]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
Strengthen fields in struct sequence_stack and struct emit_status
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
bccafa26 1/* Emit RTL for the GCC expander.
3aea1f79 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
15bbde2b 3
f12b58b3 4This file is part of GCC.
15bbde2b 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
15bbde2b 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15bbde2b 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15bbde2b 19
20
21/* Middle-to-low level generation of rtx code and insns.
22
74efa612 23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
15bbde2b 25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
74efa612 28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
8fd5918e 31 dependent is the kind of rtx's they make and what arguments they
32 use. */
15bbde2b 33
34#include "config.h"
405711de 35#include "system.h"
805e22b2 36#include "coretypes.h"
37#include "tm.h"
0b205f4c 38#include "diagnostic-core.h"
15bbde2b 39#include "rtl.h"
3fd7e17f 40#include "tree.h"
9ed99284 41#include "varasm.h"
bc61cadb 42#include "basic-block.h"
43#include "tree-eh.h"
7953c610 44#include "tm_p.h"
15bbde2b 45#include "flags.h"
46#include "function.h"
9ed99284 47#include "stringpool.h"
15bbde2b 48#include "expr.h"
49#include "regs.h"
c6b6c51f 50#include "hard-reg-set.h"
73f5c1e3 51#include "hashtab.h"
15bbde2b 52#include "insn-config.h"
0dbd1c74 53#include "recog.h"
a3426c4c 54#include "bitmap.h"
b29760a8 55#include "debug.h"
b0278d39 56#include "langhooks.h"
3072d30e 57#include "df.h"
9845d120 58#include "params.h"
98155838 59#include "target.h"
f7715905 60#include "builtins.h"
649d8da6 61
679bcc8d 62struct target_rtl default_target_rtl;
63#if SWITCHABLE_TARGET
64struct target_rtl *this_target_rtl = &default_target_rtl;
65#endif
66
67#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
68
399d45d3 69/* Commonly used modes. */
70
a92771b8 71enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
72enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9e042f31 73enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
a92771b8 74enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
399d45d3 75
b079a207 76/* Datastructures maintained for currently processed function in RTL form. */
77
fd6ffb7c 78struct rtl_data x_rtl;
b079a207 79
80/* Indexed by pseudo register number, gives the rtx for that pseudo.
48e1416a 81 Allocated in parallel with regno_pointer_align.
b079a207 82 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
83 with length attribute nested in top level structures. */
84
85rtx * regno_reg_rtx;
15bbde2b 86
87/* This is *not* reset after each function. It gives each CODE_LABEL
88 in the entire compilation a unique label number. */
89
9105005a 90static GTY(()) int label_num = 1;
15bbde2b 91
15bbde2b 92/* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
ba8dfb08 94 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
95 is set only for MODE_INT and MODE_VECTOR_INT modes. */
15bbde2b 96
ba8dfb08 97rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
15bbde2b 98
1a60f06a 99rtx const_true_rtx;
100
15bbde2b 101REAL_VALUE_TYPE dconst0;
102REAL_VALUE_TYPE dconst1;
103REAL_VALUE_TYPE dconst2;
104REAL_VALUE_TYPE dconstm1;
77e89269 105REAL_VALUE_TYPE dconsthalf;
15bbde2b 106
06f0b99c 107/* Record fixed-point constant 0 and 1. */
108FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
109FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
110
15bbde2b 111/* We make one copy of (const_int C) where C is in
112 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
113 to save space during the compilation and simplify comparisons of
114 integers. */
115
57c097d5 116rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
15bbde2b 117
7d7b0bac 118/* Standard pieces of rtx, to be substituted directly into things. */
119rtx pc_rtx;
120rtx ret_rtx;
121rtx simple_return_rtx;
122rtx cc0_rtx;
123
73f5c1e3 124/* A hash table storing CONST_INTs whose absolute value is greater
125 than MAX_SAVED_CONST_INT. */
126
1f3233d1 127static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
128 htab_t const_int_htab;
73f5c1e3 129
e913b5cd 130static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
131 htab_t const_wide_int_htab;
132
ca74b940 133/* A hash table storing register attribute structures. */
134static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
135 htab_t reg_attrs_htab;
136
2ff23ed0 137/* A hash table storing all CONST_DOUBLEs. */
1f3233d1 138static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_double_htab;
2ff23ed0 140
e397ad8e 141/* A hash table storing all CONST_FIXEDs. */
142static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
143 htab_t const_fixed_htab;
144
fd6ffb7c 145#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
9845d120 146#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
fd6ffb7c 147#define first_label_num (crtl->emit.x_first_label_num)
15bbde2b 148
265be050 149static void set_used_decls (tree);
35cb5232 150static void mark_label_nuses (rtx);
151static hashval_t const_int_htab_hash (const void *);
152static int const_int_htab_eq (const void *, const void *);
e913b5cd 153#if TARGET_SUPPORTS_WIDE_INT
154static hashval_t const_wide_int_htab_hash (const void *);
155static int const_wide_int_htab_eq (const void *, const void *);
156static rtx lookup_const_wide_int (rtx);
157#endif
35cb5232 158static hashval_t const_double_htab_hash (const void *);
159static int const_double_htab_eq (const void *, const void *);
160static rtx lookup_const_double (rtx);
e397ad8e 161static hashval_t const_fixed_htab_hash (const void *);
162static int const_fixed_htab_eq (const void *, const void *);
163static rtx lookup_const_fixed (rtx);
35cb5232 164static hashval_t reg_attrs_htab_hash (const void *);
165static int reg_attrs_htab_eq (const void *, const void *);
166static reg_attrs *get_reg_attrs (tree, int);
6e68dcb2 167static rtx gen_const_vector (enum machine_mode, int);
0e0727c4 168static void copy_rtx_if_shared_1 (rtx *orig);
73f5c1e3 169
3cd757b1 170/* Probability of the conditional branch currently proceeded by try_split.
171 Set to -1 otherwise. */
172int split_branch_probability = -1;
649d8da6 173\f
73f5c1e3 174/* Returns a hash code for X (which is a really a CONST_INT). */
175
176static hashval_t
35cb5232 177const_int_htab_hash (const void *x)
73f5c1e3 178{
dd9b9fc5 179 return (hashval_t) INTVAL ((const_rtx) x);
73f5c1e3 180}
181
6ef828f9 182/* Returns nonzero if the value represented by X (which is really a
73f5c1e3 183 CONST_INT) is the same as that given by Y (which is really a
184 HOST_WIDE_INT *). */
185
186static int
35cb5232 187const_int_htab_eq (const void *x, const void *y)
73f5c1e3 188{
dd9b9fc5 189 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
2ff23ed0 190}
191
e913b5cd 192#if TARGET_SUPPORTS_WIDE_INT
193/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
194
195static hashval_t
196const_wide_int_htab_hash (const void *x)
197{
198 int i;
199 HOST_WIDE_INT hash = 0;
200 const_rtx xr = (const_rtx) x;
201
202 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
203 hash += CONST_WIDE_INT_ELT (xr, i);
204
205 return (hashval_t) hash;
206}
207
208/* Returns nonzero if the value represented by X (which is really a
209 CONST_WIDE_INT) is the same as that given by Y (which is really a
210 CONST_WIDE_INT). */
211
212static int
213const_wide_int_htab_eq (const void *x, const void *y)
214{
215 int i;
b3fba3cd 216 const_rtx xr = (const_rtx) x;
217 const_rtx yr = (const_rtx) y;
e913b5cd 218 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
219 return 0;
220
221 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
222 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
223 return 0;
ddb1be65 224
e913b5cd 225 return 1;
226}
227#endif
228
2ff23ed0 229/* Returns a hash code for X (which is really a CONST_DOUBLE). */
230static hashval_t
35cb5232 231const_double_htab_hash (const void *x)
2ff23ed0 232{
dd9b9fc5 233 const_rtx const value = (const_rtx) x;
3393215f 234 hashval_t h;
2ff23ed0 235
e913b5cd 236 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
3393215f 237 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
238 else
a5760913 239 {
e2e205b3 240 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
a5760913 241 /* MODE is used in the comparison, so it should be in the hash. */
242 h ^= GET_MODE (value);
243 }
2ff23ed0 244 return h;
245}
246
6ef828f9 247/* Returns nonzero if the value represented by X (really a ...)
2ff23ed0 248 is the same as that represented by Y (really a ...) */
249static int
35cb5232 250const_double_htab_eq (const void *x, const void *y)
2ff23ed0 251{
dd9b9fc5 252 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
2ff23ed0 253
254 if (GET_MODE (a) != GET_MODE (b))
255 return 0;
e913b5cd 256 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
f82a103d 257 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
258 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
259 else
260 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
261 CONST_DOUBLE_REAL_VALUE (b));
73f5c1e3 262}
263
e397ad8e 264/* Returns a hash code for X (which is really a CONST_FIXED). */
265
266static hashval_t
267const_fixed_htab_hash (const void *x)
268{
a9f1838b 269 const_rtx const value = (const_rtx) x;
e397ad8e 270 hashval_t h;
271
272 h = fixed_hash (CONST_FIXED_VALUE (value));
273 /* MODE is used in the comparison, so it should be in the hash. */
274 h ^= GET_MODE (value);
275 return h;
276}
277
278/* Returns nonzero if the value represented by X (really a ...)
279 is the same as that represented by Y (really a ...). */
280
281static int
282const_fixed_htab_eq (const void *x, const void *y)
283{
a9f1838b 284 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
e397ad8e 285
286 if (GET_MODE (a) != GET_MODE (b))
287 return 0;
288 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
289}
290
d72886b5 291/* Return true if the given memory attributes are equal. */
73f5c1e3 292
7e304b71 293bool
d72886b5 294mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
73f5c1e3 295{
7e304b71 296 if (p == q)
297 return true;
298 if (!p || !q)
299 return false;
6d58bcba 300 return (p->alias == q->alias
301 && p->offset_known_p == q->offset_known_p
302 && (!p->offset_known_p || p->offset == q->offset)
303 && p->size_known_p == q->size_known_p
304 && (!p->size_known_p || p->size == q->size)
305 && p->align == q->align
bd1a81f7 306 && p->addrspace == q->addrspace
2f16183e 307 && (p->expr == q->expr
308 || (p->expr != NULL_TREE && q->expr != NULL_TREE
309 && operand_equal_p (p->expr, q->expr, 0))));
73f5c1e3 310}
311
d72886b5 312/* Set MEM's memory attributes so that they are the same as ATTRS. */
5cc193e7 313
d72886b5 314static void
315set_mem_attrs (rtx mem, mem_attrs *attrs)
316{
d72886b5 317 /* If everything is the default, we can just clear the attributes. */
318 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
319 {
320 MEM_ATTRS (mem) = 0;
321 return;
322 }
c6259b83 323
8dc3230c 324 if (!MEM_ATTRS (mem)
325 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
c6259b83 326 {
25a27413 327 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
8dc3230c 328 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
c6259b83 329 }
73f5c1e3 330}
331
ca74b940 332/* Returns a hash code for X (which is a really a reg_attrs *). */
333
334static hashval_t
35cb5232 335reg_attrs_htab_hash (const void *x)
ca74b940 336{
aae87fc3 337 const reg_attrs *const p = (const reg_attrs *) x;
ca74b940 338
e19e0a33 339 return ((p->offset * 1000) ^ (intptr_t) p->decl);
ca74b940 340}
341
7ef5b942 342/* Returns nonzero if the value represented by X (which is really a
ca74b940 343 reg_attrs *) is the same as that given by Y (which is also really a
344 reg_attrs *). */
345
346static int
35cb5232 347reg_attrs_htab_eq (const void *x, const void *y)
ca74b940 348{
aae87fc3 349 const reg_attrs *const p = (const reg_attrs *) x;
350 const reg_attrs *const q = (const reg_attrs *) y;
ca74b940 351
352 return (p->decl == q->decl && p->offset == q->offset);
353}
354/* Allocate a new reg_attrs structure and insert it into the hash table if
355 one identical to it is not already in the table. We are doing this for
356 MEM of mode MODE. */
357
358static reg_attrs *
35cb5232 359get_reg_attrs (tree decl, int offset)
ca74b940 360{
361 reg_attrs attrs;
362 void **slot;
363
364 /* If everything is the default, we can just return zero. */
365 if (decl == 0 && offset == 0)
366 return 0;
367
368 attrs.decl = decl;
369 attrs.offset = offset;
370
371 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
372 if (*slot == 0)
373 {
25a27413 374 *slot = ggc_alloc<reg_attrs> ();
ca74b940 375 memcpy (*slot, &attrs, sizeof (reg_attrs));
376 }
377
2457c754 378 return (reg_attrs *) *slot;
ca74b940 379}
380
3072d30e 381
382#if !HAVE_blockage
e12b44a3 383/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
384 and to block register equivalences to be seen across this insn. */
3072d30e 385
386rtx
387gen_blockage (void)
388{
389 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
390 MEM_VOLATILE_P (x) = true;
391 return x;
392}
393#endif
394
395
22cf44bc 396/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
397 don't attempt to share with the various global pieces of rtl (such as
398 frame_pointer_rtx). */
399
400rtx
35cb5232 401gen_raw_REG (enum machine_mode mode, int regno)
22cf44bc 402{
403 rtx x = gen_rtx_raw_REG (mode, regno);
404 ORIGINAL_REGNO (x) = regno;
405 return x;
406}
407
7014838c 408/* There are some RTL codes that require special attention; the generation
409 functions do the raw handling. If you add to this list, modify
410 special_rtx in gengenrtl.c as well. */
411
3ad7bb1c 412rtx
35cb5232 413gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3ad7bb1c 414{
73f5c1e3 415 void **slot;
416
3ad7bb1c 417 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
57c097d5 418 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3ad7bb1c 419
420#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
421 if (const_true_rtx && arg == STORE_FLAG_VALUE)
422 return const_true_rtx;
423#endif
424
73f5c1e3 425 /* Look up the CONST_INT in the hash table. */
2b3dbc20 426 slot = htab_find_slot_with_hash (const_int_htab, &arg,
427 (hashval_t) arg, INSERT);
7f2875d3 428 if (*slot == 0)
d7c47c0e 429 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
73f5c1e3 430
431 return (rtx) *slot;
3ad7bb1c 432}
433
2d232d05 434rtx
35cb5232 435gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2d232d05 436{
437 return GEN_INT (trunc_int_for_mode (c, mode));
438}
439
2ff23ed0 440/* CONST_DOUBLEs might be created from pairs of integers, or from
441 REAL_VALUE_TYPEs. Also, their length is known only at run time,
442 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
443
444/* Determine whether REAL, a CONST_DOUBLE, already exists in the
445 hash table. If so, return its counterpart; otherwise add it
446 to the hash table and return it. */
447static rtx
35cb5232 448lookup_const_double (rtx real)
2ff23ed0 449{
450 void **slot = htab_find_slot (const_double_htab, real, INSERT);
451 if (*slot == 0)
452 *slot = real;
453
454 return (rtx) *slot;
455}
7f2875d3 456
2ff23ed0 457/* Return a CONST_DOUBLE rtx for a floating-point value specified by
458 VALUE in mode MODE. */
67f2a2eb 459rtx
35cb5232 460const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
67f2a2eb 461{
2ff23ed0 462 rtx real = rtx_alloc (CONST_DOUBLE);
463 PUT_MODE (real, mode);
464
e8aaae4e 465 real->u.rv = value;
2ff23ed0 466
467 return lookup_const_double (real);
468}
469
e397ad8e 470/* Determine whether FIXED, a CONST_FIXED, already exists in the
471 hash table. If so, return its counterpart; otherwise add it
472 to the hash table and return it. */
473
474static rtx
475lookup_const_fixed (rtx fixed)
476{
477 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
478 if (*slot == 0)
479 *slot = fixed;
480
481 return (rtx) *slot;
482}
483
484/* Return a CONST_FIXED rtx for a fixed-point value specified by
485 VALUE in mode MODE. */
486
487rtx
488const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
489{
490 rtx fixed = rtx_alloc (CONST_FIXED);
491 PUT_MODE (fixed, mode);
492
493 fixed->u.fv = value;
494
495 return lookup_const_fixed (fixed);
496}
497
e913b5cd 498#if TARGET_SUPPORTS_WIDE_INT == 0
33274180 499/* Constructs double_int from rtx CST. */
500
501double_int
502rtx_to_double_int (const_rtx cst)
503{
504 double_int r;
505
506 if (CONST_INT_P (cst))
cf8f0e63 507 r = double_int::from_shwi (INTVAL (cst));
78f1962f 508 else if (CONST_DOUBLE_AS_INT_P (cst))
33274180 509 {
510 r.low = CONST_DOUBLE_LOW (cst);
511 r.high = CONST_DOUBLE_HIGH (cst);
512 }
513 else
514 gcc_unreachable ();
515
516 return r;
517}
e913b5cd 518#endif
519
520#if TARGET_SUPPORTS_WIDE_INT
a342dbb2 521/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
522 If so, return its counterpart; otherwise add it to the hash table and
e913b5cd 523 return it. */
33274180 524
e913b5cd 525static rtx
526lookup_const_wide_int (rtx wint)
527{
528 void **slot = htab_find_slot (const_wide_int_htab, wint, INSERT);
529 if (*slot == 0)
530 *slot = wint;
33274180 531
e913b5cd 532 return (rtx) *slot;
533}
534#endif
3e052aec 535
a342dbb2 536/* Return an rtx constant for V, given that the constant has mode MODE.
537 The returned rtx will be a CONST_INT if V fits, otherwise it will be
538 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
539 (if TARGET_SUPPORTS_WIDE_INT). */
540
3e052aec 541rtx
28e557ef 542immed_wide_int_const (const wide_int_ref &v, enum machine_mode mode)
3e052aec 543{
e913b5cd 544 unsigned int len = v.get_len ();
545 unsigned int prec = GET_MODE_PRECISION (mode);
546
547 /* Allow truncation but not extension since we do not know if the
548 number is signed or unsigned. */
549 gcc_assert (prec <= v.get_precision ());
550
551 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
552 return gen_int_mode (v.elt (0), mode);
553
554#if TARGET_SUPPORTS_WIDE_INT
555 {
556 unsigned int i;
557 rtx value;
ddb1be65 558 unsigned int blocks_needed
e913b5cd 559 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
560
561 if (len > blocks_needed)
562 len = blocks_needed;
563
564 value = const_wide_int_alloc (len);
565
566 /* It is so tempting to just put the mode in here. Must control
567 myself ... */
568 PUT_MODE (value, VOIDmode);
05c25ee6 569 CWI_PUT_NUM_ELEM (value, len);
e913b5cd 570
571 for (i = 0; i < len; i++)
05363b4a 572 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
e913b5cd 573
574 return lookup_const_wide_int (value);
575 }
576#else
05363b4a 577 return immed_double_const (v.elt (0), v.elt (1), mode);
e913b5cd 578#endif
3e052aec 579}
580
e913b5cd 581#if TARGET_SUPPORTS_WIDE_INT == 0
2ff23ed0 582/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
583 of ints: I0 is the low-order word and I1 is the high-order word.
24cd46a7 584 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
db20fb47 585 implied upper bits are copies of the high bit of i1. The value
586 itself is neither signed nor unsigned. Do not use this routine for
587 non-integer modes; convert to REAL_VALUE_TYPE and use
588 CONST_DOUBLE_FROM_REAL_VALUE. */
2ff23ed0 589
590rtx
35cb5232 591immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
2ff23ed0 592{
593 rtx value;
594 unsigned int i;
595
b1ca4af4 596 /* There are the following cases (note that there are no modes with
24cd46a7 597 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
b1ca4af4 598
599 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
600 gen_int_mode.
db20fb47 601 2) If the value of the integer fits into HOST_WIDE_INT anyway
602 (i.e., i1 consists only from copies of the sign bit, and sign
603 of i0 and i1 are the same), then we return a CONST_INT for i0.
b1ca4af4 604 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
2ff23ed0 605 if (mode != VOIDmode)
606 {
611234b4 607 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
608 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
609 /* We can get a 0 for an error mark. */
610 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
611 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
2ff23ed0 612
b1ca4af4 613 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
614 return gen_int_mode (i0, mode);
2ff23ed0 615 }
616
617 /* If this integer fits in one word, return a CONST_INT. */
618 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
619 return GEN_INT (i0);
620
621 /* We use VOIDmode for integers. */
622 value = rtx_alloc (CONST_DOUBLE);
623 PUT_MODE (value, VOIDmode);
624
625 CONST_DOUBLE_LOW (value) = i0;
626 CONST_DOUBLE_HIGH (value) = i1;
627
628 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
629 XWINT (value, i) = 0;
630
631 return lookup_const_double (value);
67f2a2eb 632}
e913b5cd 633#endif
67f2a2eb 634
3ad7bb1c 635rtx
35cb5232 636gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3ad7bb1c 637{
638 /* In case the MD file explicitly references the frame pointer, have
639 all such references point to the same frame pointer. This is
640 used during frame pointer elimination to distinguish the explicit
641 references to these registers from pseudos that happened to be
642 assigned to them.
643
644 If we have eliminated the frame pointer or arg pointer, we will
645 be using it as a normal register, for example as a spill
646 register. In such cases, we might be accessing it in a mode that
647 is not Pmode and therefore cannot use the pre-allocated rtx.
648
649 Also don't do this when we are making new REGs in reload, since
650 we don't want to get confused with the real pointers. */
651
c6a6cdaa 652 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3ad7bb1c 653 {
71801afc 654 if (regno == FRAME_POINTER_REGNUM
655 && (!reload_completed || frame_pointer_needed))
3ad7bb1c 656 return frame_pointer_rtx;
5ae82d58 657#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
71801afc 658 if (regno == HARD_FRAME_POINTER_REGNUM
659 && (!reload_completed || frame_pointer_needed))
3ad7bb1c 660 return hard_frame_pointer_rtx;
661#endif
5ae82d58 662#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
e8b59353 663 if (regno == ARG_POINTER_REGNUM)
3ad7bb1c 664 return arg_pointer_rtx;
665#endif
666#ifdef RETURN_ADDRESS_POINTER_REGNUM
e8b59353 667 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3ad7bb1c 668 return return_address_pointer_rtx;
669#endif
3473aefe 670 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
8d43ad05 671 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
6ea47475 672 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
d4c5e26d 673 return pic_offset_table_rtx;
e8b59353 674 if (regno == STACK_POINTER_REGNUM)
3ad7bb1c 675 return stack_pointer_rtx;
676 }
677
32b53d83 678#if 0
90295bd2 679 /* If the per-function register table has been set up, try to re-use
32b53d83 680 an existing entry in that table to avoid useless generation of RTL.
681
682 This code is disabled for now until we can fix the various backends
683 which depend on having non-shared hard registers in some cases. Long
684 term we want to re-enable this code as it can significantly cut down
71801afc 685 on the amount of useless RTL that gets generated.
686
687 We'll also need to fix some code that runs after reload that wants to
688 set ORIGINAL_REGNO. */
689
90295bd2 690 if (cfun
691 && cfun->emit
692 && regno_reg_rtx
693 && regno < FIRST_PSEUDO_REGISTER
694 && reg_raw_mode[regno] == mode)
695 return regno_reg_rtx[regno];
32b53d83 696#endif
90295bd2 697
22cf44bc 698 return gen_raw_REG (mode, regno);
3ad7bb1c 699}
700
b5ba9f3a 701rtx
35cb5232 702gen_rtx_MEM (enum machine_mode mode, rtx addr)
b5ba9f3a 703{
704 rtx rt = gen_rtx_raw_MEM (mode, addr);
705
706 /* This field is not cleared by the mere allocation of the rtx, so
707 we clear it here. */
c6259b83 708 MEM_ATTRS (rt) = 0;
b5ba9f3a 709
710 return rt;
711}
701e46d0 712
e265a6da 713/* Generate a memory referring to non-trapping constant memory. */
714
715rtx
716gen_const_mem (enum machine_mode mode, rtx addr)
717{
718 rtx mem = gen_rtx_MEM (mode, addr);
719 MEM_READONLY_P (mem) = 1;
720 MEM_NOTRAP_P (mem) = 1;
721 return mem;
722}
723
00060fc2 724/* Generate a MEM referring to fixed portions of the frame, e.g., register
725 save areas. */
726
727rtx
728gen_frame_mem (enum machine_mode mode, rtx addr)
729{
730 rtx mem = gen_rtx_MEM (mode, addr);
731 MEM_NOTRAP_P (mem) = 1;
732 set_mem_alias_set (mem, get_frame_alias_set ());
733 return mem;
734}
735
736/* Generate a MEM referring to a temporary use of the stack, not part
737 of the fixed stack frame. For example, something which is pushed
738 by a target splitter. */
739rtx
740gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
741{
742 rtx mem = gen_rtx_MEM (mode, addr);
743 MEM_NOTRAP_P (mem) = 1;
18d50ae6 744 if (!cfun->calls_alloca)
00060fc2 745 set_mem_alias_set (mem, get_frame_alias_set ());
746 return mem;
747}
748
2166bbaa 749/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
750 this construct would be valid, and false otherwise. */
751
752bool
753validate_subreg (enum machine_mode omode, enum machine_mode imode,
7ecb5bb2 754 const_rtx reg, unsigned int offset)
701e46d0 755{
2166bbaa 756 unsigned int isize = GET_MODE_SIZE (imode);
757 unsigned int osize = GET_MODE_SIZE (omode);
758
759 /* All subregs must be aligned. */
760 if (offset % osize != 0)
761 return false;
762
763 /* The subreg offset cannot be outside the inner object. */
764 if (offset >= isize)
765 return false;
766
767 /* ??? This should not be here. Temporarily continue to allow word_mode
768 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
769 Generally, backends are doing something sketchy but it'll take time to
770 fix them all. */
771 if (omode == word_mode)
772 ;
773 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
774 is the culprit here, and not the backends. */
775 else if (osize >= UNITS_PER_WORD && isize >= osize)
776 ;
777 /* Allow component subregs of complex and vector. Though given the below
778 extraction rules, it's not always clear what that means. */
779 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
780 && GET_MODE_INNER (imode) == omode)
781 ;
782 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
783 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
784 represent this. It's questionable if this ought to be represented at
785 all -- why can't this all be hidden in post-reload splitters that make
786 arbitrarily mode changes to the registers themselves. */
787 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
788 ;
789 /* Subregs involving floating point modes are not allowed to
790 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
791 (subreg:SI (reg:DF) 0) isn't. */
792 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
793 {
c6a6cdaa 794 if (! (isize == osize
795 /* LRA can use subreg to store a floating point value in
796 an integer mode. Although the floating point and the
797 integer modes need the same number of hard registers,
798 the size of floating point mode can be less than the
799 integer mode. LRA also uses subregs for a register
800 should be used in different mode in on insn. */
801 || lra_in_progress))
2166bbaa 802 return false;
803 }
701e46d0 804
2166bbaa 805 /* Paradoxical subregs must have offset zero. */
806 if (osize > isize)
807 return offset == 0;
808
809 /* This is a normal subreg. Verify that the offset is representable. */
810
811 /* For hard registers, we already have most of these rules collected in
812 subreg_offset_representable_p. */
813 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
814 {
815 unsigned int regno = REGNO (reg);
816
817#ifdef CANNOT_CHANGE_MODE_CLASS
818 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
819 && GET_MODE_INNER (imode) == omode)
820 ;
821 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
822 return false;
701e46d0 823#endif
2166bbaa 824
825 return subreg_offset_representable_p (regno, imode, offset, omode);
826 }
827
828 /* For pseudo registers, we want most of the same checks. Namely:
829 If the register no larger than a word, the subreg must be lowpart.
830 If the register is larger than a word, the subreg must be the lowpart
831 of a subword. A subreg does *not* perform arbitrary bit extraction.
