]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
Remove CC0
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
99dee823 2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
23b2ce53 3
1322177d 4This file is part of GCC.
23b2ce53 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
23b2ce53 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
23b2ce53
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
23b2ce53
RS
19
20
21/* Middle-to-low level generation of rtx code and insns.
22
f822fcf7
KH
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
23b2ce53
RS
33
34#include "config.h"
670ee920 35#include "system.h"
4977bab6 36#include "coretypes.h"
4d0cdd0c 37#include "memmodel.h"
c7131fb2 38#include "backend.h"
957060b5 39#include "target.h"
23b2ce53 40#include "rtl.h"
957060b5 41#include "tree.h"
c7131fb2 42#include "df.h"
957060b5
AM
43#include "tm_p.h"
44#include "stringpool.h"
957060b5
AM
45#include "insn-config.h"
46#include "regs.h"
47#include "emit-rtl.h"
48#include "recog.h"
c7131fb2 49#include "diagnostic-core.h"
40e23961 50#include "alias.h"
40e23961 51#include "fold-const.h"
d8a2d370 52#include "varasm.h"
60393bbc 53#include "cfgrtl.h"
60393bbc 54#include "tree-eh.h"
36566b39 55#include "explow.h"
23b2ce53 56#include "expr.h"
9b2b7279 57#include "builtins.h"
9021b8ec 58#include "rtl-iter.h"
1f9ceff1 59#include "stor-layout.h"
ecf835e9 60#include "opts.h"
5fa396ad 61#include "predict.h"
3877c560 62#include "rtx-vector-builder.h"
fa70c221
RB
63#include "gimple.h"
64#include "gimple-ssa.h"
65#include "gimplify.h"
ca695ac9 66
5fb0e246
RS
67struct target_rtl default_target_rtl;
68#if SWITCHABLE_TARGET
69struct target_rtl *this_target_rtl = &default_target_rtl;
70#endif
71
72#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
73
1d445e9e
ILT
74/* Commonly used modes. */
75
501623d4
RS
76scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 79
bd60bab2
JH
80/* Datastructures maintained for currently processed function in RTL form. */
81
3e029763 82struct rtl_data x_rtl;
bd60bab2
JH
83
84/* Indexed by pseudo register number, gives the rtx for that pseudo.
b8698a0f 85 Allocated in parallel with regno_pointer_align.
bd60bab2
JH
86 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
87 with length attribute nested in top level structures. */
88
89rtx * regno_reg_rtx;
23b2ce53
RS
90
91/* This is *not* reset after each function. It gives each CODE_LABEL
92 in the entire compilation a unique label number. */
93
044b4de3 94static GTY(()) int label_num = 1;
23b2ce53 95
23b2ce53
RS
96/* We record floating-point CONST_DOUBLEs in each floating-point mode for
97 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
e7c82a99
JJ
98 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
99 is set only for MODE_INT and MODE_VECTOR_INT modes. */
23b2ce53 100
e7c82a99 101rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
23b2ce53 102
68d75312
JC
103rtx const_true_rtx;
104
23b2ce53
RS
105REAL_VALUE_TYPE dconst0;
106REAL_VALUE_TYPE dconst1;
107REAL_VALUE_TYPE dconst2;
108REAL_VALUE_TYPE dconstm1;
03f2ea93 109REAL_VALUE_TYPE dconsthalf;
23b2ce53 110
325217ed
CF
111/* Record fixed-point constant 0 and 1. */
112FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
113FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
114
23b2ce53
RS
115/* We make one copy of (const_int C) where C is in
116 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
117 to save space during the compilation and simplify comparisons of
118 integers. */
119
5da077de 120rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 121
ca4adc91
RS
122/* Standard pieces of rtx, to be substituted directly into things. */
123rtx pc_rtx;
124rtx ret_rtx;
125rtx simple_return_rtx;
ca4adc91 126
1476d1bd
MM
127/* Marker used for denoting an INSN, which should never be accessed (i.e.,
128 this pointer should normally never be dereferenced), but is required to be
129 distinct from NULL_RTX. Currently used by peephole2 pass. */
130rtx_insn *invalid_insn_rtx;
131
c13e8210
MM
132/* A hash table storing CONST_INTs whose absolute value is greater
133 than MAX_SAVED_CONST_INT. */
134
6c907cff 135struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
136{
137 typedef HOST_WIDE_INT compare_type;
138
139 static hashval_t hash (rtx i);
140 static bool equal (rtx i, HOST_WIDE_INT h);
141};
c13e8210 142
aebf76a2
TS
143static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
144
6c907cff 145struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
146{
147 static hashval_t hash (rtx x);
148 static bool equal (rtx x, rtx y);
149};
150
151static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
807e902e 152
0c12fc9b
RS
153struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
154{
155 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
156
157 static hashval_t hash (rtx x);
158 static bool equal (rtx x, const compare_type &y);
159};
160
161static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
162
a560d4d4 163/* A hash table storing register attribute structures. */
6c907cff 164struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
aebf76a2
TS
165{
166 static hashval_t hash (reg_attrs *x);
167 static bool equal (reg_attrs *a, reg_attrs *b);
168};
169
170static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
a560d4d4 171
5692c7bc 172/* A hash table storing all CONST_DOUBLEs. */
6c907cff 173struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
174{
175 static hashval_t hash (rtx x);
176 static bool equal (rtx x, rtx y);
177};
178
179static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
5692c7bc 180
091a3ac7 181/* A hash table storing all CONST_FIXEDs. */
6c907cff 182struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
aebf76a2
TS
183{
184 static hashval_t hash (rtx x);
185 static bool equal (rtx x, rtx y);
186};
187
188static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
091a3ac7 189
3e029763 190#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
b5b8b0ac 191#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
3e029763 192#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 193
5eb2a9f2 194static void set_used_decls (tree);
502b8322 195static void mark_label_nuses (rtx);
807e902e 196#if TARGET_SUPPORTS_WIDE_INT
807e902e
KZ
197static rtx lookup_const_wide_int (rtx);
198#endif
502b8322 199static rtx lookup_const_double (rtx);
091a3ac7 200static rtx lookup_const_fixed (rtx);
ef4bddc2 201static rtx gen_const_vector (machine_mode, int);
32b32b16 202static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 203
5fa396ad
JH
204/* Probability of the conditional branch currently proceeded by try_split. */
205profile_probability split_branch_probability;
ca695ac9 206\f
c13e8210
MM
207/* Returns a hash code for X (which is a really a CONST_INT). */
208
aebf76a2
TS
209hashval_t
210const_int_hasher::hash (rtx x)
c13e8210 211{
aebf76a2 212 return (hashval_t) INTVAL (x);
c13e8210
MM
213}
214
cc2902df 215/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
216 CONST_INT) is the same as that given by Y (which is really a
217 HOST_WIDE_INT *). */
218
aebf76a2
TS
219bool
220const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
c13e8210 221{
aebf76a2 222 return (INTVAL (x) == y);
5692c7bc
ZW
223}
224
807e902e
KZ
225#if TARGET_SUPPORTS_WIDE_INT
226/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
227
aebf76a2
TS
228hashval_t
229const_wide_int_hasher::hash (rtx x)
807e902e
KZ
230{
231 int i;
d7ca26e4 232 unsigned HOST_WIDE_INT hash = 0;
aebf76a2 233 const_rtx xr = x;
807e902e
KZ
234
235 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
236 hash += CONST_WIDE_INT_ELT (xr, i);
237
238 return (hashval_t) hash;
239}
240
241/* Returns nonzero if the value represented by X (which is really a
242 CONST_WIDE_INT) is the same as that given by Y (which is really a
243 CONST_WIDE_INT). */
244
aebf76a2
TS
245bool
246const_wide_int_hasher::equal (rtx x, rtx y)
807e902e
KZ
247{
248 int i;
aebf76a2
TS
249 const_rtx xr = x;
250 const_rtx yr = y;
807e902e 251 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
aebf76a2 252 return false;
807e902e
KZ
253
254 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
255 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
aebf76a2 256 return false;
807e902e 257
aebf76a2 258 return true;
807e902e
KZ
259}
260#endif
261
0c12fc9b
RS
262/* Returns a hash code for CONST_POLY_INT X. */
263
264hashval_t
265const_poly_int_hasher::hash (rtx x)
266{
267 inchash::hash h;
268 h.add_int (GET_MODE (x));
269 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
270 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
271 return h.end ();
272}
273
274/* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
275
276bool
277const_poly_int_hasher::equal (rtx x, const compare_type &y)
278{
279 if (GET_MODE (x) != y.first)
280 return false;
281 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
282 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
283 return false;
284 return true;
285}
286
5692c7bc 287/* Returns a hash code for X (which is really a CONST_DOUBLE). */
aebf76a2
TS
288hashval_t
289const_double_hasher::hash (rtx x)
5692c7bc 290{
aebf76a2 291 const_rtx const value = x;
46b33600 292 hashval_t h;
5692c7bc 293
807e902e 294 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
46b33600
RH
295 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
296 else
fe352c29 297 {
15c812e3 298 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
299 /* MODE is used in the comparison, so it should be in the hash. */
300 h ^= GET_MODE (value);
301 }
5692c7bc
ZW
302 return h;
303}
304
cc2902df 305/* Returns nonzero if the value represented by X (really a ...)
5692c7bc 306 is the same as that represented by Y (really a ...) */
aebf76a2
TS
307bool
308const_double_hasher::equal (rtx x, rtx y)
5692c7bc 309{
aebf76a2 310 const_rtx const a = x, b = y;
5692c7bc
ZW
311
312 if (GET_MODE (a) != GET_MODE (b))
313 return 0;
807e902e 314 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
8580f7a0
RH
315 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
316 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
317 else
318 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
319 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
320}
321
091a3ac7
CF
322/* Returns a hash code for X (which is really a CONST_FIXED). */
323
aebf76a2
TS
324hashval_t
325const_fixed_hasher::hash (rtx x)
091a3ac7 326{
aebf76a2 327 const_rtx const value = x;
091a3ac7
CF
328 hashval_t h;
329
330 h = fixed_hash (CONST_FIXED_VALUE (value));
331 /* MODE is used in the comparison, so it should be in the hash. */
332 h ^= GET_MODE (value);
333 return h;
334}
335
aebf76a2
TS
336/* Returns nonzero if the value represented by X is the same as that
337 represented by Y. */
091a3ac7 338
aebf76a2
TS
339bool
340const_fixed_hasher::equal (rtx x, rtx y)
091a3ac7 341{
aebf76a2 342 const_rtx const a = x, b = y;
091a3ac7
CF
343
344 if (GET_MODE (a) != GET_MODE (b))
345 return 0;
346 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
347}
348
f12144dd 349/* Return true if the given memory attributes are equal. */
c13e8210 350
96b3c03f 351bool
99b1c316 352mem_attrs_eq_p (const class mem_attrs *p, const class mem_attrs *q)
c13e8210 353{
96b3c03f
RB
354 if (p == q)
355 return true;
356 if (!p || !q)
357 return false;
754c3d5d
RS
358 return (p->alias == q->alias
359 && p->offset_known_p == q->offset_known_p
d05d7551 360 && (!p->offset_known_p || known_eq (p->offset, q->offset))
754c3d5d 361 && p->size_known_p == q->size_known_p
d05d7551 362 && (!p->size_known_p || known_eq (p->size, q->size))
754c3d5d 363 && p->align == q->align
09e881c9 364 && p->addrspace == q->addrspace
78b76d08
SB
365 && (p->expr == q->expr
366 || (p->expr != NULL_TREE && q->expr != NULL_TREE
367 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
368}
369
f12144dd 370/* Set MEM's memory attributes so that they are the same as ATTRS. */
10b76d73 371
f12144dd
RS
372static void
373set_mem_attrs (rtx mem, mem_attrs *attrs)
374{
f12144dd
RS
375 /* If everything is the default, we can just clear the attributes. */
376 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
377 {
378 MEM_ATTRS (mem) = 0;
379 return;
380 }
173b24b9 381
84053e02
RB
382 if (!MEM_ATTRS (mem)
383 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
173b24b9 384 {
766090c2 385 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
84053e02 386 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
173b24b9 387 }
c13e8210
MM
388}
389
a560d4d4
JH
390/* Returns a hash code for X (which is a really a reg_attrs *). */
391
aebf76a2
TS
392hashval_t
393reg_attr_hasher::hash (reg_attrs *x)
a560d4d4 394{
aebf76a2 395 const reg_attrs *const p = x;
a560d4d4 396
84bc717b
RS
397 inchash::hash h;
398 h.add_ptr (p->decl);
399 h.add_poly_hwi (p->offset);
400 return h.end ();
a560d4d4
JH
401}
402
aebf76a2
TS
403/* Returns nonzero if the value represented by X is the same as that given by
404 Y. */
a560d4d4 405
aebf76a2
TS
406bool
407reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
a560d4d4 408{
aebf76a2
TS
409 const reg_attrs *const p = x;
410 const reg_attrs *const q = y;
a560d4d4 411
84bc717b 412 return (p->decl == q->decl && known_eq (p->offset, q->offset));
a560d4d4
JH
413}
414/* Allocate a new reg_attrs structure and insert it into the hash table if
415 one identical to it is not already in the table. We are doing this for
416 MEM of mode MODE. */
417
418static reg_attrs *
84bc717b 419get_reg_attrs (tree decl, poly_int64 offset)
a560d4d4
JH
420{
421 reg_attrs attrs;
a560d4d4
JH
422
423 /* If everything is the default, we can just return zero. */
84bc717b 424 if (decl == 0 && known_eq (offset, 0))
a560d4d4
JH
425 return 0;
426
427 attrs.decl = decl;
428 attrs.offset = offset;
429
aebf76a2 430 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
a560d4d4
JH
431 if (*slot == 0)
432 {
766090c2 433 *slot = ggc_alloc<reg_attrs> ();
a560d4d4
JH
434 memcpy (*slot, &attrs, sizeof (reg_attrs));
435 }
436
aebf76a2 437 return *slot;
a560d4d4
JH
438}
439
6fb5fa3c
DB
440
441#if !HAVE_blockage
adddc347
HPN
442/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
443 and to block register equivalences to be seen across this insn. */
6fb5fa3c
DB
444
445rtx
446gen_blockage (void)
447{
448 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
449 MEM_VOLATILE_P (x) = true;
450 return x;
451}
452#endif
453
454
8deccbb7
RS
455/* Set the mode and register number of X to MODE and REGNO. */
456
457void
458set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
459{
9188b286 460 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
ad474626 461 ? hard_regno_nregs (regno, mode)
9188b286 462 : 1);
8deccbb7 463 PUT_MODE_RAW (x, mode);
9188b286 464 set_regno_raw (x, regno, nregs);
8deccbb7
RS
465}
466
20fa157e
IL
467/* Initialize a fresh REG rtx with mode MODE and register REGNO. */
468
469rtx
470init_raw_REG (rtx x, machine_mode mode, unsigned int regno)
471{
472 set_mode_and_regno (x, mode, regno);
473 REG_ATTRS (x) = NULL;
474 ORIGINAL_REGNO (x) = regno;
475 return x;
476}
477
08394eef
BS
478/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
479 don't attempt to share with the various global pieces of rtl (such as
480 frame_pointer_rtx). */
481
482rtx
8deccbb7 483gen_raw_REG (machine_mode mode, unsigned int regno)
08394eef 484{
84c2ad23 485 rtx x = rtx_alloc (REG MEM_STAT_INFO);
20fa157e 486 init_raw_REG (x, mode, regno);
08394eef
BS
487 return x;
488}
489
c5c76735
JL
490/* There are some RTL codes that require special attention; the generation
491 functions do the raw handling. If you add to this list, modify
492 special_rtx in gengenrtl.c as well. */
493
38e60c55 494rtx_expr_list *
ef4bddc2 495gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
38e60c55
DM
496{
497 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
498 expr_list));
499}
500
a756c6be 501rtx_insn_list *
ef4bddc2 502gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
a756c6be
DM
503{
504 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
505 insn_list));
506}
507
d6e1e8b8 508rtx_insn *
ef4bddc2 509gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
d6e1e8b8
DM
510 basic_block bb, rtx pattern, int location, int code,
511 rtx reg_notes)
512{
513 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
514 prev_insn, next_insn,
515 bb, pattern, location, code,
516 reg_notes));
517}
518
3b80f6ca 519rtx
ef4bddc2 520gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca
RH
521{
522 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 523 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
524
525#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
526 if (const_true_rtx && arg == STORE_FLAG_VALUE)
527 return const_true_rtx;
528#endif
529
c13e8210 530 /* Look up the CONST_INT in the hash table. */
aebf76a2
TS
531 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
532 INSERT);
29105cea 533 if (*slot == 0)
1f8f4a0b 534 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210 535
aebf76a2 536 return *slot;
3b80f6ca
RH
537}
538
2496c7bd 539rtx
0c12fc9b 540gen_int_mode (poly_int64 c, machine_mode mode)
2496c7bd 541{
0c12fc9b
RS
542 c = trunc_int_for_mode (c, mode);
543 if (c.is_constant ())
544 return GEN_INT (c.coeffs[0]);
545 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
546 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
2496c7bd
LB
547}
548
5692c7bc
ZW
549/* CONST_DOUBLEs might be created from pairs of integers, or from
550 REAL_VALUE_TYPEs. Also, their length is known only at run time,
551 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
552
553/* Determine whether REAL, a CONST_DOUBLE, already exists in the
554 hash table. If so, return its counterpart; otherwise add it
555 to the hash table and return it. */
556static rtx
502b8322 557lookup_const_double (rtx real)
5692c7bc 558{
aebf76a2 559 rtx *slot = const_double_htab->find_slot (real, INSERT);
5692c7bc
ZW
560 if (*slot == 0)
561 *slot = real;
562
aebf76a2 563 return *slot;
5692c7bc 564}
29105cea 565
5692c7bc
ZW
566/* Return a CONST_DOUBLE rtx for a floating-point value specified by
567 VALUE in mode MODE. */
0133b7d9 568rtx
ef4bddc2 569const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
0133b7d9 570{
5692c7bc
ZW
571 rtx real = rtx_alloc (CONST_DOUBLE);
572 PUT_MODE (real, mode);
573
9e254451 574 real->u.rv = value;
5692c7bc
ZW
575
576 return lookup_const_double (real);
577}
578
091a3ac7
CF
579/* Determine whether FIXED, a CONST_FIXED, already exists in the
580 hash table. If so, return its counterpart; otherwise add it
581 to the hash table and return it. */
582
583static rtx
584lookup_const_fixed (rtx fixed)
585{
aebf76a2 586 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
091a3ac7
CF
587 if (*slot == 0)
588 *slot = fixed;
589
aebf76a2 590 return *slot;
091a3ac7
CF
591}
592
593/* Return a CONST_FIXED rtx for a fixed-point value specified by
594 VALUE in mode MODE. */
595
596rtx
ef4bddc2 597const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
091a3ac7
CF
598{
599 rtx fixed = rtx_alloc (CONST_FIXED);
600 PUT_MODE (fixed, mode);
601
602 fixed->u.fv = value;
603
604 return lookup_const_fixed (fixed);
605}
606
807e902e 607#if TARGET_SUPPORTS_WIDE_INT == 0
3e93ff81
AS
608/* Constructs double_int from rtx CST. */
609
610double_int
611rtx_to_double_int (const_rtx cst)
612{
613 double_int r;
614
615 if (CONST_INT_P (cst))
27bcd47c 616 r = double_int::from_shwi (INTVAL (cst));
48175537 617 else if (CONST_DOUBLE_AS_INT_P (cst))
3e93ff81
AS
618 {
619 r.low = CONST_DOUBLE_LOW (cst);
620 r.high = CONST_DOUBLE_HIGH (cst);
621 }
622 else
623 gcc_unreachable ();
624
625 return r;
626}
807e902e 627#endif
3e93ff81 628
807e902e
KZ
629#if TARGET_SUPPORTS_WIDE_INT
630/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
631 If so, return its counterpart; otherwise add it to the hash table and
632 return it. */
3e93ff81 633
807e902e
KZ
634static rtx
635lookup_const_wide_int (rtx wint)
636{
aebf76a2 637 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
807e902e
KZ
638 if (*slot == 0)
639 *slot = wint;
640
aebf76a2 641 return *slot;
807e902e
KZ
642}
643#endif
644
645/* Return an rtx constant for V, given that the constant has mode MODE.
646 The returned rtx will be a CONST_INT if V fits, otherwise it will be
647 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
648 (if TARGET_SUPPORTS_WIDE_INT). */
54fb1ae0 649
0c12fc9b
RS
650static rtx
651immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
54fb1ae0 652{
807e902e 653 unsigned int len = v.get_len ();
db61b7f9
RS
654 /* Not scalar_int_mode because we also allow pointer bound modes. */
655 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
807e902e
KZ
656
657 /* Allow truncation but not extension since we do not know if the
658 number is signed or unsigned. */
659 gcc_assert (prec <= v.get_precision ());
660
661 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
662 return gen_int_mode (v.elt (0), mode);
663
664#if TARGET_SUPPORTS_WIDE_INT
665 {
666 unsigned int i;
667 rtx value;
668 unsigned int blocks_needed
669 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
670
671 if (len > blocks_needed)
672 len = blocks_needed;
673
674 value = const_wide_int_alloc (len);
675
676 /* It is so tempting to just put the mode in here. Must control
677 myself ... */
678 PUT_MODE (value, VOIDmode);
679 CWI_PUT_NUM_ELEM (value, len);
680
681 for (i = 0; i < len; i++)
682 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
683
684 return lookup_const_wide_int (value);
685 }
686#else
687 return immed_double_const (v.elt (0), v.elt (1), mode);
688#endif
54fb1ae0
AS
689}
690
807e902e 691#if TARGET_SUPPORTS_WIDE_INT == 0
5692c7bc
ZW
692/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
693 of ints: I0 is the low-order word and I1 is the high-order word.
49ab6098 694 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
929e10f4
MS
695 implied upper bits are copies of the high bit of i1. The value
696 itself is neither signed nor unsigned. Do not use this routine for
697 non-integer modes; convert to REAL_VALUE_TYPE and use
555affd7 698 const_double_from_real_value. */
5692c7bc
ZW
699
700rtx
ef4bddc2 701immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
5692c7bc
ZW
702{
703 rtx value;
704 unsigned int i;
705
65acccdd 706 /* There are the following cases (note that there are no modes with
49ab6098 707 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
65acccdd
ZD
708
709 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
710 gen_int_mode.
929e10f4
MS
711 2) If the value of the integer fits into HOST_WIDE_INT anyway
712 (i.e., i1 consists only from copies of the sign bit, and sign
713 of i0 and i1 are the same), then we return a CONST_INT for i0.
65acccdd 714 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
db61b7f9
RS
715 scalar_mode smode;
716 if (is_a <scalar_mode> (mode, &smode)
717 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
718 return gen_int_mode (i0, mode);
5692c7bc
ZW
719
720 /* If this integer fits in one word, return a CONST_INT. */
721 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
722 return GEN_INT (i0);
723
724 /* We use VOIDmode for integers. */
725 value = rtx_alloc (CONST_DOUBLE);
726 PUT_MODE (value, VOIDmode);
727
728 CONST_DOUBLE_LOW (value) = i0;
729 CONST_DOUBLE_HIGH (value) = i1;
730
731 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
732 XWINT (value, i) = 0;
733
734 return lookup_const_double (value);
0133b7d9 735}
807e902e 736#endif
0133b7d9 737
0c12fc9b
RS
738/* Return an rtx representation of C in mode MODE. */
739
740rtx
741immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
742{
743 if (c.is_constant ())
744 return immed_wide_int_const_1 (c.coeffs[0], mode);
745
746 /* Not scalar_int_mode because we also allow pointer bound modes. */
747 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
748
749 /* Allow truncation but not extension since we do not know if the
750 number is signed or unsigned. */
751 gcc_assert (prec <= c.coeffs[0].get_precision ());
752 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
753
754 /* See whether we already have an rtx for this constant. */
755 inchash::hash h;
756 h.add_int (mode);
757 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
758 h.add_wide_int (newc.coeffs[i]);
759 const_poly_int_hasher::compare_type typed_value (mode, newc);
760 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
761 h.end (), INSERT);
762 rtx x = *slot;
763 if (x)
764 return x;
765
766 /* Create a new rtx. There's a choice to be made here between installing
767 the actual mode of the rtx or leaving it as VOIDmode (for consistency
768 with CONST_INT). In practice the handling of the codes is different
769 enough that we get no benefit from using VOIDmode, and various places
770 assume that VOIDmode implies CONST_INT. Using the real mode seems like
771 the right long-term direction anyway. */
772 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
773 size_t extra_size = twi::extra_size (prec);
774 x = rtx_alloc_v (CONST_POLY_INT,
775 sizeof (struct const_poly_int_def) + extra_size);
776 PUT_MODE (x, mode);
777 CONST_POLY_INT_COEFFS (x).set_precision (prec);
778 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
779 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
780
781 *slot = x;
782 return x;
783}
784
3b80f6ca 785rtx
ef4bddc2 786gen_rtx_REG (machine_mode mode, unsigned int regno)
3b80f6ca
RH
787{
788 /* In case the MD file explicitly references the frame pointer, have
789 all such references point to the same frame pointer. This is
790 used during frame pointer elimination to distinguish the explicit
791 references to these registers from pseudos that happened to be
792 assigned to them.
793
794 If we have eliminated the frame pointer or arg pointer, we will
795 be using it as a normal register, for example as a spill
796 register. In such cases, we might be accessing it in a mode that
797 is not Pmode and therefore cannot use the pre-allocated rtx.
798
799 Also don't do this when we are making new REGs in reload, since
800 we don't want to get confused with the real pointers. */
801
55a2c322 802 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3b80f6ca 803 {
e10c79fe
LB
804 if (regno == FRAME_POINTER_REGNUM
805 && (!reload_completed || frame_pointer_needed))
3b80f6ca 806 return frame_pointer_rtx;
c3e08036
TS
807
808 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
809 && regno == HARD_FRAME_POINTER_REGNUM
e10c79fe 810 && (!reload_completed || frame_pointer_needed))
3b80f6ca 811 return hard_frame_pointer_rtx;
3f393fc6
TS
812#if !HARD_FRAME_POINTER_IS_ARG_POINTER
813 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
814 && regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
815 return arg_pointer_rtx;
816#endif
817#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 818 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
819 return return_address_pointer_rtx;
820#endif
fc555370 821 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
bf9412cd 822 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
2d67bd7b 823 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 824 return pic_offset_table_rtx;
bcb33994 825 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
826 return stack_pointer_rtx;
827 }
828
006a94b0 829#if 0
6cde4876 830 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
831 an existing entry in that table to avoid useless generation of RTL.
832
833 This code is disabled for now until we can fix the various backends
834 which depend on having non-shared hard registers in some cases. Long
835 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
836 on the amount of useless RTL that gets generated.
