]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
h8300.c (output_plussi): Support H8/300.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
23b2ce53 1/* Emit RTL for the GNU C-Compiler expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2cc2d4bb 3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
23b2ce53 4
1322177d 5This file is part of GCC.
23b2ce53 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
23b2ce53 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
23b2ce53
RS
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
670ee920 39#include "system.h"
4977bab6
ZW
40#include "coretypes.h"
41#include "tm.h"
01198c2f 42#include "toplev.h"
23b2ce53 43#include "rtl.h"
a25c7971 44#include "tree.h"
6baf1cc8 45#include "tm_p.h"
23b2ce53
RS
46#include "flags.h"
47#include "function.h"
48#include "expr.h"
49#include "regs.h"
aff48bca 50#include "hard-reg-set.h"
c13e8210 51#include "hashtab.h"
23b2ce53 52#include "insn-config.h"
e9a25f70 53#include "recog.h"
23b2ce53 54#include "real.h"
0dfa1860 55#include "bitmap.h"
a05924f9 56#include "basic-block.h"
87ff9c8e 57#include "ggc.h"
e1772ac0 58#include "debug.h"
d23c55c2 59#include "langhooks.h"
ca695ac9 60
1d445e9e
ILT
61/* Commonly used modes. */
62
0f41302f
MS
63enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 65enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 66enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 67
23b2ce53
RS
68
69/* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
72static int label_num = 1;
73
23b2ce53
RS
74/* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78static int last_label_num;
79
80/* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83static int base_label_num;
84
85/* Nonzero means do not generate NOTEs for source line numbers. */
86
87static int no_line_numbers;
88
89/* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
5692c7bc
ZW
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
23b2ce53 93
5da077de 94rtx global_rtl[GR_MAX];
23b2ce53 95
6cde4876
JL
96/* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
23b2ce53
RS
102/* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
68d75312
JC
108rtx const_true_rtx;
109
23b2ce53
RS
110REAL_VALUE_TYPE dconst0;
111REAL_VALUE_TYPE dconst1;
112REAL_VALUE_TYPE dconst2;
113REAL_VALUE_TYPE dconstm1;
114
115/* All references to the following fixed hard registers go through
116 these unique rtl objects. On machines where the frame-pointer and
117 arg-pointer are the same register, they use the same unique object.
118
119 After register allocation, other rtl objects which used to be pseudo-regs
120 may be clobbered to refer to the frame-pointer register.
121 But references that were originally to the frame-pointer can be
122 distinguished from the others because they contain frame_pointer_rtx.
123
ac6f08b0
DE
124 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
125 tricky: until register elimination has taken place hard_frame_pointer_rtx
750c9258 126 should be used if it is being set, and frame_pointer_rtx otherwise. After
ac6f08b0
DE
127 register elimination hard_frame_pointer_rtx should always be used.
128 On machines where the two registers are same (most) then these are the
129 same.
130
23b2ce53
RS
131 In an inline procedure, the stack and frame pointer rtxs may not be
132 used for anything else. */
23b2ce53
RS
133rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
134rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
135rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
136rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
137rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
138
a4417a86
JW
139/* This is used to implement __builtin_return_address for some machines.
140 See for instance the MIPS port. */
141rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
142
23b2ce53
RS
143/* We make one copy of (const_int C) where C is in
144 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
145 to save space during the compilation and simplify comparisons of
146 integers. */
147
5da077de 148rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 149
c13e8210
MM
150/* A hash table storing CONST_INTs whose absolute value is greater
151 than MAX_SAVED_CONST_INT. */
152
e2500fed
GK
153static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
154 htab_t const_int_htab;
c13e8210 155
173b24b9 156/* A hash table storing memory attribute structures. */
e2500fed
GK
157static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
158 htab_t mem_attrs_htab;
173b24b9 159
5692c7bc 160/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
161static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
162 htab_t const_double_htab;
5692c7bc 163
01d939e8
BS
164#define first_insn (cfun->emit->x_first_insn)
165#define last_insn (cfun->emit->x_last_insn)
166#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
167#define last_linenum (cfun->emit->x_last_linenum)
168#define last_filename (cfun->emit->x_last_filename)
169#define first_label_num (cfun->emit->x_first_label_num)
23b2ce53 170
711d877c
KG
171static rtx make_jump_insn_raw PARAMS ((rtx));
172static rtx make_call_insn_raw PARAMS ((rtx));
173static rtx find_line_note PARAMS ((rtx));
738cc472
RK
174static rtx change_address_1 PARAMS ((rtx, enum machine_mode, rtx,
175 int));
d1b81779 176static void unshare_all_rtl_1 PARAMS ((rtx));
5c6df058 177static void unshare_all_decls PARAMS ((tree));
2d4aecb3 178static void reset_used_decls PARAMS ((tree));
e5bef2e4 179static void mark_label_nuses PARAMS ((rtx));
c13e8210
MM
180static hashval_t const_int_htab_hash PARAMS ((const void *));
181static int const_int_htab_eq PARAMS ((const void *,
182 const void *));
5692c7bc
ZW
183static hashval_t const_double_htab_hash PARAMS ((const void *));
184static int const_double_htab_eq PARAMS ((const void *,
185 const void *));
186static rtx lookup_const_double PARAMS ((rtx));
173b24b9
RK
187static hashval_t mem_attrs_htab_hash PARAMS ((const void *));
188static int mem_attrs_htab_eq PARAMS ((const void *,
189 const void *));
173b24b9 190static mem_attrs *get_mem_attrs PARAMS ((HOST_WIDE_INT, tree, rtx,
10b76d73
RK
191 rtx, unsigned int,
192 enum machine_mode));
998d7deb 193static tree component_ref_for_mem_expr PARAMS ((tree));
ff88fe10 194static rtx gen_const_vector_0 PARAMS ((enum machine_mode));
c13e8210 195
6b24c259
JH
196/* Probability of the conditional branch currently proceeded by try_split.
197 Set to -1 otherwise. */
198int split_branch_probability = -1;
ca695ac9 199\f
c13e8210
MM
200/* Returns a hash code for X (which is a really a CONST_INT). */
201
202static hashval_t
203const_int_htab_hash (x)
204 const void *x;
205{
5692c7bc 206 return (hashval_t) INTVAL ((struct rtx_def *) x);
c13e8210
MM
207}
208
cc2902df 209/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
210 CONST_INT) is the same as that given by Y (which is really a
211 HOST_WIDE_INT *). */
212
213static int
214const_int_htab_eq (x, y)
215 const void *x;
216 const void *y;
217{
5692c7bc
ZW
218 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
219}
220
221/* Returns a hash code for X (which is really a CONST_DOUBLE). */
222static hashval_t
223const_double_htab_hash (x)
224 const void *x;
225{
5692c7bc 226 rtx value = (rtx) x;
46b33600 227 hashval_t h;
5692c7bc 228
46b33600
RH
229 if (GET_MODE (value) == VOIDmode)
230 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231 else
232 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
5692c7bc
ZW
233 return h;
234}
235
cc2902df 236/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
237 is the same as that represented by Y (really a ...) */
238static int
239const_double_htab_eq (x, y)
240 const void *x;
241 const void *y;
242{
243 rtx a = (rtx)x, b = (rtx)y;
5692c7bc
ZW
244
245 if (GET_MODE (a) != GET_MODE (b))
246 return 0;
8580f7a0
RH
247 if (GET_MODE (a) == VOIDmode)
248 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
249 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
250 else
251 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
252 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
253}
254
173b24b9
RK
255/* Returns a hash code for X (which is a really a mem_attrs *). */
256
257static hashval_t
258mem_attrs_htab_hash (x)
259 const void *x;
260{
261 mem_attrs *p = (mem_attrs *) x;
262
263 return (p->alias ^ (p->align * 1000)
264 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
265 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
998d7deb 266 ^ (size_t) p->expr);
173b24b9
RK
267}
268
cc2902df 269/* Returns nonzero if the value represented by X (which is really a
173b24b9
RK
270 mem_attrs *) is the same as that given by Y (which is also really a
271 mem_attrs *). */
c13e8210
MM
272
273static int
173b24b9
RK
274mem_attrs_htab_eq (x, y)
275 const void *x;
276 const void *y;
c13e8210 277{
173b24b9
RK
278 mem_attrs *p = (mem_attrs *) x;
279 mem_attrs *q = (mem_attrs *) y;
280
998d7deb 281 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
173b24b9 282 && p->size == q->size && p->align == q->align);
c13e8210
MM
283}
284
173b24b9 285/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
286 one identical to it is not already in the table. We are doing this for
287 MEM of mode MODE. */
173b24b9
RK
288
289static mem_attrs *
998d7deb 290get_mem_attrs (alias, expr, offset, size, align, mode)
173b24b9 291 HOST_WIDE_INT alias;
998d7deb 292 tree expr;
173b24b9
RK
293 rtx offset;
294 rtx size;
295 unsigned int align;
10b76d73 296 enum machine_mode mode;
173b24b9
RK
297{
298 mem_attrs attrs;
299 void **slot;
300
10b76d73 301 /* If everything is the default, we can just return zero. */
998d7deb 302 if (alias == 0 && expr == 0 && offset == 0
10b76d73
RK
303 && (size == 0
304 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
916f389b 305 && (align == BITS_PER_UNIT
917afb0c
RK
306 || (STRICT_ALIGNMENT
307 && mode != BLKmode && align == GET_MODE_ALIGNMENT (mode))))
10b76d73
RK
308 return 0;
309
173b24b9 310 attrs.alias = alias;
998d7deb 311 attrs.expr = expr;
173b24b9
RK
312 attrs.offset = offset;
313 attrs.size = size;
314 attrs.align = align;
315
316 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
317 if (*slot == 0)
318 {
319 *slot = ggc_alloc (sizeof (mem_attrs));
320 memcpy (*slot, &attrs, sizeof (mem_attrs));
321 }
322
323 return *slot;
c13e8210
MM
324}
325
08394eef
BS
326/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
327 don't attempt to share with the various global pieces of rtl (such as
328 frame_pointer_rtx). */
329
330rtx
331gen_raw_REG (mode, regno)
332 enum machine_mode mode;
333 int regno;
334{
335 rtx x = gen_rtx_raw_REG (mode, regno);
336 ORIGINAL_REGNO (x) = regno;
337 return x;
338}
339
c5c76735
JL
340/* There are some RTL codes that require special attention; the generation
341 functions do the raw handling. If you add to this list, modify
342 special_rtx in gengenrtl.c as well. */
343
3b80f6ca
RH
344rtx
345gen_rtx_CONST_INT (mode, arg)
c13e8210 346 enum machine_mode mode ATTRIBUTE_UNUSED;
3b80f6ca
RH
347 HOST_WIDE_INT arg;
348{
c13e8210
MM
349 void **slot;
350
3b80f6ca 351 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 352 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
353
354#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
355 if (const_true_rtx && arg == STORE_FLAG_VALUE)
356 return const_true_rtx;
357#endif
358
c13e8210 359 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
360 slot = htab_find_slot_with_hash (const_int_htab, &arg,
361 (hashval_t) arg, INSERT);
29105cea 362 if (*slot == 0)
1f8f4a0b 363 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
364
365 return (rtx) *slot;
3b80f6ca
RH
366}
367
2496c7bd
LB
368rtx
369gen_int_mode (c, mode)
370 HOST_WIDE_INT c;
371 enum machine_mode mode;
372{
373 return GEN_INT (trunc_int_for_mode (c, mode));
374}
375
5692c7bc
ZW
376/* CONST_DOUBLEs might be created from pairs of integers, or from
377 REAL_VALUE_TYPEs. Also, their length is known only at run time,
378 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
379
380/* Determine whether REAL, a CONST_DOUBLE, already exists in the
381 hash table. If so, return its counterpart; otherwise add it
382 to the hash table and return it. */
383static rtx
384lookup_const_double (real)
385 rtx real;
386{
387 void **slot = htab_find_slot (const_double_htab, real, INSERT);
388 if (*slot == 0)
389 *slot = real;
390
391 return (rtx) *slot;
392}
29105cea 393
5692c7bc
ZW
394/* Return a CONST_DOUBLE rtx for a floating-point value specified by
395 VALUE in mode MODE. */
0133b7d9 396rtx
5692c7bc
ZW
397const_double_from_real_value (value, mode)
398 REAL_VALUE_TYPE value;
0133b7d9 399 enum machine_mode mode;
0133b7d9 400{
5692c7bc
ZW
401 rtx real = rtx_alloc (CONST_DOUBLE);
402 PUT_MODE (real, mode);
403
404 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
405
406 return lookup_const_double (real);
407}
408
409/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
410 of ints: I0 is the low-order word and I1 is the high-order word.
411 Do not use this routine for non-integer modes; convert to
412 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
413
414rtx
415immed_double_const (i0, i1, mode)
416 HOST_WIDE_INT i0, i1;
417 enum machine_mode mode;
418{
419 rtx value;
420 unsigned int i;
421
422 if (mode != VOIDmode)
423 {
424 int width;
425 if (GET_MODE_CLASS (mode) != MODE_INT
cb2a532e
AH
426 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
427 /* We can get a 0 for an error mark. */
428 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
429 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
5692c7bc
ZW
430 abort ();
431
432 /* We clear out all bits that don't belong in MODE, unless they and
433 our sign bit are all one. So we get either a reasonable negative
434 value or a reasonable unsigned value for this mode. */
435 width = GET_MODE_BITSIZE (mode);
436 if (width < HOST_BITS_PER_WIDE_INT
437 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
438 != ((HOST_WIDE_INT) (-1) << (width - 1))))
439 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
440 else if (width == HOST_BITS_PER_WIDE_INT
441 && ! (i1 == ~0 && i0 < 0))
442 i1 = 0;
443 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
444 /* We cannot represent this value as a constant. */
445 abort ();
446
447 /* If this would be an entire word for the target, but is not for
448 the host, then sign-extend on the host so that the number will
449 look the same way on the host that it would on the target.
450
451 For example, when building a 64 bit alpha hosted 32 bit sparc
452 targeted compiler, then we want the 32 bit unsigned value -1 to be
453 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
454 The latter confuses the sparc backend. */
455
456 if (width < HOST_BITS_PER_WIDE_INT
457 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
458 i0 |= ((HOST_WIDE_INT) (-1) << width);
2454beaf 459
5692c7bc
ZW
460 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
461 CONST_INT.
2454beaf 462
5692c7bc
ZW
463 ??? Strictly speaking, this is wrong if we create a CONST_INT for
464 a large unsigned constant with the size of MODE being
465 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
466 in a wider mode. In that case we will mis-interpret it as a
467 negative number.
2454beaf 468
5692c7bc
ZW
469 Unfortunately, the only alternative is to make a CONST_DOUBLE for
470 any constant in any mode if it is an unsigned constant larger
471 than the maximum signed integer in an int on the host. However,
472 doing this will break everyone that always expects to see a
473 CONST_INT for SImode and smaller.
474
475 We have always been making CONST_INTs in this case, so nothing
476 new is being broken. */
477
478 if (width <= HOST_BITS_PER_WIDE_INT)
479 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
480 }
481
482 /* If this integer fits in one word, return a CONST_INT. */
483 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
484 return GEN_INT (i0);
485
486 /* We use VOIDmode for integers. */
487 value = rtx_alloc (CONST_DOUBLE);
488 PUT_MODE (value, VOIDmode);
489
490 CONST_DOUBLE_LOW (value) = i0;
491 CONST_DOUBLE_HIGH (value) = i1;
492
493 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
494 XWINT (value, i) = 0;
495
496 return lookup_const_double (value);
0133b7d9
RH
497}
498
3b80f6ca
RH
499rtx
500gen_rtx_REG (mode, regno)
501 enum machine_mode mode;
5692c7bc 502 unsigned int regno;
3b80f6ca
RH
503{
504 /* In case the MD file explicitly references the frame pointer, have
505 all such references point to the same frame pointer. This is
506 used during frame pointer elimination to distinguish the explicit
507 references to these registers from pseudos that happened to be
508 assigned to them.
509
510 If we have eliminated the frame pointer or arg pointer, we will
511 be using it as a normal register, for example as a spill
512 register. In such cases, we might be accessing it in a mode that
513 is not Pmode and therefore cannot use the pre-allocated rtx.