832 Given that we've already checked mode/offset alignment, we only have
833 to check subword subregs here. */
c6a6cdaa 834 if (osize < UNITS_PER_WORD
835 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
2166bbaa 836 {
837 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
838 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
839 if (offset % UNITS_PER_WORD != low_off)
840 return false;
841 }
842 return true;
843}
844
845rtx
846gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
847{
848 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
2ff23ed0 849 return gen_rtx_raw_SUBREG (mode, reg, offset);
701e46d0 850}
851
c6259b83 852/* Generate a SUBREG representing the least-significant part of REG if MODE
853 is smaller than mode of REG, otherwise paradoxical SUBREG. */
854
701e46d0 855rtx
35cb5232 856gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
701e46d0 857{
858 enum machine_mode inmode;
701e46d0 859
860 inmode = GET_MODE (reg);
861 if (inmode == VOIDmode)
862 inmode = mode;
81802af6 863 return gen_rtx_SUBREG (mode, reg,
864 subreg_lowpart_offset (mode, inmode));
701e46d0 865}
e1398578 866
867rtx
868gen_rtx_VAR_LOCATION (enum machine_mode mode, tree decl, rtx loc,
869 enum var_init_status status)
870{
871 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
872 PAT_VAR_LOCATION_STATUS (x) = status;
873 return x;
874}
7014838c 875\f
15bbde2b 876
cf9ac040 877/* Create an rtvec and stores within it the RTXen passed in the arguments. */
878
15bbde2b 879rtvec
ee582a61 880gen_rtvec (int n, ...)
15bbde2b 881{
cf9ac040 882 int i;
883 rtvec rt_val;
ee582a61 884 va_list p;
15bbde2b 885
ee582a61 886 va_start (p, n);
15bbde2b 887
cf9ac040 888 /* Don't allocate an empty rtvec... */
15bbde2b 889 if (n == 0)
451c8e2f 890 {
891 va_end (p);
892 return NULL_RTVEC;
893 }
15bbde2b 894
cf9ac040 895 rt_val = rtvec_alloc (n);
e5fcd76a 896
15bbde2b 897 for (i = 0; i < n; i++)
cf9ac040 898 rt_val->elem[i] = va_arg (p, rtx);
7ad77798 899
ee582a61 900 va_end (p);
cf9ac040 901 return rt_val;
15bbde2b 902}
903
904rtvec
35cb5232 905gen_rtvec_v (int n, rtx *argp)
15bbde2b 906{
19cb6b50 907 int i;
908 rtvec rt_val;
15bbde2b 909
cf9ac040 910 /* Don't allocate an empty rtvec... */
15bbde2b 911 if (n == 0)
cf9ac040 912 return NULL_RTVEC;
15bbde2b 913
cf9ac040 914 rt_val = rtvec_alloc (n);
15bbde2b 915
916 for (i = 0; i < n; i++)
a4070a91 917 rt_val->elem[i] = *argp++;
15bbde2b 918
919 return rt_val;
920}
921\f
80c70e76 922/* Return the number of bytes between the start of an OUTER_MODE
923 in-memory value and the start of an INNER_MODE in-memory value,
924 given that the former is a lowpart of the latter. It may be a
925 paradoxical lowpart, in which case the offset will be negative
926 on big-endian targets. */
927
928int
929byte_lowpart_offset (enum machine_mode outer_mode,
930 enum machine_mode inner_mode)
931{
932 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
933 return subreg_lowpart_offset (outer_mode, inner_mode);
934 else
935 return -subreg_lowpart_offset (inner_mode, outer_mode);
936}
937\f
15bbde2b 938/* Generate a REG rtx for a new pseudo register of mode MODE.
939 This pseudo is assigned the next sequential register number. */
940
941rtx
35cb5232 942gen_reg_rtx (enum machine_mode mode)
15bbde2b 943{
19cb6b50 944 rtx val;
27a7a23a 945 unsigned int align = GET_MODE_ALIGNMENT (mode);
15bbde2b 946
1b7ff857 947 gcc_assert (can_create_pseudo_p ());
15bbde2b 948
27a7a23a 949 /* If a virtual register with bigger mode alignment is generated,
950 increase stack alignment estimation because it might be spilled
951 to stack later. */
48e1416a 952 if (SUPPORTS_STACK_ALIGNMENT
27a7a23a 953 && crtl->stack_alignment_estimated < align
954 && !crtl->stack_realign_processed)
8645d3e7 955 {
956 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
957 if (crtl->stack_alignment_estimated < min_align)
958 crtl->stack_alignment_estimated = min_align;
959 }
27a7a23a 960
316bc009 961 if (generating_concat_p
962 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
963 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
76c37538 964 {
965 /* For complex modes, don't make a single pseudo.
966 Instead, make a CONCAT of two pseudos.
967 This allows noncontiguous allocation of the real and imaginary parts,
968 which makes much better code. Besides, allocating DCmode
969 pseudos overstrains reload on some machines like the 386. */
970 rtx realpart, imagpart;
e9e12845 971 enum machine_mode partmode = GET_MODE_INNER (mode);
76c37538 972
973 realpart = gen_reg_rtx (partmode);
974 imagpart = gen_reg_rtx (partmode);
3ad7bb1c 975 return gen_rtx_CONCAT (mode, realpart, imagpart);
76c37538 976 }
977
b4c6ce9b 978 /* Do not call gen_reg_rtx with uninitialized crtl. */
979 gcc_assert (crtl->emit.regno_pointer_align_length);
980
ca74b940 981 /* Make sure regno_pointer_align, and regno_reg_rtx are large
fcdc122e 982 enough to have an element for this pseudo reg number. */
15bbde2b 983
fd6ffb7c 984 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
15bbde2b 985 {
fd6ffb7c 986 int old_size = crtl->emit.regno_pointer_align_length;
9ce37fa7 987 char *tmp;
fcdc122e 988 rtx *new1;
fcdc122e 989
9ce37fa7 990 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
991 memset (tmp + old_size, 0, old_size);
992 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
0a893c29 993
2457c754 994 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
0a893c29 995 memset (new1 + old_size, 0, old_size * sizeof (rtx));
15bbde2b 996 regno_reg_rtx = new1;
997
fd6ffb7c 998 crtl->emit.regno_pointer_align_length = old_size * 2;
15bbde2b 999 }
1000
22cf44bc 1001 val = gen_raw_REG (mode, reg_rtx_no);
15bbde2b 1002 regno_reg_rtx[reg_rtx_no++] = val;
1003 return val;
1004}
1005
ea239197 1006/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1007
1008bool
1009reg_is_parm_p (rtx reg)
1010{
1011 tree decl;
1012
1013 gcc_assert (REG_P (reg));
1014 decl = REG_EXPR (reg);
1015 return (decl && TREE_CODE (decl) == PARM_DECL);
1016}
1017
80c70e76 1018/* Update NEW with the same attributes as REG, but with OFFSET added
1019 to the REG_OFFSET. */
ca74b940 1020
1a6a0f2a 1021static void
9ce37fa7 1022update_reg_offset (rtx new_rtx, rtx reg, int offset)
ca74b940 1023{
9ce37fa7 1024 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
35cb5232 1025 REG_OFFSET (reg) + offset);
1a6a0f2a 1026}
1027
80c70e76 1028/* Generate a register with same attributes as REG, but with OFFSET
1029 added to the REG_OFFSET. */
1a6a0f2a 1030
1031rtx
1032gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
1033 int offset)
1034{
9ce37fa7 1035 rtx new_rtx = gen_rtx_REG (mode, regno);
1a6a0f2a 1036
9ce37fa7 1037 update_reg_offset (new_rtx, reg, offset);
1038 return new_rtx;
1a6a0f2a 1039}
1040
1041/* Generate a new pseudo-register with the same attributes as REG, but
80c70e76 1042 with OFFSET added to the REG_OFFSET. */
1a6a0f2a 1043
1044rtx
1045gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1046{
9ce37fa7 1047 rtx new_rtx = gen_reg_rtx (mode);
1a6a0f2a 1048
9ce37fa7 1049 update_reg_offset (new_rtx, reg, offset);
1050 return new_rtx;
ca74b940 1051}
1052
80c70e76 1053/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1054 new register is a (possibly paradoxical) lowpart of the old one. */
ca74b940 1055
1056void
80c70e76 1057adjust_reg_mode (rtx reg, enum machine_mode mode)
ca74b940 1058{
80c70e76 1059 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1060 PUT_MODE (reg, mode);
1061}
1062
1063/* Copy REG's attributes from X, if X has any attributes. If REG and X
1064 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1065
1066void
1067set_reg_attrs_from_value (rtx reg, rtx x)
1068{
1069 int offset;
e623c80a 1070 bool can_be_reg_pointer = true;
1071
1072 /* Don't call mark_reg_pointer for incompatible pointer sign
1073 extension. */
1074 while (GET_CODE (x) == SIGN_EXTEND
1075 || GET_CODE (x) == ZERO_EXTEND
1076 || GET_CODE (x) == TRUNCATE
1077 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1078 {
1079#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
1080 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
1081 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
1082 can_be_reg_pointer = false;
1083#endif
1084 x = XEXP (x, 0);
1085 }
80c70e76 1086
ac56145e 1087 /* Hard registers can be reused for multiple purposes within the same
1088 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1089 on them is wrong. */
1090 if (HARD_REGISTER_P (reg))
1091 return;
1092
80c70e76 1093 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
ae12ddda 1094 if (MEM_P (x))
1095 {
da443c27 1096 if (MEM_OFFSET_KNOWN_P (x))
1097 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1098 MEM_OFFSET (x) + offset);
e623c80a 1099 if (can_be_reg_pointer && MEM_POINTER (x))
40b93dba 1100 mark_reg_pointer (reg, 0);
ae12ddda 1101 }
1102 else if (REG_P (x))
1103 {
1104 if (REG_ATTRS (x))
1105 update_reg_offset (reg, x, offset);
e623c80a 1106 if (can_be_reg_pointer && REG_POINTER (x))
ae12ddda 1107 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1108 }
1109}
1110
1111/* Generate a REG rtx for a new pseudo register, copying the mode
1112 and attributes from X. */
1113
1114rtx
1115gen_reg_rtx_and_attrs (rtx x)
1116{
1117 rtx reg = gen_reg_rtx (GET_MODE (x));
1118 set_reg_attrs_from_value (reg, x);
1119 return reg;
ca74b940 1120}
1121
263c416c 1122/* Set the register attributes for registers contained in PARM_RTX.
1123 Use needed values from memory attributes of MEM. */
1124
1125void
35cb5232 1126set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
263c416c 1127{
8ad4c111 1128 if (REG_P (parm_rtx))
80c70e76 1129 set_reg_attrs_from_value (parm_rtx, mem);
263c416c 1130 else if (GET_CODE (parm_rtx) == PARALLEL)
1131 {
1132 /* Check for a NULL entry in the first slot, used to indicate that the
1133 parameter goes both on the stack and in registers. */
1134 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1135 for (; i < XVECLEN (parm_rtx, 0); i++)
1136 {
1137 rtx x = XVECEXP (parm_rtx, 0, i);
8ad4c111 1138 if (REG_P (XEXP (x, 0)))
263c416c 1139 REG_ATTRS (XEXP (x, 0))
1140 = get_reg_attrs (MEM_EXPR (mem),
1141 INTVAL (XEXP (x, 1)));
1142 }
1143 }
1144}
1145
80c70e76 1146/* Set the REG_ATTRS for registers in value X, given that X represents
1147 decl T. */
ca74b940 1148
a8dd994c 1149void
80c70e76 1150set_reg_attrs_for_decl_rtl (tree t, rtx x)
1151{
1152 if (GET_CODE (x) == SUBREG)
ebfc27f5 1153 {
80c70e76 1154 gcc_assert (subreg_lowpart_p (x));
1155 x = SUBREG_REG (x);
ebfc27f5 1156 }
8ad4c111 1157 if (REG_P (x))
80c70e76 1158 REG_ATTRS (x)
1159 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
3ff99faa 1160 DECL_MODE (t)));
ca74b940 1161 if (GET_CODE (x) == CONCAT)
1162 {
1163 if (REG_P (XEXP (x, 0)))
1164 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1165 if (REG_P (XEXP (x, 1)))
1166 REG_ATTRS (XEXP (x, 1))
1167 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1168 }
1169 if (GET_CODE (x) == PARALLEL)
1170 {
85d25060 1171 int i, start;
1172
1173 /* Check for a NULL entry, used to indicate that the parameter goes
1174 both on the stack and in registers. */
1175 if (XEXP (XVECEXP (x, 0, 0), 0))
1176 start = 0;
1177 else
1178 start = 1;
1179
1180 for (i = start; i < XVECLEN (x, 0); i++)
ca74b940 1181 {
1182 rtx y = XVECEXP (x, 0, i);
1183 if (REG_P (XEXP (y, 0)))
1184 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1185 }
1186 }
1187}
1188
80c70e76 1189/* Assign the RTX X to declaration T. */
1190
1191void
1192set_decl_rtl (tree t, rtx x)
1193{
1194 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1195 if (x)
1196 set_reg_attrs_for_decl_rtl (t, x);
1197}
1198
d91cf567 1199/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1200 if the ABI requires the parameter to be passed by reference. */
80c70e76 1201
1202void
d91cf567 1203set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
80c70e76 1204{
1205 DECL_INCOMING_RTL (t) = x;
d91cf567 1206 if (x && !by_reference_p)
80c70e76 1207 set_reg_attrs_for_decl_rtl (t, x);
1208}
1209
de8ecfb5 1210/* Identify REG (which may be a CONCAT) as a user register. */
1211
1212void
35cb5232 1213mark_user_reg (rtx reg)
de8ecfb5 1214{
1215 if (GET_CODE (reg) == CONCAT)
1216 {
1217 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1218 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1219 }
de8ecfb5 1220 else
611234b4 1221 {
1222 gcc_assert (REG_P (reg));
1223 REG_USERVAR_P (reg) = 1;
1224 }
de8ecfb5 1225}
1226
d4c332ff 1227/* Identify REG as a probable pointer register and show its alignment
1228 as ALIGN, if nonzero. */
15bbde2b 1229
1230void
35cb5232 1231mark_reg_pointer (rtx reg, int align)
15bbde2b 1232{
e61a0a7f 1233 if (! REG_POINTER (reg))
612409a6 1234 {
e61a0a7f 1235 REG_POINTER (reg) = 1;
d4c332ff 1236
612409a6 1237 if (align)
1238 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1239 }
1240 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
8b332087 1241 /* We can no-longer be sure just how aligned this pointer is. */
d4c332ff 1242 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
15bbde2b 1243}
1244
1245/* Return 1 plus largest pseudo reg number used in the current function. */
1246
1247int
35cb5232 1248max_reg_num (void)
15bbde2b 1249{
1250 return reg_rtx_no;
1251}
1252
1253/* Return 1 + the largest label number used so far in the current function. */
1254
1255int
35cb5232 1256max_label_num (void)
15bbde2b 1257{
15bbde2b 1258 return label_num;
1259}
1260
1261/* Return first label number used in this function (if any were used). */
1262
1263int
35cb5232 1264get_first_label_num (void)
15bbde2b 1265{
1266 return first_label_num;
1267}
4ee9c684 1268
1269/* If the rtx for label was created during the expansion of a nested
1270 function, then first_label_num won't include this label number.
f0b5f617 1271 Fix this now so that array indices work later. */
4ee9c684 1272
1273void
1274maybe_set_first_label_num (rtx x)
1275{
1276 if (CODE_LABEL_NUMBER (x) < first_label_num)
1277 first_label_num = CODE_LABEL_NUMBER (x);
1278}
15bbde2b 1279\f
1280/* Return a value representing some low-order bits of X, where the number
1281 of low-order bits is given by MODE. Note that no conversion is done
d823ba47 1282 between floating-point and fixed-point values, rather, the bit
15bbde2b 1283 representation is returned.
1284
1285 This function handles the cases in common between gen_lowpart, below,
1286 and two variants in cse.c and combine.c. These are the cases that can
1287 be safely handled at all points in the compilation.
1288
1289 If this is not a case we can handle, return 0. */
1290
1291rtx
35cb5232 1292gen_lowpart_common (enum machine_mode mode, rtx x)
15bbde2b 1293{
701e46d0 1294 int msize = GET_MODE_SIZE (mode);
791172c5 1295 int xsize;
701e46d0 1296 int offset = 0;
791172c5 1297 enum machine_mode innermode;
1298
1299 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1300 so we have to make one up. Yuk. */
1301 innermode = GET_MODE (x);
971ba038 1302 if (CONST_INT_P (x)
6c799a83 1303 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
791172c5 1304 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1305 else if (innermode == VOIDmode)
24cd46a7 1306 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
48e1416a 1307
791172c5 1308 xsize = GET_MODE_SIZE (innermode);
1309
611234b4 1310 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
15bbde2b 1311
791172c5 1312 if (innermode == mode)
15bbde2b 1313 return x;
1314
1315 /* MODE must occupy no more words than the mode of X. */
791172c5 1316 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1317 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
15bbde2b 1318 return 0;
1319
9abe1e73 1320 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
cee7491d 1321 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
9abe1e73 1322 return 0;
1323
791172c5 1324 offset = subreg_lowpart_offset (mode, innermode);
15bbde2b 1325
1326 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
64115b39 1327 && (GET_MODE_CLASS (mode) == MODE_INT
1328 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
15bbde2b 1329 {
1330 /* If we are getting the low-order part of something that has been
1331 sign- or zero-extended, we can either just use the object being
1332 extended or make a narrower extension. If we want an even smaller
1333 piece than the size of the object being extended, call ourselves
1334 recursively.
1335
1336 This case is used mostly by combine and cse. */
1337
1338 if (GET_MODE (XEXP (x, 0)) == mode)
1339 return XEXP (x, 0);
791172c5 1340 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
15bbde2b 1341 return gen_lowpart_common (mode, XEXP (x, 0));
791172c5 1342 else if (msize < xsize)
3ad7bb1c 1343 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
15bbde2b 1344 }
8ad4c111 1345 else if (GET_CODE (x) == SUBREG || REG_P (x)
791172c5 1346 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
efa08fc2 1347 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
791172c5 1348 return simplify_gen_subreg (mode, x, innermode, offset);
4a307dd5 1349
15bbde2b 1350 /* Otherwise, we can't do this. */
1351 return 0;
1352}
1353\f
d56d0ca2 1354rtx
35cb5232 1355gen_highpart (enum machine_mode mode, rtx x)
d56d0ca2 1356{
701e46d0 1357 unsigned int msize = GET_MODE_SIZE (mode);
81802af6 1358 rtx result;
701e46d0 1359
d56d0ca2 1360 /* This case loses if X is a subreg. To catch bugs early,
1361 complain if an invalid MODE is used even in other cases. */
611234b4 1362 gcc_assert (msize <= UNITS_PER_WORD
1363 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
701e46d0 1364
81802af6 1365 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1366 subreg_highpart_offset (mode, GET_MODE (x)));
611234b4 1367 gcc_assert (result);
48e1416a 1368
a8c36ab2 1369 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1370 the target if we have a MEM. gen_highpart must return a valid operand,
1371 emitting code if necessary to do so. */
611234b4 1372 if (MEM_P (result))
1373 {
1374 result = validize_mem (result);
1375 gcc_assert (result);
1376 }
48e1416a 1377
81802af6 1378 return result;
1379}
704fcf2b 1380
29d56731 1381/* Like gen_highpart, but accept mode of EXP operand in case EXP can
704fcf2b 1382 be VOIDmode constant. */
1383rtx
35cb5232 1384gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
704fcf2b 1385{
1386 if (GET_MODE (exp) != VOIDmode)
1387 {
611234b4 1388 gcc_assert (GET_MODE (exp) == innermode);
704fcf2b 1389 return gen_highpart (outermode, exp);
1390 }
1391 return simplify_gen_subreg (outermode, exp, innermode,
1392 subreg_highpart_offset (outermode, innermode));
1393}
d4c5e26d 1394
80c70e76 1395/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
10ef59ac 1396
81802af6 1397unsigned int
35cb5232 1398subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
81802af6 1399{
1400 unsigned int offset = 0;
1401 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
10ef59ac 1402
81802af6 1403 if (difference > 0)
d56d0ca2 1404 {
81802af6 1405 if (WORDS_BIG_ENDIAN)
1406 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1407 if (BYTES_BIG_ENDIAN)
1408 offset += difference % UNITS_PER_WORD;
d56d0ca2 1409 }
701e46d0 1410
81802af6 1411 return offset;
d56d0ca2 1412}
64ab453f 1413
81802af6 1414/* Return offset in bytes to get OUTERMODE high part
1415 of the value in mode INNERMODE stored in memory in target format. */
1416unsigned int
35cb5232 1417subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
64ab453f 1418{
1419 unsigned int offset = 0;
1420 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1421
611234b4 1422 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
81802af6 1423
64ab453f 1424 if (difference > 0)
1425 {
81802af6 1426 if (! WORDS_BIG_ENDIAN)
64ab453f 1427 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
81802af6 1428 if (! BYTES_BIG_ENDIAN)
64ab453f 1429 offset += difference % UNITS_PER_WORD;
1430 }
1431
81802af6 1432 return offset;
64ab453f 1433}
d56d0ca2 1434
15bbde2b 1435/* Return 1 iff X, assumed to be a SUBREG,
1436 refers to the least significant part of its containing reg.
1437 If X is not a SUBREG, always return 1 (it is its own low part!). */
1438
1439int
b7bf20db 1440subreg_lowpart_p (const_rtx x)
15bbde2b 1441{
1442 if (GET_CODE (x) != SUBREG)
1443 return 1;
7e14c1bf 1444 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1445 return 0;
15bbde2b 1446
81802af6 1447 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1448 == SUBREG_BYTE (x));
15bbde2b 1449}
b537bfdb 1450
1451/* Return true if X is a paradoxical subreg, false otherwise. */
1452bool
1453paradoxical_subreg_p (const_rtx x)
1454{
1455 if (GET_CODE (x) != SUBREG)
1456 return false;
1457 return (GET_MODE_PRECISION (GET_MODE (x))
1458 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1459}
15bbde2b 1460\f
701e46d0 1461/* Return subword OFFSET of operand OP.
1462 The word number, OFFSET, is interpreted as the word number starting
1463 at the low-order address. OFFSET 0 is the low-order word if not
1464 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1465
1466 If we cannot extract the required word, we return zero. Otherwise,
1467 an rtx corresponding to the requested word will be returned.
1468
1469 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1470 reload has completed, a valid address will always be returned. After
1471 reload, if a valid address cannot be returned, we return zero.
1472
1473 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1474 it is the responsibility of the caller.
1475
1476 MODE is the mode of OP in case it is a CONST_INT.
1477
1478 ??? This is still rather broken for some cases. The problem for the
1479 moment is that all callers of this thing provide no 'goal mode' to
1480 tell us to work with. This exists because all callers were written
84e81e84 1481 in a word based SUBREG world.
1482 Now use of this function can be deprecated by simplify_subreg in most
1483 cases.
1484 */
701e46d0 1485
1486rtx
35cb5232 1487operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
701e46d0 1488{
1489 if (mode == VOIDmode)
1490 mode = GET_MODE (op);
1491
611234b4 1492 gcc_assert (mode != VOIDmode);
701e46d0 1493
6312a35e 1494 /* If OP is narrower than a word, fail. */
701e46d0 1495 if (mode != BLKmode
1496 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1497 return 0;
1498
6312a35e 1499 /* If we want a word outside OP, return zero. */
701e46d0 1500 if (mode != BLKmode
1501 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1502 return const0_rtx;
1503
701e46d0 1504 /* Form a new MEM at the requested address. */
e16ceb8e 1505 if (MEM_P (op))
701e46d0 1506 {
9ce37fa7 1507 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
701e46d0 1508
e4e86ec5 1509 if (! validate_address)
9ce37fa7 1510 return new_rtx;
e4e86ec5 1511
1512 else if (reload_completed)
701e46d0 1513 {
bd1a81f7 1514 if (! strict_memory_address_addr_space_p (word_mode,
1515 XEXP (new_rtx, 0),
1516 MEM_ADDR_SPACE (op)))
e4e86ec5 1517 return 0;
701e46d0 1518 }
e4e86ec5 1519 else
9ce37fa7 1520 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
701e46d0 1521 }
1522
84e81e84 1523 /* Rest can be handled by simplify_subreg. */
1524 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
701e46d0 1525}
1526
89f18f73 1527/* Similar to `operand_subword', but never return 0. If we can't
1528 extract the required subword, put OP into a register and try again.
1529 The second attempt must succeed. We always validate the address in
1530 this case.