837
838 We'll also need to fix some code that runs after reload that wants to
839 set ORIGINAL_REGNO. */
840
6cde4876
JL
841 if (cfun
842 && cfun->emit
843 && regno_reg_rtx
844 && regno < FIRST_PSEUDO_REGISTER
845 && reg_raw_mode[regno] == mode)
846 return regno_reg_rtx[regno];
006a94b0 847#endif
6cde4876 848
08394eef 849 return gen_raw_REG (mode, regno);
3b80f6ca
RH
850}
851
41472af8 852rtx
ef4bddc2 853gen_rtx_MEM (machine_mode mode, rtx addr)
41472af8
MM
854{
855 rtx rt = gen_rtx_raw_MEM (mode, addr);
856
857 /* This field is not cleared by the mere allocation of the rtx, so
858 we clear it here. */
173b24b9 859 MEM_ATTRS (rt) = 0;
41472af8
MM
860
861 return rt;
862}
ddef6bc7 863
542a8afa
RH
864/* Generate a memory referring to non-trapping constant memory. */
865
866rtx
ef4bddc2 867gen_const_mem (machine_mode mode, rtx addr)
542a8afa
RH
868{
869 rtx mem = gen_rtx_MEM (mode, addr);
870 MEM_READONLY_P (mem) = 1;
871 MEM_NOTRAP_P (mem) = 1;
872 return mem;
873}
874
bf877a76
R
875/* Generate a MEM referring to fixed portions of the frame, e.g., register
876 save areas. */
877
878rtx
ef4bddc2 879gen_frame_mem (machine_mode mode, rtx addr)
bf877a76
R
880{
881 rtx mem = gen_rtx_MEM (mode, addr);
882 MEM_NOTRAP_P (mem) = 1;
883 set_mem_alias_set (mem, get_frame_alias_set ());
884 return mem;
885}
886
887/* Generate a MEM referring to a temporary use of the stack, not part
888 of the fixed stack frame. For example, something which is pushed
889 by a target splitter. */
890rtx
ef4bddc2 891gen_tmp_stack_mem (machine_mode mode, rtx addr)
bf877a76
R
892{
893 rtx mem = gen_rtx_MEM (mode, addr);
894 MEM_NOTRAP_P (mem) = 1;
e3b5732b 895 if (!cfun->calls_alloca)
bf877a76
R
896 set_mem_alias_set (mem, get_frame_alias_set ());
897 return mem;
898}
899
beb72684
RH
900/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
901 this construct would be valid, and false otherwise. */
902
903bool
ef4bddc2 904validate_subreg (machine_mode omode, machine_mode imode,
91914e56 905 const_rtx reg, poly_uint64 offset)
ddef6bc7 906{
fad2288b
RS
907 poly_uint64 isize = GET_MODE_SIZE (imode);
908 poly_uint64 osize = GET_MODE_SIZE (omode);
909
910 /* The sizes must be ordered, so that we know whether the subreg
911 is partial, paradoxical or complete. */
912 if (!ordered_p (isize, osize))
913 return false;
beb72684
RH
914
915 /* All subregs must be aligned. */
91914e56 916 if (!multiple_p (offset, osize))
beb72684
RH
917 return false;
918
919 /* The subreg offset cannot be outside the inner object. */
91914e56 920 if (maybe_ge (offset, isize))
beb72684
RH
921 return false;
922
fad2288b 923 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
1eae67f8 924
beb72684
RH
925 /* ??? This should not be here. Temporarily continue to allow word_mode
926 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
927 Generally, backends are doing something sketchy but it'll take time to
928 fix them all. */
929 if (omode == word_mode)
930 ;
931 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
932 is the culprit here, and not the backends. */
fad2288b 933 else if (known_ge (osize, regsize) && known_ge (isize, osize))
beb72684
RH
934 ;
935 /* Allow component subregs of complex and vector. Though given the below
936 extraction rules, it's not always clear what that means. */
937 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
938 && GET_MODE_INNER (imode) == omode)
939 ;
940 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
9d0dc47d 941 i.e. (subreg:V4SF (reg:SF) 0) or (subreg:V4SF (reg:V2SF) 0). This
942 surely isn't the cleanest way to represent this. It's questionable
943 if this ought to be represented at all -- why can't this all be hidden
944 in post-reload splitters that make arbitrarily mode changes to the
945 registers themselves. */
946 else if (VECTOR_MODE_P (omode)
947 && GET_MODE_INNER (omode) == GET_MODE_INNER (imode))
beb72684
RH
948 ;
949 /* Subregs involving floating point modes are not allowed to
950 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
951 (subreg:SI (reg:DF) 0) isn't. */
952 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
953 {
fad2288b 954 if (! (known_eq (isize, osize)
55a2c322
VM
955 /* LRA can use subreg to store a floating point value in
956 an integer mode. Although the floating point and the
957 integer modes need the same number of hard registers,
958 the size of floating point mode can be less than the
959 integer mode. LRA also uses subregs for a register
960 should be used in different mode in on insn. */
961 || lra_in_progress))
beb72684
RH
962 return false;
963 }
ddef6bc7 964
beb72684 965 /* Paradoxical subregs must have offset zero. */
fad2288b 966 if (maybe_gt (osize, isize))
91914e56 967 return known_eq (offset, 0U);
beb72684
RH
968
969 /* This is a normal subreg. Verify that the offset is representable. */
970
971 /* For hard registers, we already have most of these rules collected in
972 subreg_offset_representable_p. */
973 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
974 {
975 unsigned int regno = REGNO (reg);
976
beb72684
RH
977 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
978 && GET_MODE_INNER (imode) == omode)
979 ;
0d803030 980 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
beb72684 981 return false;
beb72684
RH
982
983 return subreg_offset_representable_p (regno, imode, offset, omode);
984 }
985
fad2288b
RS
986 /* The outer size must be ordered wrt the register size, otherwise
987 we wouldn't know at compile time how many registers the outer
988 mode occupies. */
989 if (!ordered_p (osize, regsize))
990 return false;
991
beb72684 992 /* For pseudo registers, we want most of the same checks. Namely:
1eae67f8
RS
993
994 Assume that the pseudo register will be allocated to hard registers
995 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
996 the remainder must correspond to the lowpart of the containing hard
997 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
998 otherwise it is at the lowest offset.
999
1000 Given that we've already checked the mode and offset alignment,
1001 we only have to check subblock subregs here. */
fad2288b 1002 if (maybe_lt (osize, regsize)
55a2c322 1003 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
beb72684 1004 {
fad2288b
RS
1005 /* It is invalid for the target to pick a register size for a mode
1006 that isn't ordered wrt to the size of that mode. */
1007 poly_uint64 block_size = ordered_min (isize, regsize);
91914e56
RS
1008 unsigned int start_reg;
1009 poly_uint64 offset_within_reg;
1010 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
1011 || (BYTES_BIG_ENDIAN
1012 ? maybe_ne (offset_within_reg, block_size - osize)
1013 : maybe_ne (offset_within_reg, 0U)))
beb72684
RH
1014 return false;
1015 }
1016 return true;
1017}
1018
1019rtx
91914e56 1020gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
beb72684
RH
1021{
1022 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 1023 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
1024}
1025
173b24b9
RK
1026/* Generate a SUBREG representing the least-significant part of REG if MODE
1027 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1028
ddef6bc7 1029rtx
ef4bddc2 1030gen_lowpart_SUBREG (machine_mode mode, rtx reg)
ddef6bc7 1031{
ef4bddc2 1032 machine_mode inmode;
ddef6bc7
JJ
1033
1034 inmode = GET_MODE (reg);
1035 if (inmode == VOIDmode)
1036 inmode = mode;
e0e08ac2
JH
1037 return gen_rtx_SUBREG (mode, reg,
1038 subreg_lowpart_offset (mode, inmode));
ddef6bc7 1039}
fcc74520
RS
1040
1041rtx
ef4bddc2 1042gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
fcc74520
RS
1043 enum var_init_status status)
1044{
1045 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1046 PAT_VAR_LOCATION_STATUS (x) = status;
1047 return x;
1048}
c5c76735 1049\f
23b2ce53 1050
80379f51
PB
1051/* Create an rtvec and stores within it the RTXen passed in the arguments. */
1052
23b2ce53 1053rtvec
e34d07f2 1054gen_rtvec (int n, ...)
23b2ce53 1055{
80379f51
PB
1056 int i;
1057 rtvec rt_val;
e34d07f2 1058 va_list p;
23b2ce53 1059
e34d07f2 1060 va_start (p, n);
23b2ce53 1061
80379f51 1062 /* Don't allocate an empty rtvec... */
23b2ce53 1063 if (n == 0)
0edf1bb2
JL
1064 {
1065 va_end (p);
1066 return NULL_RTVEC;
1067 }
23b2ce53 1068
80379f51 1069 rt_val = rtvec_alloc (n);
4f90e4a0 1070
23b2ce53 1071 for (i = 0; i < n; i++)
80379f51 1072 rt_val->elem[i] = va_arg (p, rtx);
6268b922 1073
e34d07f2 1074 va_end (p);
80379f51 1075 return rt_val;
23b2ce53
RS
1076}
1077
1078rtvec
502b8322 1079gen_rtvec_v (int n, rtx *argp)
23b2ce53 1080{
b3694847
SS
1081 int i;
1082 rtvec rt_val;
23b2ce53 1083
80379f51 1084 /* Don't allocate an empty rtvec... */
23b2ce53 1085 if (n == 0)
80379f51 1086 return NULL_RTVEC;
23b2ce53 1087
80379f51 1088 rt_val = rtvec_alloc (n);
23b2ce53
RS
1089
1090 for (i = 0; i < n; i++)
8f985ec4 1091 rt_val->elem[i] = *argp++;
23b2ce53
RS
1092
1093 return rt_val;
1094}
e6eda746
DM
1095
1096rtvec
1097gen_rtvec_v (int n, rtx_insn **argp)
1098{
1099 int i;
1100 rtvec rt_val;
1101
1102 /* Don't allocate an empty rtvec... */
1103 if (n == 0)
1104 return NULL_RTVEC;
1105
1106 rt_val = rtvec_alloc (n);
1107
1108 for (i = 0; i < n; i++)
1109 rt_val->elem[i] = *argp++;
1110
1111 return rt_val;
1112}
1113
23b2ce53 1114\f
38ae7651
RS
1115/* Return the number of bytes between the start of an OUTER_MODE
1116 in-memory value and the start of an INNER_MODE in-memory value,
1117 given that the former is a lowpart of the latter. It may be a
1118 paradoxical lowpart, in which case the offset will be negative
1119 on big-endian targets. */
1120
91914e56 1121poly_int64
ef4bddc2
RS
1122byte_lowpart_offset (machine_mode outer_mode,
1123 machine_mode inner_mode)
38ae7651 1124{
03a95621 1125 if (paradoxical_subreg_p (outer_mode, inner_mode))
38ae7651 1126 return -subreg_lowpart_offset (inner_mode, outer_mode);
03a95621
RS
1127 else
1128 return subreg_lowpart_offset (outer_mode, inner_mode);
38ae7651 1129}
3d09ba95
RS
1130
1131/* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1132 from address X. For paradoxical big-endian subregs this is a
1133 negative value, otherwise it's the same as OFFSET. */
1134
91914e56 1135poly_int64
3d09ba95 1136subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
91914e56 1137 poly_uint64 offset)
3d09ba95
RS
1138{
1139 if (paradoxical_subreg_p (outer_mode, inner_mode))
1140 {
91914e56 1141 gcc_assert (known_eq (offset, 0U));
3d09ba95
RS
1142 return -subreg_lowpart_offset (inner_mode, outer_mode);
1143 }
1144 return offset;
1145}
1146
1147/* As above, but return the offset that existing subreg X would have
1148 if SUBREG_REG (X) were stored in memory. The only significant thing
1149 about the current SUBREG_REG is its mode. */
1150
91914e56 1151poly_int64
3d09ba95
RS
1152subreg_memory_offset (const_rtx x)
1153{
1154 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1155 SUBREG_BYTE (x));
1156}
38ae7651 1157\f
23b2ce53
RS
1158/* Generate a REG rtx for a new pseudo register of mode MODE.
1159 This pseudo is assigned the next sequential register number. */
1160
1161rtx
ef4bddc2 1162gen_reg_rtx (machine_mode mode)
23b2ce53 1163{
b3694847 1164 rtx val;
2e3f842f 1165 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 1166
f8335a4f 1167 gcc_assert (can_create_pseudo_p ());
23b2ce53 1168
2e3f842f
L
1169 /* If a virtual register with bigger mode alignment is generated,
1170 increase stack alignment estimation because it might be spilled
1171 to stack later. */
b8698a0f 1172 if (SUPPORTS_STACK_ALIGNMENT
2e3f842f
L
1173 && crtl->stack_alignment_estimated < align
1174 && !crtl->stack_realign_processed)
ae58e548
JJ
1175 {
1176 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1177 if (crtl->stack_alignment_estimated < min_align)
1178 crtl->stack_alignment_estimated = min_align;
1179 }
2e3f842f 1180
1b3d8f8a
GK
1181 if (generating_concat_p
1182 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1183 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
1184 {
1185 /* For complex modes, don't make a single pseudo.
1186 Instead, make a CONCAT of two pseudos.
1187 This allows noncontiguous allocation of the real and imaginary parts,
1188 which makes much better code. Besides, allocating DCmode
1189 pseudos overstrains reload on some machines like the 386. */
1190 rtx realpart, imagpart;
ef4bddc2 1191 machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
1192
1193 realpart = gen_reg_rtx (partmode);
1194 imagpart = gen_reg_rtx (partmode);
3b80f6ca 1195 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
1196 }
1197
004a7e45
UB
1198 /* Do not call gen_reg_rtx with uninitialized crtl. */
1199 gcc_assert (crtl->emit.regno_pointer_align_length);
1200
f44986d7
DM
1201 crtl->emit.ensure_regno_capacity ();
1202 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
23b2ce53 1203
f44986d7
DM
1204 val = gen_raw_REG (mode, reg_rtx_no);
1205 regno_reg_rtx[reg_rtx_no++] = val;
1206 return val;
1207}
0d4903b8 1208
f44986d7
DM
1209/* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1210 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
49ad7cfa 1211
f44986d7
DM
1212void
1213emit_status::ensure_regno_capacity ()
1214{
1215 int old_size = regno_pointer_align_length;
23b2ce53 1216
f44986d7
DM
1217 if (reg_rtx_no < old_size)
1218 return;
23b2ce53 1219
f44986d7
DM
1220 int new_size = old_size * 2;
1221 while (reg_rtx_no >= new_size)
1222 new_size *= 2;
1223
1224 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1225 memset (tmp + old_size, 0, new_size - old_size);
1226 regno_pointer_align = (unsigned char *) tmp;
1227
1228 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1229 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1230 regno_reg_rtx = new1;
1231
1232 crtl->emit.regno_pointer_align_length = new_size;
23b2ce53
RS
1233}
1234
a698cc03
JL
1235/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1236
1237bool
1238reg_is_parm_p (rtx reg)
1239{
1240 tree decl;
1241
1242 gcc_assert (REG_P (reg));
1243 decl = REG_EXPR (reg);
1244 return (decl && TREE_CODE (decl) == PARM_DECL);
1245}
1246
38ae7651
RS
1247/* Update NEW with the same attributes as REG, but with OFFSET added
1248 to the REG_OFFSET. */
a560d4d4 1249
e53a16e7 1250static void
84bc717b 1251update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
a560d4d4 1252{
60564289 1253 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
84bc717b 1254 REG_OFFSET (reg) + offset);
e53a16e7
ILT
1255}
1256
38ae7651
RS
1257/* Generate a register with same attributes as REG, but with OFFSET
1258 added to the REG_OFFSET. */
e53a16e7
ILT
1259
1260rtx
ef4bddc2 1261gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
84bc717b 1262 poly_int64 offset)
e53a16e7 1263{
60564289 1264 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 1265
60564289
KG
1266 update_reg_offset (new_rtx, reg, offset);
1267 return new_rtx;
e53a16e7
ILT
1268}
1269
1270/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 1271 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
1272
1273rtx
ef4bddc2 1274gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
e53a16e7 1275{
60564289 1276 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 1277
60564289
KG
1278 update_reg_offset (new_rtx, reg, offset);
1279 return new_rtx;
a560d4d4
JH
1280}
1281
38ae7651
RS
1282/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1283 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
1284
1285void
ef4bddc2 1286adjust_reg_mode (rtx reg, machine_mode mode)
a560d4d4 1287{
38ae7651
RS
1288 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1289 PUT_MODE (reg, mode);
1290}
1291
1292/* Copy REG's attributes from X, if X has any attributes. If REG and X
1293 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1294
1295void
1296set_reg_attrs_from_value (rtx reg, rtx x)
1297{
84bc717b 1298 poly_int64 offset;
de6f3f7a
L
1299 bool can_be_reg_pointer = true;
1300
1301 /* Don't call mark_reg_pointer for incompatible pointer sign
1302 extension. */
1303 while (GET_CODE (x) == SIGN_EXTEND
1304 || GET_CODE (x) == ZERO_EXTEND
1305 || GET_CODE (x) == TRUNCATE
1306 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1307 {
2a870875
RS
1308#if defined(POINTERS_EXTEND_UNSIGNED)
1309 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
8d8e740c
BE
1310 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1311 || (paradoxical_subreg_p (x)
1312 && ! (SUBREG_PROMOTED_VAR_P (x)
1313 && SUBREG_CHECK_PROMOTED_SIGN (x,
1314 POINTERS_EXTEND_UNSIGNED))))
2a870875 1315 && !targetm.have_ptr_extend ())
de6f3f7a
L
1316 can_be_reg_pointer = false;
1317#endif
1318 x = XEXP (x, 0);
1319 }
38ae7651 1320
923ba36f
JJ
1321 /* Hard registers can be reused for multiple purposes within the same
1322 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1323 on them is wrong. */
1324 if (HARD_REGISTER_P (reg))
1325 return;
1326
38ae7651 1327 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
1328 if (MEM_P (x))
1329 {
527210c4
RS
1330 if (MEM_OFFSET_KNOWN_P (x))
1331 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1332 MEM_OFFSET (x) + offset);
de6f3f7a 1333 if (can_be_reg_pointer && MEM_POINTER (x))
0a317111 1334 mark_reg_pointer (reg, 0);
46b71b03
PB
1335 }
1336 else if (REG_P (x))
1337 {
1338 if (REG_ATTRS (x))
1339 update_reg_offset (reg, x, offset);
de6f3f7a 1340 if (can_be_reg_pointer && REG_POINTER (x))
46b71b03
PB
1341 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1342 }
1343}
1344
1345/* Generate a REG rtx for a new pseudo register, copying the mode
1346 and attributes from X. */
1347
1348rtx
1349gen_reg_rtx_and_attrs (rtx x)
1350{
1351 rtx reg = gen_reg_rtx (GET_MODE (x));
1352 set_reg_attrs_from_value (reg, x);
1353 return reg;
a560d4d4
JH
1354}
1355
9d18e06b
JZ
1356/* Set the register attributes for registers contained in PARM_RTX.
1357 Use needed values from memory attributes of MEM. */
1358
1359void
502b8322 1360set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1361{
f8cfc6aa 1362 if (REG_P (parm_rtx))
38ae7651 1363 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1364 else if (GET_CODE (parm_rtx) == PARALLEL)
1365 {
1366 /* Check for a NULL entry in the first slot, used to indicate that the
1367 parameter goes both on the stack and in registers. */
1368 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1369 for (; i < XVECLEN (parm_rtx, 0); i++)
1370 {
1371 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1372 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1373 REG_ATTRS (XEXP (x, 0))
1374 = get_reg_attrs (MEM_EXPR (mem),
1375 INTVAL (XEXP (x, 1)));
1376 }
1377 }
1378}
1379
38ae7651
RS
1380/* Set the REG_ATTRS for registers in value X, given that X represents
1381 decl T. */
a560d4d4 1382
4e3825db 1383void
38ae7651
RS
1384set_reg_attrs_for_decl_rtl (tree t, rtx x)
1385{
1f9ceff1
AO
1386 if (!t)
1387 return;
1388 tree tdecl = t;
38ae7651 1389 if (GET_CODE (x) == SUBREG)
fbe6ec81 1390 {
38ae7651
RS
1391 gcc_assert (subreg_lowpart_p (x));
1392 x = SUBREG_REG (x);
fbe6ec81 1393 }
f8cfc6aa 1394 if (REG_P (x))
38ae7651
RS
1395 REG_ATTRS (x)
1396 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
1f9ceff1
AO
1397 DECL_P (tdecl)
1398 ? DECL_MODE (tdecl)
1399 : TYPE_MODE (TREE_TYPE (tdecl))));
a560d4d4
JH
1400 if (GET_CODE (x) == CONCAT)
1401 {
1402 if (REG_P (XEXP (x, 0)))
1403 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1404 if (REG_P (XEXP (x, 1)))
1405 REG_ATTRS (XEXP (x, 1))
1406 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1407 }
1408 if (GET_CODE (x) == PARALLEL)
1409 {
d4afac5b
JZ
1410 int i, start;
1411
1412 /* Check for a NULL entry, used to indicate that the parameter goes
1413 both on the stack and in registers. */
1414 if (XEXP (XVECEXP (x, 0, 0), 0))
1415 start = 0;
1416 else
1417 start = 1;
1418
1419 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1420 {
1421 rtx y = XVECEXP (x, 0, i);
1422 if (REG_P (XEXP (y, 0)))
1423 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1424 }
1425 }
1426}
1427
38ae7651
RS
1428/* Assign the RTX X to declaration T. */
1429
1430void
1431set_decl_rtl (tree t, rtx x)
1432{
1433 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1434 if (x)
1435 set_reg_attrs_for_decl_rtl (t, x);
1436}
1437
5141868d
RS
1438/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1439 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1440
1441void
5141868d 1442set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1443{
1444 DECL_INCOMING_RTL (t) = x;
5141868d 1445 if (x && !by_reference_p)
38ae7651
RS
1446 set_reg_attrs_for_decl_rtl (t, x);
1447}
1448
754fdcca
RK
1449/* Identify REG (which may be a CONCAT) as a user register. */
1450
1451void
502b8322 1452mark_user_reg (rtx reg)
754fdcca
RK
1453{
1454 if (GET_CODE (reg) == CONCAT)
1455 {
1456 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1457 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1458 }
754fdcca 1459 else
5b0264cb
NS
1460 {
1461 gcc_assert (REG_P (reg));
1462 REG_USERVAR_P (reg) = 1;
1463 }
754fdcca
RK
1464}
1465
86fe05e0
RK
1466/* Identify REG as a probable pointer register and show its alignment
1467 as ALIGN, if nonzero. */
23b2ce53
RS
1468
1469void
502b8322 1470mark_reg_pointer (rtx reg, int align)
23b2ce53 1471{
3502dc9c 1472 if (! REG_POINTER (reg))
00995e78 1473 {
3502dc9c 1474 REG_POINTER (reg) = 1;
86fe05e0 1475
00995e78
RE
1476 if (align)
1477 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1478 }
1479 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1480 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1481 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1482}
1483
1484/* Return 1 plus largest pseudo reg number used in the current function. */
1485
1486int
502b8322 1487max_reg_num (void)
23b2ce53
RS
1488{
1489 return reg_rtx_no;
1490}
1491
1492/* Return 1 + the largest label number used so far in the current function. */
1493
1494int
502b8322 1495max_label_num (void)
23b2ce53 1496{
23b2ce53
RS
1497 return label_num;
1498}
1499
1500/* Return first label number used in this function (if any were used). */
1501
1502int
502b8322 1503get_first_label_num (void)
23b2ce53
RS
1504{
1505 return first_label_num;
1506}
6de9cd9a
DN
1507
1508/* If the rtx for label was created during the expansion of a nested
1509 function, then first_label_num won't include this label number.
fa10beec 1510 Fix this now so that array indices work later. */
6de9cd9a
DN
1511
1512void
9aa50db7 1513maybe_set_first_label_num (rtx_code_label *x)
6de9cd9a
DN
1514{
1515 if (CODE_LABEL_NUMBER (x) < first_label_num)
1516 first_label_num = CODE_LABEL_NUMBER (x);
1517}
51b86113
DM
1518
1519/* For use by the RTL function loader, when mingling with normal
1520 functions.
1521 Ensure that label_num is greater than the label num of X, to avoid
1522 duplicate labels in the generated assembler. */
1523
1524void
1525maybe_set_max_label_num (rtx_code_label *x)
1526{
1527 if (CODE_LABEL_NUMBER (x) >= label_num)
1528 label_num = CODE_LABEL_NUMBER (x) + 1;
1529}
1530
23b2ce53
RS
1531\f
1532/* Return a value representing some low-order bits of X, where the number
1533 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1534 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1535 representation is returned.
1536
1537 This function handles the cases in common between gen_lowpart, below,
1538 and two variants in cse.c and combine.c. These are the cases that can
1539 be safely handled at all points in the compilation.
1540
1541 If this is not a case we can handle, return 0. */
1542
1543rtx
ef4bddc2 1544gen_lowpart_common (machine_mode mode, rtx x)
23b2ce53 1545{
fad2288b 1546 poly_uint64 msize = GET_MODE_SIZE (mode);
ef4bddc2 1547 machine_mode innermode;
550d1387
GK
1548
1549 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1550 so we have to make one up. Yuk. */
1551 innermode = GET_MODE (x);
481683e1 1552 if (CONST_INT_P (x)
fad2288b
RS
1553 && known_le (msize * BITS_PER_UNIT,
1554 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
f4b31647 1555 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
550d1387 1556 else if (innermode == VOIDmode)
f4b31647 1557 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
b8698a0f 1558
5b0264cb 1559 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1560
550d1387 1561 if (innermode == mode)
23b2ce53
RS
1562 return x;
1563
fad2288b
RS
1564 /* The size of the outer and inner modes must be ordered. */
1565 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1566 if (!ordered_p (msize, xsize))
1567 return 0;
1568
1eae67f8
RS
1569 if (SCALAR_FLOAT_MODE_P (mode))
1570 {
1571 /* Don't allow paradoxical FLOAT_MODE subregs. */
fad2288b 1572 if (maybe_gt (msize, xsize))
1eae67f8
RS
1573 return 0;
1574 }
1575 else
1576 {
1577 /* MODE must occupy no more of the underlying registers than X. */
fad2288b
RS
1578 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1579 unsigned int mregs, xregs;
1580 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1581 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1582 || mregs > xregs)
1eae67f8
RS
1583 return 0;
1584 }
53501a19 1585
54651377 1586 scalar_int_mode int_mode, int_innermode, from_mode;
23b2ce53 1587 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
54651377
RS
1588 && is_a <scalar_int_mode> (mode, &int_mode)
1589 && is_a <scalar_int_mode> (innermode, &int_innermode)
1590 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
23b2ce53
RS
1591 {
1592 /* If we are getting the low-order part of something that has been
1593 sign- or zero-extended, we can either just use the object being
1594 extended or make a narrower extension. If we want an even smaller
1595 piece than the size of the object being extended, call ourselves
1596 recursively.
1597
1598 This case is used mostly by combine and cse. */
1599
54651377 1600 if (from_mode == int_mode)
23b2ce53 1601 return XEXP (x, 0);
54651377
RS
1602 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1603 return gen_lowpart_common (int_mode, XEXP (x, 0));
1604 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1605 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
23b2ce53 1606 }
f8cfc6aa 1607 else if (GET_CODE (x) == SUBREG || REG_P (x)
2072a319 1608 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
0c12fc9b
RS
1609 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1610 || CONST_POLY_INT_P (x))
3403a1a9 1611 return lowpart_subreg (mode, x, innermode);
8aada4ad 1612
23b2ce53
RS
1613 /* Otherwise, we can't do this. */
1614 return 0;
1615}
1616\f
ccba022b 1617rtx
ef4bddc2 1618gen_highpart (machine_mode mode, rtx x)
ccba022b 1619{
cf098191 1620 poly_uint64 msize = GET_MODE_SIZE (mode);
e0e08ac2 1621 rtx result;
ddef6bc7 1622
ccba022b
RS
1623 /* This case loses if X is a subreg. To catch bugs early,
1624 complain if an invalid MODE is used even in other cases. */
cf098191
RS
1625 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1626 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
ddef6bc7 1627
e0e08ac2
JH
1628 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1629 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb 1630 gcc_assert (result);
b8698a0f 1631
09482e0d
JW
1632 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1633 the target if we have a MEM. gen_highpart must return a valid operand,
1634 emitting code if necessary to do so. */
5b0264cb
NS
1635 if (MEM_P (result))
1636 {
1637 result = validize_mem (result);
1638 gcc_assert (result);
1639 }
b8698a0f 1640
e0e08ac2
JH
1641 return result;
1642}
5222e470 1643
26d249eb 1644/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1645 be VOIDmode constant. */
1646rtx
ef4bddc2 1647gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
5222e470
JH
1648{
1649 if (GET_MODE (exp) != VOIDmode)
1650 {
5b0264cb 1651 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1652 return gen_highpart (outermode, exp);
1653 }
1654 return simplify_gen_subreg (outermode, exp, innermode,
1655 subreg_highpart_offset (outermode, innermode));
1656}
68252e27 1657
33951763
RS
1658/* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1659 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
8698cce3 1660
91914e56
RS
1661poly_uint64
1662subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
e0e08ac2 1663{
91914e56
RS
1664 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1665 if (maybe_gt (outer_bytes, inner_bytes))
33951763
RS
1666 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1667 return 0;
ddef6bc7 1668
33951763
RS
1669 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1670 return inner_bytes - outer_bytes;
1671 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1672 return 0;
1673 else
1674 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
ccba022b 1675}
eea50aa0 1676
33951763
RS
1677/* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1678 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1679
91914e56
RS
1680poly_uint64
1681subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
eea50aa0 1682{
91914e56 1683 gcc_assert (known_ge (inner_bytes, outer_bytes));
eea50aa0 1684
33951763
RS
1685 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1686 return 0;
1687 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1688 return inner_bytes - outer_bytes;
1689 else
1690 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1691 (inner_bytes - outer_bytes)
1692 * BITS_PER_UNIT);
eea50aa0 1693}
ccba022b 1694
23b2ce53
RS
1695/* Return 1 iff X, assumed to be a SUBREG,
1696 refers to the least significant part of its containing reg.
1697 If X is not a SUBREG, always return 1 (it is its own low part!). */
1698
1699int
fa233e34 1700subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1701{
1702 if (GET_CODE (x) != SUBREG)
1703 return 1;
a3a03040
RK
1704 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1705 return 0;
23b2ce53 1706
91914e56
RS
1707 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1708 GET_MODE (SUBREG_REG (x))),
1709 SUBREG_BYTE (x));
23b2ce53
RS
1710}
1711\f
ddef6bc7
JJ
1712/* Return subword OFFSET of operand OP.
1713 The word number, OFFSET, is interpreted as the word number starting
1714 at the low-order address. OFFSET 0 is the low-order word if not
1715 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1716
1717 If we cannot extract the required word, we return zero. Otherwise,
1718 an rtx corresponding to the requested word will be returned.