514
515 Also don't do this when we are making new REGs in reload, since
516 we don't want to get confused with the real pointers. */
517
518 if (mode == Pmode && !reload_in_progress)
519 {
e10c79fe
LB
520 if (regno == FRAME_POINTER_REGNUM
521 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
522 return frame_pointer_rtx;
523#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e10c79fe
LB
524 if (regno == HARD_FRAME_POINTER_REGNUM
525 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
526 return hard_frame_pointer_rtx;
527#endif
528#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 529 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
530 return arg_pointer_rtx;
531#endif
532#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 533 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
534 return return_address_pointer_rtx;
535#endif
fc555370 536 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
2d67bd7b 537 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 538 return pic_offset_table_rtx;
bcb33994 539 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
540 return stack_pointer_rtx;
541 }
542
006a94b0 543#if 0
6cde4876 544 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
545 an existing entry in that table to avoid useless generation of RTL.
546
547 This code is disabled for now until we can fix the various backends
548 which depend on having non-shared hard registers in some cases. Long
549 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
550 on the amount of useless RTL that gets generated.
551
552 We'll also need to fix some code that runs after reload that wants to
553 set ORIGINAL_REGNO. */
554
6cde4876
JL
555 if (cfun
556 && cfun->emit
557 && regno_reg_rtx
558 && regno < FIRST_PSEUDO_REGISTER
559 && reg_raw_mode[regno] == mode)
560 return regno_reg_rtx[regno];
006a94b0 561#endif
6cde4876 562
08394eef 563 return gen_raw_REG (mode, regno);
3b80f6ca
RH
564}
565
41472af8
MM
566rtx
567gen_rtx_MEM (mode, addr)
568 enum machine_mode mode;
569 rtx addr;
570{
571 rtx rt = gen_rtx_raw_MEM (mode, addr);
572
573 /* This field is not cleared by the mere allocation of the rtx, so
574 we clear it here. */
173b24b9 575 MEM_ATTRS (rt) = 0;
41472af8
MM
576
577 return rt;
578}
ddef6bc7
JJ
579
580rtx
581gen_rtx_SUBREG (mode, reg, offset)
582 enum machine_mode mode;
583 rtx reg;
584 int offset;
585{
586 /* This is the most common failure type.
587 Catch it early so we can see who does it. */
588 if ((offset % GET_MODE_SIZE (mode)) != 0)
589 abort ();
590
591 /* This check isn't usable right now because combine will
592 throw arbitrary crap like a CALL into a SUBREG in
593 gen_lowpart_for_combine so we must just eat it. */
594#if 0
595 /* Check for this too. */
596 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
597 abort ();
598#endif
5692c7bc 599 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
600}
601
173b24b9
RK
602/* Generate a SUBREG representing the least-significant part of REG if MODE
603 is smaller than mode of REG, otherwise paradoxical SUBREG. */
604
ddef6bc7
JJ
605rtx
606gen_lowpart_SUBREG (mode, reg)
607 enum machine_mode mode;
608 rtx reg;
609{
610 enum machine_mode inmode;
ddef6bc7
JJ
611
612 inmode = GET_MODE (reg);
613 if (inmode == VOIDmode)
614 inmode = mode;
e0e08ac2
JH
615 return gen_rtx_SUBREG (mode, reg,
616 subreg_lowpart_offset (mode, inmode));
ddef6bc7 617}
c5c76735 618\f
23b2ce53
RS
619/* rtx gen_rtx (code, mode, [element1, ..., elementn])
620**
621** This routine generates an RTX of the size specified by
622** <code>, which is an RTX code. The RTX structure is initialized
623** from the arguments <element1> through <elementn>, which are
624** interpreted according to the specific RTX type's format. The
625** special machine mode associated with the rtx (if any) is specified
626** in <mode>.
627**
1632afca 628** gen_rtx can be invoked in a way which resembles the lisp-like
23b2ce53
RS
629** rtx it will generate. For example, the following rtx structure:
630**
631** (plus:QI (mem:QI (reg:SI 1))
632** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
633**
634** ...would be generated by the following C code:
635**
750c9258 636** gen_rtx (PLUS, QImode,
23b2ce53
RS
637** gen_rtx (MEM, QImode,
638** gen_rtx (REG, SImode, 1)),
639** gen_rtx (MEM, QImode,
640** gen_rtx (PLUS, SImode,
641** gen_rtx (REG, SImode, 2),
642** gen_rtx (REG, SImode, 3)))),
643*/
644
645/*VARARGS2*/
646rtx
711d877c 647gen_rtx VPARAMS ((enum rtx_code code, enum machine_mode mode, ...))
23b2ce53 648{
b3694847
SS
649 int i; /* Array indices... */
650 const char *fmt; /* Current rtx's format... */
651 rtx rt_val; /* RTX to return to caller... */
23b2ce53 652
7a75edb7
AJ
653 VA_OPEN (p, mode);
654 VA_FIXEDARG (p, enum rtx_code, code);
655 VA_FIXEDARG (p, enum machine_mode, mode);
23b2ce53 656
0133b7d9 657 switch (code)
23b2ce53 658 {
0133b7d9
RH
659 case CONST_INT:
660 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
661 break;
662
663 case CONST_DOUBLE:
664 {
a79e3a45 665 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
0133b7d9 666 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
a79e3a45 667
0fb7aeda 668 rt_val = immed_double_const (arg0, arg1, mode);
0133b7d9
RH
669 }
670 break;
671
672 case REG:
673 rt_val = gen_rtx_REG (mode, va_arg (p, int));
674 break;
675
676 case MEM:
677 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
678 break;
679
680 default:
23b2ce53
RS
681 rt_val = rtx_alloc (code); /* Allocate the storage space. */
682 rt_val->mode = mode; /* Store the machine mode... */
683
684 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
685 for (i = 0; i < GET_RTX_LENGTH (code); i++)
686 {
687 switch (*fmt++)
688 {
689 case '0': /* Unused field. */
690 break;
691
692 case 'i': /* An integer? */
693 XINT (rt_val, i) = va_arg (p, int);
694 break;
695
906c4e36
RK
696 case 'w': /* A wide integer? */
697 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
698 break;
699
23b2ce53
RS
700 case 's': /* A string? */
701 XSTR (rt_val, i) = va_arg (p, char *);
702 break;
703
704 case 'e': /* An expression? */
705 case 'u': /* An insn? Same except when printing. */
706 XEXP (rt_val, i) = va_arg (p, rtx);
707 break;
708
709 case 'E': /* An RTX vector? */
710 XVEC (rt_val, i) = va_arg (p, rtvec);
711 break;
712
0dfa1860
MM
713 case 'b': /* A bitmap? */
714 XBITMAP (rt_val, i) = va_arg (p, bitmap);
715 break;
716
717 case 't': /* A tree? */
718 XTREE (rt_val, i) = va_arg (p, tree);
719 break;
720
23b2ce53 721 default:
1632afca 722 abort ();
23b2ce53
RS
723 }
724 }
0133b7d9 725 break;
23b2ce53 726 }
0133b7d9 727
7a75edb7 728 VA_CLOSE (p);
0133b7d9 729 return rt_val;
23b2ce53
RS
730}
731
732/* gen_rtvec (n, [rt1, ..., rtn])
733**
734** This routine creates an rtvec and stores within it the
735** pointers to rtx's which are its arguments.
736*/
737
738/*VARARGS1*/
739rtvec
711d877c 740gen_rtvec VPARAMS ((int n, ...))
23b2ce53 741{
6268b922 742 int i, save_n;
23b2ce53
RS
743 rtx *vector;
744
7a75edb7
AJ
745 VA_OPEN (p, n);
746 VA_FIXEDARG (p, int, n);
23b2ce53
RS
747
748 if (n == 0)
749 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
750
751 vector = (rtx *) alloca (n * sizeof (rtx));
4f90e4a0 752
23b2ce53
RS
753 for (i = 0; i < n; i++)
754 vector[i] = va_arg (p, rtx);
6268b922
KG
755
756 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
757 save_n = n;
7a75edb7 758 VA_CLOSE (p);
23b2ce53 759
6268b922 760 return gen_rtvec_v (save_n, vector);
23b2ce53
RS
761}
762
763rtvec
764gen_rtvec_v (n, argp)
765 int n;
766 rtx *argp;
767{
b3694847
SS
768 int i;
769 rtvec rt_val;
23b2ce53
RS
770
771 if (n == 0)
772 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
773
774 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
775
776 for (i = 0; i < n; i++)
8f985ec4 777 rt_val->elem[i] = *argp++;
23b2ce53
RS
778
779 return rt_val;
780}
781\f
782/* Generate a REG rtx for a new pseudo register of mode MODE.
783 This pseudo is assigned the next sequential register number. */
784
785rtx
786gen_reg_rtx (mode)
787 enum machine_mode mode;
788{
01d939e8 789 struct function *f = cfun;
b3694847 790 rtx val;
23b2ce53 791
f1db3576
JL
792 /* Don't let anything called after initial flow analysis create new
793 registers. */
794 if (no_new_pseudos)
23b2ce53
RS
795 abort ();
796
1b3d8f8a
GK
797 if (generating_concat_p
798 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
799 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
800 {
801 /* For complex modes, don't make a single pseudo.
802 Instead, make a CONCAT of two pseudos.
803 This allows noncontiguous allocation of the real and imaginary parts,
804 which makes much better code. Besides, allocating DCmode
805 pseudos overstrains reload on some machines like the 386. */
806 rtx realpart, imagpart;
27e58a70 807 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
808
809 realpart = gen_reg_rtx (partmode);
810 imagpart = gen_reg_rtx (partmode);
3b80f6ca 811 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
812 }
813
0d4903b8
RK
814 /* Make sure regno_pointer_align, regno_decl, and regno_reg_rtx are large
815 enough to have an element for this pseudo reg number. */
23b2ce53 816
3502dc9c 817 if (reg_rtx_no == f->emit->regno_pointer_align_length)
23b2ce53 818 {
3502dc9c 819 int old_size = f->emit->regno_pointer_align_length;
e2ecd91c 820 char *new;
0d4903b8
RK
821 rtx *new1;
822 tree *new2;
823
e2500fed 824 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
49ad7cfa 825 memset (new + old_size, 0, old_size);
f9e158c3 826 f->emit->regno_pointer_align = (unsigned char *) new;
49ad7cfa 827
e2500fed
GK
828 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
829 old_size * 2 * sizeof (rtx));
49ad7cfa 830 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
831 regno_reg_rtx = new1;
832
e2500fed
GK
833 new2 = (tree *) ggc_realloc (f->emit->regno_decl,
834 old_size * 2 * sizeof (tree));
0d4903b8
RK
835 memset (new2 + old_size, 0, old_size * sizeof (tree));
836 f->emit->regno_decl = new2;
837
3502dc9c 838 f->emit->regno_pointer_align_length = old_size * 2;
23b2ce53
RS
839 }
840
08394eef 841 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
842 regno_reg_rtx[reg_rtx_no++] = val;
843 return val;
844}
845
754fdcca
RK
846/* Identify REG (which may be a CONCAT) as a user register. */
847
848void
849mark_user_reg (reg)
850 rtx reg;
851{
852 if (GET_CODE (reg) == CONCAT)
853 {
854 REG_USERVAR_P (XEXP (reg, 0)) = 1;
855 REG_USERVAR_P (XEXP (reg, 1)) = 1;
856 }
857 else if (GET_CODE (reg) == REG)
858 REG_USERVAR_P (reg) = 1;
859 else
860 abort ();
861}
862
86fe05e0
RK
863/* Identify REG as a probable pointer register and show its alignment
864 as ALIGN, if nonzero. */
23b2ce53
RS
865
866void
86fe05e0 867mark_reg_pointer (reg, align)
23b2ce53 868 rtx reg;
86fe05e0 869 int align;
23b2ce53 870{
3502dc9c 871 if (! REG_POINTER (reg))
00995e78 872 {
3502dc9c 873 REG_POINTER (reg) = 1;
86fe05e0 874
00995e78
RE
875 if (align)
876 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
877 }
878 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
879 /* We can no-longer be sure just how aligned this pointer is */
86fe05e0 880 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
881}
882
883/* Return 1 plus largest pseudo reg number used in the current function. */
884
885int
886max_reg_num ()
887{
888 return reg_rtx_no;
889}
890
891/* Return 1 + the largest label number used so far in the current function. */
892
893int
894max_label_num ()
895{
896 if (last_label_num && label_num == base_label_num)
897 return last_label_num;
898 return label_num;
899}
900
901/* Return first label number used in this function (if any were used). */
902
903int
904get_first_label_num ()
905{
906 return first_label_num;
907}
908\f
ddef6bc7
JJ
909/* Return the final regno of X, which is a SUBREG of a hard
910 register. */
911int
912subreg_hard_regno (x, check_mode)
b3694847 913 rtx x;
ddef6bc7
JJ
914 int check_mode;
915{
916 enum machine_mode mode = GET_MODE (x);
917 unsigned int byte_offset, base_regno, final_regno;
918 rtx reg = SUBREG_REG (x);
919
920 /* This is where we attempt to catch illegal subregs
921 created by the compiler. */
922 if (GET_CODE (x) != SUBREG
923 || GET_CODE (reg) != REG)
924 abort ();
925 base_regno = REGNO (reg);
926 if (base_regno >= FIRST_PSEUDO_REGISTER)
927 abort ();
0607953c 928 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
ddef6bc7
JJ
929 abort ();
930
931 /* Catch non-congruent offsets too. */
932 byte_offset = SUBREG_BYTE (x);
933 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
934 abort ();
935
936 final_regno = subreg_regno (x);
937
938 return final_regno;
939}
940
23b2ce53
RS
941/* Return a value representing some low-order bits of X, where the number
942 of low-order bits is given by MODE. Note that no conversion is done
750c9258 943 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
944 representation is returned.
945
946 This function handles the cases in common between gen_lowpart, below,
947 and two variants in cse.c and combine.c. These are the cases that can
948 be safely handled at all points in the compilation.
949
950 If this is not a case we can handle, return 0. */
951
952rtx
953gen_lowpart_common (mode, x)
954 enum machine_mode mode;
b3694847 955 rtx x;
23b2ce53 956{
ddef6bc7
JJ
957 int msize = GET_MODE_SIZE (mode);
958 int xsize = GET_MODE_SIZE (GET_MODE (x));
959 int offset = 0;
23b2ce53
RS
960
961 if (GET_MODE (x) == mode)
962 return x;
963
964 /* MODE must occupy no more words than the mode of X. */
965 if (GET_MODE (x) != VOIDmode
ddef6bc7
JJ
966 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
967 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
23b2ce53
RS
968 return 0;
969
53501a19
BS
970 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
971 if (GET_MODE_CLASS (mode) == MODE_FLOAT
972 && GET_MODE (x) != VOIDmode && msize > xsize)
973 return 0;
974
e0e08ac2 975 offset = subreg_lowpart_offset (mode, GET_MODE (x));
23b2ce53
RS
976
977 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
978 && (GET_MODE_CLASS (mode) == MODE_INT
979 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
980 {
981 /* If we are getting the low-order part of something that has been
982 sign- or zero-extended, we can either just use the object being
983 extended or make a narrower extension. If we want an even smaller
984 piece than the size of the object being extended, call ourselves
985 recursively.