15bbde2b 1531
1532 MODE is the mode of OP, in case it is CONST_INT. */
1533
1534rtx
35cb5232 1535operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
15bbde2b 1536{
701e46d0 1537 rtx result = operand_subword (op, offset, 1, mode);
15bbde2b 1538
1539 if (result)
1540 return result;
1541
1542 if (mode != BLKmode && mode != VOIDmode)
ac825d29 1543 {
1544 /* If this is a register which can not be accessed by words, copy it
1545 to a pseudo register. */
8ad4c111 1546 if (REG_P (op))
ac825d29 1547 op = copy_to_reg (op);
1548 else
1549 op = force_reg (mode, op);
1550 }
15bbde2b 1551
701e46d0 1552 result = operand_subword (op, offset, 1, mode);
611234b4 1553 gcc_assert (result);
15bbde2b 1554
1555 return result;
1556}
1557\f
b3ff8d90 1558/* Returns 1 if both MEM_EXPR can be considered equal
1559 and 0 otherwise. */
1560
1561int
52d07779 1562mem_expr_equal_p (const_tree expr1, const_tree expr2)
b3ff8d90 1563{
1564 if (expr1 == expr2)
1565 return 1;
1566
1567 if (! expr1 || ! expr2)
1568 return 0;
1569
1570 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1571 return 0;
1572
3a443843 1573 return operand_equal_p (expr1, expr2, 0);
b3ff8d90 1574}
1575
ad0a178f 1576/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1577 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1578 -1 if not known. */
1579
1580int
7cfdc2f0 1581get_mem_align_offset (rtx mem, unsigned int align)
ad0a178f 1582{
1583 tree expr;
1584 unsigned HOST_WIDE_INT offset;
1585
1586 /* This function can't use
da443c27 1587 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
98ab9e8f 1588 || (MAX (MEM_ALIGN (mem),
957d0361 1589 MAX (align, get_object_alignment (MEM_EXPR (mem))))
ad0a178f 1590 < align))
1591 return -1;
1592 else
da443c27 1593 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
ad0a178f 1594 for two reasons:
1595 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1596 for <variable>. get_inner_reference doesn't handle it and
1597 even if it did, the alignment in that case needs to be determined
1598 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1599 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1600 isn't sufficiently aligned, the object it is in might be. */
1601 gcc_assert (MEM_P (mem));
1602 expr = MEM_EXPR (mem);
da443c27 1603 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
ad0a178f 1604 return -1;
1605
da443c27 1606 offset = MEM_OFFSET (mem);
ad0a178f 1607 if (DECL_P (expr))
1608 {
1609 if (DECL_ALIGN (expr) < align)
1610 return -1;
1611 }
1612 else if (INDIRECT_REF_P (expr))
1613 {
1614 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1615 return -1;
1616 }
1617 else if (TREE_CODE (expr) == COMPONENT_REF)
1618 {
1619 while (1)
1620 {
1621 tree inner = TREE_OPERAND (expr, 0);
1622 tree field = TREE_OPERAND (expr, 1);
1623 tree byte_offset = component_ref_field_offset (expr);
1624 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1625
1626 if (!byte_offset
e913b5cd 1627 || !tree_fits_uhwi_p (byte_offset)
1628 || !tree_fits_uhwi_p (bit_offset))
ad0a178f 1629 return -1;
1630
e913b5cd 1631 offset += tree_to_uhwi (byte_offset);
1632 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
ad0a178f 1633
1634 if (inner == NULL_TREE)
1635 {
1636 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1637 < (unsigned int) align)
1638 return -1;
1639 break;
1640 }
1641 else if (DECL_P (inner))
1642 {
1643 if (DECL_ALIGN (inner) < align)
1644 return -1;
1645 break;
1646 }
1647 else if (TREE_CODE (inner) != COMPONENT_REF)
1648 return -1;
1649 expr = inner;
1650 }
1651 }
1652 else
1653 return -1;
1654
1655 return offset & ((align / BITS_PER_UNIT) - 1);
1656}
1657
310b57a1 1658/* Given REF (a MEM) and T, either the type of X or the expression
c6259b83 1659 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f717f77 1660 if we are making a new object of this type. BITPOS is nonzero if
1661 there is an offset outstanding on T that will be applied later. */
c6259b83 1662
1663void
35cb5232 1664set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1665 HOST_WIDE_INT bitpos)
c6259b83 1666{
6f717f77 1667 HOST_WIDE_INT apply_bitpos = 0;
c6259b83 1668 tree type;
d72886b5 1669 struct mem_attrs attrs, *defattrs, *refattrs;
3f06bd1b 1670 addr_space_t as;
c6259b83 1671
1672 /* It can happen that type_for_mode was given a mode for which there
1673 is no language-level type. In which case it returns NULL, which
1674 we can see here. */
1675 if (t == NULL_TREE)
1676 return;
1677
1678 type = TYPE_P (t) ? t : TREE_TYPE (t);
4ccffa39 1679 if (type == error_mark_node)
1680 return;
c6259b83 1681
c6259b83 1682 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1683 wrong answer, as it assumes that DECL_RTL already has the right alias
1684 info. Callers should not set DECL_RTL until after the call to
1685 set_mem_attributes. */
611234b4 1686 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
c6259b83 1687
d72886b5 1688 memset (&attrs, 0, sizeof (attrs));
1689
96216d37 1690 /* Get the alias set from the expression or type (perhaps using a
2a631e19 1691 front-end routine) and use it. */
d72886b5 1692 attrs.alias = get_alias_set (t);
c6259b83 1693
fbc6244b 1694 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
8d350e69 1695 MEM_POINTER (ref) = POINTER_TYPE_P (type);
c6259b83 1696
d8dccfe9 1697 /* Default values from pre-existing memory attributes if present. */
d72886b5 1698 refattrs = MEM_ATTRS (ref);
1699 if (refattrs)
d8dccfe9 1700 {
1701 /* ??? Can this ever happen? Calling this routine on a MEM that
1702 already carries memory attributes should probably be invalid. */
d72886b5 1703 attrs.expr = refattrs->expr;
6d58bcba 1704 attrs.offset_known_p = refattrs->offset_known_p;
d72886b5 1705 attrs.offset = refattrs->offset;
6d58bcba 1706 attrs.size_known_p = refattrs->size_known_p;
d72886b5 1707 attrs.size = refattrs->size;
1708 attrs.align = refattrs->align;
d8dccfe9 1709 }
1710
1711 /* Otherwise, default values from the mode of the MEM reference. */
d72886b5 1712 else
d8dccfe9 1713 {
d72886b5 1714 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1715 gcc_assert (!defattrs->expr);
6d58bcba 1716 gcc_assert (!defattrs->offset_known_p);
d72886b5 1717
d8dccfe9 1718 /* Respect mode size. */
6d58bcba 1719 attrs.size_known_p = defattrs->size_known_p;
d72886b5 1720 attrs.size = defattrs->size;
d8dccfe9 1721 /* ??? Is this really necessary? We probably should always get
1722 the size from the type below. */
1723
1724 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1725 if T is an object, always compute the object alignment below. */
d72886b5 1726 if (TYPE_P (t))
1727 attrs.align = defattrs->align;
1728 else
1729 attrs.align = BITS_PER_UNIT;
d8dccfe9 1730 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1731 e.g. if the type carries an alignment attribute. Should we be
1732 able to simply always use TYPE_ALIGN? */
1733 }
1734
a9d9ab08 1735 /* We can set the alignment from the type if we are making an object,
1736 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
679e0056 1737 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
d72886b5 1738 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
679e0056 1739
96216d37 1740 /* If the size is known, we can set that. */
50ba3acc 1741 tree new_size = TYPE_SIZE_UNIT (type);
96216d37 1742
9eec20bf 1743 /* The address-space is that of the type. */
1744 as = TYPE_ADDR_SPACE (type);
1745
579bccf9 1746 /* If T is not a type, we may be able to deduce some more information about
1747 the expression. */
1748 if (! TYPE_P (t))
2a631e19 1749 {
ae2dd339 1750 tree base;
b04fab2a 1751
2a631e19 1752 if (TREE_THIS_VOLATILE (t))
1753 MEM_VOLATILE_P (ref) = 1;
c6259b83 1754
3c00f11c 1755 /* Now remove any conversions: they don't change what the underlying
1756 object is. Likewise for SAVE_EXPR. */
72dd6141 1757 while (CONVERT_EXPR_P (t)
3c00f11c 1758 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1759 || TREE_CODE (t) == SAVE_EXPR)
2a631e19 1760 t = TREE_OPERAND (t, 0);
1761
73eb0a09 1762 /* Note whether this expression can trap. */
1763 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1764
1765 base = get_base_address (t);
3f06bd1b 1766 if (base)
1767 {
1768 if (DECL_P (base)
1769 && TREE_READONLY (base)
1770 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1771 && !TREE_THIS_VOLATILE (base))
1772 MEM_READONLY_P (ref) = 1;
1773
1774 /* Mark static const strings readonly as well. */
1775 if (TREE_CODE (base) == STRING_CST
1776 && TREE_READONLY (base)
1777 && TREE_STATIC (base))
1778 MEM_READONLY_P (ref) = 1;
1779
9eec20bf 1780 /* Address-space information is on the base object. */
3f06bd1b 1781 if (TREE_CODE (base) == MEM_REF
1782 || TREE_CODE (base) == TARGET_MEM_REF)
1783 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1784 0))));
1785 else
1786 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1787 }
cab98a0d 1788
2b02580f 1789 /* If this expression uses it's parent's alias set, mark it such
1790 that we won't change it. */
d400f5e1 1791 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
5cc193e7 1792 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1793
2a631e19 1794 /* If this is a decl, set the attributes of the MEM from it. */
1795 if (DECL_P (t))
1796 {
d72886b5 1797 attrs.expr = t;
6d58bcba 1798 attrs.offset_known_p = true;
1799 attrs.offset = 0;
6f717f77 1800 apply_bitpos = bitpos;
50ba3acc 1801 new_size = DECL_SIZE_UNIT (t);
2a631e19 1802 }
1803
9eec20bf 1804 /* ??? If we end up with a constant here do record a MEM_EXPR. */
ce45a448 1805 else if (CONSTANT_CLASS_P (t))
9eec20bf 1806 ;
b10dbbca 1807
50ba3acc 1808 /* If this is a field reference, record it. */
1809 else if (TREE_CODE (t) == COMPONENT_REF)
b10dbbca 1810 {
d72886b5 1811 attrs.expr = t;
6d58bcba 1812 attrs.offset_known_p = true;
1813 attrs.offset = 0;
6f717f77 1814 apply_bitpos = bitpos;
50ba3acc 1815 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1816 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
b10dbbca 1817 }
1818
1819 /* If this is an array reference, look for an outer field reference. */
1820 else if (TREE_CODE (t) == ARRAY_REF)
1821 {
1822 tree off_tree = size_zero_node;
6b039979 1823 /* We can't modify t, because we use it at the end of the
1824 function. */
1825 tree t2 = t;
b10dbbca 1826
1827 do
1828 {
6b039979 1829 tree index = TREE_OPERAND (t2, 1);
6374121b 1830 tree low_bound = array_ref_low_bound (t2);
1831 tree unit_size = array_ref_element_size (t2);
97f8ce30 1832
1833 /* We assume all arrays have sizes that are a multiple of a byte.
1834 First subtract the lower bound, if any, in the type of the
6374121b 1835 index, then convert to sizetype and multiply by the size of
1836 the array element. */
1837 if (! integer_zerop (low_bound))
faa43f85 1838 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1839 index, low_bound);
97f8ce30 1840
6374121b 1841 off_tree = size_binop (PLUS_EXPR,
535664e3 1842 size_binop (MULT_EXPR,
1843 fold_convert (sizetype,
1844 index),
6374121b 1845 unit_size),
1846 off_tree);
6b039979 1847 t2 = TREE_OPERAND (t2, 0);
b10dbbca 1848 }
6b039979 1849 while (TREE_CODE (t2) == ARRAY_REF);
b10dbbca 1850
9eec20bf 1851 if (DECL_P (t2)
1852 || TREE_CODE (t2) == COMPONENT_REF)
b10dbbca 1853 {
d72886b5 1854 attrs.expr = t2;
6d58bcba 1855 attrs.offset_known_p = false;
e913b5cd 1856 if (tree_fits_uhwi_p (off_tree))
6f717f77 1857 {
6d58bcba 1858 attrs.offset_known_p = true;
e913b5cd 1859 attrs.offset = tree_to_uhwi (off_tree);
6f717f77 1860 apply_bitpos = bitpos;
1861 }
b10dbbca 1862 }
9eec20bf 1863 /* Else do not record a MEM_EXPR. */
2d8fe5d0 1864 }
1865
6d72287b 1866 /* If this is an indirect reference, record it. */
182cf5a9 1867 else if (TREE_CODE (t) == MEM_REF
5d9de213 1868 || TREE_CODE (t) == TARGET_MEM_REF)
6d72287b 1869 {
d72886b5 1870 attrs.expr = t;
6d58bcba 1871 attrs.offset_known_p = true;
1872 attrs.offset = 0;
6d72287b 1873 apply_bitpos = bitpos;
1874 }
1875
9eec20bf 1876 /* Compute the alignment. */
1877 unsigned int obj_align;
1878 unsigned HOST_WIDE_INT obj_bitpos;
1879 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1880 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1881 if (obj_bitpos != 0)
1882 obj_align = (obj_bitpos & -obj_bitpos);
1883 attrs.align = MAX (attrs.align, obj_align);
2a631e19 1884 }
1885
e913b5cd 1886 if (tree_fits_uhwi_p (new_size))
50ba3acc 1887 {
1888 attrs.size_known_p = true;
e913b5cd 1889 attrs.size = tree_to_uhwi (new_size);
50ba3acc 1890 }
1891
e2e205b3 1892 /* If we modified OFFSET based on T, then subtract the outstanding
595f1461 1893 bit position offset. Similarly, increase the size of the accessed
1894 object to contain the negative offset. */
6f717f77 1895 if (apply_bitpos)
595f1461 1896 {
6d58bcba 1897 gcc_assert (attrs.offset_known_p);
1898 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1899 if (attrs.size_known_p)
1900 attrs.size += apply_bitpos / BITS_PER_UNIT;
595f1461 1901 }
6f717f77 1902
2a631e19 1903 /* Now set the attributes we computed above. */
3f06bd1b 1904 attrs.addrspace = as;
d72886b5 1905 set_mem_attrs (ref, &attrs);
c6259b83 1906}
1907
6f717f77 1908void
35cb5232 1909set_mem_attributes (rtx ref, tree t, int objectp)
6f717f77 1910{
1911 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1912}
1913
c6259b83 1914/* Set the alias set of MEM to SET. */
1915
1916void
32c2fdea 1917set_mem_alias_set (rtx mem, alias_set_type set)
c6259b83 1918{
d72886b5 1919 struct mem_attrs attrs;
1920
c6259b83 1921 /* If the new and old alias sets don't conflict, something is wrong. */
1b4345f7 1922 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
d72886b5 1923 attrs = *get_mem_attrs (mem);
1924 attrs.alias = set;
1925 set_mem_attrs (mem, &attrs);
bd1a81f7 1926}
1927
1928/* Set the address space of MEM to ADDRSPACE (target-defined). */
1929
1930void
1931set_mem_addr_space (rtx mem, addr_space_t addrspace)
1932{
d72886b5 1933 struct mem_attrs attrs;
1934
1935 attrs = *get_mem_attrs (mem);
1936 attrs.addrspace = addrspace;
1937 set_mem_attrs (mem, &attrs);
c6259b83 1938}
96216d37 1939
1c4512da 1940/* Set the alignment of MEM to ALIGN bits. */
96216d37 1941
1942void
35cb5232 1943set_mem_align (rtx mem, unsigned int align)
96216d37 1944{
d72886b5 1945 struct mem_attrs attrs;
1946
1947 attrs = *get_mem_attrs (mem);
1948 attrs.align = align;
1949 set_mem_attrs (mem, &attrs);
96216d37 1950}
278fe152 1951
b10dbbca 1952/* Set the expr for MEM to EXPR. */
278fe152 1953
1954void
35cb5232 1955set_mem_expr (rtx mem, tree expr)
278fe152 1956{
d72886b5 1957 struct mem_attrs attrs;
1958
1959 attrs = *get_mem_attrs (mem);
1960 attrs.expr = expr;
1961 set_mem_attrs (mem, &attrs);
278fe152 1962}
b10dbbca 1963
1964/* Set the offset of MEM to OFFSET. */
1965
1966void
da443c27 1967set_mem_offset (rtx mem, HOST_WIDE_INT offset)
b10dbbca 1968{
d72886b5 1969 struct mem_attrs attrs;
1970
1971 attrs = *get_mem_attrs (mem);
6d58bcba 1972 attrs.offset_known_p = true;
1973 attrs.offset = offset;
da443c27 1974 set_mem_attrs (mem, &attrs);
1975}
1976
1977/* Clear the offset of MEM. */
1978
1979void
1980clear_mem_offset (rtx mem)
1981{
1982 struct mem_attrs attrs;
1983
1984 attrs = *get_mem_attrs (mem);
6d58bcba 1985 attrs.offset_known_p = false;
d72886b5 1986 set_mem_attrs (mem, &attrs);
f0500469 1987}
1988
1989/* Set the size of MEM to SIZE. */
1990
1991void
5b2a69fa 1992set_mem_size (rtx mem, HOST_WIDE_INT size)
f0500469 1993{
d72886b5 1994 struct mem_attrs attrs;
1995
1996 attrs = *get_mem_attrs (mem);
6d58bcba 1997 attrs.size_known_p = true;
1998 attrs.size = size;
5b2a69fa 1999 set_mem_attrs (mem, &attrs);
2000}
2001
2002/* Clear the size of MEM. */
2003
2004void
2005clear_mem_size (rtx mem)
2006{
2007 struct mem_attrs attrs;
2008
2009 attrs = *get_mem_attrs (mem);
6d58bcba 2010 attrs.size_known_p = false;
d72886b5 2011 set_mem_attrs (mem, &attrs);
b10dbbca 2012}
c6259b83 2013\f
96216d37 2014/* Return a memory reference like MEMREF, but with its mode changed to MODE
2015 and its address changed to ADDR. (VOIDmode means don't change the mode.
2016 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
5cc04e45 2017 returned memory location is required to be valid. INPLACE is true if any
2018 changes can be made directly to MEMREF or false if MEMREF must be treated
2019 as immutable.
2020
2021 The memory attributes are not changed. */
15bbde2b 2022
96216d37 2023static rtx
5cc04e45 2024change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate,
2025 bool inplace)
15bbde2b 2026{
bd1a81f7 2027 addr_space_t as;
9ce37fa7 2028 rtx new_rtx;
15bbde2b 2029
611234b4 2030 gcc_assert (MEM_P (memref));
bd1a81f7 2031 as = MEM_ADDR_SPACE (memref);
15bbde2b 2032 if (mode == VOIDmode)
2033 mode = GET_MODE (memref);
2034 if (addr == 0)
2035 addr = XEXP (memref, 0);
3988ef8b 2036 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
bd1a81f7 2037 && (!validate || memory_address_addr_space_p (mode, addr, as)))
3988ef8b 2038 return memref;
15bbde2b 2039
73a18f44 2040 /* Don't validate address for LRA. LRA can make the address valid
2041 by itself in most efficient way. */
2042 if (validate && !lra_in_progress)
15bbde2b 2043 {
e4e86ec5 2044 if (reload_in_progress || reload_completed)
bd1a81f7 2045 gcc_assert (memory_address_addr_space_p (mode, addr, as));
e4e86ec5 2046 else
bd1a81f7 2047 addr = memory_address_addr_space (mode, addr, as);
15bbde2b 2048 }
d823ba47 2049
e8976cd7 2050 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2051 return memref;
2052
5cc04e45 2053 if (inplace)
2054 {
2055 XEXP (memref, 0) = addr;
2056 return memref;
2057 }
2058
9ce37fa7 2059 new_rtx = gen_rtx_MEM (mode, addr);
2060 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2061 return new_rtx;
15bbde2b 2062}
537ffcfc 2063
96216d37 2064/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2065 way we are changing MEMREF, so we only preserve the alias set. */
e513d163 2066
2067rtx
35cb5232 2068change_address (rtx memref, enum machine_mode mode, rtx addr)
e513d163 2069{
5cc04e45 2070 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
9ce37fa7 2071 enum machine_mode mmode = GET_MODE (new_rtx);
d72886b5 2072 struct mem_attrs attrs, *defattrs;
0ab96142 2073
d72886b5 2074 attrs = *get_mem_attrs (memref);
2075 defattrs = mode_mem_attrs[(int) mmode];
6d58bcba 2076 attrs.expr = NULL_TREE;
2077 attrs.offset_known_p = false;
2078 attrs.size_known_p = defattrs->size_known_p;
d72886b5 2079 attrs.size = defattrs->size;
2080 attrs.align = defattrs->align;
6cc60c4d 2081
d28edf0d 2082 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2083 if (new_rtx == memref)
0ab96142 2084 {
d72886b5 2085 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
9ce37fa7 2086 return new_rtx;
0ab96142 2087
9ce37fa7 2088 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2089 MEM_COPY_ATTRIBUTES (new_rtx, memref);
0ab96142 2090 }
d28edf0d 2091
d72886b5 2092 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2093 return new_rtx;
e513d163 2094}
537ffcfc 2095
96216d37 2096/* Return a memory reference like MEMREF, but with its mode changed
2097 to MODE and its address offset by OFFSET bytes. If VALIDATE is
bf42c62d 2098 nonzero, the memory address is forced to be valid.
2d0fd66d 2099 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2100 and the caller is responsible for adjusting MEMREF base register.
2101 If ADJUST_OBJECT is zero, the underlying object associated with the
2102 memory reference is left unchanged and the caller is responsible for
2103 dealing with it. Otherwise, if the new memory reference is outside
226c6baf 2104 the underlying object, even partially, then the object is dropped.
2105 SIZE, if nonzero, is the size of an access in cases where MODE
2106 has no inherent size. */
e4e86ec5 2107
2108rtx
35cb5232 2109adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
226c6baf 2110 int validate, int adjust_address, int adjust_object,
2111 HOST_WIDE_INT size)
e4e86ec5 2112{
fb257ae6 2113 rtx addr = XEXP (memref, 0);
9ce37fa7 2114 rtx new_rtx;
d72886b5 2115 enum machine_mode address_mode;
cfb75cdf 2116 int pbits;
21b8bc7e 2117 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
d72886b5 2118 unsigned HOST_WIDE_INT max_align;
21b8bc7e 2119#ifdef POINTERS_EXTEND_UNSIGNED
2120 enum machine_mode pointer_mode
2121 = targetm.addr_space.pointer_mode (attrs.addrspace);
2122#endif
fb257ae6 2123
4733f549 2124 /* VOIDmode means no mode change for change_address_1. */
2125 if (mode == VOIDmode)
2126 mode = GET_MODE (memref);
2127
226c6baf 2128 /* Take the size of non-BLKmode accesses from the mode. */
2129 defattrs = mode_mem_attrs[(int) mode];
2130 if (defattrs->size_known_p)
2131 size = defattrs->size;
2132
d28edf0d 2133 /* If there are no changes, just return the original memory reference. */
2134 if (mode == GET_MODE (memref) && !offset
226c6baf 2135 && (size == 0 || (attrs.size_known_p && attrs.size == size))
d72886b5 2136 && (!validate || memory_address_addr_space_p (mode, addr,
2137 attrs.addrspace)))
d28edf0d 2138 return memref;
2139
e36c3d58 2140 /* ??? Prefer to create garbage instead of creating shared rtl.
6ef828f9 2141 This may happen even if offset is nonzero -- consider
e36c3d58 2142 (plus (plus reg reg) const_int) -- so do this always. */
2143 addr = copy_rtx (addr);
2144
cfb75cdf 2145 /* Convert a possibly large offset to a signed value within the
2146 range of the target address space. */
87cf5753 2147 address_mode = get_address_mode (memref);
98155838 2148 pbits = GET_MODE_BITSIZE (address_mode);
cfb75cdf 2149 if (HOST_BITS_PER_WIDE_INT > pbits)
2150 {
2151 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2152 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2153 >> shift);
2154 }
2155
2d0fd66d 2156 if (adjust_address)
cd358719 2157 {
2158 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2159 object, we can merge it into the LO_SUM. */
2160 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2161 && offset >= 0
2162 && (unsigned HOST_WIDE_INT) offset
2163 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
98155838 2164 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
29c05e22 2165 plus_constant (address_mode,
2166 XEXP (addr, 1), offset));
21b8bc7e 2167#ifdef POINTERS_EXTEND_UNSIGNED
2168 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2169 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2170 the fact that pointers are not allowed to overflow. */
2171 else if (POINTERS_EXTEND_UNSIGNED > 0
2172 && GET_CODE (addr) == ZERO_EXTEND
2173 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2174 && trunc_int_for_mode (offset, pointer_mode) == offset)
2175 addr = gen_rtx_ZERO_EXTEND (address_mode,
2176 plus_constant (pointer_mode,
2177 XEXP (addr, 0), offset));
2178#endif
cd358719 2179 else
29c05e22 2180 addr = plus_constant (address_mode, addr, offset);
cd358719 2181 }
fb257ae6 2182
5cc04e45 2183 new_rtx = change_address_1 (memref, mode, addr, validate, false);
96216d37 2184
e077413c 2185 /* If the address is a REG, change_address_1 rightfully returns memref,
2186 but this would destroy memref's MEM_ATTRS. */
2187 if (new_rtx == memref && offset != 0)
2188 new_rtx = copy_rtx (new_rtx);
2189
2d0fd66d 2190 /* Conservatively drop the object if we don't know where we start from. */
2191 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2192 {
2193 attrs.expr = NULL_TREE;
2194 attrs.alias = 0;
2195 }
2196
96216d37 2197 /* Compute the new values of the memory attributes due to this adjustment.
2198 We add the offsets and update the alignment. */
6d58bcba 2199 if (attrs.offset_known_p)
2d0fd66d 2200 {
2201 attrs.offset += offset;
2202
2203 /* Drop the object if the new left end is not within its bounds. */
2204 if (adjust_object && attrs.offset < 0)
2205 {
2206 attrs.expr = NULL_TREE;
2207 attrs.alias = 0;
2208 }
2209 }
96216d37 2210
b8098e5b 2211 /* Compute the new alignment by taking the MIN of the alignment and the
2212 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2213 if zero. */
2214 if (offset != 0)
d72886b5 2215 {
2216 max_align = (offset & -offset) * BITS_PER_UNIT;
2217 attrs.align = MIN (attrs.align, max_align);
2218 }
96216d37 2219
226c6baf 2220 if (size)
6d58bcba 2221 {
2d0fd66d 2222 /* Drop the object if the new right end is not within its bounds. */
226c6baf 2223 if (adjust_object && (offset + size) > attrs.size)
2d0fd66d 2224 {
2225 attrs.expr = NULL_TREE;
2226 attrs.alias = 0;
2227 }
6d58bcba 2228 attrs.size_known_p = true;
226c6baf 2229 attrs.size = size;
6d58bcba 2230 }
2231 else if (attrs.size_known_p)
2d0fd66d 2232 {
226c6baf 2233 gcc_assert (!adjust_object);
2d0fd66d 2234 attrs.size -= offset;
226c6baf 2235 /* ??? The store_by_pieces machinery generates negative sizes,
2236 so don't assert for that here. */
2d0fd66d 2237 }
5cc193e7 2238
d72886b5 2239 set_mem_attrs (new_rtx, &attrs);
96216d37 2240
9ce37fa7 2241 return new_rtx;
e4e86ec5 2242}
2243
bf42c62d 2244/* Return a memory reference like MEMREF, but with its mode changed
2245 to MODE and its address changed to ADDR, which is assumed to be
f0b5f617 2246 MEMREF offset by OFFSET bytes. If VALIDATE is
bf42c62d 2247 nonzero, the memory address is forced to be valid. */
2248
2249rtx
35cb5232 2250adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2251 HOST_WIDE_INT offset, int validate)
bf42c62d 2252{
5cc04e45 2253 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
226c6baf 2254 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
bf42c62d 2255}
2256
2a631e19 2257/* Return a memory reference like MEMREF, but whose address is changed by
2258 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2259 known to be in OFFSET (possibly 1). */
fcdc122e 2260
2261rtx
35cb5232 2262offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
fcdc122e 2263{
9ce37fa7 2264 rtx new_rtx, addr = XEXP (memref, 0);
d72886b5 2265 enum machine_mode address_mode;
6d58bcba 2266 struct mem_attrs attrs, *defattrs;
fac6aae6 2267
d72886b5 2268 attrs = *get_mem_attrs (memref);
87cf5753 2269 address_mode = get_address_mode (memref);
98155838 2270 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
fac6aae6 2271
d4c5e26d 2272 /* At this point we don't know _why_ the address is invalid. It
917bbcab 2273 could have secondary memory references, multiplies or anything.
fac6aae6 2274
2275 However, if we did go and rearrange things, we can wind up not
2276 being able to recognize the magic around pic_offset_table_rtx.
