]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
tree-ssa-alias.c (create_name_tags): Use TYPE_VOLATILE instead of TREE_THIS_VOLATILE.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
e53a16e7 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
b6f65e3c 4 Free Software Foundation, Inc.
23b2ce53 5
1322177d 6This file is part of GCC.
23b2ce53 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
23b2ce53 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
23b2ce53
RS
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
f822fcf7
KH
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
23b2ce53
RS
35
36#include "config.h"
670ee920 37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
01198c2f 40#include "toplev.h"
23b2ce53 41#include "rtl.h"
a25c7971 42#include "tree.h"
6baf1cc8 43#include "tm_p.h"
23b2ce53
RS
44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
aff48bca 48#include "hard-reg-set.h"
c13e8210 49#include "hashtab.h"
23b2ce53 50#include "insn-config.h"
e9a25f70 51#include "recog.h"
23b2ce53 52#include "real.h"
325217ed 53#include "fixed-value.h"
0dfa1860 54#include "bitmap.h"
a05924f9 55#include "basic-block.h"
87ff9c8e 56#include "ggc.h"
e1772ac0 57#include "debug.h"
d23c55c2 58#include "langhooks.h"
ef330312 59#include "tree-pass.h"
6fb5fa3c 60#include "df.h"
ca695ac9 61
1d445e9e
ILT
62/* Commonly used modes. */
63
0f41302f
MS
64enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 66enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 67enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 68
23b2ce53
RS
69
70/* This is *not* reset after each function. It gives each CODE_LABEL
71 in the entire compilation a unique label number. */
72
044b4de3 73static GTY(()) int label_num = 1;
23b2ce53 74
23b2ce53
RS
75/* Nonzero means do not generate NOTEs for source line numbers. */
76
77static int no_line_numbers;
78
79/* Commonly used rtx's, so that we only need space for one copy.
80 These are initialized once for the entire compilation.
5692c7bc
ZW
81 All of these are unique; no other rtx-object will be equal to any
82 of these. */
23b2ce53 83
5da077de 84rtx global_rtl[GR_MAX];
23b2ce53 85
6cde4876
JL
86/* Commonly used RTL for hard registers. These objects are not necessarily
87 unique, so we allocate them separately from global_rtl. They are
88 initialized once per compilation unit, then copied into regno_reg_rtx
89 at the beginning of each function. */
90static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
91
23b2ce53
RS
92/* We record floating-point CONST_DOUBLEs in each floating-point mode for
93 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
94 record a copy of const[012]_rtx. */
95
96rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
97
68d75312
JC
98rtx const_true_rtx;
99
23b2ce53
RS
100REAL_VALUE_TYPE dconst0;
101REAL_VALUE_TYPE dconst1;
102REAL_VALUE_TYPE dconst2;
f7657db9
KG
103REAL_VALUE_TYPE dconst3;
104REAL_VALUE_TYPE dconst10;
23b2ce53 105REAL_VALUE_TYPE dconstm1;
03f2ea93
RS
106REAL_VALUE_TYPE dconstm2;
107REAL_VALUE_TYPE dconsthalf;
f7657db9 108REAL_VALUE_TYPE dconstthird;
b86a760a 109REAL_VALUE_TYPE dconstsqrt2;
ab01a87c 110REAL_VALUE_TYPE dconste;
23b2ce53 111
325217ed
CF
112/* Record fixed-point constant 0 and 1. */
113FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
114FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
115
23b2ce53
RS
116/* All references to the following fixed hard registers go through
117 these unique rtl objects. On machines where the frame-pointer and
118 arg-pointer are the same register, they use the same unique object.
119
120 After register allocation, other rtl objects which used to be pseudo-regs
121 may be clobbered to refer to the frame-pointer register.
122 But references that were originally to the frame-pointer can be
123 distinguished from the others because they contain frame_pointer_rtx.
124
ac6f08b0
DE
125 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
126 tricky: until register elimination has taken place hard_frame_pointer_rtx
750c9258 127 should be used if it is being set, and frame_pointer_rtx otherwise. After
ac6f08b0
DE
128 register elimination hard_frame_pointer_rtx should always be used.
129 On machines where the two registers are same (most) then these are the
130 same.
131
23b2ce53
RS
132 In an inline procedure, the stack and frame pointer rtxs may not be
133 used for anything else. */
23b2ce53
RS
134rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
135rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
136rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
137
a4417a86
JW
138/* This is used to implement __builtin_return_address for some machines.
139 See for instance the MIPS port. */
140rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
141
23b2ce53
RS
142/* We make one copy of (const_int C) where C is in
143 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
144 to save space during the compilation and simplify comparisons of
145 integers. */
146
5da077de 147rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 148
c13e8210
MM
149/* A hash table storing CONST_INTs whose absolute value is greater
150 than MAX_SAVED_CONST_INT. */
151
e2500fed
GK
152static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
153 htab_t const_int_htab;
c13e8210 154
173b24b9 155/* A hash table storing memory attribute structures. */
e2500fed
GK
156static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
157 htab_t mem_attrs_htab;
173b24b9 158
a560d4d4
JH
159/* A hash table storing register attribute structures. */
160static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
161 htab_t reg_attrs_htab;
162
5692c7bc 163/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
164static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
165 htab_t const_double_htab;
5692c7bc 166
091a3ac7
CF
167/* A hash table storing all CONST_FIXEDs. */
168static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_fixed_htab;
170
01d939e8
BS
171#define first_insn (cfun->emit->x_first_insn)
172#define last_insn (cfun->emit->x_last_insn)
173#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
fd3acbb3 174#define last_location (cfun->emit->x_last_location)
01d939e8 175#define first_label_num (cfun->emit->x_first_label_num)
23b2ce53 176
502b8322 177static rtx make_call_insn_raw (rtx);
502b8322 178static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
5eb2a9f2 179static void set_used_decls (tree);
502b8322
AJ
180static void mark_label_nuses (rtx);
181static hashval_t const_int_htab_hash (const void *);
182static int const_int_htab_eq (const void *, const void *);
183static hashval_t const_double_htab_hash (const void *);
184static int const_double_htab_eq (const void *, const void *);
185static rtx lookup_const_double (rtx);
091a3ac7
CF
186static hashval_t const_fixed_htab_hash (const void *);
187static int const_fixed_htab_eq (const void *, const void *);
188static rtx lookup_const_fixed (rtx);
502b8322
AJ
189static hashval_t mem_attrs_htab_hash (const void *);
190static int mem_attrs_htab_eq (const void *, const void *);
4862826d 191static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
502b8322
AJ
192 enum machine_mode);
193static hashval_t reg_attrs_htab_hash (const void *);
194static int reg_attrs_htab_eq (const void *, const void *);
195static reg_attrs *get_reg_attrs (tree, int);
196static tree component_ref_for_mem_expr (tree);
a73b091d 197static rtx gen_const_vector (enum machine_mode, int);
32b32b16 198static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 199
6b24c259
JH
200/* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202int split_branch_probability = -1;
ca695ac9 203\f
c13e8210
MM
204/* Returns a hash code for X (which is a really a CONST_INT). */
205
206static hashval_t
502b8322 207const_int_htab_hash (const void *x)
c13e8210 208{
f7d504c2 209 return (hashval_t) INTVAL ((const_rtx) x);
c13e8210
MM
210}
211
cc2902df 212/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
213 CONST_INT) is the same as that given by Y (which is really a
214 HOST_WIDE_INT *). */
215
216static int
502b8322 217const_int_htab_eq (const void *x, const void *y)
c13e8210 218{
f7d504c2 219 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
5692c7bc
ZW
220}
221
222/* Returns a hash code for X (which is really a CONST_DOUBLE). */
223static hashval_t
502b8322 224const_double_htab_hash (const void *x)
5692c7bc 225{
f7d504c2 226 const_rtx const value = (const_rtx) x;
46b33600 227 hashval_t h;
5692c7bc 228
46b33600
RH
229 if (GET_MODE (value) == VOIDmode)
230 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231 else
fe352c29 232 {
15c812e3 233 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 }
5692c7bc
ZW
237 return h;
238}
239
cc2902df 240/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
241 is the same as that represented by Y (really a ...) */
242static int
502b8322 243const_double_htab_eq (const void *x, const void *y)
5692c7bc 244{
f7d504c2 245 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
5692c7bc
ZW
246
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
8580f7a0
RH
249 if (GET_MODE (a) == VOIDmode)
250 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252 else
253 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
255}
256
091a3ac7
CF
257/* Returns a hash code for X (which is really a CONST_FIXED). */
258
259static hashval_t
260const_fixed_htab_hash (const void *x)
261{
3101faab 262 const_rtx const value = (const_rtx) x;
091a3ac7
CF
263 hashval_t h;
264
265 h = fixed_hash (CONST_FIXED_VALUE (value));
266 /* MODE is used in the comparison, so it should be in the hash. */
267 h ^= GET_MODE (value);
268 return h;
269}
270
271/* Returns nonzero if the value represented by X (really a ...)
272 is the same as that represented by Y (really a ...). */
273
274static int
275const_fixed_htab_eq (const void *x, const void *y)
276{
3101faab 277 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
091a3ac7
CF
278
279 if (GET_MODE (a) != GET_MODE (b))
280 return 0;
281 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
282}
283
173b24b9
RK
284/* Returns a hash code for X (which is a really a mem_attrs *). */
285
286static hashval_t
502b8322 287mem_attrs_htab_hash (const void *x)
173b24b9 288{
f7d504c2 289 const mem_attrs *const p = (const mem_attrs *) x;
173b24b9
RK
290
291 return (p->alias ^ (p->align * 1000)
292 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
293 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
78b76d08 294 ^ (size_t) iterative_hash_expr (p->expr, 0));
173b24b9
RK
295}
296
cc2902df 297/* Returns nonzero if the value represented by X (which is really a
173b24b9
RK
298 mem_attrs *) is the same as that given by Y (which is also really a
299 mem_attrs *). */
c13e8210
MM
300
301static int
502b8322 302mem_attrs_htab_eq (const void *x, const void *y)
c13e8210 303{
741ac903
KG
304 const mem_attrs *const p = (const mem_attrs *) x;
305 const mem_attrs *const q = (const mem_attrs *) y;
173b24b9 306
78b76d08
SB
307 return (p->alias == q->alias && p->offset == q->offset
308 && p->size == q->size && p->align == q->align
309 && (p->expr == q->expr
310 || (p->expr != NULL_TREE && q->expr != NULL_TREE
311 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
312}
313
173b24b9 314/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
315 one identical to it is not already in the table. We are doing this for
316 MEM of mode MODE. */
173b24b9
RK
317
318static mem_attrs *
4862826d 319get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
502b8322 320 unsigned int align, enum machine_mode mode)
173b24b9
RK
321{
322 mem_attrs attrs;
323 void **slot;
324
bb056a77
OH
325 /* If everything is the default, we can just return zero.
326 This must match what the corresponding MEM_* macros return when the
327 field is not present. */
998d7deb 328 if (alias == 0 && expr == 0 && offset == 0
10b76d73
RK
329 && (size == 0
330 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
bb056a77
OH
331 && (STRICT_ALIGNMENT && mode != BLKmode
332 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
10b76d73
RK
333 return 0;
334
173b24b9 335 attrs.alias = alias;
998d7deb 336 attrs.expr = expr;
173b24b9
RK
337 attrs.offset = offset;
338 attrs.size = size;
339 attrs.align = align;
340
341 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
342 if (*slot == 0)
343 {
344 *slot = ggc_alloc (sizeof (mem_attrs));
345 memcpy (*slot, &attrs, sizeof (mem_attrs));
346 }
347
348 return *slot;
c13e8210
MM
349}
350
a560d4d4
JH
351/* Returns a hash code for X (which is a really a reg_attrs *). */
352
353static hashval_t
502b8322 354reg_attrs_htab_hash (const void *x)
a560d4d4 355{
741ac903 356 const reg_attrs *const p = (const reg_attrs *) x;
a560d4d4
JH
357
358 return ((p->offset * 1000) ^ (long) p->decl);
359}
360
6356f892 361/* Returns nonzero if the value represented by X (which is really a
a560d4d4
JH
362 reg_attrs *) is the same as that given by Y (which is also really a
363 reg_attrs *). */
364
365static int
502b8322 366reg_attrs_htab_eq (const void *x, const void *y)
a560d4d4 367{
741ac903
KG
368 const reg_attrs *const p = (const reg_attrs *) x;
369 const reg_attrs *const q = (const reg_attrs *) y;
a560d4d4
JH
370
371 return (p->decl == q->decl && p->offset == q->offset);
372}
373/* Allocate a new reg_attrs structure and insert it into the hash table if
374 one identical to it is not already in the table. We are doing this for
375 MEM of mode MODE. */
376
377static reg_attrs *
502b8322 378get_reg_attrs (tree decl, int offset)
a560d4d4
JH
379{
380 reg_attrs attrs;
381 void **slot;
382
383 /* If everything is the default, we can just return zero. */
384 if (decl == 0 && offset == 0)
385 return 0;
386
387 attrs.decl = decl;
388 attrs.offset = offset;
389
390 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
391 if (*slot == 0)
392 {
393 *slot = ggc_alloc (sizeof (reg_attrs));
394 memcpy (*slot, &attrs, sizeof (reg_attrs));
395 }
396
397 return *slot;
398}
399
6fb5fa3c
DB
400
401#if !HAVE_blockage
402/* Generate an empty ASM_INPUT, which is used to block attempts to schedule
403 across this insn. */
404
405rtx
406gen_blockage (void)
407{
408 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
409 MEM_VOLATILE_P (x) = true;
410 return x;
411}
412#endif
413
414
08394eef
BS
415/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
416 don't attempt to share with the various global pieces of rtl (such as
417 frame_pointer_rtx). */
418
419rtx
502b8322 420gen_raw_REG (enum machine_mode mode, int regno)
08394eef
BS
421{
422 rtx x = gen_rtx_raw_REG (mode, regno);
423 ORIGINAL_REGNO (x) = regno;
424 return x;
425}
426
c5c76735
JL
427/* There are some RTL codes that require special attention; the generation
428 functions do the raw handling. If you add to this list, modify
429 special_rtx in gengenrtl.c as well. */
430
3b80f6ca 431rtx
502b8322 432gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca 433{
c13e8210
MM
434 void **slot;
435
3b80f6ca 436 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 437 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
438
439#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
440 if (const_true_rtx && arg == STORE_FLAG_VALUE)
441 return const_true_rtx;
442#endif
443
c13e8210 444 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
445 slot = htab_find_slot_with_hash (const_int_htab, &arg,
446 (hashval_t) arg, INSERT);
29105cea 447 if (*slot == 0)
1f8f4a0b 448 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
449
450 return (rtx) *slot;
3b80f6ca
RH
451}
452
2496c7bd 453rtx
502b8322 454gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2496c7bd
LB
455{
456 return GEN_INT (trunc_int_for_mode (c, mode));
457}
458
5692c7bc
ZW
459/* CONST_DOUBLEs might be created from pairs of integers, or from
460 REAL_VALUE_TYPEs. Also, their length is known only at run time,
461 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
462
463/* Determine whether REAL, a CONST_DOUBLE, already exists in the
464 hash table. If so, return its counterpart; otherwise add it
465 to the hash table and return it. */
466static rtx
502b8322 467lookup_const_double (rtx real)
5692c7bc
ZW
468{
469 void **slot = htab_find_slot (const_double_htab, real, INSERT);
470 if (*slot == 0)
471 *slot = real;
472
473 return (rtx) *slot;
474}
29105cea 475
5692c7bc
ZW
476/* Return a CONST_DOUBLE rtx for a floating-point value specified by
477 VALUE in mode MODE. */
0133b7d9 478rtx
502b8322 479const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
0133b7d9 480{
5692c7bc
ZW
481 rtx real = rtx_alloc (CONST_DOUBLE);
482 PUT_MODE (real, mode);
483
9e254451 484 real->u.rv = value;
5692c7bc
ZW
485
486 return lookup_const_double (real);
487}
488
091a3ac7
CF
489/* Determine whether FIXED, a CONST_FIXED, already exists in the
490 hash table. If so, return its counterpart; otherwise add it
491 to the hash table and return it. */
492
493static rtx
494lookup_const_fixed (rtx fixed)
495{
496 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
497 if (*slot == 0)
498 *slot = fixed;
499
500 return (rtx) *slot;
501}
502
503/* Return a CONST_FIXED rtx for a fixed-point value specified by
504 VALUE in mode MODE. */
505
506rtx
507const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
508{
509 rtx fixed = rtx_alloc (CONST_FIXED);
510 PUT_MODE (fixed, mode);
511
512 fixed->u.fv = value;
513
514 return lookup_const_fixed (fixed);
515}
516
5692c7bc
ZW
517/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
518 of ints: I0 is the low-order word and I1 is the high-order word.
519 Do not use this routine for non-integer modes; convert to
520 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
521
522rtx
502b8322 523immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
5692c7bc
ZW
524{
525 rtx value;
526 unsigned int i;
527
65acccdd
ZD
528 /* There are the following cases (note that there are no modes with
529 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
530
531 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
532 gen_int_mode.
533 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
534 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
535 from copies of the sign bit, and sign of i0 and i1 are the same), then
536 we return a CONST_INT for i0.
537 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
5692c7bc
ZW
538 if (mode != VOIDmode)
539 {
5b0264cb
NS
540 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
541 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
542 /* We can get a 0 for an error mark. */
543 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
5692c7bc 545
65acccdd
ZD
546 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
547 return gen_int_mode (i0, mode);
548
549 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
5692c7bc
ZW
550 }
551
552 /* If this integer fits in one word, return a CONST_INT. */
553 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
554 return GEN_INT (i0);
555
556 /* We use VOIDmode for integers. */
557 value = rtx_alloc (CONST_DOUBLE);
558 PUT_MODE (value, VOIDmode);
559
560 CONST_DOUBLE_LOW (value) = i0;
561 CONST_DOUBLE_HIGH (value) = i1;
562
563 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
564 XWINT (value, i) = 0;
565
566 return lookup_const_double (value);
0133b7d9
RH
567}
568
3b80f6ca 569rtx
502b8322 570gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3b80f6ca
RH
571{
572 /* In case the MD file explicitly references the frame pointer, have
573 all such references point to the same frame pointer. This is
574 used during frame pointer elimination to distinguish the explicit
575 references to these registers from pseudos that happened to be
576 assigned to them.
577
578 If we have eliminated the frame pointer or arg pointer, we will
579 be using it as a normal register, for example as a spill
580 register. In such cases, we might be accessing it in a mode that
581 is not Pmode and therefore cannot use the pre-allocated rtx.
582
583 Also don't do this when we are making new REGs in reload, since
584 we don't want to get confused with the real pointers. */
585
586 if (mode == Pmode && !reload_in_progress)
587 {
e10c79fe
LB
588 if (regno == FRAME_POINTER_REGNUM
589 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
590 return frame_pointer_rtx;
591#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e10c79fe
LB
592 if (regno == HARD_FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
594 return hard_frame_pointer_rtx;
595#endif
596#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 597 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
598 return arg_pointer_rtx;
599#endif
600#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 601 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
602 return return_address_pointer_rtx;
603#endif
fc555370 604 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
2d67bd7b 605 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 606 return pic_offset_table_rtx;
bcb33994 607 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
608 return stack_pointer_rtx;
609 }
610
006a94b0 611#if 0
6cde4876 612 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
613 an existing entry in that table to avoid useless generation of RTL.
614
615 This code is disabled for now until we can fix the various backends
616 which depend on having non-shared hard registers in some cases. Long
617 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
618 on the amount of useless RTL that gets generated.
619
620 We'll also need to fix some code that runs after reload that wants to
621 set ORIGINAL_REGNO. */
622
6cde4876
JL
623 if (cfun
624 && cfun->emit
625 && regno_reg_rtx
626 && regno < FIRST_PSEUDO_REGISTER
627 && reg_raw_mode[regno] == mode)
628 return regno_reg_rtx[regno];
006a94b0 629#endif
6cde4876 630
08394eef 631 return gen_raw_REG (mode, regno);
3b80f6ca
RH
632}
633
41472af8 634rtx
502b8322 635gen_rtx_MEM (enum machine_mode mode, rtx addr)
41472af8
MM
636{
637 rtx rt = gen_rtx_raw_MEM (mode, addr);
638
639 /* This field is not cleared by the mere allocation of the rtx, so
640 we clear it here. */
173b24b9 641 MEM_ATTRS (rt) = 0;
41472af8
MM
642
643 return rt;
644}
ddef6bc7 645
542a8afa
RH
646/* Generate a memory referring to non-trapping constant memory. */
647
648rtx
649gen_const_mem (enum machine_mode mode, rtx addr)
650{
651 rtx mem = gen_rtx_MEM (mode, addr);
652 MEM_READONLY_P (mem) = 1;
653 MEM_NOTRAP_P (mem) = 1;
654 return mem;
655}
656
bf877a76
R
657/* Generate a MEM referring to fixed portions of the frame, e.g., register
658 save areas. */
659
660rtx
661gen_frame_mem (enum machine_mode mode, rtx addr)
662{
663 rtx mem = gen_rtx_MEM (mode, addr);
664 MEM_NOTRAP_P (mem) = 1;
665 set_mem_alias_set (mem, get_frame_alias_set ());
666 return mem;
667}
668
669/* Generate a MEM referring to a temporary use of the stack, not part
670 of the fixed stack frame. For example, something which is pushed
671 by a target splitter. */
672rtx
673gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
674{
675 rtx mem = gen_rtx_MEM (mode, addr);
676 MEM_NOTRAP_P (mem) = 1;
677 if (!current_function_calls_alloca)
678 set_mem_alias_set (mem, get_frame_alias_set ());
679 return mem;
680}
681
beb72684
RH
682/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
683 this construct would be valid, and false otherwise. */
684
685bool
686validate_subreg (enum machine_mode omode, enum machine_mode imode,
ed7a4b4b 687 const_rtx reg, unsigned int offset)
ddef6bc7 688{
beb72684
RH
689 unsigned int isize = GET_MODE_SIZE (imode);
690 unsigned int osize = GET_MODE_SIZE (omode);
691
692 /* All subregs must be aligned. */
693 if (offset % osize != 0)
694 return false;
695
696 /* The subreg offset cannot be outside the inner object. */
697 if (offset >= isize)
698 return false;
699
700 /* ??? This should not be here. Temporarily continue to allow word_mode
701 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
702 Generally, backends are doing something sketchy but it'll take time to
703 fix them all. */
704 if (omode == word_mode)
705 ;
706 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
707 is the culprit here, and not the backends. */
708 else if (osize >= UNITS_PER_WORD && isize >= osize)
709 ;
710 /* Allow component subregs of complex and vector. Though given the below
711 extraction rules, it's not always clear what that means. */
712 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
713 && GET_MODE_INNER (imode) == omode)
714 ;
715 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
716 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
717 represent this. It's questionable if this ought to be represented at
718 all -- why can't this all be hidden in post-reload splitters that make
719 arbitrarily mode changes to the registers themselves. */
720 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
721 ;
722 /* Subregs involving floating point modes are not allowed to
723 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
724 (subreg:SI (reg:DF) 0) isn't. */
725 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
726 {
727 if (isize != osize)
728 return false;
729 }
ddef6bc7 730
beb72684
RH
731 /* Paradoxical subregs must have offset zero. */
732 if (osize > isize)
733 return offset == 0;
734
735 /* This is a normal subreg. Verify that the offset is representable. */
736
737 /* For hard registers, we already have most of these rules collected in
738 subreg_offset_representable_p. */
739 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
740 {
741 unsigned int regno = REGNO (reg);
742
743#ifdef CANNOT_CHANGE_MODE_CLASS
744 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
745 && GET_MODE_INNER (imode) == omode)
746 ;
747 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
748 return false;
ddef6bc7 749#endif
beb72684
RH
750
751 return subreg_offset_representable_p (regno, imode, offset, omode);
752 }
753
754 /* For pseudo registers, we want most of the same checks. Namely:
755 If the register no larger than a word, the subreg must be lowpart.
756 If the register is larger than a word, the subreg must be the lowpart
757 of a subword. A subreg does *not* perform arbitrary bit extraction.