986
987 This case is used mostly by combine and cse. */
988
989 if (GET_MODE (XEXP (x, 0)) == mode)
990 return XEXP (x, 0);
991 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
992 return gen_lowpart_common (mode, XEXP (x, 0));
993 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3b80f6ca 994 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 995 }
76321db6 996 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
34a80643 997 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
e0e08ac2 998 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
0488fa7c
JR
999 else if ((GET_MODE_CLASS (mode) == MODE_VECTOR_INT
1000 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT)
1001 && GET_MODE (x) == VOIDmode)
1002 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
23b2ce53
RS
1003 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1004 from the low-order part of the constant. */
83e9c679
RK
1005 else if ((GET_MODE_CLASS (mode) == MODE_INT
1006 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1007 && GET_MODE (x) == VOIDmode
23b2ce53 1008 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1a5b457d
RK
1009 {
1010 /* If MODE is twice the host word size, X is already the desired
1011 representation. Otherwise, if MODE is wider than a word, we can't
e1389cac 1012 do this. If MODE is exactly a word, return just one CONST_INT. */
1a5b457d 1013
a8dd0e73 1014 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1a5b457d 1015 return x;
906c4e36 1016 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1a5b457d 1017 return 0;
906c4e36 1018 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1a5b457d 1019 return (GET_CODE (x) == CONST_INT ? x
906c4e36 1020 : GEN_INT (CONST_DOUBLE_LOW (x)));
1a5b457d
RK
1021 else
1022 {
27eef9ce 1023 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
906c4e36
RK
1024 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1025 : CONST_DOUBLE_LOW (x));
1a5b457d 1026
27eef9ce 1027 /* Sign extend to HOST_WIDE_INT. */
e1389cac 1028 val = trunc_int_for_mode (val, mode);
1a5b457d
RK
1029
1030 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
906c4e36 1031 : GEN_INT (val));
1a5b457d
RK
1032 }
1033 }
23b2ce53 1034
ba31d94e 1035 /* The floating-point emulator can handle all conversions between
a2061c0d
GK
1036 FP and integer operands. This simplifies reload because it
1037 doesn't have to deal with constructs like (subreg:DI
1038 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
57dadce2
EC
1039 /* Single-precision floats are always 32-bits and double-precision
1040 floats are always 64-bits. */
a2061c0d 1041
76321db6 1042 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
57dadce2 1043 && GET_MODE_BITSIZE (mode) == 32
a2061c0d 1044 && GET_CODE (x) == CONST_INT)
68252e27 1045 {
a2061c0d 1046 REAL_VALUE_TYPE r;
efdc7e19 1047 long i = INTVAL (x);
a2061c0d 1048
efdc7e19 1049 real_from_target (&r, &i, mode);
a2061c0d 1050 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
68252e27 1051 }
76321db6 1052 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
57dadce2 1053 && GET_MODE_BITSIZE (mode) == 64
a2061c0d
GK
1054 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1055 && GET_MODE (x) == VOIDmode)
1056 {
1057 REAL_VALUE_TYPE r;
a2061c0d 1058 HOST_WIDE_INT low, high;
efdc7e19 1059 long i[2];
a2061c0d
GK
1060
1061 if (GET_CODE (x) == CONST_INT)
1062 {
1063 low = INTVAL (x);
1064 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1065 }
1066 else
1067 {
750c9258 1068 low = CONST_DOUBLE_LOW (x);
a2061c0d
GK
1069 high = CONST_DOUBLE_HIGH (x);
1070 }
1071
efdc7e19
RH
1072 if (HOST_BITS_PER_WIDE_INT > 32)
1073 high = low >> 31 >> 1;
1074
a2061c0d
GK
1075 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1076 target machine. */
1077 if (WORDS_BIG_ENDIAN)
1078 i[0] = high, i[1] = low;
1079 else
1080 i[0] = low, i[1] = high;
1081
efdc7e19 1082 real_from_target (&r, i, mode);
a2061c0d
GK
1083 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1084 }
1085 else if ((GET_MODE_CLASS (mode) == MODE_INT
1086 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1087 && GET_CODE (x) == CONST_DOUBLE
1088 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1089 {
1090 REAL_VALUE_TYPE r;
1091 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1092 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1093
8125704b
GK
1094 /* Convert 'r' into an array of four 32-bit words in target word
1095 order. */
a2061c0d 1096 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
57dadce2 1097 switch (GET_MODE_BITSIZE (GET_MODE (x)))
a2061c0d 1098 {
57dadce2 1099 case 32:
68252e27 1100 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
8125704b
GK
1101 i[1] = 0;
1102 i[2] = 0;
68252e27
KH
1103 i[3 - 3 * endian] = 0;
1104 break;
57dadce2 1105 case 64:
68252e27 1106 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
8125704b
GK
1107 i[2 - 2 * endian] = 0;
1108 i[3 - 2 * endian] = 0;
68252e27 1109 break;
57dadce2 1110 case 96:
e389897b 1111 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
8125704b 1112 i[3 - 3 * endian] = 0;
76321db6 1113 break;
57dadce2 1114 case 128:
a2061c0d
GK
1115 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1116 break;
1117 default:
1156b23c 1118 abort ();
a2061c0d 1119 }
a2061c0d
GK
1120 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1121 and return it. */
1122#if HOST_BITS_PER_WIDE_INT == 32
8125704b 1123 return immed_double_const (i[3 * endian], i[1 + endian], mode);
a2061c0d 1124#else
8125704b
GK
1125 if (HOST_BITS_PER_WIDE_INT != 64)
1126 abort ();
50e60bc3 1127
a76033a0
GK
1128 return immed_double_const ((((unsigned long) i[3 * endian])
1129 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1130 (((unsigned long) i[2 - endian])
1131 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
8125704b 1132 mode);
a2061c0d
GK
1133#endif
1134 }
8aada4ad 1135
23b2ce53
RS
1136 /* Otherwise, we can't do this. */
1137 return 0;
1138}
1139\f
280194b0
RS
1140/* Return the real part (which has mode MODE) of a complex value X.
1141 This always comes at the low address in memory. */
1142
1143rtx
1144gen_realpart (mode, x)
1145 enum machine_mode mode;
b3694847 1146 rtx x;
280194b0 1147{
e0e08ac2
JH
1148 if (WORDS_BIG_ENDIAN
1149 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1150 && REG_P (x)
1151 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4 1152 internal_error
c725bd79 1153 ("can't access real part of complex value in hard register");
dc139c90 1154 else if (WORDS_BIG_ENDIAN)
280194b0
RS
1155 return gen_highpart (mode, x);
1156 else
1157 return gen_lowpart (mode, x);
1158}
1159
1160/* Return the imaginary part (which has mode MODE) of a complex value X.
1161 This always comes at the high address in memory. */
1162
1163rtx
1164gen_imagpart (mode, x)
1165 enum machine_mode mode;
b3694847 1166 rtx x;
280194b0 1167{
e0e08ac2 1168 if (WORDS_BIG_ENDIAN)
280194b0 1169 return gen_lowpart (mode, x);
ddef6bc7 1170 else if (! WORDS_BIG_ENDIAN
40c0c3cf
JL
1171 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1172 && REG_P (x)
1173 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4
RK
1174 internal_error
1175 ("can't access imaginary part of complex value in hard register");
280194b0
RS
1176 else
1177 return gen_highpart (mode, x);
1178}
81284a6a
JW
1179
1180/* Return 1 iff X, assumed to be a SUBREG,
1181 refers to the real part of the complex value in its containing reg.
1182 Complex values are always stored with the real part in the first word,
1183 regardless of WORDS_BIG_ENDIAN. */
1184
1185int
1186subreg_realpart_p (x)
1187 rtx x;
1188{
1189 if (GET_CODE (x) != SUBREG)
1190 abort ();
1191
ddef6bc7 1192 return ((unsigned int) SUBREG_BYTE (x)
770ae6cc 1193 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
81284a6a 1194}
280194b0 1195\f
23b2ce53
RS
1196/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1197 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1198 least-significant part of X.
1199 MODE specifies how big a part of X to return;
1200 it usually should not be larger than a word.
1201 If X is a MEM whose address is a QUEUED, the value may be so also. */
1202
1203rtx
1204gen_lowpart (mode, x)
1205 enum machine_mode mode;
b3694847 1206 rtx x;
23b2ce53
RS
1207{
1208 rtx result = gen_lowpart_common (mode, x);
1209
1210 if (result)
1211 return result;
ea8262b0
RK
1212 else if (GET_CODE (x) == REG)
1213 {
1214 /* Must be a hard reg that's not valid in MODE. */
1215 result = gen_lowpart_common (mode, copy_to_reg (x));
1216 if (result == 0)
1217 abort ();
72c3833b 1218 return result;
ea8262b0 1219 }
23b2ce53
RS
1220 else if (GET_CODE (x) == MEM)
1221 {
1222 /* The only additional case we can do is MEM. */
b3694847 1223 int offset = 0;
23b2ce53
RS
1224 if (WORDS_BIG_ENDIAN)
1225 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1226 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1227
1228 if (BYTES_BIG_ENDIAN)
1229 /* Adjust the address so that the address-after-the-data
1230 is unchanged. */
1231 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1232 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1233
f4ef873c 1234 return adjust_address (x, mode, offset);
23b2ce53 1235 }
e9a25f70
JL
1236 else if (GET_CODE (x) == ADDRESSOF)
1237 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
23b2ce53
RS
1238 else
1239 abort ();
1240}
1241
750c9258 1242/* Like `gen_lowpart', but refer to the most significant part.
ccba022b
RS
1243 This is used to access the imaginary part of a complex number. */
1244
1245rtx
1246gen_highpart (mode, x)
1247 enum machine_mode mode;
b3694847 1248 rtx x;
ccba022b 1249{
ddef6bc7 1250 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1251 rtx result;
ddef6bc7 1252
ccba022b
RS
1253 /* This case loses if X is a subreg. To catch bugs early,
1254 complain if an invalid MODE is used even in other cases. */
ddef6bc7
JJ
1255 if (msize > UNITS_PER_WORD
1256 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
ccba022b 1257 abort ();
ddef6bc7 1258
e0e08ac2
JH
1259 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1260 subreg_highpart_offset (mode, GET_MODE (x)));
09482e0d
JW
1261
1262 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1263 the target if we have a MEM. gen_highpart must return a valid operand,
1264 emitting code if necessary to do so. */
13b8c631 1265 if (result != NULL_RTX && GET_CODE (result) == MEM)
09482e0d
JW
1266 result = validize_mem (result);
1267
e0e08ac2
JH
1268 if (!result)
1269 abort ();
1270 return result;
1271}
5222e470
JH
1272
1273/* Like gen_highpart_mode, but accept mode of EXP operand in case EXP can
1274 be VOIDmode constant. */
1275rtx
1276gen_highpart_mode (outermode, innermode, exp)
68252e27
KH
1277 enum machine_mode outermode, innermode;
1278 rtx exp;
5222e470
JH
1279{
1280 if (GET_MODE (exp) != VOIDmode)
1281 {
1282 if (GET_MODE (exp) != innermode)
1283 abort ();
1284 return gen_highpart (outermode, exp);
1285 }
1286 return simplify_gen_subreg (outermode, exp, innermode,
1287 subreg_highpart_offset (outermode, innermode));
1288}
68252e27 1289
e0e08ac2
JH
1290/* Return offset in bytes to get OUTERMODE low part
1291 of the value in mode INNERMODE stored in memory in target format. */
8698cce3 1292
e0e08ac2
JH
1293unsigned int
1294subreg_lowpart_offset (outermode, innermode)
1295 enum machine_mode outermode, innermode;
1296{
1297 unsigned int offset = 0;
1298 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1299
e0e08ac2 1300 if (difference > 0)
ccba022b 1301 {
e0e08ac2
JH
1302 if (WORDS_BIG_ENDIAN)
1303 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1304 if (BYTES_BIG_ENDIAN)
1305 offset += difference % UNITS_PER_WORD;
ccba022b 1306 }
ddef6bc7 1307
e0e08ac2 1308 return offset;
ccba022b 1309}
eea50aa0 1310
e0e08ac2
JH
1311/* Return offset in bytes to get OUTERMODE high part
1312 of the value in mode INNERMODE stored in memory in target format. */
1313unsigned int
1314subreg_highpart_offset (outermode, innermode)
eea50aa0 1315 enum machine_mode outermode, innermode;
eea50aa0
JH
1316{
1317 unsigned int offset = 0;
1318 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1319
e0e08ac2 1320 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
68252e27 1321 abort ();
e0e08ac2 1322
eea50aa0
JH
1323 if (difference > 0)
1324 {
e0e08ac2 1325 if (! WORDS_BIG_ENDIAN)
eea50aa0 1326 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1327 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1328 offset += difference % UNITS_PER_WORD;
1329 }
1330
e0e08ac2 1331 return offset;
eea50aa0 1332}
ccba022b 1333
23b2ce53
RS
1334/* Return 1 iff X, assumed to be a SUBREG,
1335 refers to the least significant part of its containing reg.
1336 If X is not a SUBREG, always return 1 (it is its own low part!). */
1337
1338int
1339subreg_lowpart_p (x)
1340 rtx x;
1341{
1342 if (GET_CODE (x) != SUBREG)
1343 return 1;
a3a03040
RK
1344 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1345 return 0;
23b2ce53 1346
e0e08ac2
JH
1347 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1348 == SUBREG_BYTE (x));
23b2ce53
RS
1349}
1350\f
23b2ce53 1351
ddef6bc7
JJ
1352/* Helper routine for all the constant cases of operand_subword.
1353 Some places invoke this directly. */
23b2ce53
RS
1354
1355rtx
ddef6bc7 1356constant_subword (op, offset, mode)
23b2ce53 1357 rtx op;
ddef6bc7 1358 int offset;
23b2ce53
RS
1359 enum machine_mode mode;
1360{
906c4e36 1361 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
ddef6bc7 1362 HOST_WIDE_INT val;
23b2ce53
RS
1363
1364 /* If OP is already an integer word, return it. */
1365 if (GET_MODE_CLASS (mode) == MODE_INT
1366 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1367 return op;
1368
5495cc55
RH
1369 /* The output is some bits, the width of the target machine's word.
1370 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1371 host can't. */
9847c2f6 1372 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1632afca 1373 && GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1374 && GET_MODE_BITSIZE (mode) == 64
1632afca
RS
1375 && GET_CODE (op) == CONST_DOUBLE)
1376 {
9847c2f6 1377 long k[2];
1632afca
RS
1378 REAL_VALUE_TYPE rv;
1379
1380 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1381 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
7677ffa4 1382
9847c2f6 1383 /* We handle 32-bit and >= 64-bit words here. Note that the order in
7677ffa4 1384 which the words are written depends on the word endianness.
7677ffa4 1385 ??? This is a potential portability problem and should
7cae975e
RH
1386 be fixed at some point.
1387
a1f300c0 1388 We must exercise caution with the sign bit. By definition there
7cae975e
RH
1389 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1390 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1391 So we explicitly mask and sign-extend as necessary. */
9847c2f6 1392 if (BITS_PER_WORD == 32)
7cae975e 1393 {
ddef6bc7 1394 val = k[offset];
7cae975e
RH
1395 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1396 return GEN_INT (val);
1397 }
1398#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1399 else if (BITS_PER_WORD >= 64 && offset == 0)
7cae975e
RH
1400 {
1401 val = k[! WORDS_BIG_ENDIAN];
1402 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1403 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1404 return GEN_INT (val);
1405 }
9847c2f6 1406#endif
47b34d40
JW
1407 else if (BITS_PER_WORD == 16)
1408 {
ddef6bc7
JJ
1409 val = k[offset >> 1];
1410 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1411 val >>= 16;
73de376f 1412 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
7cae975e 1413 return GEN_INT (val);
47b34d40 1414 }
7677ffa4
RK
1415 else
1416 abort ();
1632afca 1417 }
a5559dbc
RE
1418 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1419 && GET_MODE_CLASS (mode) == MODE_FLOAT
1420 && GET_MODE_BITSIZE (mode) > 64
1421 && GET_CODE (op) == CONST_DOUBLE)
5495cc55
RH
1422 {
1423 long k[4];
1424 REAL_VALUE_TYPE rv;
a5559dbc 1425
5495cc55
RH
1426 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1427 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
a5559dbc 1428
5495cc55
RH
1429 if (BITS_PER_WORD == 32)
1430 {
ddef6bc7 1431 val = k[offset];
5495cc55
RH
1432 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1433 return GEN_INT (val);
1434 }
1435#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1436 else if (BITS_PER_WORD >= 64 && offset <= 1)
5495cc55 1437 {
ddef6bc7 1438 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
5495cc55 1439 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
ddef6bc7 1440 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
5495cc55
RH
1441 return GEN_INT (val);
1442 }
1443#endif
1444 else
1445 abort ();
1446 }
23b2ce53
RS
1447
1448 /* Single word float is a little harder, since single- and double-word
1449 values often do not have the same high-order bits. We have already
1450 verified that we want the only defined word of the single-word value. */
9847c2f6 1451 if (GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1452 && GET_MODE_BITSIZE (mode) == 32
1632afca
RS
1453 && GET_CODE (op) == CONST_DOUBLE)
1454 {
9847c2f6 1455 long l;
1632afca
RS
1456 REAL_VALUE_TYPE rv;
1457
1458 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1459 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
aa2ae679 1460
7cae975e
RH
1461 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1462 val = l;
1463 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
b5a3eb84 1464
aa2ae679
JL
1465 if (BITS_PER_WORD == 16)
1466 {
ddef6bc7 1467 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1468 val >>= 16;
73de376f 1469 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
aa2ae679 1470 }
7cae975e
RH
1471
1472 return GEN_INT (val);
1632afca 1473 }
750c9258 1474
23b2ce53
RS
1475 /* The only remaining cases that we can handle are integers.