1719
1720 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1721 reload has completed, a valid address will always be returned. After
1722 reload, if a valid address cannot be returned, we return zero.
1723
1724 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1725 it is the responsibility of the caller.
1726
1727 MODE is the mode of OP in case it is a CONST_INT.
1728
1729 ??? This is still rather broken for some cases. The problem for the
1730 moment is that all callers of this thing provide no 'goal mode' to
1731 tell us to work with. This exists because all callers were written
0631e0bf
JH
1732 in a word based SUBREG world.
1733 Now use of this function can be deprecated by simplify_subreg in most
1734 cases.
1735 */
ddef6bc7
JJ
1736
1737rtx
fdbfe4e5
RS
1738operand_subword (rtx op, poly_uint64 offset, int validate_address,
1739 machine_mode mode)
ddef6bc7
JJ
1740{
1741 if (mode == VOIDmode)
1742 mode = GET_MODE (op);
1743
5b0264cb 1744 gcc_assert (mode != VOIDmode);
ddef6bc7 1745
30f7a378 1746 /* If OP is narrower than a word, fail. */
ddef6bc7 1747 if (mode != BLKmode
fdbfe4e5 1748 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
ddef6bc7
JJ
1749 return 0;
1750
30f7a378 1751 /* If we want a word outside OP, return zero. */
ddef6bc7 1752 if (mode != BLKmode
fdbfe4e5 1753 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
ddef6bc7
JJ
1754 return const0_rtx;
1755
ddef6bc7 1756 /* Form a new MEM at the requested address. */
3c0cb5de 1757 if (MEM_P (op))
ddef6bc7 1758 {
60564289 1759 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1760
f1ec5147 1761 if (! validate_address)
60564289 1762 return new_rtx;
f1ec5147
RK
1763
1764 else if (reload_completed)
ddef6bc7 1765 {
09e881c9
BE
1766 if (! strict_memory_address_addr_space_p (word_mode,
1767 XEXP (new_rtx, 0),
1768 MEM_ADDR_SPACE (op)))
f1ec5147 1769 return 0;
ddef6bc7 1770 }
f1ec5147 1771 else
60564289 1772 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1773 }
1774
0631e0bf
JH
1775 /* Rest can be handled by simplify_subreg. */
1776 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1777}
1778
535a42b1
NS
1779/* Similar to `operand_subword', but never return 0. If we can't
1780 extract the required subword, put OP into a register and try again.
1781 The second attempt must succeed. We always validate the address in
1782 this case.
23b2ce53
RS
1783
1784 MODE is the mode of OP, in case it is CONST_INT. */
1785
1786rtx
fdbfe4e5 1787operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
23b2ce53 1788{
ddef6bc7 1789 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1790
1791 if (result)
1792 return result;
1793
1794 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb 1795 {
67914693 1796 /* If this is a register which cannot be accessed by words, copy it
77e6b0eb 1797 to a pseudo register. */
f8cfc6aa 1798 if (REG_P (op))
77e6b0eb
JC
1799 op = copy_to_reg (op);
1800 else
1801 op = force_reg (mode, op);
1802 }
23b2ce53 1803
ddef6bc7 1804 result = operand_subword (op, offset, 1, mode);
5b0264cb 1805 gcc_assert (result);
23b2ce53
RS
1806
1807 return result;
1808}
1809\f
d05d7551
RS
1810mem_attrs::mem_attrs ()
1811 : expr (NULL_TREE),
1812 offset (0),
1813 size (0),
1814 alias (0),
1815 align (0),
1816 addrspace (ADDR_SPACE_GENERIC),
1817 offset_known_p (false),
1818 size_known_p (false)
1819{}
1820
2b3493c8
AK
1821/* Returns 1 if both MEM_EXPR can be considered equal
1822 and 0 otherwise. */
1823
1824int
4f588890 1825mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1826{
1827 if (expr1 == expr2)
1828 return 1;
1829
1830 if (! expr1 || ! expr2)
1831 return 0;
1832
1833 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1834 return 0;
1835
55b34b5f 1836 return operand_equal_p (expr1, expr2, 0);
2b3493c8
AK
1837}
1838
805903b5
JJ
1839/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1840 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1841 -1 if not known. */
1842
1843int
d9223014 1844get_mem_align_offset (rtx mem, unsigned int align)
805903b5
JJ
1845{
1846 tree expr;
d05d7551 1847 poly_uint64 offset;
805903b5
JJ
1848
1849 /* This function can't use
527210c4 1850 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
e80c2726 1851 || (MAX (MEM_ALIGN (mem),
0eb77834 1852 MAX (align, get_object_alignment (MEM_EXPR (mem))))
805903b5
JJ
1853 < align))
1854 return -1;
1855 else
527210c4 1856 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
805903b5
JJ
1857 for two reasons:
1858 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1859 for <variable>. get_inner_reference doesn't handle it and
1860 even if it did, the alignment in that case needs to be determined
1861 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1862 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1863 isn't sufficiently aligned, the object it is in might be. */
1864 gcc_assert (MEM_P (mem));
1865 expr = MEM_EXPR (mem);
527210c4 1866 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
805903b5
JJ
1867 return -1;
1868
527210c4 1869 offset = MEM_OFFSET (mem);
805903b5
JJ
1870 if (DECL_P (expr))
1871 {
1872 if (DECL_ALIGN (expr) < align)
1873 return -1;
1874 }
1875 else if (INDIRECT_REF_P (expr))
1876 {
1877 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1878 return -1;
1879 }
1880 else if (TREE_CODE (expr) == COMPONENT_REF)
1881 {
1882 while (1)
1883 {
1884 tree inner = TREE_OPERAND (expr, 0);
1885 tree field = TREE_OPERAND (expr, 1);
1886 tree byte_offset = component_ref_field_offset (expr);
1887 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1888
d05d7551 1889 poly_uint64 suboffset;
805903b5 1890 if (!byte_offset
d05d7551 1891 || !poly_int_tree_p (byte_offset, &suboffset)
cc269bb6 1892 || !tree_fits_uhwi_p (bit_offset))
805903b5
JJ
1893 return -1;
1894
d05d7551 1895 offset += suboffset;
ae7e9ddd 1896 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
805903b5
JJ
1897
1898 if (inner == NULL_TREE)
1899 {
1900 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1901 < (unsigned int) align)
1902 return -1;
1903 break;
1904 }
1905 else if (DECL_P (inner))
1906 {
1907 if (DECL_ALIGN (inner) < align)
1908 return -1;
1909 break;
1910 }
1911 else if (TREE_CODE (inner) != COMPONENT_REF)
1912 return -1;
1913 expr = inner;
1914 }
1915 }
1916 else
1917 return -1;
1918
d05d7551
RS
1919 HOST_WIDE_INT misalign;
1920 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1921 return -1;
1922 return misalign;
805903b5
JJ
1923}
1924
6926c713 1925/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1926 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1927 if we are making a new object of this type. BITPOS is nonzero if
1928 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1929
1930void
502b8322 1931set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
d05d7551 1932 poly_int64 bitpos)
173b24b9 1933{
d05d7551 1934 poly_int64 apply_bitpos = 0;
173b24b9 1935 tree type;
99b1c316 1936 class mem_attrs attrs, *defattrs, *refattrs;
f18a7b25 1937 addr_space_t as;
173b24b9
RK
1938
1939 /* It can happen that type_for_mode was given a mode for which there
1940 is no language-level type. In which case it returns NULL, which
1941 we can see here. */
1942 if (t == NULL_TREE)
1943 return;
1944
1945 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1946 if (type == error_mark_node)
1947 return;
173b24b9 1948
173b24b9
RK
1949 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1950 wrong answer, as it assumes that DECL_RTL already has the right alias
1951 info. Callers should not set DECL_RTL until after the call to
1952 set_mem_attributes. */
5b0264cb 1953 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1954
738cc472 1955 /* Get the alias set from the expression or type (perhaps using a
8ac61af7 1956 front-end routine) and use it. */
f12144dd 1957 attrs.alias = get_alias_set (t);
173b24b9 1958
a5e9c810 1959 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
f8ad8d7c 1960 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1961
268f7033 1962 /* Default values from pre-existing memory attributes if present. */
f12144dd
RS
1963 refattrs = MEM_ATTRS (ref);
1964 if (refattrs)
268f7033
UW
1965 {
1966 /* ??? Can this ever happen? Calling this routine on a MEM that
1967 already carries memory attributes should probably be invalid. */
f12144dd 1968 attrs.expr = refattrs->expr;
754c3d5d 1969 attrs.offset_known_p = refattrs->offset_known_p;
f12144dd 1970 attrs.offset = refattrs->offset;
754c3d5d 1971 attrs.size_known_p = refattrs->size_known_p;
f12144dd
RS
1972 attrs.size = refattrs->size;
1973 attrs.align = refattrs->align;
268f7033
UW
1974 }
1975
1976 /* Otherwise, default values from the mode of the MEM reference. */
f12144dd 1977 else
268f7033 1978 {
f12144dd
RS
1979 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1980 gcc_assert (!defattrs->expr);
754c3d5d 1981 gcc_assert (!defattrs->offset_known_p);
f12144dd 1982
268f7033 1983 /* Respect mode size. */
754c3d5d 1984 attrs.size_known_p = defattrs->size_known_p;
f12144dd 1985 attrs.size = defattrs->size;
268f7033
UW
1986 /* ??? Is this really necessary? We probably should always get
1987 the size from the type below. */
1988
1989 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1990 if T is an object, always compute the object alignment below. */
f12144dd
RS
1991 if (TYPE_P (t))
1992 attrs.align = defattrs->align;
1993 else
1994 attrs.align = BITS_PER_UNIT;
268f7033
UW
1995 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1996 e.g. if the type carries an alignment attribute. Should we be
1997 able to simply always use TYPE_ALIGN? */
1998 }
1999
25b75a48
BE
2000 /* We can set the alignment from the type if we are making an object or if
2001 this is an INDIRECT_REF. */
2002 if (objectp || TREE_CODE (t) == INDIRECT_REF)
f12144dd 2003 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
a80903ff 2004
738cc472 2005 /* If the size is known, we can set that. */
a787ccc3 2006 tree new_size = TYPE_SIZE_UNIT (type);
738cc472 2007
30b0317c
RB
2008 /* The address-space is that of the type. */
2009 as = TYPE_ADDR_SPACE (type);
2010
80965c18
RK
2011 /* If T is not a type, we may be able to deduce some more information about
2012 the expression. */
2013 if (! TYPE_P (t))
8ac61af7 2014 {
8476af98 2015 tree base;
389fdba0 2016
8ac61af7
RK
2017 if (TREE_THIS_VOLATILE (t))
2018 MEM_VOLATILE_P (ref) = 1;
173b24b9 2019
c56e3582
RK
2020 /* Now remove any conversions: they don't change what the underlying
2021 object is. Likewise for SAVE_EXPR. */
1043771b 2022 while (CONVERT_EXPR_P (t)
c56e3582
RK
2023 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2024 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
2025 t = TREE_OPERAND (t, 0);
2026
4994da65
RG
2027 /* Note whether this expression can trap. */
2028 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2029
2030 base = get_base_address (t);
f18a7b25
MJ
2031 if (base)
2032 {
2033 if (DECL_P (base)
2034 && TREE_READONLY (base)
2035 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2036 && !TREE_THIS_VOLATILE (base))
2037 MEM_READONLY_P (ref) = 1;
2038
2039 /* Mark static const strings readonly as well. */
2040 if (TREE_CODE (base) == STRING_CST
2041 && TREE_READONLY (base)
2042 && TREE_STATIC (base))
2043 MEM_READONLY_P (ref) = 1;
2044
30b0317c 2045 /* Address-space information is on the base object. */
f18a7b25
MJ
2046 if (TREE_CODE (base) == MEM_REF
2047 || TREE_CODE (base) == TARGET_MEM_REF)
2048 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2049 0))));
2050 else
2051 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2052 }
ba30e50d 2053
2039d7aa
RH
2054 /* If this expression uses it's parent's alias set, mark it such
2055 that we won't change it. */
b4ada065 2056 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
10b76d73
RK
2057 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2058
8ac61af7
RK
2059 /* If this is a decl, set the attributes of the MEM from it. */
2060 if (DECL_P (t))
2061 {
f12144dd 2062 attrs.expr = t;
754c3d5d
RS
2063 attrs.offset_known_p = true;
2064 attrs.offset = 0;
6f1087be 2065 apply_bitpos = bitpos;
a787ccc3 2066 new_size = DECL_SIZE_UNIT (t);
8ac61af7
RK
2067 }
2068
80d6f89e
RB
2069 /* ??? If we end up with a constant or a descriptor do not
2070 record a MEM_EXPR. */
2071 else if (CONSTANT_CLASS_P (t)
2072 || TREE_CODE (t) == CONSTRUCTOR)
30b0317c 2073 ;
998d7deb 2074
a787ccc3
RS
2075 /* If this is a field reference, record it. */
2076 else if (TREE_CODE (t) == COMPONENT_REF)
998d7deb 2077 {
f12144dd 2078 attrs.expr = t;
754c3d5d
RS
2079 attrs.offset_known_p = true;
2080 attrs.offset = 0;
6f1087be 2081 apply_bitpos = bitpos;
a787ccc3
RS
2082 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2083 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
998d7deb
RH
2084 }
2085
80d6f89e
RB
2086 /* Else record it. */
2087 else
56c47f22 2088 {
80d6f89e
RB
2089 gcc_assert (handled_component_p (t)
2090 || TREE_CODE (t) == MEM_REF
2091 || TREE_CODE (t) == TARGET_MEM_REF);
f12144dd 2092 attrs.expr = t;
754c3d5d
RS
2093 attrs.offset_known_p = true;
2094 attrs.offset = 0;
56c47f22
RG
2095 apply_bitpos = bitpos;
2096 }
2097
fa70c221
RB
2098 /* If this is a reference based on a partitioned decl replace the
2099 base with a MEM_REF of the pointer representative we created
2100 during stack slot partitioning. */
2101 if (attrs.expr
2102 && VAR_P (base)
2103 && ! is_global_var (base)
2104 && cfun->gimple_df->decls_to_pointers != NULL)
2105 {
2106 tree *namep = cfun->gimple_df->decls_to_pointers->get (base);
2107 if (namep)
2108 {
2109 attrs.expr = unshare_expr (attrs.expr);
2110 tree *orig_base = &attrs.expr;
2111 while (handled_component_p (*orig_base))
2112 orig_base = &TREE_OPERAND (*orig_base, 0);
2113 tree aptrt = reference_alias_ptr_type (*orig_base);
2114 *orig_base = build2 (MEM_REF, TREE_TYPE (*orig_base), *namep,
2115 build_int_cst (aptrt, 0));
2116 }
2117 }
2118
30b0317c
RB
2119 /* Compute the alignment. */
2120 unsigned int obj_align;
2121 unsigned HOST_WIDE_INT obj_bitpos;
2122 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
d05d7551
RS
2123 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2124 if (diff_align != 0)
2125 obj_align = MIN (obj_align, diff_align);
30b0317c 2126 attrs.align = MAX (attrs.align, obj_align);
8ac61af7
RK
2127 }
2128
d05d7551
RS
2129 poly_uint64 const_size;
2130 if (poly_int_tree_p (new_size, &const_size))
a787ccc3
RS
2131 {
2132 attrs.size_known_p = true;
d05d7551 2133 attrs.size = const_size;
a787ccc3
RS
2134 }
2135
15c812e3 2136 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
2137 bit position offset. Similarly, increase the size of the accessed
2138 object to contain the negative offset. */
d05d7551 2139 if (maybe_ne (apply_bitpos, 0))
8c317c5f 2140 {
754c3d5d 2141 gcc_assert (attrs.offset_known_p);
d05d7551
RS
2142 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2143 attrs.offset -= bytepos;
754c3d5d 2144 if (attrs.size_known_p)
d05d7551 2145 attrs.size += bytepos;
8c317c5f 2146 }
6f1087be 2147
8ac61af7 2148 /* Now set the attributes we computed above. */
f18a7b25 2149 attrs.addrspace = as;
f12144dd 2150 set_mem_attrs (ref, &attrs);
173b24b9
RK
2151}
2152
6f1087be 2153void
502b8322 2154set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
2155{
2156 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2157}
2158
173b24b9
RK
2159/* Set the alias set of MEM to SET. */
2160
2161void
4862826d 2162set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 2163{
173b24b9 2164 /* If the new and old alias sets don't conflict, something is wrong. */
77a74ed7 2165 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
d05d7551 2166 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2167 attrs.alias = set;
2168 set_mem_attrs (mem, &attrs);
09e881c9
BE
2169}
2170
2171/* Set the address space of MEM to ADDRSPACE (target-defined). */
2172
2173void
2174set_mem_addr_space (rtx mem, addr_space_t addrspace)
2175{
d05d7551 2176 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2177 attrs.addrspace = addrspace;
2178 set_mem_attrs (mem, &attrs);
173b24b9 2179}
738cc472 2180
d022d93e 2181/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
2182
2183void
502b8322 2184set_mem_align (rtx mem, unsigned int align)
738cc472 2185{
d05d7551 2186 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2187 attrs.align = align;
2188 set_mem_attrs (mem, &attrs);
738cc472 2189}
1285011e 2190
998d7deb 2191/* Set the expr for MEM to EXPR. */
1285011e
RK
2192
2193void
502b8322 2194set_mem_expr (rtx mem, tree expr)
1285011e 2195{
d05d7551 2196 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2197 attrs.expr = expr;
2198 set_mem_attrs (mem, &attrs);
1285011e 2199}
998d7deb
RH
2200
2201/* Set the offset of MEM to OFFSET. */
2202
2203void
d05d7551 2204set_mem_offset (rtx mem, poly_int64 offset)
998d7deb 2205{
d05d7551 2206 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d
RS
2207 attrs.offset_known_p = true;
2208 attrs.offset = offset;
527210c4
RS
2209 set_mem_attrs (mem, &attrs);
2210}
2211
2212/* Clear the offset of MEM. */
2213
2214void
2215clear_mem_offset (rtx mem)
2216{
d05d7551 2217 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d 2218 attrs.offset_known_p = false;
f12144dd 2219 set_mem_attrs (mem, &attrs);
35aff10b
AM
2220}
2221
2222/* Set the size of MEM to SIZE. */
2223
2224void
d05d7551 2225set_mem_size (rtx mem, poly_int64 size)
35aff10b 2226{
d05d7551 2227 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d
RS
2228 attrs.size_known_p = true;
2229 attrs.size = size;
f5541398
RS
2230 set_mem_attrs (mem, &attrs);
2231}
2232
2233/* Clear the size of MEM. */
2234
2235void
2236clear_mem_size (rtx mem)
2237{
d05d7551 2238 mem_attrs attrs (*get_mem_attrs (mem));
754c3d5d 2239 attrs.size_known_p = false;
f12144dd 2240 set_mem_attrs (mem, &attrs);
998d7deb 2241}
173b24b9 2242\f
738cc472
RK
2243/* Return a memory reference like MEMREF, but with its mode changed to MODE
2244 and its address changed to ADDR. (VOIDmode means don't change the mode.
2245 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
23b33725
RS
2246 returned memory location is required to be valid. INPLACE is true if any
2247 changes can be made directly to MEMREF or false if MEMREF must be treated
2248 as immutable.
2249
2250 The memory attributes are not changed. */
23b2ce53 2251
738cc472 2252static rtx
ef4bddc2 2253change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
23b33725 2254 bool inplace)
23b2ce53 2255{
09e881c9 2256 addr_space_t as;
60564289 2257 rtx new_rtx;
23b2ce53 2258
5b0264cb 2259 gcc_assert (MEM_P (memref));
09e881c9 2260 as = MEM_ADDR_SPACE (memref);
23b2ce53
RS
2261 if (mode == VOIDmode)
2262 mode = GET_MODE (memref);
2263 if (addr == 0)
2264 addr = XEXP (memref, 0);
a74ff877 2265 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
09e881c9 2266 && (!validate || memory_address_addr_space_p (mode, addr, as)))
a74ff877 2267 return memref;
23b2ce53 2268
91c5ee5b
VM
2269 /* Don't validate address for LRA. LRA can make the address valid
2270 by itself in most efficient way. */
2271 if (validate && !lra_in_progress)
23b2ce53 2272 {
f1ec5147 2273 if (reload_in_progress || reload_completed)
09e881c9 2274 gcc_assert (memory_address_addr_space_p (mode, addr, as));
f1ec5147 2275 else
09e881c9 2276 addr = memory_address_addr_space (mode, addr, as);
23b2ce53 2277 }
750c9258 2278
9b04c6a8
RK
2279 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2280 return memref;
2281
23b33725
RS
2282 if (inplace)
2283 {
2284 XEXP (memref, 0) = addr;
2285 return memref;
2286 }
2287
60564289
KG
2288 new_rtx = gen_rtx_MEM (mode, addr);
2289 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2290 return new_rtx;
23b2ce53 2291}
792760b9 2292
738cc472
RK
2293/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2294 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
2295
2296rtx
ef4bddc2 2297change_address (rtx memref, machine_mode mode, rtx addr)
f4ef873c 2298{
23b33725 2299 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
ef4bddc2 2300 machine_mode mmode = GET_MODE (new_rtx);
99b1c316 2301 class mem_attrs *defattrs;
4e44c1ef 2302
d05d7551 2303 mem_attrs attrs (*get_mem_attrs (memref));
f12144dd 2304 defattrs = mode_mem_attrs[(int) mmode];
754c3d5d
RS
2305 attrs.expr = NULL_TREE;
2306 attrs.offset_known_p = false;
2307 attrs.size_known_p = defattrs->size_known_p;
f12144dd
RS
2308 attrs.size = defattrs->size;
2309 attrs.align = defattrs->align;
c2f7bcc3 2310
fdb1c7b3 2311 /* If there are no changes, just return the original memory reference. */
60564289 2312 if (new_rtx == memref)
4e44c1ef 2313 {
f12144dd 2314 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
60564289 2315 return new_rtx;
4e44c1ef 2316
60564289
KG
2317 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2318 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 2319 }
fdb1c7b3 2320
f12144dd 2321 set_mem_attrs (new_rtx, &attrs);
60564289 2322 return new_rtx;
f4ef873c 2323}
792760b9 2324
738cc472
RK
2325/* Return a memory reference like MEMREF, but with its mode changed
2326 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6 2327 nonzero, the memory address is forced to be valid.
5ef0b50d
EB
2328 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2329 and the caller is responsible for adjusting MEMREF base register.
2330 If ADJUST_OBJECT is zero, the underlying object associated with the
2331 memory reference is left unchanged and the caller is responsible for
2332 dealing with it. Otherwise, if the new memory reference is outside
5f2cbd0d
RS
2333 the underlying object, even partially, then the object is dropped.
2334 SIZE, if nonzero, is the size of an access in cases where MODE
2335 has no inherent size. */
f1ec5147
RK
2336
2337rtx
d05d7551 2338adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
5f2cbd0d 2339 int validate, int adjust_address, int adjust_object,
d05d7551 2340 poly_int64 size)
f1ec5147 2341{
823e3574 2342 rtx addr = XEXP (memref, 0);
60564289 2343 rtx new_rtx;
095a2d76 2344 scalar_int_mode address_mode;
99b1c316 2345 class mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
f12144dd 2346 unsigned HOST_WIDE_INT max_align;
0207fa90 2347#ifdef POINTERS_EXTEND_UNSIGNED
095a2d76 2348 scalar_int_mode pointer_mode
0207fa90
EB
2349 = targetm.addr_space.pointer_mode (attrs.addrspace);
2350#endif
823e3574 2351
ee88e690
EB
2352 /* VOIDmode means no mode change for change_address_1. */
2353 if (mode == VOIDmode)
2354 mode = GET_MODE (memref);
2355
5f2cbd0d
RS
2356 /* Take the size of non-BLKmode accesses from the mode. */
2357 defattrs = mode_mem_attrs[(int) mode];
2358 if (defattrs->size_known_p)
2359 size = defattrs->size;
2360
fdb1c7b3 2361 /* If there are no changes, just return the original memory reference. */
d05d7551
RS
2362 if (mode == GET_MODE (memref)
2363 && known_eq (offset, 0)
2364 && (known_eq (size, 0)
2365 || (attrs.size_known_p && known_eq (attrs.size, size)))
f12144dd
RS
2366 && (!validate || memory_address_addr_space_p (mode, addr,
2367 attrs.addrspace)))
fdb1c7b3
JH
2368 return memref;
2369
d14419e4 2370 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2371 This may happen even if offset is nonzero -- consider
d14419e4
RH
2372 (plus (plus reg reg) const_int) -- so do this always. */
2373 addr = copy_rtx (addr);
2374
a6fe9ed4
JM
2375 /* Convert a possibly large offset to a signed value within the
2376 range of the target address space. */
372d6395 2377 address_mode = get_address_mode (memref);
d05d7551 2378 offset = trunc_int_for_mode (offset, address_mode);
a6fe9ed4 2379
5ef0b50d 2380 if (adjust_address)
4a78c787
RH
2381 {
2382 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2383 object, we can merge it into the LO_SUM. */
d05d7551
RS
2384 if (GET_MODE (memref) != BLKmode
2385 && GET_CODE (addr) == LO_SUM
2386 && known_in_range_p (offset,
2387 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2388 / BITS_PER_UNIT)))
d4ebfa65 2389 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
0a81f074
RS
2390 plus_constant (address_mode,
2391 XEXP (addr, 1), offset));
0207fa90
EB
2392#ifdef POINTERS_EXTEND_UNSIGNED
2393 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2394 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2395 the fact that pointers are not allowed to overflow. */
2396 else if (POINTERS_EXTEND_UNSIGNED > 0
2397 && GET_CODE (addr) == ZERO_EXTEND
2398 && GET_MODE (XEXP (addr, 0)) == pointer_mode
d05d7551 2399 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
0207fa90
EB
2400 addr = gen_rtx_ZERO_EXTEND (address_mode,
2401 plus_constant (pointer_mode,
2402 XEXP (addr, 0), offset));
2403#endif
4a78c787 2404 else
0a81f074 2405 addr = plus_constant (address_mode, addr, offset);
4a78c787 2406 }
823e3574 2407
23b33725 2408 new_rtx = change_address_1 (memref, mode, addr, validate, false);
738cc472 2409
09efeca1
PB
2410 /* If the address is a REG, change_address_1 rightfully returns memref,
2411 but this would destroy memref's MEM_ATTRS. */
d05d7551 2412 if (new_rtx == memref && maybe_ne (offset, 0))
09efeca1
PB
2413 new_rtx = copy_rtx (new_rtx);
2414
5ef0b50d
EB
2415 /* Conservatively drop the object if we don't know where we start from. */
2416 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2417 {
2418 attrs.expr = NULL_TREE;
2419 attrs.alias = 0;
2420 }
2421
738cc472
RK
2422 /* Compute the new values of the memory attributes due to this adjustment.
2423 We add the offsets and update the alignment. */
754c3d5d 2424 if (attrs.offset_known_p)
5ef0b50d
EB
2425 {
2426 attrs.offset += offset;
2427
2428 /* Drop the object if the new left end is not within its bounds. */
d05d7551 2429 if (adjust_object && maybe_lt (attrs.offset, 0))
5ef0b50d
EB
2430 {
2431 attrs.expr = NULL_TREE;
2432 attrs.alias = 0;
2433 }
2434 }
738cc472 2435
03bf2c23
RK
2436 /* Compute the new alignment by taking the MIN of the alignment and the
2437 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2438 if zero. */
d05d7551 2439 if (maybe_ne (offset, 0))
f12144dd 2440 {
d05d7551 2441 max_align = known_alignment (offset) * BITS_PER_UNIT;
f12144dd
RS
2442 attrs.align = MIN (attrs.align, max_align);
2443 }
738cc472 2444
d05d7551 2445 if (maybe_ne (size, 0))
754c3d5d 2446 {
5ef0b50d 2447 /* Drop the object if the new right end is not within its bounds. */
d05d7551 2448 if (adjust_object && maybe_gt (offset + size, attrs.size))
5ef0b50d
EB
2449 {
2450 attrs.expr = NULL_TREE;
2451 attrs.alias = 0;
2452 }
754c3d5d 2453 attrs.size_known_p = true;
5f2cbd0d 2454 attrs.size = size;
754c3d5d
RS
2455 }
2456 else if (attrs.size_known_p)
5ef0b50d 2457 {
5f2cbd0d 2458 gcc_assert (!adjust_object);
5ef0b50d 2459 attrs.size -= offset;
5f2cbd0d
RS
2460 /* ??? The store_by_pieces machinery generates negative sizes,
2461 so don't assert for that here. */
5ef0b50d 2462 }
10b76d73 2463
f12144dd 2464 set_mem_attrs (new_rtx, &attrs);
738cc472 2465
60564289 2466 return new_rtx;
f1ec5147
RK
2467}
2468
630036c6
JJ
2469/* Return a memory reference like MEMREF, but with its mode changed
2470 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 2471 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2472 nonzero, the memory address is forced to be valid. */
2473
2474rtx
ef4bddc2 2475adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
d05d7551 2476 poly_int64 offset, int validate)
630036c6 2477{
23b33725 2478 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
5f2cbd0d 2479 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
630036c6
JJ
2480}
2481
8ac61af7
RK
2482/* Return a memory reference like MEMREF, but whose address is changed by
2483 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2484 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2485
2486rtx
502b8322 2487offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2488{
60564289 2489 rtx new_rtx, addr = XEXP (memref, 0);
ef4bddc2 2490 machine_mode address_mode;
99b1c316 2491 class mem_attrs *defattrs;
e3c8ea67 2492
d05d7551 2493 mem_attrs attrs (*get_mem_attrs (memref));
372d6395 2494 address_mode = get_address_mode (memref);
d4ebfa65 2495 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67 2496
68252e27 2497 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2498 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2499
2500 However, if we did go and rearrange things, we can wind up not
2501 being able to recognize the magic around pic_offset_table_rtx.