758 Given that we've already checked mode/offset alignment, we only have
759 to check subword subregs here. */
760 if (osize < UNITS_PER_WORD)
761 {
762 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
763 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
764 if (offset % UNITS_PER_WORD != low_off)
765 return false;
766 }
767 return true;
768}
769
770rtx
771gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
772{
773 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 774 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
775}
776
173b24b9
RK
777/* Generate a SUBREG representing the least-significant part of REG if MODE
778 is smaller than mode of REG, otherwise paradoxical SUBREG. */
779
ddef6bc7 780rtx
502b8322 781gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
ddef6bc7
JJ
782{
783 enum machine_mode inmode;
ddef6bc7
JJ
784
785 inmode = GET_MODE (reg);
786 if (inmode == VOIDmode)
787 inmode = mode;
e0e08ac2
JH
788 return gen_rtx_SUBREG (mode, reg,
789 subreg_lowpart_offset (mode, inmode));
ddef6bc7 790}
c5c76735 791\f
23b2ce53
RS
792/* gen_rtvec (n, [rt1, ..., rtn])
793**
794** This routine creates an rtvec and stores within it the
795** pointers to rtx's which are its arguments.
796*/
797
798/*VARARGS1*/
799rtvec
e34d07f2 800gen_rtvec (int n, ...)
23b2ce53 801{
6268b922 802 int i, save_n;
23b2ce53 803 rtx *vector;
e34d07f2 804 va_list p;
23b2ce53 805
e34d07f2 806 va_start (p, n);
23b2ce53
RS
807
808 if (n == 0)
809 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
810
703ad42b 811 vector = alloca (n * sizeof (rtx));
4f90e4a0 812
23b2ce53
RS
813 for (i = 0; i < n; i++)
814 vector[i] = va_arg (p, rtx);
6268b922
KG
815
816 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
817 save_n = n;
e34d07f2 818 va_end (p);
23b2ce53 819
6268b922 820 return gen_rtvec_v (save_n, vector);
23b2ce53
RS
821}
822
823rtvec
502b8322 824gen_rtvec_v (int n, rtx *argp)
23b2ce53 825{
b3694847
SS
826 int i;
827 rtvec rt_val;
23b2ce53
RS
828
829 if (n == 0)
830 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
831
832 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
833
834 for (i = 0; i < n; i++)
8f985ec4 835 rt_val->elem[i] = *argp++;
23b2ce53
RS
836
837 return rt_val;
838}
839\f
840/* Generate a REG rtx for a new pseudo register of mode MODE.
841 This pseudo is assigned the next sequential register number. */
842
843rtx
502b8322 844gen_reg_rtx (enum machine_mode mode)
23b2ce53 845{
01d939e8 846 struct function *f = cfun;
b3694847 847 rtx val;
23b2ce53 848
f8335a4f 849 gcc_assert (can_create_pseudo_p ());
23b2ce53 850
1b3d8f8a
GK
851 if (generating_concat_p
852 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
853 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
854 {
855 /* For complex modes, don't make a single pseudo.
856 Instead, make a CONCAT of two pseudos.
857 This allows noncontiguous allocation of the real and imaginary parts,
858 which makes much better code. Besides, allocating DCmode
859 pseudos overstrains reload on some machines like the 386. */
860 rtx realpart, imagpart;
27e58a70 861 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
862
863 realpart = gen_reg_rtx (partmode);
864 imagpart = gen_reg_rtx (partmode);
3b80f6ca 865 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
866 }
867
a560d4d4 868 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 869 enough to have an element for this pseudo reg number. */
23b2ce53 870
3502dc9c 871 if (reg_rtx_no == f->emit->regno_pointer_align_length)
23b2ce53 872 {
3502dc9c 873 int old_size = f->emit->regno_pointer_align_length;
e2ecd91c 874 char *new;
0d4903b8 875 rtx *new1;
0d4903b8 876
e2500fed 877 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
49ad7cfa 878 memset (new + old_size, 0, old_size);
f9e158c3 879 f->emit->regno_pointer_align = (unsigned char *) new;
49ad7cfa 880
703ad42b
KG
881 new1 = ggc_realloc (f->emit->x_regno_reg_rtx,
882 old_size * 2 * sizeof (rtx));
49ad7cfa 883 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
884 regno_reg_rtx = new1;
885
3502dc9c 886 f->emit->regno_pointer_align_length = old_size * 2;
23b2ce53
RS
887 }
888
08394eef 889 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
890 regno_reg_rtx[reg_rtx_no++] = val;
891 return val;
892}
893
e53a16e7 894/* Update NEW with the same attributes as REG, but offsetted by OFFSET.
e314a036 895 Do the big endian correction if needed. */
a560d4d4 896
e53a16e7
ILT
897static void
898update_reg_offset (rtx new, rtx reg, int offset)
a560d4d4 899{
e314a036
JZ
900 tree decl;
901 HOST_WIDE_INT var_size;
902
903 /* PR middle-end/14084
904 The problem appears when a variable is stored in a larger register
905 and later it is used in the original mode or some mode in between
906 or some part of variable is accessed.
907
908 On little endian machines there is no problem because
909 the REG_OFFSET of the start of the variable is the same when
910 accessed in any mode (it is 0).
911
912 However, this is not true on big endian machines.
913 The offset of the start of the variable is different when accessed
914 in different modes.
915 When we are taking a part of the REG we have to change the OFFSET
916 from offset WRT size of mode of REG to offset WRT size of variable.
917
918 If we would not do the big endian correction the resulting REG_OFFSET
919 would be larger than the size of the DECL.
920
921 Examples of correction, for BYTES_BIG_ENDIAN WORDS_BIG_ENDIAN machine:
922
923 REG.mode MODE DECL size old offset new offset description
924 DI SI 4 4 0 int32 in SImode
925 DI SI 1 4 0 char in SImode
926 DI QI 1 7 0 char in QImode
927 DI QI 4 5 1 1st element in QImode
928 of char[4]
929 DI HI 4 6 2 1st element in HImode
930 of int16[2]
931
932 If the size of DECL is equal or greater than the size of REG
933 we can't do this correction because the register holds the
934 whole variable or a part of the variable and thus the REG_OFFSET
935 is already correct. */
936
937 decl = REG_EXPR (reg);
938 if ((BYTES_BIG_ENDIAN || WORDS_BIG_ENDIAN)
939 && decl != NULL
940 && offset > 0
e53a16e7 941 && GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (GET_MODE (new))
e314a036
JZ
942 && ((var_size = int_size_in_bytes (TREE_TYPE (decl))) > 0
943 && var_size < GET_MODE_SIZE (GET_MODE (reg))))
944 {
945 int offset_le;
946
947 /* Convert machine endian to little endian WRT size of mode of REG. */
948 if (WORDS_BIG_ENDIAN)
949 offset_le = ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
950 / UNITS_PER_WORD) * UNITS_PER_WORD;
951 else
952 offset_le = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
953
954 if (BYTES_BIG_ENDIAN)
955 offset_le += ((GET_MODE_SIZE (GET_MODE (reg)) - 1 - offset)
956 % UNITS_PER_WORD);
957 else
958 offset_le += offset % UNITS_PER_WORD;
959
960 if (offset_le >= var_size)
961 {
962 /* MODE is wider than the variable so the new reg will cover
963 the whole variable so the resulting OFFSET should be 0. */
964 offset = 0;
965 }
966 else
967 {
968 /* Convert little endian to machine endian WRT size of variable. */
969 if (WORDS_BIG_ENDIAN)
970 offset = ((var_size - 1 - offset_le)
971 / UNITS_PER_WORD) * UNITS_PER_WORD;
972 else
973 offset = (offset_le / UNITS_PER_WORD) * UNITS_PER_WORD;
974
975 if (BYTES_BIG_ENDIAN)
976 offset += ((var_size - 1 - offset_le)
977 % UNITS_PER_WORD);
978 else
979 offset += offset_le % UNITS_PER_WORD;
980 }
981 }
982
a560d4d4 983 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
502b8322 984 REG_OFFSET (reg) + offset);
e53a16e7
ILT
985}
986
987/* Generate a register with same attributes as REG, but offsetted by
988 OFFSET. */
989
990rtx
991gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
992 int offset)
993{
994 rtx new = gen_rtx_REG (mode, regno);
995
996 update_reg_offset (new, reg, offset);
997 return new;
998}
999
1000/* Generate a new pseudo-register with the same attributes as REG, but
1001 offsetted by OFFSET. */
1002
1003rtx
1004gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
1005{
1006 rtx new = gen_reg_rtx (mode);
1007
1008 update_reg_offset (new, reg, offset);
a560d4d4
JH
1009 return new;
1010}
1011
1012/* Set the decl for MEM to DECL. */
1013
1014void
502b8322 1015set_reg_attrs_from_mem (rtx reg, rtx mem)
a560d4d4
JH
1016{
1017 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
1018 REG_ATTRS (reg)
1019 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
1020}
1021
9d18e06b
JZ
1022/* Set the register attributes for registers contained in PARM_RTX.
1023 Use needed values from memory attributes of MEM. */
1024
1025void
502b8322 1026set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1027{
f8cfc6aa 1028 if (REG_P (parm_rtx))
9d18e06b
JZ
1029 set_reg_attrs_from_mem (parm_rtx, mem);
1030 else if (GET_CODE (parm_rtx) == PARALLEL)
1031 {
1032 /* Check for a NULL entry in the first slot, used to indicate that the
1033 parameter goes both on the stack and in registers. */
1034 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1035 for (; i < XVECLEN (parm_rtx, 0); i++)
1036 {
1037 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1038 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1039 REG_ATTRS (XEXP (x, 0))
1040 = get_reg_attrs (MEM_EXPR (mem),
1041 INTVAL (XEXP (x, 1)));
1042 }
1043 }
1044}
1045
a560d4d4
JH
1046/* Assign the RTX X to declaration T. */
1047void
502b8322 1048set_decl_rtl (tree t, rtx x)
a560d4d4 1049{
820cc88f 1050 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
a560d4d4 1051
fbe6ec81
JZ
1052 if (!x)
1053 return;
1054 /* For register, we maintain the reverse information too. */
f8cfc6aa 1055 if (REG_P (x))
fbe6ec81
JZ
1056 REG_ATTRS (x) = get_reg_attrs (t, 0);
1057 else if (GET_CODE (x) == SUBREG)
1058 REG_ATTRS (SUBREG_REG (x))
1059 = get_reg_attrs (t, -SUBREG_BYTE (x));
1060 if (GET_CODE (x) == CONCAT)
1061 {
1062 if (REG_P (XEXP (x, 0)))
1063 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1064 if (REG_P (XEXP (x, 1)))
1065 REG_ATTRS (XEXP (x, 1))
1066 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1067 }
1068 if (GET_CODE (x) == PARALLEL)
1069 {
1070 int i;
1071 for (i = 0; i < XVECLEN (x, 0); i++)
1072 {
1073 rtx y = XVECEXP (x, 0, i);
1074 if (REG_P (XEXP (y, 0)))
1075 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1076 }
1077 }
1078}
1079
1080/* Assign the RTX X to parameter declaration T. */
1081void
1082set_decl_incoming_rtl (tree t, rtx x)
1083{
1084 DECL_INCOMING_RTL (t) = x;
1085
a560d4d4
JH
1086 if (!x)
1087 return;
4d6922ee 1088 /* For register, we maintain the reverse information too. */
f8cfc6aa 1089 if (REG_P (x))
a560d4d4
JH
1090 REG_ATTRS (x) = get_reg_attrs (t, 0);
1091 else if (GET_CODE (x) == SUBREG)
1092 REG_ATTRS (SUBREG_REG (x))
1093 = get_reg_attrs (t, -SUBREG_BYTE (x));
1094 if (GET_CODE (x) == CONCAT)
1095 {
1096 if (REG_P (XEXP (x, 0)))
1097 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1098 if (REG_P (XEXP (x, 1)))
1099 REG_ATTRS (XEXP (x, 1))
1100 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1101 }
1102 if (GET_CODE (x) == PARALLEL)
1103 {
d4afac5b
JZ
1104 int i, start;
1105
1106 /* Check for a NULL entry, used to indicate that the parameter goes
1107 both on the stack and in registers. */
1108 if (XEXP (XVECEXP (x, 0, 0), 0))
1109 start = 0;
1110 else
1111 start = 1;
1112
1113 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1114 {
1115 rtx y = XVECEXP (x, 0, i);
1116 if (REG_P (XEXP (y, 0)))
1117 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1118 }
1119 }
1120}
1121
754fdcca
RK
1122/* Identify REG (which may be a CONCAT) as a user register. */
1123
1124void
502b8322 1125mark_user_reg (rtx reg)
754fdcca
RK
1126{
1127 if (GET_CODE (reg) == CONCAT)
1128 {
1129 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1130 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1131 }
754fdcca 1132 else
5b0264cb
NS
1133 {
1134 gcc_assert (REG_P (reg));
1135 REG_USERVAR_P (reg) = 1;
1136 }
754fdcca
RK
1137}
1138
86fe05e0
RK
1139/* Identify REG as a probable pointer register and show its alignment
1140 as ALIGN, if nonzero. */
23b2ce53
RS
1141
1142void
502b8322 1143mark_reg_pointer (rtx reg, int align)
23b2ce53 1144{
3502dc9c 1145 if (! REG_POINTER (reg))
00995e78 1146 {
3502dc9c 1147 REG_POINTER (reg) = 1;
86fe05e0 1148
00995e78
RE
1149 if (align)
1150 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1151 }
1152 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1153 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1154 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1155}
1156
1157/* Return 1 plus largest pseudo reg number used in the current function. */
1158
1159int
502b8322 1160max_reg_num (void)
23b2ce53
RS
1161{
1162 return reg_rtx_no;
1163}
1164
1165/* Return 1 + the largest label number used so far in the current function. */
1166
1167int
502b8322 1168max_label_num (void)
23b2ce53 1169{
23b2ce53
RS
1170 return label_num;
1171}
1172
1173/* Return first label number used in this function (if any were used). */
1174
1175int
502b8322 1176get_first_label_num (void)
23b2ce53
RS
1177{
1178 return first_label_num;
1179}
6de9cd9a
DN
1180
1181/* If the rtx for label was created during the expansion of a nested
1182 function, then first_label_num won't include this label number.
1183 Fix this now so that array indicies work later. */
1184
1185void
1186maybe_set_first_label_num (rtx x)
1187{
1188 if (CODE_LABEL_NUMBER (x) < first_label_num)
1189 first_label_num = CODE_LABEL_NUMBER (x);
1190}
23b2ce53
RS
1191\f
1192/* Return a value representing some low-order bits of X, where the number
1193 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1194 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1195 representation is returned.
1196
1197 This function handles the cases in common between gen_lowpart, below,
1198 and two variants in cse.c and combine.c. These are the cases that can
1199 be safely handled at all points in the compilation.
1200
1201 If this is not a case we can handle, return 0. */
1202
1203rtx
502b8322 1204gen_lowpart_common (enum machine_mode mode, rtx x)
23b2ce53 1205{
ddef6bc7 1206 int msize = GET_MODE_SIZE (mode);
550d1387 1207 int xsize;
ddef6bc7 1208 int offset = 0;
550d1387
GK
1209 enum machine_mode innermode;
1210
1211 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1212 so we have to make one up. Yuk. */
1213 innermode = GET_MODE (x);
db487452
R
1214 if (GET_CODE (x) == CONST_INT
1215 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
550d1387
GK
1216 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1217 else if (innermode == VOIDmode)
1218 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1219
1220 xsize = GET_MODE_SIZE (innermode);
1221
5b0264cb 1222 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1223
550d1387 1224 if (innermode == mode)
23b2ce53
RS
1225 return x;
1226
1227 /* MODE must occupy no more words than the mode of X. */
550d1387
GK
1228 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1229 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
23b2ce53
RS
1230 return 0;
1231
53501a19 1232 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
3d8bf70f 1233 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
53501a19
BS
1234 return 0;
1235
550d1387 1236 offset = subreg_lowpart_offset (mode, innermode);
23b2ce53
RS
1237
1238 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1239 && (GET_MODE_CLASS (mode) == MODE_INT
1240 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1241 {
1242 /* If we are getting the low-order part of something that has been
1243 sign- or zero-extended, we can either just use the object being
1244 extended or make a narrower extension. If we want an even smaller
1245 piece than the size of the object being extended, call ourselves
1246 recursively.
1247
1248 This case is used mostly by combine and cse. */
1249
1250 if (GET_MODE (XEXP (x, 0)) == mode)
1251 return XEXP (x, 0);
550d1387 1252 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
23b2ce53 1253 return gen_lowpart_common (mode, XEXP (x, 0));
550d1387 1254 else if (msize < xsize)
3b80f6ca 1255 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1256 }
f8cfc6aa 1257 else if (GET_CODE (x) == SUBREG || REG_P (x)
550d1387
GK
1258 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1259 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1260 return simplify_gen_subreg (mode, x, innermode, offset);
8aada4ad 1261
23b2ce53
RS
1262 /* Otherwise, we can't do this. */
1263 return 0;
1264}
1265\f
ccba022b 1266rtx
502b8322 1267gen_highpart (enum machine_mode mode, rtx x)
ccba022b 1268{
ddef6bc7 1269 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1270 rtx result;
ddef6bc7 1271
ccba022b
RS
1272 /* This case loses if X is a subreg. To catch bugs early,
1273 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1274 gcc_assert (msize <= UNITS_PER_WORD
1275 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1276
e0e08ac2
JH
1277 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1278 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb
NS
1279 gcc_assert (result);
1280
09482e0d
JW
1281 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1282 the target if we have a MEM. gen_highpart must return a valid operand,
1283 emitting code if necessary to do so. */
5b0264cb
NS
1284 if (MEM_P (result))
1285 {
1286 result = validize_mem (result);
1287 gcc_assert (result);
1288 }
1289
e0e08ac2
JH
1290 return result;
1291}
5222e470 1292
26d249eb 1293/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1294 be VOIDmode constant. */
1295rtx
502b8322 1296gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
5222e470
JH
1297{
1298 if (GET_MODE (exp) != VOIDmode)
1299 {
5b0264cb 1300 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1301 return gen_highpart (outermode, exp);
1302 }
1303 return simplify_gen_subreg (outermode, exp, innermode,
1304 subreg_highpart_offset (outermode, innermode));
1305}
68252e27 1306
e0e08ac2
JH
1307/* Return offset in bytes to get OUTERMODE low part
1308 of the value in mode INNERMODE stored in memory in target format. */
8698cce3 1309
e0e08ac2 1310unsigned int
502b8322 1311subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
e0e08ac2
JH
1312{
1313 unsigned int offset = 0;
1314 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1315
e0e08ac2 1316 if (difference > 0)
ccba022b 1317 {
e0e08ac2
JH
1318 if (WORDS_BIG_ENDIAN)
1319 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1320 if (BYTES_BIG_ENDIAN)
1321 offset += difference % UNITS_PER_WORD;
ccba022b 1322 }
ddef6bc7 1323
e0e08ac2 1324 return offset;
ccba022b 1325}
eea50aa0 1326
e0e08ac2
JH
1327/* Return offset in bytes to get OUTERMODE high part
1328 of the value in mode INNERMODE stored in memory in target format. */
1329unsigned int
502b8322 1330subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
eea50aa0
JH
1331{
1332 unsigned int offset = 0;
1333 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1334
5b0264cb 1335 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
e0e08ac2 1336
eea50aa0
JH
1337 if (difference > 0)
1338 {
e0e08ac2 1339 if (! WORDS_BIG_ENDIAN)
eea50aa0 1340 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1341 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1342 offset += difference % UNITS_PER_WORD;
1343 }
1344
e0e08ac2 1345 return offset;
eea50aa0 1346}
ccba022b 1347
23b2ce53
RS
1348/* Return 1 iff X, assumed to be a SUBREG,
1349 refers to the least significant part of its containing reg.
1350 If X is not a SUBREG, always return 1 (it is its own low part!). */
1351
1352int
fa233e34 1353subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1354{
1355 if (GET_CODE (x) != SUBREG)
1356 return 1;
a3a03040
RK
1357 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1358 return 0;
23b2ce53 1359
e0e08ac2
JH
1360 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1361 == SUBREG_BYTE (x));
23b2ce53
RS
1362}
1363\f
ddef6bc7
JJ
1364/* Return subword OFFSET of operand OP.
1365 The word number, OFFSET, is interpreted as the word number starting
1366 at the low-order address. OFFSET 0 is the low-order word if not
1367 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1368
1369 If we cannot extract the required word, we return zero. Otherwise,
1370 an rtx corresponding to the requested word will be returned.
1371
1372 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1373 reload has completed, a valid address will always be returned. After
1374 reload, if a valid address cannot be returned, we return zero.
1375
1376 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1377 it is the responsibility of the caller.
1378
1379 MODE is the mode of OP in case it is a CONST_INT.
1380
1381 ??? This is still rather broken for some cases. The problem for the
1382 moment is that all callers of this thing provide no 'goal mode' to
1383 tell us to work with. This exists because all callers were written
0631e0bf
JH
1384 in a word based SUBREG world.
1385 Now use of this function can be deprecated by simplify_subreg in most
1386 cases.