1476 Convert to proper endianness now since these cases need it.
750c9258 1477 At this point, offset == 0 means the low-order word.
23b2ce53 1478
2d4f57f8
RK
1479 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1480 in general. However, if OP is (const_int 0), we can just return
1481 it for any word. */
1482
1483 if (op == const0_rtx)
1484 return op;
23b2ce53
RS
1485
1486 if (GET_MODE_CLASS (mode) != MODE_INT
2d4f57f8 1487 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
0cf214a0 1488 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
23b2ce53
RS
1489 return 0;
1490
1491 if (WORDS_BIG_ENDIAN)
ddef6bc7 1492 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
23b2ce53
RS
1493
1494 /* Find out which word on the host machine this value is in and get
1495 it from the constant. */
ddef6bc7 1496 val = (offset / size_ratio == 0
23b2ce53
RS
1497 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1498 : (GET_CODE (op) == CONST_INT
1499 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1500
3f518020 1501 /* Get the value we want into the low bits of val. */
906c4e36 1502 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
ddef6bc7 1503 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
3f518020 1504
7e4ce834 1505 val = trunc_int_for_mode (val, word_mode);
23b2ce53 1506
906c4e36 1507 return GEN_INT (val);
23b2ce53
RS
1508}
1509
ddef6bc7
JJ
1510/* Return subword OFFSET of operand OP.
1511 The word number, OFFSET, is interpreted as the word number starting
1512 at the low-order address. OFFSET 0 is the low-order word if not
1513 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1514
1515 If we cannot extract the required word, we return zero. Otherwise,
1516 an rtx corresponding to the requested word will be returned.
1517
1518 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1519 reload has completed, a valid address will always be returned. After
1520 reload, if a valid address cannot be returned, we return zero.
1521
1522 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1523 it is the responsibility of the caller.
1524
1525 MODE is the mode of OP in case it is a CONST_INT.
1526
1527 ??? This is still rather broken for some cases. The problem for the
1528 moment is that all callers of this thing provide no 'goal mode' to
1529 tell us to work with. This exists because all callers were written
0631e0bf
JH
1530 in a word based SUBREG world.
1531 Now use of this function can be deprecated by simplify_subreg in most
1532 cases.
1533 */
ddef6bc7
JJ
1534
1535rtx
1536operand_subword (op, offset, validate_address, mode)
1537 rtx op;
1538 unsigned int offset;
1539 int validate_address;
1540 enum machine_mode mode;
1541{
1542 if (mode == VOIDmode)
1543 mode = GET_MODE (op);
1544
1545 if (mode == VOIDmode)
1546 abort ();
1547
30f7a378 1548 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1549 if (mode != BLKmode
1550 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1551 return 0;
1552
30f7a378 1553 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1554 if (mode != BLKmode
1555 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1556 return const0_rtx;
1557
ddef6bc7
JJ
1558 /* Form a new MEM at the requested address. */
1559 if (GET_CODE (op) == MEM)
1560 {
f1ec5147 1561 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1562
f1ec5147
RK
1563 if (! validate_address)
1564 return new;
1565
1566 else if (reload_completed)
ddef6bc7 1567 {
f1ec5147
RK
1568 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1569 return 0;
ddef6bc7 1570 }
f1ec5147
RK
1571 else
1572 return replace_equiv_address (new, XEXP (new, 0));
ddef6bc7
JJ
1573 }
1574
0631e0bf
JH
1575 /* Rest can be handled by simplify_subreg. */
1576 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1577}
1578
23b2ce53
RS
1579/* Similar to `operand_subword', but never return 0. If we can't extract
1580 the required subword, put OP into a register and try again. If that fails,
750c9258 1581 abort. We always validate the address in this case.
23b2ce53
RS
1582
1583 MODE is the mode of OP, in case it is CONST_INT. */
1584
1585rtx
ddef6bc7 1586operand_subword_force (op, offset, mode)
23b2ce53 1587 rtx op;
ddef6bc7 1588 unsigned int offset;
23b2ce53
RS
1589 enum machine_mode mode;
1590{
ddef6bc7 1591 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1592
1593 if (result)
1594 return result;
1595
1596 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1597 {
1598 /* If this is a register which can not be accessed by words, copy it
1599 to a pseudo register. */
1600 if (GET_CODE (op) == REG)
1601 op = copy_to_reg (op);
1602 else
1603 op = force_reg (mode, op);
1604 }
23b2ce53 1605
ddef6bc7 1606 result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1607 if (result == 0)
1608 abort ();
1609
1610 return result;
1611}
1612\f
1613/* Given a compare instruction, swap the operands.
1614 A test instruction is changed into a compare of 0 against the operand. */
1615
1616void
1617reverse_comparison (insn)
1618 rtx insn;
1619{
1620 rtx body = PATTERN (insn);
1621 rtx comp;
1622
1623 if (GET_CODE (body) == SET)
1624 comp = SET_SRC (body);
1625 else
1626 comp = SET_SRC (XVECEXP (body, 0, 0));
1627
1628 if (GET_CODE (comp) == COMPARE)
1629 {
1630 rtx op0 = XEXP (comp, 0);
1631 rtx op1 = XEXP (comp, 1);
1632 XEXP (comp, 0) = op1;
1633 XEXP (comp, 1) = op0;
1634 }
1635 else
1636 {
c5c76735
JL
1637 rtx new = gen_rtx_COMPARE (VOIDmode,
1638 CONST0_RTX (GET_MODE (comp)), comp);
23b2ce53
RS
1639 if (GET_CODE (body) == SET)
1640 SET_SRC (body) = new;
1641 else
1642 SET_SRC (XVECEXP (body, 0, 0)) = new;
1643 }
1644}
1645\f
998d7deb
RH
1646/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1647 or (2) a component ref of something variable. Represent the later with
1648 a NULL expression. */
1649
1650static tree
1651component_ref_for_mem_expr (ref)
1652 tree ref;
1653{
1654 tree inner = TREE_OPERAND (ref, 0);
1655
1656 if (TREE_CODE (inner) == COMPONENT_REF)
1657 inner = component_ref_for_mem_expr (inner);
c56e3582
RK
1658 else
1659 {
1660 tree placeholder_ptr = 0;
1661
1662 /* Now remove any conversions: they don't change what the underlying
1663 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1664 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1665 || TREE_CODE (inner) == NON_LVALUE_EXPR
1666 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1667 || TREE_CODE (inner) == SAVE_EXPR
1668 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
68252e27
KH
1669 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1670 inner = find_placeholder (inner, &placeholder_ptr);
1671 else
1672 inner = TREE_OPERAND (inner, 0);
c56e3582
RK
1673
1674 if (! DECL_P (inner))
1675 inner = NULL_TREE;
1676 }
998d7deb
RH
1677
1678 if (inner == TREE_OPERAND (ref, 0))
1679 return ref;
1680 else
c56e3582
RK
1681 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1682 TREE_OPERAND (ref, 1));
998d7deb 1683}
173b24b9
RK
1684
1685/* Given REF, a MEM, and T, either the type of X or the expression
1686 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1687 if we are making a new object of this type. BITPOS is nonzero if
1688 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1689
1690void
6f1087be 1691set_mem_attributes_minus_bitpos (ref, t, objectp, bitpos)
173b24b9
RK
1692 rtx ref;
1693 tree t;
1694 int objectp;
6f1087be 1695 HOST_WIDE_INT bitpos;
173b24b9 1696{
8ac61af7 1697 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
998d7deb 1698 tree expr = MEM_EXPR (ref);
8ac61af7
RK
1699 rtx offset = MEM_OFFSET (ref);
1700 rtx size = MEM_SIZE (ref);
1701 unsigned int align = MEM_ALIGN (ref);
6f1087be 1702 HOST_WIDE_INT apply_bitpos = 0;
173b24b9
RK
1703 tree type;
1704
1705 /* It can happen that type_for_mode was given a mode for which there
1706 is no language-level type. In which case it returns NULL, which
1707 we can see here. */
1708 if (t == NULL_TREE)
1709 return;
1710
1711 type = TYPE_P (t) ? t : TREE_TYPE (t);
1712
173b24b9
RK
1713 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1714 wrong answer, as it assumes that DECL_RTL already has the right alias
1715 info. Callers should not set DECL_RTL until after the call to
1716 set_mem_attributes. */
1717 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1718 abort ();
1719
738cc472 1720 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1721 front-end routine) and use it. */
1722 alias = get_alias_set (t);
173b24b9
RK
1723
1724 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1725 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
03bf2c23 1726 RTX_UNCHANGING_P (ref)
1285011e
RK
1727 |= ((lang_hooks.honor_readonly
1728 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1729 || (! TYPE_P (t) && TREE_CONSTANT (t)));
173b24b9 1730
8ac61af7
RK
1731 /* If we are making an object of this type, or if this is a DECL, we know
1732 that it is a scalar if the type is not an aggregate. */
1733 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
173b24b9
RK
1734 MEM_SCALAR_P (ref) = 1;
1735
c3d32120
RK
1736 /* We can set the alignment from the type if we are making an object,
1737 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1738 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1739 align = MAX (align, TYPE_ALIGN (type));
40c0668b 1740
738cc472
RK
1741 /* If the size is known, we can set that. */
1742 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1743 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1744
80965c18
RK
1745 /* If T is not a type, we may be able to deduce some more information about
1746 the expression. */
1747 if (! TYPE_P (t))
8ac61af7
RK
1748 {
1749 maybe_set_unchanging (ref, t);
1750 if (TREE_THIS_VOLATILE (t))
1751 MEM_VOLATILE_P (ref) = 1;
173b24b9 1752
c56e3582
RK
1753 /* Now remove any conversions: they don't change what the underlying
1754 object is. Likewise for SAVE_EXPR. */
8ac61af7 1755 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
c56e3582
RK
1756 || TREE_CODE (t) == NON_LVALUE_EXPR
1757 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1758 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1759 t = TREE_OPERAND (t, 0);
1760
10b76d73
RK
1761 /* If this expression can't be addressed (e.g., it contains a reference
1762 to a non-addressable field), show we don't change its alias set. */
1763 if (! can_address_p (t))
1764 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1765
8ac61af7
RK
1766 /* If this is a decl, set the attributes of the MEM from it. */
1767 if (DECL_P (t))
1768 {
998d7deb
RH
1769 expr = t;
1770 offset = const0_rtx;
6f1087be 1771 apply_bitpos = bitpos;
8ac61af7
RK
1772 size = (DECL_SIZE_UNIT (t)
1773 && host_integerp (DECL_SIZE_UNIT (t), 1)
1774 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
68252e27 1775 align = DECL_ALIGN (t);
8ac61af7
RK
1776 }
1777
40c0668b 1778 /* If this is a constant, we know the alignment. */
9ddfb1a7
RK
1779 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1780 {
1781 align = TYPE_ALIGN (type);
1782#ifdef CONSTANT_ALIGNMENT
1783 align = CONSTANT_ALIGNMENT (t, align);
1784#endif
1785 }
998d7deb
RH
1786
1787 /* If this is a field reference and not a bit-field, record it. */
1788 /* ??? There is some information that can be gleened from bit-fields,
1789 such as the word offset in the structure that might be modified.
1790 But skip it for now. */
1791 else if (TREE_CODE (t) == COMPONENT_REF
1792 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1793 {
1794 expr = component_ref_for_mem_expr (t);
1795 offset = const0_rtx;
6f1087be 1796 apply_bitpos = bitpos;
998d7deb
RH
1797 /* ??? Any reason the field size would be different than
1798 the size we got from the type? */
1799 }
1800
1801 /* If this is an array reference, look for an outer field reference. */
1802 else if (TREE_CODE (t) == ARRAY_REF)
1803 {
1804 tree off_tree = size_zero_node;
1805
1806 do
1807 {
2567406a
JH
1808 tree index = TREE_OPERAND (t, 1);
1809 tree array = TREE_OPERAND (t, 0);
1810 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1811 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1812 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1813
1814 /* We assume all arrays have sizes that are a multiple of a byte.
1815 First subtract the lower bound, if any, in the type of the
1816 index, then convert to sizetype and multiply by the size of the
1817 array element. */
1818 if (low_bound != 0 && ! integer_zerop (low_bound))
1819 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1820 index, low_bound));
1821
1822 /* If the index has a self-referential type, pass it to a
1823 WITH_RECORD_EXPR; if the component size is, pass our
1824 component to one. */
1825 if (! TREE_CONSTANT (index)
1826 && contains_placeholder_p (index))
1827 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t);
1828 if (! TREE_CONSTANT (unit_size)
1829 && contains_placeholder_p (unit_size))
1830 unit_size = build (WITH_RECORD_EXPR, sizetype,
1831 unit_size, array);
1832
998d7deb
RH
1833 off_tree
1834 = fold (build (PLUS_EXPR, sizetype,
1835 fold (build (MULT_EXPR, sizetype,
2567406a
JH
1836 index,
1837 unit_size)),
998d7deb
RH
1838 off_tree));
1839 t = TREE_OPERAND (t, 0);
1840 }
1841 while (TREE_CODE (t) == ARRAY_REF);
1842
c67a1cf6
RH
1843 if (DECL_P (t))
1844 {
1845 expr = t;
40cb04f1 1846 offset = NULL;
c67a1cf6 1847 if (host_integerp (off_tree, 1))
40cb04f1
RH
1848 {
1849 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1850 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1851 align = DECL_ALIGN (t);
fc555370 1852 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
40cb04f1
RH
1853 align = aoff;
1854 offset = GEN_INT (ioff);
6f1087be 1855 apply_bitpos = bitpos;
40cb04f1 1856 }
c67a1cf6
RH
1857 }
1858 else if (TREE_CODE (t) == COMPONENT_REF)
998d7deb
RH
1859 {
1860 expr = component_ref_for_mem_expr (t);
1861 if (host_integerp (off_tree, 1))
6f1087be
RH
1862 {
1863 offset = GEN_INT (tree_low_cst (off_tree, 1));
1864 apply_bitpos = bitpos;
1865 }
998d7deb
RH
1866 /* ??? Any reason the field size would be different than
1867 the size we got from the type? */
1868 }
c67a1cf6
RH
1869 else if (flag_argument_noalias > 1
1870 && TREE_CODE (t) == INDIRECT_REF
1871 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1872 {
1873 expr = t;
1874 offset = NULL;
1875 }
1876 }
1877
1878 /* If this is a Fortran indirect argument reference, record the
1879 parameter decl. */
1880 else if (flag_argument_noalias > 1
1881 && TREE_CODE (t) == INDIRECT_REF
1882 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1883 {
1884 expr = t;
1885 offset = NULL;
998d7deb 1886 }
8ac61af7
RK
1887 }
1888
6f1087be 1889 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1890 bit position offset. Similarly, increase the size of the accessed
1891 object to contain the negative offset. */
6f1087be 1892 if (apply_bitpos)
8c317c5f
RH
1893 {
1894 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1895 if (size)
1896 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1897 }
6f1087be 1898
8ac61af7 1899 /* Now set the attributes we computed above. */
10b76d73 1900 MEM_ATTRS (ref)
998d7deb 1901 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
8ac61af7
RK
1902
1903 /* If this is already known to be a scalar or aggregate, we are done. */
1904 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
1905 return;
1906
8ac61af7
RK
1907 /* If it is a reference into an aggregate, this is part of an aggregate.