2502 This stuff is fragile, and is yet another example of why it is
2503 bad to expose PIC machinery too early. */
f12144dd
RS
2504 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2505 attrs.addrspace)
e3c8ea67
RH
2506 && GET_CODE (addr) == PLUS
2507 && XEXP (addr, 0) == pic_offset_table_rtx)
2508 {
2509 addr = force_reg (GET_MODE (addr), addr);
d4ebfa65 2510 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67
RH
2511 }
2512
60564289 2513 update_temp_slot_address (XEXP (memref, 0), new_rtx);
23b33725 2514 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
0d4903b8 2515
fdb1c7b3 2516 /* If there are no changes, just return the original memory reference. */
60564289
KG
2517 if (new_rtx == memref)
2518 return new_rtx;
fdb1c7b3 2519
0d4903b8
RK
2520 /* Update the alignment to reflect the offset. Reset the offset, which
2521 we don't know. */
754c3d5d
RS
2522 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2523 attrs.offset_known_p = false;
2524 attrs.size_known_p = defattrs->size_known_p;
2525 attrs.size = defattrs->size;
f12144dd
RS
2526 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2527 set_mem_attrs (new_rtx, &attrs);
60564289 2528 return new_rtx;
0d4903b8 2529}
68252e27 2530
792760b9
RK
2531/* Return a memory reference like MEMREF, but with its address changed to
2532 ADDR. The caller is asserting that the actual piece of memory pointed
2533 to is the same, just the form of the address is being changed, such as
23b33725
RS
2534 by putting something into a register. INPLACE is true if any changes
2535 can be made directly to MEMREF or false if MEMREF must be treated as
2536 immutable. */
792760b9
RK
2537
2538rtx
23b33725 2539replace_equiv_address (rtx memref, rtx addr, bool inplace)
792760b9 2540{
738cc472
RK
2541 /* change_address_1 copies the memory attribute structure without change
2542 and that's exactly what we want here. */
40c0668b 2543 update_temp_slot_address (XEXP (memref, 0), addr);
23b33725 2544 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
792760b9 2545}
738cc472 2546
f1ec5147
RK
2547/* Likewise, but the reference is not required to be valid. */
2548
2549rtx
23b33725 2550replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
f1ec5147 2551{
23b33725 2552 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
f1ec5147 2553}
e7dfe4bb
RH
2554
2555/* Return a memory reference like MEMREF, but with its mode widened to
2556 MODE and offset by OFFSET. This would be used by targets that e.g.
2557 cannot issue QImode memory operations and have to use SImode memory
2558 operations plus masking logic. */
2559
2560rtx
d05d7551 2561widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
e7dfe4bb 2562{
5f2cbd0d 2563 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
cf098191 2564 poly_uint64 size = GET_MODE_SIZE (mode);
e7dfe4bb 2565
fdb1c7b3 2566 /* If there are no changes, just return the original memory reference. */
60564289
KG
2567 if (new_rtx == memref)
2568 return new_rtx;
fdb1c7b3 2569
d05d7551 2570 mem_attrs attrs (*get_mem_attrs (new_rtx));
f12144dd 2571
e7dfe4bb
RH
2572 /* If we don't know what offset we were at within the expression, then
2573 we can't know if we've overstepped the bounds. */
754c3d5d 2574 if (! attrs.offset_known_p)
f12144dd 2575 attrs.expr = NULL_TREE;
e7dfe4bb 2576
f12144dd 2577 while (attrs.expr)
e7dfe4bb 2578 {
f12144dd 2579 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
e7dfe4bb 2580 {
f12144dd
RS
2581 tree field = TREE_OPERAND (attrs.expr, 1);
2582 tree offset = component_ref_field_offset (attrs.expr);
e7dfe4bb
RH
2583
2584 if (! DECL_SIZE_UNIT (field))
2585 {
f12144dd 2586 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2587 break;
2588 }
2589
2590 /* Is the field at least as large as the access? If so, ok,
2591 otherwise strip back to the containing structure. */
d05d7551
RS
2592 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2593 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2594 && known_ge (attrs.offset, 0))
e7dfe4bb
RH
2595 break;
2596
d05d7551
RS
2597 poly_uint64 suboffset;
2598 if (!poly_int_tree_p (offset, &suboffset))
e7dfe4bb 2599 {
f12144dd 2600 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2601 break;
2602 }
2603
f12144dd 2604 attrs.expr = TREE_OPERAND (attrs.expr, 0);
d05d7551 2605 attrs.offset += suboffset;
ae7e9ddd 2606 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
754c3d5d 2607 / BITS_PER_UNIT);
e7dfe4bb
RH
2608 }
2609 /* Similarly for the decl. */
f12144dd
RS
2610 else if (DECL_P (attrs.expr)
2611 && DECL_SIZE_UNIT (attrs.expr)
d05d7551
RS
2612 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2613 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2614 size)
2615 && known_ge (attrs.offset, 0))
e7dfe4bb
RH
2616 break;
2617 else
2618 {
2619 /* The widened memory access overflows the expression, which means
2620 that it could alias another expression. Zap it. */
f12144dd 2621 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2622 break;
2623 }
2624 }
2625
f12144dd 2626 if (! attrs.expr)
754c3d5d 2627 attrs.offset_known_p = false;
e7dfe4bb
RH
2628
2629 /* The widened memory may alias other stuff, so zap the alias set. */
2630 /* ??? Maybe use get_alias_set on any remaining expression. */
f12144dd 2631 attrs.alias = 0;
754c3d5d
RS
2632 attrs.size_known_p = true;
2633 attrs.size = size;
f12144dd 2634 set_mem_attrs (new_rtx, &attrs);
60564289 2635 return new_rtx;
e7dfe4bb 2636}
23b2ce53 2637\f
f6129d66
RH
2638/* A fake decl that is used as the MEM_EXPR of spill slots. */
2639static GTY(()) tree spill_slot_decl;
2640
3d7e23f6
RH
2641tree
2642get_spill_slot_decl (bool force_build_p)
f6129d66
RH
2643{
2644 tree d = spill_slot_decl;
2645 rtx rd;
2646
3d7e23f6 2647 if (d || !force_build_p)
f6129d66
RH
2648 return d;
2649
c2255bc4
AH
2650 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2651 VAR_DECL, get_identifier ("%sfp"), void_type_node);
f6129d66
RH
2652 DECL_ARTIFICIAL (d) = 1;
2653 DECL_IGNORED_P (d) = 1;
2654 TREE_USED (d) = 1;
f6129d66
RH
2655 spill_slot_decl = d;
2656
2657 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2658 MEM_NOTRAP_P (rd) = 1;
d05d7551 2659 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
f12144dd
RS
2660 attrs.alias = new_alias_set ();
2661 attrs.expr = d;
2662 set_mem_attrs (rd, &attrs);
f6129d66
RH
2663 SET_DECL_RTL (d, rd);
2664
2665 return d;
2666}
2667
2668/* Given MEM, a result from assign_stack_local, fill in the memory
2669 attributes as appropriate for a register allocator spill slot.
2670 These slots are not aliasable by other memory. We arrange for
2671 them all to use a single MEM_EXPR, so that the aliasing code can
2672 work properly in the case of shared spill slots. */
2673
2674void
2675set_mem_attrs_for_spill (rtx mem)
2676{
f12144dd 2677 rtx addr;
f6129d66 2678
d05d7551 2679 mem_attrs attrs (*get_mem_attrs (mem));
f12144dd
RS
2680 attrs.expr = get_spill_slot_decl (true);
2681 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2682 attrs.addrspace = ADDR_SPACE_GENERIC;
f6129d66
RH
2683
2684 /* We expect the incoming memory to be of the form:
2685 (mem:MODE (plus (reg sfp) (const_int offset)))
2686 with perhaps the plus missing for offset = 0. */
2687 addr = XEXP (mem, 0);
754c3d5d 2688 attrs.offset_known_p = true;
d05d7551 2689 strip_offset (addr, &attrs.offset);
f6129d66 2690
f12144dd 2691 set_mem_attrs (mem, &attrs);
f6129d66
RH
2692 MEM_NOTRAP_P (mem) = 1;
2693}
2694\f
23b2ce53
RS
2695/* Return a newly created CODE_LABEL rtx with a unique label number. */
2696
7dcc3ab5 2697rtx_code_label *
502b8322 2698gen_label_rtx (void)
23b2ce53 2699{
7dcc3ab5
DM
2700 return as_a <rtx_code_label *> (
2701 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2702 NULL, label_num++, NULL));
23b2ce53
RS
2703}
2704\f
2705/* For procedure integration. */
2706
23b2ce53 2707/* Install new pointers to the first and last insns in the chain.
86fe05e0 2708 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2709 Used for an inline-procedure after copying the insn chain. */
2710
2711void
fee3e72c 2712set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
23b2ce53 2713{
fee3e72c 2714 rtx_insn *insn;
86fe05e0 2715
5936d944
JH
2716 set_first_insn (first);
2717 set_last_insn (last);
86fe05e0
RK
2718 cur_insn_uid = 0;
2719
028d4092 2720 if (param_min_nondebug_insn_uid || MAY_HAVE_DEBUG_INSNS)
b5b8b0ac
AO
2721 {
2722 int debug_count = 0;
2723
028d4092 2724 cur_insn_uid = param_min_nondebug_insn_uid - 1;
b5b8b0ac
AO
2725 cur_debug_insn_uid = 0;
2726
2727 for (insn = first; insn; insn = NEXT_INSN (insn))
028d4092 2728 if (INSN_UID (insn) < param_min_nondebug_insn_uid)
b5b8b0ac
AO
2729 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2730 else
2731 {
2732 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2733 if (DEBUG_INSN_P (insn))
2734 debug_count++;
2735 }
2736
2737 if (debug_count)
028d4092 2738 cur_debug_insn_uid = param_min_nondebug_insn_uid + debug_count;
b5b8b0ac
AO
2739 else
2740 cur_debug_insn_uid++;
2741 }
2742 else
2743 for (insn = first; insn; insn = NEXT_INSN (insn))
2744 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
86fe05e0
RK
2745
2746 cur_insn_uid++;
23b2ce53 2747}
23b2ce53 2748\f
750c9258 2749/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2750 structure. This routine should only be called once. */
23b2ce53 2751
fd743bc1 2752static void
6bb9bf63 2753unshare_all_rtl_1 (rtx_insn *insn)
23b2ce53 2754{
d1b81779 2755 /* Unshare just about everything else. */
2c07f13b 2756 unshare_all_rtl_in_chain (insn);
750c9258 2757
23b2ce53
RS
2758 /* Make sure the addresses of stack slots found outside the insn chain
2759 (such as, in DECL_RTL of a variable) are not shared
2760 with the insn chain.
2761
2762 This special care is necessary when the stack slot MEM does not
2763 actually appear in the insn chain. If it does appear, its address
2764 is unshared from all else at that point. */
8c39f8ae
TS
2765 unsigned int i;
2766 rtx temp;
2767 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2768 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
23b2ce53
RS
2769}
2770
750c9258 2771/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2772 structure, again. This is a fairly expensive thing to do so it
2773 should be done sparingly. */
2774
2775void
6bb9bf63 2776unshare_all_rtl_again (rtx_insn *insn)
d1b81779 2777{
6bb9bf63 2778 rtx_insn *p;
624c87aa
RE
2779 tree decl;
2780
d1b81779 2781 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2782 if (INSN_P (p))
d1b81779
GK
2783 {
2784 reset_used_flags (PATTERN (p));
2785 reset_used_flags (REG_NOTES (p));
776bebcd
JJ
2786 if (CALL_P (p))
2787 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
d1b81779 2788 }
624c87aa 2789
2d4aecb3 2790 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2791 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2792
624c87aa 2793 /* Make sure that virtual parameters are not shared. */
910ad8de 2794 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
5eb2a9f2 2795 set_used_flags (DECL_RTL (decl));
624c87aa 2796
8c39f8ae
TS
2797 rtx temp;
2798 unsigned int i;
2799 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2800 reset_used_flags (temp);
624c87aa 2801
b4aaa77b 2802 unshare_all_rtl_1 (insn);
fd743bc1
PB
2803}
2804
c2924966 2805unsigned int
fd743bc1
PB
2806unshare_all_rtl (void)
2807{
b4aaa77b 2808 unshare_all_rtl_1 (get_insns ());
60ebe8ce
JJ
2809
2810 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2811 {
2812 if (DECL_RTL_SET_P (decl))
2813 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2814 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2815 }
2816
c2924966 2817 return 0;
d1b81779
GK
2818}
2819
ef330312 2820
2c07f13b
JH
2821/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2822 Recursively does the same for subexpressions. */
2823
2824static void
2825verify_rtx_sharing (rtx orig, rtx insn)
2826{
2827 rtx x = orig;
2828 int i;
2829 enum rtx_code code;
2830 const char *format_ptr;
2831
2832 if (x == 0)
2833 return;
2834
2835 code = GET_CODE (x);
2836
2837 /* These types may be freely shared. */
2838
2839 switch (code)
2840 {
2841 case REG:
0ca5af51
AO
2842 case DEBUG_EXPR:
2843 case VALUE:
d8116890 2844 CASE_CONST_ANY:
2c07f13b
JH
2845 case SYMBOL_REF:
2846 case LABEL_REF:
2847 case CODE_LABEL:
2848 case PC:
3810076b 2849 case RETURN:
26898771 2850 case SIMPLE_RETURN:
2c07f13b 2851 case SCRATCH:
3e89ed8d 2852 /* SCRATCH must be shared because they represent distinct values. */
c5c5ba89 2853 return;
3e89ed8d 2854 case CLOBBER:
bd1cd0d0 2855 /* Share clobbers of hard registers, but do not share pseudo reg
c5c5ba89
JH
2856 clobbers or clobbers of hard registers that originated as pseudos.
2857 This is needed to allow safe register renaming. */
d7ae3739
EB
2858 if (REG_P (XEXP (x, 0))
2859 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2860 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3e89ed8d
JH
2861 return;
2862 break;
2c07f13b
JH
2863
2864 case CONST:
6fb5fa3c 2865 if (shared_const_p (orig))
2c07f13b
JH
2866 return;
2867 break;
2868
2869 case MEM:
2870 /* A MEM is allowed to be shared if its address is constant. */
2871 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2872 || reload_completed || reload_in_progress)
2873 return;
2874
2875 break;
2876
2877 default:
2878 break;
2879 }
2880
2881 /* This rtx may not be shared. If it has already been seen,
2882 replace it with a copy of itself. */
b2b29377 2883 if (flag_checking && RTX_FLAG (x, used))
2c07f13b 2884 {
ab532386 2885 error ("invalid rtl sharing found in the insn");
2c07f13b 2886 debug_rtx (insn);
ab532386 2887 error ("shared rtx");
2c07f13b 2888 debug_rtx (x);
ab532386 2889 internal_error ("internal consistency failure");
2c07f13b 2890 }
1a2caa7a 2891 gcc_assert (!RTX_FLAG (x, used));
b8698a0f 2892
2c07f13b
JH
2893 RTX_FLAG (x, used) = 1;
2894
6614fd40 2895 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2896
2897 format_ptr = GET_RTX_FORMAT (code);
2898
2899 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2900 {
2901 switch (*format_ptr++)
2902 {
2903 case 'e':
2904 verify_rtx_sharing (XEXP (x, i), insn);
2905 break;
2906
2907 case 'E':
2908 if (XVEC (x, i) != NULL)
2909 {
2910 int j;
2911 int len = XVECLEN (x, i);
2912
2913 for (j = 0; j < len; j++)
2914 {
1a2caa7a
NS
2915 /* We allow sharing of ASM_OPERANDS inside single
2916 instruction. */
2c07f13b 2917 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2918 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2919 == ASM_OPERANDS))
2c07f13b
JH
2920 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2921 else
2922 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2923 }
2924 }
2925 break;
2926 }
2927 }
2928 return;
2929}
2930
0e0f87d4
SB
2931/* Reset used-flags for INSN. */
2932
2933static void
2934reset_insn_used_flags (rtx insn)
2935{
2936 gcc_assert (INSN_P (insn));
2937 reset_used_flags (PATTERN (insn));
2938 reset_used_flags (REG_NOTES (insn));
2939 if (CALL_P (insn))
2940 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2941}
2942
a24243a0 2943/* Go through all the RTL insn bodies and clear all the USED bits. */
2c07f13b 2944
a24243a0
AK
2945static void
2946reset_all_used_flags (void)
2c07f13b 2947{
dc01c3d1 2948 rtx_insn *p;
2c07f13b
JH
2949
2950 for (p = get_insns (); p; p = NEXT_INSN (p))
2951 if (INSN_P (p))
2952 {
0e0f87d4
SB
2953 rtx pat = PATTERN (p);
2954 if (GET_CODE (pat) != SEQUENCE)
2955 reset_insn_used_flags (p);
2956 else
2954a813 2957 {
0e0f87d4
SB
2958 gcc_assert (REG_NOTES (p) == NULL);
2959 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
2960 {
2961 rtx insn = XVECEXP (pat, 0, i);
2962 if (INSN_P (insn))
2963 reset_insn_used_flags (insn);
2964 }
2954a813 2965 }
2c07f13b 2966 }
a24243a0
AK
2967}
2968
0e0f87d4
SB
2969/* Verify sharing in INSN. */
2970
2971static void
2972verify_insn_sharing (rtx insn)
2973{
2974 gcc_assert (INSN_P (insn));
4b498f72
JJ
2975 verify_rtx_sharing (PATTERN (insn), insn);
2976 verify_rtx_sharing (REG_NOTES (insn), insn);
0e0f87d4 2977 if (CALL_P (insn))
4b498f72 2978 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
0e0f87d4
SB
2979}
2980
a24243a0
AK
2981/* Go through all the RTL insn bodies and check that there is no unexpected
2982 sharing in between the subexpressions. */
2983
2984DEBUG_FUNCTION void
2985verify_rtl_sharing (void)
2986{
dc01c3d1 2987 rtx_insn *p;
a24243a0
AK
2988
2989 timevar_push (TV_VERIFY_RTL_SHARING);
2990
2991 reset_all_used_flags ();
2c07f13b
JH
2992
2993 for (p = get_insns (); p; p = NEXT_INSN (p))
2994 if (INSN_P (p))
2995 {
0e0f87d4
SB
2996 rtx pat = PATTERN (p);
2997 if (GET_CODE (pat) != SEQUENCE)
2998 verify_insn_sharing (p);
2999 else
3000 for (int i = 0; i < XVECLEN (pat, 0); i++)
748e88da
JDA
3001 {
3002 rtx insn = XVECEXP (pat, 0, i);
3003 if (INSN_P (insn))
3004 verify_insn_sharing (insn);
3005 }
2c07f13b 3006 }
a222c01a 3007
a24243a0
AK
3008 reset_all_used_flags ();
3009
a222c01a 3010 timevar_pop (TV_VERIFY_RTL_SHARING);
2c07f13b
JH
3011}
3012
d1b81779
GK
3013/* Go through all the RTL insn bodies and copy any invalid shared structure.
3014 Assumes the mark bits are cleared at entry. */
3015
2c07f13b 3016void
dc01c3d1 3017unshare_all_rtl_in_chain (rtx_insn *insn)
d1b81779
GK
3018{
3019 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 3020 if (INSN_P (insn))
d1b81779
GK
3021 {
3022 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3023 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
776bebcd
JJ
3024 if (CALL_P (insn))
3025 CALL_INSN_FUNCTION_USAGE (insn)
3026 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
d1b81779
GK
3027 }
3028}
3029
2d4aecb3 3030/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
3031 shared. We never replace the DECL_RTLs themselves with a copy,
3032 but expressions mentioned into a DECL_RTL cannot be shared with
3033 expressions in the instruction stream.
3034
3035 Note that reload may convert pseudo registers into memories in-place.
3036 Pseudo registers are always shared, but MEMs never are. Thus if we
3037 reset the used flags on MEMs in the instruction stream, we must set
3038 them again on MEMs that appear in DECL_RTLs. */
3039
2d4aecb3 3040static void
5eb2a9f2 3041set_used_decls (tree blk)
2d4aecb3
AO
3042{
3043 tree t;
3044
3045 /* Mark decls. */
910ad8de 3046 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
19e7881c 3047 if (DECL_RTL_SET_P (t))
5eb2a9f2 3048 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
3049
3050 /* Now process sub-blocks. */
87caf699 3051 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 3052 set_used_decls (t);
2d4aecb3
AO
3053}
3054
23b2ce53 3055/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
3056 Recursively does the same for subexpressions. Uses
3057 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
3058
3059rtx
502b8322 3060copy_rtx_if_shared (rtx orig)
23b2ce53 3061{
32b32b16
AP
3062 copy_rtx_if_shared_1 (&orig);
3063 return orig;
3064}
3065
ff954f39
AP
3066/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3067 use. Recursively does the same for subexpressions. */
3068
32b32b16
AP
3069static void
3070copy_rtx_if_shared_1 (rtx *orig1)
3071{
3072 rtx x;
b3694847
SS
3073 int i;
3074 enum rtx_code code;
32b32b16 3075 rtx *last_ptr;
b3694847 3076 const char *format_ptr;
23b2ce53 3077 int copied = 0;
32b32b16
AP
3078 int length;
3079
3080 /* Repeat is used to turn tail-recursion into iteration. */
3081repeat:
3082 x = *orig1;
23b2ce53
RS
3083
3084 if (x == 0)
32b32b16 3085 return;
23b2ce53
RS
3086
3087 code = GET_CODE (x);
3088
3089 /* These types may be freely shared. */
3090
3091 switch (code)
3092 {
3093 case REG:
0ca5af51
AO
3094 case DEBUG_EXPR:
3095 case VALUE:
d8116890 3096 CASE_CONST_ANY:
23b2ce53 3097 case SYMBOL_REF:
2c07f13b 3098 case LABEL_REF:
23b2ce53
RS
3099 case CODE_LABEL:
3100 case PC:
276e0224 3101 case RETURN:
26898771 3102 case SIMPLE_RETURN:
23b2ce53 3103 case SCRATCH:
0f41302f 3104 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 3105 return;
3e89ed8d 3106 case CLOBBER:
bd1cd0d0 3107 /* Share clobbers of hard registers, but do not share pseudo reg
c5c5ba89
JH
3108 clobbers or clobbers of hard registers that originated as pseudos.
3109 This is needed to allow safe register renaming. */
d7ae3739
EB
3110 if (REG_P (XEXP (x, 0))
3111 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3112 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
3e89ed8d
JH
3113 return;
3114 break;
23b2ce53 3115
b851ea09 3116 case CONST:
6fb5fa3c 3117 if (shared_const_p (x))
32b32b16 3118 return;
b851ea09
RK
3119 break;
3120
b5b8b0ac 3121 case DEBUG_INSN:
23b2ce53
RS
3122 case INSN:
3123 case JUMP_INSN:
3124 case CALL_INSN:
3125 case NOTE:
23b2ce53
RS
3126 case BARRIER:
3127 /* The chain of insns is not being copied. */
32b32b16 3128 return;
23b2ce53 3129
e9a25f70
JL
3130 default:
3131 break;
23b2ce53
RS
3132 }
3133
3134 /* This rtx may not be shared. If it has already been seen,
3135 replace it with a copy of itself. */
3136
2adc7f12 3137 if (RTX_FLAG (x, used))
23b2ce53 3138 {
aacd3885 3139 x = shallow_copy_rtx (x);
23b2ce53
RS
3140 copied = 1;
3141 }
2adc7f12 3142 RTX_FLAG (x, used) = 1;
23b2ce53
RS
3143
3144 /* Now scan the subexpressions recursively.
3145 We can store any replaced subexpressions directly into X
3146 since we know X is not shared! Any vectors in X
3147 must be copied if X was copied. */
3148
3149 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
3150 length = GET_RTX_LENGTH (code);
3151 last_ptr = NULL;
b8698a0f 3152
32b32b16 3153 for (i = 0; i < length; i++)
23b2ce53
RS
3154 {
3155 switch (*format_ptr++)
3156 {
3157 case 'e':
32b32b16
AP
3158 if (last_ptr)
3159 copy_rtx_if_shared_1 (last_ptr);
3160 last_ptr = &XEXP (x, i);
23b2ce53
RS
3161 break;
3162
3163 case 'E':
3164 if (XVEC (x, i) != NULL)
3165 {
b3694847 3166 int j;
f0722107 3167 int len = XVECLEN (x, i);
b8698a0f 3168
6614fd40
KH
3169 /* Copy the vector iff I copied the rtx and the length
3170 is nonzero. */
f0722107 3171 if (copied && len > 0)
8f985ec4 3172 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
b8698a0f 3173
5d3cc252 3174 /* Call recursively on all inside the vector. */
f0722107 3175 for (j = 0; j < len; j++)
32b32b16
AP
3176 {
3177 if (last_ptr)
3178 copy_rtx_if_shared_1 (last_ptr);
3179 last_ptr = &XVECEXP (x, i, j);
3180 }
23b2ce53
RS
3181 }
3182 break;
3183 }
3184 }
32b32b16
AP
3185 *orig1 = x;
3186 if (last_ptr)
3187 {
3188 orig1 = last_ptr;
3189 goto repeat;
3190 }
3191 return;
23b2ce53
RS
3192}
3193
76369a82 3194/* Set the USED bit in X and its non-shareable subparts to FLAG. */
23b2ce53 3195
76369a82
NF
3196static void
3197mark_used_flags (rtx x, int flag)
23b2ce53 3198{
b3694847
SS
3199 int i, j;
3200 enum rtx_code code;
3201 const char *format_ptr;
32b32b16 3202 int length;
23b2ce53 3203
32b32b16
AP
3204 /* Repeat is used to turn tail-recursion into iteration. */
3205repeat:
23b2ce53
RS
3206 if (x == 0)
3207 return;
3208
3209 code = GET_CODE (x);
3210
9faa82d8 3211 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
3212 for them. */
3213
3214 switch (code)
3215 {
3216 case REG:
0ca5af51
AO
3217 case DEBUG_EXPR:
3218 case VALUE:
d8116890 3219 CASE_CONST_ANY:
23b2ce53
RS
3220 case SYMBOL_REF:
3221 case CODE_LABEL:
3222 case PC:
276e0224 3223 case RETURN:
26898771 3224 case SIMPLE_RETURN:
23b2ce53
RS
3225 return;
3226
b5b8b0ac 3227 case DEBUG_INSN:
23b2ce53
RS
3228 case INSN:
3229 case JUMP_INSN:
3230 case CALL_INSN:
3231 case NOTE:
3232 case LABEL_REF:
3233 case BARRIER:
3234 /* The chain of insns is not being copied. */
3235 return;
750c9258 3236
e9a25f70
JL
3237 default:
3238 break;
23b2ce53
RS
3239 }
3240
76369a82 3241 RTX_FLAG (x, used) = flag;
23b2ce53
RS
3242
3243 format_ptr = GET_RTX_FORMAT (code);
32b32b16 3244 length = GET_RTX_LENGTH (code);
b8698a0f 3245
32b32b16 3246 for (i = 0; i < length; i++)
23b2ce53
RS
3247 {
3248 switch (*format_ptr++)
3249 {
3250 case 'e':
32b32b16
AP
3251 if (i == length-1)
3252 {
3253 x = XEXP (x, i);
3254 goto repeat;
3255 }
76369a82 3256 mark_used_flags (XEXP (x, i), flag);
23b2ce53
RS
3257 break;
3258
3259 case 'E':
3260 for (j = 0; j < XVECLEN (x, i); j++)
76369a82 3261 mark_used_flags (XVECEXP (x, i, j), flag);
23b2ce53
RS
3262 break;
3263 }
3264 }
3265}
2c07f13b 3266
76369a82 3267/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2c07f13b
JH
3268 to look for shared sub-parts. */
3269
3270void
76369a82 3271reset_used_flags (rtx x)
2c07f13b 3272{
76369a82
NF
3273 mark_used_flags (x, 0);
3274}
2c07f13b 3275
76369a82
NF
3276/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3277 to look for shared sub-parts. */
2c07f13b 3278
76369a82
NF
3279void
3280set_used_flags (rtx x)
3281{
3282 mark_used_flags (x, 1);
2c07f13b 3283}
23b2ce53
RS
3284\f
3285/* Copy X if necessary so that it won't be altered by changes in OTHER.