1387 */
ddef6bc7
JJ
1388
1389rtx
502b8322 1390operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
ddef6bc7
JJ
1391{
1392 if (mode == VOIDmode)
1393 mode = GET_MODE (op);
1394
5b0264cb 1395 gcc_assert (mode != VOIDmode);
ddef6bc7 1396
30f7a378 1397 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1398 if (mode != BLKmode
1399 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1400 return 0;
1401
30f7a378 1402 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1403 if (mode != BLKmode
1404 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1405 return const0_rtx;
1406
ddef6bc7 1407 /* Form a new MEM at the requested address. */
3c0cb5de 1408 if (MEM_P (op))
ddef6bc7 1409 {
f1ec5147 1410 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1411
f1ec5147
RK
1412 if (! validate_address)
1413 return new;
1414
1415 else if (reload_completed)
ddef6bc7 1416 {
f1ec5147
RK
1417 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1418 return 0;
ddef6bc7 1419 }
f1ec5147
RK
1420 else
1421 return replace_equiv_address (new, XEXP (new, 0));
ddef6bc7
JJ
1422 }
1423
0631e0bf
JH
1424 /* Rest can be handled by simplify_subreg. */
1425 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1426}
1427
535a42b1
NS
1428/* Similar to `operand_subword', but never return 0. If we can't
1429 extract the required subword, put OP into a register and try again.
1430 The second attempt must succeed. We always validate the address in
1431 this case.
23b2ce53
RS
1432
1433 MODE is the mode of OP, in case it is CONST_INT. */
1434
1435rtx
502b8322 1436operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
23b2ce53 1437{
ddef6bc7 1438 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1439
1440 if (result)
1441 return result;
1442
1443 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1444 {
1445 /* If this is a register which can not be accessed by words, copy it
1446 to a pseudo register. */
f8cfc6aa 1447 if (REG_P (op))
77e6b0eb
JC
1448 op = copy_to_reg (op);
1449 else
1450 op = force_reg (mode, op);
1451 }
23b2ce53 1452
ddef6bc7 1453 result = operand_subword (op, offset, 1, mode);
5b0264cb 1454 gcc_assert (result);
23b2ce53
RS
1455
1456 return result;
1457}
1458\f
998d7deb
RH
1459/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1460 or (2) a component ref of something variable. Represent the later with
1461 a NULL expression. */
1462
1463static tree
502b8322 1464component_ref_for_mem_expr (tree ref)
998d7deb
RH
1465{
1466 tree inner = TREE_OPERAND (ref, 0);
1467
1468 if (TREE_CODE (inner) == COMPONENT_REF)
1469 inner = component_ref_for_mem_expr (inner);
c56e3582
RK
1470 else
1471 {
c56e3582 1472 /* Now remove any conversions: they don't change what the underlying
6fce44af 1473 object is. Likewise for SAVE_EXPR. */
c56e3582
RK
1474 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1475 || TREE_CODE (inner) == NON_LVALUE_EXPR
1476 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
6fce44af
RK
1477 || TREE_CODE (inner) == SAVE_EXPR)
1478 inner = TREE_OPERAND (inner, 0);
c56e3582
RK
1479
1480 if (! DECL_P (inner))
1481 inner = NULL_TREE;
1482 }
998d7deb
RH
1483
1484 if (inner == TREE_OPERAND (ref, 0))
1485 return ref;
1486 else
3244e67d
RS
1487 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1488 TREE_OPERAND (ref, 1), NULL_TREE);
998d7deb 1489}
173b24b9 1490
2b3493c8
AK
1491/* Returns 1 if both MEM_EXPR can be considered equal
1492 and 0 otherwise. */
1493
1494int
4f588890 1495mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1496{
1497 if (expr1 == expr2)
1498 return 1;
1499
1500 if (! expr1 || ! expr2)
1501 return 0;
1502
1503 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1504 return 0;
1505
1506 if (TREE_CODE (expr1) == COMPONENT_REF)
1507 return
1508 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1509 TREE_OPERAND (expr2, 0))
1510 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1511 TREE_OPERAND (expr2, 1));
1512
1b096a0a 1513 if (INDIRECT_REF_P (expr1))
2b3493c8
AK
1514 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1515 TREE_OPERAND (expr2, 0));
2b3493c8 1516
5b0264cb 1517 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
2b3493c8 1518 have been resolved here. */
5b0264cb
NS
1519 gcc_assert (DECL_P (expr1));
1520
1521 /* Decls with different pointers can't be equal. */
1522 return 0;
2b3493c8
AK
1523}
1524
173b24b9
RK
1525/* Given REF, a MEM, and T, either the type of X or the expression
1526 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1527 if we are making a new object of this type. BITPOS is nonzero if
1528 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1529
1530void
502b8322
AJ
1531set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1532 HOST_WIDE_INT bitpos)
173b24b9 1533{
4862826d 1534 alias_set_type alias = MEM_ALIAS_SET (ref);
998d7deb 1535 tree expr = MEM_EXPR (ref);
8ac61af7
RK
1536 rtx offset = MEM_OFFSET (ref);
1537 rtx size = MEM_SIZE (ref);
1538 unsigned int align = MEM_ALIGN (ref);
6f1087be 1539 HOST_WIDE_INT apply_bitpos = 0;
173b24b9
RK
1540 tree type;
1541
1542 /* It can happen that type_for_mode was given a mode for which there
1543 is no language-level type. In which case it returns NULL, which
1544 we can see here. */
1545 if (t == NULL_TREE)
1546 return;
1547
1548 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1549 if (type == error_mark_node)
1550 return;
173b24b9 1551
173b24b9
RK
1552 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1553 wrong answer, as it assumes that DECL_RTL already has the right alias
1554 info. Callers should not set DECL_RTL until after the call to
1555 set_mem_attributes. */
5b0264cb 1556 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1557
738cc472 1558 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1559 front-end routine) and use it. */
1560 alias = get_alias_set (t);
173b24b9 1561
a5e9c810 1562 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
07cb6e8c
JM
1563 MEM_IN_STRUCT_P (ref)
1564 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
f8ad8d7c 1565 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1566
8ac61af7
RK
1567 /* If we are making an object of this type, or if this is a DECL, we know
1568 that it is a scalar if the type is not an aggregate. */
07cb6e8c
JM
1569 if ((objectp || DECL_P (t))
1570 && ! AGGREGATE_TYPE_P (type)
1571 && TREE_CODE (type) != COMPLEX_TYPE)
173b24b9
RK
1572 MEM_SCALAR_P (ref) = 1;
1573
c3d32120
RK
1574 /* We can set the alignment from the type if we are making an object,
1575 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
7ccf35ed
DN
1576 if (objectp || TREE_CODE (t) == INDIRECT_REF
1577 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1578 || TYPE_ALIGN_OK (type))
c3d32120 1579 align = MAX (align, TYPE_ALIGN (type));
7ccf35ed
DN
1580 else
1581 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1582 {
1583 if (integer_zerop (TREE_OPERAND (t, 1)))
1584 /* We don't know anything about the alignment. */
1585 align = BITS_PER_UNIT;
1586 else
1587 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1588 }
40c0668b 1589
738cc472
RK
1590 /* If the size is known, we can set that. */
1591 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1592 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1593
80965c18
RK
1594 /* If T is not a type, we may be able to deduce some more information about
1595 the expression. */
1596 if (! TYPE_P (t))
8ac61af7 1597 {
8476af98 1598 tree base;
389fdba0 1599
8ac61af7
RK
1600 if (TREE_THIS_VOLATILE (t))
1601 MEM_VOLATILE_P (ref) = 1;
173b24b9 1602
c56e3582
RK
1603 /* Now remove any conversions: they don't change what the underlying
1604 object is. Likewise for SAVE_EXPR. */
8ac61af7 1605 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
c56e3582
RK
1606 || TREE_CODE (t) == NON_LVALUE_EXPR
1607 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1608 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1609 t = TREE_OPERAND (t, 0);
1610
8476af98
RH
1611 /* We may look through structure-like accesses for the purposes of
1612 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1613 base = t;
1614 while (TREE_CODE (base) == COMPONENT_REF
1615 || TREE_CODE (base) == REALPART_EXPR
1616 || TREE_CODE (base) == IMAGPART_EXPR
1617 || TREE_CODE (base) == BIT_FIELD_REF)
1618 base = TREE_OPERAND (base, 0);
1619
1620 if (DECL_P (base))
1621 {
1622 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1623 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1624 else
1625 MEM_NOTRAP_P (ref) = 1;
1626 }
1627 else
1628 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1629
1630 base = get_base_address (base);
1631 if (base && DECL_P (base)
1632 && TREE_READONLY (base)
1633 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1634 {
1635 tree base_type = TREE_TYPE (base);
1636 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1637 || DECL_ARTIFICIAL (base));
1638 MEM_READONLY_P (ref) = 1;
1639 }
1640
2039d7aa
RH
1641 /* If this expression uses it's parent's alias set, mark it such
1642 that we won't change it. */
1643 if (component_uses_parent_alias_set (t))
10b76d73
RK
1644 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1645
8ac61af7
RK
1646 /* If this is a decl, set the attributes of the MEM from it. */
1647 if (DECL_P (t))
1648 {
998d7deb
RH
1649 expr = t;
1650 offset = const0_rtx;
6f1087be 1651 apply_bitpos = bitpos;
8ac61af7
RK
1652 size = (DECL_SIZE_UNIT (t)
1653 && host_integerp (DECL_SIZE_UNIT (t), 1)
1654 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
68252e27 1655 align = DECL_ALIGN (t);
8ac61af7
RK
1656 }
1657
40c0668b 1658 /* If this is a constant, we know the alignment. */
6615c446 1659 else if (CONSTANT_CLASS_P (t))
9ddfb1a7
RK
1660 {
1661 align = TYPE_ALIGN (type);
1662#ifdef CONSTANT_ALIGNMENT
1663 align = CONSTANT_ALIGNMENT (t, align);
1664#endif
1665 }
998d7deb
RH
1666
1667 /* If this is a field reference and not a bit-field, record it. */
1668 /* ??? There is some information that can be gleened from bit-fields,
1669 such as the word offset in the structure that might be modified.
1670 But skip it for now. */
1671 else if (TREE_CODE (t) == COMPONENT_REF
1672 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1673 {
1674 expr = component_ref_for_mem_expr (t);
1675 offset = const0_rtx;
6f1087be 1676 apply_bitpos = bitpos;
998d7deb
RH
1677 /* ??? Any reason the field size would be different than
1678 the size we got from the type? */
1679 }
1680
1681 /* If this is an array reference, look for an outer field reference. */
1682 else if (TREE_CODE (t) == ARRAY_REF)
1683 {
1684 tree off_tree = size_zero_node;
1b1838b6
JW
1685 /* We can't modify t, because we use it at the end of the
1686 function. */
1687 tree t2 = t;
998d7deb
RH
1688
1689 do
1690 {
1b1838b6 1691 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1692 tree low_bound = array_ref_low_bound (t2);
1693 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1694
1695 /* We assume all arrays have sizes that are a multiple of a byte.
1696 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1697 index, then convert to sizetype and multiply by the size of
1698 the array element. */
1699 if (! integer_zerop (low_bound))
4845b383
KH
1700 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1701 index, low_bound);
2567406a 1702
44de5aeb 1703 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1704 size_binop (MULT_EXPR,
1705 fold_convert (sizetype,
1706 index),
44de5aeb
RK
1707 unit_size),
1708 off_tree);
1b1838b6 1709 t2 = TREE_OPERAND (t2, 0);
998d7deb 1710 }
1b1838b6 1711 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1712
1b1838b6 1713 if (DECL_P (t2))
c67a1cf6 1714 {
1b1838b6 1715 expr = t2;
40cb04f1 1716 offset = NULL;
c67a1cf6 1717 if (host_integerp (off_tree, 1))
40cb04f1
RH
1718 {
1719 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1720 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1b1838b6 1721 align = DECL_ALIGN (t2);
fc555370 1722 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
40cb04f1
RH
1723 align = aoff;
1724 offset = GEN_INT (ioff);
6f1087be 1725 apply_bitpos = bitpos;
40cb04f1 1726 }
c67a1cf6 1727 }
1b1838b6 1728 else if (TREE_CODE (t2) == COMPONENT_REF)
998d7deb 1729 {
1b1838b6 1730 expr = component_ref_for_mem_expr (t2);
998d7deb 1731 if (host_integerp (off_tree, 1))
6f1087be
RH
1732 {
1733 offset = GEN_INT (tree_low_cst (off_tree, 1));
1734 apply_bitpos = bitpos;
1735 }
998d7deb
RH
1736 /* ??? Any reason the field size would be different than
1737 the size we got from the type? */
1738 }
c67a1cf6 1739 else if (flag_argument_noalias > 1
1b096a0a 1740 && (INDIRECT_REF_P (t2))
1b1838b6 1741 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
c67a1cf6 1742 {
1b1838b6 1743 expr = t2;
c67a1cf6
RH
1744 offset = NULL;
1745 }
1746 }
1747
1748 /* If this is a Fortran indirect argument reference, record the
1749 parameter decl. */
1750 else if (flag_argument_noalias > 1
1b096a0a 1751 && (INDIRECT_REF_P (t))
c67a1cf6
RH
1752 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1753 {
1754 expr = t;
1755 offset = NULL;
998d7deb 1756 }
8ac61af7
RK
1757 }
1758
15c812e3 1759 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1760 bit position offset. Similarly, increase the size of the accessed
1761 object to contain the negative offset. */
6f1087be 1762 if (apply_bitpos)
8c317c5f
RH
1763 {
1764 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1765 if (size)
1766 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1767 }
6f1087be 1768
7ccf35ed
DN
1769 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1770 {
1771 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1772 we're overlapping. */
1773 offset = NULL;
1774 expr = NULL;
1775 }
1776
8ac61af7 1777 /* Now set the attributes we computed above. */
10b76d73 1778 MEM_ATTRS (ref)
998d7deb 1779 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
8ac61af7
RK
1780
1781 /* If this is already known to be a scalar or aggregate, we are done. */
1782 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
1783 return;
1784
8ac61af7
RK
1785 /* If it is a reference into an aggregate, this is part of an aggregate.
1786 Otherwise we don't know. */
173b24b9
RK
1787 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1788 || TREE_CODE (t) == ARRAY_RANGE_REF
1789 || TREE_CODE (t) == BIT_FIELD_REF)
1790 MEM_IN_STRUCT_P (ref) = 1;
1791}
1792
6f1087be 1793void
502b8322 1794set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
1795{
1796 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1797}
1798
a560d4d4
JH
1799/* Set the decl for MEM to DECL. */
1800
1801void
502b8322 1802set_mem_attrs_from_reg (rtx mem, rtx reg)
a560d4d4
JH
1803{
1804 MEM_ATTRS (mem)
1805 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1806 GEN_INT (REG_OFFSET (reg)),
1807 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1808}
1809
173b24b9
RK
1810/* Set the alias set of MEM to SET. */
1811
1812void
4862826d 1813set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 1814{
68252e27 1815#ifdef ENABLE_CHECKING
173b24b9 1816 /* If the new and old alias sets don't conflict, something is wrong. */
5b0264cb 1817 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
173b24b9
RK
1818#endif
1819
998d7deb 1820 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
10b76d73
RK
1821 MEM_SIZE (mem), MEM_ALIGN (mem),
1822 GET_MODE (mem));
173b24b9 1823}
738cc472 1824
d022d93e 1825/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1826
1827void
502b8322 1828set_mem_align (rtx mem, unsigned int align)
738cc472 1829{
998d7deb 1830 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
10b76d73
RK
1831 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1832 GET_MODE (mem));
738cc472 1833}
1285011e 1834
998d7deb 1835/* Set the expr for MEM to EXPR. */
1285011e
RK
1836
1837void
502b8322 1838set_mem_expr (rtx mem, tree expr)
1285011e
RK
1839{
1840 MEM_ATTRS (mem)
998d7deb 1841 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1285011e
RK
1842 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1843}
998d7deb
RH
1844
1845/* Set the offset of MEM to OFFSET. */
1846
1847void
502b8322 1848set_mem_offset (rtx mem, rtx offset)
998d7deb
RH
1849{
1850 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1851 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1852 GET_MODE (mem));
35aff10b
AM
1853}
1854
1855/* Set the size of MEM to SIZE. */
1856
1857void
502b8322 1858set_mem_size (rtx mem, rtx size)
35aff10b
AM
1859{
1860 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1861 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1862 GET_MODE (mem));
998d7deb 1863}
173b24b9 1864\f
738cc472
RK
1865/* Return a memory reference like MEMREF, but with its mode changed to MODE
1866 and its address changed to ADDR. (VOIDmode means don't change the mode.
1867 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1868 returned memory location is required to be valid. The memory
1869 attributes are not changed. */
23b2ce53 1870
738cc472 1871static rtx
502b8322 1872change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
23b2ce53
RS
1873{
1874 rtx new;
1875
5b0264cb 1876 gcc_assert (MEM_P (memref));
23b2ce53
RS
1877 if (mode == VOIDmode)
1878 mode = GET_MODE (memref);
1879 if (addr == 0)
1880 addr = XEXP (memref, 0);
a74ff877
JH
1881 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1882 && (!validate || memory_address_p (mode, addr)))
1883 return memref;
23b2ce53 1884
f1ec5147 1885 if (validate)
23b2ce53 1886 {
f1ec5147 1887 if (reload_in_progress || reload_completed)
5b0264cb 1888 gcc_assert (memory_address_p (mode, addr));
f1ec5147
RK
1889 else
1890 addr = memory_address (mode, addr);
23b2ce53 1891 }
750c9258 1892
9b04c6a8
RK
1893 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1894 return memref;
1895
3b80f6ca 1896 new = gen_rtx_MEM (mode, addr);
c6df88cb 1897 MEM_COPY_ATTRIBUTES (new, memref);
23b2ce53
RS
1898 return new;
1899}
792760b9 1900
738cc472
RK
1901/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1902 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
1903
1904rtx
502b8322 1905change_address (rtx memref, enum machine_mode mode, rtx addr)
f4ef873c 1906{
4e44c1ef 1907 rtx new = change_address_1 (memref, mode, addr, 1), size;
738cc472 1908 enum machine_mode mmode = GET_MODE (new);
4e44c1ef
JJ
1909 unsigned int align;
1910
1911 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1912 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
c2f7bcc3 1913
fdb1c7b3
JH
1914 /* If there are no changes, just return the original memory reference. */
1915 if (new == memref)
4e44c1ef
JJ
1916 {
1917 if (MEM_ATTRS (memref) == 0
1918 || (MEM_EXPR (memref) == NULL
1919 && MEM_OFFSET (memref) == NULL
1920 && MEM_SIZE (memref) == size
1921 && MEM_ALIGN (memref) == align))
1922 return new;
1923
64fc7c00 1924 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
4e44c1ef
JJ
1925 MEM_COPY_ATTRIBUTES (new, memref);
1926 }
fdb1c7b3 1927
738cc472 1928 MEM_ATTRS (new)
4e44c1ef 1929 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
823e3574 1930
738cc472 1931 return new;
f4ef873c 1932}
792760b9 1933
738cc472
RK
1934/* Return a memory reference like MEMREF, but with its mode changed
1935 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
1936 nonzero, the memory address is forced to be valid.
1937 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1938 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
1939
1940rtx
502b8322
AJ
1941adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1942 int validate, int adjust)
f1ec5147 1943{
823e3574 1944 rtx addr = XEXP (memref, 0);
738cc472
RK
1945 rtx new;
1946 rtx memoffset = MEM_OFFSET (memref);
10b76d73 1947 rtx size = 0;
738cc472 1948 unsigned int memalign = MEM_ALIGN (memref);
823e3574 1949
fdb1c7b3
JH
1950 /* If there are no changes, just return the original memory reference. */
1951 if (mode == GET_MODE (memref) && !offset
1952 && (!validate || memory_address_p (mode, addr)))
1953 return memref;
1954
d14419e4 1955 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 1956 This may happen even if offset is nonzero -- consider
d14419e4
RH
1957 (plus (plus reg reg) const_int) -- so do this always. */
1958 addr = copy_rtx (addr);
1959
4a78c787
RH
1960 if (adjust)
1961 {
1962 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1963 object, we can merge it into the LO_SUM. */
1964 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1965 && offset >= 0
1966 && (unsigned HOST_WIDE_INT) offset
1967 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1968 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1969 plus_constant (XEXP (addr, 1), offset));
1970 else
1971 addr = plus_constant (addr, offset);
1972 }
823e3574 1973
738cc472
RK
1974 new = change_address_1 (memref, mode, addr, validate);
1975
1976 /* Compute the new values of the memory attributes due to this adjustment.
1977 We add the offsets and update the alignment. */
1978 if (memoffset)
1979 memoffset = GEN_INT (offset + INTVAL (memoffset));
1980
03bf2c23
RK
1981 /* Compute the new alignment by taking the MIN of the alignment and the
1982 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1983 if zero. */
1984 if (offset != 0)
3bf1e984
RK
1985 memalign
1986 = MIN (memalign,
1987 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
738cc472 1988
10b76d73 1989 /* We can compute the size in a number of ways. */
a06ef755
RK
1990 if (GET_MODE (new) != BLKmode)
1991 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
10b76d73
RK
1992 else if (MEM_SIZE (memref))
1993 size = plus_constant (MEM_SIZE (memref), -offset);
1994
998d7deb 1995 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
10b76d73 1996 memoffset, size, memalign, GET_MODE (new));
738cc472
RK
1997
1998 /* At some point, we should validate that this offset is within the object,
1999 if all the appropriate values are known. */
2000 return new;
f1ec5147
RK
2001}
2002
630036c6
JJ
2003/* Return a memory reference like MEMREF, but with its mode changed
2004 to MODE and its address changed to ADDR, which is assumed to be
2005 MEMREF offseted by OFFSET bytes. If VALIDATE is
2006 nonzero, the memory address is forced to be valid. */
2007
2008rtx
502b8322
AJ
2009adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2010 HOST_WIDE_INT offset, int validate)
630036c6
JJ
2011{
2012 memref = change_address_1 (memref, VOIDmode, addr, validate);
2013 return adjust_address_1 (memref, mode, offset, validate, 0);
2014}
2015
8ac61af7
RK
2016/* Return a memory reference like MEMREF, but whose address is changed by
2017 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2018 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2019
2020rtx
502b8322 2021offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2022{
e3c8ea67
RH
2023 rtx new, addr = XEXP (memref, 0);
2024
2025 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2026
68252e27 2027 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2028 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2029
2030 However, if we did go and rearrange things, we can wind up not
2031 being able to recognize the magic around pic_offset_table_rtx.