2277 This stuff is fragile, and is yet another example of why it is
2278 bad to expose PIC machinery too early. */
d72886b5 2279 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2280 attrs.addrspace)
fac6aae6 2281 && GET_CODE (addr) == PLUS
2282 && XEXP (addr, 0) == pic_offset_table_rtx)
2283 {
2284 addr = force_reg (GET_MODE (addr), addr);
98155838 2285 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
fac6aae6 2286 }
2287
9ce37fa7 2288 update_temp_slot_address (XEXP (memref, 0), new_rtx);
5cc04e45 2289 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
fcdc122e 2290
d28edf0d 2291 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2292 if (new_rtx == memref)
2293 return new_rtx;
d28edf0d 2294
fcdc122e 2295 /* Update the alignment to reflect the offset. Reset the offset, which
2296 we don't know. */
6d58bcba 2297 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2298 attrs.offset_known_p = false;
2299 attrs.size_known_p = defattrs->size_known_p;
2300 attrs.size = defattrs->size;
d72886b5 2301 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2302 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2303 return new_rtx;
fcdc122e 2304}
d4c5e26d 2305
537ffcfc 2306/* Return a memory reference like MEMREF, but with its address changed to
2307 ADDR. The caller is asserting that the actual piece of memory pointed
2308 to is the same, just the form of the address is being changed, such as
5cc04e45 2309 by putting something into a register. INPLACE is true if any changes
2310 can be made directly to MEMREF or false if MEMREF must be treated as
2311 immutable. */
537ffcfc 2312
2313rtx
5cc04e45 2314replace_equiv_address (rtx memref, rtx addr, bool inplace)
537ffcfc 2315{
96216d37 2316 /* change_address_1 copies the memory attribute structure without change
2317 and that's exactly what we want here. */
ecfe4ca9 2318 update_temp_slot_address (XEXP (memref, 0), addr);
5cc04e45 2319 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
537ffcfc 2320}
96216d37 2321
e4e86ec5 2322/* Likewise, but the reference is not required to be valid. */
2323
2324rtx
5cc04e45 2325replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
e4e86ec5 2326{
5cc04e45 2327 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
e4e86ec5 2328}
8259ab07 2329
2330/* Return a memory reference like MEMREF, but with its mode widened to
2331 MODE and offset by OFFSET. This would be used by targets that e.g.
2332 cannot issue QImode memory operations and have to use SImode memory
2333 operations plus masking logic. */
2334
2335rtx
35cb5232 2336widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
8259ab07 2337{
226c6baf 2338 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
d72886b5 2339 struct mem_attrs attrs;
8259ab07 2340 unsigned int size = GET_MODE_SIZE (mode);
2341
d28edf0d 2342 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2343 if (new_rtx == memref)
2344 return new_rtx;
d28edf0d 2345
d72886b5 2346 attrs = *get_mem_attrs (new_rtx);
2347
8259ab07 2348 /* If we don't know what offset we were at within the expression, then
2349 we can't know if we've overstepped the bounds. */
6d58bcba 2350 if (! attrs.offset_known_p)
d72886b5 2351 attrs.expr = NULL_TREE;
8259ab07 2352
d72886b5 2353 while (attrs.expr)
8259ab07 2354 {
d72886b5 2355 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
8259ab07 2356 {
d72886b5 2357 tree field = TREE_OPERAND (attrs.expr, 1);
2358 tree offset = component_ref_field_offset (attrs.expr);
8259ab07 2359
2360 if (! DECL_SIZE_UNIT (field))
2361 {
d72886b5 2362 attrs.expr = NULL_TREE;
8259ab07 2363 break;
2364 }
2365
2366 /* Is the field at least as large as the access? If so, ok,
2367 otherwise strip back to the containing structure. */
8359cfb4 2368 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2369 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
6d58bcba 2370 && attrs.offset >= 0)
8259ab07 2371 break;
2372
e913b5cd 2373 if (! tree_fits_uhwi_p (offset))
8259ab07 2374 {
d72886b5 2375 attrs.expr = NULL_TREE;
8259ab07 2376 break;
2377 }
2378
d72886b5 2379 attrs.expr = TREE_OPERAND (attrs.expr, 0);
e913b5cd 2380 attrs.offset += tree_to_uhwi (offset);
2381 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
6d58bcba 2382 / BITS_PER_UNIT);
8259ab07 2383 }
2384 /* Similarly for the decl. */
d72886b5 2385 else if (DECL_P (attrs.expr)
2386 && DECL_SIZE_UNIT (attrs.expr)
2387 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2388 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
6d58bcba 2389 && (! attrs.offset_known_p || attrs.offset >= 0))
8259ab07 2390 break;
2391 else
2392 {
2393 /* The widened memory access overflows the expression, which means
2394 that it could alias another expression. Zap it. */
d72886b5 2395 attrs.expr = NULL_TREE;
8259ab07 2396 break;
2397 }
2398 }
2399
d72886b5 2400 if (! attrs.expr)
6d58bcba 2401 attrs.offset_known_p = false;
8259ab07 2402
2403 /* The widened memory may alias other stuff, so zap the alias set. */
2404 /* ??? Maybe use get_alias_set on any remaining expression. */
d72886b5 2405 attrs.alias = 0;
6d58bcba 2406 attrs.size_known_p = true;
2407 attrs.size = size;
d72886b5 2408 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2409 return new_rtx;
8259ab07 2410}
15bbde2b 2411\f
ac681e84 2412/* A fake decl that is used as the MEM_EXPR of spill slots. */
2413static GTY(()) tree spill_slot_decl;
2414
58029e61 2415tree
2416get_spill_slot_decl (bool force_build_p)
ac681e84 2417{
2418 tree d = spill_slot_decl;
2419 rtx rd;
d72886b5 2420 struct mem_attrs attrs;
ac681e84 2421
58029e61 2422 if (d || !force_build_p)
ac681e84 2423 return d;
2424
e60a6f7b 2425 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2426 VAR_DECL, get_identifier ("%sfp"), void_type_node);
ac681e84 2427 DECL_ARTIFICIAL (d) = 1;
2428 DECL_IGNORED_P (d) = 1;
2429 TREE_USED (d) = 1;
ac681e84 2430 spill_slot_decl = d;
2431
2432 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2433 MEM_NOTRAP_P (rd) = 1;
d72886b5 2434 attrs = *mode_mem_attrs[(int) BLKmode];
2435 attrs.alias = new_alias_set ();
2436 attrs.expr = d;
2437 set_mem_attrs (rd, &attrs);
ac681e84 2438 SET_DECL_RTL (d, rd);
2439
2440 return d;
2441}
2442
2443/* Given MEM, a result from assign_stack_local, fill in the memory
2444 attributes as appropriate for a register allocator spill slot.
2445 These slots are not aliasable by other memory. We arrange for
2446 them all to use a single MEM_EXPR, so that the aliasing code can
2447 work properly in the case of shared spill slots. */
2448
2449void
2450set_mem_attrs_for_spill (rtx mem)
2451{
d72886b5 2452 struct mem_attrs attrs;
2453 rtx addr;
ac681e84 2454
d72886b5 2455 attrs = *get_mem_attrs (mem);
2456 attrs.expr = get_spill_slot_decl (true);
2457 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2458 attrs.addrspace = ADDR_SPACE_GENERIC;
ac681e84 2459
2460 /* We expect the incoming memory to be of the form:
2461 (mem:MODE (plus (reg sfp) (const_int offset)))
2462 with perhaps the plus missing for offset = 0. */
2463 addr = XEXP (mem, 0);
6d58bcba 2464 attrs.offset_known_p = true;
2465 attrs.offset = 0;
ac681e84 2466 if (GET_CODE (addr) == PLUS
971ba038 2467 && CONST_INT_P (XEXP (addr, 1)))
6d58bcba 2468 attrs.offset = INTVAL (XEXP (addr, 1));
ac681e84 2469
d72886b5 2470 set_mem_attrs (mem, &attrs);
ac681e84 2471 MEM_NOTRAP_P (mem) = 1;
2472}
2473\f
15bbde2b 2474/* Return a newly created CODE_LABEL rtx with a unique label number. */
2475
be95c7c7 2476rtx_code_label *
35cb5232 2477gen_label_rtx (void)
15bbde2b 2478{
be95c7c7 2479 return as_a <rtx_code_label *> (
2480 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2481 NULL, label_num++, NULL));
15bbde2b 2482}
2483\f
2484/* For procedure integration. */
2485
15bbde2b 2486/* Install new pointers to the first and last insns in the chain.
d4c332ff 2487 Also, set cur_insn_uid to one higher than the last in use.
15bbde2b 2488 Used for an inline-procedure after copying the insn chain. */
2489
2490void
35cb5232 2491set_new_first_and_last_insn (rtx first, rtx last)
15bbde2b 2492{
d4c332ff 2493 rtx insn;
2494
06f9d6ef 2495 set_first_insn (first);
2496 set_last_insn (last);
d4c332ff 2497 cur_insn_uid = 0;
2498
9845d120 2499 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2500 {
2501 int debug_count = 0;
2502
2503 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2504 cur_debug_insn_uid = 0;
2505
2506 for (insn = first; insn; insn = NEXT_INSN (insn))
2507 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2508 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2509 else
2510 {
2511 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2512 if (DEBUG_INSN_P (insn))
2513 debug_count++;
2514 }
2515
2516 if (debug_count)
2517 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2518 else
2519 cur_debug_insn_uid++;
2520 }
2521 else
2522 for (insn = first; insn; insn = NEXT_INSN (insn))
2523 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
d4c332ff 2524
2525 cur_insn_uid++;
15bbde2b 2526}
15bbde2b 2527\f
d823ba47 2528/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2529 structure. This routine should only be called once. */
15bbde2b 2530
a40c0eeb 2531static void
58945f46 2532unshare_all_rtl_1 (rtx_insn *insn)
15bbde2b 2533{
2d96a59a 2534 /* Unshare just about everything else. */
1cd4cfea 2535 unshare_all_rtl_in_chain (insn);
d823ba47 2536
15bbde2b 2537 /* Make sure the addresses of stack slots found outside the insn chain
2538 (such as, in DECL_RTL of a variable) are not shared
2539 with the insn chain.
2540
2541 This special care is necessary when the stack slot MEM does not
2542 actually appear in the insn chain. If it does appear, its address
2543 is unshared from all else at that point. */
45733446 2544 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
15bbde2b 2545}
2546
d823ba47 2547/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2548 structure, again. This is a fairly expensive thing to do so it
2549 should be done sparingly. */
2550
2551void
58945f46 2552unshare_all_rtl_again (rtx_insn *insn)
2d96a59a 2553{
58945f46 2554 rtx_insn *p;
5244079b 2555 tree decl;
2556
2d96a59a 2557 for (p = insn; p; p = NEXT_INSN (p))
9204e736 2558 if (INSN_P (p))
2d96a59a 2559 {
2560 reset_used_flags (PATTERN (p));
2561 reset_used_flags (REG_NOTES (p));
6d2a4bac 2562 if (CALL_P (p))
2563 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2d96a59a 2564 }
5244079b 2565
01dc9f0c 2566 /* Make sure that virtual stack slots are not shared. */
265be050 2567 set_used_decls (DECL_INITIAL (cfun->decl));
01dc9f0c 2568
5244079b 2569 /* Make sure that virtual parameters are not shared. */
1767a056 2570 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
265be050 2571 set_used_flags (DECL_RTL (decl));
5244079b 2572
2573 reset_used_flags (stack_slot_list);
2574
df329266 2575 unshare_all_rtl_1 (insn);
a40c0eeb 2576}
2577
2a1990e9 2578unsigned int
a40c0eeb 2579unshare_all_rtl (void)
2580{
df329266 2581 unshare_all_rtl_1 (get_insns ());
2a1990e9 2582 return 0;
2d96a59a 2583}
2584
77fce4cd 2585
1cd4cfea 2586/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2587 Recursively does the same for subexpressions. */
2588
2589static void
2590verify_rtx_sharing (rtx orig, rtx insn)
2591{
2592 rtx x = orig;
2593 int i;
2594 enum rtx_code code;
2595 const char *format_ptr;
2596
2597 if (x == 0)
2598 return;
2599
2600 code = GET_CODE (x);
2601
2602 /* These types may be freely shared. */
2603
2604 switch (code)
2605 {
2606 case REG:
688ff29b 2607 case DEBUG_EXPR:
2608 case VALUE:
0349edce 2609 CASE_CONST_ANY:
1cd4cfea 2610 case SYMBOL_REF:
2611 case LABEL_REF:
2612 case CODE_LABEL:
2613 case PC:
2614 case CC0:
1a860023 2615 case RETURN:
9cb2517e 2616 case SIMPLE_RETURN:
1cd4cfea 2617 case SCRATCH:
c09425a0 2618 /* SCRATCH must be shared because they represent distinct values. */
b291008a 2619 return;
c09425a0 2620 case CLOBBER:
b291008a 2621 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2622 clobbers or clobbers of hard registers that originated as pseudos.
2623 This is needed to allow safe register renaming. */
2624 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2625 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
c09425a0 2626 return;
2627 break;
1cd4cfea 2628
2629 case CONST:
3072d30e 2630 if (shared_const_p (orig))
1cd4cfea 2631 return;
2632 break;
2633
2634 case MEM:
2635 /* A MEM is allowed to be shared if its address is constant. */
2636 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2637 || reload_completed || reload_in_progress)
2638 return;
2639
2640 break;
2641
2642 default:
2643 break;
2644 }
2645
2646 /* This rtx may not be shared. If it has already been seen,
2647 replace it with a copy of itself. */
9cee7c3f 2648#ifdef ENABLE_CHECKING
1cd4cfea 2649 if (RTX_FLAG (x, used))
2650 {
0a81f5a0 2651 error ("invalid rtl sharing found in the insn");
1cd4cfea 2652 debug_rtx (insn);
0a81f5a0 2653 error ("shared rtx");
1cd4cfea 2654 debug_rtx (x);
0a81f5a0 2655 internal_error ("internal consistency failure");
1cd4cfea 2656 }
9cee7c3f 2657#endif
2658 gcc_assert (!RTX_FLAG (x, used));
48e1416a 2659
1cd4cfea 2660 RTX_FLAG (x, used) = 1;
2661
8b332087 2662 /* Now scan the subexpressions recursively. */
1cd4cfea 2663
2664 format_ptr = GET_RTX_FORMAT (code);
2665
2666 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2667 {
2668 switch (*format_ptr++)
2669 {
2670 case 'e':
2671 verify_rtx_sharing (XEXP (x, i), insn);
2672 break;
2673
2674 case 'E':
2675 if (XVEC (x, i) != NULL)
2676 {
2677 int j;
2678 int len = XVECLEN (x, i);
2679
2680 for (j = 0; j < len; j++)
2681 {
9cee7c3f 2682 /* We allow sharing of ASM_OPERANDS inside single
2683 instruction. */
1cd4cfea 2684 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
9cee7c3f 2685 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2686 == ASM_OPERANDS))
1cd4cfea 2687 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2688 else
2689 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2690 }
2691 }
2692 break;
2693 }
2694 }
2695 return;
2696}
2697
1e9af25c 2698/* Reset used-flags for INSN. */
2699
2700static void
2701reset_insn_used_flags (rtx insn)
2702{
2703 gcc_assert (INSN_P (insn));
2704 reset_used_flags (PATTERN (insn));
2705 reset_used_flags (REG_NOTES (insn));
2706 if (CALL_P (insn))
2707 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2708}
2709
7cdd84a2 2710/* Go through all the RTL insn bodies and clear all the USED bits. */
1cd4cfea 2711
7cdd84a2 2712static void
2713reset_all_used_flags (void)
1cd4cfea 2714{
2715 rtx p;
2716
2717 for (p = get_insns (); p; p = NEXT_INSN (p))
2718 if (INSN_P (p))
2719 {
1e9af25c 2720 rtx pat = PATTERN (p);
2721 if (GET_CODE (pat) != SEQUENCE)
2722 reset_insn_used_flags (p);
2723 else
764f640f 2724 {
1e9af25c 2725 gcc_assert (REG_NOTES (p) == NULL);
2726 for (int i = 0; i < XVECLEN (pat, 0); i++)
11c8949c 2727 {
2728 rtx insn = XVECEXP (pat, 0, i);
2729 if (INSN_P (insn))
2730 reset_insn_used_flags (insn);
2731 }
764f640f 2732 }
1cd4cfea 2733 }
7cdd84a2 2734}
2735
1e9af25c 2736/* Verify sharing in INSN. */
2737
2738static void
2739verify_insn_sharing (rtx insn)
2740{
2741 gcc_assert (INSN_P (insn));
2742 reset_used_flags (PATTERN (insn));
2743 reset_used_flags (REG_NOTES (insn));
2744 if (CALL_P (insn))
2745 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2746}
2747
7cdd84a2 2748/* Go through all the RTL insn bodies and check that there is no unexpected
2749 sharing in between the subexpressions. */
2750
2751DEBUG_FUNCTION void
2752verify_rtl_sharing (void)
2753{
2754 rtx p;
2755
2756 timevar_push (TV_VERIFY_RTL_SHARING);
2757
2758 reset_all_used_flags ();
1cd4cfea 2759
2760 for (p = get_insns (); p; p = NEXT_INSN (p))
2761 if (INSN_P (p))
2762 {
1e9af25c 2763 rtx pat = PATTERN (p);
2764 if (GET_CODE (pat) != SEQUENCE)
2765 verify_insn_sharing (p);
2766 else
2767 for (int i = 0; i < XVECLEN (pat, 0); i++)
11c8949c 2768 {
2769 rtx insn = XVECEXP (pat, 0, i);
2770 if (INSN_P (insn))
2771 verify_insn_sharing (insn);
2772 }
1cd4cfea 2773 }
4b366dd3 2774
7cdd84a2 2775 reset_all_used_flags ();
2776
4b366dd3 2777 timevar_pop (TV_VERIFY_RTL_SHARING);
1cd4cfea 2778}
2779
2d96a59a 2780/* Go through all the RTL insn bodies and copy any invalid shared structure.
2781 Assumes the mark bits are cleared at entry. */
2782
1cd4cfea 2783void
2784unshare_all_rtl_in_chain (rtx insn)
2d96a59a 2785{
2786 for (; insn; insn = NEXT_INSN (insn))
9204e736 2787 if (INSN_P (insn))
2d96a59a 2788 {
2789 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2790 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
6d2a4bac 2791 if (CALL_P (insn))
2792 CALL_INSN_FUNCTION_USAGE (insn)
2793 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2d96a59a 2794 }
2795}
2796
01dc9f0c 2797/* Go through all virtual stack slots of a function and mark them as
265be050 2798 shared. We never replace the DECL_RTLs themselves with a copy,
2799 but expressions mentioned into a DECL_RTL cannot be shared with
2800 expressions in the instruction stream.
2801
2802 Note that reload may convert pseudo registers into memories in-place.
2803 Pseudo registers are always shared, but MEMs never are. Thus if we
2804 reset the used flags on MEMs in the instruction stream, we must set
2805 them again on MEMs that appear in DECL_RTLs. */
2806
01dc9f0c 2807static void
265be050 2808set_used_decls (tree blk)
01dc9f0c 2809{
2810 tree t;
2811
2812 /* Mark decls. */
1767a056 2813 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
0e8e37b2 2814 if (DECL_RTL_SET_P (t))
265be050 2815 set_used_flags (DECL_RTL (t));
01dc9f0c 2816
2817 /* Now process sub-blocks. */
93110716 2818 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
265be050 2819 set_used_decls (t);
01dc9f0c 2820}
2821
15bbde2b 2822/* Mark ORIG as in use, and return a copy of it if it was already in use.
7ba6ce7a 2823 Recursively does the same for subexpressions. Uses
2824 copy_rtx_if_shared_1 to reduce stack space. */
15bbde2b 2825
2826rtx
35cb5232 2827copy_rtx_if_shared (rtx orig)
15bbde2b 2828{
0e0727c4 2829 copy_rtx_if_shared_1 (&orig);
2830 return orig;
2831}
2832
7ba6ce7a 2833/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2834 use. Recursively does the same for subexpressions. */
2835
0e0727c4 2836static void
2837copy_rtx_if_shared_1 (rtx *orig1)
2838{
2839 rtx x;
19cb6b50 2840 int i;
2841 enum rtx_code code;
0e0727c4 2842 rtx *last_ptr;
19cb6b50 2843 const char *format_ptr;
15bbde2b 2844 int copied = 0;
0e0727c4 2845 int length;
2846
2847 /* Repeat is used to turn tail-recursion into iteration. */
2848repeat:
2849 x = *orig1;
15bbde2b 2850
2851 if (x == 0)
0e0727c4 2852 return;
15bbde2b 2853
2854 code = GET_CODE (x);
2855
2856 /* These types may be freely shared. */
2857
2858 switch (code)
2859 {
2860 case REG:
688ff29b 2861 case DEBUG_EXPR:
2862 case VALUE:
0349edce 2863 CASE_CONST_ANY:
15bbde2b 2864 case SYMBOL_REF:
1cd4cfea 2865 case LABEL_REF:
15bbde2b 2866 case CODE_LABEL:
2867 case PC:
2868 case CC0:
e0691b9a 2869 case RETURN:
9cb2517e 2870 case SIMPLE_RETURN:
15bbde2b 2871 case SCRATCH:
a92771b8 2872 /* SCRATCH must be shared because they represent distinct values. */
0e0727c4 2873 return;
c09425a0 2874 case CLOBBER:
b291008a 2875 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2876 clobbers or clobbers of hard registers that originated as pseudos.
2877 This is needed to allow safe register renaming. */
2878 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2879 && ORIGINAL_REGNO (XEXP (x, 0)) == REGNO (XEXP (x, 0)))
c09425a0 2880 return;
2881 break;
15bbde2b 2882
f63d12e3 2883 case CONST:
3072d30e 2884 if (shared_const_p (x))
0e0727c4 2885 return;
f63d12e3 2886 break;
2887
9845d120 2888 case DEBUG_INSN:
15bbde2b 2889 case INSN:
2890 case JUMP_INSN:
2891 case CALL_INSN:
2892 case NOTE:
15bbde2b 2893 case BARRIER:
2894 /* The chain of insns is not being copied. */
0e0727c4 2895 return;
15bbde2b 2896
0dbd1c74 2897 default:
2898 break;
15bbde2b 2899 }
2900
2901 /* This rtx may not be shared. If it has already been seen,
2902 replace it with a copy of itself. */
2903
7c25cb91 2904 if (RTX_FLAG (x, used))
15bbde2b 2905 {
f2d0e9f1 2906 x = shallow_copy_rtx (x);
15bbde2b 2907 copied = 1;
2908 }
7c25cb91 2909 RTX_FLAG (x, used) = 1;
15bbde2b 2910
2911 /* Now scan the subexpressions recursively.
2912 We can store any replaced subexpressions directly into X
2913 since we know X is not shared! Any vectors in X
2914 must be copied if X was copied. */
2915
2916 format_ptr = GET_RTX_FORMAT (code);
0e0727c4 2917 length = GET_RTX_LENGTH (code);
2918 last_ptr = NULL;
48e1416a 2919
0e0727c4 2920 for (i = 0; i < length; i++)
15bbde2b 2921 {
2922 switch (*format_ptr++)
2923 {
2924 case 'e':
0e0727c4 2925 if (last_ptr)
2926 copy_rtx_if_shared_1 (last_ptr);
2927 last_ptr = &XEXP (x, i);
15bbde2b 2928 break;
2929
2930 case 'E':
2931 if (XVEC (x, i) != NULL)
2932 {
19cb6b50 2933 int j;
ffe0869b 2934 int len = XVECLEN (x, i);
48e1416a 2935
8b332087 2936 /* Copy the vector iff I copied the rtx and the length
2937 is nonzero. */
ffe0869b 2938 if (copied && len > 0)
a4070a91 2939 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
48e1416a 2940
d632b59a 2941 /* Call recursively on all inside the vector. */
ffe0869b 2942 for (j = 0; j < len; j++)
0e0727c4 2943 {
2944 if (last_ptr)
2945 copy_rtx_if_shared_1 (last_ptr);
2946 last_ptr = &XVECEXP (x, i, j);
2947 }
15bbde2b 2948 }
2949 break;
2950 }
2951 }
0e0727c4 2952 *orig1 = x;
2953 if (last_ptr)
2954 {
2955 orig1 = last_ptr;
2956 goto repeat;
2957 }
2958 return;
15bbde2b 2959}
2960
709947e6 2961/* Set the USED bit in X and its non-shareable subparts to FLAG. */
15bbde2b 2962
709947e6 2963static void
2964mark_used_flags (rtx x, int flag)
15bbde2b 2965{
19cb6b50 2966 int i, j;
2967 enum rtx_code code;
2968 const char *format_ptr;
0e0727c4 2969 int length;
15bbde2b 2970
0e0727c4 2971 /* Repeat is used to turn tail-recursion into iteration. */
2972repeat:
15bbde2b 2973 if (x == 0)
2974 return;
2975
2976 code = GET_CODE (x);
2977
c3418f42 2978 /* These types may be freely shared so we needn't do any resetting
15bbde2b 2979 for them. */
2980
2981 switch (code)
2982 {
2983 case REG:
688ff29b 2984 case DEBUG_EXPR:
2985 case VALUE:
0349edce 2986 CASE_CONST_ANY:
15bbde2b 2987 case SYMBOL_REF:
2988 case CODE_LABEL:
2989 case PC:
2990 case CC0:
e0691b9a 2991 case RETURN:
9cb2517e 2992 case SIMPLE_RETURN:
15bbde2b 2993 return;
2994
9845d120 2995 case DEBUG_INSN:
15bbde2b 2996 case INSN:
2997 case JUMP_INSN:
2998 case CALL_INSN:
2999 case NOTE:
3000 case LABEL_REF:
3001 case BARRIER:
3002 /* The chain of insns is not being copied. */
3003 return;
d823ba47 3004
0dbd1c74 3005 default:
3006 break;
15bbde2b 3007 }
3008
709947e6 3009 RTX_FLAG (x, used) = flag;
15bbde2b 3010
3011 format_ptr = GET_RTX_FORMAT (code);
0e0727c4 3012 length = GET_RTX_LENGTH (code);
48e1416a 3013
0e0727c4 3014 for (i = 0; i < length; i++)
15bbde2b 3015 {
3016 switch (*format_ptr++)
3017 {
3018 case 'e':
0e0727c4 3019 if (i == length-1)
3020 {
3021 x = XEXP (x, i);
3022 goto repeat;
3023 }
709947e6 3024 mark_used_flags (XEXP (x, i), flag);
15bbde2b 3025 break;
3026
3027 case 'E':
3028 for (j = 0; j < XVECLEN (x, i); j++)
709947e6 3029 mark_used_flags (XVECEXP (x, i, j), flag);
15bbde2b 3030 break;
3031 }
3032 }
3033}
1cd4cfea 3034
709947e6 3035/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1cd4cfea 3036 to look for shared sub-parts. */
3037
3038void
709947e6 3039reset_used_flags (rtx x)
1cd4cfea 3040{
709947e6 3041 mark_used_flags (x, 0);
3042}
1cd4cfea 3043
709947e6 3044/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3045 to look for shared sub-parts. */
1cd4cfea 3046
709947e6 3047void
3048set_used_flags (rtx x)
3049{
3050 mark_used_flags (x, 1);
1cd4cfea 3051}
15bbde2b 3052\f
3053/* Copy X if necessary so that it won't be altered by changes in OTHER.