3286 Return X or the rtx for the pseudo reg the value of X was copied into.
3287 OTHER must be valid as a SET_DEST. */
3288
3289rtx
502b8322 3290make_safe_from (rtx x, rtx other)
23b2ce53
RS
3291{
3292 while (1)
3293 switch (GET_CODE (other))
3294 {
3295 case SUBREG:
3296 other = SUBREG_REG (other);
3297 break;
3298 case STRICT_LOW_PART:
3299 case SIGN_EXTEND:
3300 case ZERO_EXTEND:
3301 other = XEXP (other, 0);
3302 break;
3303 default:
3304 goto done;
3305 }
3306 done:
3c0cb5de 3307 if ((MEM_P (other)
23b2ce53 3308 && ! CONSTANT_P (x)
f8cfc6aa 3309 && !REG_P (x)
23b2ce53 3310 && GET_CODE (x) != SUBREG)
f8cfc6aa 3311 || (REG_P (other)
23b2ce53
RS
3312 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3313 || reg_mentioned_p (other, x))))
3314 {
3315 rtx temp = gen_reg_rtx (GET_MODE (x));
3316 emit_move_insn (temp, x);
3317 return temp;
3318 }
3319 return x;
3320}
3321\f
3322/* Emission of insns (adding them to the doubly-linked list). */
3323
23b2ce53
RS
3324/* Return the last insn emitted, even if it is in a sequence now pushed. */
3325
db76cf1e 3326rtx_insn *
502b8322 3327get_last_insn_anywhere (void)
23b2ce53 3328{
614d5bd8
AM
3329 struct sequence_stack *seq;
3330 for (seq = get_current_sequence (); seq; seq = seq->next)
3331 if (seq->last != 0)
3332 return seq->last;
23b2ce53
RS
3333 return 0;
3334}
3335
2a496e8b
JDA
3336/* Return the first nonnote insn emitted in current sequence or current
3337 function. This routine looks inside SEQUENCEs. */
3338
e4685bc8 3339rtx_insn *
502b8322 3340get_first_nonnote_insn (void)
2a496e8b 3341{
dc01c3d1 3342 rtx_insn *insn = get_insns ();
91373fe8
JDA
3343
3344 if (insn)
3345 {
3346 if (NOTE_P (insn))
3347 for (insn = next_insn (insn);
3348 insn && NOTE_P (insn);
3349 insn = next_insn (insn))
3350 continue;
3351 else
3352 {
2ca202e7 3353 if (NONJUMP_INSN_P (insn)
91373fe8 3354 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3355 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
91373fe8
JDA
3356 }
3357 }
2a496e8b
JDA
3358
3359 return insn;
3360}
3361
3362/* Return the last nonnote insn emitted in current sequence or current
3363 function. This routine looks inside SEQUENCEs. */
3364
e4685bc8 3365rtx_insn *
502b8322 3366get_last_nonnote_insn (void)
2a496e8b 3367{
dc01c3d1 3368 rtx_insn *insn = get_last_insn ();
91373fe8
JDA
3369
3370 if (insn)
3371 {
3372 if (NOTE_P (insn))
3373 for (insn = previous_insn (insn);
3374 insn && NOTE_P (insn);
3375 insn = previous_insn (insn))
3376 continue;
3377 else
3378 {
dc01c3d1
DM
3379 if (NONJUMP_INSN_P (insn))
3380 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3381 insn = seq->insn (seq->len () - 1);
91373fe8
JDA
3382 }
3383 }
2a496e8b
JDA
3384
3385 return insn;
3386}
3387
b5b8b0ac
AO
3388/* Return the number of actual (non-debug) insns emitted in this
3389 function. */
3390
3391int
3392get_max_insn_count (void)
3393{
3394 int n = cur_insn_uid;
3395
3396 /* The table size must be stable across -g, to avoid codegen
3397 differences due to debug insns, and not be affected by
3398 -fmin-insn-uid, to avoid excessive table size and to simplify
3399 debugging of -fcompare-debug failures. */
028d4092 3400 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
b5b8b0ac
AO
3401 n -= cur_debug_insn_uid;
3402 else
028d4092 3403 n -= param_min_nondebug_insn_uid;
b5b8b0ac
AO
3404
3405 return n;
3406}
3407
23b2ce53
RS
3408\f
3409/* Return the next insn. If it is a SEQUENCE, return the first insn
3410 of the sequence. */
3411
eb51c837 3412rtx_insn *
4ce524a1 3413next_insn (rtx_insn *insn)
23b2ce53 3414{
75547801
KG
3415 if (insn)
3416 {
3417 insn = NEXT_INSN (insn);
3418 if (insn && NONJUMP_INSN_P (insn)
3419 && GET_CODE (PATTERN (insn)) == SEQUENCE)
dc01c3d1 3420 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
75547801 3421 }
23b2ce53 3422
dc01c3d1 3423 return insn;
23b2ce53
RS
3424}
3425
3426/* Return the previous insn. If it is a SEQUENCE, return the last insn
3427 of the sequence. */
3428
eb51c837 3429rtx_insn *
4ce524a1 3430previous_insn (rtx_insn *insn)
23b2ce53 3431{
75547801
KG
3432 if (insn)
3433 {
3434 insn = PREV_INSN (insn);
dc01c3d1
DM
3435 if (insn && NONJUMP_INSN_P (insn))
3436 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3437 insn = seq->insn (seq->len () - 1);
75547801 3438 }
23b2ce53 3439
dc01c3d1 3440 return insn;
23b2ce53
RS
3441}
3442
3443/* Return the next insn after INSN that is not a NOTE. This routine does not
3444 look inside SEQUENCEs. */
3445
eb51c837 3446rtx_insn *
c9b0a227 3447next_nonnote_insn (rtx_insn *insn)
23b2ce53 3448{
75547801
KG
3449 while (insn)
3450 {
3451 insn = NEXT_INSN (insn);
3452 if (insn == 0 || !NOTE_P (insn))
3453 break;
3454 }
23b2ce53 3455
dc01c3d1 3456 return insn;
23b2ce53
RS
3457}
3458
f40dd646
AO
3459/* Return the next insn after INSN that is not a DEBUG_INSN. This
3460 routine does not look inside SEQUENCEs. */
1e211590 3461
eb51c837 3462rtx_insn *
f40dd646 3463next_nondebug_insn (rtx_insn *insn)
1e211590
DD
3464{
3465 while (insn)
3466 {
3467 insn = NEXT_INSN (insn);
f40dd646 3468 if (insn == 0 || !DEBUG_INSN_P (insn))
1e211590 3469 break;
1e211590
DD
3470 }
3471
dc01c3d1 3472 return insn;
1e211590
DD
3473}
3474
23b2ce53
RS
3475/* Return the previous insn before INSN that is not a NOTE. This routine does
3476 not look inside SEQUENCEs. */
3477
eb51c837 3478rtx_insn *
c9b0a227 3479prev_nonnote_insn (rtx_insn *insn)
23b2ce53 3480{
75547801
KG
3481 while (insn)
3482 {
3483 insn = PREV_INSN (insn);
3484 if (insn == 0 || !NOTE_P (insn))
3485 break;
3486 }
23b2ce53 3487
dc01c3d1 3488 return insn;
23b2ce53
RS
3489}
3490
f40dd646
AO
3491/* Return the previous insn before INSN that is not a DEBUG_INSN.
3492 This routine does not look inside SEQUENCEs. */
896aa4ea 3493
eb51c837 3494rtx_insn *
f40dd646 3495prev_nondebug_insn (rtx_insn *insn)
896aa4ea
DD
3496{
3497 while (insn)
3498 {
3499 insn = PREV_INSN (insn);
f40dd646 3500 if (insn == 0 || !DEBUG_INSN_P (insn))
896aa4ea 3501 break;
896aa4ea
DD
3502 }
3503
dc01c3d1 3504 return insn;
896aa4ea
DD
3505}
3506
f40dd646
AO
3507/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3508 This routine does not look inside SEQUENCEs. */
b5b8b0ac 3509
eb51c837 3510rtx_insn *
f40dd646 3511next_nonnote_nondebug_insn (rtx_insn *insn)
b5b8b0ac
AO
3512{
3513 while (insn)
3514 {
3515 insn = NEXT_INSN (insn);
f40dd646 3516 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
b5b8b0ac
AO
3517 break;
3518 }
3519
dc01c3d1 3520 return insn;
b5b8b0ac
AO
3521}
3522
f40dd646
AO
3523/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3524 but stop the search before we enter another basic block. This
3525 routine does not look inside SEQUENCEs. */
b5b8b0ac 3526
eb51c837 3527rtx_insn *
f40dd646 3528next_nonnote_nondebug_insn_bb (rtx_insn *insn)
b5b8b0ac
AO
3529{
3530 while (insn)
3531 {
f40dd646
AO
3532 insn = NEXT_INSN (insn);
3533 if (insn == 0)
3534 break;
3535 if (DEBUG_INSN_P (insn))
3536 continue;
3537 if (!NOTE_P (insn))
b5b8b0ac 3538 break;
f40dd646
AO
3539 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3540 return NULL;
b5b8b0ac
AO
3541 }
3542
dc01c3d1 3543 return insn;
b5b8b0ac
AO
3544}
3545
f40dd646 3546/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
f0fc0803
JJ
3547 This routine does not look inside SEQUENCEs. */
3548
eb51c837 3549rtx_insn *
f40dd646 3550prev_nonnote_nondebug_insn (rtx_insn *insn)
f0fc0803
JJ
3551{
3552 while (insn)
3553 {
f40dd646 3554 insn = PREV_INSN (insn);
f0fc0803
JJ
3555 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3556 break;
3557 }
3558
dc01c3d1 3559 return insn;
f0fc0803
JJ
3560}
3561
f40dd646
AO
3562/* Return the previous insn before INSN that is not a NOTE nor
3563 DEBUG_INSN, but stop the search before we enter another basic
3564 block. This routine does not look inside SEQUENCEs. */
f0fc0803 3565
eb51c837 3566rtx_insn *
f40dd646 3567prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
f0fc0803
JJ
3568{
3569 while (insn)
3570 {
3571 insn = PREV_INSN (insn);
f40dd646 3572 if (insn == 0)
f0fc0803 3573 break;
f40dd646
AO
3574 if (DEBUG_INSN_P (insn))
3575 continue;
3576 if (!NOTE_P (insn))
3577 break;
3578 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3579 return NULL;
f0fc0803
JJ
3580 }
3581
dc01c3d1 3582 return insn;
f0fc0803
JJ
3583}
3584
ec2d7121 3585/* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
23b2ce53 3586 or 0, if there is none. This routine does not look inside
0f41302f 3587 SEQUENCEs. */
23b2ce53 3588
eb51c837 3589rtx_insn *
4dea3bff 3590next_real_insn (rtx_insn *insn)
23b2ce53 3591{
75547801
KG
3592 while (insn)
3593 {
3594 insn = NEXT_INSN (insn);
3595 if (insn == 0 || INSN_P (insn))
3596 break;
3597 }
23b2ce53 3598
dc01c3d1 3599 return insn;
23b2ce53
RS
3600}
3601
ec2d7121 3602/* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
23b2ce53
RS
3603 or 0, if there is none. This routine does not look inside
3604 SEQUENCEs. */
3605
eb51c837 3606rtx_insn *
d8fd56b2 3607prev_real_insn (rtx_insn *insn)
23b2ce53 3608{
75547801
KG
3609 while (insn)
3610 {
3611 insn = PREV_INSN (insn);
3612 if (insn == 0 || INSN_P (insn))
3613 break;
3614 }
23b2ce53 3615
dc01c3d1 3616 return insn;
23b2ce53
RS
3617}
3618
ec2d7121
JJ
3619/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3620 or 0, if there is none. This routine does not look inside
3621 SEQUENCEs. */
3622
3623rtx_insn *
3624next_real_nondebug_insn (rtx uncast_insn)
3625{
3626 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3627
3628 while (insn)
3629 {
3630 insn = NEXT_INSN (insn);
3631 if (insn == 0 || NONDEBUG_INSN_P (insn))
3632 break;
3633 }
3634
3635 return insn;
3636}
3637
3638/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3639 or 0, if there is none. This routine does not look inside
3640 SEQUENCEs. */
3641
3642rtx_insn *
3643prev_real_nondebug_insn (rtx_insn *insn)
3644{
3645 while (insn)
3646 {
3647 insn = PREV_INSN (insn);
3648 if (insn == 0 || NONDEBUG_INSN_P (insn))
3649 break;
3650 }
3651
3652 return insn;
3653}
3654
ee960939
OH
3655/* Return the last CALL_INSN in the current list, or 0 if there is none.
3656 This routine does not look inside SEQUENCEs. */
3657
049cfc4a 3658rtx_call_insn *
502b8322 3659last_call_insn (void)
ee960939 3660{
049cfc4a 3661 rtx_insn *insn;
ee960939
OH
3662
3663 for (insn = get_last_insn ();
4b4bf941 3664 insn && !CALL_P (insn);
ee960939
OH
3665 insn = PREV_INSN (insn))
3666 ;
3667
049cfc4a 3668 return safe_as_a <rtx_call_insn *> (insn);
ee960939
OH
3669}
3670
23b2ce53 3671/* Find the next insn after INSN that really does something. This routine
9c517bf3
AK
3672 does not look inside SEQUENCEs. After reload this also skips over
3673 standalone USE and CLOBBER insn. */
23b2ce53 3674
69732dcb 3675int
7c9796ed 3676active_insn_p (const rtx_insn *insn)
69732dcb 3677{
4b4bf941 3678 return (CALL_P (insn) || JUMP_P (insn)
39718607 3679 || JUMP_TABLE_DATA_P (insn) /* FIXME */
4b4bf941 3680 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3681 && (! reload_completed
3682 || (GET_CODE (PATTERN (insn)) != USE
3683 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3684}
3685
eb51c837 3686rtx_insn *
7c9796ed 3687next_active_insn (rtx_insn *insn)
23b2ce53 3688{
75547801
KG
3689 while (insn)
3690 {
3691 insn = NEXT_INSN (insn);
3692 if (insn == 0 || active_insn_p (insn))
3693 break;
3694 }
23b2ce53 3695
dc01c3d1 3696 return insn;
23b2ce53
RS
3697}
3698
3699/* Find the last insn before INSN that really does something. This routine
9c517bf3
AK
3700 does not look inside SEQUENCEs. After reload this also skips over
3701 standalone USE and CLOBBER insn. */
23b2ce53 3702
eb51c837 3703rtx_insn *
7c9796ed 3704prev_active_insn (rtx_insn *insn)
23b2ce53 3705{
75547801
KG
3706 while (insn)
3707 {
3708 insn = PREV_INSN (insn);
3709 if (insn == 0 || active_insn_p (insn))
3710 break;
3711 }
23b2ce53 3712
dc01c3d1 3713 return insn;
23b2ce53 3714}
23b2ce53 3715\f
594f8779
RZ
3716/* Find a RTX_AUTOINC class rtx which matches DATA. */
3717
3718static int
9021b8ec 3719find_auto_inc (const_rtx x, const_rtx reg)
594f8779 3720{
9021b8ec
RS
3721 subrtx_iterator::array_type array;
3722 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
594f8779 3723 {
9021b8ec
RS
3724 const_rtx x = *iter;
3725 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3726 && rtx_equal_p (reg, XEXP (x, 0)))
3727 return true;
594f8779 3728 }
9021b8ec 3729 return false;
594f8779 3730}
594f8779 3731
e5bef2e4
HB
3732/* Increment the label uses for all labels present in rtx. */
3733
3734static void
502b8322 3735mark_label_nuses (rtx x)
e5bef2e4 3736{
b3694847
SS
3737 enum rtx_code code;
3738 int i, j;
3739 const char *fmt;
e5bef2e4
HB
3740
3741 code = GET_CODE (x);
04a121a7
TS
3742 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3743 LABEL_NUSES (label_ref_label (x))++;
e5bef2e4
HB
3744
3745 fmt = GET_RTX_FORMAT (code);
3746 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3747 {
3748 if (fmt[i] == 'e')
0fb7aeda 3749 mark_label_nuses (XEXP (x, i));
e5bef2e4 3750 else if (fmt[i] == 'E')
0fb7aeda 3751 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3752 mark_label_nuses (XVECEXP (x, i, j));
3753 }
3754}
3755
23b2ce53
RS
3756\f
3757/* Try splitting insns that can be split for better scheduling.
3758 PAT is the pattern which might split.
3759 TRIAL is the insn providing PAT.
cc2902df 3760 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3761
3762 If this routine succeeds in splitting, it returns the first or last
11147ebe 3763 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3764 returns TRIAL. If the insn to be returned can be split, it will be. */
3765
53f04688 3766rtx_insn *
bb5c4956 3767try_split (rtx pat, rtx_insn *trial, int last)
23b2ce53 3768{
d4eff95b 3769 rtx_insn *before, *after;
dc01c3d1
DM
3770 rtx note;
3771 rtx_insn *seq, *tem;
5fa396ad 3772 profile_probability probability;
dc01c3d1 3773 rtx_insn *insn_last, *insn;
599aedd9 3774 int njumps = 0;
e67d1102 3775 rtx_insn *call_insn = NULL;
6b24c259
JH
3776
3777 if (any_condjump_p (trial)
3778 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
5fa396ad
JH
3779 split_branch_probability
3780 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3781 else
3782 split_branch_probability = profile_probability::uninitialized ();
3783
6b24c259
JH
3784 probability = split_branch_probability;
3785
bb5c4956 3786 seq = split_insns (pat, trial);
6b24c259 3787
5fa396ad 3788 split_branch_probability = profile_probability::uninitialized ();
23b2ce53 3789
599aedd9 3790 if (!seq)
dc01c3d1 3791 return trial;
599aedd9 3792
e7d55c6b 3793 int split_insn_count = 0;
599aedd9
RH
3794 /* Avoid infinite loop if any insn of the result matches
3795 the original pattern. */
3796 insn_last = seq;
3797 while (1)
23b2ce53 3798 {
599aedd9
RH
3799 if (INSN_P (insn_last)
3800 && rtx_equal_p (PATTERN (insn_last), pat))
dc01c3d1 3801 return trial;
e7d55c6b 3802 split_insn_count++;
599aedd9
RH
3803 if (!NEXT_INSN (insn_last))
3804 break;
3805 insn_last = NEXT_INSN (insn_last);
3806 }
750c9258 3807
e7d55c6b
SKS
3808 /* We're not good at redistributing frame information if
3809 the split occurs before reload or if it results in more
3810 than one insn. */
3811 if (RTX_FRAME_RELATED_P (trial))
3812 {
3813 if (!reload_completed || split_insn_count != 1)
3814 return trial;
3815
3816 rtx_insn *new_insn = seq;
3817 rtx_insn *old_insn = trial;
3818 copy_frame_info_to_split_insn (old_insn, new_insn);
3819 }
3820
6fb5fa3c
DB
3821 /* We will be adding the new sequence to the function. The splitters
3822 may have introduced invalid RTL sharing, so unshare the sequence now. */
3823 unshare_all_rtl_in_chain (seq);
3824
339ba33b 3825 /* Mark labels and copy flags. */
599aedd9
RH
3826 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3827 {
4b4bf941 3828 if (JUMP_P (insn))
599aedd9 3829 {
339ba33b
RS
3830 if (JUMP_P (trial))
3831 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
599aedd9
RH
3832 mark_jump_label (PATTERN (insn), insn, 0);
3833 njumps++;
5fa396ad 3834 if (probability.initialized_p ()
599aedd9
RH
3835 && any_condjump_p (insn)
3836 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3837 {
599aedd9
RH
3838 /* We can preserve the REG_BR_PROB notes only if exactly
3839 one jump is created, otherwise the machine description
3840 is responsible for this step using
3841 split_branch_probability variable. */
5b0264cb 3842 gcc_assert (njumps == 1);
5fa396ad 3843 add_reg_br_prob_note (insn, probability);
2f937369 3844 }
599aedd9
RH
3845 }
3846 }
3847
3848 /* If we are splitting a CALL_INSN, look for the CALL_INSN
65712d5c 3849 in SEQ and copy any additional information across. */
4b4bf941 3850 if (CALL_P (trial))
599aedd9
RH
3851 {
3852 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3853 if (CALL_P (insn))
599aedd9 3854 {
4f660b15
RO
3855 gcc_assert (call_insn == NULL_RTX);
3856 call_insn = insn;
3857
65712d5c
RS
3858 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3859 target may have explicitly specified. */
00b94487 3860 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
f6a1f3f6
RH
3861 while (*p)
3862 p = &XEXP (*p, 1);
3863 *p = CALL_INSN_FUNCTION_USAGE (trial);
65712d5c
RS
3864
3865 /* If the old call was a sibling call, the new one must
3866 be too. */
599aedd9
RH
3867 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3868 }
3869 }
4b5e8abe 3870
599aedd9
RH
3871 /* Copy notes, particularly those related to the CFG. */
3872 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3873 {
3874 switch (REG_NOTE_KIND (note))
3875 {
3876 case REG_EH_REGION:
1d65f45c 3877 copy_reg_eh_region_note_backward (note, insn_last, NULL);
599aedd9 3878 break;
216183ce 3879
599aedd9
RH
3880 case REG_NORETURN:
3881 case REG_SETJMP:
0a35513e 3882 case REG_TM:
5c5f0b65 3883 case REG_CALL_NOCF_CHECK:
00b94487 3884 case REG_CALL_ARG_LOCATION:
594f8779 3885 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3886 {
4b4bf941 3887 if (CALL_P (insn))
65c5f2a6 3888 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3889 }
599aedd9 3890 break;
d6e95df8 3891
599aedd9 3892 case REG_NON_LOCAL_GOTO:
73f1289e 3893 case REG_LABEL_TARGET:
594f8779 3894 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3895 {
4b4bf941 3896 if (JUMP_P (insn))
65c5f2a6 3897 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3898 }
599aedd9 3899 break;
e5bef2e4 3900
594f8779 3901 case REG_INC:
760edf20
TS
3902 if (!AUTO_INC_DEC)
3903 break;
3904
594f8779
RZ
3905 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3906 {
3907 rtx reg = XEXP (note, 0);
3908 if (!FIND_REG_INC_NOTE (insn, reg)
9021b8ec 3909 && find_auto_inc (PATTERN (insn), reg))
65c5f2a6 3910 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3911 }
3912 break;
594f8779 3913
9a08d230 3914 case REG_ARGS_SIZE:
68184180 3915 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
9a08d230
RH
3916 break;
3917
4f660b15 3918 case REG_CALL_DECL:
49e65199 3919 case REG_UNTYPED_CALL:
4f660b15
RO
3920 gcc_assert (call_insn != NULL_RTX);
3921 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3922 break;
3923
599aedd9
RH
3924 default:
3925 break;
23b2ce53 3926 }
599aedd9
RH
3927 }
3928
3929 /* If there are LABELS inside the split insns increment the
3930 usage count so we don't delete the label. */
cf7c4aa6 3931 if (INSN_P (trial))
599aedd9
RH
3932 {
3933 insn = insn_last;
3934 while (insn != NULL_RTX)
23b2ce53 3935 {
cf7c4aa6 3936 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3937 if (NONJUMP_INSN_P (insn))
599aedd9 3938 mark_label_nuses (PATTERN (insn));
23b2ce53 3939
599aedd9
RH
3940 insn = PREV_INSN (insn);
3941 }
23b2ce53
RS
3942 }
3943
d4eff95b
JC
3944 before = PREV_INSN (trial);
3945 after = NEXT_INSN (trial);
3946
45309d28 3947 emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
599aedd9
RH
3948
3949 delete_insn (trial);
599aedd9
RH
3950
3951 /* Recursively call try_split for each new insn created; by the
3952 time control returns here that insn will be fully split, so
3953 set LAST and continue from the insn after the one returned.
3954 We can't use next_active_insn here since AFTER may be a note.
3955 Ignore deleted insns, which can be occur if not optimizing. */
3956 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
4654c0cf 3957 if (! tem->deleted () && INSN_P (tem))
599aedd9
RH
3958 tem = try_split (PATTERN (tem), tem, 1);
3959
3960 /* Return either the first or the last insn, depending on which was
3961 requested. */
3962 return last
5936d944 3963 ? (after ? PREV_INSN (after) : get_last_insn ())
599aedd9 3964 : NEXT_INSN (before);
23b2ce53
RS
3965}
3966\f
3967/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3968 Store PATTERN in the pattern slots. */
23b2ce53 3969
167b9fae 3970rtx_insn *
502b8322 3971make_insn_raw (rtx pattern)
23b2ce53 3972{
167b9fae 3973 rtx_insn *insn;
23b2ce53 3974
167b9fae 3975 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
23b2ce53 3976
43127294 3977 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3978 PATTERN (insn) = pattern;
3979 INSN_CODE (insn) = -1;
1632afca 3980 REG_NOTES (insn) = NULL;
5368224f 3981 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3982 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3983
47984720
NC
3984#ifdef ENABLE_RTL_CHECKING
3985 if (insn
2c3c49de 3986 && INSN_P (insn)
47984720
NC
3987 && (returnjump_p (insn)
3988 || (GET_CODE (insn) == SET
3989 && SET_DEST (insn) == pc_rtx)))
3990 {
d4ee4d25 3991 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3992 debug_rtx (insn);
3993 }
3994#endif
750c9258 3995
23b2ce53
RS
3996 return insn;
3997}
3998
b5b8b0ac
AO
3999/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4000
167b9fae 4001static rtx_insn *
b5b8b0ac
AO
4002make_debug_insn_raw (rtx pattern)
4003{
167b9fae 4004 rtx_debug_insn *insn;
b5b8b0ac 4005
167b9fae 4006 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
b5b8b0ac 4007 INSN_UID (insn) = cur_debug_insn_uid++;
028d4092 4008 if (cur_debug_insn_uid > param_min_nondebug_insn_uid)
b5b8b0ac
AO
4009 INSN_UID (insn) = cur_insn_uid++;
4010
4011 PATTERN (insn) = pattern;
4012 INSN_CODE (insn) = -1;
4013 REG_NOTES (insn) = NULL;
5368224f 4014 INSN_LOCATION (insn) = curr_insn_location ();
b5b8b0ac
AO
4015 BLOCK_FOR_INSN (insn) = NULL;
4016
4017 return insn;
4018}
4019
2f937369 4020/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 4021
167b9fae 4022static rtx_insn *
502b8322 4023make_jump_insn_raw (rtx pattern)
23b2ce53 4024{
167b9fae 4025 rtx_jump_insn *insn;
23b2ce53 4026
167b9fae 4027 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
1632afca 4028 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
4029
4030 PATTERN (insn) = pattern;
4031 INSN_CODE (insn) = -1;
1632afca
RS
4032 REG_NOTES (insn) = NULL;
4033 JUMP_LABEL (insn) = NULL;
5368224f 4034 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 4035 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
4036
4037 return insn;
4038}
aff507f4 4039
2f937369 4040/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4 4041
167b9fae 4042static rtx_insn *
502b8322 4043make_call_insn_raw (rtx pattern)
aff507f4 4044{
167b9fae 4045 rtx_call_insn *insn;
aff507f4 4046
167b9fae 4047 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
aff507f4
RK
4048 INSN_UID (insn) = cur_insn_uid++;
4049
4050 PATTERN (insn) = pattern;
4051 INSN_CODE (insn) = -1;
aff507f4
RK
4052 REG_NOTES (insn) = NULL;
4053 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5368224f 4054 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 4055 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
4056
4057 return insn;
4058}
96fba521
SB
4059
4060/* Like `make_insn_raw' but make a NOTE instead of an insn. */
4061
66e8df53 4062static rtx_note *
96fba521
SB
4063make_note_raw (enum insn_note subtype)
4064{
4065 /* Some notes are never created this way at all. These notes are
4066 only created by patching out insns. */
4067 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4068 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4069
66e8df53 4070 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
96fba521
SB
4071 INSN_UID (note) = cur_insn_uid++;
4072 NOTE_KIND (note) = subtype;
4073 BLOCK_FOR_INSN (note) = NULL;
4074 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4075 return note;
4076}
23b2ce53 4077\f
96fba521
SB
4078/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4079 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4080 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4081
4082static inline void
9152e0aa 4083link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
96fba521 4084{
0f82e5c9
DM
4085 SET_PREV_INSN (insn) = prev;
4086 SET_NEXT_INSN (insn) = next;
96fba521
SB
4087 if (prev != NULL)
4088 {
0f82e5c9 4089 SET_NEXT_INSN (prev) = insn;
96fba521
SB
4090 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4091 {
e6eda746
DM
4092 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4093 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
96fba521
SB
4094 }
4095 }
4096 if (next != NULL)
4097 {
0f82e5c9 4098 SET_PREV_INSN (next) = insn;
96fba521 4099 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
4100 {
4101 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4102 SET_PREV_INSN (sequence->insn (0)) = insn;
4103 }
96fba521 4104 }
3ccb989e
SB
4105
4106 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4107 {
e6eda746
DM
4108 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4109 SET_PREV_INSN (sequence->insn (0)) = prev;
4110 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
3ccb989e 4111 }
96fba521
SB
4112}
4113
23b2ce53
RS
4114/* Add INSN to the end of the doubly-linked list.