1908 Otherwise we don't know. */
173b24b9
RK
1909 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1910 || TREE_CODE (t) == ARRAY_RANGE_REF
1911 || TREE_CODE (t) == BIT_FIELD_REF)
1912 MEM_IN_STRUCT_P (ref) = 1;
1913}
1914
6f1087be
RH
1915void
1916set_mem_attributes (ref, t, objectp)
1917 rtx ref;
1918 tree t;
1919 int objectp;
1920{
1921 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1922}
1923
173b24b9
RK
1924/* Set the alias set of MEM to SET. */
1925
1926void
1927set_mem_alias_set (mem, set)
1928 rtx mem;
1929 HOST_WIDE_INT set;
1930{
68252e27 1931#ifdef ENABLE_CHECKING
173b24b9
RK
1932 /* If the new and old alias sets don't conflict, something is wrong. */
1933 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
1934 abort ();
173b24b9
RK
1935#endif
1936
998d7deb 1937 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
10b76d73
RK
1938 MEM_SIZE (mem), MEM_ALIGN (mem),
1939 GET_MODE (mem));
173b24b9 1940}
738cc472 1941
d022d93e 1942/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1943
1944void
1945set_mem_align (mem, align)
1946 rtx mem;
1947 unsigned int align;
1948{
998d7deb 1949 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
10b76d73
RK
1950 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1951 GET_MODE (mem));
738cc472 1952}
1285011e 1953
998d7deb 1954/* Set the expr for MEM to EXPR. */
1285011e
RK
1955
1956void
998d7deb 1957set_mem_expr (mem, expr)
1285011e 1958 rtx mem;
998d7deb 1959 tree expr;
1285011e
RK
1960{
1961 MEM_ATTRS (mem)
998d7deb 1962 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1285011e
RK
1963 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1964}
998d7deb
RH
1965
1966/* Set the offset of MEM to OFFSET. */
1967
1968void
1969set_mem_offset (mem, offset)
1970 rtx mem, offset;
1971{
1972 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1973 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1974 GET_MODE (mem));
35aff10b
AM
1975}
1976
1977/* Set the size of MEM to SIZE. */
1978
1979void
1980set_mem_size (mem, size)
1981 rtx mem, size;
1982{
1983 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1984 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1985 GET_MODE (mem));
998d7deb 1986}
173b24b9 1987\f
738cc472
RK
1988/* Return a memory reference like MEMREF, but with its mode changed to MODE
1989 and its address changed to ADDR. (VOIDmode means don't change the mode.
1990 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1991 returned memory location is required to be valid. The memory
1992 attributes are not changed. */
23b2ce53 1993
738cc472 1994static rtx
f1ec5147 1995change_address_1 (memref, mode, addr, validate)
23b2ce53
RS
1996 rtx memref;
1997 enum machine_mode mode;
1998 rtx addr;
f1ec5147 1999 int validate;
23b2ce53
RS
2000{
2001 rtx new;
2002
2003 if (GET_CODE (memref) != MEM)
2004 abort ();
2005 if (mode == VOIDmode)
2006 mode = GET_MODE (memref);
2007 if (addr == 0)
2008 addr = XEXP (memref, 0);
2009
f1ec5147 2010 if (validate)
23b2ce53 2011 {
f1ec5147
RK
2012 if (reload_in_progress || reload_completed)
2013 {
2014 if (! memory_address_p (mode, addr))
2015 abort ();
2016 }
2017 else
2018 addr = memory_address (mode, addr);
23b2ce53 2019 }
750c9258 2020
9b04c6a8
RK
2021 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2022 return memref;
2023
3b80f6ca 2024 new = gen_rtx_MEM (mode, addr);
c6df88cb 2025 MEM_COPY_ATTRIBUTES (new, memref);
23b2ce53
RS
2026 return new;
2027}
792760b9 2028
738cc472
RK
2029/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2030 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
2031
2032rtx
738cc472 2033change_address (memref, mode, addr)
f4ef873c
RK
2034 rtx memref;
2035 enum machine_mode mode;
738cc472 2036 rtx addr;
f4ef873c 2037{
738cc472
RK
2038 rtx new = change_address_1 (memref, mode, addr, 1);
2039 enum machine_mode mmode = GET_MODE (new);
c2f7bcc3 2040
738cc472
RK
2041 MEM_ATTRS (new)
2042 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2043 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
a06ef755
RK
2044 (mmode == BLKmode ? BITS_PER_UNIT
2045 : GET_MODE_ALIGNMENT (mmode)),
10b76d73 2046 mmode);
823e3574 2047
738cc472 2048 return new;
f4ef873c 2049}
792760b9 2050
738cc472
RK
2051/* Return a memory reference like MEMREF, but with its mode changed
2052 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2053 nonzero, the memory address is forced to be valid.
2054 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2055 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
2056
2057rtx
630036c6 2058adjust_address_1 (memref, mode, offset, validate, adjust)
f1ec5147
RK
2059 rtx memref;
2060 enum machine_mode mode;
2061 HOST_WIDE_INT offset;
630036c6 2062 int validate, adjust;
f1ec5147 2063{
823e3574 2064 rtx addr = XEXP (memref, 0);
738cc472
RK
2065 rtx new;
2066 rtx memoffset = MEM_OFFSET (memref);
10b76d73 2067 rtx size = 0;
738cc472 2068 unsigned int memalign = MEM_ALIGN (memref);
823e3574 2069
d14419e4 2070 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2071 This may happen even if offset is nonzero -- consider
d14419e4
RH
2072 (plus (plus reg reg) const_int) -- so do this always. */
2073 addr = copy_rtx (addr);
2074
4a78c787
RH
2075 if (adjust)
2076 {
2077 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2078 object, we can merge it into the LO_SUM. */
2079 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2080 && offset >= 0
2081 && (unsigned HOST_WIDE_INT) offset
2082 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2083 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2084 plus_constant (XEXP (addr, 1), offset));
2085 else
2086 addr = plus_constant (addr, offset);
2087 }
823e3574 2088
738cc472
RK
2089 new = change_address_1 (memref, mode, addr, validate);
2090
2091 /* Compute the new values of the memory attributes due to this adjustment.
2092 We add the offsets and update the alignment. */
2093 if (memoffset)
2094 memoffset = GEN_INT (offset + INTVAL (memoffset));
2095
03bf2c23
RK
2096 /* Compute the new alignment by taking the MIN of the alignment and the
2097 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2098 if zero. */
2099 if (offset != 0)
3bf1e984
RK
2100 memalign
2101 = MIN (memalign,
2102 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
738cc472 2103
10b76d73 2104 /* We can compute the size in a number of ways. */
a06ef755
RK
2105 if (GET_MODE (new) != BLKmode)
2106 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
10b76d73
RK
2107 else if (MEM_SIZE (memref))
2108 size = plus_constant (MEM_SIZE (memref), -offset);
2109
998d7deb 2110 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
10b76d73 2111 memoffset, size, memalign, GET_MODE (new));
738cc472
RK
2112
2113 /* At some point, we should validate that this offset is within the object,
2114 if all the appropriate values are known. */
2115 return new;
f1ec5147
RK
2116}
2117
630036c6
JJ
2118/* Return a memory reference like MEMREF, but with its mode changed
2119 to MODE and its address changed to ADDR, which is assumed to be
2120 MEMREF offseted by OFFSET bytes. If VALIDATE is
2121 nonzero, the memory address is forced to be valid. */
2122
2123rtx
2124adjust_automodify_address_1 (memref, mode, addr, offset, validate)
2125 rtx memref;
2126 enum machine_mode mode;
2127 rtx addr;
2128 HOST_WIDE_INT offset;
2129 int validate;
2130{
2131 memref = change_address_1 (memref, VOIDmode, addr, validate);
2132 return adjust_address_1 (memref, mode, offset, validate, 0);
2133}
2134
8ac61af7
RK
2135/* Return a memory reference like MEMREF, but whose address is changed by
2136 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2137 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2138
2139rtx
2140offset_address (memref, offset, pow2)
2141 rtx memref;
2142 rtx offset;
2143 HOST_WIDE_INT pow2;
2144{
e3c8ea67
RH
2145 rtx new, addr = XEXP (memref, 0);
2146
2147 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2148
68252e27 2149 /* At this point we don't know _why_ the address is invalid. It
e3c8ea67
RH
2150 could have secondary memory refereces, multiplies or anything.
2151
2152 However, if we did go and rearrange things, we can wind up not
2153 being able to recognize the magic around pic_offset_table_rtx.
2154 This stuff is fragile, and is yet another example of why it is
2155 bad to expose PIC machinery too early. */
2156 if (! memory_address_p (GET_MODE (memref), new)
2157 && GET_CODE (addr) == PLUS
2158 && XEXP (addr, 0) == pic_offset_table_rtx)
2159 {
2160 addr = force_reg (GET_MODE (addr), addr);
2161 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2162 }
2163
f6041ed8 2164 update_temp_slot_address (XEXP (memref, 0), new);
e3c8ea67 2165 new = change_address_1 (memref, VOIDmode, new, 1);
0d4903b8
RK
2166
2167 /* Update the alignment to reflect the offset. Reset the offset, which
2168 we don't know. */
2cc2d4bb
RK
2169 MEM_ATTRS (new)
2170 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
2171 MIN (MEM_ALIGN (memref),
3bf1e984 2172 (unsigned HOST_WIDE_INT) pow2 * BITS_PER_UNIT),
2cc2d4bb 2173 GET_MODE (new));
0d4903b8
RK
2174 return new;
2175}
68252e27 2176
792760b9
RK
2177/* Return a memory reference like MEMREF, but with its address changed to
2178 ADDR. The caller is asserting that the actual piece of memory pointed
2179 to is the same, just the form of the address is being changed, such as
2180 by putting something into a register. */
2181
2182rtx
2183replace_equiv_address (memref, addr)
2184 rtx memref;
2185 rtx addr;
2186{
738cc472
RK
2187 /* change_address_1 copies the memory attribute structure without change
2188 and that's exactly what we want here. */
40c0668b 2189 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2190 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2191}
738cc472 2192
f1ec5147
RK
2193/* Likewise, but the reference is not required to be valid. */
2194
2195rtx
2196replace_equiv_address_nv (memref, addr)
2197 rtx memref;
2198 rtx addr;
2199{
f1ec5147
RK
2200 return change_address_1 (memref, VOIDmode, addr, 0);
2201}
e7dfe4bb
RH
2202
2203/* Return a memory reference like MEMREF, but with its mode widened to
2204 MODE and offset by OFFSET. This would be used by targets that e.g.
2205 cannot issue QImode memory operations and have to use SImode memory
2206 operations plus masking logic. */
2207
2208rtx
2209widen_memory_access (memref, mode, offset)
2210 rtx memref;
2211 enum machine_mode mode;
2212 HOST_WIDE_INT offset;
2213{
2214 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2215 tree expr = MEM_EXPR (new);
2216 rtx memoffset = MEM_OFFSET (new);
2217 unsigned int size = GET_MODE_SIZE (mode);
2218
2219 /* If we don't know what offset we were at within the expression, then
2220 we can't know if we've overstepped the bounds. */
fa1591cb 2221 if (! memoffset)
e7dfe4bb
RH
2222 expr = NULL_TREE;
2223
2224 while (expr)
2225 {
2226 if (TREE_CODE (expr) == COMPONENT_REF)
2227 {
2228 tree field = TREE_OPERAND (expr, 1);
2229
2230 if (! DECL_SIZE_UNIT (field))
2231 {
2232 expr = NULL_TREE;
2233 break;
2234 }
2235
2236 /* Is the field at least as large as the access? If so, ok,
2237 otherwise strip back to the containing structure. */
03667700
RK
2238 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2239 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
e7dfe4bb
RH
2240 && INTVAL (memoffset) >= 0)
2241 break;
2242
2243 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2244 {
2245 expr = NULL_TREE;
2246 break;
2247 }
2248
2249 expr = TREE_OPERAND (expr, 0);
2250 memoffset = (GEN_INT (INTVAL (memoffset)
2251 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2252 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2253 / BITS_PER_UNIT)));
2254 }
2255 /* Similarly for the decl. */
2256 else if (DECL_P (expr)
2257 && DECL_SIZE_UNIT (expr)
45f79783 2258 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
e7dfe4bb
RH
2259 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2260 && (! memoffset || INTVAL (memoffset) >= 0))
2261 break;
2262 else
2263 {
2264 /* The widened memory access overflows the expression, which means
2265 that it could alias another expression. Zap it. */
2266 expr = NULL_TREE;
2267 break;
2268 }
2269 }
2270
2271 if (! expr)
2272 memoffset = NULL_RTX;
2273
2274 /* The widened memory may alias other stuff, so zap the alias set. */
2275 /* ??? Maybe use get_alias_set on any remaining expression. */
2276
2277 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2278 MEM_ALIGN (new), mode);
2279
2280 return new;
2281}
23b2ce53
RS
2282\f
2283/* Return a newly created CODE_LABEL rtx with a unique label number. */
2284
2285rtx
2286gen_label_rtx ()
2287{
0dc36574
ZW
2288 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
2289 NULL, label_num++, NULL);
23b2ce53
RS
2290}
2291\f
2292/* For procedure integration. */
2293
23b2ce53 2294/* Install new pointers to the first and last insns in the chain.
86fe05e0 2295 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2296 Used for an inline-procedure after copying the insn chain. */
2297
2298void
2299set_new_first_and_last_insn (first, last)
2300 rtx first, last;
2301{
86fe05e0
RK
2302 rtx insn;
2303
23b2ce53
RS
2304 first_insn = first;
2305 last_insn = last;
86fe05e0
RK
2306 cur_insn_uid = 0;
2307
2308 for (insn = first; insn; insn = NEXT_INSN (insn))
2309 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2310
2311 cur_insn_uid++;
23b2ce53
RS
2312}
2313
2314/* Set the range of label numbers found in the current function.
2315 This is used when belatedly compiling an inline function. */
2316
2317void
2318set_new_first_and_last_label_num (first, last)
2319 int first, last;
2320{
2321 base_label_num = label_num;
2322 first_label_num = first;
2323 last_label_num = last;
2324}
49ad7cfa
BS
2325
2326/* Set the last label number found in the current function.
2327 This is used when belatedly compiling an inline function. */
23b2ce53
RS
2328
2329void
49ad7cfa
BS
2330set_new_last_label_num (last)
2331 int last;
23b2ce53 2332{
49ad7cfa
BS
2333 base_label_num = label_num;
2334 last_label_num = last;
23b2ce53 2335}
49ad7cfa 2336\f
23b2ce53
RS
2337/* Restore all variables describing the current status from the structure *P.
2338 This is used after a nested function. */
2339
2340void
2341restore_emit_status (p)
272df862 2342 struct function *p ATTRIBUTE_UNUSED;
23b2ce53 2343{
457a2d9c 2344 last_label_num = 0;
23b2ce53
RS
2345}
2346\f
750c9258 2347/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2348 structure. This routine should only be called once. */
23b2ce53
RS
2349
2350void
d1b81779
GK
2351unshare_all_rtl (fndecl, insn)
2352 tree fndecl;
2353 rtx insn;
23b2ce53 2354{
d1b81779 2355 tree decl;
23b2ce53 2356
d1b81779
GK
2357 /* Make sure that virtual parameters are not shared. */
2358 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
19e7881c 2359 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
d1b81779 2360
5c6df058
AO
2361 /* Make sure that virtual stack slots are not shared. */
2362 unshare_all_decls (DECL_INITIAL (fndecl));
2363
d1b81779
GK
2364 /* Unshare just about everything else. */
2365 unshare_all_rtl_1 (insn);
750c9258 2366
23b2ce53
RS
2367 /* Make sure the addresses of stack slots found outside the insn chain
2368 (such as, in DECL_RTL of a variable) are not shared
2369 with the insn chain.
2370
2371 This special care is necessary when the stack slot MEM does not
2372 actually appear in the insn chain. If it does appear, its address
2373 is unshared from all else at that point. */
242b0ce6 2374 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2375}
2376
750c9258 2377/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2378 structure, again. This is a fairly expensive thing to do so it
2379 should be done sparingly. */
2380
2381void
2382unshare_all_rtl_again (insn)
2383 rtx insn;
2384{
2385 rtx p;
624c87aa
RE
2386 tree decl;
2387
d1b81779 2388 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2389 if (INSN_P (p))
d1b81779
GK
2390 {
2391 reset_used_flags (PATTERN (p));
2392 reset_used_flags (REG_NOTES (p));
2393 reset_used_flags (LOG_LINKS (p));
2394 }
624c87aa 2395
2d4aecb3
AO
2396 /* Make sure that virtual stack slots are not shared. */
2397 reset_used_decls (DECL_INITIAL (cfun->decl));
2398
624c87aa
RE
2399 /* Make sure that virtual parameters are not shared. */
2400 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2401 reset_used_flags (DECL_RTL (decl));
2402
2403 reset_used_flags (stack_slot_list);
2404
2405 unshare_all_rtl (cfun->decl, insn);
d1b81779
GK
2406}
2407
2408/* Go through all the RTL insn bodies and copy any invalid shared structure.