3054 Return X or the rtx for the pseudo reg the value of X was copied into.
3055 OTHER must be valid as a SET_DEST. */
3056
3057rtx
35cb5232 3058make_safe_from (rtx x, rtx other)
15bbde2b 3059{
3060 while (1)
3061 switch (GET_CODE (other))
3062 {
3063 case SUBREG:
3064 other = SUBREG_REG (other);
3065 break;
3066 case STRICT_LOW_PART:
3067 case SIGN_EXTEND:
3068 case ZERO_EXTEND:
3069 other = XEXP (other, 0);
3070 break;
3071 default:
3072 goto done;
3073 }
3074 done:
e16ceb8e 3075 if ((MEM_P (other)
15bbde2b 3076 && ! CONSTANT_P (x)
8ad4c111 3077 && !REG_P (x)
15bbde2b 3078 && GET_CODE (x) != SUBREG)
8ad4c111 3079 || (REG_P (other)
15bbde2b 3080 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3081 || reg_mentioned_p (other, x))))
3082 {
3083 rtx temp = gen_reg_rtx (GET_MODE (x));
3084 emit_move_insn (temp, x);
3085 return temp;
3086 }
3087 return x;
3088}
3089\f
3090/* Emission of insns (adding them to the doubly-linked list). */
3091
15bbde2b 3092/* Return the last insn emitted, even if it is in a sequence now pushed. */
3093
3094rtx
35cb5232 3095get_last_insn_anywhere (void)
15bbde2b 3096{
3097 struct sequence_stack *stack;
06f9d6ef 3098 if (get_last_insn ())
3099 return get_last_insn ();
0a893c29 3100 for (stack = seq_stack; stack; stack = stack->next)
15bbde2b 3101 if (stack->last != 0)
3102 return stack->last;
3103 return 0;
3104}
3105
70545de4 3106/* Return the first nonnote insn emitted in current sequence or current
3107 function. This routine looks inside SEQUENCEs. */
3108
3109rtx
35cb5232 3110get_first_nonnote_insn (void)
70545de4 3111{
06f9d6ef 3112 rtx insn = get_insns ();
f86e856e 3113
3114 if (insn)
3115 {
3116 if (NOTE_P (insn))
3117 for (insn = next_insn (insn);
3118 insn && NOTE_P (insn);
3119 insn = next_insn (insn))
3120 continue;
3121 else
3122 {
1c14a50e 3123 if (NONJUMP_INSN_P (insn)
f86e856e 3124 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3125 insn = XVECEXP (PATTERN (insn), 0, 0);
3126 }
3127 }
70545de4 3128
3129 return insn;
3130}
3131
3132/* Return the last nonnote insn emitted in current sequence or current
3133 function. This routine looks inside SEQUENCEs. */
3134
3135rtx
35cb5232 3136get_last_nonnote_insn (void)
70545de4 3137{
06f9d6ef 3138 rtx insn = get_last_insn ();
f86e856e 3139
3140 if (insn)
3141 {
3142 if (NOTE_P (insn))
3143 for (insn = previous_insn (insn);
3144 insn && NOTE_P (insn);
3145 insn = previous_insn (insn))
3146 continue;
3147 else
3148 {
1c14a50e 3149 if (NONJUMP_INSN_P (insn)
f86e856e 3150 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3151 insn = XVECEXP (PATTERN (insn), 0,
3152 XVECLEN (PATTERN (insn), 0) - 1);
3153 }
3154 }
70545de4 3155
3156 return insn;
3157}
3158
9845d120 3159/* Return the number of actual (non-debug) insns emitted in this
3160 function. */
3161
3162int
3163get_max_insn_count (void)
3164{
3165 int n = cur_insn_uid;
3166
3167 /* The table size must be stable across -g, to avoid codegen
3168 differences due to debug insns, and not be affected by
3169 -fmin-insn-uid, to avoid excessive table size and to simplify
3170 debugging of -fcompare-debug failures. */
3171 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3172 n -= cur_debug_insn_uid;
3173 else
3174 n -= MIN_NONDEBUG_INSN_UID;
3175
3176 return n;
3177}
3178
15bbde2b 3179\f
3180/* Return the next insn. If it is a SEQUENCE, return the first insn
3181 of the sequence. */
3182
7bac25b3 3183rtx_insn *
35cb5232 3184next_insn (rtx insn)
15bbde2b 3185{
ce4469fa 3186 if (insn)
3187 {
3188 insn = NEXT_INSN (insn);
3189 if (insn && NONJUMP_INSN_P (insn)
3190 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3191 insn = XVECEXP (PATTERN (insn), 0, 0);
3192 }
15bbde2b 3193
7bac25b3 3194 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3195}
3196
3197/* Return the previous insn. If it is a SEQUENCE, return the last insn
3198 of the sequence. */
3199
7bac25b3 3200rtx_insn *
35cb5232 3201previous_insn (rtx insn)
15bbde2b 3202{
ce4469fa 3203 if (insn)
3204 {
3205 insn = PREV_INSN (insn);
3206 if (insn && NONJUMP_INSN_P (insn)
3207 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3208 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3209 }
15bbde2b 3210
7bac25b3 3211 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3212}
3213
3214/* Return the next insn after INSN that is not a NOTE. This routine does not
3215 look inside SEQUENCEs. */
3216
7bac25b3 3217rtx_insn *
35cb5232 3218next_nonnote_insn (rtx insn)
15bbde2b 3219{
ce4469fa 3220 while (insn)
3221 {
3222 insn = NEXT_INSN (insn);
3223 if (insn == 0 || !NOTE_P (insn))
3224 break;
3225 }
15bbde2b 3226
7bac25b3 3227 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3228}
3229
c4d13c5c 3230/* Return the next insn after INSN that is not a NOTE, but stop the
3231 search before we enter another basic block. This routine does not
3232 look inside SEQUENCEs. */
3233
7bac25b3 3234rtx_insn *
c4d13c5c 3235next_nonnote_insn_bb (rtx insn)
3236{
3237 while (insn)
3238 {
3239 insn = NEXT_INSN (insn);
3240 if (insn == 0 || !NOTE_P (insn))
3241 break;
3242 if (NOTE_INSN_BASIC_BLOCK_P (insn))
7bac25b3 3243 return NULL;
c4d13c5c 3244 }
3245
7bac25b3 3246 return safe_as_a <rtx_insn *> (insn);
c4d13c5c 3247}
3248
15bbde2b 3249/* Return the previous insn before INSN that is not a NOTE. This routine does
3250 not look inside SEQUENCEs. */
3251
7bac25b3 3252rtx_insn *
35cb5232 3253prev_nonnote_insn (rtx insn)
15bbde2b 3254{
ce4469fa 3255 while (insn)
3256 {
3257 insn = PREV_INSN (insn);
3258 if (insn == 0 || !NOTE_P (insn))
3259 break;
3260 }
15bbde2b 3261
7bac25b3 3262 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3263}
3264
bcc66782 3265/* Return the previous insn before INSN that is not a NOTE, but stop
3266 the search before we enter another basic block. This routine does
3267 not look inside SEQUENCEs. */
3268
7bac25b3 3269rtx_insn *
bcc66782 3270prev_nonnote_insn_bb (rtx insn)
3271{
3272 while (insn)
3273 {
3274 insn = PREV_INSN (insn);
3275 if (insn == 0 || !NOTE_P (insn))
3276 break;
3277 if (NOTE_INSN_BASIC_BLOCK_P (insn))
7bac25b3 3278 return NULL;
bcc66782 3279 }
3280
7bac25b3 3281 return safe_as_a <rtx_insn *> (insn);
bcc66782 3282}
3283
9845d120 3284/* Return the next insn after INSN that is not a DEBUG_INSN. This
3285 routine does not look inside SEQUENCEs. */
3286
7bac25b3 3287rtx_insn *
9845d120 3288next_nondebug_insn (rtx insn)
3289{
3290 while (insn)
3291 {
3292 insn = NEXT_INSN (insn);
3293 if (insn == 0 || !DEBUG_INSN_P (insn))
3294 break;
3295 }
3296
7bac25b3 3297 return safe_as_a <rtx_insn *> (insn);
9845d120 3298}
3299
3300/* Return the previous insn before INSN that is not a DEBUG_INSN.
3301 This routine does not look inside SEQUENCEs. */
3302
7bac25b3 3303rtx_insn *
9845d120 3304prev_nondebug_insn (rtx insn)
3305{
3306 while (insn)
3307 {
3308 insn = PREV_INSN (insn);
3309 if (insn == 0 || !DEBUG_INSN_P (insn))
3310 break;
3311 }
3312
7bac25b3 3313 return safe_as_a <rtx_insn *> (insn);
9845d120 3314}
3315
5b8537a8 3316/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3317 This routine does not look inside SEQUENCEs. */
3318
7bac25b3 3319rtx_insn *
5b8537a8 3320next_nonnote_nondebug_insn (rtx insn)
3321{
3322 while (insn)
3323 {
3324 insn = NEXT_INSN (insn);
3325 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3326 break;
3327 }
3328
7bac25b3 3329 return safe_as_a <rtx_insn *> (insn);
5b8537a8 3330}
3331
3332/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3333 This routine does not look inside SEQUENCEs. */
3334
7bac25b3 3335rtx_insn *
5b8537a8 3336prev_nonnote_nondebug_insn (rtx insn)
3337{
3338 while (insn)
3339 {
3340 insn = PREV_INSN (insn);
3341 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3342 break;
3343 }
3344
7bac25b3 3345 return safe_as_a <rtx_insn *> (insn);
5b8537a8 3346}
3347
15bbde2b 3348/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3349 or 0, if there is none. This routine does not look inside
a92771b8 3350 SEQUENCEs. */
15bbde2b 3351
7bac25b3 3352rtx_insn *
35cb5232 3353next_real_insn (rtx insn)
15bbde2b 3354{
ce4469fa 3355 while (insn)
3356 {
3357 insn = NEXT_INSN (insn);
3358 if (insn == 0 || INSN_P (insn))
3359 break;
3360 }
15bbde2b 3361
7bac25b3 3362 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3363}
3364
3365/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3366 or 0, if there is none. This routine does not look inside
3367 SEQUENCEs. */
3368
7bac25b3 3369rtx_insn *
35cb5232 3370prev_real_insn (rtx insn)
15bbde2b 3371{
ce4469fa 3372 while (insn)
3373 {
3374 insn = PREV_INSN (insn);
3375 if (insn == 0 || INSN_P (insn))
3376 break;
3377 }
15bbde2b 3378
7bac25b3 3379 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3380}
3381
d5f9786f 3382/* Return the last CALL_INSN in the current list, or 0 if there is none.
3383 This routine does not look inside SEQUENCEs. */
3384
ec22da62 3385rtx_call_insn *
35cb5232 3386last_call_insn (void)
d5f9786f 3387{
ec22da62 3388 rtx_insn *insn;
d5f9786f 3389
3390 for (insn = get_last_insn ();
6d7dc5b9 3391 insn && !CALL_P (insn);
d5f9786f 3392 insn = PREV_INSN (insn))
3393 ;
3394
ec22da62 3395 return safe_as_a <rtx_call_insn *> (insn);
d5f9786f 3396}
3397
15bbde2b 3398/* Find the next insn after INSN that really does something. This routine
084950ee 3399 does not look inside SEQUENCEs. After reload this also skips over
3400 standalone USE and CLOBBER insn. */
15bbde2b 3401
2215ca0d 3402int
52d07779 3403active_insn_p (const_rtx insn)
2215ca0d 3404{
6d7dc5b9 3405 return (CALL_P (insn) || JUMP_P (insn)
91f71fa3 3406 || JUMP_TABLE_DATA_P (insn) /* FIXME */
6d7dc5b9 3407 || (NONJUMP_INSN_P (insn)
3a66feab 3408 && (! reload_completed
3409 || (GET_CODE (PATTERN (insn)) != USE
3410 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2215ca0d 3411}
3412
7bac25b3 3413rtx_insn *
35cb5232 3414next_active_insn (rtx insn)
15bbde2b 3415{
ce4469fa 3416 while (insn)
3417 {
3418 insn = NEXT_INSN (insn);
3419 if (insn == 0 || active_insn_p (insn))
3420 break;
3421 }
15bbde2b 3422
7bac25b3 3423 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3424}
3425
3426/* Find the last insn before INSN that really does something. This routine
084950ee 3427 does not look inside SEQUENCEs. After reload this also skips over
3428 standalone USE and CLOBBER insn. */
15bbde2b 3429
7bac25b3 3430rtx_insn *
35cb5232 3431prev_active_insn (rtx insn)
15bbde2b 3432{
ce4469fa 3433 while (insn)
3434 {
3435 insn = PREV_INSN (insn);
3436 if (insn == 0 || active_insn_p (insn))
3437 break;
3438 }
15bbde2b 3439
7bac25b3 3440 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3441}
15bbde2b 3442\f
3443#ifdef HAVE_cc0
3444/* Return the next insn that uses CC0 after INSN, which is assumed to
3445 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3446 applied to the result of this function should yield INSN).
3447
3448 Normally, this is simply the next insn. However, if a REG_CC_USER note
3449 is present, it contains the insn that uses CC0.
3450
3451 Return 0 if we can't find the insn. */
3452
0be88abd 3453rtx_insn *
35cb5232 3454next_cc0_user (rtx insn)
15bbde2b 3455{
b572011e 3456 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
15bbde2b 3457
3458 if (note)
0be88abd 3459 return safe_as_a <rtx_insn *> (XEXP (note, 0));
15bbde2b 3460
3461 insn = next_nonnote_insn (insn);
6d7dc5b9 3462 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
15bbde2b 3463 insn = XVECEXP (PATTERN (insn), 0, 0);
3464
9204e736 3465 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
0be88abd 3466 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3467
3468 return 0;
3469}
3470
3471/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3472 note, it is the previous insn. */
3473
0be88abd 3474rtx_insn *
35cb5232 3475prev_cc0_setter (rtx insn)
15bbde2b 3476{
b572011e 3477 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
15bbde2b 3478
3479 if (note)
0be88abd 3480 return safe_as_a <rtx_insn *> (XEXP (note, 0));
15bbde2b 3481
3482 insn = prev_nonnote_insn (insn);
611234b4 3483 gcc_assert (sets_cc0_p (PATTERN (insn)));
15bbde2b 3484
0be88abd 3485 return safe_as_a <rtx_insn *> (insn);
15bbde2b 3486}
3487#endif
344dc2fa 3488
698ff1f0 3489#ifdef AUTO_INC_DEC
3490/* Find a RTX_AUTOINC class rtx which matches DATA. */
3491
3492static int
3493find_auto_inc (rtx *xp, void *data)
3494{
3495 rtx x = *xp;
225ab426 3496 rtx reg = (rtx) data;
698ff1f0 3497
3498 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3499 return 0;
3500
3501 switch (GET_CODE (x))
3502 {
3503 case PRE_DEC:
3504 case PRE_INC:
3505 case POST_DEC:
3506 case POST_INC:
3507 case PRE_MODIFY:
3508 case POST_MODIFY:
3509 if (rtx_equal_p (reg, XEXP (x, 0)))
3510 return 1;
3511 break;
3512
3513 default:
3514 gcc_unreachable ();
3515 }
3516 return -1;
3517}
3518#endif
3519
344dc2fa 3520/* Increment the label uses for all labels present in rtx. */
3521
3522static void
35cb5232 3523mark_label_nuses (rtx x)
344dc2fa 3524{
19cb6b50 3525 enum rtx_code code;
3526 int i, j;
3527 const char *fmt;
344dc2fa 3528
3529 code = GET_CODE (x);
a030d4a8 3530 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
344dc2fa 3531 LABEL_NUSES (XEXP (x, 0))++;
3532
3533 fmt = GET_RTX_FORMAT (code);
3534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3535 {
3536 if (fmt[i] == 'e')
ff385626 3537 mark_label_nuses (XEXP (x, i));
344dc2fa 3538 else if (fmt[i] == 'E')
ff385626 3539 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
344dc2fa 3540 mark_label_nuses (XVECEXP (x, i, j));
3541 }
3542}
3543
15bbde2b 3544\f
3545/* Try splitting insns that can be split for better scheduling.
3546 PAT is the pattern which might split.
3547 TRIAL is the insn providing PAT.
6ef828f9 3548 LAST is nonzero if we should return the last insn of the sequence produced.
15bbde2b 3549
3550 If this routine succeeds in splitting, it returns the first or last
0e69a50a 3551 replacement insn depending on the value of LAST. Otherwise, it
15bbde2b 3552 returns TRIAL. If the insn to be returned can be split, it will be. */
3553
bffa1357 3554rtx_insn *
35cb5232 3555try_split (rtx pat, rtx trial, int last)
15bbde2b 3556{
bffa1357 3557 rtx_insn *before = PREV_INSN (trial);
3558 rtx_insn *after = NEXT_INSN (trial);
15bbde2b 3559 int has_barrier = 0;
1e5b92fa 3560 rtx note, seq, tem;
3cd757b1 3561 int probability;
e13693ec 3562 rtx insn_last, insn;
3563 int njumps = 0;
2e3b0d0f 3564 rtx call_insn = NULL_RTX;
3cd757b1 3565
25e880b1 3566 /* We're not good at redistributing frame information. */
3567 if (RTX_FRAME_RELATED_P (trial))
bffa1357 3568 return as_a <rtx_insn *> (trial);
25e880b1 3569
3cd757b1 3570 if (any_condjump_p (trial)
3571 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
9eb946de 3572 split_branch_probability = XINT (note, 0);
3cd757b1 3573 probability = split_branch_probability;
3574
3575 seq = split_insns (pat, trial);
3576
3577 split_branch_probability = -1;
15bbde2b 3578
3579 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3580 We may need to handle this specially. */
6d7dc5b9 3581 if (after && BARRIER_P (after))
15bbde2b 3582 {
3583 has_barrier = 1;
3584 after = NEXT_INSN (after);
3585 }
3586
e13693ec 3587 if (!seq)
bffa1357 3588 return as_a <rtx_insn *> (trial);
e13693ec 3589
3590 /* Avoid infinite loop if any insn of the result matches
3591 the original pattern. */
3592 insn_last = seq;
3593 while (1)
15bbde2b 3594 {
e13693ec 3595 if (INSN_P (insn_last)
3596 && rtx_equal_p (PATTERN (insn_last), pat))
bffa1357 3597 return as_a <rtx_insn *> (trial);
e13693ec 3598 if (!NEXT_INSN (insn_last))
3599 break;
3600 insn_last = NEXT_INSN (insn_last);
3601 }
d823ba47 3602
3072d30e 3603 /* We will be adding the new sequence to the function. The splitters
3604 may have introduced invalid RTL sharing, so unshare the sequence now. */
3605 unshare_all_rtl_in_chain (seq);
3606
8f869004 3607 /* Mark labels and copy flags. */
e13693ec 3608 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3609 {
6d7dc5b9 3610 if (JUMP_P (insn))
e13693ec 3611 {
8f869004 3612 if (JUMP_P (trial))
3613 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
e13693ec 3614 mark_jump_label (PATTERN (insn), insn, 0);
3615 njumps++;
3616 if (probability != -1
3617 && any_condjump_p (insn)
3618 && !find_reg_note (insn, REG_BR_PROB, 0))
31d3e01c 3619 {
e13693ec 3620 /* We can preserve the REG_BR_PROB notes only if exactly
3621 one jump is created, otherwise the machine description
3622 is responsible for this step using
3623 split_branch_probability variable. */
611234b4 3624 gcc_assert (njumps == 1);
9eb946de 3625 add_int_reg_note (insn, REG_BR_PROB, probability);
31d3e01c 3626 }
e13693ec 3627 }
3628 }
3629
3630 /* If we are splitting a CALL_INSN, look for the CALL_INSN
b0bd0491 3631 in SEQ and copy any additional information across. */
6d7dc5b9 3632 if (CALL_P (trial))
e13693ec 3633 {
3634 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
6d7dc5b9 3635 if (CALL_P (insn))
e13693ec 3636 {
b0bd0491 3637 rtx next, *p;
3638
2e3b0d0f 3639 gcc_assert (call_insn == NULL_RTX);
3640 call_insn = insn;
3641
b0bd0491 3642 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3643 target may have explicitly specified. */
3644 p = &CALL_INSN_FUNCTION_USAGE (insn);
0bb5a6cd 3645 while (*p)
3646 p = &XEXP (*p, 1);
3647 *p = CALL_INSN_FUNCTION_USAGE (trial);
b0bd0491 3648
3649 /* If the old call was a sibling call, the new one must
3650 be too. */
e13693ec 3651 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
b0bd0491 3652
3653 /* If the new call is the last instruction in the sequence,
3654 it will effectively replace the old call in-situ. Otherwise
3655 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3656 so that it comes immediately after the new call. */
3657 if (NEXT_INSN (insn))
47e1410d 3658 for (next = NEXT_INSN (trial);
3659 next && NOTE_P (next);
3660 next = NEXT_INSN (next))
3661 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
b0bd0491 3662 {
3663 remove_insn (next);
3664 add_insn_after (next, insn, NULL);
47e1410d 3665 break;
b0bd0491 3666 }
e13693ec 3667 }
3668 }
5262c253 3669
e13693ec 3670 /* Copy notes, particularly those related to the CFG. */
3671 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3672 {
3673 switch (REG_NOTE_KIND (note))
3674 {
3675 case REG_EH_REGION:
e38def9c 3676 copy_reg_eh_region_note_backward (note, insn_last, NULL);
e13693ec 3677 break;
381eb1e7 3678
e13693ec 3679 case REG_NORETURN:
3680 case REG_SETJMP:
4c0315d0 3681 case REG_TM:
698ff1f0 3682 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
381eb1e7 3683 {
6d7dc5b9 3684 if (CALL_P (insn))
a1ddb869 3685 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
381eb1e7 3686 }
e13693ec 3687 break;
5bb27a4b 3688
e13693ec 3689 case REG_NON_LOCAL_GOTO:
698ff1f0 3690 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
31d3e01c 3691 {
6d7dc5b9 3692 if (JUMP_P (insn))
a1ddb869 3693 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
31d3e01c 3694 }
e13693ec 3695 break;
344dc2fa 3696
698ff1f0 3697#ifdef AUTO_INC_DEC
3698 case REG_INC:
3699 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3700 {
3701 rtx reg = XEXP (note, 0);
3702 if (!FIND_REG_INC_NOTE (insn, reg)
3703 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
a1ddb869 3704 add_reg_note (insn, REG_INC, reg);
698ff1f0 3705 }
3706 break;
3707#endif
3708
dfe00a8f 3709 case REG_ARGS_SIZE:
3710 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3711 break;
3712
2e3b0d0f 3713 case REG_CALL_DECL:
3714 gcc_assert (call_insn != NULL_RTX);
3715 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3716 break;
3717
e13693ec 3718 default:
3719 break;
15bbde2b 3720 }
e13693ec 3721 }
3722
3723 /* If there are LABELS inside the split insns increment the
3724 usage count so we don't delete the label. */
19d2fe05 3725 if (INSN_P (trial))
e13693ec 3726 {
3727 insn = insn_last;
3728 while (insn != NULL_RTX)
15bbde2b 3729 {
19d2fe05 3730 /* JUMP_P insns have already been "marked" above. */
6d7dc5b9 3731 if (NONJUMP_INSN_P (insn))
e13693ec 3732 mark_label_nuses (PATTERN (insn));
15bbde2b 3733
e13693ec 3734 insn = PREV_INSN (insn);
3735 }
15bbde2b 3736 }
3737
5169661d 3738 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
e13693ec 3739
3740 delete_insn (trial);
3741 if (has_barrier)
3742 emit_barrier_after (tem);
3743
3744 /* Recursively call try_split for each new insn created; by the
3745 time control returns here that insn will be fully split, so
3746 set LAST and continue from the insn after the one returned.
3747 We can't use next_active_insn here since AFTER may be a note.
3748 Ignore deleted insns, which can be occur if not optimizing. */
3749 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3750 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3751 tem = try_split (PATTERN (tem), tem, 1);
3752
3753 /* Return either the first or the last insn, depending on which was
3754 requested. */
3755 return last
06f9d6ef 3756 ? (after ? PREV_INSN (after) : get_last_insn ())
e13693ec 3757 : NEXT_INSN (before);
15bbde2b 3758}
3759\f
3760/* Make and return an INSN rtx, initializing all its slots.
6a84e367 3761 Store PATTERN in the pattern slots. */
15bbde2b 3762
2c57d586 3763rtx_insn *
35cb5232 3764make_insn_raw (rtx pattern)
15bbde2b 3765{
2c57d586 3766 rtx_insn *insn;
15bbde2b 3767
2c57d586 3768 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
15bbde2b 3769
575333f9 3770 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 3771 PATTERN (insn) = pattern;
3772 INSN_CODE (insn) = -1;
fc92fa61 3773 REG_NOTES (insn) = NULL;
5169661d 3774 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 3775 BLOCK_FOR_INSN (insn) = NULL;
15bbde2b 3776
fe7f701d 3777#ifdef ENABLE_RTL_CHECKING
3778 if (insn
9204e736 3779 && INSN_P (insn)
fe7f701d 3780 && (returnjump_p (insn)
3781 || (GET_CODE (insn) == SET
3782 && SET_DEST (insn) == pc_rtx)))
3783 {
c3ceba8e 3784 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
fe7f701d 3785 debug_rtx (insn);
3786 }
3787#endif
d823ba47 3788
15bbde2b 3789 return insn;
3790}
3791
9845d120 3792/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3793
2c57d586 3794static rtx_insn *
9845d120 3795make_debug_insn_raw (rtx pattern)
3796{
2c57d586 3797 rtx_debug_insn *insn;
9845d120 3798
2c57d586 3799 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
9845d120 3800 INSN_UID (insn) = cur_debug_insn_uid++;
3801 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3802 INSN_UID (insn) = cur_insn_uid++;
3803
3804 PATTERN (insn) = pattern;
3805 INSN_CODE (insn) = -1;
3806 REG_NOTES (insn) = NULL;
5169661d 3807 INSN_LOCATION (insn) = curr_insn_location ();
9845d120 3808 BLOCK_FOR_INSN (insn) = NULL;
3809
3810 return insn;
3811}
3812
31d3e01c 3813/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
15bbde2b 3814
2c57d586 3815static rtx_insn *
35cb5232 3816make_jump_insn_raw (rtx pattern)
15bbde2b 3817{
2c57d586 3818 rtx_jump_insn *insn;
15bbde2b 3819
2c57d586 3820 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
fc92fa61 3821 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 3822
3823 PATTERN (insn) = pattern;
3824 INSN_CODE (insn) = -1;
fc92fa61 3825 REG_NOTES (insn) = NULL;
3826 JUMP_LABEL (insn) = NULL;
5169661d 3827 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 3828 BLOCK_FOR_INSN (insn) = NULL;
15bbde2b 3829
3830 return insn;
3831}
6e911104 3832
31d3e01c 3833/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
6e911104 3834
2c57d586 3835static rtx_insn *
35cb5232 3836make_call_insn_raw (rtx pattern)
6e911104 3837{
2c57d586 3838 rtx_call_insn *insn;
6e911104 3839
2c57d586 3840 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
6e911104 3841 INSN_UID (insn) = cur_insn_uid++;
3842
3843 PATTERN (insn) = pattern;
3844 INSN_CODE (insn) = -1;
6e911104 3845 REG_NOTES (insn) = NULL;
3846 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5169661d 3847 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 3848 BLOCK_FOR_INSN (insn) = NULL;
6e911104 3849
3850 return insn;
3851}
35f3420b 3852
3853/* Like `make_insn_raw' but make a NOTE instead of an insn. */
3854
cef3d8ad 3855static rtx_note *
35f3420b 3856make_note_raw (enum insn_note subtype)
3857{
3858 /* Some notes are never created this way at all. These notes are
3859 only created by patching out insns. */
3860 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
3861 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
3862
cef3d8ad 3863 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
35f3420b 3864 INSN_UID (note) = cur_insn_uid++;
3865 NOTE_KIND (note) = subtype;
3866 BLOCK_FOR_INSN (note) = NULL;
3867 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
3868 return note;
3869}
15bbde2b 3870\f
35f3420b 3871/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
3872 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
3873 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
3874
3875static inline void
3e75e92b 3876link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
35f3420b 3877{
4a57a2e8 3878 SET_PREV_INSN (insn) = prev;
3879 SET_NEXT_INSN (insn) = next;
35f3420b 3880 if (prev != NULL)
3881 {
4a57a2e8 3882 SET_NEXT_INSN (prev) = insn;
35f3420b 3883 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
3884 {
3885 rtx sequence = PATTERN (prev);
4a57a2e8 3886 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
35f3420b 3887 }
3888 }
3889 if (next != NULL)
3890 {
4a57a2e8 3891 SET_PREV_INSN (next) = insn;
35f3420b 3892 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4a57a2e8 3893 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
35f3420b 3894 }
34f5b9ac 3895
3896 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3897 {
3898 rtx sequence = PATTERN (insn);
4a57a2e8 3899 SET_PREV_INSN (XVECEXP (sequence, 0, 0)) = prev;
3900 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
34f5b9ac 3901 }
35f3420b 3902}
3903
15bbde2b 3904/* Add INSN to the end of the doubly-linked list.