4115 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4116
4117void
9152e0aa 4118add_insn (rtx_insn *insn)
23b2ce53 4119{
9152e0aa 4120 rtx_insn *prev = get_last_insn ();
96fba521 4121 link_insn_into_chain (insn, prev, NULL);
01512446 4122 if (get_insns () == NULL)
5936d944 4123 set_first_insn (insn);
5936d944 4124 set_last_insn (insn);
23b2ce53
RS
4125}
4126
96fba521 4127/* Add INSN into the doubly-linked list after insn AFTER. */
23b2ce53 4128
96fba521 4129static void
9152e0aa 4130add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
23b2ce53 4131{
9152e0aa 4132 rtx_insn *next = NEXT_INSN (after);
23b2ce53 4133
4654c0cf 4134 gcc_assert (!optimize || !after->deleted ());
ba213285 4135
96fba521 4136 link_insn_into_chain (insn, after, next);
23b2ce53 4137
96fba521 4138 if (next == NULL)
23b2ce53 4139 {
614d5bd8
AM
4140 struct sequence_stack *seq;
4141
4142 for (seq = get_current_sequence (); seq; seq = seq->next)
4143 if (after == seq->last)
4144 {
4145 seq->last = insn;
4146 break;
4147 }
23b2ce53 4148 }
96fba521
SB
4149}
4150
4151/* Add INSN into the doubly-linked list before insn BEFORE. */
4152
4153static void
9152e0aa 4154add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
96fba521 4155{
9152e0aa 4156 rtx_insn *prev = PREV_INSN (before);
96fba521 4157
4654c0cf 4158 gcc_assert (!optimize || !before->deleted ());
96fba521
SB
4159
4160 link_insn_into_chain (insn, prev, before);
4161
4162 if (prev == NULL)
23b2ce53 4163 {
614d5bd8 4164 struct sequence_stack *seq;
a0ae8e8d 4165
614d5bd8
AM
4166 for (seq = get_current_sequence (); seq; seq = seq->next)
4167 if (before == seq->first)
4168 {
4169 seq->first = insn;
4170 break;
4171 }
4172
4173 gcc_assert (seq);
23b2ce53 4174 }
96fba521
SB
4175}
4176
4177/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4178 If BB is NULL, an attempt is made to infer the bb from before.
4179
4180 This and the next function should be the only functions called
4181 to insert an insn once delay slots have been filled since only
4182 they know how to update a SEQUENCE. */
23b2ce53 4183
96fba521 4184void
4dea3bff 4185add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
96fba521
SB
4186{
4187 add_insn_after_nobb (insn, after);
4b4bf941
JQ
4188 if (!BARRIER_P (after)
4189 && !BARRIER_P (insn)
3c030e88
JH
4190 && (bb = BLOCK_FOR_INSN (after)))
4191 {
4192 set_block_for_insn (insn, bb);
38c1593d 4193 if (INSN_P (insn))
6fb5fa3c 4194 df_insn_rescan (insn);
3c030e88 4195 /* Should not happen as first in the BB is always
a1f300c0 4196 either NOTE or LABEL. */
a813c111 4197 if (BB_END (bb) == after
3c030e88 4198 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 4199 && !BARRIER_P (insn)
a38e7aa5 4200 && !NOTE_INSN_BASIC_BLOCK_P (insn))
1130d5e3 4201 BB_END (bb) = insn;
3c030e88 4202 }
23b2ce53
RS
4203}
4204
96fba521
SB
4205/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4206 If BB is NULL, an attempt is made to infer the bb from before.
4207
4208 This and the previous function should be the only functions called
4209 to insert an insn once delay slots have been filled since only
4210 they know how to update a SEQUENCE. */
a0ae8e8d
RK
4211
4212void
4dea3bff 4213add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
a0ae8e8d 4214{
96fba521 4215 add_insn_before_nobb (insn, before);
a0ae8e8d 4216
b8698a0f 4217 if (!bb
6fb5fa3c
DB
4218 && !BARRIER_P (before)
4219 && !BARRIER_P (insn))
4220 bb = BLOCK_FOR_INSN (before);
4221
4222 if (bb)
3c030e88
JH
4223 {
4224 set_block_for_insn (insn, bb);
38c1593d 4225 if (INSN_P (insn))
6fb5fa3c 4226 df_insn_rescan (insn);
5b0264cb 4227 /* Should not happen as first in the BB is always either NOTE or
43e05e45 4228 LABEL. */
5b0264cb
NS
4229 gcc_assert (BB_HEAD (bb) != insn
4230 /* Avoid clobbering of structure when creating new BB. */
4231 || BARRIER_P (insn)
a38e7aa5 4232 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88 4233 }
a0ae8e8d
RK
4234}
4235
6fb5fa3c
DB
4236/* Replace insn with an deleted instruction note. */
4237
0ce2b299 4238void
df0b55f0 4239set_insn_deleted (rtx_insn *insn)
6fb5fa3c 4240{
39718607 4241 if (INSN_P (insn))
df0b55f0 4242 df_insn_delete (insn);
6fb5fa3c
DB
4243 PUT_CODE (insn, NOTE);
4244 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4245}
4246
4247
1f397f45
SB
4248/* Unlink INSN from the insn chain.
4249
4250 This function knows how to handle sequences.
4251
4252 This function does not invalidate data flow information associated with
4253 INSN (i.e. does not call df_insn_delete). That makes this function
4254 usable for only disconnecting an insn from the chain, and re-emit it
4255 elsewhere later.
4256
4257 To later insert INSN elsewhere in the insn chain via add_insn and
4258 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4259 the caller. Nullifying them here breaks many insn chain walks.
4260
4261 To really delete an insn and related DF information, use delete_insn. */
4262
89e99eea 4263void
4dea3bff 4264remove_insn (rtx_insn *insn)
89e99eea 4265{
1130d5e3
DM
4266 rtx_insn *next = NEXT_INSN (insn);
4267 rtx_insn *prev = PREV_INSN (insn);
53c17031
JH
4268 basic_block bb;
4269
89e99eea
DB
4270 if (prev)
4271 {
0f82e5c9 4272 SET_NEXT_INSN (prev) = next;
4b4bf941 4273 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea 4274 {
e6eda746
DM
4275 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4276 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
89e99eea
DB
4277 }
4278 }
89e99eea
DB
4279 else
4280 {
614d5bd8
AM
4281 struct sequence_stack *seq;
4282
4283 for (seq = get_current_sequence (); seq; seq = seq->next)
4284 if (insn == seq->first)
89e99eea 4285 {
614d5bd8 4286 seq->first = next;
89e99eea
DB
4287 break;
4288 }
4289
614d5bd8 4290 gcc_assert (seq);
89e99eea
DB
4291 }
4292
4293 if (next)
4294 {
0f82e5c9 4295 SET_PREV_INSN (next) = prev;
4b4bf941 4296 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
e6eda746
DM
4297 {
4298 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4299 SET_PREV_INSN (sequence->insn (0)) = prev;
4300 }
89e99eea 4301 }
89e99eea
DB
4302 else
4303 {
614d5bd8
AM
4304 struct sequence_stack *seq;
4305
4306 for (seq = get_current_sequence (); seq; seq = seq->next)
4307 if (insn == seq->last)
89e99eea 4308 {
614d5bd8 4309 seq->last = prev;
89e99eea
DB
4310 break;
4311 }
4312
614d5bd8 4313 gcc_assert (seq);
89e99eea 4314 }
80eb8028 4315
80eb8028 4316 /* Fix up basic block boundaries, if necessary. */
4b4bf941 4317 if (!BARRIER_P (insn)
53c17031
JH
4318 && (bb = BLOCK_FOR_INSN (insn)))
4319 {
a813c111 4320 if (BB_HEAD (bb) == insn)
53c17031 4321 {
3bf1e984
RK
4322 /* Never ever delete the basic block note without deleting whole
4323 basic block. */
5b0264cb 4324 gcc_assert (!NOTE_P (insn));
1130d5e3 4325 BB_HEAD (bb) = next;
53c17031 4326 }
a813c111 4327 if (BB_END (bb) == insn)
1130d5e3 4328 BB_END (bb) = prev;
53c17031 4329 }
89e99eea
DB
4330}
4331
ee960939
OH
4332/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4333
4334void
502b8322 4335add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 4336{
5b0264cb 4337 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
4338
4339 /* Put the register usage information on the CALL. If there is already
4340 some usage information, put ours at the end. */
4341 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4342 {
4343 rtx link;
4344
4345 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4346 link = XEXP (link, 1))
4347 ;
4348
4349 XEXP (link, 1) = call_fusage;
4350 }
4351 else
4352 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4353}
4354
23b2ce53
RS
4355/* Delete all insns made since FROM.
4356 FROM becomes the new last instruction. */
4357
4358void
fee3e72c 4359delete_insns_since (rtx_insn *from)
23b2ce53
RS
4360{
4361 if (from == 0)
5936d944 4362 set_first_insn (0);
23b2ce53 4363 else
0f82e5c9 4364 SET_NEXT_INSN (from) = 0;
5936d944 4365 set_last_insn (from);
23b2ce53
RS
4366}
4367
5dab5552
MS
4368/* This function is deprecated, please use sequences instead.
4369
4370 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
4371 The insns to be moved are those between FROM and TO.
4372 They are moved to a new position after the insn AFTER.
4373 AFTER must not be FROM or TO or any insn in between.
4374
4375 This function does not know about SEQUENCEs and hence should not be
4376 called after delay-slot filling has been done. */
4377
4378void
fee3e72c 4379reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
23b2ce53 4380{
b2b29377
MM
4381 if (flag_checking)
4382 {
4383 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4384 gcc_assert (after != x);
4385 gcc_assert (after != to);
4386 }
4f8344eb 4387
23b2ce53
RS
4388 /* Splice this bunch out of where it is now. */
4389 if (PREV_INSN (from))
0f82e5c9 4390 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
23b2ce53 4391 if (NEXT_INSN (to))
0f82e5c9 4392 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
5936d944
JH
4393 if (get_last_insn () == to)
4394 set_last_insn (PREV_INSN (from));
4395 if (get_insns () == from)
4396 set_first_insn (NEXT_INSN (to));
23b2ce53
RS
4397
4398 /* Make the new neighbors point to it and it to them. */
4399 if (NEXT_INSN (after))
0f82e5c9 4400 SET_PREV_INSN (NEXT_INSN (after)) = to;
23b2ce53 4401
0f82e5c9
DM
4402 SET_NEXT_INSN (to) = NEXT_INSN (after);
4403 SET_PREV_INSN (from) = after;
4404 SET_NEXT_INSN (after) = from;
c3284718 4405 if (after == get_last_insn ())
5936d944 4406 set_last_insn (to);
23b2ce53
RS
4407}
4408
3c030e88
JH
4409/* Same as function above, but take care to update BB boundaries. */
4410void
ac9d2d2c 4411reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
3c030e88 4412{
ac9d2d2c 4413 rtx_insn *prev = PREV_INSN (from);
3c030e88
JH
4414 basic_block bb, bb2;
4415
4416 reorder_insns_nobb (from, to, after);
4417
4b4bf941 4418 if (!BARRIER_P (after)
3c030e88
JH
4419 && (bb = BLOCK_FOR_INSN (after)))
4420 {
b2908ba6 4421 rtx_insn *x;
6fb5fa3c 4422 df_set_bb_dirty (bb);
68252e27 4423
4b4bf941 4424 if (!BARRIER_P (from)
3c030e88
JH
4425 && (bb2 = BLOCK_FOR_INSN (from)))
4426 {
a813c111 4427 if (BB_END (bb2) == to)
1130d5e3 4428 BB_END (bb2) = prev;
6fb5fa3c 4429 df_set_bb_dirty (bb2);
3c030e88
JH
4430 }
4431
a813c111 4432 if (BB_END (bb) == after)
1130d5e3 4433 BB_END (bb) = to;
3c030e88
JH
4434
4435 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 4436 if (!BARRIER_P (x))
63642d5a 4437 df_insn_change_bb (x, bb);
3c030e88
JH
4438 }
4439}
4440
23b2ce53 4441\f
2f937369
DM
4442/* Emit insn(s) of given code and pattern
4443 at a specified place within the doubly-linked list.
23b2ce53 4444
2f937369
DM
4445 All of the emit_foo global entry points accept an object
4446 X which is either an insn list or a PATTERN of a single
4447 instruction.
23b2ce53 4448
2f937369
DM
4449 There are thus a few canonical ways to generate code and
4450 emit it at a specific place in the instruction stream. For
4451 example, consider the instruction named SPOT and the fact that
4452 we would like to emit some instructions before SPOT. We might
4453 do it like this:
23b2ce53 4454
2f937369
DM
4455 start_sequence ();
4456 ... emit the new instructions ...
4457 insns_head = get_insns ();
4458 end_sequence ();
23b2ce53 4459
2f937369 4460 emit_insn_before (insns_head, SPOT);
23b2ce53 4461
2f937369
DM
4462 It used to be common to generate SEQUENCE rtl instead, but that
4463 is a relic of the past which no longer occurs. The reason is that
4464 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4465 generated would almost certainly die right after it was created. */
23b2ce53 4466
cd459bf8 4467static rtx_insn *
4dea3bff
DM
4468emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4469 basic_block bb,
167b9fae 4470 rtx_insn *(*make_raw) (rtx))
23b2ce53 4471{
167b9fae 4472 rtx_insn *insn;
23b2ce53 4473
5b0264cb 4474 gcc_assert (before);
2f937369
DM
4475
4476 if (x == NULL_RTX)
4dea3bff 4477 return last;
2f937369
DM
4478
4479 switch (GET_CODE (x))
23b2ce53 4480 {
b5b8b0ac 4481 case DEBUG_INSN:
2f937369
DM
4482 case INSN:
4483 case JUMP_INSN:
4484 case CALL_INSN:
4485 case CODE_LABEL:
4486 case BARRIER:
4487 case NOTE:
167b9fae 4488 insn = as_a <rtx_insn *> (x);
2f937369
DM
4489 while (insn)
4490 {
167b9fae 4491 rtx_insn *next = NEXT_INSN (insn);
6fb5fa3c 4492 add_insn_before (insn, before, bb);
2f937369
DM
4493 last = insn;
4494 insn = next;
4495 }
4496 break;
4497
4498#ifdef ENABLE_RTL_CHECKING
4499 case SEQUENCE:
5b0264cb 4500 gcc_unreachable ();
2f937369
DM
4501 break;
4502#endif
4503
4504 default:
5f02387d 4505 last = (*make_raw) (x);
6fb5fa3c 4506 add_insn_before (last, before, bb);
2f937369 4507 break;
23b2ce53
RS
4508 }
4509
4dea3bff 4510 return last;
23b2ce53
RS
4511}
4512
5f02387d
NF
4513/* Make X be output before the instruction BEFORE. */
4514
cd459bf8 4515rtx_insn *
596f2b17 4516emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
5f02387d
NF
4517{
4518 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4519}
4520
2f937369 4521/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4522 and output it before the instruction BEFORE. */
4523
1476d1bd 4524rtx_jump_insn *
596f2b17 4525emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
23b2ce53 4526{
1476d1bd 4527 return as_a <rtx_jump_insn *> (
4dea3bff 4528 emit_pattern_before_noloc (x, before, NULL, NULL,
1476d1bd 4529 make_jump_insn_raw));
23b2ce53
RS
4530}
4531
2f937369 4532/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4533 and output it before the instruction BEFORE. */
4534
cd459bf8 4535rtx_insn *
596f2b17 4536emit_call_insn_before_noloc (rtx x, rtx_insn *before)
969d70ca 4537{
4dea3bff 4538 return emit_pattern_before_noloc (x, before, NULL, NULL,
5f02387d 4539 make_call_insn_raw);
969d70ca
JH
4540}
4541
b5b8b0ac
AO
4542/* Make an instruction with body X and code DEBUG_INSN
4543 and output it before the instruction BEFORE. */
4544
cd459bf8 4545rtx_insn *
4dea3bff 4546emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
b5b8b0ac 4547{
4dea3bff 4548 return emit_pattern_before_noloc (x, before, NULL, NULL,
5f02387d 4549 make_debug_insn_raw);
b5b8b0ac
AO
4550}
4551
23b2ce53 4552/* Make an insn of code BARRIER
e881bb1b 4553 and output it before the insn BEFORE. */
23b2ce53 4554
cd459bf8 4555rtx_barrier *
4dea3bff 4556emit_barrier_before (rtx_insn *before)
23b2ce53 4557{
cd459bf8 4558 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4559
4560 INSN_UID (insn) = cur_insn_uid++;
4561
6fb5fa3c 4562 add_insn_before (insn, before, NULL);
23b2ce53
RS
4563 return insn;
4564}
4565
e881bb1b
RH
4566/* Emit the label LABEL before the insn BEFORE. */
4567
1476d1bd 4568rtx_code_label *
4dea3bff 4569emit_label_before (rtx_code_label *label, rtx_insn *before)
e881bb1b 4570{
468660d3
SB
4571 gcc_checking_assert (INSN_UID (label) == 0);
4572 INSN_UID (label) = cur_insn_uid++;
4573 add_insn_before (label, before, NULL);
4dea3bff 4574 return label;
e881bb1b 4575}
23b2ce53 4576\f
2f937369
DM
4577/* Helper for emit_insn_after, handles lists of instructions
4578 efficiently. */
23b2ce53 4579
e6eda746 4580static rtx_insn *
4dea3bff 4581emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
23b2ce53 4582{
1130d5e3
DM
4583 rtx_insn *last;
4584 rtx_insn *after_after;
6fb5fa3c
DB
4585 if (!bb && !BARRIER_P (after))
4586 bb = BLOCK_FOR_INSN (after);
23b2ce53 4587
6fb5fa3c 4588 if (bb)
23b2ce53 4589 {
6fb5fa3c 4590 df_set_bb_dirty (bb);
2f937369 4591 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4592 if (!BARRIER_P (last))
6fb5fa3c
DB
4593 {
4594 set_block_for_insn (last, bb);
4595 df_insn_rescan (last);
4596 }
4b4bf941 4597 if (!BARRIER_P (last))
6fb5fa3c
DB
4598 {
4599 set_block_for_insn (last, bb);
4600 df_insn_rescan (last);
4601 }
a813c111 4602 if (BB_END (bb) == after)
1130d5e3 4603 BB_END (bb) = last;
23b2ce53
RS
4604 }
4605 else
2f937369
DM
4606 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4607 continue;
4608
4609 after_after = NEXT_INSN (after);
4610
0f82e5c9
DM
4611 SET_NEXT_INSN (after) = first;
4612 SET_PREV_INSN (first) = after;
4613 SET_NEXT_INSN (last) = after_after;
2f937369 4614 if (after_after)
0f82e5c9 4615 SET_PREV_INSN (after_after) = last;
2f937369 4616
c3284718 4617 if (after == get_last_insn ())
5936d944 4618 set_last_insn (last);
e855c69d 4619
2f937369
DM
4620 return last;
4621}
4622
cd459bf8 4623static rtx_insn *
4dea3bff 4624emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
167b9fae 4625 rtx_insn *(*make_raw)(rtx))
2f937369 4626{
e6eda746 4627 rtx_insn *last = after;
2f937369 4628
5b0264cb 4629 gcc_assert (after);
2f937369
DM
4630
4631 if (x == NULL_RTX)
e6eda746 4632 return last;
2f937369
DM
4633
4634 switch (GET_CODE (x))
23b2ce53 4635 {
b5b8b0ac 4636 case DEBUG_INSN:
2f937369
DM
4637 case INSN:
4638 case JUMP_INSN:
4639 case CALL_INSN:
4640 case CODE_LABEL:
4641 case BARRIER:
4642 case NOTE:
1130d5e3 4643 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
2f937369
DM
4644 break;
4645
4646#ifdef ENABLE_RTL_CHECKING
4647 case SEQUENCE:
5b0264cb 4648 gcc_unreachable ();
2f937369
DM
4649 break;
4650#endif
4651
4652 default:
5f02387d 4653 last = (*make_raw) (x);
6fb5fa3c 4654 add_insn_after (last, after, bb);
2f937369 4655 break;
23b2ce53
RS
4656 }
4657
e6eda746 4658 return last;
23b2ce53
RS
4659}
4660
5f02387d
NF
4661/* Make X be output after the insn AFTER and set the BB of insn. If
4662 BB is NULL, an attempt is made to infer the BB from AFTER. */
4663
cd459bf8 4664rtx_insn *
4dea3bff 4665emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
5f02387d
NF
4666{
4667 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4668}
4669
255680cf 4670
2f937369 4671/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4672 and output it after the insn AFTER. */
4673
1476d1bd 4674rtx_jump_insn *
4dea3bff 4675emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
23b2ce53 4676{
1476d1bd
MM
4677 return as_a <rtx_jump_insn *> (
4678 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
2f937369
DM
4679}
4680
4681/* Make an instruction with body X and code CALL_INSN
4682 and output it after the instruction AFTER. */
4683
cd459bf8 4684rtx_insn *
4dea3bff 4685emit_call_insn_after_noloc (rtx x, rtx_insn *after)
2f937369 4686{
5f02387d 4687 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
23b2ce53
RS
4688}
4689
b5b8b0ac
AO
4690/* Make an instruction with body X and code CALL_INSN
4691 and output it after the instruction AFTER. */
4692
cd459bf8 4693rtx_insn *
4dea3bff 4694emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
b5b8b0ac 4695{
5f02387d 4696 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
b5b8b0ac
AO
4697}
4698
23b2ce53
RS
4699/* Make an insn of code BARRIER
4700 and output it after the insn AFTER. */
4701
cd459bf8 4702rtx_barrier *
4dea3bff 4703emit_barrier_after (rtx_insn *after)
23b2ce53 4704{
cd459bf8 4705 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
4706
4707 INSN_UID (insn) = cur_insn_uid++;
4708
6fb5fa3c 4709 add_insn_after (insn, after, NULL);
23b2ce53
RS
4710 return insn;
4711}
4712
4713/* Emit the label LABEL after the insn AFTER. */
4714
cd459bf8 4715rtx_insn *
4dea3bff 4716emit_label_after (rtx_insn *label, rtx_insn *after)
23b2ce53 4717{
468660d3
SB
4718 gcc_checking_assert (INSN_UID (label) == 0);
4719 INSN_UID (label) = cur_insn_uid++;
4720 add_insn_after (label, after, NULL);
4dea3bff 4721 return label;
23b2ce53 4722}
96fba521
SB
4723\f
4724/* Notes require a bit of special handling: Some notes need to have their
4725 BLOCK_FOR_INSN set, others should never have it set, and some should
4726 have it set or clear depending on the context. */
4727
4728/* Return true iff a note of kind SUBTYPE should be emitted with routines
4729 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4730 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4731
4732static bool
4733note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4734{
4735 switch (subtype)
4736 {
4737 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4738 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4739 return true;
4740
4741 /* Notes for var tracking and EH region markers can appear between or
4742 inside basic blocks. If the caller is emitting on the basic block
4743 boundary, do not set BLOCK_FOR_INSN on the new note. */
4744 case NOTE_INSN_VAR_LOCATION:
96fba521
SB
4745 case NOTE_INSN_EH_REGION_BEG:
4746 case NOTE_INSN_EH_REGION_END:
4747 return on_bb_boundary_p;
4748
4749 /* Otherwise, BLOCK_FOR_INSN must be set. */
4750 default:
4751 return false;
4752 }
4753}
23b2ce53
RS
4754
4755/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4756
66e8df53 4757rtx_note *
589e43f9 4758emit_note_after (enum insn_note subtype, rtx_insn *after)
23b2ce53 4759{
66e8df53 4760 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4761 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4762 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4763
4764 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4765 add_insn_after_nobb (note, after);
4766 else
4767 add_insn_after (note, after, bb);
4768 return note;
4769}
4770
4771/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4772
66e8df53 4773rtx_note *
89b6250d 4774emit_note_before (enum insn_note subtype, rtx_insn *before)
96fba521 4775{
66e8df53 4776 rtx_note *note = make_note_raw (subtype);
96fba521
SB
4777 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4778 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4779
4780 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4781 add_insn_before_nobb (note, before);
4782 else
4783 add_insn_before (note, before, bb);
23b2ce53
RS
4784 return note;
4785}
23b2ce53 4786\f
e8110d6f
NF
4787/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4788 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4789
cd459bf8 4790static rtx_insn *
4dea3bff 4791emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
167b9fae 4792 rtx_insn *(*make_raw) (rtx))
0d682900 4793{
e67d1102 4794 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0d682900 4795
a7102479 4796 if (pattern == NULL_RTX || !loc)
e67d1102 4797 return last;
dd3adcf8 4798
2f937369
DM
4799 after = NEXT_INSN (after);
4800 while (1)
4801 {
20d4397a
EB
4802 if (active_insn_p (after)
4803 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4804 && !INSN_LOCATION (after))
5368224f 4805 INSN_LOCATION (after) = loc;
2f937369
DM
4806 if (after == last)
4807 break;
4808 after = NEXT_INSN (after);
4809 }
e67d1102 4810 return last;
0d682900
JH
4811}
4812
e8110d6f
NF
4813/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4814 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4815 any DEBUG_INSNs. */
4816
cd459bf8 4817static rtx_insn *
df0b55f0 4818emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
167b9fae 4819 rtx_insn *(*make_raw) (rtx))
a7102479 4820{
dc01c3d1 4821 rtx_insn *prev = after;
b5b8b0ac 4822
e8110d6f
NF
4823 if (skip_debug_insns)
4824 while (DEBUG_INSN_P (prev))
4825 prev = PREV_INSN (prev);
b5b8b0ac
AO
4826
4827 if (INSN_P (prev))
5368224f 4828 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
e8110d6f 4829 make_raw);
a7102479 4830 else
e8110d6f 4831 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
a7102479
JH
4832}
4833
5368224f 4834/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4835rtx_insn *
4dea3bff 4836emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
0d682900 4837{
e8110d6f
NF
4838 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4839}
2f937369 4840
5368224f 4841/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4842rtx_insn *
df0b55f0 4843emit_insn_after (rtx pattern, rtx_insn *after)
e8110d6f
NF
4844{
4845 return emit_pattern_after (pattern, after, true, make_insn_raw);
4846}
dd3adcf8 4847
5368224f 4848/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 4849rtx_jump_insn *
4dea3bff 4850emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
e8110d6f 4851{
1476d1bd
MM
4852 return as_a <rtx_jump_insn *> (
4853 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
0d682900
JH
4854}
4855
5368224f 4856/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
1476d1bd 4857rtx_jump_insn *
df0b55f0 4858emit_jump_insn_after (rtx pattern, rtx_insn *after)
a7102479 4859{
1476d1bd
MM
4860 return as_a <rtx_jump_insn *> (
4861 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
a7102479
JH
4862}
4863
5368224f 4864/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4865rtx_insn *
4dea3bff 4866emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
0d682900 4867{
e8110d6f 4868 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
0d682900
JH
4869}
4870
5368224f 4871/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4872rtx_insn *
df0b55f0 4873emit_call_insn_after (rtx pattern, rtx_insn *after)
a7102479 4874{
e8110d6f 4875 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
a7102479
JH
4876}
4877
5368224f 4878/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4879rtx_insn *
4dea3bff 4880emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
b5b8b0ac 4881{
e8110d6f 4882 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
b5b8b0ac
AO
4883}
4884
5368224f 4885/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
cd459bf8 4886rtx_insn *
df0b55f0 4887emit_debug_insn_after (rtx pattern, rtx_insn *after)
b5b8b0ac 4888{
e8110d6f 4889 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
b5b8b0ac
AO
4890}
4891
e8110d6f
NF
4892/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4893 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4894 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4895 CALL_INSN, etc. */
4896
cd459bf8 4897static rtx_insn *
4dea3bff
DM
4898emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4899 bool insnp, rtx_insn *(*make_raw) (rtx))
0d682900 4900{
dc01c3d1
DM
4901 rtx_insn *first = PREV_INSN (before);
4902 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4dea3bff 4903 insnp ? before : NULL,
dc01c3d1 4904 NULL, make_raw);
a7102479
JH
4905
4906 if (pattern == NULL_RTX || !loc)
dc01c3d1 4907 return last;
a7102479 4908
26cb3993
JH
4909 if (!first)
4910 first = get_insns ();
4911 else
4912 first = NEXT_INSN (first);
a7102479
JH
4913 while (1)
4914 {
20d4397a
EB
4915 if (active_insn_p (first)
4916 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4917 && !INSN_LOCATION (first))
5368224f 4918 INSN_LOCATION (first) = loc;
a7102479
JH
4919 if (first == last)
4920 break;
4921 first = NEXT_INSN (first);
4922 }
dc01c3d1 4923 return last;
a7102479
JH
4924}
4925
e8110d6f
NF
4926/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4927 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4928 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4929 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4930
cd459bf8 4931static rtx_insn *
df0b55f0 4932emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
167b9fae 4933 bool insnp, rtx_insn *(*make_raw) (rtx))
a7102479 4934{
dc01c3d1 4935 rtx_insn *next = before;
b5b8b0ac 4936
e8110d6f
NF
4937 if (skip_debug_insns)
4938 while (DEBUG_INSN_P (next))
4939 next = PREV_INSN (next);
b5b8b0ac
AO
4940
4941 if (INSN_P (next))
5368224f 4942 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
e8110d6f 4943 insnp, make_raw);
a7102479 4944 else
e8110d6f 4945 return emit_pattern_before_noloc (pattern, before,
4dea3bff 4946 insnp ? before : NULL,
e8110d6f 4947 NULL, make_raw);
a7102479
JH
4948}
4949
5368224f 4950/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4951rtx_insn *
4dea3bff 4952emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
a7102479 4953{
e8110d6f
NF
4954 return emit_pattern_before_setloc (pattern, before, loc, true,
4955 make_insn_raw);
4956}
a7102479 4957
5368224f 4958/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
cd459bf8 4959rtx_insn *
df0b55f0 4960emit_insn_before (rtx pattern, rtx_insn *before)
e8110d6f
NF
4961{
4962 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4963}
a7102479 4964
5368224f 4965/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
1476d1bd 4966rtx_jump_insn *
4dea3bff 4967emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
e8110d6f 4968{
1476d1bd
MM
4969 return as_a <rtx_jump_insn *> (
4970 emit_pattern_before_setloc (pattern, before, loc, false,
4971 make_jump_insn_raw));
a7102479
JH
4972}
4973
5368224f 4974/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
1476d1bd 4975rtx_jump_insn *
df0b55f0 4976emit_jump_insn_before (rtx pattern, rtx_insn *before)
a7102479 4977{
1476d1bd
MM
4978 return as_a <rtx_jump_insn *> (
4979 emit_pattern_before (pattern, before, true, false,
4980 make_jump_insn_raw));
a7102479
JH
4981}
4982
5368224f 4983/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 4984rtx_insn *
4dea3bff 4985emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
a7102479 4986{
e8110d6f
NF
4987 return emit_pattern_before_setloc (pattern, before, loc, false,
4988 make_call_insn_raw);
0d682900 4989}
a7102479 4990
e8110d6f 4991/* Like emit_call_insn_before_noloc,
5368224f 4992 but set insn_location according to BEFORE. */
cd459bf8 4993rtx_insn *
596f2b17 4994emit_call_insn_before (rtx pattern, rtx_insn *before)
a7102479 4995{
e8110d6f
NF
4996 return emit_pattern_before (pattern, before, true, false,
4997 make_call_insn_raw);
a7102479 4998}
b5b8b0ac 4999
5368224f 5000/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
cd459bf8 5001rtx_insn *
4dea3bff 5002emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
b5b8b0ac 5003{
e8110d6f
NF
5004 return emit_pattern_before_setloc (pattern, before, loc, false,
5005 make_debug_insn_raw);
b5b8b0ac
AO
5006}
5007
e8110d6f 5008/* Like emit_debug_insn_before_noloc,
5368224f 5009 but set insn_location according to BEFORE. */
cd459bf8 5010rtx_insn *
3a6216b0 5011emit_debug_insn_before (rtx pattern, rtx_insn *before)
b5b8b0ac 5012{
e8110d6f
NF
5013 return emit_pattern_before (pattern, before, false, false,
5014 make_debug_insn_raw);