2032 This stuff is fragile, and is yet another example of why it is
2033 bad to expose PIC machinery too early. */
2034 if (! memory_address_p (GET_MODE (memref), new)
2035 && GET_CODE (addr) == PLUS
2036 && XEXP (addr, 0) == pic_offset_table_rtx)
2037 {
2038 addr = force_reg (GET_MODE (addr), addr);
2039 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2040 }
2041
f6041ed8 2042 update_temp_slot_address (XEXP (memref, 0), new);
e3c8ea67 2043 new = change_address_1 (memref, VOIDmode, new, 1);
0d4903b8 2044
fdb1c7b3
JH
2045 /* If there are no changes, just return the original memory reference. */
2046 if (new == memref)
2047 return new;
2048
0d4903b8
RK
2049 /* Update the alignment to reflect the offset. Reset the offset, which
2050 we don't know. */
2cc2d4bb
RK
2051 MEM_ATTRS (new)
2052 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
9ceca302 2053 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2cc2d4bb 2054 GET_MODE (new));
0d4903b8
RK
2055 return new;
2056}
68252e27 2057
792760b9
RK
2058/* Return a memory reference like MEMREF, but with its address changed to
2059 ADDR. The caller is asserting that the actual piece of memory pointed
2060 to is the same, just the form of the address is being changed, such as
2061 by putting something into a register. */
2062
2063rtx
502b8322 2064replace_equiv_address (rtx memref, rtx addr)
792760b9 2065{
738cc472
RK
2066 /* change_address_1 copies the memory attribute structure without change
2067 and that's exactly what we want here. */
40c0668b 2068 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2069 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2070}
738cc472 2071
f1ec5147
RK
2072/* Likewise, but the reference is not required to be valid. */
2073
2074rtx
502b8322 2075replace_equiv_address_nv (rtx memref, rtx addr)
f1ec5147 2076{
f1ec5147
RK
2077 return change_address_1 (memref, VOIDmode, addr, 0);
2078}
e7dfe4bb
RH
2079
2080/* Return a memory reference like MEMREF, but with its mode widened to
2081 MODE and offset by OFFSET. This would be used by targets that e.g.
2082 cannot issue QImode memory operations and have to use SImode memory
2083 operations plus masking logic. */
2084
2085rtx
502b8322 2086widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb
RH
2087{
2088 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2089 tree expr = MEM_EXPR (new);
2090 rtx memoffset = MEM_OFFSET (new);
2091 unsigned int size = GET_MODE_SIZE (mode);
2092
fdb1c7b3
JH
2093 /* If there are no changes, just return the original memory reference. */
2094 if (new == memref)
2095 return new;
2096
e7dfe4bb
RH
2097 /* If we don't know what offset we were at within the expression, then
2098 we can't know if we've overstepped the bounds. */
fa1591cb 2099 if (! memoffset)
e7dfe4bb
RH
2100 expr = NULL_TREE;
2101
2102 while (expr)
2103 {
2104 if (TREE_CODE (expr) == COMPONENT_REF)
2105 {
2106 tree field = TREE_OPERAND (expr, 1);
44de5aeb 2107 tree offset = component_ref_field_offset (expr);
e7dfe4bb
RH
2108
2109 if (! DECL_SIZE_UNIT (field))
2110 {
2111 expr = NULL_TREE;
2112 break;
2113 }
2114
2115 /* Is the field at least as large as the access? If so, ok,
2116 otherwise strip back to the containing structure. */
03667700
RK
2117 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2118 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
e7dfe4bb
RH
2119 && INTVAL (memoffset) >= 0)
2120 break;
2121
44de5aeb 2122 if (! host_integerp (offset, 1))
e7dfe4bb
RH
2123 {
2124 expr = NULL_TREE;
2125 break;
2126 }
2127
2128 expr = TREE_OPERAND (expr, 0);
44de5aeb
RK
2129 memoffset
2130 = (GEN_INT (INTVAL (memoffset)
2131 + tree_low_cst (offset, 1)
2132 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2133 / BITS_PER_UNIT)));
e7dfe4bb
RH
2134 }
2135 /* Similarly for the decl. */
2136 else if (DECL_P (expr)
2137 && DECL_SIZE_UNIT (expr)
45f79783 2138 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
e7dfe4bb
RH
2139 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2140 && (! memoffset || INTVAL (memoffset) >= 0))
2141 break;
2142 else
2143 {
2144 /* The widened memory access overflows the expression, which means
2145 that it could alias another expression. Zap it. */
2146 expr = NULL_TREE;
2147 break;
2148 }
2149 }
2150
2151 if (! expr)
2152 memoffset = NULL_RTX;
2153
2154 /* The widened memory may alias other stuff, so zap the alias set. */
2155 /* ??? Maybe use get_alias_set on any remaining expression. */
2156
2157 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2158 MEM_ALIGN (new), mode);
2159
2160 return new;
2161}
23b2ce53
RS
2162\f
2163/* Return a newly created CODE_LABEL rtx with a unique label number. */
2164
2165rtx
502b8322 2166gen_label_rtx (void)
23b2ce53 2167{
0dc36574 2168 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
502b8322 2169 NULL, label_num++, NULL);
23b2ce53
RS
2170}
2171\f
2172/* For procedure integration. */
2173
23b2ce53 2174/* Install new pointers to the first and last insns in the chain.
86fe05e0 2175 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2176 Used for an inline-procedure after copying the insn chain. */
2177
2178void
502b8322 2179set_new_first_and_last_insn (rtx first, rtx last)
23b2ce53 2180{
86fe05e0
RK
2181 rtx insn;
2182
23b2ce53
RS
2183 first_insn = first;
2184 last_insn = last;
86fe05e0
RK
2185 cur_insn_uid = 0;
2186
2187 for (insn = first; insn; insn = NEXT_INSN (insn))
2188 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2189
2190 cur_insn_uid++;
23b2ce53 2191}
23b2ce53 2192\f
750c9258 2193/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2194 structure. This routine should only be called once. */
23b2ce53 2195
fd743bc1 2196static void
b4aaa77b 2197unshare_all_rtl_1 (rtx insn)
23b2ce53 2198{
d1b81779 2199 /* Unshare just about everything else. */
2c07f13b 2200 unshare_all_rtl_in_chain (insn);
750c9258 2201
23b2ce53
RS
2202 /* Make sure the addresses of stack slots found outside the insn chain
2203 (such as, in DECL_RTL of a variable) are not shared
2204 with the insn chain.
2205
2206 This special care is necessary when the stack slot MEM does not
2207 actually appear in the insn chain. If it does appear, its address
2208 is unshared from all else at that point. */
242b0ce6 2209 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2210}
2211
750c9258 2212/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2213 structure, again. This is a fairly expensive thing to do so it
2214 should be done sparingly. */
2215
2216void
502b8322 2217unshare_all_rtl_again (rtx insn)
d1b81779
GK
2218{
2219 rtx p;
624c87aa
RE
2220 tree decl;
2221
d1b81779 2222 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2223 if (INSN_P (p))
d1b81779
GK
2224 {
2225 reset_used_flags (PATTERN (p));
2226 reset_used_flags (REG_NOTES (p));
d1b81779 2227 }
624c87aa 2228
2d4aecb3 2229 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2230 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2231
624c87aa
RE
2232 /* Make sure that virtual parameters are not shared. */
2233 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
5eb2a9f2 2234 set_used_flags (DECL_RTL (decl));
624c87aa
RE
2235
2236 reset_used_flags (stack_slot_list);
2237
b4aaa77b 2238 unshare_all_rtl_1 (insn);
fd743bc1
PB
2239}
2240
c2924966 2241unsigned int
fd743bc1
PB
2242unshare_all_rtl (void)
2243{
b4aaa77b 2244 unshare_all_rtl_1 (get_insns ());
c2924966 2245 return 0;
d1b81779
GK
2246}
2247
ef330312
PB
2248struct tree_opt_pass pass_unshare_all_rtl =
2249{
defb77dc 2250 "unshare", /* name */
ef330312
PB
2251 NULL, /* gate */
2252 unshare_all_rtl, /* execute */
2253 NULL, /* sub */
2254 NULL, /* next */
2255 0, /* static_pass_number */
2256 0, /* tv_id */
2257 0, /* properties_required */
2258 0, /* properties_provided */
2259 0, /* properties_destroyed */
2260 0, /* todo_flags_start */
defb77dc 2261 TODO_dump_func, /* todo_flags_finish */
ef330312
PB
2262 0 /* letter */
2263};
2264
2265
2c07f13b
JH
2266/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2267 Recursively does the same for subexpressions. */
2268
2269static void
2270verify_rtx_sharing (rtx orig, rtx insn)
2271{
2272 rtx x = orig;
2273 int i;
2274 enum rtx_code code;
2275 const char *format_ptr;
2276
2277 if (x == 0)
2278 return;
2279
2280 code = GET_CODE (x);
2281
2282 /* These types may be freely shared. */
2283
2284 switch (code)
2285 {
2286 case REG:
2c07f13b
JH
2287 case CONST_INT:
2288 case CONST_DOUBLE:
091a3ac7 2289 case CONST_FIXED:
2c07f13b
JH
2290 case CONST_VECTOR:
2291 case SYMBOL_REF:
2292 case LABEL_REF:
2293 case CODE_LABEL:
2294 case PC:
2295 case CC0:
2296 case SCRATCH:
2c07f13b 2297 return;
3e89ed8d
JH
2298 /* SCRATCH must be shared because they represent distinct values. */
2299 case CLOBBER:
2300 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2301 return;
2302 break;
2c07f13b
JH
2303
2304 case CONST:
6fb5fa3c 2305 if (shared_const_p (orig))
2c07f13b
JH
2306 return;
2307 break;
2308
2309 case MEM:
2310 /* A MEM is allowed to be shared if its address is constant. */
2311 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2312 || reload_completed || reload_in_progress)
2313 return;
2314
2315 break;
2316
2317 default:
2318 break;
2319 }
2320
2321 /* This rtx may not be shared. If it has already been seen,
2322 replace it with a copy of itself. */
1a2caa7a 2323#ifdef ENABLE_CHECKING
2c07f13b
JH
2324 if (RTX_FLAG (x, used))
2325 {
ab532386 2326 error ("invalid rtl sharing found in the insn");
2c07f13b 2327 debug_rtx (insn);
ab532386 2328 error ("shared rtx");
2c07f13b 2329 debug_rtx (x);
ab532386 2330 internal_error ("internal consistency failure");
2c07f13b 2331 }
1a2caa7a
NS
2332#endif
2333 gcc_assert (!RTX_FLAG (x, used));
2334
2c07f13b
JH
2335 RTX_FLAG (x, used) = 1;
2336
6614fd40 2337 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2338
2339 format_ptr = GET_RTX_FORMAT (code);
2340
2341 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2342 {
2343 switch (*format_ptr++)
2344 {
2345 case 'e':
2346 verify_rtx_sharing (XEXP (x, i), insn);
2347 break;
2348
2349 case 'E':
2350 if (XVEC (x, i) != NULL)
2351 {
2352 int j;
2353 int len = XVECLEN (x, i);
2354
2355 for (j = 0; j < len; j++)
2356 {
1a2caa7a
NS
2357 /* We allow sharing of ASM_OPERANDS inside single
2358 instruction. */
2c07f13b 2359 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2360 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2361 == ASM_OPERANDS))
2c07f13b
JH
2362 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2363 else
2364 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2365 }
2366 }
2367 break;
2368 }
2369 }
2370 return;
2371}
2372
ba228239 2373/* Go through all the RTL insn bodies and check that there is no unexpected
2c07f13b
JH
2374 sharing in between the subexpressions. */
2375
2376void
2377verify_rtl_sharing (void)
2378{
2379 rtx p;
2380
2381 for (p = get_insns (); p; p = NEXT_INSN (p))
2382 if (INSN_P (p))
2383 {
2384 reset_used_flags (PATTERN (p));
2385 reset_used_flags (REG_NOTES (p));
2954a813
KK
2386 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2387 {
2388 int i;
2389 rtx q, sequence = PATTERN (p);
2390
2391 for (i = 0; i < XVECLEN (sequence, 0); i++)
2392 {
2393 q = XVECEXP (sequence, 0, i);
2394 gcc_assert (INSN_P (q));
2395 reset_used_flags (PATTERN (q));
2396 reset_used_flags (REG_NOTES (q));
2954a813
KK
2397 }
2398 }
2c07f13b
JH
2399 }
2400
2401 for (p = get_insns (); p; p = NEXT_INSN (p))
2402 if (INSN_P (p))
2403 {
2404 verify_rtx_sharing (PATTERN (p), p);
2405 verify_rtx_sharing (REG_NOTES (p), p);
2c07f13b
JH
2406 }
2407}
2408
d1b81779
GK
2409/* Go through all the RTL insn bodies and copy any invalid shared structure.
2410 Assumes the mark bits are cleared at entry. */
2411
2c07f13b
JH
2412void
2413unshare_all_rtl_in_chain (rtx insn)
d1b81779
GK
2414{
2415 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2416 if (INSN_P (insn))
d1b81779
GK
2417 {
2418 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2419 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
d1b81779
GK
2420 }
2421}
2422
2d4aecb3 2423/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2424 shared. We never replace the DECL_RTLs themselves with a copy,
2425 but expressions mentioned into a DECL_RTL cannot be shared with
2426 expressions in the instruction stream.
2427
2428 Note that reload may convert pseudo registers into memories in-place.
2429 Pseudo registers are always shared, but MEMs never are. Thus if we
2430 reset the used flags on MEMs in the instruction stream, we must set
2431 them again on MEMs that appear in DECL_RTLs. */
2432
2d4aecb3 2433static void
5eb2a9f2 2434set_used_decls (tree blk)
2d4aecb3
AO
2435{
2436 tree t;
2437
2438 /* Mark decls. */
2439 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c 2440 if (DECL_RTL_SET_P (t))
5eb2a9f2 2441 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2442
2443 /* Now process sub-blocks. */
2444 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
5eb2a9f2 2445 set_used_decls (t);
2d4aecb3
AO
2446}
2447
23b2ce53 2448/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2449 Recursively does the same for subexpressions. Uses
2450 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2451
2452rtx
502b8322 2453copy_rtx_if_shared (rtx orig)
23b2ce53 2454{
32b32b16
AP
2455 copy_rtx_if_shared_1 (&orig);
2456 return orig;
2457}
2458
ff954f39
AP
2459/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2460 use. Recursively does the same for subexpressions. */
2461
32b32b16
AP
2462static void
2463copy_rtx_if_shared_1 (rtx *orig1)
2464{
2465 rtx x;
b3694847
SS
2466 int i;
2467 enum rtx_code code;
32b32b16 2468 rtx *last_ptr;
b3694847 2469 const char *format_ptr;
23b2ce53 2470 int copied = 0;
32b32b16
AP
2471 int length;
2472
2473 /* Repeat is used to turn tail-recursion into iteration. */
2474repeat:
2475 x = *orig1;
23b2ce53
RS
2476
2477 if (x == 0)
32b32b16 2478 return;
23b2ce53
RS
2479
2480 code = GET_CODE (x);
2481
2482 /* These types may be freely shared. */
2483
2484 switch (code)
2485 {
2486 case REG:
23b2ce53
RS
2487 case CONST_INT:
2488 case CONST_DOUBLE:
091a3ac7 2489 case CONST_FIXED:
69ef87e2 2490 case CONST_VECTOR:
23b2ce53 2491 case SYMBOL_REF:
2c07f13b 2492 case LABEL_REF:
23b2ce53
RS
2493 case CODE_LABEL:
2494 case PC:
2495 case CC0:
2496 case SCRATCH:
0f41302f 2497 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 2498 return;
3e89ed8d
JH
2499 case CLOBBER:
2500 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2501 return;
2502 break;
23b2ce53 2503
b851ea09 2504 case CONST:
6fb5fa3c 2505 if (shared_const_p (x))
32b32b16 2506 return;
b851ea09
RK
2507 break;
2508
23b2ce53
RS
2509 case INSN:
2510 case JUMP_INSN:
2511 case CALL_INSN:
2512 case NOTE:
23b2ce53
RS
2513 case BARRIER:
2514 /* The chain of insns is not being copied. */
32b32b16 2515 return;
23b2ce53 2516
e9a25f70
JL
2517 default:
2518 break;
23b2ce53
RS
2519 }
2520
2521 /* This rtx may not be shared. If it has already been seen,
2522 replace it with a copy of itself. */
2523
2adc7f12 2524 if (RTX_FLAG (x, used))
23b2ce53 2525 {
aacd3885 2526 x = shallow_copy_rtx (x);
23b2ce53
RS
2527 copied = 1;
2528 }
2adc7f12 2529 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2530
2531 /* Now scan the subexpressions recursively.
2532 We can store any replaced subexpressions directly into X
2533 since we know X is not shared! Any vectors in X
2534 must be copied if X was copied. */
2535
2536 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2537 length = GET_RTX_LENGTH (code);
2538 last_ptr = NULL;
2539
2540 for (i = 0; i < length; i++)
23b2ce53
RS
2541 {
2542 switch (*format_ptr++)
2543 {
2544 case 'e':
32b32b16
AP
2545 if (last_ptr)
2546 copy_rtx_if_shared_1 (last_ptr);
2547 last_ptr = &XEXP (x, i);
23b2ce53
RS
2548 break;
2549
2550 case 'E':
2551 if (XVEC (x, i) != NULL)
2552 {
b3694847 2553 int j;
f0722107 2554 int len = XVECLEN (x, i);
32b32b16 2555
6614fd40
KH
2556 /* Copy the vector iff I copied the rtx and the length
2557 is nonzero. */
f0722107 2558 if (copied && len > 0)
8f985ec4 2559 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
32b32b16 2560
5d3cc252 2561 /* Call recursively on all inside the vector. */
f0722107 2562 for (j = 0; j < len; j++)
32b32b16
AP
2563 {
2564 if (last_ptr)
2565 copy_rtx_if_shared_1 (last_ptr);
2566 last_ptr = &XVECEXP (x, i, j);
2567 }
23b2ce53
RS
2568 }
2569 break;
2570 }
2571 }
32b32b16
AP
2572 *orig1 = x;
2573 if (last_ptr)
2574 {
2575 orig1 = last_ptr;
2576 goto repeat;
2577 }
2578 return;
23b2ce53
RS
2579}
2580
2581/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2582 to look for shared sub-parts. */
2583
2584void
502b8322 2585reset_used_flags (rtx x)
23b2ce53 2586{
b3694847
SS
2587 int i, j;
2588 enum rtx_code code;
2589 const char *format_ptr;
32b32b16 2590 int length;
23b2ce53 2591
32b32b16
AP
2592 /* Repeat is used to turn tail-recursion into iteration. */
2593repeat:
23b2ce53
RS
2594 if (x == 0)
2595 return;
2596
2597 code = GET_CODE (x);
2598
9faa82d8 2599 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2600 for them. */
2601
2602 switch (code)
2603 {
2604 case REG:
23b2ce53
RS
2605 case CONST_INT:
2606 case CONST_DOUBLE:
091a3ac7 2607 case CONST_FIXED:
69ef87e2 2608 case CONST_VECTOR:
23b2ce53
RS
2609 case SYMBOL_REF:
2610 case CODE_LABEL:
2611 case PC:
2612 case CC0:
2613 return;
2614
2615 case INSN:
2616 case JUMP_INSN:
2617 case CALL_INSN:
2618 case NOTE:
2619 case LABEL_REF:
2620 case BARRIER:
2621 /* The chain of insns is not being copied. */
2622 return;
750c9258 2623
e9a25f70
JL
2624 default:
2625 break;
23b2ce53
RS
2626 }
2627
2adc7f12 2628 RTX_FLAG (x, used) = 0;
23b2ce53
RS
2629
2630 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2631 length = GET_RTX_LENGTH (code);
2632
2633 for (i = 0; i < length; i++)
23b2ce53
RS
2634 {
2635 switch (*format_ptr++)
2636 {
2637 case 'e':
32b32b16
AP
2638 if (i == length-1)
2639 {
2640 x = XEXP (x, i);
2641 goto repeat;
2642 }
23b2ce53
RS
2643 reset_used_flags (XEXP (x, i));
2644 break;
2645
2646 case 'E':
2647 for (j = 0; j < XVECLEN (x, i); j++)
2648 reset_used_flags (XVECEXP (x, i, j));
2649 break;
2650 }
2651 }
2652}
2c07f13b
JH
2653
2654/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2655 to look for shared sub-parts. */
2656
2657void
2658set_used_flags (rtx x)
2659{
2660 int i, j;
2661 enum rtx_code code;
2662 const char *format_ptr;
2663
2664 if (x == 0)
2665 return;
2666
2667 code = GET_CODE (x);
2668
2669 /* These types may be freely shared so we needn't do any resetting
2670 for them. */
2671
2672 switch (code)
2673 {
2674 case REG:
2c07f13b
JH
2675 case CONST_INT:
2676 case CONST_DOUBLE:
091a3ac7 2677 case CONST_FIXED:
2c07f13b
JH
2678 case CONST_VECTOR:
2679 case SYMBOL_REF:
2680 case CODE_LABEL:
2681 case PC:
2682 case CC0:
2683 return;
2684
2685 case INSN:
2686 case JUMP_INSN:
2687 case CALL_INSN:
2688 case NOTE:
2689 case LABEL_REF:
2690 case BARRIER:
2691 /* The chain of insns is not being copied. */
2692 return;
2693
2694 default:
2695 break;
2696 }
2697
2698 RTX_FLAG (x, used) = 1;
2699
2700 format_ptr = GET_RTX_FORMAT (code);
2701 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2702 {
2703 switch (*format_ptr++)
2704 {
2705 case 'e':
2706 set_used_flags (XEXP (x, i));
2707 break;
2708
2709 case 'E':
2710 for (j = 0; j < XVECLEN (x, i); j++)
2711 set_used_flags (XVECEXP (x, i, j));
2712 break;
2713 }
2714 }
2715}
23b2ce53
RS
2716\f
2717/* Copy X if necessary so that it won't be altered by changes in OTHER.