3905 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3906
3907void
3e75e92b 3908add_insn (rtx_insn *insn)
15bbde2b 3909{
3e75e92b 3910 rtx_insn *prev = get_last_insn ();
35f3420b 3911 link_insn_into_chain (insn, prev, NULL);
06f9d6ef 3912 if (NULL == get_insns ())
3913 set_first_insn (insn);
06f9d6ef 3914 set_last_insn (insn);
15bbde2b 3915}
3916
35f3420b 3917/* Add INSN into the doubly-linked list after insn AFTER. */
15bbde2b 3918
35f3420b 3919static void
3e75e92b 3920add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
15bbde2b 3921{
3e75e92b 3922 rtx_insn *next = NEXT_INSN (after);
15bbde2b 3923
611234b4 3924 gcc_assert (!optimize || !INSN_DELETED_P (after));
f65c10c0 3925
35f3420b 3926 link_insn_into_chain (insn, after, next);
15bbde2b 3927
35f3420b 3928 if (next == NULL)
15bbde2b 3929 {
35f3420b 3930 if (get_last_insn () == after)
3931 set_last_insn (insn);
3932 else
3933 {
3934 struct sequence_stack *stack = seq_stack;
3935 /* Scan all pending sequences too. */
3936 for (; stack; stack = stack->next)
3937 if (after == stack->last)
3938 {
3939 stack->last = insn;
3940 break;
3941 }
3942 }
15bbde2b 3943 }
35f3420b 3944}
3945
3946/* Add INSN into the doubly-linked list before insn BEFORE. */
3947
3948static void
3e75e92b 3949add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
35f3420b 3950{
3e75e92b 3951 rtx_insn *prev = PREV_INSN (before);
35f3420b 3952
3953 gcc_assert (!optimize || !INSN_DELETED_P (before));
3954
3955 link_insn_into_chain (insn, prev, before);
3956
3957 if (prev == NULL)
15bbde2b 3958 {
35f3420b 3959 if (get_insns () == before)
3960 set_first_insn (insn);
3961 else
3962 {
3963 struct sequence_stack *stack = seq_stack;
3964 /* Scan all pending sequences too. */
3965 for (; stack; stack = stack->next)
3966 if (before == stack->first)
3967 {
3968 stack->first = insn;
3969 break;
3970 }
312de84d 3971
35f3420b 3972 gcc_assert (stack);
3973 }
15bbde2b 3974 }
35f3420b 3975}
3976
3977/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
3978 If BB is NULL, an attempt is made to infer the bb from before.
3979
3980 This and the next function should be the only functions called
3981 to insert an insn once delay slots have been filled since only
3982 they know how to update a SEQUENCE. */
15bbde2b 3983
35f3420b 3984void
3e75e92b 3985add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
35f3420b 3986{
26bb3cb2 3987 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
3e75e92b 3988 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
35f3420b 3989 add_insn_after_nobb (insn, after);
6d7dc5b9 3990 if (!BARRIER_P (after)
3991 && !BARRIER_P (insn)
9dda7915 3992 && (bb = BLOCK_FOR_INSN (after)))
3993 {
3994 set_block_for_insn (insn, bb);
308f9b79 3995 if (INSN_P (insn))
3072d30e 3996 df_insn_rescan (insn);
9dda7915 3997 /* Should not happen as first in the BB is always
3fb1e43b 3998 either NOTE or LABEL. */
5496dbfc 3999 if (BB_END (bb) == after
9dda7915 4000 /* Avoid clobbering of structure when creating new BB. */
6d7dc5b9 4001 && !BARRIER_P (insn)
ad4583d9 4002 && !NOTE_INSN_BASIC_BLOCK_P (insn))
26bb3cb2 4003 BB_END (bb) = insn;
9dda7915 4004 }
15bbde2b 4005}
4006
35f3420b 4007/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4008 If BB is NULL, an attempt is made to infer the bb from before.
4009
4010 This and the previous function should be the only functions called
4011 to insert an insn once delay slots have been filled since only
4012 they know how to update a SEQUENCE. */
312de84d 4013
4014void
3e75e92b 4015add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
312de84d 4016{
3e75e92b 4017 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4018 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
35f3420b 4019 add_insn_before_nobb (insn, before);
312de84d 4020
48e1416a 4021 if (!bb
3072d30e 4022 && !BARRIER_P (before)
4023 && !BARRIER_P (insn))
4024 bb = BLOCK_FOR_INSN (before);
4025
4026 if (bb)
9dda7915 4027 {
4028 set_block_for_insn (insn, bb);
308f9b79 4029 if (INSN_P (insn))
3072d30e 4030 df_insn_rescan (insn);
611234b4 4031 /* Should not happen as first in the BB is always either NOTE or
ba821eb1 4032 LABEL. */
611234b4 4033 gcc_assert (BB_HEAD (bb) != insn
4034 /* Avoid clobbering of structure when creating new BB. */
4035 || BARRIER_P (insn)
ad4583d9 4036 || NOTE_INSN_BASIC_BLOCK_P (insn));
9dda7915 4037 }
312de84d 4038}
4039
3072d30e 4040/* Replace insn with an deleted instruction note. */
4041
fc3d1695 4042void
4043set_insn_deleted (rtx insn)
3072d30e 4044{
91f71fa3 4045 if (INSN_P (insn))
b983ea33 4046 df_insn_delete (insn);
3072d30e 4047 PUT_CODE (insn, NOTE);
4048 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4049}
4050
4051
93ff53d3 4052/* Unlink INSN from the insn chain.
4053
4054 This function knows how to handle sequences.
4055
4056 This function does not invalidate data flow information associated with
4057 INSN (i.e. does not call df_insn_delete). That makes this function
4058 usable for only disconnecting an insn from the chain, and re-emit it
4059 elsewhere later.
4060
4061 To later insert INSN elsewhere in the insn chain via add_insn and
4062 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4063 the caller. Nullifying them here breaks many insn chain walks.
4064
4065 To really delete an insn and related DF information, use delete_insn. */
4066
7ddcf2bf 4067void
35cb5232 4068remove_insn (rtx insn)
7ddcf2bf 4069{
26bb3cb2 4070 rtx_insn *next = NEXT_INSN (insn);
4071 rtx_insn *prev = PREV_INSN (insn);
e4bf866d 4072 basic_block bb;
4073
7ddcf2bf 4074 if (prev)
4075 {
4a57a2e8 4076 SET_NEXT_INSN (prev) = next;
6d7dc5b9 4077 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
7ddcf2bf 4078 {
4079 rtx sequence = PATTERN (prev);
4a57a2e8 4080 SET_NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
7ddcf2bf 4081 }
4082 }
06f9d6ef 4083 else if (get_insns () == insn)
4084 {
c8f0c143 4085 if (next)
4a57a2e8 4086 SET_PREV_INSN (next) = NULL;
06f9d6ef 4087 set_first_insn (next);
4088 }
7ddcf2bf 4089 else
4090 {
0a893c29 4091 struct sequence_stack *stack = seq_stack;
7ddcf2bf 4092 /* Scan all pending sequences too. */
4093 for (; stack; stack = stack->next)
4094 if (insn == stack->first)
4095 {
4096 stack->first = next;
4097 break;
4098 }
4099
611234b4 4100 gcc_assert (stack);
7ddcf2bf 4101 }
4102
4103 if (next)
4104 {
4a57a2e8 4105 SET_PREV_INSN (next) = prev;
6d7dc5b9 4106 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
4a57a2e8 4107 SET_PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
7ddcf2bf 4108 }
06f9d6ef 4109 else if (get_last_insn () == insn)
4110 set_last_insn (prev);
7ddcf2bf 4111 else
4112 {
0a893c29 4113 struct sequence_stack *stack = seq_stack;
7ddcf2bf 4114 /* Scan all pending sequences too. */
4115 for (; stack; stack = stack->next)
4116 if (insn == stack->last)
4117 {
4118 stack->last = prev;
4119 break;
4120 }
4121
611234b4 4122 gcc_assert (stack);
7ddcf2bf 4123 }
b983ea33 4124
b983ea33 4125 /* Fix up basic block boundaries, if necessary. */
6d7dc5b9 4126 if (!BARRIER_P (insn)
e4bf866d 4127 && (bb = BLOCK_FOR_INSN (insn)))
4128 {
5496dbfc 4129 if (BB_HEAD (bb) == insn)
e4bf866d 4130 {
f4aee538 4131 /* Never ever delete the basic block note without deleting whole
4132 basic block. */
611234b4 4133 gcc_assert (!NOTE_P (insn));
26bb3cb2 4134 BB_HEAD (bb) = next;
e4bf866d 4135 }
5496dbfc 4136 if (BB_END (bb) == insn)
26bb3cb2 4137 BB_END (bb) = prev;
e4bf866d 4138 }
7ddcf2bf 4139}
4140
d5f9786f 4141/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4142
4143void
35cb5232 4144add_function_usage_to (rtx call_insn, rtx call_fusage)
d5f9786f 4145{
611234b4 4146 gcc_assert (call_insn && CALL_P (call_insn));
d5f9786f 4147
4148 /* Put the register usage information on the CALL. If there is already
4149 some usage information, put ours at the end. */
4150 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4151 {
4152 rtx link;
4153
4154 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4155 link = XEXP (link, 1))
4156 ;
4157
4158 XEXP (link, 1) = call_fusage;
4159 }
4160 else
4161 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4162}
4163
15bbde2b 4164/* Delete all insns made since FROM.
4165 FROM becomes the new last instruction. */
4166
4167void
35cb5232 4168delete_insns_since (rtx from)
15bbde2b 4169{
4170 if (from == 0)
06f9d6ef 4171 set_first_insn (0);
15bbde2b 4172 else
4a57a2e8 4173 SET_NEXT_INSN (from) = 0;
06f9d6ef 4174 set_last_insn (from);
15bbde2b 4175}
4176
34e2ddcd 4177/* This function is deprecated, please use sequences instead.
4178
4179 Move a consecutive bunch of insns to a different place in the chain.
15bbde2b 4180 The insns to be moved are those between FROM and TO.
4181 They are moved to a new position after the insn AFTER.
4182 AFTER must not be FROM or TO or any insn in between.
4183
4184 This function does not know about SEQUENCEs and hence should not be
4185 called after delay-slot filling has been done. */
4186
4187void
35cb5232 4188reorder_insns_nobb (rtx from, rtx to, rtx after)
15bbde2b 4189{
7f6ca11f 4190#ifdef ENABLE_CHECKING
4191 rtx x;
4192 for (x = from; x != to; x = NEXT_INSN (x))
4193 gcc_assert (after != x);
4194 gcc_assert (after != to);
4195#endif
4196
15bbde2b 4197 /* Splice this bunch out of where it is now. */
4198 if (PREV_INSN (from))
4a57a2e8 4199 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
15bbde2b 4200 if (NEXT_INSN (to))
4a57a2e8 4201 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
06f9d6ef 4202 if (get_last_insn () == to)
4203 set_last_insn (PREV_INSN (from));
4204 if (get_insns () == from)
4205 set_first_insn (NEXT_INSN (to));
15bbde2b 4206
4207 /* Make the new neighbors point to it and it to them. */
4208 if (NEXT_INSN (after))
4a57a2e8 4209 SET_PREV_INSN (NEXT_INSN (after)) = to;
15bbde2b 4210
4a57a2e8 4211 SET_NEXT_INSN (to) = NEXT_INSN (after);
4212 SET_PREV_INSN (from) = after;
4213 SET_NEXT_INSN (after) = from;
9af5ce0c 4214 if (after == get_last_insn ())
06f9d6ef 4215 set_last_insn (to);
15bbde2b 4216}
4217
9dda7915 4218/* Same as function above, but take care to update BB boundaries. */
4219void
4a3fb716 4220reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
9dda7915 4221{
4a3fb716 4222 rtx_insn *prev = PREV_INSN (from);
9dda7915 4223 basic_block bb, bb2;
4224
4225 reorder_insns_nobb (from, to, after);
4226
6d7dc5b9 4227 if (!BARRIER_P (after)
9dda7915 4228 && (bb = BLOCK_FOR_INSN (after)))
4229 {
4230 rtx x;
3072d30e 4231 df_set_bb_dirty (bb);
d4c5e26d 4232
6d7dc5b9 4233 if (!BARRIER_P (from)
9dda7915 4234 && (bb2 = BLOCK_FOR_INSN (from)))
4235 {
5496dbfc 4236 if (BB_END (bb2) == to)
26bb3cb2 4237 BB_END (bb2) = prev;
3072d30e 4238 df_set_bb_dirty (bb2);
9dda7915 4239 }
4240
5496dbfc 4241 if (BB_END (bb) == after)
26bb3cb2 4242 BB_END (bb) = to;
9dda7915 4243
4244 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7097dd0c 4245 if (!BARRIER_P (x))
a2bdd643 4246 df_insn_change_bb (x, bb);
9dda7915 4247 }
4248}
4249
15bbde2b 4250\f
31d3e01c 4251/* Emit insn(s) of given code and pattern
4252 at a specified place within the doubly-linked list.
15bbde2b 4253
31d3e01c 4254 All of the emit_foo global entry points accept an object
4255 X which is either an insn list or a PATTERN of a single
4256 instruction.
15bbde2b 4257
31d3e01c 4258 There are thus a few canonical ways to generate code and
4259 emit it at a specific place in the instruction stream. For
4260 example, consider the instruction named SPOT and the fact that
4261 we would like to emit some instructions before SPOT. We might
4262 do it like this:
15bbde2b 4263
31d3e01c 4264 start_sequence ();
4265 ... emit the new instructions ...
4266 insns_head = get_insns ();
4267 end_sequence ();
15bbde2b 4268
31d3e01c 4269 emit_insn_before (insns_head, SPOT);
15bbde2b 4270
31d3e01c 4271 It used to be common to generate SEQUENCE rtl instead, but that
4272 is a relic of the past which no longer occurs. The reason is that
4273 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4274 generated would almost certainly die right after it was created. */
15bbde2b 4275
722334ea 4276static rtx_insn *
5f7c5ddd 4277emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
2c57d586 4278 rtx_insn *(*make_raw) (rtx))
15bbde2b 4279{
2c57d586 4280 rtx_insn *insn;
15bbde2b 4281
611234b4 4282 gcc_assert (before);
31d3e01c 4283
4284 if (x == NULL_RTX)
722334ea 4285 return safe_as_a <rtx_insn *> (last);
31d3e01c 4286
4287 switch (GET_CODE (x))
15bbde2b 4288 {
9845d120 4289 case DEBUG_INSN:
31d3e01c 4290 case INSN:
4291 case JUMP_INSN:
4292 case CALL_INSN:
4293 case CODE_LABEL:
4294 case BARRIER:
4295 case NOTE:
2c57d586 4296 insn = as_a <rtx_insn *> (x);
31d3e01c 4297 while (insn)
4298 {
2c57d586 4299 rtx_insn *next = NEXT_INSN (insn);
3072d30e 4300 add_insn_before (insn, before, bb);
31d3e01c 4301 last = insn;
4302 insn = next;
4303 }
4304 break;
4305
4306#ifdef ENABLE_RTL_CHECKING
4307 case SEQUENCE:
611234b4 4308 gcc_unreachable ();
31d3e01c 4309 break;
4310#endif
4311
4312 default:
5f7c5ddd 4313 last = (*make_raw) (x);
3072d30e 4314 add_insn_before (last, before, bb);
31d3e01c 4315 break;
15bbde2b 4316 }
4317
722334ea 4318 return safe_as_a <rtx_insn *> (last);
15bbde2b 4319}
4320
5f7c5ddd 4321/* Make X be output before the instruction BEFORE. */
4322
722334ea 4323rtx_insn *
5f7c5ddd 4324emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4325{
4326 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4327}
4328
31d3e01c 4329/* Make an instruction with body X and code JUMP_INSN
15bbde2b 4330 and output it before the instruction BEFORE. */
4331
722334ea 4332rtx_insn *
0891f67c 4333emit_jump_insn_before_noloc (rtx x, rtx before)
15bbde2b 4334{
5f7c5ddd 4335 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4336 make_jump_insn_raw);
15bbde2b 4337}
4338
31d3e01c 4339/* Make an instruction with body X and code CALL_INSN
cd0fe062 4340 and output it before the instruction BEFORE. */
4341
722334ea 4342rtx_insn *
0891f67c 4343emit_call_insn_before_noloc (rtx x, rtx before)
cd0fe062 4344{
5f7c5ddd 4345 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4346 make_call_insn_raw);
cd0fe062 4347}
4348
9845d120 4349/* Make an instruction with body X and code DEBUG_INSN
4350 and output it before the instruction BEFORE. */
4351
722334ea 4352rtx_insn *
9845d120 4353emit_debug_insn_before_noloc (rtx x, rtx before)
4354{
5f7c5ddd 4355 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4356 make_debug_insn_raw);
9845d120 4357}
4358
15bbde2b 4359/* Make an insn of code BARRIER
71caadc0 4360 and output it before the insn BEFORE. */
15bbde2b 4361
722334ea 4362rtx_barrier *
35cb5232 4363emit_barrier_before (rtx before)
15bbde2b 4364{
722334ea 4365 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 4366
4367 INSN_UID (insn) = cur_insn_uid++;
4368
3072d30e 4369 add_insn_before (insn, before, NULL);
15bbde2b 4370 return insn;
4371}
4372
71caadc0 4373/* Emit the label LABEL before the insn BEFORE. */
4374
722334ea 4375rtx_insn *
35cb5232 4376emit_label_before (rtx label, rtx before)
71caadc0 4377{
596ef494 4378 gcc_checking_assert (INSN_UID (label) == 0);
4379 INSN_UID (label) = cur_insn_uid++;
4380 add_insn_before (label, before, NULL);
722334ea 4381 return as_a <rtx_insn *> (label);
71caadc0 4382}
15bbde2b 4383\f
31d3e01c 4384/* Helper for emit_insn_after, handles lists of instructions
4385 efficiently. */
15bbde2b 4386
31d3e01c 4387static rtx
26bb3cb2 4388emit_insn_after_1 (rtx_insn *first, rtx after, basic_block bb)
15bbde2b 4389{
26bb3cb2 4390 rtx_insn *last;
4391 rtx_insn *after_after;
3072d30e 4392 if (!bb && !BARRIER_P (after))
4393 bb = BLOCK_FOR_INSN (after);
15bbde2b 4394
3072d30e 4395 if (bb)
15bbde2b 4396 {
3072d30e 4397 df_set_bb_dirty (bb);
31d3e01c 4398 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
6d7dc5b9 4399 if (!BARRIER_P (last))
3072d30e 4400 {
4401 set_block_for_insn (last, bb);
4402 df_insn_rescan (last);
4403 }
6d7dc5b9 4404 if (!BARRIER_P (last))
3072d30e 4405 {
4406 set_block_for_insn (last, bb);
4407 df_insn_rescan (last);
4408 }
5496dbfc 4409 if (BB_END (bb) == after)
26bb3cb2 4410 BB_END (bb) = last;
15bbde2b 4411 }
4412 else
31d3e01c 4413 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4414 continue;
4415
4416 after_after = NEXT_INSN (after);
4417
4a57a2e8 4418 SET_NEXT_INSN (after) = first;
4419 SET_PREV_INSN (first) = after;
4420 SET_NEXT_INSN (last) = after_after;
31d3e01c 4421 if (after_after)
4a57a2e8 4422 SET_PREV_INSN (after_after) = last;
31d3e01c 4423
9af5ce0c 4424 if (after == get_last_insn ())
06f9d6ef 4425 set_last_insn (last);
e1ab7874 4426
31d3e01c 4427 return last;
4428}
4429
722334ea 4430static rtx_insn *
5f7c5ddd 4431emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
2c57d586 4432 rtx_insn *(*make_raw)(rtx))
31d3e01c 4433{
4434 rtx last = after;
4435
611234b4 4436 gcc_assert (after);
31d3e01c 4437
4438 if (x == NULL_RTX)
722334ea 4439 return safe_as_a <rtx_insn *> (last);
31d3e01c 4440
4441 switch (GET_CODE (x))
15bbde2b 4442 {
9845d120 4443 case DEBUG_INSN:
31d3e01c 4444 case INSN:
4445 case JUMP_INSN:
4446 case CALL_INSN:
4447 case CODE_LABEL:
4448 case BARRIER:
4449 case NOTE:
26bb3cb2 4450 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
31d3e01c 4451 break;
4452
4453#ifdef ENABLE_RTL_CHECKING
4454 case SEQUENCE:
611234b4 4455 gcc_unreachable ();
31d3e01c 4456 break;
4457#endif
4458
4459 default:
5f7c5ddd 4460 last = (*make_raw) (x);
3072d30e 4461 add_insn_after (last, after, bb);
31d3e01c 4462 break;
15bbde2b 4463 }
4464
722334ea 4465 return safe_as_a <rtx_insn *> (last);
15bbde2b 4466}
4467
5f7c5ddd 4468/* Make X be output after the insn AFTER and set the BB of insn. If
4469 BB is NULL, an attempt is made to infer the BB from AFTER. */
4470
722334ea 4471rtx_insn *
5f7c5ddd 4472emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4473{
4474 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4475}
4476
1bea98fb 4477
31d3e01c 4478/* Make an insn of code JUMP_INSN with body X
15bbde2b 4479 and output it after the insn AFTER. */
4480
722334ea 4481rtx_insn *
0891f67c 4482emit_jump_insn_after_noloc (rtx x, rtx after)
15bbde2b 4483{
5f7c5ddd 4484 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
31d3e01c 4485}
4486
4487/* Make an instruction with body X and code CALL_INSN
4488 and output it after the instruction AFTER. */
4489
722334ea 4490rtx_insn *
0891f67c 4491emit_call_insn_after_noloc (rtx x, rtx after)
31d3e01c 4492{
5f7c5ddd 4493 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
15bbde2b 4494}
4495
9845d120 4496/* Make an instruction with body X and code CALL_INSN
4497 and output it after the instruction AFTER. */
4498
722334ea 4499rtx_insn *
9845d120 4500emit_debug_insn_after_noloc (rtx x, rtx after)
4501{
5f7c5ddd 4502 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
9845d120 4503}
4504
15bbde2b 4505/* Make an insn of code BARRIER
4506 and output it after the insn AFTER. */
4507
722334ea 4508rtx_barrier *
35cb5232 4509emit_barrier_after (rtx after)
15bbde2b 4510{
722334ea 4511 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 4512
4513 INSN_UID (insn) = cur_insn_uid++;
4514
3072d30e 4515 add_insn_after (insn, after, NULL);
15bbde2b 4516 return insn;
4517}
4518
4519/* Emit the label LABEL after the insn AFTER. */
4520
722334ea 4521rtx_insn *
35cb5232 4522emit_label_after (rtx label, rtx after)
15bbde2b 4523{
596ef494 4524 gcc_checking_assert (INSN_UID (label) == 0);
4525 INSN_UID (label) = cur_insn_uid++;
4526 add_insn_after (label, after, NULL);
722334ea 4527 return as_a <rtx_insn *> (label);
15bbde2b 4528}
35f3420b 4529\f
4530/* Notes require a bit of special handling: Some notes need to have their
4531 BLOCK_FOR_INSN set, others should never have it set, and some should
4532 have it set or clear depending on the context. */
4533
4534/* Return true iff a note of kind SUBTYPE should be emitted with routines
4535 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4536 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4537
4538static bool
4539note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4540{
4541 switch (subtype)
4542 {
4543 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4544 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4545 return true;
4546
4547 /* Notes for var tracking and EH region markers can appear between or
4548 inside basic blocks. If the caller is emitting on the basic block
4549 boundary, do not set BLOCK_FOR_INSN on the new note. */
4550 case NOTE_INSN_VAR_LOCATION:
4551 case NOTE_INSN_CALL_ARG_LOCATION:
4552 case NOTE_INSN_EH_REGION_BEG:
4553 case NOTE_INSN_EH_REGION_END:
4554 return on_bb_boundary_p;
4555
4556 /* Otherwise, BLOCK_FOR_INSN must be set. */
4557 default:
4558 return false;
4559 }
4560}
15bbde2b 4561
4562/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4563
cef3d8ad 4564rtx_note *
3e75e92b 4565emit_note_after (enum insn_note subtype, rtx uncast_after)
15bbde2b 4566{
3e75e92b 4567 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
cef3d8ad 4568 rtx_note *note = make_note_raw (subtype);
35f3420b 4569 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4570 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4571
4572 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4573 add_insn_after_nobb (note, after);
4574 else
4575 add_insn_after (note, after, bb);
4576 return note;
4577}
4578
4579/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4580
cef3d8ad 4581rtx_note *
3e75e92b 4582emit_note_before (enum insn_note subtype, rtx uncast_before)
35f3420b 4583{
3e75e92b 4584 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
cef3d8ad 4585 rtx_note *note = make_note_raw (subtype);
35f3420b 4586 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4587 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4588
4589 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4590 add_insn_before_nobb (note, before);
4591 else
4592 add_insn_before (note, before, bb);
15bbde2b 4593 return note;
4594}
15bbde2b 4595\f
ede4ebcb 4596/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4597 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4598
722334ea 4599static rtx_insn *
ede4ebcb 4600emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
2c57d586 4601 rtx_insn *(*make_raw) (rtx))
d321a68b 4602{
ede4ebcb 4603 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
d321a68b 4604
0891f67c 4605 if (pattern == NULL_RTX || !loc)
722334ea 4606 return safe_as_a <rtx_insn *> (last);
ca154f3f 4607
31d3e01c 4608 after = NEXT_INSN (after);
4609 while (1)
4610 {
5169661d 4611 if (active_insn_p (after) && !INSN_LOCATION (after))
4612 INSN_LOCATION (after) = loc;
31d3e01c 4613 if (after == last)
4614 break;
4615 after = NEXT_INSN (after);
4616 }
722334ea 4617 return safe_as_a <rtx_insn *> (last);
d321a68b 4618}
4619
ede4ebcb 4620/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4621 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4622 any DEBUG_INSNs. */
4623
722334ea 4624static rtx_insn *
ede4ebcb 4625emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
2c57d586 4626 rtx_insn *(*make_raw) (rtx))
0891f67c 4627{
9845d120 4628 rtx prev = after;
4629
ede4ebcb 4630 if (skip_debug_insns)
4631 while (DEBUG_INSN_P (prev))
4632 prev = PREV_INSN (prev);
9845d120 4633
4634 if (INSN_P (prev))
5169661d 4635 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
ede4ebcb 4636 make_raw);
0891f67c 4637 else
ede4ebcb 4638 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0891f67c 4639}
4640
5169661d 4641/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4642rtx_insn *
ede4ebcb 4643emit_insn_after_setloc (rtx pattern, rtx after, int loc)
d321a68b 4644{
ede4ebcb 4645 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4646}
31d3e01c 4647
5169661d 4648/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4649rtx_insn *
ede4ebcb 4650emit_insn_after (rtx pattern, rtx after)
4651{
4652 return emit_pattern_after (pattern, after, true, make_insn_raw);
4653}
ca154f3f 4654
5169661d 4655/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4656rtx_insn *
ede4ebcb 4657emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4658{
4659 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
d321a68b 4660}
4661
5169661d 4662/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4663rtx_insn *
0891f67c 4664emit_jump_insn_after (rtx pattern, rtx after)
4665{
ede4ebcb 4666 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
0891f67c 4667}
4668
5169661d 4669/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4670rtx_insn *
35cb5232 4671emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
d321a68b 4672{
ede4ebcb 4673 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
d321a68b 4674}
4675
5169661d 4676/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4677rtx_insn *
0891f67c 4678emit_call_insn_after (rtx pattern, rtx after)
4679{
ede4ebcb 4680 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
0891f67c 4681}
4682
5169661d 4683/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4684rtx_insn *
9845d120 4685emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4686{
ede4ebcb 4687 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
9845d120 4688}
4689
5169661d 4690/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4691rtx_insn *
9845d120 4692emit_debug_insn_after (rtx pattern, rtx after)
4693{
ede4ebcb 4694 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
9845d120 4695}
4696
ede4ebcb 4697/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4698 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4699 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4700 CALL_INSN, etc. */
4701
722334ea 4702static rtx_insn *
ede4ebcb 4703emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
2c57d586 4704 rtx_insn *(*make_raw) (rtx))
d321a68b 4705{
4706 rtx first = PREV_INSN (before);
ede4ebcb 4707 rtx last = emit_pattern_before_noloc (pattern, before,
4708 insnp ? before : NULL_RTX,
4709 NULL, make_raw);
0891f67c 4710
4711 if (pattern == NULL_RTX || !loc)
722334ea 4712 return safe_as_a <rtx_insn *> (last);
0891f67c 4713
4486418e 4714 if (!first)
4715 first = get_insns ();
4716 else
4717 first = NEXT_INSN (first);
0891f67c 4718 while (1)
4719 {
5169661d 4720 if (active_insn_p (first) && !INSN_LOCATION (first))
4721 INSN_LOCATION (first) = loc;
0891f67c 4722 if (first == last)
4723 break;
4724 first = NEXT_INSN (first);
4725 }
722334ea 4726 return safe_as_a <rtx_insn *> (last);
0891f67c 4727}
4728
ede4ebcb 4729/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4730 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4731 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4732 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4733
722334ea 4734static rtx_insn *
ede4ebcb 4735emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
2c57d586 4736 bool insnp, rtx_insn *(*make_raw) (rtx))
0891f67c 4737{
9845d120 4738 rtx next = before;
4739
ede4ebcb 4740 if (skip_debug_insns)
4741 while (DEBUG_INSN_P (next))
4742 next = PREV_INSN (next);
9845d120 4743
4744 if (INSN_P (next))
5169661d 4745 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
ede4ebcb 4746 insnp, make_raw);
0891f67c 4747 else
ede4ebcb 4748 return emit_pattern_before_noloc (pattern, before,
4749 insnp ? before : NULL_RTX,
4750 NULL, make_raw);
0891f67c 4751}
4752
5169661d 4753/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4754rtx_insn *
ede4ebcb 4755emit_insn_before_setloc (rtx pattern, rtx before, int loc)
0891f67c 4756{
ede4ebcb 4757 return emit_pattern_before_setloc (pattern, before, loc, true,
4758 make_insn_raw);
4759}
0891f67c 4760
5169661d 4761/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
722334ea 4762rtx_insn *
ede4ebcb 4763emit_insn_before (rtx pattern, rtx before)
4764{
4765 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4766}
0891f67c 4767
5169661d 4768/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4769rtx_insn *
ede4ebcb 4770emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4771{
4772 return emit_pattern_before_setloc (pattern, before, loc, false,
4773 make_jump_insn_raw);
0891f67c 4774}
4775
5169661d 4776/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
722334ea 4777rtx_insn *
0891f67c 4778emit_jump_insn_before (rtx pattern, rtx before)
4779{
ede4ebcb 4780 return emit_pattern_before (pattern, before, true, false,
4781 make_jump_insn_raw);
0891f67c 4782}
4783
5169661d 4784/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4785rtx_insn *
0891f67c 4786emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4787{
ede4ebcb 4788 return emit_pattern_before_setloc (pattern, before, loc, false,
4789 make_call_insn_raw);
d321a68b 4790}
0891f67c 4791
ede4ebcb 4792/* Like emit_call_insn_before_noloc,
5169661d 4793 but set insn_location according to BEFORE. */
722334ea 4794rtx_insn *
0891f67c 4795emit_call_insn_before (rtx pattern, rtx before)
4796{
ede4ebcb 4797 return emit_pattern_before (pattern, before, true, false,
4798 make_call_insn_raw);
0891f67c 4799}
9845d120 4800
5169661d 4801/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4802rtx_insn *
9845d120 4803emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4804{
ede4ebcb 4805 return emit_pattern_before_setloc (pattern, before, loc, false,
4806 make_debug_insn_raw);
9845d120 4807}
4808
ede4ebcb 4809/* Like emit_debug_insn_before_noloc,
5169661d 4810 but set insn_location according to BEFORE. */
722334ea 4811rtx_insn *
9845d120 4812emit_debug_insn_before (rtx pattern, rtx before)
4813{
ede4ebcb 4814 return emit_pattern_before (pattern, before, false, false,
4815 make_debug_insn_raw);