b5b8b0ac 5015}
0d682900 5016\f
2f937369
DM
5017/* Take X and emit it at the end of the doubly-linked
5018 INSN list.
23b2ce53
RS
5019
5020 Returns the last insn emitted. */
5021
cd459bf8 5022rtx_insn *
502b8322 5023emit_insn (rtx x)
23b2ce53 5024{
cd459bf8
DM
5025 rtx_insn *last = get_last_insn ();
5026 rtx_insn *insn;
23b2ce53 5027
2f937369
DM
5028 if (x == NULL_RTX)
5029 return last;
23b2ce53 5030
2f937369
DM
5031 switch (GET_CODE (x))
5032 {
b5b8b0ac 5033 case DEBUG_INSN:
2f937369
DM
5034 case INSN:
5035 case JUMP_INSN:
5036 case CALL_INSN:
5037 case CODE_LABEL:
5038 case BARRIER:
5039 case NOTE:
cd459bf8 5040 insn = as_a <rtx_insn *> (x);
2f937369 5041 while (insn)
23b2ce53 5042 {
cd459bf8 5043 rtx_insn *next = NEXT_INSN (insn);
23b2ce53 5044 add_insn (insn);
2f937369
DM
5045 last = insn;
5046 insn = next;
23b2ce53 5047 }
2f937369 5048 break;
23b2ce53 5049
2f937369 5050#ifdef ENABLE_RTL_CHECKING
39718607 5051 case JUMP_TABLE_DATA:
2f937369 5052 case SEQUENCE:
5b0264cb 5053 gcc_unreachable ();
2f937369
DM
5054 break;
5055#endif
23b2ce53 5056
2f937369
DM
5057 default:
5058 last = make_insn_raw (x);
5059 add_insn (last);
5060 break;
23b2ce53
RS
5061 }
5062
5063 return last;
5064}
5065
b5b8b0ac
AO
5066/* Make an insn of code DEBUG_INSN with pattern X
5067 and add it to the end of the doubly-linked list. */
5068
cd459bf8 5069rtx_insn *
b5b8b0ac
AO
5070emit_debug_insn (rtx x)
5071{
cd459bf8
DM
5072 rtx_insn *last = get_last_insn ();
5073 rtx_insn *insn;
b5b8b0ac
AO
5074
5075 if (x == NULL_RTX)
5076 return last;
5077
5078 switch (GET_CODE (x))
5079 {
5080 case DEBUG_INSN:
5081 case INSN:
5082 case JUMP_INSN:
5083 case CALL_INSN:
5084 case CODE_LABEL:
5085 case BARRIER:
5086 case NOTE:
cd459bf8 5087 insn = as_a <rtx_insn *> (x);
b5b8b0ac
AO
5088 while (insn)
5089 {
cd459bf8 5090 rtx_insn *next = NEXT_INSN (insn);
b5b8b0ac
AO
5091 add_insn (insn);
5092 last = insn;
5093 insn = next;
5094 }
5095 break;
5096
5097#ifdef ENABLE_RTL_CHECKING
39718607 5098 case JUMP_TABLE_DATA:
b5b8b0ac
AO
5099 case SEQUENCE:
5100 gcc_unreachable ();
5101 break;
5102#endif
5103
5104 default:
5105 last = make_debug_insn_raw (x);
5106 add_insn (last);
5107 break;
5108 }
5109
5110 return last;
5111}
5112
2f937369
DM
5113/* Make an insn of code JUMP_INSN with pattern X
5114 and add it to the end of the doubly-linked list. */
23b2ce53 5115
cd459bf8 5116rtx_insn *
502b8322 5117emit_jump_insn (rtx x)
23b2ce53 5118{
cd459bf8
DM
5119 rtx_insn *last = NULL;
5120 rtx_insn *insn;
23b2ce53 5121
2f937369 5122 switch (GET_CODE (x))
23b2ce53 5123 {
b5b8b0ac 5124 case DEBUG_INSN:
2f937369
DM
5125 case INSN:
5126 case JUMP_INSN:
5127 case CALL_INSN:
5128 case CODE_LABEL:
5129 case BARRIER:
5130 case NOTE:
cd459bf8 5131 insn = as_a <rtx_insn *> (x);
2f937369
DM
5132 while (insn)
5133 {
cd459bf8 5134 rtx_insn *next = NEXT_INSN (insn);
2f937369
DM
5135 add_insn (insn);
5136 last = insn;
5137 insn = next;
5138 }
5139 break;
e0a5c5eb 5140
2f937369 5141#ifdef ENABLE_RTL_CHECKING
39718607 5142 case JUMP_TABLE_DATA:
2f937369 5143 case SEQUENCE:
5b0264cb 5144 gcc_unreachable ();
2f937369
DM
5145 break;
5146#endif
e0a5c5eb 5147
2f937369
DM
5148 default:
5149 last = make_jump_insn_raw (x);
5150 add_insn (last);
5151 break;
3c030e88 5152 }
e0a5c5eb
RS
5153
5154 return last;
5155}
5156
2f937369 5157/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
5158 and add it to the end of the doubly-linked list. */
5159
cd459bf8 5160rtx_insn *
502b8322 5161emit_call_insn (rtx x)
23b2ce53 5162{
cd459bf8 5163 rtx_insn *insn;
2f937369
DM
5164
5165 switch (GET_CODE (x))
23b2ce53 5166 {
b5b8b0ac 5167 case DEBUG_INSN:
2f937369
DM
5168 case INSN:
5169 case JUMP_INSN:
5170 case CALL_INSN:
5171 case CODE_LABEL:
5172 case BARRIER:
5173 case NOTE:
5174 insn = emit_insn (x);
5175 break;
23b2ce53 5176
2f937369
DM
5177#ifdef ENABLE_RTL_CHECKING
5178 case SEQUENCE:
39718607 5179 case JUMP_TABLE_DATA:
5b0264cb 5180 gcc_unreachable ();
2f937369
DM
5181 break;
5182#endif
23b2ce53 5183
2f937369
DM
5184 default:
5185 insn = make_call_insn_raw (x);
23b2ce53 5186 add_insn (insn);
2f937369 5187 break;
23b2ce53 5188 }
2f937369
DM
5189
5190 return insn;
23b2ce53
RS
5191}
5192
5193/* Add the label LABEL to the end of the doubly-linked list. */
5194
1476d1bd
MM
5195rtx_code_label *
5196emit_label (rtx uncast_label)
23b2ce53 5197{
1476d1bd
MM
5198 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5199
468660d3
SB
5200 gcc_checking_assert (INSN_UID (label) == 0);
5201 INSN_UID (label) = cur_insn_uid++;
1476d1bd
MM
5202 add_insn (label);
5203 return label;
23b2ce53
RS
5204}
5205
39718607
SB
5206/* Make an insn of code JUMP_TABLE_DATA
5207 and add it to the end of the doubly-linked list. */
5208
4598afdd 5209rtx_jump_table_data *
39718607
SB
5210emit_jump_table_data (rtx table)
5211{
4598afdd
DM
5212 rtx_jump_table_data *jump_table_data =
5213 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
39718607
SB
5214 INSN_UID (jump_table_data) = cur_insn_uid++;
5215 PATTERN (jump_table_data) = table;
5216 BLOCK_FOR_INSN (jump_table_data) = NULL;
5217 add_insn (jump_table_data);
5218 return jump_table_data;
5219}
5220
23b2ce53
RS
5221/* Make an insn of code BARRIER
5222 and add it to the end of the doubly-linked list. */
5223
cd459bf8 5224rtx_barrier *
502b8322 5225emit_barrier (void)
23b2ce53 5226{
cd459bf8 5227 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
23b2ce53
RS
5228 INSN_UID (barrier) = cur_insn_uid++;
5229 add_insn (barrier);
5230 return barrier;
5231}
5232
5f2fc772 5233/* Emit a copy of note ORIG. */
502b8322 5234
66e8df53
DM
5235rtx_note *
5236emit_note_copy (rtx_note *orig)
5f2fc772 5237{
96fba521 5238 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
66e8df53 5239 rtx_note *note = make_note_raw (kind);
5f2fc772 5240 NOTE_DATA (note) = NOTE_DATA (orig);
5f2fc772 5241 add_insn (note);
2e040219 5242 return note;
23b2ce53
RS
5243}
5244
2e040219
NS
5245/* Make an insn of code NOTE or type NOTE_NO
5246 and add it to the end of the doubly-linked list. */
23b2ce53 5247
66e8df53 5248rtx_note *
a38e7aa5 5249emit_note (enum insn_note kind)
23b2ce53 5250{
66e8df53 5251 rtx_note *note = make_note_raw (kind);
23b2ce53
RS
5252 add_insn (note);
5253 return note;
5254}
5255
c41c1387
RS
5256/* Emit a clobber of lvalue X. */
5257
cd459bf8 5258rtx_insn *
c41c1387
RS
5259emit_clobber (rtx x)
5260{
5261 /* CONCATs should not appear in the insn stream. */
5262 if (GET_CODE (x) == CONCAT)
5263 {
5264 emit_clobber (XEXP (x, 0));
5265 return emit_clobber (XEXP (x, 1));
5266 }
5267 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5268}
5269
5270/* Return a sequence of insns to clobber lvalue X. */
5271
cd459bf8 5272rtx_insn *
c41c1387
RS
5273gen_clobber (rtx x)
5274{
cd459bf8 5275 rtx_insn *seq;
c41c1387
RS
5276
5277 start_sequence ();
5278 emit_clobber (x);
5279 seq = get_insns ();
5280 end_sequence ();
5281 return seq;
5282}
5283
5284/* Emit a use of rvalue X. */
5285
cd459bf8 5286rtx_insn *
c41c1387
RS
5287emit_use (rtx x)
5288{
5289 /* CONCATs should not appear in the insn stream. */
5290 if (GET_CODE (x) == CONCAT)
5291 {
5292 emit_use (XEXP (x, 0));
5293 return emit_use (XEXP (x, 1));
5294 }
5295 return emit_insn (gen_rtx_USE (VOIDmode, x));
5296}
5297
5298/* Return a sequence of insns to use rvalue X. */
5299
cd459bf8 5300rtx_insn *
c41c1387
RS
5301gen_use (rtx x)
5302{
cd459bf8 5303 rtx_insn *seq;
c41c1387
RS
5304
5305 start_sequence ();
5306 emit_use (x);
5307 seq = get_insns ();
5308 end_sequence ();
5309 return seq;
5310}
5311
c8912e53
RS
5312/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5313 Return the set in INSN that such notes describe, or NULL if the notes
5314 have no meaning for INSN. */
5315
5316rtx
5317set_for_reg_notes (rtx insn)
5318{
5319 rtx pat, reg;
5320
5321 if (!INSN_P (insn))
5322 return NULL_RTX;
5323
5324 pat = PATTERN (insn);
5325 if (GET_CODE (pat) == PARALLEL)
5326 {
5327 /* We do not use single_set because that ignores SETs of unused
5328 registers. REG_EQUAL and REG_EQUIV notes really do require the
5329 PARALLEL to have a single SET. */
5330 if (multiple_sets (insn))
5331 return NULL_RTX;
5332 pat = XVECEXP (pat, 0, 0);
5333 }
5334
5335 if (GET_CODE (pat) != SET)
5336 return NULL_RTX;
5337
5338 reg = SET_DEST (pat);
5339
5340 /* Notes apply to the contents of a STRICT_LOW_PART. */
7f7379f6
KV
5341 if (GET_CODE (reg) == STRICT_LOW_PART
5342 || GET_CODE (reg) == ZERO_EXTRACT)
c8912e53
RS
5343 reg = XEXP (reg, 0);
5344
5345 /* Check that we have a register. */
5346 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5347 return NULL_RTX;
5348
5349 return pat;
5350}
5351
87b47c85 5352/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 5353 note of this type already exists, remove it first. */
87b47c85 5354
3d238248 5355rtx
502b8322 5356set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
5357{
5358 rtx note = find_reg_note (insn, kind, NULL_RTX);
5359
52488da1
JW
5360 switch (kind)
5361 {
5362 case REG_EQUAL:
5363 case REG_EQUIV:
8073cbd4
EB
5364 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5365 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
c8912e53 5366 return NULL_RTX;
52488da1
JW
5367
5368 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5369 It serves no useful purpose and breaks eliminate_regs. */
5370 if (GET_CODE (datum) == ASM_OPERANDS)
5371 return NULL_RTX;
109374e2
RS
5372
5373 /* Notes with side effects are dangerous. Even if the side-effect
5374 initially mirrors one in PATTERN (INSN), later optimizations
5375 might alter the way that the final register value is calculated
5376 and so move or alter the side-effect in some way. The note would
5377 then no longer be a valid substitution for SET_SRC. */
5378 if (side_effects_p (datum))
5379 return NULL_RTX;
52488da1
JW
5380 break;
5381
5382 default:
5383 break;
5384 }
3d238248 5385
c8912e53
RS
5386 if (note)
5387 XEXP (note, 0) = datum;
5388 else
5389 {
5390 add_reg_note (insn, kind, datum);
5391 note = REG_NOTES (insn);
5392 }
6fb5fa3c
DB
5393
5394 switch (kind)
3d238248 5395 {
6fb5fa3c
DB
5396 case REG_EQUAL:
5397 case REG_EQUIV:
b2908ba6 5398 df_notes_rescan (as_a <rtx_insn *> (insn));
6fb5fa3c
DB
5399 break;
5400 default:
5401 break;
3d238248 5402 }
87b47c85 5403
c8912e53 5404 return note;
87b47c85 5405}
7543f918
JR
5406
5407/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5408rtx
5409set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5410{
c8912e53 5411 rtx set = set_for_reg_notes (insn);
7543f918
JR
5412
5413 if (set && SET_DEST (set) == dst)
5414 return set_unique_reg_note (insn, kind, datum);
5415 return NULL_RTX;
5416}
23b2ce53 5417\f
9d8895c9
RS
5418/* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5419 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5420 is true.
5421
23b2ce53
RS
5422 If X is a label, it is simply added into the insn chain. */
5423
cd459bf8 5424rtx_insn *
9d8895c9 5425emit (rtx x, bool allow_barrier_p)
23b2ce53
RS
5426{
5427 enum rtx_code code = classify_insn (x);
5428
5b0264cb 5429 switch (code)
23b2ce53 5430 {
5b0264cb
NS
5431 case CODE_LABEL:
5432 return emit_label (x);
5433 case INSN:
5434 return emit_insn (x);
5435 case JUMP_INSN:
5436 {
cd459bf8 5437 rtx_insn *insn = emit_jump_insn (x);
9d8895c9
RS
5438 if (allow_barrier_p
5439 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
5b0264cb
NS
5440 return emit_barrier ();
5441 return insn;
5442 }
5443 case CALL_INSN:
5444 return emit_call_insn (x);
b5b8b0ac
AO
5445 case DEBUG_INSN:
5446 return emit_debug_insn (x);
5b0264cb
NS
5447 default:
5448 gcc_unreachable ();
23b2ce53 5449 }
23b2ce53
RS
5450}
5451\f
e2500fed 5452/* Space for free sequence stack entries. */
1431042e 5453static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 5454
4dfa0342
RH
5455/* Begin emitting insns to a sequence. If this sequence will contain
5456 something that might cause the compiler to pop arguments to function
5457 calls (because those pops have previously been deferred; see
5458 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5459 before calling this function. That will ensure that the deferred
5460 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
5461
5462void
502b8322 5463start_sequence (void)
23b2ce53
RS
5464{
5465 struct sequence_stack *tem;
5466
e2500fed
GK
5467 if (free_sequence_stack != NULL)
5468 {
5469 tem = free_sequence_stack;
5470 free_sequence_stack = tem->next;
5471 }
5472 else
766090c2 5473 tem = ggc_alloc<sequence_stack> ();
23b2ce53 5474
614d5bd8 5475 tem->next = get_current_sequence ()->next;
5936d944
JH
5476 tem->first = get_insns ();
5477 tem->last = get_last_insn ();
614d5bd8 5478 get_current_sequence ()->next = tem;
23b2ce53 5479
5936d944
JH
5480 set_first_insn (0);
5481 set_last_insn (0);
23b2ce53
RS
5482}
5483
5c7a310f
MM
5484/* Set up the insn chain starting with FIRST as the current sequence,
5485 saving the previously current one. See the documentation for
5486 start_sequence for more information about how to use this function. */
23b2ce53
RS
5487
5488void
fee3e72c 5489push_to_sequence (rtx_insn *first)
23b2ce53 5490{
fee3e72c 5491 rtx_insn *last;
23b2ce53
RS
5492
5493 start_sequence ();
5494
e84a58ff
EB
5495 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5496 ;
23b2ce53 5497
5936d944
JH
5498 set_first_insn (first);
5499 set_last_insn (last);
23b2ce53
RS
5500}
5501
bb27eeda
SE
5502/* Like push_to_sequence, but take the last insn as an argument to avoid
5503 looping through the list. */
5504
5505void
fee3e72c 5506push_to_sequence2 (rtx_insn *first, rtx_insn *last)
bb27eeda
SE
5507{
5508 start_sequence ();
5509
5936d944
JH
5510 set_first_insn (first);
5511 set_last_insn (last);
bb27eeda
SE
5512}
5513
f15ae3a1
TW
5514/* Set up the outer-level insn chain
5515 as the current sequence, saving the previously current one. */
5516
5517void
502b8322 5518push_topmost_sequence (void)
f15ae3a1 5519{
614d5bd8 5520 struct sequence_stack *top;
f15ae3a1
TW
5521
5522 start_sequence ();
5523
614d5bd8 5524 top = get_topmost_sequence ();
5936d944
JH
5525 set_first_insn (top->first);
5526 set_last_insn (top->last);
f15ae3a1
TW
5527}
5528
5529/* After emitting to the outer-level insn chain, update the outer-level
5530 insn chain, and restore the previous saved state. */
5531
5532void
502b8322 5533pop_topmost_sequence (void)
f15ae3a1 5534{
614d5bd8 5535 struct sequence_stack *top;
f15ae3a1 5536
614d5bd8 5537 top = get_topmost_sequence ();
5936d944
JH
5538 top->first = get_insns ();
5539 top->last = get_last_insn ();
f15ae3a1
TW
5540
5541 end_sequence ();
5542}
5543
23b2ce53
RS
5544/* After emitting to a sequence, restore previous saved state.
5545
5c7a310f 5546 To get the contents of the sequence just made, you must call
2f937369 5547 `get_insns' *before* calling here.
5c7a310f
MM
5548
5549 If the compiler might have deferred popping arguments while
5550 generating this sequence, and this sequence will not be immediately
5551 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 5552 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
5553 pops are inserted into this sequence, and not into some random
5554 location in the instruction stream. See INHIBIT_DEFER_POP for more
5555 information about deferred popping of arguments. */
23b2ce53
RS
5556
5557void
502b8322 5558end_sequence (void)
23b2ce53 5559{
614d5bd8 5560 struct sequence_stack *tem = get_current_sequence ()->next;
23b2ce53 5561
5936d944
JH
5562 set_first_insn (tem->first);
5563 set_last_insn (tem->last);
614d5bd8 5564 get_current_sequence ()->next = tem->next;
23b2ce53 5565
e2500fed
GK
5566 memset (tem, 0, sizeof (*tem));
5567 tem->next = free_sequence_stack;
5568 free_sequence_stack = tem;
23b2ce53
RS
5569}
5570
5571/* Return 1 if currently emitting into a sequence. */
5572
5573int
502b8322 5574in_sequence_p (void)
23b2ce53 5575{
614d5bd8 5576 return get_current_sequence ()->next != 0;
23b2ce53 5577}
23b2ce53 5578\f
59ec66dc
MM
5579/* Put the various virtual registers into REGNO_REG_RTX. */
5580
2bbdec73 5581static void
bd60bab2 5582init_virtual_regs (void)
59ec66dc 5583{
bd60bab2
JH
5584 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5585 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5586 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5587 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5588 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
32990d5b
JJ
5589 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5590 = virtual_preferred_stack_boundary_rtx;
49ad7cfa
BS
5591}
5592
da43a810
BS
5593\f
5594/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5595static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5596static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5597static int copy_insn_n_scratches;
5598
5599/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5600 copied an ASM_OPERANDS.
5601 In that case, it is the original input-operand vector. */
5602static rtvec orig_asm_operands_vector;
5603
5604/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5605 copied an ASM_OPERANDS.
5606 In that case, it is the copied input-operand vector. */
5607static rtvec copy_asm_operands_vector;
5608
5609/* Likewise for the constraints vector. */
5610static rtvec orig_asm_constraints_vector;
5611static rtvec copy_asm_constraints_vector;
5612
5613/* Recursively create a new copy of an rtx for copy_insn.
5614 This function differs from copy_rtx in that it handles SCRATCHes and
5615 ASM_OPERANDs properly.
5616 Normally, this function is not used directly; use copy_insn as front end.
5617 However, you could first copy an insn pattern with copy_insn and then use
5618 this function afterwards to properly copy any REG_NOTEs containing
5619 SCRATCHes. */
5620
5621rtx
502b8322 5622copy_insn_1 (rtx orig)
da43a810 5623{
b3694847
SS
5624 rtx copy;
5625 int i, j;
5626 RTX_CODE code;
5627 const char *format_ptr;
da43a810 5628
cd9c1ca8
RH
5629 if (orig == NULL)
5630 return NULL;
5631
da43a810
BS
5632 code = GET_CODE (orig);
5633
5634 switch (code)
5635 {
5636 case REG:
a52a87c3 5637 case DEBUG_EXPR:
d8116890 5638 CASE_CONST_ANY:
da43a810
BS
5639 case SYMBOL_REF:
5640 case CODE_LABEL:
5641 case PC:
276e0224 5642 case RETURN:
26898771 5643 case SIMPLE_RETURN:
da43a810 5644 return orig;
3e89ed8d 5645 case CLOBBER:
bd1cd0d0 5646 /* Share clobbers of hard registers, but do not share pseudo reg
c5c5ba89
JH
5647 clobbers or clobbers of hard registers that originated as pseudos.
5648 This is needed to allow safe register renaming. */
d7ae3739
EB
5649 if (REG_P (XEXP (orig, 0))
5650 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5651 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
3e89ed8d
JH
5652 return orig;
5653 break;
da43a810
BS
5654
5655 case SCRATCH:
5656 for (i = 0; i < copy_insn_n_scratches; i++)
5657 if (copy_insn_scratch_in[i] == orig)
5658 return copy_insn_scratch_out[i];
5659 break;
5660
5661 case CONST:
6fb5fa3c 5662 if (shared_const_p (orig))
da43a810
BS
5663 return orig;
5664 break;
750c9258 5665
da43a810
BS
5666 /* A MEM with a constant address is not sharable. The problem is that
5667 the constant address may need to be reloaded. If the mem is shared,
5668 then reloading one copy of this mem will cause all copies to appear
5669 to have been reloaded. */
5670
5671 default:
5672 break;
5673 }
5674
aacd3885
RS
5675 /* Copy the various flags, fields, and other information. We assume
5676 that all fields need copying, and then clear the fields that should
da43a810
BS
5677 not be copied. That is the sensible default behavior, and forces
5678 us to explicitly document why we are *not* copying a flag. */
aacd3885 5679 copy = shallow_copy_rtx (orig);
da43a810 5680
da43a810 5681 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5682 if (INSN_P (orig))
da43a810 5683 {
2adc7f12
JJ
5684 RTX_FLAG (copy, jump) = 0;
5685 RTX_FLAG (copy, call) = 0;
5686 RTX_FLAG (copy, frame_related) = 0;
da43a810 5687 }
750c9258 5688
da43a810
BS
5689 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5690
5691 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5692 switch (*format_ptr++)
5693 {
5694 case 'e':
5695 if (XEXP (orig, i) != NULL)
5696 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5697 break;
da43a810 5698
aacd3885
RS
5699 case 'E':
5700 case 'V':
5701 if (XVEC (orig, i) == orig_asm_constraints_vector)
5702 XVEC (copy, i) = copy_asm_constraints_vector;
5703 else if (XVEC (orig, i) == orig_asm_operands_vector)
5704 XVEC (copy, i) = copy_asm_operands_vector;
5705 else if (XVEC (orig, i) != NULL)
5706 {
5707 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5708 for (j = 0; j < XVECLEN (copy, i); j++)
5709 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5710 }
5711 break;
da43a810 5712
aacd3885
RS
5713 case 't':
5714 case 'w':
5715 case 'i':
91914e56 5716 case 'p':
aacd3885
RS
5717 case 's':
5718 case 'S':
5719 case 'u':
5720 case '0':
5721 /* These are left unchanged. */
5722 break;
da43a810 5723
aacd3885
RS
5724 default:
5725 gcc_unreachable ();
5726 }
da43a810
BS
5727
5728 if (code == SCRATCH)
5729 {
5730 i = copy_insn_n_scratches++;
5b0264cb 5731 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5732 copy_insn_scratch_in[i] = orig;
5733 copy_insn_scratch_out[i] = copy;
5734 }
5735 else if (code == ASM_OPERANDS)
5736 {
6462bb43
AO
5737 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5738 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5739 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5740 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5741 }
5742
5743 return copy;
5744}
5745
5746/* Create a new copy of an rtx.