2718 Return X or the rtx for the pseudo reg the value of X was copied into.
2719 OTHER must be valid as a SET_DEST. */
2720
2721rtx
502b8322 2722make_safe_from (rtx x, rtx other)
23b2ce53
RS
2723{
2724 while (1)
2725 switch (GET_CODE (other))
2726 {
2727 case SUBREG:
2728 other = SUBREG_REG (other);
2729 break;
2730 case STRICT_LOW_PART:
2731 case SIGN_EXTEND:
2732 case ZERO_EXTEND:
2733 other = XEXP (other, 0);
2734 break;
2735 default:
2736 goto done;
2737 }
2738 done:
3c0cb5de 2739 if ((MEM_P (other)
23b2ce53 2740 && ! CONSTANT_P (x)
f8cfc6aa 2741 && !REG_P (x)
23b2ce53 2742 && GET_CODE (x) != SUBREG)
f8cfc6aa 2743 || (REG_P (other)
23b2ce53
RS
2744 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2745 || reg_mentioned_p (other, x))))
2746 {
2747 rtx temp = gen_reg_rtx (GET_MODE (x));
2748 emit_move_insn (temp, x);
2749 return temp;
2750 }
2751 return x;
2752}
2753\f
2754/* Emission of insns (adding them to the doubly-linked list). */
2755
2756/* Return the first insn of the current sequence or current function. */
2757
2758rtx
502b8322 2759get_insns (void)
23b2ce53
RS
2760{
2761 return first_insn;
2762}
2763
3dec4024
JH
2764/* Specify a new insn as the first in the chain. */
2765
2766void
502b8322 2767set_first_insn (rtx insn)
3dec4024 2768{
5b0264cb 2769 gcc_assert (!PREV_INSN (insn));
3dec4024
JH
2770 first_insn = insn;
2771}
2772
23b2ce53
RS
2773/* Return the last insn emitted in current sequence or current function. */
2774
2775rtx
502b8322 2776get_last_insn (void)
23b2ce53
RS
2777{
2778 return last_insn;
2779}
2780
2781/* Specify a new insn as the last in the chain. */
2782
2783void
502b8322 2784set_last_insn (rtx insn)
23b2ce53 2785{
5b0264cb 2786 gcc_assert (!NEXT_INSN (insn));
23b2ce53
RS
2787 last_insn = insn;
2788}
2789
2790/* Return the last insn emitted, even if it is in a sequence now pushed. */
2791
2792rtx
502b8322 2793get_last_insn_anywhere (void)
23b2ce53
RS
2794{
2795 struct sequence_stack *stack;
2796 if (last_insn)
2797 return last_insn;
49ad7cfa 2798 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2799 if (stack->last != 0)
2800 return stack->last;
2801 return 0;
2802}
2803
2a496e8b
JDA
2804/* Return the first nonnote insn emitted in current sequence or current
2805 function. This routine looks inside SEQUENCEs. */
2806
2807rtx
502b8322 2808get_first_nonnote_insn (void)
2a496e8b 2809{
91373fe8
JDA
2810 rtx insn = first_insn;
2811
2812 if (insn)
2813 {
2814 if (NOTE_P (insn))
2815 for (insn = next_insn (insn);
2816 insn && NOTE_P (insn);
2817 insn = next_insn (insn))
2818 continue;
2819 else
2820 {
2ca202e7 2821 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2822 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2823 insn = XVECEXP (PATTERN (insn), 0, 0);
2824 }
2825 }
2a496e8b
JDA
2826
2827 return insn;
2828}
2829
2830/* Return the last nonnote insn emitted in current sequence or current
2831 function. This routine looks inside SEQUENCEs. */
2832
2833rtx
502b8322 2834get_last_nonnote_insn (void)
2a496e8b 2835{
91373fe8
JDA
2836 rtx insn = last_insn;
2837
2838 if (insn)
2839 {
2840 if (NOTE_P (insn))
2841 for (insn = previous_insn (insn);
2842 insn && NOTE_P (insn);
2843 insn = previous_insn (insn))
2844 continue;
2845 else
2846 {
2ca202e7 2847 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2848 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2849 insn = XVECEXP (PATTERN (insn), 0,
2850 XVECLEN (PATTERN (insn), 0) - 1);
2851 }
2852 }
2a496e8b
JDA
2853
2854 return insn;
2855}
2856
23b2ce53
RS
2857/* Return a number larger than any instruction's uid in this function. */
2858
2859int
502b8322 2860get_max_uid (void)
23b2ce53
RS
2861{
2862 return cur_insn_uid;
2863}
2864\f
2865/* Return the next insn. If it is a SEQUENCE, return the first insn
2866 of the sequence. */
2867
9678086d
KG
2868#define NEXT_INSN_BODY do { \
2869 if (insn) \
2870 { \
2871 insn = NEXT_INSN (insn); \
2872 if (insn && NONJUMP_INSN_P (insn) \
2873 && GET_CODE (PATTERN (insn)) == SEQUENCE) \
2874 insn = XVECEXP (PATTERN (insn), 0, 0); \
2875 } \
2876 return insn; \
2877} while (0)
2878
23b2ce53 2879rtx
502b8322 2880next_insn (rtx insn)
23b2ce53 2881{
9678086d
KG
2882 NEXT_INSN_BODY;
2883}
23b2ce53 2884
9678086d
KG
2885const_rtx
2886const_next_insn (const_rtx insn)
2887{
2888 NEXT_INSN_BODY;
23b2ce53
RS
2889}
2890
9678086d
KG
2891#undef NEXT_INSN_BODY
2892
23b2ce53
RS
2893/* Return the previous insn. If it is a SEQUENCE, return the last insn
2894 of the sequence. */
2895
9678086d
KG
2896#define PREVIOUS_INSN_BODY do { \
2897 if (insn) \
2898 { \
2899 insn = PREV_INSN (insn); \
2900 if (insn && NONJUMP_INSN_P (insn) \
2901 && GET_CODE (PATTERN (insn)) == SEQUENCE) \
2902 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1); \
2903 } \
2904 return insn; \
2905} while (0)
2906
23b2ce53 2907rtx
502b8322 2908previous_insn (rtx insn)
23b2ce53 2909{
9678086d
KG
2910 PREVIOUS_INSN_BODY;
2911}
23b2ce53 2912
9678086d
KG
2913const_rtx
2914const_previous_insn (const_rtx insn)
2915{
2916 PREVIOUS_INSN_BODY;
23b2ce53
RS
2917}
2918
9678086d
KG
2919#undef PREVIOUS_INSN_BODY
2920
23b2ce53
RS
2921/* Return the next insn after INSN that is not a NOTE. This routine does not
2922 look inside SEQUENCEs. */
2923
9678086d
KG
2924#define NEXT_NONNOTE_INSN_BODY do { \
2925 while (insn) \
2926 { \
2927 insn = NEXT_INSN (insn); \
2928 if (insn == 0 || !NOTE_P (insn)) \
2929 break; \
2930 } \
2931 return insn; \
2932} while (0)
2933
23b2ce53 2934rtx
502b8322 2935next_nonnote_insn (rtx insn)
23b2ce53 2936{
9678086d
KG
2937 NEXT_NONNOTE_INSN_BODY;
2938}
23b2ce53 2939
9678086d
KG
2940const_rtx
2941const_next_nonnote_insn (const_rtx insn)
2942{
2943 NEXT_NONNOTE_INSN_BODY;
23b2ce53
RS
2944}
2945
9678086d
KG
2946#undef NEXT_NONNOTE_INSN_BODY
2947
23b2ce53
RS
2948/* Return the previous insn before INSN that is not a NOTE. This routine does
2949 not look inside SEQUENCEs. */
2950
9678086d
KG
2951#define PREV_NONNOTE_INSN_BODY do { \
2952 while (insn) \
2953 { \
2954 insn = PREV_INSN (insn); \
2955 if (insn == 0 || !NOTE_P (insn)) \
2956 break; \
2957 } \
2958 return insn; \
2959} while (0)
2960
23b2ce53 2961rtx
502b8322 2962prev_nonnote_insn (rtx insn)
23b2ce53 2963{
9678086d
KG
2964 PREV_NONNOTE_INSN_BODY;
2965}
23b2ce53 2966
9678086d
KG
2967const_rtx
2968const_prev_nonnote_insn (const_rtx insn)
2969{
2970 PREV_NONNOTE_INSN_BODY;
23b2ce53
RS
2971}
2972
9678086d
KG
2973#undef PREV_NONNOTE_INSN_BODY
2974
23b2ce53
RS
2975/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2976 or 0, if there is none. This routine does not look inside
0f41302f 2977 SEQUENCEs. */
23b2ce53 2978
9678086d
KG
2979#define NEXT_REAL_INSN_BODY do { \
2980 while (insn) \
2981 { \
2982 insn = NEXT_INSN (insn); \
2983 if (insn == 0 || INSN_P (insn)) \
2984 break; \
2985 } \
2986 return insn; \
2987} while (0)
2988
23b2ce53 2989rtx
502b8322 2990next_real_insn (rtx insn)
23b2ce53 2991{
9678086d
KG
2992 NEXT_REAL_INSN_BODY;
2993}
23b2ce53 2994
9678086d
KG
2995const_rtx
2996const_next_real_insn (const_rtx insn)
2997{
2998 NEXT_REAL_INSN_BODY;
23b2ce53
RS
2999}
3000
9678086d
KG
3001#undef NEXT_REAL_INSN_BODY
3002
23b2ce53
RS
3003/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3004 or 0, if there is none. This routine does not look inside
3005 SEQUENCEs. */
3006
9678086d
KG
3007#define PREV_REAL_INSN_BODY do { \
3008 while (insn) \
3009 { \
3010 insn = PREV_INSN (insn); \
3011 if (insn == 0 || INSN_P (insn)) \
3012 break; \
3013 } \
3014 return insn; \
3015} while (0)
3016
23b2ce53 3017rtx
502b8322 3018prev_real_insn (rtx insn)
23b2ce53 3019{
9678086d
KG
3020 PREV_REAL_INSN_BODY;
3021}
23b2ce53 3022
9678086d
KG
3023const_rtx
3024const_prev_real_insn (const_rtx insn)
3025{
3026 PREV_REAL_INSN_BODY;
23b2ce53
RS
3027}
3028
9678086d
KG
3029#undef PREV_REAL_INSN_BODY
3030
ee960939
OH
3031/* Return the last CALL_INSN in the current list, or 0 if there is none.
3032 This routine does not look inside SEQUENCEs. */
3033
3034rtx
502b8322 3035last_call_insn (void)
ee960939
OH
3036{
3037 rtx insn;
3038
3039 for (insn = get_last_insn ();
4b4bf941 3040 insn && !CALL_P (insn);
ee960939
OH
3041 insn = PREV_INSN (insn))
3042 ;
3043
3044 return insn;
3045}
3046
23b2ce53
RS
3047/* Find the next insn after INSN that really does something. This routine
3048 does not look inside SEQUENCEs. Until reload has completed, this is the
3049 same as next_real_insn. */
3050
69732dcb 3051int
4f588890 3052active_insn_p (const_rtx insn)
69732dcb 3053{
4b4bf941
JQ
3054 return (CALL_P (insn) || JUMP_P (insn)
3055 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3056 && (! reload_completed
3057 || (GET_CODE (PATTERN (insn)) != USE
3058 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3059}
3060
9678086d
KG
3061#define NEXT_ACTIVE_INSN_BODY do { \
3062 while (insn) \
3063 { \
3064 insn = NEXT_INSN (insn); \
3065 if (insn == 0 || active_insn_p (insn)) \
3066 break; \
3067 } \
3068 return insn;\
3069} while (0)
3070
23b2ce53 3071rtx
502b8322 3072next_active_insn (rtx insn)
23b2ce53 3073{
9678086d
KG
3074 NEXT_ACTIVE_INSN_BODY;
3075}
23b2ce53 3076
9678086d
KG
3077const_rtx
3078const_next_active_insn (const_rtx insn)
3079{
3080 NEXT_ACTIVE_INSN_BODY;
23b2ce53
RS
3081}
3082
9678086d
KG
3083#undef NEXT_ACTIVE_INSN_BODY
3084
23b2ce53
RS
3085/* Find the last insn before INSN that really does something. This routine
3086 does not look inside SEQUENCEs. Until reload has completed, this is the
3087 same as prev_real_insn. */
3088
9678086d
KG
3089#define PREV_ACTIVE_INSN_BODY do { \
3090 while (insn) \
3091 { \
3092 insn = PREV_INSN (insn);\
3093 if (insn == 0 || active_insn_p (insn)) \
3094 break; \
3095 } \
3096 return insn; \
3097} while (0)
3098
23b2ce53 3099rtx
502b8322 3100prev_active_insn (rtx insn)
23b2ce53 3101{
9678086d
KG
3102 PREV_ACTIVE_INSN_BODY;
3103}
23b2ce53 3104
9678086d
KG
3105const_rtx
3106const_prev_active_insn (const_rtx insn)
3107{
3108 PREV_ACTIVE_INSN_BODY;
23b2ce53
RS
3109}
3110
9678086d
KG
3111#undef PREV_ACTIVE_INSN_BODY
3112
23b2ce53
RS
3113/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3114
9678086d
KG
3115#define NEXT_LABEL_BODY do { \
3116 while (insn) \
3117 { \
3118 insn = NEXT_INSN (insn); \
3119 if (insn == 0 || LABEL_P (insn)) \
3120 break; \
3121 } \
3122 return insn; \
3123} while (0)
3124
23b2ce53 3125rtx
502b8322 3126next_label (rtx insn)
23b2ce53 3127{
9678086d
KG
3128 NEXT_LABEL_BODY;
3129}
23b2ce53 3130
9678086d
KG
3131const_rtx
3132const_next_label (const_rtx insn)
3133{
3134 NEXT_LABEL_BODY;
23b2ce53
RS
3135}
3136
9678086d
KG
3137#undef NEXT_LABEL_BODY
3138
23b2ce53
RS
3139/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3140
9678086d
KG
3141#define PREV_LABEL_BODY do { \
3142 while (insn) \
3143 { \
3144 insn = PREV_INSN (insn); \
3145 if (insn == 0 || LABEL_P (insn)) \
3146 break; \
3147 } \
3148 return insn; \
3149} while (0)
3150
23b2ce53 3151rtx
502b8322 3152prev_label (rtx insn)
23b2ce53 3153{
9678086d
KG
3154 PREV_LABEL_BODY;
3155}
23b2ce53 3156
9678086d
KG
3157const_rtx
3158const_prev_label (const_rtx insn)
3159{
3160 PREV_LABEL_BODY;
23b2ce53 3161}
6c2511d3 3162
9678086d
KG
3163#undef PREV_LABEL_BODY
3164
6c2511d3
RS
3165/* Return the last label to mark the same position as LABEL. Return null
3166 if LABEL itself is null. */
3167
3168rtx
3169skip_consecutive_labels (rtx label)
3170{
3171 rtx insn;
3172
3173 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3174 if (LABEL_P (insn))
3175 label = insn;
3176
3177 return label;
3178}
23b2ce53
RS
3179\f
3180#ifdef HAVE_cc0
c572e5ba
JVA
3181/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3182 and REG_CC_USER notes so we can find it. */
3183
3184void
502b8322 3185link_cc0_insns (rtx insn)
c572e5ba
JVA
3186{
3187 rtx user = next_nonnote_insn (insn);
3188
4b4bf941 3189 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
c572e5ba
JVA
3190 user = XVECEXP (PATTERN (user), 0, 0);
3191
c5c76735
JL
3192 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3193 REG_NOTES (user));
3b80f6ca 3194 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
c572e5ba
JVA
3195}
3196
23b2ce53
RS
3197/* Return the next insn that uses CC0 after INSN, which is assumed to
3198 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3199 applied to the result of this function should yield INSN).
3200
3201 Normally, this is simply the next insn. However, if a REG_CC_USER note
3202 is present, it contains the insn that uses CC0.
3203
3204 Return 0 if we can't find the insn. */
3205
3206rtx
502b8322 3207next_cc0_user (rtx insn)
23b2ce53 3208{
906c4e36 3209 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3210
3211 if (note)
3212 return XEXP (note, 0);
3213
3214 insn = next_nonnote_insn (insn);
4b4bf941 3215 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
23b2ce53
RS
3216 insn = XVECEXP (PATTERN (insn), 0, 0);
3217
2c3c49de 3218 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3219 return insn;
3220
3221 return 0;
3222}
3223
3224/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3225 note, it is the previous insn. */
3226
3227rtx
502b8322 3228prev_cc0_setter (rtx insn)
23b2ce53 3229{
906c4e36 3230 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3231
3232 if (note)
3233 return XEXP (note, 0);
3234
3235 insn = prev_nonnote_insn (insn);
5b0264cb 3236 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53
RS
3237
3238 return insn;
3239}
3240#endif
e5bef2e4 3241
594f8779
RZ
3242#ifdef AUTO_INC_DEC
3243/* Find a RTX_AUTOINC class rtx which matches DATA. */
3244
3245static int
3246find_auto_inc (rtx *xp, void *data)
3247{
3248 rtx x = *xp;
3249 rtx reg = data;
3250
3251 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3252 return 0;
3253
3254 switch (GET_CODE (x))
3255 {
3256 case PRE_DEC:
3257 case PRE_INC:
3258 case POST_DEC:
3259 case POST_INC:
3260 case PRE_MODIFY:
3261 case POST_MODIFY:
3262 if (rtx_equal_p (reg, XEXP (x, 0)))
3263 return 1;
3264 break;
3265
3266 default:
3267 gcc_unreachable ();
3268 }
3269 return -1;
3270}
3271#endif
3272
e5bef2e4
HB
3273/* Increment the label uses for all labels present in rtx. */
3274
3275static void
502b8322 3276mark_label_nuses (rtx x)
e5bef2e4 3277{
b3694847
SS
3278 enum rtx_code code;
3279 int i, j;
3280 const char *fmt;
e5bef2e4
HB
3281
3282 code = GET_CODE (x);
7537fc90 3283 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
e5bef2e4
HB
3284 LABEL_NUSES (XEXP (x, 0))++;
3285
3286 fmt = GET_RTX_FORMAT (code);
3287 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3288 {
3289 if (fmt[i] == 'e')
0fb7aeda 3290 mark_label_nuses (XEXP (x, i));
e5bef2e4 3291 else if (fmt[i] == 'E')
0fb7aeda 3292 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3293 mark_label_nuses (XVECEXP (x, i, j));
3294 }
3295}
3296
23b2ce53
RS
3297\f
3298/* Try splitting insns that can be split for better scheduling.
3299 PAT is the pattern which might split.
3300 TRIAL is the insn providing PAT.
cc2902df 3301 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3302
3303 If this routine succeeds in splitting, it returns the first or last
11147ebe 3304 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3305 returns TRIAL. If the insn to be returned can be split, it will be. */
3306
3307rtx
502b8322 3308try_split (rtx pat, rtx trial, int last)
23b2ce53
RS
3309{
3310 rtx before = PREV_INSN (trial);
3311 rtx after = NEXT_INSN (trial);
23b2ce53 3312 int has_barrier = 0;
1c7f7c66 3313 rtx tem, note_retval;
6b24c259
JH
3314 rtx note, seq;
3315 int probability;
599aedd9
RH
3316 rtx insn_last, insn;
3317 int njumps = 0;
6b24c259
JH
3318
3319 if (any_condjump_p (trial)
3320 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3321 split_branch_probability = INTVAL (XEXP (note, 0));
3322 probability = split_branch_probability;
3323
3324 seq = split_insns (pat, trial);
3325
3326 split_branch_probability = -1;
23b2ce53
RS
3327
3328 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3329 We may need to handle this specially. */
4b4bf941 3330 if (after && BARRIER_P (after))
23b2ce53
RS
3331 {
3332 has_barrier = 1;
3333 after = NEXT_INSN (after);
3334 }
3335
599aedd9
RH
3336 if (!seq)
3337 return trial;
3338
3339 /* Avoid infinite loop if any insn of the result matches
3340 the original pattern. */
3341 insn_last = seq;
3342 while (1)
23b2ce53 3343 {
599aedd9
RH
3344 if (INSN_P (insn_last)
3345 && rtx_equal_p (PATTERN (insn_last), pat))
3346 return trial;
3347 if (!NEXT_INSN (insn_last))
3348 break;
3349 insn_last = NEXT_INSN (insn_last);
3350 }
750c9258 3351
6fb5fa3c
DB
3352 /* We will be adding the new sequence to the function. The splitters
3353 may have introduced invalid RTL sharing, so unshare the sequence now. */
3354 unshare_all_rtl_in_chain (seq);
3355
599aedd9
RH
3356 /* Mark labels. */
3357 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3358 {
4b4bf941 3359 if (JUMP_P (insn))
599aedd9
RH
3360 {
3361 mark_jump_label (PATTERN (insn), insn, 0);
3362 njumps++;
3363 if (probability != -1
3364 && any_condjump_p (insn)
3365 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3366 {
599aedd9
RH
3367 /* We can preserve the REG_BR_PROB notes only if exactly
3368 one jump is created, otherwise the machine description
3369 is responsible for this step using
3370 split_branch_probability variable. */
5b0264cb 3371 gcc_assert (njumps == 1);
599aedd9
RH
3372 REG_NOTES (insn)
3373 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3374 GEN_INT (probability),
3375 REG_NOTES (insn));
2f937369 3376 }
599aedd9
RH
3377 }
3378 }
3379
3380 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3381 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
4b4bf941 3382 if (CALL_P (trial))
599aedd9
RH
3383 {
3384 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3385 if (CALL_P (insn))
599aedd9 3386 {
f6a1f3f6
RH
3387 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3388 while (*p)
3389 p = &XEXP (*p, 1);
3390 *p = CALL_INSN_FUNCTION_USAGE (trial);
599aedd9
RH
3391 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3392 }
3393 }
4b5e8abe 3394
599aedd9
RH
3395 /* Copy notes, particularly those related to the CFG. */
3396 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3397 {
3398 switch (REG_NOTE_KIND (note))
3399 {
3400 case REG_EH_REGION:
594f8779 3401 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3402 {
4b4bf941 3403 if (CALL_P (insn)
d3a583b1 3404 || (flag_non_call_exceptions && INSN_P (insn)
599aedd9
RH
3405 && may_trap_p (PATTERN (insn))))
3406 REG_NOTES (insn)
3407 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3408 XEXP (note, 0),
3409 REG_NOTES (insn));
2f937369 3410 }
599aedd9 3411 break;
216183ce 3412
599aedd9
RH
3413 case REG_NORETURN:
3414 case REG_SETJMP:
594f8779 3415 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3416 {
4b4bf941 3417 if (CALL_P (insn))
599aedd9
RH
3418 REG_NOTES (insn)
3419 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3420 XEXP (note, 0),
3421 REG_NOTES (insn));
216183ce 3422 }
599aedd9 3423 break;
d6e95df8 3424
599aedd9 3425 case REG_NON_LOCAL_GOTO:
594f8779 3426 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3427 {
4b4bf941 3428 if (JUMP_P (insn))
599aedd9
RH
3429 REG_NOTES (insn)
3430 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3431 XEXP (note, 0),
3432 REG_NOTES (insn));
2f937369 3433 }
599aedd9 3434 break;
e5bef2e4 3435
594f8779
RZ
3436#ifdef AUTO_INC_DEC
3437 case REG_INC:
3438 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3439 {
3440 rtx reg = XEXP (note, 0);
3441 if (!FIND_REG_INC_NOTE (insn, reg)
3442 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3443 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg,
3444 REG_NOTES (insn));
3445 }
3446 break;
3447#endif
3448
1c7f7c66
SL
3449 case REG_LIBCALL:
3450 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3451 after split. */
3452 REG_NOTES (insn_last)
49317655 3453 = gen_rtx_INSN_LIST (REG_LIBCALL,
1c7f7c66
SL
3454 XEXP (note, 0),
3455 REG_NOTES (insn_last));
3456
3457 note_retval = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL);
3458 XEXP (note_retval, 0) = insn_last;
3459 break;
3460
599aedd9
RH
3461 default:
3462 break;
23b2ce53 3463 }
599aedd9
RH
3464 }
3465
3466 /* If there are LABELS inside the split insns increment the
3467 usage count so we don't delete the label. */
4b4bf941 3468 if (NONJUMP_INSN_P (trial))
599aedd9
RH
3469 {
3470 insn = insn_last;
3471 while (insn != NULL_RTX)
23b2ce53 3472 {
4b4bf941 3473 if (NONJUMP_INSN_P (insn))
599aedd9 3474 mark_label_nuses (PATTERN (insn));
23b2ce53 3475
599aedd9
RH
3476 insn = PREV_INSN (insn);
3477 }
23b2ce53
RS
3478 }
3479
0435312e 3480 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
599aedd9
RH
3481
3482 delete_insn (trial);
3483 if (has_barrier)
3484 emit_barrier_after (tem);
3485
3486 /* Recursively call try_split for each new insn created; by the
3487 time control returns here that insn will be fully split, so
3488 set LAST and continue from the insn after the one returned.