2409 Assumes the mark bits are cleared at entry. */
2410
2411static void
2412unshare_all_rtl_1 (insn)
2413 rtx insn;
2414{
2415 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2416 if (INSN_P (insn))
d1b81779
GK
2417 {
2418 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2419 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2420 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2421 }
2422}
2423
5c6df058
AO
2424/* Go through all virtual stack slots of a function and copy any
2425 shared structure. */
2426static void
2427unshare_all_decls (blk)
2428 tree blk;
2429{
2430 tree t;
2431
2432 /* Copy shared decls. */
2433 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
2434 if (DECL_RTL_SET_P (t))
2435 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
5c6df058
AO
2436
2437 /* Now process sub-blocks. */
2438 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2439 unshare_all_decls (t);
2440}
2441
2d4aecb3 2442/* Go through all virtual stack slots of a function and mark them as
30f7a378 2443 not shared. */
2d4aecb3
AO
2444static void
2445reset_used_decls (blk)
2446 tree blk;
2447{
2448 tree t;
2449
2450 /* Mark decls. */
2451 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
2452 if (DECL_RTL_SET_P (t))
2453 reset_used_flags (DECL_RTL (t));
2d4aecb3
AO
2454
2455 /* Now process sub-blocks. */
2456 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2457 reset_used_decls (t);
2458}
2459
127c1ba5 2460/* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
93fe8e92
RK
2461 placed in the result directly, rather than being copied. MAY_SHARE is
2462 either a MEM of an EXPR_LIST of MEMs. */
127c1ba5
RK
2463
2464rtx
2465copy_most_rtx (orig, may_share)
2466 rtx orig;
2467 rtx may_share;
2468{
2469 rtx copy;
2470 int i, j;
2471 RTX_CODE code;
2472 const char *format_ptr;
2473
93fe8e92
RK
2474 if (orig == may_share
2475 || (GET_CODE (may_share) == EXPR_LIST
2476 && in_expr_list_p (may_share, orig)))
127c1ba5
RK
2477 return orig;
2478
2479 code = GET_CODE (orig);
2480
2481 switch (code)
2482 {
2483 case REG:
2484 case QUEUED:
2485 case CONST_INT:
2486 case CONST_DOUBLE:
2487 case CONST_VECTOR:
2488 case SYMBOL_REF:
2489 case CODE_LABEL:
2490 case PC:
2491 case CC0:
2492 return orig;
2493 default:
2494 break;
2495 }
2496
2497 copy = rtx_alloc (code);
2498 PUT_MODE (copy, GET_MODE (orig));
2adc7f12
JJ
2499 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2500 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2501 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2502 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2503 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
127c1ba5
RK
2504
2505 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2506
2507 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2508 {
2509 switch (*format_ptr++)
2510 {
2511 case 'e':
2512 XEXP (copy, i) = XEXP (orig, i);
2513 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2514 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2515 break;
2516
2517 case 'u':
2518 XEXP (copy, i) = XEXP (orig, i);
2519 break;
2520
2521 case 'E':
2522 case 'V':
2523 XVEC (copy, i) = XVEC (orig, i);
2524 if (XVEC (orig, i) != NULL)
2525 {
2526 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2527 for (j = 0; j < XVECLEN (copy, i); j++)
2528 XVECEXP (copy, i, j)
2529 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2530 }
2531 break;
2532
2533 case 'w':
2534 XWINT (copy, i) = XWINT (orig, i);
2535 break;
2536
2537 case 'n':
2538 case 'i':
2539 XINT (copy, i) = XINT (orig, i);
2540 break;
2541
2542 case 't':
2543 XTREE (copy, i) = XTREE (orig, i);
2544 break;
2545
2546 case 's':
2547 case 'S':
2548 XSTR (copy, i) = XSTR (orig, i);
2549 break;
2550
2551 case '0':
2552 /* Copy this through the wide int field; that's safest. */
2553 X0WINT (copy, i) = X0WINT (orig, i);
2554 break;
2555
2556 default:
2557 abort ();
2558 }
2559 }
2560 return copy;
2561}
2562
23b2ce53
RS
2563/* Mark ORIG as in use, and return a copy of it if it was already in use.
2564 Recursively does the same for subexpressions. */
2565
2566rtx
2567copy_rtx_if_shared (orig)
2568 rtx orig;
2569{
b3694847
SS
2570 rtx x = orig;
2571 int i;
2572 enum rtx_code code;
2573 const char *format_ptr;
23b2ce53
RS
2574 int copied = 0;
2575
2576 if (x == 0)
2577 return 0;
2578
2579 code = GET_CODE (x);
2580
2581 /* These types may be freely shared. */
2582
2583 switch (code)
2584 {
2585 case REG:
2586 case QUEUED:
2587 case CONST_INT:
2588 case CONST_DOUBLE:
69ef87e2 2589 case CONST_VECTOR:
23b2ce53
RS
2590 case SYMBOL_REF:
2591 case CODE_LABEL:
2592 case PC:
2593 case CC0:
2594 case SCRATCH:
0f41302f 2595 /* SCRATCH must be shared because they represent distinct values. */
23b2ce53
RS
2596 return x;
2597
b851ea09
RK
2598 case CONST:
2599 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2600 a LABEL_REF, it isn't sharable. */
2601 if (GET_CODE (XEXP (x, 0)) == PLUS
2602 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2603 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2604 return x;
2605 break;
2606
23b2ce53
RS
2607 case INSN:
2608 case JUMP_INSN:
2609 case CALL_INSN:
2610 case NOTE:
23b2ce53
RS
2611 case BARRIER:
2612 /* The chain of insns is not being copied. */
2613 return x;
2614
2615 case MEM:
83512665
JL
2616 /* A MEM is allowed to be shared if its address is constant.
2617
750c9258 2618 We used to allow sharing of MEMs which referenced
83512665
JL
2619 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2620 that can lose. instantiate_virtual_regs will not unshare
2621 the MEMs, and combine may change the structure of the address
2622 because it looks safe and profitable in one context, but
2623 in some other context it creates unrecognizable RTL. */
2624 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
23b2ce53
RS
2625 return x;
2626
e9a25f70
JL
2627 break;
2628
2629 default:
2630 break;
23b2ce53
RS
2631 }
2632
2633 /* This rtx may not be shared. If it has already been seen,
2634 replace it with a copy of itself. */
2635
2adc7f12 2636 if (RTX_FLAG (x, used))
23b2ce53 2637 {
b3694847 2638 rtx copy;
23b2ce53
RS
2639
2640 copy = rtx_alloc (code);
4e135bdd 2641 memcpy (copy, x,
4c9a05bc
RK
2642 (sizeof (*copy) - sizeof (copy->fld)
2643 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
23b2ce53
RS
2644 x = copy;
2645 copied = 1;
2646 }
2adc7f12 2647 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2648
2649 /* Now scan the subexpressions recursively.
2650 We can store any replaced subexpressions directly into X
2651 since we know X is not shared! Any vectors in X
2652 must be copied if X was copied. */
2653
2654 format_ptr = GET_RTX_FORMAT (code);
2655
2656 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2657 {
2658 switch (*format_ptr++)
2659 {
2660 case 'e':
2661 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2662 break;
2663
2664 case 'E':
2665 if (XVEC (x, i) != NULL)
2666 {
b3694847 2667 int j;
f0722107 2668 int len = XVECLEN (x, i);
23b2ce53 2669
f0722107 2670 if (copied && len > 0)
8f985ec4 2671 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
f0722107
RS
2672 for (j = 0; j < len; j++)
2673 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
23b2ce53
RS
2674 }
2675 break;
2676 }
2677 }
2678 return x;
2679}
2680
2681/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2682 to look for shared sub-parts. */
2683
2684void
2685reset_used_flags (x)
2686 rtx x;
2687{
b3694847
SS
2688 int i, j;
2689 enum rtx_code code;
2690 const char *format_ptr;
23b2ce53
RS
2691
2692 if (x == 0)
2693 return;
2694
2695 code = GET_CODE (x);
2696
9faa82d8 2697 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2698 for them. */
2699
2700 switch (code)
2701 {
2702 case REG:
2703 case QUEUED:
2704 case CONST_INT:
2705 case CONST_DOUBLE:
69ef87e2 2706 case CONST_VECTOR:
23b2ce53
RS
2707 case SYMBOL_REF:
2708 case CODE_LABEL:
2709 case PC:
2710 case CC0:
2711 return;
2712
2713 case INSN:
2714 case JUMP_INSN:
2715 case CALL_INSN:
2716 case NOTE:
2717 case LABEL_REF:
2718 case BARRIER:
2719 /* The chain of insns is not being copied. */
2720 return;
750c9258 2721
e9a25f70
JL
2722 default:
2723 break;
23b2ce53
RS
2724 }
2725
2adc7f12 2726 RTX_FLAG (x, used) = 0;
23b2ce53
RS
2727
2728 format_ptr = GET_RTX_FORMAT (code);
2729 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2730 {
2731 switch (*format_ptr++)
2732 {
2733 case 'e':
2734 reset_used_flags (XEXP (x, i));
2735 break;
2736
2737 case 'E':
2738 for (j = 0; j < XVECLEN (x, i); j++)
2739 reset_used_flags (XVECEXP (x, i, j));
2740 break;
2741 }
2742 }
2743}
2744\f
2745/* Copy X if necessary so that it won't be altered by changes in OTHER.
2746 Return X or the rtx for the pseudo reg the value of X was copied into.
2747 OTHER must be valid as a SET_DEST. */
2748
2749rtx
2750make_safe_from (x, other)
2751 rtx x, other;
2752{
2753 while (1)
2754 switch (GET_CODE (other))
2755 {
2756 case SUBREG:
2757 other = SUBREG_REG (other);
2758 break;
2759 case STRICT_LOW_PART:
2760 case SIGN_EXTEND:
2761 case ZERO_EXTEND:
2762 other = XEXP (other, 0);
2763 break;
2764 default:
2765 goto done;
2766 }
2767 done:
2768 if ((GET_CODE (other) == MEM
2769 && ! CONSTANT_P (x)
2770 && GET_CODE (x) != REG
2771 && GET_CODE (x) != SUBREG)
2772 || (GET_CODE (other) == REG
2773 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2774 || reg_mentioned_p (other, x))))
2775 {
2776 rtx temp = gen_reg_rtx (GET_MODE (x));
2777 emit_move_insn (temp, x);
2778 return temp;
2779 }
2780 return x;
2781}
2782\f
2783/* Emission of insns (adding them to the doubly-linked list). */
2784
2785/* Return the first insn of the current sequence or current function. */
2786
2787rtx
2788get_insns ()
2789{
2790 return first_insn;
2791}
2792
3dec4024
JH
2793/* Specify a new insn as the first in the chain. */
2794
2795void
2796set_first_insn (insn)
2797 rtx insn;
2798{
2799 if (PREV_INSN (insn) != 0)
2800 abort ();
2801 first_insn = insn;
2802}
2803
23b2ce53
RS
2804/* Return the last insn emitted in current sequence or current function. */
2805
2806rtx
2807get_last_insn ()
2808{
2809 return last_insn;
2810}
2811
2812/* Specify a new insn as the last in the chain. */
2813
2814void
2815set_last_insn (insn)
2816 rtx insn;
2817{
2818 if (NEXT_INSN (insn) != 0)
2819 abort ();
2820 last_insn = insn;
2821}
2822
2823/* Return the last insn emitted, even if it is in a sequence now pushed. */
2824
2825rtx
2826get_last_insn_anywhere ()
2827{
2828 struct sequence_stack *stack;
2829 if (last_insn)
2830 return last_insn;
49ad7cfa 2831 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2832 if (stack->last != 0)
2833 return stack->last;
2834 return 0;
2835}
2836
2a496e8b
JDA
2837/* Return the first nonnote insn emitted in current sequence or current
2838 function. This routine looks inside SEQUENCEs. */
2839
2840rtx
2841get_first_nonnote_insn ()
2842{
2843 rtx insn = first_insn;
2844
2845 while (insn)
2846 {
2847 insn = next_insn (insn);
2848 if (insn == 0 || GET_CODE (insn) != NOTE)
2849 break;
2850 }
2851
2852 return insn;
2853}
2854
2855/* Return the last nonnote insn emitted in current sequence or current
2856 function. This routine looks inside SEQUENCEs. */
2857
2858rtx
2859get_last_nonnote_insn ()
2860{
2861 rtx insn = last_insn;
2862
2863 while (insn)
2864 {
2865 insn = previous_insn (insn);
2866 if (insn == 0 || GET_CODE (insn) != NOTE)
2867 break;
2868 }
2869
2870 return insn;
2871}
2872
23b2ce53
RS
2873/* Return a number larger than any instruction's uid in this function. */
2874
2875int
2876get_max_uid ()
2877{
2878 return cur_insn_uid;
2879}
aeeeda03 2880
673b5311
MM
2881/* Renumber instructions so that no instruction UIDs are wasted. */
2882
aeeeda03 2883void
673b5311
MM
2884renumber_insns (stream)
2885 FILE *stream;
aeeeda03
MM
2886{
2887 rtx insn;
aeeeda03 2888
673b5311
MM
2889 /* If we're not supposed to renumber instructions, don't. */
2890 if (!flag_renumber_insns)
2891 return;
2892
aeeeda03
MM
2893 /* If there aren't that many instructions, then it's not really
2894 worth renumbering them. */
673b5311 2895 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
aeeeda03
MM
2896 return;
2897
2898 cur_insn_uid = 1;
2899
2900 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
673b5311
MM
2901 {
2902 if (stream)
750c9258 2903 fprintf (stream, "Renumbering insn %d to %d\n",
673b5311
MM
2904 INSN_UID (insn), cur_insn_uid);
2905 INSN_UID (insn) = cur_insn_uid++;
2906 }
aeeeda03 2907}
23b2ce53
RS
2908\f
2909/* Return the next insn. If it is a SEQUENCE, return the first insn
2910 of the sequence. */
2911
2912rtx
2913next_insn (insn)
2914 rtx insn;
2915{
2916 if (insn)
2917 {
2918 insn = NEXT_INSN (insn);
2919 if (insn && GET_CODE (insn) == INSN
2920 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2921 insn = XVECEXP (PATTERN (insn), 0, 0);
2922 }
2923
2924 return insn;
2925}
2926
2927/* Return the previous insn. If it is a SEQUENCE, return the last insn
2928 of the sequence. */
2929
2930rtx
2931previous_insn (insn)
2932 rtx insn;
2933{
2934 if (insn)
2935 {
2936 insn = PREV_INSN (insn);
2937 if (insn && GET_CODE (insn) == INSN
2938 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2939 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2940 }
2941
2942 return insn;
2943}
2944
2945/* Return the next insn after INSN that is not a NOTE. This routine does not
2946 look inside SEQUENCEs. */
2947
2948rtx
2949next_nonnote_insn (insn)
2950 rtx insn;
2951{
2952 while (insn)
2953 {
2954 insn = NEXT_INSN (insn);
2955 if (insn == 0 || GET_CODE (insn) != NOTE)
2956 break;
2957 }
2958
2959 return insn;
2960}
2961
2962/* Return the previous insn before INSN that is not a NOTE. This routine does
2963 not look inside SEQUENCEs. */
2964
2965rtx
2966prev_nonnote_insn (insn)
2967 rtx insn;
2968{
2969 while (insn)
2970 {
2971 insn = PREV_INSN (insn);
2972 if (insn == 0 || GET_CODE (insn) != NOTE)
2973 break;
2974 }
2975
2976 return insn;
2977}
2978
2979/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2980 or 0, if there is none. This routine does not look inside
0f41302f 2981 SEQUENCEs. */
23b2ce53
RS
2982
2983rtx
2984next_real_insn (insn)
2985 rtx insn;
2986{
2987 while (insn)
2988 {
2989 insn = NEXT_INSN (insn);
2990 if (insn == 0 || GET_CODE (insn) == INSN
2991 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
2992 break;
2993 }
2994
2995 return insn;
2996}
2997
2998/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2999 or 0, if there is none. This routine does not look inside
3000 SEQUENCEs. */
3001
3002rtx
3003prev_real_insn (insn)
3004 rtx insn;
3005{
3006 while (insn)
3007 {
3008 insn = PREV_INSN (insn);
3009 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3010 || GET_CODE (insn) == JUMP_INSN)
3011 break;
3012 }
3013
3014 return insn;
3015}
3016
3017/* Find the next insn after INSN that really does something. This routine
3018 does not look inside SEQUENCEs. Until reload has completed, this is the
3019 same as next_real_insn. */
3020
69732dcb
RH
3021int
3022active_insn_p (insn)
3023 rtx insn;
3024{
23b8ba81
RH
3025 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3026 || (GET_CODE (insn) == INSN
3027 && (! reload_completed
3028 || (GET_CODE (PATTERN (insn)) != USE
3029 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3030}
3031
23b2ce53
RS
3032rtx
3033next_active_insn (insn)
3034 rtx insn;
3035{
3036 while (insn)
3037 {
3038 insn = NEXT_INSN (insn);
69732dcb 3039 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
3040 break;
3041 }
3042
3043 return insn;
3044}
3045
3046/* Find the last insn before INSN that really does something. This routine
3047 does not look inside SEQUENCEs. Until reload has completed, this is the
3048 same as prev_real_insn. */
3049
3050rtx
3051prev_active_insn (insn)
3052 rtx insn;
3053{
3054 while (insn)
3055 {
3056 insn = PREV_INSN (insn);
69732dcb 3057 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
3058 break;
3059 }
3060
3061 return insn;
3062}
3063
3064/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3065
3066rtx
3067next_label (insn)
3068 rtx insn;
3069{
3070 while (insn)
3071 {
3072 insn = NEXT_INSN (insn);
3073 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3074 break;
3075 }
3076
3077 return insn;
3078}
3079
3080/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3081
3082rtx
3083prev_label (insn)
3084 rtx insn;
3085{
3086 while (insn)
3087 {
3088 insn = PREV_INSN (insn);
3089 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3090 break;
3091 }
3092
3093 return insn;
3094}
3095\f
3096#ifdef HAVE_cc0
c572e5ba
JVA
3097/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3098 and REG_CC_USER notes so we can find it. */
3099
3100void
3101link_cc0_insns (insn)
3102 rtx insn;
3103{
3104 rtx user = next_nonnote_insn (insn);
3105
3106 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3107 user = XVECEXP (PATTERN (user), 0, 0);
3108
c5c76735
JL
3109 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3110 REG_NOTES (user));
3b80f6ca 3111 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
c572e5ba
JVA
3112}
3113
23b2ce53
RS
3114/* Return the next insn that uses CC0 after INSN, which is assumed to
3115 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3116 applied to the result of this function should yield INSN).