9845d120 4816}
d321a68b 4817\f
31d3e01c 4818/* Take X and emit it at the end of the doubly-linked
4819 INSN list.
15bbde2b 4820
4821 Returns the last insn emitted. */
4822
722334ea 4823rtx_insn *
35cb5232 4824emit_insn (rtx x)
15bbde2b 4825{
722334ea 4826 rtx_insn *last = get_last_insn ();
4827 rtx_insn *insn;
15bbde2b 4828
31d3e01c 4829 if (x == NULL_RTX)
4830 return last;
15bbde2b 4831
31d3e01c 4832 switch (GET_CODE (x))
4833 {
9845d120 4834 case DEBUG_INSN:
31d3e01c 4835 case INSN:
4836 case JUMP_INSN:
4837 case CALL_INSN:
4838 case CODE_LABEL:
4839 case BARRIER:
4840 case NOTE:
722334ea 4841 insn = as_a <rtx_insn *> (x);
31d3e01c 4842 while (insn)
15bbde2b 4843 {
722334ea 4844 rtx_insn *next = NEXT_INSN (insn);
15bbde2b 4845 add_insn (insn);
31d3e01c 4846 last = insn;
4847 insn = next;
15bbde2b 4848 }
31d3e01c 4849 break;
15bbde2b 4850
31d3e01c 4851#ifdef ENABLE_RTL_CHECKING
91f71fa3 4852 case JUMP_TABLE_DATA:
31d3e01c 4853 case SEQUENCE:
611234b4 4854 gcc_unreachable ();
31d3e01c 4855 break;
4856#endif
15bbde2b 4857
31d3e01c 4858 default:
4859 last = make_insn_raw (x);
4860 add_insn (last);
4861 break;
15bbde2b 4862 }
4863
4864 return last;
4865}
4866
9845d120 4867/* Make an insn of code DEBUG_INSN with pattern X
4868 and add it to the end of the doubly-linked list. */
4869
722334ea 4870rtx_insn *
9845d120 4871emit_debug_insn (rtx x)
4872{
722334ea 4873 rtx_insn *last = get_last_insn ();
4874 rtx_insn *insn;
9845d120 4875
4876 if (x == NULL_RTX)
4877 return last;
4878
4879 switch (GET_CODE (x))
4880 {
4881 case DEBUG_INSN:
4882 case INSN:
4883 case JUMP_INSN:
4884 case CALL_INSN:
4885 case CODE_LABEL:
4886 case BARRIER:
4887 case NOTE:
722334ea 4888 insn = as_a <rtx_insn *> (x);
9845d120 4889 while (insn)
4890 {
722334ea 4891 rtx_insn *next = NEXT_INSN (insn);
9845d120 4892 add_insn (insn);
4893 last = insn;
4894 insn = next;
4895 }
4896 break;
4897
4898#ifdef ENABLE_RTL_CHECKING
91f71fa3 4899 case JUMP_TABLE_DATA:
9845d120 4900 case SEQUENCE:
4901 gcc_unreachable ();
4902 break;
4903#endif
4904
4905 default:
4906 last = make_debug_insn_raw (x);
4907 add_insn (last);
4908 break;
4909 }
4910
4911 return last;
4912}
4913
31d3e01c 4914/* Make an insn of code JUMP_INSN with pattern X
4915 and add it to the end of the doubly-linked list. */
15bbde2b 4916
722334ea 4917rtx_insn *
35cb5232 4918emit_jump_insn (rtx x)
15bbde2b 4919{
722334ea 4920 rtx_insn *last = NULL;
4921 rtx_insn *insn;
15bbde2b 4922
31d3e01c 4923 switch (GET_CODE (x))
15bbde2b 4924 {
9845d120 4925 case DEBUG_INSN:
31d3e01c 4926 case INSN:
4927 case JUMP_INSN:
4928 case CALL_INSN:
4929 case CODE_LABEL:
4930 case BARRIER:
4931 case NOTE:
722334ea 4932 insn = as_a <rtx_insn *> (x);
31d3e01c 4933 while (insn)
4934 {
722334ea 4935 rtx_insn *next = NEXT_INSN (insn);
31d3e01c 4936 add_insn (insn);
4937 last = insn;
4938 insn = next;
4939 }
4940 break;
b36b07d8 4941
31d3e01c 4942#ifdef ENABLE_RTL_CHECKING
91f71fa3 4943 case JUMP_TABLE_DATA:
31d3e01c 4944 case SEQUENCE:
611234b4 4945 gcc_unreachable ();
31d3e01c 4946 break;
4947#endif
b36b07d8 4948
31d3e01c 4949 default:
4950 last = make_jump_insn_raw (x);
4951 add_insn (last);
4952 break;
9dda7915 4953 }
b36b07d8 4954
4955 return last;
4956}
4957
31d3e01c 4958/* Make an insn of code CALL_INSN with pattern X
15bbde2b 4959 and add it to the end of the doubly-linked list. */
4960
722334ea 4961rtx_insn *
35cb5232 4962emit_call_insn (rtx x)
15bbde2b 4963{
722334ea 4964 rtx_insn *insn;
31d3e01c 4965
4966 switch (GET_CODE (x))
15bbde2b 4967 {
9845d120 4968 case DEBUG_INSN:
31d3e01c 4969 case INSN:
4970 case JUMP_INSN:
4971 case CALL_INSN:
4972 case CODE_LABEL:
4973 case BARRIER:
4974 case NOTE:
4975 insn = emit_insn (x);
4976 break;
15bbde2b 4977
31d3e01c 4978#ifdef ENABLE_RTL_CHECKING
4979 case SEQUENCE:
91f71fa3 4980 case JUMP_TABLE_DATA:
611234b4 4981 gcc_unreachable ();
31d3e01c 4982 break;
4983#endif
15bbde2b 4984
31d3e01c 4985 default:
4986 insn = make_call_insn_raw (x);
15bbde2b 4987 add_insn (insn);
31d3e01c 4988 break;
15bbde2b 4989 }
31d3e01c 4990
4991 return insn;
15bbde2b 4992}
4993
4994/* Add the label LABEL to the end of the doubly-linked list. */
4995
722334ea 4996rtx_insn *
35cb5232 4997emit_label (rtx label)
15bbde2b 4998{
596ef494 4999 gcc_checking_assert (INSN_UID (label) == 0);
5000 INSN_UID (label) = cur_insn_uid++;
3e75e92b 5001 add_insn (as_a <rtx_insn *> (label));
722334ea 5002 return as_a <rtx_insn *> (label);
15bbde2b 5003}
5004
91f71fa3 5005/* Make an insn of code JUMP_TABLE_DATA
5006 and add it to the end of the doubly-linked list. */
5007
e41badc0 5008rtx_jump_table_data *
91f71fa3 5009emit_jump_table_data (rtx table)
5010{
e41badc0 5011 rtx_jump_table_data *jump_table_data =
5012 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
91f71fa3 5013 INSN_UID (jump_table_data) = cur_insn_uid++;
5014 PATTERN (jump_table_data) = table;
5015 BLOCK_FOR_INSN (jump_table_data) = NULL;
5016 add_insn (jump_table_data);
5017 return jump_table_data;
5018}
5019
15bbde2b 5020/* Make an insn of code BARRIER
5021 and add it to the end of the doubly-linked list. */
5022
722334ea 5023rtx_barrier *
35cb5232 5024emit_barrier (void)
15bbde2b 5025{
722334ea 5026 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 5027 INSN_UID (barrier) = cur_insn_uid++;
5028 add_insn (barrier);
5029 return barrier;
5030}
5031
2f57e3d9 5032/* Emit a copy of note ORIG. */
35cb5232 5033
cef3d8ad 5034rtx_note *
5035emit_note_copy (rtx_note *orig)
2f57e3d9 5036{
35f3420b 5037 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
cef3d8ad 5038 rtx_note *note = make_note_raw (kind);
2f57e3d9 5039 NOTE_DATA (note) = NOTE_DATA (orig);
2f57e3d9 5040 add_insn (note);
31b97e8f 5041 return note;
15bbde2b 5042}
5043
31b97e8f 5044/* Make an insn of code NOTE or type NOTE_NO
5045 and add it to the end of the doubly-linked list. */
15bbde2b 5046
cef3d8ad 5047rtx_note *
ad4583d9 5048emit_note (enum insn_note kind)
15bbde2b 5049{
cef3d8ad 5050 rtx_note *note = make_note_raw (kind);
15bbde2b 5051 add_insn (note);
5052 return note;
5053}
5054
18b42941 5055/* Emit a clobber of lvalue X. */
5056
722334ea 5057rtx_insn *
18b42941 5058emit_clobber (rtx x)
5059{
5060 /* CONCATs should not appear in the insn stream. */
5061 if (GET_CODE (x) == CONCAT)
5062 {
5063 emit_clobber (XEXP (x, 0));
5064 return emit_clobber (XEXP (x, 1));
5065 }
5066 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5067}
5068
5069/* Return a sequence of insns to clobber lvalue X. */
5070
722334ea 5071rtx_insn *
18b42941 5072gen_clobber (rtx x)
5073{
722334ea 5074 rtx_insn *seq;
18b42941 5075
5076 start_sequence ();
5077 emit_clobber (x);
5078 seq = get_insns ();
5079 end_sequence ();
5080 return seq;
5081}
5082
5083/* Emit a use of rvalue X. */
5084
722334ea 5085rtx_insn *
18b42941 5086emit_use (rtx x)
5087{
5088 /* CONCATs should not appear in the insn stream. */
5089 if (GET_CODE (x) == CONCAT)
5090 {
5091 emit_use (XEXP (x, 0));
5092 return emit_use (XEXP (x, 1));
5093 }
5094 return emit_insn (gen_rtx_USE (VOIDmode, x));
5095}
5096
5097/* Return a sequence of insns to use rvalue X. */
5098
722334ea 5099rtx_insn *
18b42941 5100gen_use (rtx x)
5101{
722334ea 5102 rtx_insn *seq;
18b42941 5103
5104 start_sequence ();
5105 emit_use (x);
5106 seq = get_insns ();
5107 end_sequence ();
5108 return seq;
5109}
5110
3a286419 5111/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5112 Return the set in INSN that such notes describe, or NULL if the notes
5113 have no meaning for INSN. */
5114
5115rtx
5116set_for_reg_notes (rtx insn)
5117{
5118 rtx pat, reg;
5119
5120 if (!INSN_P (insn))
5121 return NULL_RTX;
5122
5123 pat = PATTERN (insn);
5124 if (GET_CODE (pat) == PARALLEL)
5125 {
5126 /* We do not use single_set because that ignores SETs of unused
5127 registers. REG_EQUAL and REG_EQUIV notes really do require the
5128 PARALLEL to have a single SET. */
5129 if (multiple_sets (insn))
5130 return NULL_RTX;
5131 pat = XVECEXP (pat, 0, 0);
5132 }
5133
5134 if (GET_CODE (pat) != SET)
5135 return NULL_RTX;
5136
5137 reg = SET_DEST (pat);
5138
5139 /* Notes apply to the contents of a STRICT_LOW_PART. */
5140 if (GET_CODE (reg) == STRICT_LOW_PART)
5141 reg = XEXP (reg, 0);
5142
5143 /* Check that we have a register. */
5144 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5145 return NULL_RTX;
5146
5147 return pat;
5148}
5149
f1934a33 5150/* Place a note of KIND on insn INSN with DATUM as the datum. If a
6312a35e 5151 note of this type already exists, remove it first. */
f1934a33 5152
c080d8f0 5153rtx
35cb5232 5154set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
f1934a33 5155{
5156 rtx note = find_reg_note (insn, kind, NULL_RTX);
5157
7e6224ab 5158 switch (kind)
5159 {
5160 case REG_EQUAL:
5161 case REG_EQUIV:
3a286419 5162 if (!set_for_reg_notes (insn))
5163 return NULL_RTX;
7e6224ab 5164
5165 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5166 It serves no useful purpose and breaks eliminate_regs. */
5167 if (GET_CODE (datum) == ASM_OPERANDS)
5168 return NULL_RTX;
5169 break;
5170
5171 default:
5172 break;
5173 }
c080d8f0 5174
3a286419 5175 if (note)
5176 XEXP (note, 0) = datum;
5177 else
5178 {
5179 add_reg_note (insn, kind, datum);
5180 note = REG_NOTES (insn);
5181 }
3072d30e 5182
5183 switch (kind)
c080d8f0 5184 {
3072d30e 5185 case REG_EQUAL:
5186 case REG_EQUIV:
5187 df_notes_rescan (insn);
5188 break;
5189 default:
5190 break;
c080d8f0 5191 }
f1934a33 5192
3a286419 5193 return note;
f1934a33 5194}
41cf444a 5195
5196/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5197rtx
5198set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5199{
3a286419 5200 rtx set = set_for_reg_notes (insn);
41cf444a 5201
5202 if (set && SET_DEST (set) == dst)
5203 return set_unique_reg_note (insn, kind, datum);
5204 return NULL_RTX;
5205}
15bbde2b 5206\f
5207/* Return an indication of which type of insn should have X as a body.
5208 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5209
9b69f75b 5210static enum rtx_code
35cb5232 5211classify_insn (rtx x)
15bbde2b 5212{
6d7dc5b9 5213 if (LABEL_P (x))
15bbde2b 5214 return CODE_LABEL;
5215 if (GET_CODE (x) == CALL)
5216 return CALL_INSN;
9cb2517e 5217 if (ANY_RETURN_P (x))
15bbde2b 5218 return JUMP_INSN;
5219 if (GET_CODE (x) == SET)
5220 {
5221 if (SET_DEST (x) == pc_rtx)
5222 return JUMP_INSN;
5223 else if (GET_CODE (SET_SRC (x)) == CALL)
5224 return CALL_INSN;
5225 else
5226 return INSN;
5227 }
5228 if (GET_CODE (x) == PARALLEL)
5229 {
19cb6b50 5230 int j;
15bbde2b 5231 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5232 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5233 return CALL_INSN;
5234 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5235 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5236 return JUMP_INSN;
5237 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5238 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5239 return CALL_INSN;
5240 }
5241 return INSN;
5242}
5243
5244/* Emit the rtl pattern X as an appropriate kind of insn.
5245 If X is a label, it is simply added into the insn chain. */
5246
722334ea 5247rtx_insn *
35cb5232 5248emit (rtx x)
15bbde2b 5249{
5250 enum rtx_code code = classify_insn (x);
5251
611234b4 5252 switch (code)
15bbde2b 5253 {
611234b4 5254 case CODE_LABEL:
5255 return emit_label (x);
5256 case INSN:
5257 return emit_insn (x);
5258 case JUMP_INSN:
5259 {
722334ea 5260 rtx_insn *insn = emit_jump_insn (x);
611234b4 5261 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5262 return emit_barrier ();
5263 return insn;
5264 }
5265 case CALL_INSN:
5266 return emit_call_insn (x);
9845d120 5267 case DEBUG_INSN:
5268 return emit_debug_insn (x);
611234b4 5269 default:
5270 gcc_unreachable ();
15bbde2b 5271 }
15bbde2b 5272}
5273\f
1f3233d1 5274/* Space for free sequence stack entries. */
7035b2ab 5275static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
1f3233d1 5276
735f4358 5277/* Begin emitting insns to a sequence. If this sequence will contain
5278 something that might cause the compiler to pop arguments to function
5279 calls (because those pops have previously been deferred; see
5280 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5281 before calling this function. That will ensure that the deferred
5282 pops are not accidentally emitted in the middle of this sequence. */
15bbde2b 5283
5284void
35cb5232 5285start_sequence (void)
15bbde2b 5286{
5287 struct sequence_stack *tem;
5288
1f3233d1 5289 if (free_sequence_stack != NULL)
5290 {
5291 tem = free_sequence_stack;
5292 free_sequence_stack = tem->next;
5293 }
5294 else
25a27413 5295 tem = ggc_alloc<sequence_stack> ();
15bbde2b 5296
0a893c29 5297 tem->next = seq_stack;
06f9d6ef 5298 tem->first = get_insns ();
5299 tem->last = get_last_insn ();
15bbde2b 5300
0a893c29 5301 seq_stack = tem;
15bbde2b 5302
06f9d6ef 5303 set_first_insn (0);
5304 set_last_insn (0);
15bbde2b 5305}
5306
b49854c6 5307/* Set up the insn chain starting with FIRST as the current sequence,
5308 saving the previously current one. See the documentation for
5309 start_sequence for more information about how to use this function. */
15bbde2b 5310
5311void
35cb5232 5312push_to_sequence (rtx first)
15bbde2b 5313{
5314 rtx last;
5315
5316 start_sequence ();
5317
3c802a1e 5318 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5319 ;
15bbde2b 5320
06f9d6ef 5321 set_first_insn (first);
5322 set_last_insn (last);
15bbde2b 5323}
5324
28bf151d 5325/* Like push_to_sequence, but take the last insn as an argument to avoid
5326 looping through the list. */
5327
5328void
5329push_to_sequence2 (rtx first, rtx last)
5330{
5331 start_sequence ();
5332
06f9d6ef 5333 set_first_insn (first);
5334 set_last_insn (last);
28bf151d 5335}
5336
ab74c92f 5337/* Set up the outer-level insn chain
5338 as the current sequence, saving the previously current one. */
5339
5340void
35cb5232 5341push_topmost_sequence (void)
ab74c92f 5342{
2041cfd9 5343 struct sequence_stack *stack, *top = NULL;
ab74c92f 5344
5345 start_sequence ();
5346
0a893c29 5347 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 5348 top = stack;
5349
06f9d6ef 5350 set_first_insn (top->first);
5351 set_last_insn (top->last);
ab74c92f 5352}
5353
5354/* After emitting to the outer-level insn chain, update the outer-level
5355 insn chain, and restore the previous saved state. */
5356
5357void
35cb5232 5358pop_topmost_sequence (void)
ab74c92f 5359{
2041cfd9 5360 struct sequence_stack *stack, *top = NULL;
ab74c92f 5361
0a893c29 5362 for (stack = seq_stack; stack; stack = stack->next)
ab74c92f 5363 top = stack;
5364
06f9d6ef 5365 top->first = get_insns ();
5366 top->last = get_last_insn ();
ab74c92f 5367
5368 end_sequence ();
5369}
5370
15bbde2b 5371/* After emitting to a sequence, restore previous saved state.
5372
b49854c6 5373 To get the contents of the sequence just made, you must call
31d3e01c 5374 `get_insns' *before* calling here.
b49854c6 5375
5376 If the compiler might have deferred popping arguments while
5377 generating this sequence, and this sequence will not be immediately
5378 inserted into the instruction stream, use do_pending_stack_adjust
31d3e01c 5379 before calling get_insns. That will ensure that the deferred
b49854c6 5380 pops are inserted into this sequence, and not into some random
5381 location in the instruction stream. See INHIBIT_DEFER_POP for more
5382 information about deferred popping of arguments. */
15bbde2b 5383
5384void
35cb5232 5385end_sequence (void)
15bbde2b 5386{
0a893c29 5387 struct sequence_stack *tem = seq_stack;
15bbde2b 5388
06f9d6ef 5389 set_first_insn (tem->first);
5390 set_last_insn (tem->last);
0a893c29 5391 seq_stack = tem->next;
15bbde2b 5392
1f3233d1 5393 memset (tem, 0, sizeof (*tem));
5394 tem->next = free_sequence_stack;
5395 free_sequence_stack = tem;
15bbde2b 5396}
5397
5398/* Return 1 if currently emitting into a sequence. */
5399
5400int
35cb5232 5401in_sequence_p (void)
15bbde2b 5402{
0a893c29 5403 return seq_stack != 0;
15bbde2b 5404}
15bbde2b 5405\f
02ebfa52 5406/* Put the various virtual registers into REGNO_REG_RTX. */
5407
2f3874ce 5408static void
b079a207 5409init_virtual_regs (void)
02ebfa52 5410{
b079a207 5411 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5412 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5413 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5414 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5415 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
60778e62 5416 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5417 = virtual_preferred_stack_boundary_rtx;
0a893c29 5418}
5419
928d57e3 5420\f
5421/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5422static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5423static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5424static int copy_insn_n_scratches;
5425
5426/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5427 copied an ASM_OPERANDS.
5428 In that case, it is the original input-operand vector. */
5429static rtvec orig_asm_operands_vector;
5430
5431/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5432 copied an ASM_OPERANDS.
5433 In that case, it is the copied input-operand vector. */
5434static rtvec copy_asm_operands_vector;
5435
5436/* Likewise for the constraints vector. */
5437static rtvec orig_asm_constraints_vector;
5438static rtvec copy_asm_constraints_vector;
5439
5440/* Recursively create a new copy of an rtx for copy_insn.