3489 We can't use next_active_insn here since AFTER may be a note.
3490 Ignore deleted insns, which can be occur if not optimizing. */
3491 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3492 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3493 tem = try_split (PATTERN (tem), tem, 1);
3494
3495 /* Return either the first or the last insn, depending on which was
3496 requested. */
3497 return last
3498 ? (after ? PREV_INSN (after) : last_insn)
3499 : NEXT_INSN (before);
23b2ce53
RS
3500}
3501\f
3502/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3503 Store PATTERN in the pattern slots. */
23b2ce53
RS
3504
3505rtx
502b8322 3506make_insn_raw (rtx pattern)
23b2ce53 3507{
b3694847 3508 rtx insn;
23b2ce53 3509
1f8f4a0b 3510 insn = rtx_alloc (INSN);
23b2ce53 3511
43127294 3512 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3513 PATTERN (insn) = pattern;
3514 INSN_CODE (insn) = -1;
1632afca 3515 REG_NOTES (insn) = NULL;
55e092c4 3516 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3517 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3518
47984720
NC
3519#ifdef ENABLE_RTL_CHECKING
3520 if (insn
2c3c49de 3521 && INSN_P (insn)
47984720
NC
3522 && (returnjump_p (insn)
3523 || (GET_CODE (insn) == SET
3524 && SET_DEST (insn) == pc_rtx)))
3525 {
d4ee4d25 3526 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3527 debug_rtx (insn);
3528 }
3529#endif
750c9258 3530
23b2ce53
RS
3531 return insn;
3532}
3533
2f937369 3534/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3535
38109dab 3536rtx
502b8322 3537make_jump_insn_raw (rtx pattern)
23b2ce53 3538{
b3694847 3539 rtx insn;
23b2ce53 3540
4b1f5e8c 3541 insn = rtx_alloc (JUMP_INSN);
1632afca 3542 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3543
3544 PATTERN (insn) = pattern;
3545 INSN_CODE (insn) = -1;
1632afca
RS
3546 REG_NOTES (insn) = NULL;
3547 JUMP_LABEL (insn) = NULL;
55e092c4 3548 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3549 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3550
3551 return insn;
3552}
aff507f4 3553
2f937369 3554/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3555
3556static rtx
502b8322 3557make_call_insn_raw (rtx pattern)
aff507f4 3558{
b3694847 3559 rtx insn;
aff507f4
RK
3560
3561 insn = rtx_alloc (CALL_INSN);
3562 INSN_UID (insn) = cur_insn_uid++;
3563
3564 PATTERN (insn) = pattern;
3565 INSN_CODE (insn) = -1;
aff507f4
RK
3566 REG_NOTES (insn) = NULL;
3567 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
55e092c4 3568 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3569 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3570
3571 return insn;
3572}
23b2ce53
RS
3573\f
3574/* Add INSN to the end of the doubly-linked list.
3575 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3576
3577void
502b8322 3578add_insn (rtx insn)
23b2ce53
RS
3579{
3580 PREV_INSN (insn) = last_insn;
3581 NEXT_INSN (insn) = 0;
3582
3583 if (NULL != last_insn)
3584 NEXT_INSN (last_insn) = insn;
3585
3586 if (NULL == first_insn)
3587 first_insn = insn;
3588
3589 last_insn = insn;
3590}
3591
a0ae8e8d
RK
3592/* Add INSN into the doubly-linked list after insn AFTER. This and
3593 the next should be the only functions called to insert an insn once
ba213285 3594 delay slots have been filled since only they know how to update a
a0ae8e8d 3595 SEQUENCE. */
23b2ce53
RS
3596
3597void
6fb5fa3c 3598add_insn_after (rtx insn, rtx after, basic_block bb)
23b2ce53
RS
3599{
3600 rtx next = NEXT_INSN (after);
3601
5b0264cb 3602 gcc_assert (!optimize || !INSN_DELETED_P (after));
ba213285 3603
23b2ce53
RS
3604 NEXT_INSN (insn) = next;
3605 PREV_INSN (insn) = after;
3606
3607 if (next)
3608 {
3609 PREV_INSN (next) = insn;
4b4bf941 3610 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
23b2ce53
RS
3611 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3612 }
3613 else if (last_insn == after)
3614 last_insn = insn;
3615 else
3616 {
49ad7cfa 3617 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3618 /* Scan all pending sequences too. */
3619 for (; stack; stack = stack->next)
3620 if (after == stack->last)
fef0509b
RK
3621 {
3622 stack->last = insn;
3623 break;
3624 }
a0ae8e8d 3625
5b0264cb 3626 gcc_assert (stack);
23b2ce53
RS
3627 }
3628
4b4bf941
JQ
3629 if (!BARRIER_P (after)
3630 && !BARRIER_P (insn)
3c030e88
JH
3631 && (bb = BLOCK_FOR_INSN (after)))
3632 {
3633 set_block_for_insn (insn, bb);
38c1593d 3634 if (INSN_P (insn))
6fb5fa3c 3635 df_insn_rescan (insn);
3c030e88 3636 /* Should not happen as first in the BB is always
a1f300c0 3637 either NOTE or LABEL. */
a813c111 3638 if (BB_END (bb) == after
3c030e88 3639 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 3640 && !BARRIER_P (insn)
a38e7aa5 3641 && !NOTE_INSN_BASIC_BLOCK_P (insn))
a813c111 3642 BB_END (bb) = insn;
3c030e88
JH
3643 }
3644
23b2ce53 3645 NEXT_INSN (after) = insn;
4b4bf941 3646 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
23b2ce53
RS
3647 {
3648 rtx sequence = PATTERN (after);
3649 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3650 }
3651}
3652
a0ae8e8d 3653/* Add INSN into the doubly-linked list before insn BEFORE. This and
6fb5fa3c
DB
3654 the previous should be the only functions called to insert an insn
3655 once delay slots have been filled since only they know how to
3656 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3657 bb from before. */
a0ae8e8d
RK
3658
3659void
6fb5fa3c 3660add_insn_before (rtx insn, rtx before, basic_block bb)
a0ae8e8d
RK
3661{
3662 rtx prev = PREV_INSN (before);
3663
5b0264cb 3664 gcc_assert (!optimize || !INSN_DELETED_P (before));
ba213285 3665
a0ae8e8d
RK
3666 PREV_INSN (insn) = prev;
3667 NEXT_INSN (insn) = before;
3668
3669 if (prev)
3670 {
3671 NEXT_INSN (prev) = insn;
4b4bf941 3672 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
a0ae8e8d
RK
3673 {
3674 rtx sequence = PATTERN (prev);
3675 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3676 }
3677 }
3678 else if (first_insn == before)
3679 first_insn = insn;
3680 else
3681 {
49ad7cfa 3682 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3683 /* Scan all pending sequences too. */
3684 for (; stack; stack = stack->next)
3685 if (before == stack->first)
fef0509b
RK
3686 {
3687 stack->first = insn;
3688 break;
3689 }
a0ae8e8d 3690
5b0264cb 3691 gcc_assert (stack);
a0ae8e8d
RK
3692 }
3693
6fb5fa3c
DB
3694 if (!bb
3695 && !BARRIER_P (before)
3696 && !BARRIER_P (insn))
3697 bb = BLOCK_FOR_INSN (before);
3698
3699 if (bb)
3c030e88
JH
3700 {
3701 set_block_for_insn (insn, bb);
38c1593d 3702 if (INSN_P (insn))
6fb5fa3c 3703 df_insn_rescan (insn);
5b0264cb 3704 /* Should not happen as first in the BB is always either NOTE or
43e05e45 3705 LABEL. */
5b0264cb
NS
3706 gcc_assert (BB_HEAD (bb) != insn
3707 /* Avoid clobbering of structure when creating new BB. */
3708 || BARRIER_P (insn)
a38e7aa5 3709 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88
JH
3710 }
3711
a0ae8e8d 3712 PREV_INSN (before) = insn;
4b4bf941 3713 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
a0ae8e8d
RK
3714 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3715}
3716
6fb5fa3c
DB
3717
3718/* Replace insn with an deleted instruction note. */
3719
3720void set_insn_deleted (rtx insn)
3721{
3722 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3723 PUT_CODE (insn, NOTE);
3724 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3725}
3726
3727
89e99eea
DB
3728/* Remove an insn from its doubly-linked list. This function knows how
3729 to handle sequences. */
3730void
502b8322 3731remove_insn (rtx insn)
89e99eea
DB
3732{
3733 rtx next = NEXT_INSN (insn);
3734 rtx prev = PREV_INSN (insn);
53c17031
JH
3735 basic_block bb;
3736
6fb5fa3c
DB
3737 /* Later in the code, the block will be marked dirty. */
3738 df_insn_delete (NULL, INSN_UID (insn));
3739
89e99eea
DB
3740 if (prev)
3741 {
3742 NEXT_INSN (prev) = next;
4b4bf941 3743 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea
DB
3744 {
3745 rtx sequence = PATTERN (prev);
3746 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3747 }
3748 }
3749 else if (first_insn == insn)
3750 first_insn = next;
3751 else
3752 {
49ad7cfa 3753 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3754 /* Scan all pending sequences too. */
3755 for (; stack; stack = stack->next)
3756 if (insn == stack->first)
3757 {
3758 stack->first = next;
3759 break;
3760 }
3761
5b0264cb 3762 gcc_assert (stack);
89e99eea
DB
3763 }
3764
3765 if (next)
3766 {
3767 PREV_INSN (next) = prev;
4b4bf941 3768 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
89e99eea
DB
3769 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3770 }
3771 else if (last_insn == insn)
3772 last_insn = prev;
3773 else
3774 {
49ad7cfa 3775 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3776 /* Scan all pending sequences too. */
3777 for (; stack; stack = stack->next)
3778 if (insn == stack->last)
3779 {
3780 stack->last = prev;
3781 break;
3782 }
3783
5b0264cb 3784 gcc_assert (stack);
89e99eea 3785 }
4b4bf941 3786 if (!BARRIER_P (insn)
53c17031
JH
3787 && (bb = BLOCK_FOR_INSN (insn)))
3788 {
38c1593d 3789 if (INSN_P (insn))
6fb5fa3c 3790 df_set_bb_dirty (bb);
a813c111 3791 if (BB_HEAD (bb) == insn)
53c17031 3792 {
3bf1e984
RK
3793 /* Never ever delete the basic block note without deleting whole
3794 basic block. */
5b0264cb 3795 gcc_assert (!NOTE_P (insn));
a813c111 3796 BB_HEAD (bb) = next;
53c17031 3797 }
a813c111
SB
3798 if (BB_END (bb) == insn)
3799 BB_END (bb) = prev;
53c17031 3800 }
89e99eea
DB
3801}
3802
ee960939
OH
3803/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3804
3805void
502b8322 3806add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 3807{
5b0264cb 3808 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
3809
3810 /* Put the register usage information on the CALL. If there is already
3811 some usage information, put ours at the end. */
3812 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3813 {
3814 rtx link;
3815
3816 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3817 link = XEXP (link, 1))
3818 ;
3819
3820 XEXP (link, 1) = call_fusage;
3821 }
3822 else
3823 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3824}
3825
23b2ce53
RS
3826/* Delete all insns made since FROM.
3827 FROM becomes the new last instruction. */
3828
3829void
502b8322 3830delete_insns_since (rtx from)
23b2ce53
RS
3831{
3832 if (from == 0)
3833 first_insn = 0;
3834 else
3835 NEXT_INSN (from) = 0;
3836 last_insn = from;
3837}
3838
5dab5552
MS
3839/* This function is deprecated, please use sequences instead.
3840
3841 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3842 The insns to be moved are those between FROM and TO.
3843 They are moved to a new position after the insn AFTER.
3844 AFTER must not be FROM or TO or any insn in between.
3845
3846 This function does not know about SEQUENCEs and hence should not be
3847 called after delay-slot filling has been done. */
3848
3849void
502b8322 3850reorder_insns_nobb (rtx from, rtx to, rtx after)
23b2ce53
RS
3851{
3852 /* Splice this bunch out of where it is now. */
3853 if (PREV_INSN (from))
3854 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3855 if (NEXT_INSN (to))
3856 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3857 if (last_insn == to)
3858 last_insn = PREV_INSN (from);
3859 if (first_insn == from)
3860 first_insn = NEXT_INSN (to);
3861
3862 /* Make the new neighbors point to it and it to them. */
3863 if (NEXT_INSN (after))
3864 PREV_INSN (NEXT_INSN (after)) = to;
3865
3866 NEXT_INSN (to) = NEXT_INSN (after);
3867 PREV_INSN (from) = after;
3868 NEXT_INSN (after) = from;
3869 if (after == last_insn)
3870 last_insn = to;
3871}
3872
3c030e88
JH
3873/* Same as function above, but take care to update BB boundaries. */
3874void
502b8322 3875reorder_insns (rtx from, rtx to, rtx after)
3c030e88
JH
3876{
3877 rtx prev = PREV_INSN (from);
3878 basic_block bb, bb2;
3879
3880 reorder_insns_nobb (from, to, after);
3881
4b4bf941 3882 if (!BARRIER_P (after)
3c030e88
JH
3883 && (bb = BLOCK_FOR_INSN (after)))
3884 {
3885 rtx x;
6fb5fa3c 3886 df_set_bb_dirty (bb);
68252e27 3887
4b4bf941 3888 if (!BARRIER_P (from)
3c030e88
JH
3889 && (bb2 = BLOCK_FOR_INSN (from)))
3890 {
a813c111
SB
3891 if (BB_END (bb2) == to)
3892 BB_END (bb2) = prev;
6fb5fa3c 3893 df_set_bb_dirty (bb2);
3c030e88
JH
3894 }
3895
a813c111
SB
3896 if (BB_END (bb) == after)
3897 BB_END (bb) = to;
3c030e88
JH
3898
3899 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 3900 if (!BARRIER_P (x))
6fb5fa3c
DB
3901 {
3902 set_block_for_insn (x, bb);
3903 df_insn_change_bb (x);
3904 }
3c030e88
JH
3905 }
3906}
3907
23b2ce53 3908\f
2f937369
DM
3909/* Emit insn(s) of given code and pattern
3910 at a specified place within the doubly-linked list.
23b2ce53 3911
2f937369
DM
3912 All of the emit_foo global entry points accept an object
3913 X which is either an insn list or a PATTERN of a single
3914 instruction.
23b2ce53 3915
2f937369
DM
3916 There are thus a few canonical ways to generate code and
3917 emit it at a specific place in the instruction stream. For
3918 example, consider the instruction named SPOT and the fact that
3919 we would like to emit some instructions before SPOT. We might
3920 do it like this:
23b2ce53 3921
2f937369
DM
3922 start_sequence ();
3923 ... emit the new instructions ...
3924 insns_head = get_insns ();
3925 end_sequence ();
23b2ce53 3926
2f937369 3927 emit_insn_before (insns_head, SPOT);
23b2ce53 3928
2f937369
DM
3929 It used to be common to generate SEQUENCE rtl instead, but that
3930 is a relic of the past which no longer occurs. The reason is that
3931 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3932 generated would almost certainly die right after it was created. */
23b2ce53 3933
2f937369 3934/* Make X be output before the instruction BEFORE. */
23b2ce53
RS
3935
3936rtx
6fb5fa3c 3937emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
23b2ce53 3938{
2f937369 3939 rtx last = before;
b3694847 3940 rtx insn;
23b2ce53 3941
5b0264cb 3942 gcc_assert (before);
2f937369
DM
3943
3944 if (x == NULL_RTX)
3945 return last;
3946
3947 switch (GET_CODE (x))
23b2ce53 3948 {
2f937369
DM
3949 case INSN:
3950 case JUMP_INSN:
3951 case CALL_INSN:
3952 case CODE_LABEL:
3953 case BARRIER:
3954 case NOTE:
3955 insn = x;
3956 while (insn)
3957 {
3958 rtx next = NEXT_INSN (insn);
6fb5fa3c 3959 add_insn_before (insn, before, bb);
2f937369
DM
3960 last = insn;
3961 insn = next;
3962 }
3963 break;
3964
3965#ifdef ENABLE_RTL_CHECKING
3966 case SEQUENCE:
5b0264cb 3967 gcc_unreachable ();
2f937369
DM
3968 break;
3969#endif
3970
3971 default:
3972 last = make_insn_raw (x);
6fb5fa3c 3973 add_insn_before (last, before, bb);
2f937369 3974 break;
23b2ce53
RS
3975 }
3976
2f937369 3977 return last;
23b2ce53
RS
3978}
3979
2f937369 3980/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
3981 and output it before the instruction BEFORE. */
3982
3983rtx
a7102479 3984emit_jump_insn_before_noloc (rtx x, rtx before)
23b2ce53 3985{
d950dee3 3986 rtx insn, last = NULL_RTX;
aff507f4 3987
5b0264cb 3988 gcc_assert (before);
2f937369
DM
3989
3990 switch (GET_CODE (x))
aff507f4 3991 {
2f937369
DM
3992 case INSN:
3993 case JUMP_INSN:
3994 case CALL_INSN:
3995 case CODE_LABEL:
3996 case BARRIER:
3997 case NOTE:
3998 insn = x;
3999 while (insn)
4000 {
4001 rtx next = NEXT_INSN (insn);
6fb5fa3c 4002 add_insn_before (insn, before, NULL);
2f937369
DM
4003 last = insn;
4004 insn = next;
4005 }
4006 break;
4007
4008#ifdef ENABLE_RTL_CHECKING
4009 case SEQUENCE:
5b0264cb 4010 gcc_unreachable ();
2f937369
DM
4011 break;
4012#endif
4013
4014 default:
4015 last = make_jump_insn_raw (x);
6fb5fa3c 4016 add_insn_before (last, before, NULL);
2f937369 4017 break;
aff507f4
RK
4018 }
4019
2f937369 4020 return last;
23b2ce53
RS
4021}
4022
2f937369 4023/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4024 and output it before the instruction BEFORE. */
4025
4026rtx
a7102479 4027emit_call_insn_before_noloc (rtx x, rtx before)
969d70ca 4028{
d950dee3 4029 rtx last = NULL_RTX, insn;
969d70ca 4030
5b0264cb 4031 gcc_assert (before);
2f937369
DM
4032
4033 switch (GET_CODE (x))
969d70ca 4034 {
2f937369
DM
4035 case INSN:
4036 case JUMP_INSN:
4037 case CALL_INSN:
4038 case CODE_LABEL:
4039 case BARRIER:
4040 case NOTE:
4041 insn = x;
4042 while (insn)
4043 {
4044 rtx next = NEXT_INSN (insn);
6fb5fa3c 4045 add_insn_before (insn, before, NULL);
2f937369
DM
4046 last = insn;
4047 insn = next;
4048 }
4049 break;
4050
4051#ifdef ENABLE_RTL_CHECKING
4052 case SEQUENCE:
5b0264cb 4053 gcc_unreachable ();
2f937369
DM
4054 break;
4055#endif
4056
4057 default:
4058 last = make_call_insn_raw (x);
6fb5fa3c 4059 add_insn_before (last, before, NULL);
2f937369 4060 break;
969d70ca
JH
4061 }
4062
2f937369 4063 return last;
969d70ca
JH
4064}
4065
23b2ce53 4066/* Make an insn of code BARRIER
e881bb1b 4067 and output it before the insn BEFORE. */
23b2ce53
RS
4068
4069rtx
502b8322 4070emit_barrier_before (rtx before)
23b2ce53 4071{
b3694847 4072 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4073
4074 INSN_UID (insn) = cur_insn_uid++;
4075
6fb5fa3c 4076 add_insn_before (insn, before, NULL);
23b2ce53
RS
4077 return insn;
4078}
4079
e881bb1b
RH
4080/* Emit the label LABEL before the insn BEFORE. */
4081
4082rtx
502b8322 4083emit_label_before (rtx label, rtx before)
e881bb1b
RH
4084{
4085 /* This can be called twice for the same label as a result of the
4086 confusion that follows a syntax error! So make it harmless. */
4087 if (INSN_UID (label) == 0)
4088 {
4089 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 4090 add_insn_before (label, before, NULL);
e881bb1b
RH
4091 }
4092
4093 return label;
4094}
4095
23b2ce53
RS
4096/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4097
4098rtx
a38e7aa5 4099emit_note_before (enum insn_note subtype, rtx before)
23b2ce53 4100{
b3694847 4101 rtx note = rtx_alloc (NOTE);
23b2ce53 4102 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4103 NOTE_KIND (note) = subtype;
ba4f7968 4104 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4105 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
23b2ce53 4106
6fb5fa3c 4107 add_insn_before (note, before, NULL);
23b2ce53
RS
4108 return note;
4109}
4110\f
2f937369
DM
4111/* Helper for emit_insn_after, handles lists of instructions
4112 efficiently. */
23b2ce53 4113
2f937369 4114static rtx
6fb5fa3c 4115emit_insn_after_1 (rtx first, rtx after, basic_block bb)
23b2ce53 4116{
2f937369
DM
4117 rtx last;
4118 rtx after_after;
6fb5fa3c
DB
4119 if (!bb && !BARRIER_P (after))
4120 bb = BLOCK_FOR_INSN (after);
23b2ce53 4121
6fb5fa3c 4122 if (bb)
23b2ce53 4123 {
6fb5fa3c 4124 df_set_bb_dirty (bb);
2f937369 4125 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4126 if (!BARRIER_P (last))
6fb5fa3c
DB
4127 {
4128 set_block_for_insn (last, bb);
4129 df_insn_rescan (last);
4130 }
4b4bf941 4131 if (!BARRIER_P (last))
6fb5fa3c
DB
4132 {
4133 set_block_for_insn (last, bb);
4134 df_insn_rescan (last);
4135 }
a813c111
SB
4136 if (BB_END (bb) == after)
4137 BB_END (bb) = last;
23b2ce53
RS
4138 }
4139 else
2f937369
DM
4140 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4141 continue;
4142
4143 after_after = NEXT_INSN (after);
4144
4145 NEXT_INSN (after) = first;
4146 PREV_INSN (first) = after;
4147 NEXT_INSN (last) = after_after;
4148 if (after_after)
4149 PREV_INSN (after_after) = last;
4150
4151 if (after == last_insn)
4152 last_insn = last;
4153 return last;
4154}
4155
6fb5fa3c
DB
4156/* Make X be output after the insn AFTER and set the BB of insn. If
4157 BB is NULL, an attempt is made to infer the BB from AFTER. */
2f937369
DM
4158
4159rtx
6fb5fa3c 4160emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
2f937369
DM
4161{
4162 rtx last = after;
4163
5b0264cb 4164 gcc_assert (after);
2f937369
DM
4165
4166 if (x == NULL_RTX)
4167 return last;
4168
4169 switch (GET_CODE (x))
23b2ce53 4170 {
2f937369
DM
4171 case INSN:
4172 case JUMP_INSN:
4173 case CALL_INSN:
4174 case CODE_LABEL:
4175 case BARRIER:
4176 case NOTE:
6fb5fa3c 4177 last = emit_insn_after_1 (x, after, bb);
2f937369
DM
4178 break;
4179
4180#ifdef ENABLE_RTL_CHECKING
4181 case SEQUENCE:
5b0264cb 4182 gcc_unreachable ();
2f937369
DM
4183 break;
4184#endif
4185
4186 default:
4187 last = make_insn_raw (x);
6fb5fa3c 4188 add_insn_after (last, after, bb);
2f937369 4189 break;
23b2ce53
RS
4190 }
4191
2f937369 4192 return last;
23b2ce53
RS
4193}
4194
255680cf 4195
2f937369 4196/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4197 and output it after the insn AFTER. */
4198
4199rtx
a7102479 4200emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4201{
2f937369 4202 rtx last;
23b2ce53 4203
5b0264cb 4204 gcc_assert (after);
2f937369
DM
4205
4206 switch (GET_CODE (x))
23b2ce53 4207 {
2f937369
DM
4208 case INSN:
4209 case JUMP_INSN:
4210 case CALL_INSN:
4211 case CODE_LABEL:
4212 case BARRIER:
4213 case NOTE:
6fb5fa3c 4214 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4215 break;
4216
4217#ifdef ENABLE_RTL_CHECKING
4218 case SEQUENCE:
5b0264cb 4219 gcc_unreachable ();
2f937369
DM
4220 break;
4221#endif
4222
4223 default:
4224 last = make_jump_insn_raw (x);
6fb5fa3c 4225 add_insn_after (last, after, NULL);
2f937369 4226 break;
23b2ce53
RS
4227 }
4228
2f937369
DM
4229 return last;
4230}
4231
4232/* Make an instruction with body X and code CALL_INSN
4233 and output it after the instruction AFTER. */
4234
4235rtx
a7102479 4236emit_call_insn_after_noloc (rtx x, rtx after)
2f937369
DM
4237{
4238 rtx last;
4239
5b0264cb 4240 gcc_assert (after);
2f937369
DM
4241
4242 switch (GET_CODE (x))
4243 {
4244 case INSN:
4245 case JUMP_INSN:
4246 case CALL_INSN:
4247 case CODE_LABEL:
4248 case BARRIER:
4249 case NOTE:
6fb5fa3c 4250 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4251 break;
4252
4253#ifdef ENABLE_RTL_CHECKING
4254 case SEQUENCE:
5b0264cb 4255 gcc_unreachable ();
2f937369
DM
4256 break;
4257#endif
4258
4259 default:
4260 last = make_call_insn_raw (x);
6fb5fa3c 4261 add_insn_after (last, after, NULL);
2f937369
DM
4262 break;
4263 }
4264
4265 return last;
23b2ce53
RS
4266}
4267
4268/* Make an insn of code BARRIER
4269 and output it after the insn AFTER. */
4270
4271rtx
502b8322 4272emit_barrier_after (rtx after)
23b2ce53 4273{
b3694847 4274 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4275
4276 INSN_UID (insn) = cur_insn_uid++;
4277
6fb5fa3c 4278 add_insn_after (insn, after, NULL);
23b2ce53
RS
4279 return insn;
4280}
4281
4282/* Emit the label LABEL after the insn AFTER. */
4283
4284rtx
502b8322 4285emit_label_after (rtx label, rtx after)
23b2ce53
RS
4286{
4287 /* This can be called twice for the same label
4288 as a result of the confusion that follows a syntax error!