3117
3118 Normally, this is simply the next insn. However, if a REG_CC_USER note
3119 is present, it contains the insn that uses CC0.
3120
3121 Return 0 if we can't find the insn. */
3122
3123rtx
3124next_cc0_user (insn)
3125 rtx insn;
3126{
906c4e36 3127 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3128
3129 if (note)
3130 return XEXP (note, 0);
3131
3132 insn = next_nonnote_insn (insn);
3133 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3134 insn = XVECEXP (PATTERN (insn), 0, 0);
3135
2c3c49de 3136 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3137 return insn;
3138
3139 return 0;
3140}
3141
3142/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3143 note, it is the previous insn. */
3144
3145rtx
3146prev_cc0_setter (insn)
3147 rtx insn;
3148{
906c4e36 3149 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3150
3151 if (note)
3152 return XEXP (note, 0);
3153
3154 insn = prev_nonnote_insn (insn);
3155 if (! sets_cc0_p (PATTERN (insn)))
3156 abort ();
3157
3158 return insn;
3159}
3160#endif
e5bef2e4
HB
3161
3162/* Increment the label uses for all labels present in rtx. */
3163
3164static void
68252e27
KH
3165mark_label_nuses (x)
3166 rtx x;
e5bef2e4 3167{
b3694847
SS
3168 enum rtx_code code;
3169 int i, j;
3170 const char *fmt;
e5bef2e4
HB
3171
3172 code = GET_CODE (x);
3173 if (code == LABEL_REF)
3174 LABEL_NUSES (XEXP (x, 0))++;
3175
3176 fmt = GET_RTX_FORMAT (code);
3177 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3178 {
3179 if (fmt[i] == 'e')
0fb7aeda 3180 mark_label_nuses (XEXP (x, i));
e5bef2e4 3181 else if (fmt[i] == 'E')
0fb7aeda 3182 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3183 mark_label_nuses (XVECEXP (x, i, j));
3184 }
3185}
3186
23b2ce53
RS
3187\f
3188/* Try splitting insns that can be split for better scheduling.
3189 PAT is the pattern which might split.
3190 TRIAL is the insn providing PAT.
cc2902df 3191 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3192
3193 If this routine succeeds in splitting, it returns the first or last
11147ebe 3194 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3195 returns TRIAL. If the insn to be returned can be split, it will be. */
3196
3197rtx
11147ebe 3198try_split (pat, trial, last)
23b2ce53 3199 rtx pat, trial;
11147ebe 3200 int last;
23b2ce53
RS
3201{
3202 rtx before = PREV_INSN (trial);
3203 rtx after = NEXT_INSN (trial);
23b2ce53
RS
3204 int has_barrier = 0;
3205 rtx tem;
6b24c259
JH
3206 rtx note, seq;
3207 int probability;
3208
3209 if (any_condjump_p (trial)
3210 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3211 split_branch_probability = INTVAL (XEXP (note, 0));
3212 probability = split_branch_probability;
3213
3214 seq = split_insns (pat, trial);
3215
3216 split_branch_probability = -1;
23b2ce53
RS
3217
3218 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3219 We may need to handle this specially. */
3220 if (after && GET_CODE (after) == BARRIER)
3221 {
3222 has_barrier = 1;
3223 after = NEXT_INSN (after);
3224 }
3225
3226 if (seq)
3227 {
2f937369
DM
3228 /* Sometimes there will be only one insn in that list, this case will
3229 normally arise only when we want it in turn to be split (SFmode on
3230 the 29k is an example). */
3231 if (NEXT_INSN (seq) != NULL_RTX)
23b2ce53 3232 {
2f937369
DM
3233 rtx insn_last, insn;
3234 int njumps = 0;
750c9258
AJ
3235
3236 /* Avoid infinite loop if any insn of the result matches
4b5e8abe 3237 the original pattern. */
2f937369
DM
3238 insn_last = seq;
3239 while (1)
3240 {
6f9703af
DM
3241 if (INSN_P (insn_last)
3242 && rtx_equal_p (PATTERN (insn_last), pat))
2f937369
DM
3243 return trial;
3244 if (NEXT_INSN (insn_last) == NULL_RTX)
3245 break;
3246 insn_last = NEXT_INSN (insn_last);
3247 }
4b5e8abe 3248
90a74703 3249 /* Mark labels. */
2f937369
DM
3250 insn = insn_last;
3251 while (insn != NULL_RTX)
3252 {
3253 if (GET_CODE (insn) == JUMP_INSN)
3254 {
3255 mark_jump_label (PATTERN (insn), insn, 0);
3256 njumps++;
3257 if (probability != -1
3258 && any_condjump_p (insn)
3259 && !find_reg_note (insn, REG_BR_PROB, 0))
3260 {
3261 /* We can preserve the REG_BR_PROB notes only if exactly
3262 one jump is created, otherwise the machine description
3263 is responsible for this step using
3264 split_branch_probability variable. */
3265 if (njumps != 1)
3266 abort ();
3267 REG_NOTES (insn)
3268 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3269 GEN_INT (probability),
3270 REG_NOTES (insn));
3271 }
3272 }
3273
3274 insn = PREV_INSN (insn);
3275 }
216183ce 3276
2d01e445
AO
3277 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3278 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3279 if (GET_CODE (trial) == CALL_INSN)
2f937369
DM
3280 {
3281 insn = insn_last;
3282 while (insn != NULL_RTX)
3283 {
3284 if (GET_CODE (insn) == CALL_INSN)
3285 CALL_INSN_FUNCTION_USAGE (insn)
3286 = CALL_INSN_FUNCTION_USAGE (trial);
3287
3288 insn = PREV_INSN (insn);
3289 }
3290 }
2d01e445 3291
216183ce 3292 /* Copy notes, particularly those related to the CFG. */
68252e27 3293 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
216183ce
RH
3294 {
3295 switch (REG_NOTE_KIND (note))
3296 {
3297 case REG_EH_REGION:
2f937369
DM
3298 insn = insn_last;
3299 while (insn != NULL_RTX)
216183ce 3300 {
216183ce
RH
3301 if (GET_CODE (insn) == CALL_INSN
3302 || (flag_non_call_exceptions
3303 && may_trap_p (PATTERN (insn))))
3304 REG_NOTES (insn)
3305 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3306 XEXP (note, 0),
3307 REG_NOTES (insn));
2f937369 3308 insn = PREV_INSN (insn);
216183ce
RH
3309 }
3310 break;
3311
3312 case REG_NORETURN:
3313 case REG_SETJMP:
3314 case REG_ALWAYS_RETURN:
2f937369
DM
3315 insn = insn_last;
3316 while (insn != NULL_RTX)
216183ce 3317 {
216183ce
RH
3318 if (GET_CODE (insn) == CALL_INSN)
3319 REG_NOTES (insn)
3320 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3321 XEXP (note, 0),
3322 REG_NOTES (insn));
2f937369 3323 insn = PREV_INSN (insn);
216183ce
RH
3324 }
3325 break;
3326
3327 case REG_NON_LOCAL_GOTO:
2f937369
DM
3328 insn = insn_last;
3329 while (insn != NULL_RTX)
216183ce 3330 {
216183ce
RH
3331 if (GET_CODE (insn) == JUMP_INSN)
3332 REG_NOTES (insn)
3333 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3334 XEXP (note, 0),
3335 REG_NOTES (insn));
2f937369 3336 insn = PREV_INSN (insn);
216183ce
RH
3337 }
3338 break;
3339
3340 default:
3341 break;
3342 }
3343 }
d6e95df8 3344
e5bef2e4
HB
3345 /* If there are LABELS inside the split insns increment the
3346 usage count so we don't delete the label. */
3347 if (GET_CODE (trial) == INSN)
2f937369 3348 {
c6a3fcf0 3349 insn = insn_last;
2f937369
DM
3350 while (insn != NULL_RTX)
3351 {
3352 if (GET_CODE (insn) == INSN)
3353 mark_label_nuses (PATTERN (insn));
3354
3355 insn = PREV_INSN (insn);
3356 }
3357 }
e5bef2e4 3358
0d682900 3359 tem = emit_insn_after_scope (seq, trial, INSN_SCOPE (trial));
23b2ce53 3360
83a49407 3361 delete_insn (trial);
23b2ce53
RS
3362 if (has_barrier)
3363 emit_barrier_after (tem);
11147ebe
RK
3364
3365 /* Recursively call try_split for each new insn created; by the
3366 time control returns here that insn will be fully split, so
3367 set LAST and continue from the insn after the one returned.
f4a3cd05 3368 We can't use next_active_insn here since AFTER may be a note.
23886015 3369 Ignore deleted insns, which can be occur if not optimizing. */
2c3c49de
RB
3370 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3371 if (! INSN_DELETED_P (tem) && INSN_P (tem))
f4a3cd05 3372 tem = try_split (PATTERN (tem), tem, 1);
23b2ce53
RS
3373 }
3374 /* Avoid infinite loop if the result matches the original pattern. */
2f937369 3375 else if (rtx_equal_p (PATTERN (seq), pat))
23b2ce53
RS
3376 return trial;
3377 else
3378 {
2f937369 3379 PATTERN (trial) = PATTERN (seq);
23b2ce53 3380 INSN_CODE (trial) = -1;
2f937369 3381 try_split (PATTERN (trial), trial, last);
23b2ce53
RS
3382 }
3383
11147ebe
RK
3384 /* Return either the first or the last insn, depending on which was
3385 requested. */
750c9258 3386 return last
6b24c259
JH
3387 ? (after ? PREV_INSN (after) : last_insn)
3388 : NEXT_INSN (before);
23b2ce53
RS
3389 }
3390
3391 return trial;
3392}
3393\f
3394/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3395 Store PATTERN in the pattern slots. */
23b2ce53
RS
3396
3397rtx
4b1f5e8c 3398make_insn_raw (pattern)
23b2ce53 3399 rtx pattern;
23b2ce53 3400{
b3694847 3401 rtx insn;
23b2ce53 3402
1f8f4a0b 3403 insn = rtx_alloc (INSN);
23b2ce53 3404
43127294 3405 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3406 PATTERN (insn) = pattern;
3407 INSN_CODE (insn) = -1;
1632afca
RS
3408 LOG_LINKS (insn) = NULL;
3409 REG_NOTES (insn) = NULL;
ba4f7968
JH
3410 INSN_SCOPE (insn) = NULL;
3411 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3412
47984720
NC
3413#ifdef ENABLE_RTL_CHECKING
3414 if (insn
2c3c49de 3415 && INSN_P (insn)
47984720
NC
3416 && (returnjump_p (insn)
3417 || (GET_CODE (insn) == SET
3418 && SET_DEST (insn) == pc_rtx)))
3419 {
3420 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3421 debug_rtx (insn);
3422 }
3423#endif
750c9258 3424
23b2ce53
RS
3425 return insn;
3426}
3427
2f937369 3428/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53
RS
3429
3430static rtx
4b1f5e8c 3431make_jump_insn_raw (pattern)
23b2ce53 3432 rtx pattern;
23b2ce53 3433{
b3694847 3434 rtx insn;
23b2ce53 3435
4b1f5e8c 3436 insn = rtx_alloc (JUMP_INSN);
1632afca 3437 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3438
3439 PATTERN (insn) = pattern;
3440 INSN_CODE (insn) = -1;
1632afca
RS
3441 LOG_LINKS (insn) = NULL;
3442 REG_NOTES (insn) = NULL;
3443 JUMP_LABEL (insn) = NULL;
ba4f7968
JH
3444 INSN_SCOPE (insn) = NULL;
3445 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3446
3447 return insn;
3448}
aff507f4 3449
2f937369 3450/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3451
3452static rtx
3453make_call_insn_raw (pattern)
3454 rtx pattern;
3455{
b3694847 3456 rtx insn;
aff507f4
RK
3457
3458 insn = rtx_alloc (CALL_INSN);
3459 INSN_UID (insn) = cur_insn_uid++;
3460
3461 PATTERN (insn) = pattern;
3462 INSN_CODE (insn) = -1;
3463 LOG_LINKS (insn) = NULL;
3464 REG_NOTES (insn) = NULL;
3465 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
ba4f7968
JH
3466 INSN_SCOPE (insn) = NULL;
3467 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3468
3469 return insn;
3470}
23b2ce53
RS
3471\f
3472/* Add INSN to the end of the doubly-linked list.