5747 This function differs from copy_rtx in that it handles SCRATCHes and
5748 ASM_OPERANDs properly.
5749 INSN doesn't really have to be a full INSN; it could be just the
5750 pattern. */
5751rtx
502b8322 5752copy_insn (rtx insn)
da43a810
BS
5753{
5754 copy_insn_n_scratches = 0;
5755 orig_asm_operands_vector = 0;
5756 orig_asm_constraints_vector = 0;
5757 copy_asm_operands_vector = 0;
5758 copy_asm_constraints_vector = 0;
5759 return copy_insn_1 (insn);
5760}
59ec66dc 5761
8e383849
JR
5762/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5763 on that assumption that INSN itself remains in its original place. */
5764
f8f0516e
DM
5765rtx_insn *
5766copy_delay_slot_insn (rtx_insn *insn)
8e383849
JR
5767{
5768 /* Copy INSN with its rtx_code, all its notes, location etc. */
f8f0516e 5769 insn = as_a <rtx_insn *> (copy_rtx (insn));
8e383849
JR
5770 INSN_UID (insn) = cur_insn_uid++;
5771 return insn;
5772}
5773
23b2ce53
RS
5774/* Initialize data structures and variables in this file
5775 before generating rtl for each function. */
5776
5777void
502b8322 5778init_emit (void)
23b2ce53 5779{
5936d944
JH
5780 set_first_insn (NULL);
5781 set_last_insn (NULL);
028d4092
ML
5782 if (param_min_nondebug_insn_uid)
5783 cur_insn_uid = param_min_nondebug_insn_uid;
b5b8b0ac
AO
5784 else
5785 cur_insn_uid = 1;
5786 cur_debug_insn_uid = 1;
23b2ce53 5787 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
23b2ce53 5788 first_label_num = label_num;
614d5bd8 5789 get_current_sequence ()->next = NULL;
23b2ce53 5790
23b2ce53
RS
5791 /* Init the tables that describe all the pseudo regs. */
5792
3e029763 5793 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5794
3e029763 5795 crtl->emit.regno_pointer_align
1b4572a8 5796 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5797
f44986d7
DM
5798 regno_reg_rtx
5799 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
0d4903b8 5800
e50126e8 5801 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876 5802 memcpy (regno_reg_rtx,
5fb0e246 5803 initial_regno_reg_rtx,
6cde4876 5804 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5805
23b2ce53 5806 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5807 init_virtual_regs ();
740ab4a2
RK
5808
5809 /* Indicate that the virtual registers and stack locations are
5810 all pointers. */
3502dc9c
JDA
5811 REG_POINTER (stack_pointer_rtx) = 1;
5812 REG_POINTER (frame_pointer_rtx) = 1;
5813 REG_POINTER (hard_frame_pointer_rtx) = 1;
5814 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5815
3502dc9c
JDA
5816 REG_POINTER (virtual_incoming_args_rtx) = 1;
5817 REG_POINTER (virtual_stack_vars_rtx) = 1;
5818 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5819 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5820 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5821
86fe05e0 5822#ifdef STACK_BOUNDARY
bdb429a5
RK
5823 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5824 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5825 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5826 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5827
5828 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5829 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5830 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5831 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
da75ca93 5832
bdb429a5 5833 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5834#endif
5835
5e82e7bd
JVA
5836#ifdef INIT_EXPANDERS
5837 INIT_EXPANDERS;
5838#endif
23b2ce53
RS
5839}
5840
cd5ff7bc
RS
5841/* Return the value of element I of CONST_VECTOR X as a wide_int. */
5842
5843wide_int
5844const_vector_int_elt (const_rtx x, unsigned int i)
5845{
5846 /* First handle elements that are directly encoded. */
5847 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5848 if (i < (unsigned int) XVECLEN (x, 0))
5849 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5850
5851 /* Identify the pattern that contains element I and work out the index of
5852 the last encoded element for that pattern. */
5853 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5854 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5855 unsigned int count = i / npatterns;
5856 unsigned int pattern = i % npatterns;
5857 unsigned int final_i = encoded_nelts - npatterns + pattern;
5858
5859 /* If there are no steps, the final encoded value is the right one. */
5860 if (!CONST_VECTOR_STEPPED_P (x))
5861 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5862
5863 /* Otherwise work out the value from the last two encoded elements. */
5864 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5865 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5866 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5867 rtx_mode_t (v1, elt_mode));
5868 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5869}
5870
5871/* Return the value of element I of CONST_VECTOR X. */
5872
5873rtx
5874const_vector_elt (const_rtx x, unsigned int i)
5875{
5876 /* First handle elements that are directly encoded. */
5877 if (i < (unsigned int) XVECLEN (x, 0))
5878 return CONST_VECTOR_ENCODED_ELT (x, i);
5879
5880 /* If there are no steps, the final encoded value is the right one. */
5881 if (!CONST_VECTOR_STEPPED_P (x))
5882 {
5883 /* Identify the pattern that contains element I and work out the index of
5884 the last encoded element for that pattern. */
5885 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5886 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5887 unsigned int pattern = i % npatterns;
5888 unsigned int final_i = encoded_nelts - npatterns + pattern;
5889 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5890 }
5891
5892 /* Otherwise work out the value from the last two encoded elements. */
5893 return immed_wide_int_const (const_vector_int_elt (x, i),
5894 GET_MODE_INNER (GET_MODE (x)));
5895}
5896
c0cc00c4
JJ
5897/* Return true if X is a valid element for a CONST_VECTOR of the given
5898 mode. */
9b4473b6
RS
5899
5900bool
c0cc00c4 5901valid_for_const_vector_p (machine_mode, rtx x)
9b4473b6
RS
5902{
5903 return (CONST_SCALAR_INT_P (x)
1b5f74e8 5904 || CONST_POLY_INT_P (x)
9b4473b6
RS
5905 || CONST_DOUBLE_AS_FLOAT_P (x)
5906 || CONST_FIXED_P (x));
5907}
5908
59d06c05
RS
5909/* Generate a vector constant of mode MODE in which every element has
5910 value ELT. */
69ef87e2 5911
59d06c05
RS
5912rtx
5913gen_const_vec_duplicate (machine_mode mode, rtx elt)
5914{
3877c560
RS
5915 rtx_vector_builder builder (mode, 1, 1);
5916 builder.quick_push (elt);
5917 return builder.build ();
59d06c05
RS
5918}
5919
5920/* Return a vector rtx of mode MODE in which every element has value X.
5921 The result will be a constant if X is constant. */
5922
5923rtx
5924gen_vec_duplicate (machine_mode mode, rtx x)
5925{
c0cc00c4 5926 if (valid_for_const_vector_p (mode, x))
59d06c05
RS
5927 return gen_const_vec_duplicate (mode, x);
5928 return gen_rtx_VEC_DUPLICATE (mode, x);
5929}
15ed7b52 5930
3877c560
RS
5931/* A subroutine of const_vec_series_p that handles the case in which:
5932
5933 (GET_CODE (X) == CONST_VECTOR
5934 && CONST_VECTOR_NPATTERNS (X) == 1
5935 && !CONST_VECTOR_DUPLICATE_P (X))
5936
5937 is known to hold. */
ef339d6e
RS
5938
5939bool
5940const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5941{
3877c560
RS
5942 /* Stepped sequences are only defined for integers, to avoid specifying
5943 rounding behavior. */
5944 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5945 return false;
5946
5947 /* A non-duplicated vector with two elements can always be seen as a
5948 series with a nonzero step. Longer vectors must have a stepped
5949 encoding. */
7b777afa 5950 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
3877c560 5951 && !CONST_VECTOR_STEPPED_P (x))
ef339d6e
RS
5952 return false;
5953
3877c560 5954 /* Calculate the step between the first and second elements. */
ef339d6e
RS
5955 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5956 rtx base = CONST_VECTOR_ELT (x, 0);
5957 rtx step = simplify_binary_operation (MINUS, inner,
3877c560 5958 CONST_VECTOR_ENCODED_ELT (x, 1), base);
ef339d6e
RS
5959 if (rtx_equal_p (step, CONST0_RTX (inner)))
5960 return false;
5961
3877c560
RS
5962 /* If we have a stepped encoding, check that the step between the
5963 second and third elements is the same as STEP. */
5964 if (CONST_VECTOR_STEPPED_P (x))
ef339d6e
RS
5965 {
5966 rtx diff = simplify_binary_operation (MINUS, inner,
3877c560
RS
5967 CONST_VECTOR_ENCODED_ELT (x, 2),
5968 CONST_VECTOR_ENCODED_ELT (x, 1));
ef339d6e
RS
5969 if (!rtx_equal_p (step, diff))
5970 return false;
5971 }
5972
5973 *base_out = base;
5974 *step_out = step;
5975 return true;
5976}
5977
5978/* Generate a vector constant of mode MODE in which element I has
5979 the value BASE + I * STEP. */
5980
5981rtx
5982gen_const_vec_series (machine_mode mode, rtx base, rtx step)
5983{
af2e4475
RS
5984 gcc_assert (valid_for_const_vector_p (mode, base)
5985 && valid_for_const_vector_p (mode, step));
ef339d6e 5986
3877c560
RS
5987 rtx_vector_builder builder (mode, 1, 3);
5988 builder.quick_push (base);
5989 for (int i = 1; i < 3; ++i)
5990 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
5991 builder[i - 1], step));
5992 return builder.build ();
ef339d6e
RS
5993}
5994
5995/* Generate a vector of mode MODE in which element I has the value
5996 BASE + I * STEP. The result will be a constant if BASE and STEP
5997 are both constants. */
5998
5999rtx
6000gen_vec_series (machine_mode mode, rtx base, rtx step)
6001{
6002 if (step == const0_rtx)
6003 return gen_vec_duplicate (mode, base);
af2e4475
RS
6004 if (valid_for_const_vector_p (mode, base)
6005 && valid_for_const_vector_p (mode, step))
ef339d6e
RS
6006 return gen_const_vec_series (mode, base, step);
6007 return gen_rtx_VEC_SERIES (mode, base, step);
6008}
6009
59d06c05
RS
6010/* Generate a new vector constant for mode MODE and constant value
6011 CONSTANT. */
69ef87e2 6012
59d06c05
RS
6013static rtx
6014gen_const_vector (machine_mode mode, int constant)
6015{
6016 machine_mode inner = GET_MODE_INNER (mode);
69ef87e2 6017
59d06c05
RS
6018 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6019
6020 rtx el = const_tiny_rtx[constant][(int) inner];
6021 gcc_assert (el);
69ef87e2 6022
3877c560 6023 return gen_const_vec_duplicate (mode, el);
69ef87e2
AH
6024}
6025
a06e3c40 6026/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 6027 all elements are zero, and the one vector when all elements are one. */
a06e3c40 6028rtx
ef4bddc2 6029gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
a06e3c40 6030{
7b777afa 6031 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
a73b091d
JW
6032
6033 /* If the values are all the same, check to see if we can use one of the
6034 standard constant vectors. */
59d06c05
RS
6035 if (rtvec_all_equal_p (v))
6036 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
a73b091d 6037
3877c560
RS
6038 unsigned int nunits = GET_NUM_ELEM (v);
6039 rtx_vector_builder builder (mode, nunits, 1);
6040 for (unsigned int i = 0; i < nunits; ++i)
6041 builder.quick_push (RTVEC_ELT (v, i));
6042 return builder.build (v);
a06e3c40
R
6043}
6044
b5deb7b6
SL
6045/* Initialise global register information required by all functions. */
6046
6047void
6048init_emit_regs (void)
6049{
6050 int i;
ef4bddc2 6051 machine_mode mode;
1c3f523e 6052 mem_attrs *attrs;
b5deb7b6
SL
6053
6054 /* Reset register attributes */
aebf76a2 6055 reg_attrs_htab->empty ();
b5deb7b6
SL
6056
6057 /* We need reg_raw_mode, so initialize the modes now. */
6058 init_reg_modes_target ();
6059
6060 /* Assign register numbers to the globally defined register rtx. */
b5deb7b6
SL
6061 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6062 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6063 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6064 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6065 virtual_incoming_args_rtx =
6066 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6067 virtual_stack_vars_rtx =
6068 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6069 virtual_stack_dynamic_rtx =
6070 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6071 virtual_outgoing_args_rtx =
6072 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6073 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
32990d5b
JJ
6074 virtual_preferred_stack_boundary_rtx =
6075 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
b5deb7b6
SL
6076
6077 /* Initialize RTL for commonly used hard registers. These are
6078 copied into regno_reg_rtx as we begin to compile each function. */
6079 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5fb0e246 6080 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
b5deb7b6
SL
6081
6082#ifdef RETURN_ADDRESS_POINTER_REGNUM
6083 return_address_pointer_rtx
6084 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6085#endif
6086
ca72dad5 6087 pic_offset_table_rtx = NULL_RTX;
b5deb7b6
SL
6088 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6089 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
1c3f523e
RS
6090
6091 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6092 {
ef4bddc2 6093 mode = (machine_mode) i;
766090c2 6094 attrs = ggc_cleared_alloc<mem_attrs> ();
1c3f523e
RS
6095 attrs->align = BITS_PER_UNIT;
6096 attrs->addrspace = ADDR_SPACE_GENERIC;
532c7a45 6097 if (mode != BLKmode && mode != VOIDmode)
1c3f523e 6098 {
754c3d5d
RS
6099 attrs->size_known_p = true;
6100 attrs->size = GET_MODE_SIZE (mode);
1c3f523e
RS
6101 if (STRICT_ALIGNMENT)
6102 attrs->align = GET_MODE_ALIGNMENT (mode);
6103 }
6104 mode_mem_attrs[i] = attrs;
6105 }
af364399
ML
6106
6107 split_branch_probability = profile_probability::uninitialized ();
b5deb7b6
SL
6108}
6109
aa3a12d6
RS
6110/* Initialize global machine_mode variables. */
6111
6112void
6113init_derived_machine_modes (void)
6114{
501623d4
RS
6115 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6116 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
aa3a12d6 6117 {
501623d4
RS
6118 scalar_int_mode mode = mode_iter.require ();
6119
aa3a12d6 6120 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
501623d4
RS
6121 && !opt_byte_mode.exists ())
6122 opt_byte_mode = mode;
aa3a12d6
RS
6123
6124 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
501623d4
RS
6125 && !opt_word_mode.exists ())
6126 opt_word_mode = mode;
aa3a12d6
RS
6127 }
6128
501623d4
RS
6129 byte_mode = opt_byte_mode.require ();
6130 word_mode = opt_word_mode.require ();
f95c5b8e
RS
6131 ptr_mode = as_a <scalar_int_mode>
6132 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
aa3a12d6
RS
6133}
6134
2d888286 6135/* Create some permanent unique rtl objects shared between all functions. */
23b2ce53
RS
6136
6137void
2d888286 6138init_emit_once (void)
23b2ce53
RS
6139{
6140 int i;
ef4bddc2 6141 machine_mode mode;
857c7b46 6142 scalar_float_mode double_mode;
16d22000 6143 opt_scalar_mode smode_iter;
23b2ce53 6144
807e902e
KZ
6145 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6146 CONST_FIXED, and memory attribute hash tables. */
aebf76a2 6147 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
173b24b9 6148
807e902e 6149#if TARGET_SUPPORTS_WIDE_INT
aebf76a2 6150 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
807e902e 6151#endif
aebf76a2 6152 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
5692c7bc 6153
0c12fc9b
RS
6154 if (NUM_POLY_INT_COEFFS > 1)
6155 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6156
aebf76a2 6157 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
091a3ac7 6158
aebf76a2 6159 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
67673f5c 6160
5da077de 6161#ifdef INIT_EXPANDERS
414c4dc4
NC
6162 /* This is to initialize {init|mark|free}_machine_status before the first
6163 call to push_function_context_to. This is needed by the Chill front
a1f300c0 6164 end which calls push_function_context_to before the first call to
5da077de
AS
6165 init_function_start. */
6166 INIT_EXPANDERS;
6167#endif
6168
23b2ce53
RS
6169 /* Create the unique rtx's for certain rtx codes and operand values. */
6170
ecf835e9
KN
6171 /* Process stack-limiting command-line options. */
6172 if (opt_fstack_limit_symbol_arg != NULL)
6173 stack_limit_rtx
6174 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6175 if (opt_fstack_limit_register_no >= 0)
6176 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6177
a2a8cc44 6178 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 6179 tries to use these variables. */
23b2ce53 6180 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 6181 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 6182 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 6183
68d75312
JC
6184 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6185 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 6186 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 6187 else
3b80f6ca 6188 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 6189
857c7b46 6190 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
aa3a12d6 6191
807e902e
KZ
6192 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6193 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6194 real_from_integer (&dconst2, double_mode, 2, SIGNED);
aefa9d43
KG
6195
6196 dconstm1 = dconst1;
6197 dconstm1.sign = 1;
03f2ea93
RS
6198
6199 dconsthalf = dconst1;
1e92bbb9 6200 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 6201
e7c82a99 6202 for (i = 0; i < 3; i++)
23b2ce53 6203 {
aefa9d43 6204 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
6205 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6206
c94843d2 6207 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
15ed7b52 6208 const_tiny_rtx[i][(int) mode] =
555affd7 6209 const_double_from_real_value (*r, mode);
15ed7b52 6210
c94843d2 6211 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
5692c7bc 6212 const_tiny_rtx[i][(int) mode] =
555affd7 6213 const_double_from_real_value (*r, mode);
23b2ce53 6214
906c4e36 6215 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 6216
c94843d2 6217 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
906c4e36 6218 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559 6219
ede6c734
MS
6220 for (mode = MIN_MODE_PARTIAL_INT;
6221 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 6222 mode = (machine_mode)((int)(mode) + 1))
33d3e559 6223 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
6224 }
6225
e7c82a99
JJ
6226 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6227
c94843d2 6228 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
e7c82a99
JJ
6229 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6230
5c0caeb3
RS
6231 /* For BImode, 1 and -1 are unsigned and signed interpretations
6232 of the same value. */
6233 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6234 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6235 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6236
ede6c734
MS
6237 for (mode = MIN_MODE_PARTIAL_INT;
6238 mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 6239 mode = (machine_mode)((int)(mode) + 1))
c8a89d2a 6240 const_tiny_rtx[3][(int) mode] = constm1_rtx;
c94843d2
RS
6241
6242 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
e90721b1
AP
6243 {
6244 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6245 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6246 }
6247
c94843d2 6248 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
e90721b1
AP
6249 {
6250 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6251 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6252 }
6253
5c0caeb3
RS
6254 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6255 interpretations of the same value. */
6256 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6257 {
6258 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6259 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6260 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6261 }
6262
c94843d2 6263 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
a73b091d
JW
6264 {
6265 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6266 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
e7c82a99 6267 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
a73b091d 6268 }
69ef87e2 6269
c94843d2 6270 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
a73b091d
JW
6271 {
6272 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6273 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6274 }
69ef87e2 6275
16d22000 6276 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
325217ed 6277 {
16d22000
RS
6278 scalar_mode smode = smode_iter.require ();
6279 FCONST0 (smode).data.high = 0;
6280 FCONST0 (smode).data.low = 0;
6281 FCONST0 (smode).mode = smode;
6282 const_tiny_rtx[0][(int) smode]
6283 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6284 }
6285
16d22000 6286 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
325217ed 6287 {
16d22000
RS
6288 scalar_mode smode = smode_iter.require ();
6289 FCONST0 (smode).data.high = 0;
6290 FCONST0 (smode).data.low = 0;
6291 FCONST0 (smode).mode = smode;
6292 const_tiny_rtx[0][(int) smode]
6293 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6294 }
6295
16d22000 6296 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
325217ed 6297 {
16d22000
RS
6298 scalar_mode smode = smode_iter.require ();
6299 FCONST0 (smode).data.high = 0;
6300 FCONST0 (smode).data.low = 0;
6301 FCONST0 (smode).mode = smode;
6302 const_tiny_rtx[0][(int) smode]
6303 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6304
6305 /* We store the value 1. */
16d22000
RS
6306 FCONST1 (smode).data.high = 0;
6307 FCONST1 (smode).data.low = 0;
6308 FCONST1 (smode).mode = smode;
6309 FCONST1 (smode).data
6310 = double_int_one.lshift (GET_MODE_FBIT (smode),
9be0ac8c 6311 HOST_BITS_PER_DOUBLE_INT,
16d22000
RS
6312 SIGNED_FIXED_POINT_MODE_P (smode));
6313 const_tiny_rtx[1][(int) smode]
6314 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
325217ed
CF
6315 }
6316
16d22000 6317 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
325217ed 6318 {
16d22000
RS
6319 scalar_mode smode = smode_iter.require ();
6320 FCONST0 (smode).data.high = 0;
6321 FCONST0 (smode).data.low = 0;
6322 FCONST0 (smode).mode = smode;
6323 const_tiny_rtx[0][(int) smode]
6324 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
325217ed
CF
6325
6326 /* We store the value 1. */
16d22000
RS
6327 FCONST1 (smode).data.high = 0;
6328 FCONST1 (smode).data.low = 0;
6329 FCONST1 (smode).mode = smode;
6330 FCONST1 (smode).data
6331 = double_int_one.lshift (GET_MODE_FBIT (smode),
9be0ac8c 6332 HOST_BITS_PER_DOUBLE_INT,
16d22000
RS
6333 SIGNED_FIXED_POINT_MODE_P (smode));
6334 const_tiny_rtx[1][(int) smode]
6335 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
091a3ac7
CF
6336 }
6337
c94843d2 6338 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
091a3ac7
CF
6339 {
6340 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6341 }
6342
c94843d2 6343 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
091a3ac7
CF
6344 {
6345 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6346 }
6347
c94843d2 6348 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
091a3ac7
CF
6349 {
6350 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6351 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6352 }
6353
c94843d2 6354 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
091a3ac7
CF
6355 {
6356 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6357 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
6358 }
6359
dbbbbf3b 6360 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
ef4bddc2 6361 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
dbbbbf3b 6362 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 6363
ca4adc91
RS
6364 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6365 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6366 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
1476d1bd
MM
6367 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6368 /*prev_insn=*/NULL,
6369 /*next_insn=*/NULL,
6370 /*bb=*/NULL,
6371 /*pattern=*/NULL_RTX,
6372 /*location=*/-1,
6373 CODE_FOR_nothing,
6374 /*reg_notes=*/NULL_RTX);
23b2ce53 6375}
a11759a3 6376\f
969d70ca
JH
6377/* Produce exact duplicate of insn INSN after AFTER.
6378 Care updating of libcall regions if present. */
6379
cd459bf8 6380rtx_insn *
a1950df3 6381emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
969d70ca 6382{
cd459bf8
DM
6383 rtx_insn *new_rtx;
6384 rtx link;
969d70ca
JH
6385
6386 switch (GET_CODE (insn))
6387 {
6388 case INSN:
60564289 6389 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
6390 break;
6391
6392 case JUMP_INSN:
60564289 6393 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
ec27069c 6394 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
969d70ca
JH
6395 break;
6396
b5b8b0ac
AO
6397 case DEBUG_INSN:
6398 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6399 break;
6400
969d70ca 6401 case CALL_INSN:
60564289 6402 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 6403 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 6404 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 6405 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
6406 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6407 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6408 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
b8698a0f 6409 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 6410 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
6411 break;
6412
6413 default:
5b0264cb 6414 gcc_unreachable ();
969d70ca
JH
6415 }
6416
6417 /* Update LABEL_NUSES. */
60564289 6418 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 6419
5368224f 6420 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ba4f7968 6421
0a3d71f5
JW
6422 /* If the old insn is frame related, then so is the new one. This is
6423 primarily needed for IA-64 unwind info which marks epilogue insns,
6424 which may be duplicated by the basic block reordering code. */
60564289 6425 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 6426
1581a12c
BS
6427 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6428 rtx *ptail = &REG_NOTES (new_rtx);
6429 while (*ptail != NULL_RTX)
6430 ptail = &XEXP (*ptail, 1);
6431
cf7c4aa6
HPN
6432 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6433 will make them. REG_LABEL_TARGETs are created there too, but are
6434 supposed to be sticky, so we copy them. */
969d70ca 6435 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 6436 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca 6437 {
1581a12c
BS
6438 *ptail = duplicate_reg_note (link);
6439 ptail = &XEXP (*ptail, 1);
969d70ca
JH
6440 }
6441
60564289
KG
6442 INSN_CODE (new_rtx) = INSN_CODE (insn);
6443 return new_rtx;
969d70ca 6444}
e2500fed 6445
1431042e 6446static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d 6447rtx
ef4bddc2 6448gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
3e89ed8d
JH
6449{
6450 if (hard_reg_clobbers[mode][regno])
6451 return hard_reg_clobbers[mode][regno];
6452 else
6453 return (hard_reg_clobbers[mode][regno] =
6454 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6455}
6456
5368224f
DC
6457location_t prologue_location;
6458location_t epilogue_location;
78bde837
SB
6459
6460/* Hold current location information and last location information, so the
6461 datastructures are built lazily only when some instructions in given
6462 place are needed. */
3a50da34 6463static location_t curr_location;
78bde837 6464
5368224f 6465/* Allocate insn location datastructure. */
78bde837 6466void
5368224f 6467insn_locations_init (void)
78bde837 6468{
5368224f 6469 prologue_location = epilogue_location = 0;
78bde837 6470 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6471}
6472
6473/* At the end of emit stage, clear current location. */
6474void
5368224f 6475insn_locations_finalize (void)
78bde837 6476{
5368224f
DC
6477 epilogue_location = curr_location;
6478 curr_location = UNKNOWN_LOCATION;
78bde837
SB
6479}
6480
6481/* Set current location. */
6482void
5368224f 6483set_curr_insn_location (location_t location)
78bde837 6484{
78bde837
SB
6485 curr_location = location;
6486}
6487
6488/* Get current location. */
6489location_t
5368224f 6490curr_insn_location (void)
78bde837
SB
6491{
6492 return curr_location;
6493}
6494
079e0f61
EB
6495/* Set the location of the insn chain starting at INSN to LOC. */
6496void
6497set_insn_locations (rtx_insn *insn, location_t loc)
6498{
6499 while (insn)
6500 {
6501 if (INSN_P (insn))
6502 INSN_LOCATION (insn) = loc;
6503 insn = NEXT_INSN (insn);
6504 }
6505}
6506
78bde837
SB
6507/* Return lexical scope block insn belongs to. */
6508tree
a1950df3 6509insn_scope (const rtx_insn *insn)
78bde837 6510{
5368224f 6511 return LOCATION_BLOCK (INSN_LOCATION (insn));
78bde837
SB
6512}
6513
6514/* Return line number of the statement that produced this insn. */
6515int
a1950df3 6516insn_line (const rtx_insn *insn)
78bde837 6517{
5368224f 6518 return LOCATION_LINE (INSN_LOCATION (insn));
78bde837
SB
6519}
6520
6521/* Return source file of the statement that produced this insn. */
6522const char *
a1950df3 6523insn_file (const rtx_insn *insn)
78bde837 6524{
5368224f 6525 return LOCATION_FILE (INSN_LOCATION (insn));
78bde837 6526}
8930883e 6527
ffa4602f
EB
6528/* Return expanded location of the statement that produced this insn. */
6529expanded_location
a1950df3 6530insn_location (const rtx_insn *insn)
ffa4602f
EB
6531{
6532 return expand_location (INSN_LOCATION (insn));
6533}
6534
8930883e
MK
6535/* Return true if memory model MODEL requires a pre-operation (release-style)
6536 barrier or a post-operation (acquire-style) barrier. While not universal,
6537 this function matches behavior of several targets. */
6538
6539bool
6540need_atomic_barrier_p (enum memmodel model, bool pre)
6541{
40ad260d 6542 switch (model & MEMMODEL_BASE_MASK)
8930883e
MK
6543 {
6544 case MEMMODEL_RELAXED:
6545 case MEMMODEL_CONSUME:
6546 return false;
6547 case MEMMODEL_RELEASE:
6548 return pre;
6549 case MEMMODEL_ACQUIRE:
6550 return !pre;
6551 case MEMMODEL_ACQ_REL:
6552 case MEMMODEL_SEQ_CST:
6553 return true;
6554 default:
6555 gcc_unreachable ();
6556 }
6557}
8194c537 6558
abd3c800
RS
6559/* Return a constant shift amount for shifting a value of mode MODE
6560 by VALUE bits. */
6561
6562rtx
0c12fc9b 6563gen_int_shift_amount (machine_mode, poly_int64 value)
abd3c800
RS
6564{
6565 /* Use a 64-bit mode, to avoid any truncation.
6566
6567 ??? Perhaps this should be automatically derived from the .md files
6568 instead, or perhaps have a target hook. */
6569 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6570 ? DImode
6571 : int_mode_for_size (64, 0).require ());
6572 return gen_int_mode (value, shift_mode);
6573}
6574
8194c537
DM
6575/* Initialize fields of rtl_data related to stack alignment. */
6576
6577void
6578rtl_data::init_stack_alignment ()
6579{
6580 stack_alignment_needed = STACK_BOUNDARY;
6581 max_used_stack_slot_alignment = STACK_BOUNDARY;
6582 stack_alignment_estimated = 0;
6583 preferred_stack_boundary = STACK_BOUNDARY;
6584}
6585
8930883e 6586\f
e2500fed 6587#include "gt-emit-rtl.h"