4289 So make it harmless. */
4290 if (INSN_UID (label) == 0)
4291 {
4292 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 4293 add_insn_after (label, after, NULL);
23b2ce53
RS
4294 }
4295
4296 return label;
4297}
4298
4299/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4300
4301rtx
a38e7aa5 4302emit_note_after (enum insn_note subtype, rtx after)
23b2ce53 4303{
b3694847 4304 rtx note = rtx_alloc (NOTE);
23b2ce53 4305 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4306 NOTE_KIND (note) = subtype;
ba4f7968 4307 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4308 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
6fb5fa3c 4309 add_insn_after (note, after, NULL);
23b2ce53
RS
4310 return note;
4311}
23b2ce53 4312\f
a7102479 4313/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4314rtx
502b8322 4315emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4316{
6fb5fa3c 4317 rtx last = emit_insn_after_noloc (pattern, after, NULL);
0d682900 4318
a7102479 4319 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4320 return last;
4321
2f937369
DM
4322 after = NEXT_INSN (after);
4323 while (1)
4324 {
a7102479 4325 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4326 INSN_LOCATOR (after) = loc;
2f937369
DM
4327 if (after == last)
4328 break;
4329 after = NEXT_INSN (after);
4330 }
0d682900
JH
4331 return last;
4332}
4333
a7102479
JH
4334/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4335rtx
4336emit_insn_after (rtx pattern, rtx after)
4337{
4338 if (INSN_P (after))
4339 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4340 else
6fb5fa3c 4341 return emit_insn_after_noloc (pattern, after, NULL);
a7102479
JH
4342}
4343
4344/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4345rtx
502b8322 4346emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4347{
a7102479 4348 rtx last = emit_jump_insn_after_noloc (pattern, after);
2f937369 4349
a7102479 4350 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4351 return last;
4352
2f937369
DM
4353 after = NEXT_INSN (after);
4354 while (1)
4355 {
a7102479 4356 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4357 INSN_LOCATOR (after) = loc;
2f937369
DM
4358 if (after == last)
4359 break;
4360 after = NEXT_INSN (after);
4361 }
0d682900
JH
4362 return last;
4363}
4364
a7102479
JH
4365/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4366rtx
4367emit_jump_insn_after (rtx pattern, rtx after)
4368{
4369 if (INSN_P (after))
4370 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4371 else
4372 return emit_jump_insn_after_noloc (pattern, after);
4373}
4374
4375/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4376rtx
502b8322 4377emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4378{
a7102479 4379 rtx last = emit_call_insn_after_noloc (pattern, after);
2f937369 4380
a7102479 4381 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4382 return last;
4383
2f937369
DM
4384 after = NEXT_INSN (after);
4385 while (1)
4386 {
a7102479 4387 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4388 INSN_LOCATOR (after) = loc;
2f937369
DM
4389 if (after == last)
4390 break;
4391 after = NEXT_INSN (after);
4392 }
0d682900
JH
4393 return last;
4394}
4395
a7102479
JH
4396/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4397rtx
4398emit_call_insn_after (rtx pattern, rtx after)
4399{
4400 if (INSN_P (after))
4401 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4402 else
4403 return emit_call_insn_after_noloc (pattern, after);
4404}
4405
4406/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4407rtx
502b8322 4408emit_insn_before_setloc (rtx pattern, rtx before, int loc)
0d682900
JH
4409{
4410 rtx first = PREV_INSN (before);
6fb5fa3c 4411 rtx last = emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4412
4413 if (pattern == NULL_RTX || !loc)
4414 return last;
4415
26cb3993
JH
4416 if (!first)
4417 first = get_insns ();
4418 else
4419 first = NEXT_INSN (first);
a7102479
JH
4420 while (1)
4421 {
4422 if (active_insn_p (first) && !INSN_LOCATOR (first))
4423 INSN_LOCATOR (first) = loc;
4424 if (first == last)
4425 break;
4426 first = NEXT_INSN (first);
4427 }
4428 return last;
4429}
4430
4431/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4432rtx
4433emit_insn_before (rtx pattern, rtx before)
4434{
4435 if (INSN_P (before))
4436 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4437 else
6fb5fa3c 4438 return emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4439}
4440
4441/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4442rtx
4443emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4444{
4445 rtx first = PREV_INSN (before);
4446 rtx last = emit_jump_insn_before_noloc (pattern, before);
4447
4448 if (pattern == NULL_RTX)
4449 return last;
4450
4451 first = NEXT_INSN (first);
4452 while (1)
4453 {
4454 if (active_insn_p (first) && !INSN_LOCATOR (first))
4455 INSN_LOCATOR (first) = loc;
4456 if (first == last)
4457 break;
4458 first = NEXT_INSN (first);
4459 }
4460 return last;
4461}
4462
4463/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4464rtx
4465emit_jump_insn_before (rtx pattern, rtx before)
4466{
4467 if (INSN_P (before))
4468 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4469 else
4470 return emit_jump_insn_before_noloc (pattern, before);
4471}
4472
4473/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4474rtx
4475emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4476{
4477 rtx first = PREV_INSN (before);
4478 rtx last = emit_call_insn_before_noloc (pattern, before);
0d682900 4479
dd3adcf8
DJ
4480 if (pattern == NULL_RTX)
4481 return last;
4482
2f937369
DM
4483 first = NEXT_INSN (first);
4484 while (1)
4485 {
a7102479 4486 if (active_insn_p (first) && !INSN_LOCATOR (first))
0435312e 4487 INSN_LOCATOR (first) = loc;
2f937369
DM
4488 if (first == last)
4489 break;
4490 first = NEXT_INSN (first);
4491 }
0d682900
JH
4492 return last;
4493}
a7102479
JH
4494
4495/* like emit_call_insn_before_noloc,
4496 but set insn_locator according to before. */
4497rtx
4498emit_call_insn_before (rtx pattern, rtx before)
4499{
4500 if (INSN_P (before))
4501 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4502 else
4503 return emit_call_insn_before_noloc (pattern, before);
4504}
0d682900 4505\f
2f937369
DM
4506/* Take X and emit it at the end of the doubly-linked
4507 INSN list.
23b2ce53
RS
4508
4509 Returns the last insn emitted. */
4510
4511rtx
502b8322 4512emit_insn (rtx x)
23b2ce53 4513{
2f937369
DM
4514 rtx last = last_insn;
4515 rtx insn;
23b2ce53 4516
2f937369
DM
4517 if (x == NULL_RTX)
4518 return last;
23b2ce53 4519
2f937369
DM
4520 switch (GET_CODE (x))
4521 {
4522 case INSN:
4523 case JUMP_INSN:
4524 case CALL_INSN:
4525 case CODE_LABEL:
4526 case BARRIER:
4527 case NOTE:
4528 insn = x;
4529 while (insn)
23b2ce53 4530 {
2f937369 4531 rtx next = NEXT_INSN (insn);
23b2ce53 4532 add_insn (insn);
2f937369
DM
4533 last = insn;
4534 insn = next;
23b2ce53 4535 }
2f937369 4536 break;
23b2ce53 4537
2f937369
DM
4538#ifdef ENABLE_RTL_CHECKING
4539 case SEQUENCE:
5b0264cb 4540 gcc_unreachable ();
2f937369
DM
4541 break;
4542#endif
23b2ce53 4543
2f937369
DM
4544 default:
4545 last = make_insn_raw (x);
4546 add_insn (last);
4547 break;
23b2ce53
RS
4548 }
4549
4550 return last;
4551}
4552
2f937369
DM
4553/* Make an insn of code JUMP_INSN with pattern X
4554 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4555
4556rtx
502b8322 4557emit_jump_insn (rtx x)
23b2ce53 4558{
d950dee3 4559 rtx last = NULL_RTX, insn;
23b2ce53 4560
2f937369 4561 switch (GET_CODE (x))
23b2ce53 4562 {
2f937369
DM
4563 case INSN:
4564 case JUMP_INSN:
4565 case CALL_INSN:
4566 case CODE_LABEL:
4567 case BARRIER:
4568 case NOTE:
4569 insn = x;
4570 while (insn)
4571 {
4572 rtx next = NEXT_INSN (insn);
4573 add_insn (insn);
4574 last = insn;
4575 insn = next;
4576 }
4577 break;
e0a5c5eb 4578
2f937369
DM
4579#ifdef ENABLE_RTL_CHECKING
4580 case SEQUENCE:
5b0264cb 4581 gcc_unreachable ();
2f937369
DM
4582 break;
4583#endif
e0a5c5eb 4584
2f937369
DM
4585 default:
4586 last = make_jump_insn_raw (x);
4587 add_insn (last);
4588 break;
3c030e88 4589 }
e0a5c5eb
RS
4590
4591 return last;
4592}
4593
2f937369 4594/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4595 and add it to the end of the doubly-linked list. */
4596
4597rtx
502b8322 4598emit_call_insn (rtx x)
23b2ce53 4599{
2f937369
DM
4600 rtx insn;
4601
4602 switch (GET_CODE (x))
23b2ce53 4603 {
2f937369
DM
4604 case INSN:
4605 case JUMP_INSN:
4606 case CALL_INSN:
4607 case CODE_LABEL:
4608 case BARRIER:
4609 case NOTE:
4610 insn = emit_insn (x);
4611 break;
23b2ce53 4612
2f937369
DM
4613#ifdef ENABLE_RTL_CHECKING
4614 case SEQUENCE:
5b0264cb 4615 gcc_unreachable ();
2f937369
DM
4616 break;
4617#endif
23b2ce53 4618
2f937369
DM
4619 default:
4620 insn = make_call_insn_raw (x);
23b2ce53 4621 add_insn (insn);
2f937369 4622 break;
23b2ce53 4623 }
2f937369
DM
4624
4625 return insn;
23b2ce53
RS
4626}
4627
4628/* Add the label LABEL to the end of the doubly-linked list. */
4629
4630rtx
502b8322 4631emit_label (rtx label)
23b2ce53
RS
4632{
4633 /* This can be called twice for the same label
4634 as a result of the confusion that follows a syntax error!
4635 So make it harmless. */
4636 if (INSN_UID (label) == 0)
4637 {
4638 INSN_UID (label) = cur_insn_uid++;
4639 add_insn (label);
4640 }
4641 return label;
4642}
4643
4644/* Make an insn of code BARRIER
4645 and add it to the end of the doubly-linked list. */
4646
4647rtx
502b8322 4648emit_barrier (void)
23b2ce53 4649{
b3694847 4650 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4651 INSN_UID (barrier) = cur_insn_uid++;
4652 add_insn (barrier);
4653 return barrier;
4654}
4655
5f2fc772 4656/* Emit a copy of note ORIG. */
502b8322 4657
5f2fc772
NS
4658rtx
4659emit_note_copy (rtx orig)
4660{
4661 rtx note;
4662
5f2fc772
NS
4663 note = rtx_alloc (NOTE);
4664
4665 INSN_UID (note) = cur_insn_uid++;
4666 NOTE_DATA (note) = NOTE_DATA (orig);
a38e7aa5 4667 NOTE_KIND (note) = NOTE_KIND (orig);
5f2fc772
NS
4668 BLOCK_FOR_INSN (note) = NULL;
4669 add_insn (note);
4670
2e040219 4671 return note;
23b2ce53
RS
4672}
4673
2e040219
NS
4674/* Make an insn of code NOTE or type NOTE_NO
4675 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4676
4677rtx
a38e7aa5 4678emit_note (enum insn_note kind)
23b2ce53 4679{
b3694847 4680 rtx note;
23b2ce53 4681
23b2ce53
RS
4682 note = rtx_alloc (NOTE);
4683 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4684 NOTE_KIND (note) = kind;
dd107e66 4685 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
ba4f7968 4686 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4687 add_insn (note);
4688 return note;
4689}
4690
23b2ce53 4691/* Cause next statement to emit a line note even if the line number
0cea056b 4692 has not changed. */
23b2ce53
RS
4693
4694void
502b8322 4695force_next_line_note (void)
23b2ce53 4696{
6773e15f
PB
4697#ifdef USE_MAPPED_LOCATION
4698 last_location = -1;
4699#else
fd3acbb3 4700 last_location.line = -1;
6773e15f 4701#endif
23b2ce53 4702}
87b47c85
AM
4703
4704/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 4705 note of this type already exists, remove it first. */
87b47c85 4706
3d238248 4707rtx
502b8322 4708set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
4709{
4710 rtx note = find_reg_note (insn, kind, NULL_RTX);
6fb5fa3c 4711 rtx new_note = NULL;
87b47c85 4712
52488da1
JW
4713 switch (kind)
4714 {
4715 case REG_EQUAL:
4716 case REG_EQUIV:
4717 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4718 has multiple sets (some callers assume single_set
4719 means the insn only has one set, when in fact it
4720 means the insn only has one * useful * set). */
4721 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4722 {
5b0264cb 4723 gcc_assert (!note);
52488da1
JW
4724 return NULL_RTX;
4725 }
4726
4727 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4728 It serves no useful purpose and breaks eliminate_regs. */
4729 if (GET_CODE (datum) == ASM_OPERANDS)
4730 return NULL_RTX;
6fb5fa3c
DB
4731
4732 if (note)
4733 {
4734 XEXP (note, 0) = datum;
4735 df_notes_rescan (insn);
4736 return note;
4737 }
52488da1
JW
4738 break;
4739
4740 default:
6fb5fa3c
DB
4741 if (note)
4742 {
4743 XEXP (note, 0) = datum;
4744 return note;
4745 }
52488da1
JW
4746 break;
4747 }
3d238248 4748
6fb5fa3c
DB
4749 new_note = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4750 REG_NOTES (insn) = new_note;
4751
4752 switch (kind)
3d238248 4753 {
6fb5fa3c
DB
4754 case REG_EQUAL:
4755 case REG_EQUIV:
4756 df_notes_rescan (insn);
4757 break;
4758 default:
4759 break;
3d238248 4760 }
87b47c85 4761
3d238248 4762 return REG_NOTES (insn);
87b47c85 4763}
23b2ce53
RS
4764\f
4765/* Return an indication of which type of insn should have X as a body.
4766 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4767
d78db459 4768static enum rtx_code
502b8322 4769classify_insn (rtx x)
23b2ce53 4770{
4b4bf941 4771 if (LABEL_P (x))
23b2ce53
RS
4772 return CODE_LABEL;
4773 if (GET_CODE (x) == CALL)
4774 return CALL_INSN;
4775 if (GET_CODE (x) == RETURN)
4776 return JUMP_INSN;
4777 if (GET_CODE (x) == SET)
4778 {
4779 if (SET_DEST (x) == pc_rtx)
4780 return JUMP_INSN;
4781 else if (GET_CODE (SET_SRC (x)) == CALL)
4782 return CALL_INSN;
4783 else
4784 return INSN;
4785 }
4786 if (GET_CODE (x) == PARALLEL)
4787 {
b3694847 4788 int j;
23b2ce53
RS
4789 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4790 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4791 return CALL_INSN;
4792 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4793 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4794 return JUMP_INSN;
4795 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4796 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4797 return CALL_INSN;
4798 }
4799 return INSN;
4800}
4801
4802/* Emit the rtl pattern X as an appropriate kind of insn.
4803 If X is a label, it is simply added into the insn chain. */
4804
4805rtx
502b8322 4806emit (rtx x)
23b2ce53
RS
4807{
4808 enum rtx_code code = classify_insn (x);
4809
5b0264cb 4810 switch (code)
23b2ce53 4811 {
5b0264cb
NS
4812 case CODE_LABEL:
4813 return emit_label (x);
4814 case INSN:
4815 return emit_insn (x);
4816 case JUMP_INSN:
4817 {
4818 rtx insn = emit_jump_insn (x);
4819 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4820 return emit_barrier ();
4821 return insn;
4822 }
4823 case CALL_INSN:
4824 return emit_call_insn (x);
4825 default:
4826 gcc_unreachable ();
23b2ce53 4827 }
23b2ce53
RS
4828}
4829\f
e2500fed 4830/* Space for free sequence stack entries. */
1431042e 4831static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 4832
4dfa0342
RH
4833/* Begin emitting insns to a sequence. If this sequence will contain
4834 something that might cause the compiler to pop arguments to function
4835 calls (because those pops have previously been deferred; see
4836 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4837 before calling this function. That will ensure that the deferred
4838 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
4839
4840void
502b8322 4841start_sequence (void)
23b2ce53
RS
4842{
4843 struct sequence_stack *tem;
4844
e2500fed
GK
4845 if (free_sequence_stack != NULL)
4846 {
4847 tem = free_sequence_stack;
4848 free_sequence_stack = tem->next;
4849 }
4850 else
703ad42b 4851 tem = ggc_alloc (sizeof (struct sequence_stack));
23b2ce53 4852
49ad7cfa 4853 tem->next = seq_stack;
23b2ce53
RS
4854 tem->first = first_insn;
4855 tem->last = last_insn;
4856
49ad7cfa 4857 seq_stack = tem;
23b2ce53
RS
4858
4859 first_insn = 0;
4860 last_insn = 0;
4861}
4862
5c7a310f
MM
4863/* Set up the insn chain starting with FIRST as the current sequence,
4864 saving the previously current one. See the documentation for
4865 start_sequence for more information about how to use this function. */
23b2ce53
RS
4866
4867void
502b8322 4868push_to_sequence (rtx first)
23b2ce53
RS
4869{
4870 rtx last;
4871
4872 start_sequence ();
4873
4874 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4875
4876 first_insn = first;
4877 last_insn = last;
4878}
4879
bb27eeda
SE
4880/* Like push_to_sequence, but take the last insn as an argument to avoid
4881 looping through the list. */
4882
4883void
4884push_to_sequence2 (rtx first, rtx last)
4885{
4886 start_sequence ();
4887
4888 first_insn = first;
4889 last_insn = last;
4890}
4891
f15ae3a1
TW
4892/* Set up the outer-level insn chain
4893 as the current sequence, saving the previously current one. */
4894
4895void
502b8322 4896push_topmost_sequence (void)
f15ae3a1 4897{
aefdd5ab 4898 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
4899
4900 start_sequence ();
4901
49ad7cfa 4902 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4903 top = stack;
4904
4905 first_insn = top->first;
4906 last_insn = top->last;
4907}
4908
4909/* After emitting to the outer-level insn chain, update the outer-level
4910 insn chain, and restore the previous saved state. */
4911
4912void
502b8322 4913pop_topmost_sequence (void)
f15ae3a1 4914{
aefdd5ab 4915 struct sequence_stack *stack, *top = NULL;
f15ae3a1 4916
49ad7cfa 4917 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4918 top = stack;
4919
4920 top->first = first_insn;
4921 top->last = last_insn;
4922
4923 end_sequence ();
4924}
4925
23b2ce53
RS
4926/* After emitting to a sequence, restore previous saved state.
4927
5c7a310f 4928 To get the contents of the sequence just made, you must call
2f937369 4929 `get_insns' *before* calling here.