5441 This function differs from copy_rtx in that it handles SCRATCHes and
5442 ASM_OPERANDs properly.
5443 Normally, this function is not used directly; use copy_insn as front end.
5444 However, you could first copy an insn pattern with copy_insn and then use
5445 this function afterwards to properly copy any REG_NOTEs containing
5446 SCRATCHes. */
5447
5448rtx
35cb5232 5449copy_insn_1 (rtx orig)
928d57e3 5450{
19cb6b50 5451 rtx copy;
5452 int i, j;
5453 RTX_CODE code;
5454 const char *format_ptr;
928d57e3 5455
25e880b1 5456 if (orig == NULL)
5457 return NULL;
5458
928d57e3 5459 code = GET_CODE (orig);
5460
5461 switch (code)
5462 {
5463 case REG:
d7fce3c8 5464 case DEBUG_EXPR:
0349edce 5465 CASE_CONST_ANY:
928d57e3 5466 case SYMBOL_REF:
5467 case CODE_LABEL:
5468 case PC:
5469 case CC0:
e0691b9a 5470 case RETURN:
9cb2517e 5471 case SIMPLE_RETURN:
928d57e3 5472 return orig;
c09425a0 5473 case CLOBBER:
b291008a 5474 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5475 clobbers or clobbers of hard registers that originated as pseudos.
5476 This is needed to allow safe register renaming. */
5477 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER
5478 && ORIGINAL_REGNO (XEXP (orig, 0)) == REGNO (XEXP (orig, 0)))
c09425a0 5479 return orig;
5480 break;
928d57e3 5481
5482 case SCRATCH:
5483 for (i = 0; i < copy_insn_n_scratches; i++)
5484 if (copy_insn_scratch_in[i] == orig)
5485 return copy_insn_scratch_out[i];
5486 break;
5487
5488 case CONST:
3072d30e 5489 if (shared_const_p (orig))
928d57e3 5490 return orig;
5491 break;
d823ba47 5492
928d57e3 5493 /* A MEM with a constant address is not sharable. The problem is that
5494 the constant address may need to be reloaded. If the mem is shared,
5495 then reloading one copy of this mem will cause all copies to appear
5496 to have been reloaded. */
5497
5498 default:
5499 break;
5500 }
5501
f2d0e9f1 5502 /* Copy the various flags, fields, and other information. We assume
5503 that all fields need copying, and then clear the fields that should
928d57e3 5504 not be copied. That is the sensible default behavior, and forces
5505 us to explicitly document why we are *not* copying a flag. */
f2d0e9f1 5506 copy = shallow_copy_rtx (orig);
928d57e3 5507
5508 /* We do not copy the USED flag, which is used as a mark bit during
5509 walks over the RTL. */
7c25cb91 5510 RTX_FLAG (copy, used) = 0;
928d57e3 5511
5512 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
6720e96c 5513 if (INSN_P (orig))
928d57e3 5514 {
7c25cb91 5515 RTX_FLAG (copy, jump) = 0;
5516 RTX_FLAG (copy, call) = 0;
5517 RTX_FLAG (copy, frame_related) = 0;
928d57e3 5518 }
d823ba47 5519
928d57e3 5520 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5521
5522 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
f2d0e9f1 5523 switch (*format_ptr++)
5524 {
5525 case 'e':
5526 if (XEXP (orig, i) != NULL)
5527 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5528 break;
928d57e3 5529
f2d0e9f1 5530 case 'E':
5531 case 'V':
5532 if (XVEC (orig, i) == orig_asm_constraints_vector)
5533 XVEC (copy, i) = copy_asm_constraints_vector;
5534 else if (XVEC (orig, i) == orig_asm_operands_vector)
5535 XVEC (copy, i) = copy_asm_operands_vector;
5536 else if (XVEC (orig, i) != NULL)
5537 {
5538 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5539 for (j = 0; j < XVECLEN (copy, i); j++)
5540 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5541 }
5542 break;
928d57e3 5543
f2d0e9f1 5544 case 't':
5545 case 'w':
5546 case 'i':
5547 case 's':
5548 case 'S':
5549 case 'u':
5550 case '0':
5551 /* These are left unchanged. */
5552 break;
928d57e3 5553
f2d0e9f1 5554 default:
5555 gcc_unreachable ();
5556 }
928d57e3 5557
5558 if (code == SCRATCH)
5559 {
5560 i = copy_insn_n_scratches++;
611234b4 5561 gcc_assert (i < MAX_RECOG_OPERANDS);
928d57e3 5562 copy_insn_scratch_in[i] = orig;
5563 copy_insn_scratch_out[i] = copy;
5564 }
5565 else if (code == ASM_OPERANDS)
5566 {
d91f2122 5567 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5568 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5569 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5570 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
928d57e3 5571 }
5572
5573 return copy;
5574}
5575
5576/* Create a new copy of an rtx.
5577 This function differs from copy_rtx in that it handles SCRATCHes and
5578 ASM_OPERANDs properly.
5579 INSN doesn't really have to be a full INSN; it could be just the
5580 pattern. */
5581rtx
35cb5232 5582copy_insn (rtx insn)
928d57e3 5583{
5584 copy_insn_n_scratches = 0;
5585 orig_asm_operands_vector = 0;
5586 orig_asm_constraints_vector = 0;
5587 copy_asm_operands_vector = 0;
5588 copy_asm_constraints_vector = 0;
5589 return copy_insn_1 (insn);
5590}
02ebfa52 5591
a9abe1f1 5592/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5593 on that assumption that INSN itself remains in its original place. */
5594
5595rtx
5596copy_delay_slot_insn (rtx insn)
5597{
5598 /* Copy INSN with its rtx_code, all its notes, location etc. */
5599 insn = copy_rtx (insn);
5600 INSN_UID (insn) = cur_insn_uid++;
5601 return insn;
5602}
5603
15bbde2b 5604/* Initialize data structures and variables in this file
5605 before generating rtl for each function. */
5606
5607void
35cb5232 5608init_emit (void)
15bbde2b 5609{
06f9d6ef 5610 set_first_insn (NULL);
5611 set_last_insn (NULL);
9845d120 5612 if (MIN_NONDEBUG_INSN_UID)
5613 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5614 else
5615 cur_insn_uid = 1;
5616 cur_debug_insn_uid = 1;
15bbde2b 5617 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
15bbde2b 5618 first_label_num = label_num;
0a893c29 5619 seq_stack = NULL;
15bbde2b 5620
15bbde2b 5621 /* Init the tables that describe all the pseudo regs. */
5622
fd6ffb7c 5623 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
15bbde2b 5624
fd6ffb7c 5625 crtl->emit.regno_pointer_align
2457c754 5626 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
d4c332ff 5627
25a27413 5628 regno_reg_rtx = ggc_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
fcdc122e 5629
936082bb 5630 /* Put copies of all the hard registers into regno_reg_rtx. */
90295bd2 5631 memcpy (regno_reg_rtx,
679bcc8d 5632 initial_regno_reg_rtx,
90295bd2 5633 FIRST_PSEUDO_REGISTER * sizeof (rtx));
936082bb 5634
15bbde2b 5635 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
b079a207 5636 init_virtual_regs ();
888e0d33 5637
5638 /* Indicate that the virtual registers and stack locations are
5639 all pointers. */
e61a0a7f 5640 REG_POINTER (stack_pointer_rtx) = 1;
5641 REG_POINTER (frame_pointer_rtx) = 1;
5642 REG_POINTER (hard_frame_pointer_rtx) = 1;
5643 REG_POINTER (arg_pointer_rtx) = 1;
888e0d33 5644
e61a0a7f 5645 REG_POINTER (virtual_incoming_args_rtx) = 1;
5646 REG_POINTER (virtual_stack_vars_rtx) = 1;
5647 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5648 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5649 REG_POINTER (virtual_cfa_rtx) = 1;
89525da0 5650
d4c332ff 5651#ifdef STACK_BOUNDARY
80909c64 5652 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5653 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5654 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5655 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5656
5657 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5658 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5659 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5660 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5661 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
d4c332ff 5662#endif
5663
89525da0 5664#ifdef INIT_EXPANDERS
5665 INIT_EXPANDERS;
5666#endif
15bbde2b 5667}
5668
6e68dcb2 5669/* Generate a vector constant for mode MODE and constant value CONSTANT. */
886cfd4f 5670
5671static rtx
6e68dcb2 5672gen_const_vector (enum machine_mode mode, int constant)
886cfd4f 5673{
5674 rtx tem;
5675 rtvec v;
5676 int units, i;
5677 enum machine_mode inner;
5678
5679 units = GET_MODE_NUNITS (mode);
5680 inner = GET_MODE_INNER (mode);
5681
069b07bf 5682 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5683
886cfd4f 5684 v = rtvec_alloc (units);
5685
6e68dcb2 5686 /* We need to call this function after we set the scalar const_tiny_rtx
5687 entries. */
5688 gcc_assert (const_tiny_rtx[constant][(int) inner]);
886cfd4f 5689
5690 for (i = 0; i < units; ++i)
6e68dcb2 5691 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
886cfd4f 5692
9426b612 5693 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
886cfd4f 5694 return tem;
5695}
5696
9426b612 5697/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6e68dcb2 5698 all elements are zero, and the one vector when all elements are one. */
9426b612 5699rtx
35cb5232 5700gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
9426b612 5701{
6e68dcb2 5702 enum machine_mode inner = GET_MODE_INNER (mode);
5703 int nunits = GET_MODE_NUNITS (mode);
5704 rtx x;
9426b612 5705 int i;
5706
6e68dcb2 5707 /* Check to see if all of the elements have the same value. */
5708 x = RTVEC_ELT (v, nunits - 1);
5709 for (i = nunits - 2; i >= 0; i--)
5710 if (RTVEC_ELT (v, i) != x)
5711 break;
5712
5713 /* If the values are all the same, check to see if we can use one of the
5714 standard constant vectors. */
5715 if (i == -1)
5716 {
5717 if (x == CONST0_RTX (inner))
5718 return CONST0_RTX (mode);
5719 else if (x == CONST1_RTX (inner))
5720 return CONST1_RTX (mode);
ba8dfb08 5721 else if (x == CONSTM1_RTX (inner))
5722 return CONSTM1_RTX (mode);
6e68dcb2 5723 }
5724
5725 return gen_rtx_raw_CONST_VECTOR (mode, v);
9426b612 5726}
5727
6d8b68a3 5728/* Initialise global register information required by all functions. */
5729
5730void
5731init_emit_regs (void)
5732{
5733 int i;
d83fcaa1 5734 enum machine_mode mode;
5735 mem_attrs *attrs;
6d8b68a3 5736
5737 /* Reset register attributes */
5738 htab_empty (reg_attrs_htab);
5739
5740 /* We need reg_raw_mode, so initialize the modes now. */
5741 init_reg_modes_target ();
5742
5743 /* Assign register numbers to the globally defined register rtx. */
6d8b68a3 5744 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5745 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5746 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5747 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5748 virtual_incoming_args_rtx =
5749 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5750 virtual_stack_vars_rtx =
5751 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5752 virtual_stack_dynamic_rtx =
5753 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5754 virtual_outgoing_args_rtx =
5755 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5756 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
60778e62 5757 virtual_preferred_stack_boundary_rtx =
5758 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6d8b68a3 5759
5760 /* Initialize RTL for commonly used hard registers. These are
5761 copied into regno_reg_rtx as we begin to compile each function. */
5762 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
679bcc8d 5763 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6d8b68a3 5764
5765#ifdef RETURN_ADDRESS_POINTER_REGNUM
5766 return_address_pointer_rtx
5767 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5768#endif
5769
6d8b68a3 5770 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5771 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5772 else
5773 pic_offset_table_rtx = NULL_RTX;
d83fcaa1 5774
5775 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5776 {
5777 mode = (enum machine_mode) i;
25a27413 5778 attrs = ggc_cleared_alloc<mem_attrs> ();
d83fcaa1 5779 attrs->align = BITS_PER_UNIT;
5780 attrs->addrspace = ADDR_SPACE_GENERIC;
5781 if (mode != BLKmode)
5782 {
6d58bcba 5783 attrs->size_known_p = true;
5784 attrs->size = GET_MODE_SIZE (mode);
d83fcaa1 5785 if (STRICT_ALIGNMENT)
5786 attrs->align = GET_MODE_ALIGNMENT (mode);
5787 }
5788 mode_mem_attrs[i] = attrs;
5789 }
6d8b68a3 5790}
5791
8059b95a 5792/* Initialize global machine_mode variables. */
5793
5794void
5795init_derived_machine_modes (void)
5796{
5797 byte_mode = VOIDmode;
5798 word_mode = VOIDmode;
5799
5800 for (enum machine_mode mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5801 mode != VOIDmode;
5802 mode = GET_MODE_WIDER_MODE (mode))
5803 {
5804 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5805 && byte_mode == VOIDmode)
5806 byte_mode = mode;
5807
5808 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5809 && word_mode == VOIDmode)
5810 word_mode = mode;
5811 }
5812
5813 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5814}
5815
01703575 5816/* Create some permanent unique rtl objects shared between all functions. */
15bbde2b 5817
5818void
01703575 5819init_emit_once (void)
15bbde2b 5820{
5821 int i;
5822 enum machine_mode mode;
9e042f31 5823 enum machine_mode double_mode;
15bbde2b 5824
e913b5cd 5825 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
5826 CONST_FIXED, and memory attribute hash tables. */
573aba85 5827 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5828 const_int_htab_eq, NULL);
c6259b83 5829
e913b5cd 5830#if TARGET_SUPPORTS_WIDE_INT
5831 const_wide_int_htab = htab_create_ggc (37, const_wide_int_htab_hash,
5832 const_wide_int_htab_eq, NULL);
5833#endif
573aba85 5834 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5835 const_double_htab_eq, NULL);
2ff23ed0 5836
e397ad8e 5837 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5838 const_fixed_htab_eq, NULL);
5839
ca74b940 5840 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5841 reg_attrs_htab_eq, NULL);
77695070 5842
57c097d5 5843#ifdef INIT_EXPANDERS
ab5beff9 5844 /* This is to initialize {init|mark|free}_machine_status before the first
5845 call to push_function_context_to. This is needed by the Chill front
3fb1e43b 5846 end which calls push_function_context_to before the first call to
57c097d5 5847 init_function_start. */
5848 INIT_EXPANDERS;
5849#endif
5850
15bbde2b 5851 /* Create the unique rtx's for certain rtx codes and operand values. */
5852
8fd5918e 5853 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
7014838c 5854 tries to use these variables. */
15bbde2b 5855 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
d823ba47 5856 const_int_rtx[i + MAX_SAVED_CONST_INT] =
a717d5b4 5857 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
15bbde2b 5858
1a60f06a 5859 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5860 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
57c097d5 5861 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
1a60f06a 5862 else
3ad7bb1c 5863 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
15bbde2b 5864
8059b95a 5865 double_mode = mode_for_size (DOUBLE_TYPE_SIZE, MODE_FLOAT, 0);
5866
cc69d08a 5867 real_from_integer (&dconst0, double_mode, 0, SIGNED);
5868 real_from_integer (&dconst1, double_mode, 1, SIGNED);
5869 real_from_integer (&dconst2, double_mode, 2, SIGNED);
3fa759a9 5870
5871 dconstm1 = dconst1;
5872 dconstm1.sign = 1;
77e89269 5873
5874 dconsthalf = dconst1;
9d96125b 5875 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
15bbde2b 5876
ba8dfb08 5877 for (i = 0; i < 3; i++)
15bbde2b 5878 {
3fa759a9 5879 const REAL_VALUE_TYPE *const r =
badfe841 5880 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5881
069b07bf 5882 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5883 mode != VOIDmode;
5884 mode = GET_MODE_WIDER_MODE (mode))
5885 const_tiny_rtx[i][(int) mode] =
5886 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5887
5888 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5889 mode != VOIDmode;
15bbde2b 5890 mode = GET_MODE_WIDER_MODE (mode))
2ff23ed0 5891 const_tiny_rtx[i][(int) mode] =
5892 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
15bbde2b 5893
b572011e 5894 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
15bbde2b 5895
069b07bf 5896 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5897 mode != VOIDmode;
15bbde2b 5898 mode = GET_MODE_WIDER_MODE (mode))
b572011e 5899 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
7540dcc4 5900
8c20007a 5901 for (mode = MIN_MODE_PARTIAL_INT;
5902 mode <= MAX_MODE_PARTIAL_INT;
5903 mode = (enum machine_mode)((int)(mode) + 1))
7540dcc4 5904 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
15bbde2b 5905 }
5906
ba8dfb08 5907 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5908
5909 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5910 mode != VOIDmode;
5911 mode = GET_MODE_WIDER_MODE (mode))
5912 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5913
8c20007a 5914 for (mode = MIN_MODE_PARTIAL_INT;
5915 mode <= MAX_MODE_PARTIAL_INT;
5916 mode = (enum machine_mode)((int)(mode) + 1))
dd276d20 5917 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5918
4248fc32 5919 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5920 mode != VOIDmode;
5921 mode = GET_MODE_WIDER_MODE (mode))
5922 {
5923 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5924 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5925 }
5926
5927 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5928 mode != VOIDmode;
5929 mode = GET_MODE_WIDER_MODE (mode))
5930 {
5931 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5932 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5933 }
5934
886cfd4f 5935 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5936 mode != VOIDmode;
5937 mode = GET_MODE_WIDER_MODE (mode))
6e68dcb2 5938 {
5939 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5940 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
ba8dfb08 5941 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6e68dcb2 5942 }
886cfd4f 5943
5944 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5945 mode != VOIDmode;
5946 mode = GET_MODE_WIDER_MODE (mode))
6e68dcb2 5947 {
5948 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5949 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5950 }
886cfd4f 5951
06f0b99c 5952 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5953 mode != VOIDmode;
5954 mode = GET_MODE_WIDER_MODE (mode))
5955 {
9af5ce0c 5956 FCONST0 (mode).data.high = 0;
5957 FCONST0 (mode).data.low = 0;
5958 FCONST0 (mode).mode = mode;
e397ad8e 5959 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5960 FCONST0 (mode), mode);
06f0b99c 5961 }
5962
5963 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5964 mode != VOIDmode;
5965 mode = GET_MODE_WIDER_MODE (mode))
5966 {
9af5ce0c 5967 FCONST0 (mode).data.high = 0;
5968 FCONST0 (mode).data.low = 0;
5969 FCONST0 (mode).mode = mode;
e397ad8e 5970 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5971 FCONST0 (mode), mode);
06f0b99c 5972 }
5973
5974 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5975 mode != VOIDmode;
5976 mode = GET_MODE_WIDER_MODE (mode))
5977 {
9af5ce0c 5978 FCONST0 (mode).data.high = 0;
5979 FCONST0 (mode).data.low = 0;
5980 FCONST0 (mode).mode = mode;
e397ad8e 5981 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5982 FCONST0 (mode), mode);
06f0b99c 5983
5984 /* We store the value 1. */
9af5ce0c 5985 FCONST1 (mode).data.high = 0;
5986 FCONST1 (mode).data.low = 0;
5987 FCONST1 (mode).mode = mode;
5988 FCONST1 (mode).data
d67b7119 5989 = double_int_one.lshift (GET_MODE_FBIT (mode),
5990 HOST_BITS_PER_DOUBLE_INT,
5991 SIGNED_FIXED_POINT_MODE_P (mode));
e397ad8e 5992 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5993 FCONST1 (mode), mode);
06f0b99c 5994 }
5995
5996 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5997 mode != VOIDmode;
5998 mode = GET_MODE_WIDER_MODE (mode))
5999 {
9af5ce0c 6000 FCONST0 (mode).data.high = 0;
6001 FCONST0 (mode).data.low = 0;
6002 FCONST0 (mode).mode = mode;
e397ad8e 6003 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6004 FCONST0 (mode), mode);
06f0b99c 6005
6006 /* We store the value 1. */
9af5ce0c 6007 FCONST1 (mode).data.high = 0;
6008 FCONST1 (mode).data.low = 0;
6009 FCONST1 (mode).mode = mode;
6010 FCONST1 (mode).data
d67b7119 6011 = double_int_one.lshift (GET_MODE_FBIT (mode),
6012 HOST_BITS_PER_DOUBLE_INT,
6013 SIGNED_FIXED_POINT_MODE_P (mode));
e397ad8e 6014 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
6015 FCONST1 (mode), mode);
6016 }
6017
6018 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
6019 mode != VOIDmode;
6020 mode = GET_MODE_WIDER_MODE (mode))
6021 {
6022 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6023 }
6024
6025 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
6026 mode != VOIDmode;
6027 mode = GET_MODE_WIDER_MODE (mode))
6028 {
6029 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6030 }
6031
6032 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
6033 mode != VOIDmode;
6034 mode = GET_MODE_WIDER_MODE (mode))
6035 {
6036 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6037 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6038 }
6039
6040 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
6041 mode != VOIDmode;
6042 mode = GET_MODE_WIDER_MODE (mode))
6043 {
6044 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6045 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
06f0b99c 6046 }
6047
0fd4500a 6048 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6049 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
6050 const_tiny_rtx[0][i] = const0_rtx;
15bbde2b 6051
065336b4 6052 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6053 if (STORE_FLAG_VALUE == 1)
6054 const_tiny_rtx[1][(int) BImode] = const1_rtx;
7d7b0bac 6055
6056 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6057 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6058 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6059 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
15bbde2b 6060}
ac6c481d 6061\f
cd0fe062 6062/* Produce exact duplicate of insn INSN after AFTER.
6063 Care updating of libcall regions if present. */
6064
722334ea 6065rtx_insn *
35cb5232 6066emit_copy_of_insn_after (rtx insn, rtx after)
cd0fe062 6067{
722334ea 6068 rtx_insn *new_rtx;
6069 rtx link;
cd0fe062 6070
6071 switch (GET_CODE (insn))
6072 {
6073 case INSN:
9ce37fa7 6074 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
cd0fe062 6075 break;
6076
6077 case JUMP_INSN:
9ce37fa7 6078 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
01762951 6079 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
cd0fe062 6080 break;
6081
9845d120 6082 case DEBUG_INSN:
6083 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6084 break;
6085
cd0fe062 6086 case CALL_INSN:
9ce37fa7 6087 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
cd0fe062 6088 if (CALL_INSN_FUNCTION_USAGE (insn))
9ce37fa7 6089 CALL_INSN_FUNCTION_USAGE (new_rtx)
cd0fe062 6090 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
9ce37fa7 6091 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6092 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6093 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
48e1416a 6094 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
9c2a0c05 6095 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
cd0fe062 6096 break;
6097
6098 default:
611234b4 6099 gcc_unreachable ();
cd0fe062 6100 }
6101
6102 /* Update LABEL_NUSES. */
9ce37fa7 6103 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
cd0fe062 6104
5169661d 6105 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ab87d1bc 6106
98116afd 6107 /* If the old insn is frame related, then so is the new one. This is
6108 primarily needed for IA-64 unwind info which marks epilogue insns,
6109 which may be duplicated by the basic block reordering code. */
9ce37fa7 6110 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
98116afd 6111
19d2fe05 6112 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6113 will make them. REG_LABEL_TARGETs are created there too, but are
6114 supposed to be sticky, so we copy them. */
cd0fe062 6115 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
19d2fe05 6116 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
cd0fe062 6117 {
6118 if (GET_CODE (link) == EXPR_LIST)
9ce37fa7 6119 add_reg_note (new_rtx, REG_NOTE_KIND (link),
a1ddb869 6120 copy_insn_1 (XEXP (link, 0)));
cd0fe062 6121 else
9eb946de 6122 add_shallow_copy_of_reg_note (new_rtx, link);
cd0fe062 6123 }
6124
9ce37fa7 6125 INSN_CODE (new_rtx) = INSN_CODE (insn);
6126 return new_rtx;
cd0fe062 6127}
1f3233d1 6128
7035b2ab 6129static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
c09425a0 6130rtx
6131gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6132{
6133 if (hard_reg_clobbers[mode][regno])
6134 return hard_reg_clobbers[mode][regno];
6135 else
6136 return (hard_reg_clobbers[mode][regno] =
6137 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6138}
6139
5169661d 6140location_t prologue_location;
6141location_t epilogue_location;
23a070f3 6142
6143/* Hold current location information and last location information, so the
6144 datastructures are built lazily only when some instructions in given
6145 place are needed. */
c7abeac5 6146static location_t curr_location;
23a070f3 6147
5169661d 6148/* Allocate insn location datastructure. */
23a070f3 6149void
5169661d 6150insn_locations_init (void)
23a070f3 6151{
5169661d 6152 prologue_location = epilogue_location = 0;
23a070f3 6153 curr_location = UNKNOWN_LOCATION;
23a070f3 6154}
6155
6156/* At the end of emit stage, clear current location. */
6157void
5169661d 6158insn_locations_finalize (void)
23a070f3 6159{
5169661d 6160 epilogue_location = curr_location;
6161 curr_location = UNKNOWN_LOCATION;
23a070f3 6162}
6163
6164/* Set current location. */
6165void
5169661d 6166set_curr_insn_location (location_t location)
23a070f3 6167{
23a070f3 6168 curr_location = location;
6169}
6170
6171/* Get current location. */
6172location_t
5169661d 6173curr_insn_location (void)
23a070f3 6174{
6175 return curr_location;
6176}
6177
23a070f3 6178/* Return lexical scope block insn belongs to. */
6179tree
6180insn_scope (const_rtx insn)
6181{
5169661d 6182 return LOCATION_BLOCK (INSN_LOCATION (insn));
23a070f3 6183}
6184
6185/* Return line number of the statement that produced this insn. */
6186int
6187insn_line (const_rtx insn)
6188{
5169661d 6189 return LOCATION_LINE (INSN_LOCATION (insn));
23a070f3 6190}
6191
6192/* Return source file of the statement that produced this insn. */
6193const char *
6194insn_file (const_rtx insn)
6195{
5169661d 6196 return LOCATION_FILE (INSN_LOCATION (insn));
23a070f3 6197}
30c3c442 6198
0e7ae557 6199/* Return expanded location of the statement that produced this insn. */
6200expanded_location
6201insn_location (const_rtx insn)
6202{
6203 return expand_location (INSN_LOCATION (insn));
6204}
6205
30c3c442 6206/* Return true if memory model MODEL requires a pre-operation (release-style)
6207 barrier or a post-operation (acquire-style) barrier. While not universal,
6208 this function matches behavior of several targets. */
6209
6210bool
6211need_atomic_barrier_p (enum memmodel model, bool pre)
6212{
1a9fa1dd 6213 switch (model & MEMMODEL_MASK)
30c3c442 6214 {
6215 case MEMMODEL_RELAXED:
6216 case MEMMODEL_CONSUME:
6217 return false;
6218 case MEMMODEL_RELEASE:
6219 return pre;
6220 case MEMMODEL_ACQUIRE:
6221 return !pre;
6222 case MEMMODEL_ACQ_REL:
6223 case MEMMODEL_SEQ_CST:
6224 return true;
6225 default:
6226 gcc_unreachable ();
6227 }
6228}
6229\f
1f3233d1 6230#include "gt-emit-rtl.h"