 2 * HOST_BITS_PER_WIDE_INT,
5665 &FCONST1(mode).data.low,
5666 &FCONST1(mode).data.high,
5667 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5668 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5669 FCONST1 (mode), mode);
5670 }
5671
5672 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5673 mode != VOIDmode;
5674 mode = GET_MODE_WIDER_MODE (mode))
5675 {
5676 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5677 }
5678
5679 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5680 mode != VOIDmode;
5681 mode = GET_MODE_WIDER_MODE (mode))
5682 {
5683 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5684 }
5685
5686 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5687 mode != VOIDmode;
5688 mode = GET_MODE_WIDER_MODE (mode))
5689 {
5690 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5691 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5692 }
5693
5694 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5695 mode != VOIDmode;
5696 mode = GET_MODE_WIDER_MODE (mode))
5697 {
5698 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5699 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
5700 }
5701
dbbbbf3b
JDA
5702 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5703 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5704 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5705
f0417c82
RH
5706 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5707 if (STORE_FLAG_VALUE == 1)
5708 const_tiny_rtx[1][(int) BImode] = const1_rtx;
23b2ce53 5709}
a11759a3 5710\f
969d70ca
JH
5711/* Produce exact duplicate of insn INSN after AFTER.
5712 Care updating of libcall regions if present. */
5713
5714rtx
502b8322 5715emit_copy_of_insn_after (rtx insn, rtx after)
969d70ca 5716{
60564289 5717 rtx new_rtx, link;
969d70ca
JH
5718
5719 switch (GET_CODE (insn))
5720 {
5721 case INSN:
60564289 5722 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
5723 break;
5724
5725 case JUMP_INSN:
60564289 5726 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
5727 break;
5728
b5b8b0ac
AO
5729 case DEBUG_INSN:
5730 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5731 break;
5732
969d70ca 5733 case CALL_INSN:
60564289 5734 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 5735 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 5736 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 5737 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
5738 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5739 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5740 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
b8698a0f 5741 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 5742 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
5743 break;
5744
5745 default:
5b0264cb 5746 gcc_unreachable ();
969d70ca
JH
5747 }
5748
5749 /* Update LABEL_NUSES. */
60564289 5750 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 5751
60564289 5752 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
ba4f7968 5753
0a3d71f5
JW
5754 /* If the old insn is frame related, then so is the new one. This is
5755 primarily needed for IA-64 unwind info which marks epilogue insns,
5756 which may be duplicated by the basic block reordering code. */
60564289 5757 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 5758
cf7c4aa6
HPN
5759 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5760 will make them. REG_LABEL_TARGETs are created there too, but are
5761 supposed to be sticky, so we copy them. */
969d70ca 5762 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 5763 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca
JH
5764 {
5765 if (GET_CODE (link) == EXPR_LIST)
60564289 5766 add_reg_note (new_rtx, REG_NOTE_KIND (link),
65c5f2a6 5767 copy_insn_1 (XEXP (link, 0)));
969d70ca 5768 else
60564289 5769 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
969d70ca
JH
5770 }
5771
60564289
KG
5772 INSN_CODE (new_rtx) = INSN_CODE (insn);
5773 return new_rtx;
969d70ca 5774}
e2500fed 5775
1431042e 5776static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d
JH
5777rtx
5778gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5779{
5780 if (hard_reg_clobbers[mode][regno])
5781 return hard_reg_clobbers[mode][regno];
5782 else
5783 return (hard_reg_clobbers[mode][regno] =
5784 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5785}
5786
e2500fed 5787#include "gt-emit-rtl.h"