5c7a310f
MM
4930
4931 If the compiler might have deferred popping arguments while
4932 generating this sequence, and this sequence will not be immediately
4933 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 4934 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
4935 pops are inserted into this sequence, and not into some random
4936 location in the instruction stream. See INHIBIT_DEFER_POP for more
4937 information about deferred popping of arguments. */
23b2ce53
RS
4938
4939void
502b8322 4940end_sequence (void)
23b2ce53 4941{
49ad7cfa 4942 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
4943
4944 first_insn = tem->first;
4945 last_insn = tem->last;
49ad7cfa 4946 seq_stack = tem->next;
23b2ce53 4947
e2500fed
GK
4948 memset (tem, 0, sizeof (*tem));
4949 tem->next = free_sequence_stack;
4950 free_sequence_stack = tem;
23b2ce53
RS
4951}
4952
4953/* Return 1 if currently emitting into a sequence. */
4954
4955int
502b8322 4956in_sequence_p (void)
23b2ce53 4957{
49ad7cfa 4958 return seq_stack != 0;
23b2ce53 4959}
23b2ce53 4960\f
59ec66dc
MM
4961/* Put the various virtual registers into REGNO_REG_RTX. */
4962
2bbdec73 4963static void
502b8322 4964init_virtual_regs (struct emit_status *es)
59ec66dc 4965{
49ad7cfa
BS
4966 rtx *ptr = es->x_regno_reg_rtx;
4967 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4968 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4969 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4970 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4971 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
4972}
4973
da43a810
BS
4974\f
4975/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4976static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4977static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4978static int copy_insn_n_scratches;
4979
4980/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4981 copied an ASM_OPERANDS.
4982 In that case, it is the original input-operand vector. */
4983static rtvec orig_asm_operands_vector;
4984
4985/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4986 copied an ASM_OPERANDS.
4987 In that case, it is the copied input-operand vector. */
4988static rtvec copy_asm_operands_vector;
4989
4990/* Likewise for the constraints vector. */
4991static rtvec orig_asm_constraints_vector;
4992static rtvec copy_asm_constraints_vector;
4993
4994/* Recursively create a new copy of an rtx for copy_insn.
4995 This function differs from copy_rtx in that it handles SCRATCHes and
4996 ASM_OPERANDs properly.
4997 Normally, this function is not used directly; use copy_insn as front end.
4998 However, you could first copy an insn pattern with copy_insn and then use
4999 this function afterwards to properly copy any REG_NOTEs containing
5000 SCRATCHes. */
5001
5002rtx
502b8322 5003copy_insn_1 (rtx orig)
da43a810 5004{
b3694847
SS
5005 rtx copy;
5006 int i, j;
5007 RTX_CODE code;
5008 const char *format_ptr;
da43a810
BS
5009
5010 code = GET_CODE (orig);
5011
5012 switch (code)
5013 {
5014 case REG:
da43a810
BS
5015 case CONST_INT:
5016 case CONST_DOUBLE:
091a3ac7 5017 case CONST_FIXED:
69ef87e2 5018 case CONST_VECTOR:
da43a810
BS
5019 case SYMBOL_REF:
5020 case CODE_LABEL:
5021 case PC:
5022 case CC0:
da43a810 5023 return orig;
3e89ed8d
JH
5024 case CLOBBER:
5025 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5026 return orig;
5027 break;
da43a810
BS
5028
5029 case SCRATCH:
5030 for (i = 0; i < copy_insn_n_scratches; i++)
5031 if (copy_insn_scratch_in[i] == orig)
5032 return copy_insn_scratch_out[i];
5033 break;
5034
5035 case CONST:
6fb5fa3c 5036 if (shared_const_p (orig))
da43a810
BS
5037 return orig;
5038 break;
750c9258 5039
da43a810
BS
5040 /* A MEM with a constant address is not sharable. The problem is that
5041 the constant address may need to be reloaded. If the mem is shared,
5042 then reloading one copy of this mem will cause all copies to appear
5043 to have been reloaded. */
5044
5045 default:
5046 break;
5047 }
5048
aacd3885
RS
5049 /* Copy the various flags, fields, and other information. We assume
5050 that all fields need copying, and then clear the fields that should
da43a810
BS
5051 not be copied. That is the sensible default behavior, and forces
5052 us to explicitly document why we are *not* copying a flag. */
aacd3885 5053 copy = shallow_copy_rtx (orig);
da43a810
BS
5054
5055 /* We do not copy the USED flag, which is used as a mark bit during
5056 walks over the RTL. */
2adc7f12 5057 RTX_FLAG (copy, used) = 0;
da43a810
BS
5058
5059 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5060 if (INSN_P (orig))
da43a810 5061 {
2adc7f12
JJ
5062 RTX_FLAG (copy, jump) = 0;
5063 RTX_FLAG (copy, call) = 0;
5064 RTX_FLAG (copy, frame_related) = 0;
da43a810 5065 }
750c9258 5066
da43a810
BS
5067 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5068
5069 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5070 switch (*format_ptr++)
5071 {
5072 case 'e':
5073 if (XEXP (orig, i) != NULL)
5074 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5075 break;
da43a810 5076
aacd3885
RS
5077 case 'E':
5078 case 'V':
5079 if (XVEC (orig, i) == orig_asm_constraints_vector)
5080 XVEC (copy, i) = copy_asm_constraints_vector;
5081 else if (XVEC (orig, i) == orig_asm_operands_vector)
5082 XVEC (copy, i) = copy_asm_operands_vector;
5083 else if (XVEC (orig, i) != NULL)
5084 {
5085 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5086 for (j = 0; j < XVECLEN (copy, i); j++)
5087 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5088 }
5089 break;
da43a810 5090
aacd3885
RS
5091 case 't':
5092 case 'w':
5093 case 'i':
5094 case 's':
5095 case 'S':
5096 case 'u':
5097 case '0':
5098 /* These are left unchanged. */
5099 break;
da43a810 5100
aacd3885
RS
5101 default:
5102 gcc_unreachable ();
5103 }
da43a810
BS
5104
5105 if (code == SCRATCH)
5106 {
5107 i = copy_insn_n_scratches++;
5b0264cb 5108 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5109 copy_insn_scratch_in[i] = orig;
5110 copy_insn_scratch_out[i] = copy;
5111 }
5112 else if (code == ASM_OPERANDS)
5113 {
6462bb43
AO
5114 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5115 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5116 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5117 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5118 }
5119
5120 return copy;
5121}
5122
5123/* Create a new copy of an rtx.
5124 This function differs from copy_rtx in that it handles SCRATCHes and
5125 ASM_OPERANDs properly.
5126 INSN doesn't really have to be a full INSN; it could be just the
5127 pattern. */
5128rtx
502b8322 5129copy_insn (rtx insn)
da43a810
BS
5130{
5131 copy_insn_n_scratches = 0;
5132 orig_asm_operands_vector = 0;
5133 orig_asm_constraints_vector = 0;
5134 copy_asm_operands_vector = 0;
5135 copy_asm_constraints_vector = 0;
5136 return copy_insn_1 (insn);
5137}
59ec66dc 5138
23b2ce53
RS
5139/* Initialize data structures and variables in this file
5140 before generating rtl for each function. */
5141
5142void
502b8322 5143init_emit (void)
23b2ce53 5144{
01d939e8 5145 struct function *f = cfun;
23b2ce53 5146
703ad42b 5147 f->emit = ggc_alloc (sizeof (struct emit_status));
23b2ce53
RS
5148 first_insn = NULL;
5149 last_insn = NULL;
5150 cur_insn_uid = 1;
5151 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
6773e15f 5152 last_location = UNKNOWN_LOCATION;
23b2ce53 5153 first_label_num = label_num;
49ad7cfa 5154 seq_stack = NULL;
23b2ce53 5155
23b2ce53
RS
5156 /* Init the tables that describe all the pseudo regs. */
5157
3502dc9c 5158 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5159
49ad7cfa 5160 f->emit->regno_pointer_align
703ad42b
KG
5161 = ggc_alloc_cleared (f->emit->regno_pointer_align_length
5162 * sizeof (unsigned char));
86fe05e0 5163
750c9258 5164 regno_reg_rtx
703ad42b 5165 = ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
0d4903b8 5166
e50126e8 5167 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876
JL
5168 memcpy (regno_reg_rtx,
5169 static_regno_reg_rtx,
5170 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5171
23b2ce53 5172 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
49ad7cfa 5173 init_virtual_regs (f->emit);
740ab4a2
RK
5174
5175 /* Indicate that the virtual registers and stack locations are
5176 all pointers. */
3502dc9c
JDA
5177 REG_POINTER (stack_pointer_rtx) = 1;
5178 REG_POINTER (frame_pointer_rtx) = 1;
5179 REG_POINTER (hard_frame_pointer_rtx) = 1;
5180 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5181
3502dc9c
JDA
5182 REG_POINTER (virtual_incoming_args_rtx) = 1;
5183 REG_POINTER (virtual_stack_vars_rtx) = 1;
5184 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5185 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5186 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5187
86fe05e0 5188#ifdef STACK_BOUNDARY
bdb429a5
RK
5189 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5190 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5191 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5192 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5193
5194 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5195 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5196 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5197 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5198 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5199#endif
5200
5e82e7bd
JVA
5201#ifdef INIT_EXPANDERS
5202 INIT_EXPANDERS;
5203#endif
23b2ce53
RS
5204}
5205
a73b091d 5206/* Generate a vector constant for mode MODE and constant value CONSTANT. */
69ef87e2
AH
5207
5208static rtx
a73b091d 5209gen_const_vector (enum machine_mode mode, int constant)
69ef87e2
AH
5210{
5211 rtx tem;
5212 rtvec v;
5213 int units, i;
5214 enum machine_mode inner;
5215
5216 units = GET_MODE_NUNITS (mode);
5217 inner = GET_MODE_INNER (mode);
5218
15ed7b52
JG
5219 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5220
69ef87e2
AH
5221 v = rtvec_alloc (units);
5222
a73b091d
JW
5223 /* We need to call this function after we set the scalar const_tiny_rtx
5224 entries. */
5225 gcc_assert (const_tiny_rtx[constant][(int) inner]);
69ef87e2
AH
5226
5227 for (i = 0; i < units; ++i)
a73b091d 5228 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
69ef87e2 5229
a06e3c40 5230 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5231 return tem;
5232}
5233
a06e3c40 5234/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5235 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5236rtx
502b8322 5237gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
a06e3c40 5238{
a73b091d
JW
5239 enum machine_mode inner = GET_MODE_INNER (mode);
5240 int nunits = GET_MODE_NUNITS (mode);
5241 rtx x;
a06e3c40
R
5242 int i;
5243
a73b091d
JW
5244 /* Check to see if all of the elements have the same value. */
5245 x = RTVEC_ELT (v, nunits - 1);
5246 for (i = nunits - 2; i >= 0; i--)
5247 if (RTVEC_ELT (v, i) != x)
5248 break;
5249
5250 /* If the values are all the same, check to see if we can use one of the
5251 standard constant vectors. */
5252 if (i == -1)
5253 {
5254 if (x == CONST0_RTX (inner))
5255 return CONST0_RTX (mode);
5256 else if (x == CONST1_RTX (inner))
5257 return CONST1_RTX (mode);
5258 }
5259
5260 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5261}
5262
b5deb7b6
SL
5263/* Initialise global register information required by all functions. */
5264
5265void
5266init_emit_regs (void)
5267{
5268 int i;
5269
5270 /* Reset register attributes */
5271 htab_empty (reg_attrs_htab);
5272
5273 /* We need reg_raw_mode, so initialize the modes now. */
5274 init_reg_modes_target ();
5275
5276 /* Assign register numbers to the globally defined register rtx. */
5277 pc_rtx = gen_rtx_PC (VOIDmode);
5278 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5279 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5280 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5281 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5282 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5283 virtual_incoming_args_rtx =
5284 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5285 virtual_stack_vars_rtx =
5286 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5287 virtual_stack_dynamic_rtx =
5288 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5289 virtual_outgoing_args_rtx =
5290 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5291 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5292
5293 /* Initialize RTL for commonly used hard registers. These are
5294 copied into regno_reg_rtx as we begin to compile each function. */
5295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5296 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5297
5298#ifdef RETURN_ADDRESS_POINTER_REGNUM
5299 return_address_pointer_rtx
5300 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5301#endif
5302
5303#ifdef STATIC_CHAIN_REGNUM
5304 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5305
5306#ifdef STATIC_CHAIN_INCOMING_REGNUM
5307 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5308 static_chain_incoming_rtx
5309 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5310 else
5311#endif
5312 static_chain_incoming_rtx = static_chain_rtx;
5313#endif
5314
5315#ifdef STATIC_CHAIN
5316 static_chain_rtx = STATIC_CHAIN;
5317
5318#ifdef STATIC_CHAIN_INCOMING
5319 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5320#else
5321 static_chain_incoming_rtx = static_chain_rtx;
5322#endif
5323#endif
5324
5325 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5326 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5327 else
5328 pic_offset_table_rtx = NULL_RTX;
5329}
5330
23b2ce53
RS
5331/* Create some permanent unique rtl objects shared between all functions.
5332 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5333
5334void
502b8322 5335init_emit_once (int line_numbers)
23b2ce53
RS
5336{
5337 int i;
5338 enum machine_mode mode;
9ec36da5 5339 enum machine_mode double_mode;
23b2ce53 5340
091a3ac7
CF
5341 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5342 hash tables. */
17211ab5
GK
5343 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5344 const_int_htab_eq, NULL);
173b24b9 5345
17211ab5
GK
5346 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5347 const_double_htab_eq, NULL);
5692c7bc 5348
091a3ac7
CF
5349 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5350 const_fixed_htab_eq, NULL);
5351
17211ab5
GK
5352 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5353 mem_attrs_htab_eq, NULL);
a560d4d4
JH
5354 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5355 reg_attrs_htab_eq, NULL);
67673f5c 5356
23b2ce53
RS
5357 no_line_numbers = ! line_numbers;
5358
43fa6302
AS
5359 /* Compute the word and byte modes. */
5360
5361 byte_mode = VOIDmode;
5362 word_mode = VOIDmode;
5363 double_mode = VOIDmode;
5364
15ed7b52
JG
5365 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5366 mode != VOIDmode;
43fa6302
AS
5367 mode = GET_MODE_WIDER_MODE (mode))
5368 {
5369 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5370 && byte_mode == VOIDmode)
5371 byte_mode = mode;
5372
5373 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5374 && word_mode == VOIDmode)
5375 word_mode = mode;
5376 }
5377
15ed7b52
JG
5378 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5379 mode != VOIDmode;
43fa6302
AS
5380 mode = GET_MODE_WIDER_MODE (mode))
5381 {
5382 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5383 && double_mode == VOIDmode)
5384 double_mode = mode;
5385 }
5386
5387 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5388
5da077de 5389#ifdef INIT_EXPANDERS
414c4dc4
NC
5390 /* This is to initialize {init|mark|free}_machine_status before the first
5391 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5392 end which calls push_function_context_to before the first call to
5da077de
AS
5393 init_function_start. */
5394 INIT_EXPANDERS;
5395#endif
5396
23b2ce53
RS
5397 /* Create the unique rtx's for certain rtx codes and operand values. */
5398
a2a8cc44 5399 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 5400 tries to use these variables. */
23b2ce53 5401 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5402 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5403 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5404
68d75312
JC
5405 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5406 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5407 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5408 else
3b80f6ca 5409 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5410
5692c7bc
ZW
5411 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5412 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5413 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
f7657db9
KG
5414 REAL_VALUE_FROM_INT (dconst3, 3, 0, double_mode);
5415 REAL_VALUE_FROM_INT (dconst10, 10, 0, double_mode);
5692c7bc 5416 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
03f2ea93
RS
5417 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5418
5419 dconsthalf = dconst1;
1e92bbb9 5420 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 5421
f7657db9
KG
5422 real_arithmetic (&dconstthird, RDIV_EXPR, &dconst1, &dconst3);
5423
ab01a87c
KG
5424 /* Initialize mathematical constants for constant folding builtins.
5425 These constants need to be given to at least 160 bits precision. */
b86a760a
KG
5426 real_from_string (&dconstsqrt2,
5427 "1.4142135623730950488016887242096980785696718753769480731766797379907");
ab01a87c
KG
5428 real_from_string (&dconste,
5429 "2.7182818284590452353602874713526624977572470936999595749669676277241");
5430
f7657db9 5431 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
23b2ce53 5432 {
b216cd4a
ZW
5433 REAL_VALUE_TYPE *r =
5434 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5435
15ed7b52
JG
5436 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5437 mode != VOIDmode;
5438 mode = GET_MODE_WIDER_MODE (mode))
5439 const_tiny_rtx[i][(int) mode] =
5440 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5441
5442 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5443 mode != VOIDmode;
23b2ce53 5444 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5445 const_tiny_rtx[i][(int) mode] =
5446 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5447
906c4e36 5448 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 5449
15ed7b52
JG
5450 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5451 mode != VOIDmode;
23b2ce53 5452 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5453 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
5454
5455 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5456 mode != VOIDmode;
5457 mode = GET_MODE_WIDER_MODE (mode))
5458 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5459 }
5460
e90721b1
AP
5461 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5462 mode != VOIDmode;
5463 mode = GET_MODE_WIDER_MODE (mode))
5464 {
5465 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5466 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5467 }
5468
5469 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5470 mode != VOIDmode;
5471 mode = GET_MODE_WIDER_MODE (mode))
5472 {
5473 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5474 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5475 }
5476
69ef87e2
AH
5477 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5478 mode != VOIDmode;
5479 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5480 {
5481 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5482 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5483 }
69ef87e2
AH
5484
5485 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5486 mode != VOIDmode;
5487 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5488 {
5489 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5490 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5491 }
69ef87e2 5492
325217ed
CF
5493 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5494 mode != VOIDmode;
5495 mode = GET_MODE_WIDER_MODE (mode))
5496 {
5497 FCONST0(mode).data.high = 0;
5498 FCONST0(mode).data.low = 0;
5499 FCONST0(mode).mode = mode;
091a3ac7
CF
5500 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5501 FCONST0 (mode), mode);
325217ed
CF
5502 }
5503
5504 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5505 mode != VOIDmode;
5506 mode = GET_MODE_WIDER_MODE (mode))
5507 {
5508 FCONST0(mode).data.high = 0;
5509 FCONST0(mode).data.low = 0;
5510 FCONST0(mode).mode = mode;
091a3ac7
CF
5511 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5512 FCONST0 (mode), mode);
325217ed
CF
5513 }
5514
5515 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5516 mode != VOIDmode;
5517 mode = GET_MODE_WIDER_MODE (mode))
5518 {
5519 FCONST0(mode).data.high = 0;
5520 FCONST0(mode).data.low = 0;
5521 FCONST0(mode).mode = mode;
091a3ac7
CF
5522 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5523 FCONST0 (mode), mode);
325217ed
CF
5524
5525 /* We store the value 1. */
5526 FCONST1(mode).data.high = 0;
5527 FCONST1(mode).data.low = 0;
5528 FCONST1(mode).mode = mode;
5529 lshift_double (1, 0, GET_MODE_FBIT (mode),
5530 2 * HOST_BITS_PER_WIDE_INT,
5531 &FCONST1(mode).data.low,
5532 &FCONST1(mode).data.high,
5533 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5534 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5535 FCONST1 (mode), mode);
325217ed
CF
5536 }
5537
5538 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5539 mode != VOIDmode;
5540 mode = GET_MODE_WIDER_MODE (mode))
5541 {
5542 FCONST0(mode).data.high = 0;
5543 FCONST0(mode).data.low = 0;
5544 FCONST0(mode).mode = mode;
091a3ac7
CF
5545 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5546 FCONST0 (mode), mode);
325217ed
CF
5547
5548 /* We store the value 1. */
5549 FCONST1(mode).data.high = 0;
5550 FCONST1(mode).data.low = 0;
5551 FCONST1(mode).mode = mode;
5552 lshift_double (1, 0, GET_MODE_FBIT (mode),
5553 2 * HOST_BITS_PER_WIDE_INT,
5554 &FCONST1(mode).data.low,
5555 &FCONST1(mode).data.high,
5556 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5557 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5558 FCONST1 (mode), mode);
5559 }
5560
5561 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5562 mode != VOIDmode;
5563 mode = GET_MODE_WIDER_MODE (mode))
5564 {
5565 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5566 }
5567
5568 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5569 mode != VOIDmode;
5570 mode = GET_MODE_WIDER_MODE (mode))
5571 {
5572 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5573 }
5574
5575 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5576 mode != VOIDmode;
5577 mode = GET_MODE_WIDER_MODE (mode))
5578 {
5579 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5580 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5581 }
5582
5583 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5584 mode != VOIDmode;
5585 mode = GET_MODE_WIDER_MODE (mode))
5586 {
5587 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5588 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
5589 }
5590
dbbbbf3b
JDA
5591 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5592 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5593 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5594
f0417c82
RH
5595 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5596 if (STORE_FLAG_VALUE == 1)
5597 const_tiny_rtx[1][(int) BImode] = const1_rtx;
23b2ce53 5598}
a11759a3 5599\f
969d70ca
JH
5600/* Produce exact duplicate of insn INSN after AFTER.
5601 Care updating of libcall regions if present. */
5602
5603rtx
502b8322 5604emit_copy_of_insn_after (rtx insn, rtx after)
969d70ca
JH
5605{
5606 rtx new;
5607 rtx note1, note2, link;
5608
5609 switch (GET_CODE (insn))
5610 {
5611 case INSN:
5612 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5613 break;
5614
5615 case JUMP_INSN:
5616 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5617 break;
5618
5619 case CALL_INSN:
5620 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5621 if (CALL_INSN_FUNCTION_USAGE (insn))
5622 CALL_INSN_FUNCTION_USAGE (new)
5623 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5624 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5625 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5626 break;
5627
5628 default:
5b0264cb 5629 gcc_unreachable ();
969d70ca
JH
5630 }
5631
5632 /* Update LABEL_NUSES. */
5633 mark_jump_label (PATTERN (new), new, 0);
5634
0435312e 5635 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
ba4f7968 5636
0a3d71f5
JW
5637 /* If the old insn is frame related, then so is the new one. This is
5638 primarily needed for IA-64 unwind info which marks epilogue insns,
5639 which may be duplicated by the basic block reordering code. */
5640 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5641
969d70ca
JH
5642 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5643 make them. */
5644 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5645 if (REG_NOTE_KIND (link) != REG_LABEL)
5646 {
5647 if (GET_CODE (link) == EXPR_LIST)
5648 REG_NOTES (new)
4b73962b
JH
5649 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5650 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
969d70ca
JH
5651 else
5652 REG_NOTES (new)
4b73962b 5653 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
95e2a53b 5654 XEXP (link, 0), REG_NOTES (new));
969d70ca
JH
5655 }
5656
5657 /* Fix the libcall sequences. */
5658 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5659 {
5660 rtx p = new;
5661 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5662 p = PREV_INSN (p);
5663 XEXP (note1, 0) = p;
5664 XEXP (note2, 0) = new;
5665 }
6f0d3566 5666 INSN_CODE (new) = INSN_CODE (insn);
969d70ca
JH
5667 return new;
5668}
e2500fed 5669
1431042e 5670static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d
JH
5671rtx
5672gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5673{
5674 if (hard_reg_clobbers[mode][regno])
5675 return hard_reg_clobbers[mode][regno];
5676 else
5677 return (hard_reg_clobbers[mode][regno] =
5678 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5679}
5680
e2500fed 5681#include "gt-emit-rtl.h"