3473 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3474
3475void
3476add_insn (insn)
b3694847 3477 rtx insn;
23b2ce53
RS
3478{
3479 PREV_INSN (insn) = last_insn;
3480 NEXT_INSN (insn) = 0;
3481
3482 if (NULL != last_insn)
3483 NEXT_INSN (last_insn) = insn;
3484
3485 if (NULL == first_insn)
3486 first_insn = insn;
3487
3488 last_insn = insn;
3489}
3490
a0ae8e8d
RK
3491/* Add INSN into the doubly-linked list after insn AFTER. This and
3492 the next should be the only functions called to insert an insn once
ba213285 3493 delay slots have been filled since only they know how to update a
a0ae8e8d 3494 SEQUENCE. */
23b2ce53
RS
3495
3496void
3497add_insn_after (insn, after)
3498 rtx insn, after;
3499{
3500 rtx next = NEXT_INSN (after);
3c030e88 3501 basic_block bb;
23b2ce53 3502
6782074d 3503 if (optimize && INSN_DELETED_P (after))
ba213285
RK
3504 abort ();
3505
23b2ce53
RS
3506 NEXT_INSN (insn) = next;
3507 PREV_INSN (insn) = after;
3508
3509 if (next)
3510 {
3511 PREV_INSN (next) = insn;
3512 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3513 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3514 }
3515 else if (last_insn == after)
3516 last_insn = insn;
3517 else
3518 {
49ad7cfa 3519 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3520 /* Scan all pending sequences too. */
3521 for (; stack; stack = stack->next)
3522 if (after == stack->last)
fef0509b
RK
3523 {
3524 stack->last = insn;
3525 break;
3526 }
a0ae8e8d
RK
3527
3528 if (stack == 0)
3529 abort ();
23b2ce53
RS
3530 }
3531
ba4f7968
JH
3532 if (GET_CODE (after) != BARRIER
3533 && GET_CODE (insn) != BARRIER
3c030e88
JH
3534 && (bb = BLOCK_FOR_INSN (after)))
3535 {
3536 set_block_for_insn (insn, bb);
38c1593d 3537 if (INSN_P (insn))
68252e27 3538 bb->flags |= BB_DIRTY;
3c030e88 3539 /* Should not happen as first in the BB is always
a1f300c0 3540 either NOTE or LABEL. */
3c030e88
JH
3541 if (bb->end == after
3542 /* Avoid clobbering of structure when creating new BB. */
3543 && GET_CODE (insn) != BARRIER
3544 && (GET_CODE (insn) != NOTE
3545 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3546 bb->end = insn;
3547 }
3548
23b2ce53
RS
3549 NEXT_INSN (after) = insn;
3550 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3551 {
3552 rtx sequence = PATTERN (after);
3553 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3554 }
3555}
3556
a0ae8e8d
RK
3557/* Add INSN into the doubly-linked list before insn BEFORE. This and
3558 the previous should be the only functions called to insert an insn once
ba213285 3559 delay slots have been filled since only they know how to update a
a0ae8e8d
RK
3560 SEQUENCE. */
3561
3562void
3563add_insn_before (insn, before)
3564 rtx insn, before;
3565{
3566 rtx prev = PREV_INSN (before);
3c030e88 3567 basic_block bb;
a0ae8e8d 3568
6782074d 3569 if (optimize && INSN_DELETED_P (before))
ba213285
RK
3570 abort ();
3571
a0ae8e8d
RK
3572 PREV_INSN (insn) = prev;
3573 NEXT_INSN (insn) = before;
3574
3575 if (prev)
3576 {
3577 NEXT_INSN (prev) = insn;
3578 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3579 {
3580 rtx sequence = PATTERN (prev);
3581 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3582 }
3583 }
3584 else if (first_insn == before)
3585 first_insn = insn;
3586 else
3587 {
49ad7cfa 3588 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3589 /* Scan all pending sequences too. */
3590 for (; stack; stack = stack->next)
3591 if (before == stack->first)
fef0509b
RK
3592 {
3593 stack->first = insn;
3594 break;
3595 }
a0ae8e8d
RK
3596
3597 if (stack == 0)
3598 abort ();
3599 }
3600
ba4f7968
JH
3601 if (GET_CODE (before) != BARRIER
3602 && GET_CODE (insn) != BARRIER
3c030e88
JH
3603 && (bb = BLOCK_FOR_INSN (before)))
3604 {
3605 set_block_for_insn (insn, bb);
38c1593d 3606 if (INSN_P (insn))
68252e27 3607 bb->flags |= BB_DIRTY;
3c030e88 3608 /* Should not happen as first in the BB is always
a1f300c0 3609 either NOTE or LABEl. */
3c030e88
JH
3610 if (bb->head == insn
3611 /* Avoid clobbering of structure when creating new BB. */
3612 && GET_CODE (insn) != BARRIER
3613 && (GET_CODE (insn) != NOTE
3614 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3615 abort ();
3616 }
3617
a0ae8e8d
RK
3618 PREV_INSN (before) = insn;
3619 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3620 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3621}
3622
89e99eea
DB
3623/* Remove an insn from its doubly-linked list. This function knows how
3624 to handle sequences. */
3625void
3626remove_insn (insn)
3627 rtx insn;
3628{
3629 rtx next = NEXT_INSN (insn);
3630 rtx prev = PREV_INSN (insn);
53c17031
JH
3631 basic_block bb;
3632
89e99eea
DB
3633 if (prev)
3634 {
3635 NEXT_INSN (prev) = next;
3636 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3637 {
3638 rtx sequence = PATTERN (prev);
3639 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3640 }
3641 }
3642 else if (first_insn == insn)
3643 first_insn = next;
3644 else
3645 {
49ad7cfa 3646 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3647 /* Scan all pending sequences too. */
3648 for (; stack; stack = stack->next)
3649 if (insn == stack->first)
3650 {
3651 stack->first = next;
3652 break;
3653 }
3654
3655 if (stack == 0)
3656 abort ();
3657 }
3658
3659 if (next)
3660 {
3661 PREV_INSN (next) = prev;
3662 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3663 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3664 }
3665 else if (last_insn == insn)
3666 last_insn = prev;
3667 else
3668 {
49ad7cfa 3669 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3670 /* Scan all pending sequences too. */
3671 for (; stack; stack = stack->next)
3672 if (insn == stack->last)
3673 {
3674 stack->last = prev;
3675 break;
3676 }
3677
3678 if (stack == 0)
3679 abort ();
3680 }
ba4f7968 3681 if (GET_CODE (insn) != BARRIER
53c17031
JH
3682 && (bb = BLOCK_FOR_INSN (insn)))
3683 {
38c1593d 3684 if (INSN_P (insn))
68252e27 3685 bb->flags |= BB_DIRTY;
53c17031
JH
3686 if (bb->head == insn)
3687 {
3bf1e984
RK
3688 /* Never ever delete the basic block note without deleting whole
3689 basic block. */
53c17031
JH
3690 if (GET_CODE (insn) == NOTE)
3691 abort ();
3692 bb->head = next;
3693 }
3694 if (bb->end == insn)
3695 bb->end = prev;
3696 }
89e99eea
DB
3697}
3698
23b2ce53
RS
3699/* Delete all insns made since FROM.
3700 FROM becomes the new last instruction. */
3701
3702void
3703delete_insns_since (from)
3704 rtx from;
3705{
3706 if (from == 0)
3707 first_insn = 0;
3708 else
3709 NEXT_INSN (from) = 0;
3710 last_insn = from;
3711}
3712
5dab5552
MS
3713/* This function is deprecated, please use sequences instead.
3714
3715 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3716 The insns to be moved are those between FROM and TO.
3717 They are moved to a new position after the insn AFTER.
3718 AFTER must not be FROM or TO or any insn in between.
3719
3720 This function does not know about SEQUENCEs and hence should not be
3721 called after delay-slot filling has been done. */
3722
3723void
3c030e88 3724reorder_insns_nobb (from, to, after)
23b2ce53
RS
3725 rtx from, to, after;
3726{
3727 /* Splice this bunch out of where it is now. */
3728 if (PREV_INSN (from))
3729 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3730 if (NEXT_INSN (to))
3731 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3732 if (last_insn == to)
3733 last_insn = PREV_INSN (from);
3734 if (first_insn == from)
3735 first_insn = NEXT_INSN (to);
3736
3737 /* Make the new neighbors point to it and it to them. */
3738 if (NEXT_INSN (after))
3739 PREV_INSN (NEXT_INSN (after)) = to;
3740
3741 NEXT_INSN (to) = NEXT_INSN (after);
3742 PREV_INSN (from) = after;
3743 NEXT_INSN (after) = from;
3744 if (after == last_insn)
3745 last_insn = to;
3746}
3747
3c030e88
JH
3748/* Same as function above, but take care to update BB boundaries. */
3749void
3750reorder_insns (from, to, after)
3751 rtx from, to, after;
3752{
3753 rtx prev = PREV_INSN (from);
3754 basic_block bb, bb2;
3755
3756 reorder_insns_nobb (from, to, after);
3757
ba4f7968 3758 if (GET_CODE (after) != BARRIER
3c030e88
JH
3759 && (bb = BLOCK_FOR_INSN (after)))
3760 {
3761 rtx x;
38c1593d 3762 bb->flags |= BB_DIRTY;
68252e27 3763
ba4f7968 3764 if (GET_CODE (from) != BARRIER
3c030e88
JH
3765 && (bb2 = BLOCK_FOR_INSN (from)))
3766 {
3767 if (bb2->end == to)
3768 bb2->end = prev;
38c1593d 3769 bb2->flags |= BB_DIRTY;
3c030e88
JH
3770 }
3771
3772 if (bb->end == after)
3773 bb->end = to;
3774
3775 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3776 set_block_for_insn (x, bb);
3777 }
3778}
3779
23b2ce53
RS
3780/* Return the line note insn preceding INSN. */
3781
3782static rtx
3783find_line_note (insn)
3784 rtx insn;
3785{
3786 if (no_line_numbers)
3787 return 0;
3788
3789 for (; insn; insn = PREV_INSN (insn))
3790 if (GET_CODE (insn) == NOTE
0fb7aeda 3791 && NOTE_LINE_NUMBER (insn) >= 0)
23b2ce53
RS
3792 break;
3793
3794 return insn;
3795}
3796
3797/* Like reorder_insns, but inserts line notes to preserve the line numbers
3798 of the moved insns when debugging. This may insert a note between AFTER
3799 and FROM, and another one after TO. */
3800
3801void
3802reorder_insns_with_line_notes (from, to, after)
3803 rtx from, to, after;
3804{
3805 rtx from_line = find_line_note (from);
3806 rtx after_line = find_line_note (after);
3807
3808 reorder_insns (from, to, after);
3809
3810 if (from_line == after_line)
3811 return;
3812
3813 if (from_line)
3814 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
3815 NOTE_LINE_NUMBER (from_line),
3816 after);
3817 if (after_line)
3818 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
3819 NOTE_LINE_NUMBER (after_line),
3820 to);
3821}
aeeeda03 3822
64b59a80 3823/* Remove unnecessary notes from the instruction stream. */
aeeeda03
MM
3824
3825void
64b59a80 3826remove_unnecessary_notes ()
aeeeda03 3827{
542d73ae
RH
3828 rtx block_stack = NULL_RTX;
3829 rtx eh_stack = NULL_RTX;
aeeeda03
MM
3830 rtx insn;
3831 rtx next;
542d73ae 3832 rtx tmp;
aeeeda03 3833
116eebd6
MM
3834 /* We must not remove the first instruction in the function because
3835 the compiler depends on the first instruction being a note. */
aeeeda03
MM
3836 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3837 {
3838 /* Remember what's next. */
3839 next = NEXT_INSN (insn);
3840
3841 /* We're only interested in notes. */
3842 if (GET_CODE (insn) != NOTE)
3843 continue;
3844
542d73ae 3845 switch (NOTE_LINE_NUMBER (insn))
18c038b9 3846 {
542d73ae 3847 case NOTE_INSN_DELETED:
e803a64b 3848 case NOTE_INSN_LOOP_END_TOP_COND:
542d73ae
RH
3849 remove_insn (insn);
3850 break;
3851
3852 case NOTE_INSN_EH_REGION_BEG:
3853 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3854 break;
3855
3856 case NOTE_INSN_EH_REGION_END:
3857 /* Too many end notes. */
3858 if (eh_stack == NULL_RTX)
3859 abort ();
3860 /* Mismatched nesting. */
3861 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3862 abort ();
3863 tmp = eh_stack;
3864 eh_stack = XEXP (eh_stack, 1);
3865 free_INSN_LIST_node (tmp);
3866 break;
3867
3868 case NOTE_INSN_BLOCK_BEG:
3869 /* By now, all notes indicating lexical blocks should have
3870 NOTE_BLOCK filled in. */
3871 if (NOTE_BLOCK (insn) == NULL_TREE)
3872 abort ();
3873 block_stack = alloc_INSN_LIST (insn, block_stack);
3874 break;
3875
3876 case NOTE_INSN_BLOCK_END:
3877 /* Too many end notes. */
3878 if (block_stack == NULL_RTX)
3879 abort ();
3880 /* Mismatched nesting. */
3881 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3882 abort ();
3883 tmp = block_stack;
3884 block_stack = XEXP (block_stack, 1);
3885 free_INSN_LIST_node (tmp);
3886
18c038b9
MM
3887 /* Scan back to see if there are any non-note instructions
3888 between INSN and the beginning of this block. If not,
3889 then there is no PC range in the generated code that will
3890 actually be in this block, so there's no point in
3891 remembering the existence of the block. */
68252e27 3892 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
18c038b9
MM
3893 {
3894 /* This block contains a real instruction. Note that we
3895 don't include labels; if the only thing in the block
3896 is a label, then there are still no PC values that
3897 lie within the block. */
542d73ae 3898 if (INSN_P (tmp))
18c038b9
MM
3899 break;
3900
3901 /* We're only interested in NOTEs. */
542d73ae 3902 if (GET_CODE (tmp) != NOTE)
18c038b9
MM
3903 continue;
3904
542d73ae 3905 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
18c038b9 3906 {
e1772ac0
NB
3907 /* We just verified that this BLOCK matches us with
3908 the block_stack check above. Never delete the
3909 BLOCK for the outermost scope of the function; we
3910 can refer to names from that scope even if the
3911 block notes are messed up. */
3912 if (! is_body_block (NOTE_BLOCK (insn))
3913 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
deb5e280 3914 {
542d73ae 3915 remove_insn (tmp);
deb5e280
JM
3916 remove_insn (insn);
3917 }
18c038b9
MM
3918 break;
3919 }
542d73ae 3920 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
18c038b9
MM
3921 /* There's a nested block. We need to leave the
3922 current block in place since otherwise the debugger
3923 wouldn't be able to show symbols from our block in
3924 the nested block. */
3925 break;
3926 }
3927 }
aeeeda03 3928 }
542d73ae
RH
3929
3930 /* Too many begin notes. */
3931 if (block_stack || eh_stack)
3932 abort ();
aeeeda03
MM
3933}
3934
23b2ce53 3935\f
2f937369
DM
3936/* Emit insn(s) of given code and pattern
3937 at a specified place within the doubly-linked list.
23b2ce53 3938
2f937369
DM
3939 All of the emit_foo global entry points accept an object
3940 X which is either an insn list or a PATTERN of a single
3941 instruction.
23b2ce53 3942
2f937369
DM
3943 There are thus a few canonical ways to generate code and
3944 emit it at a specific place in the instruction stream. For
3945 example, consider the instruction named SPOT and the fact that
3946 we would like to emit some instructions before SPOT. We might
3947 do it like this:
23b2ce53 3948
2f937369
DM
3949 start_sequence ();
3950 ... emit the new instructions ...
3951 insns_head = get_insns ();
3952 end_sequence ();
23b2ce53 3953
2f937369 3954 emit_insn_before (insns_head, SPOT);
23b2ce53 3955
2f937369
DM
3956 It used to be common to generate SEQUENCE rtl instead, but that
3957 is a relic of the past which no longer occurs. The reason is that
3958 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3959 generated would almost certainly die right after it was created. */
23b2ce53 3960
2f937369 3961/* Make X be output before the instruction BEFORE. */
23b2ce53
RS
3962
3963rtx
2f937369
DM
3964emit_insn_before (x, before)
3965 rtx x, before;
23b2ce53 3966{
2f937369 3967 rtx last = before;
b3694847 3968 rtx insn;
23b2ce53 3969
2f937369
DM
3970#ifdef ENABLE_RTL_CHECKING
3971 if (before == NULL_RTX)
3972 abort ();
3973#endif
3974
3975 if (x == NULL_RTX)
3976 return last;
3977
3978 switch (GET_CODE (x))
23b2ce53 3979 {
2f937369
DM
3980 case INSN:
3981 case JUMP_INSN:
3982 case CALL_INSN:
3983 case CODE_LABEL:
3984 case BARRIER:
3985 case NOTE:
3986 insn = x;
3987 while (insn)
3988 {
3989 rtx next = NEXT_INSN (insn);
3990 add_insn_before (insn, before);
3991 last = insn;
3992 insn = next;
3993 }
3994 break;
3995
3996#ifdef ENABLE_RTL_CHECKING
3997 case SEQUENCE:
3998 abort ();
3999 break;
4000#endif
4001
4002 default:
4003 last = make_insn_raw (x);
4004 add_insn_before (last, before);
4005 break;
23b2ce53
RS
4006 }
4007
2f937369 4008 return last;
23b2ce53
RS
4009}
4010
2f937369 4011/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4012 and output it before the instruction BEFORE. */
4013
4014rtx
2f937369
DM
4015emit_jump_insn_before (x, before)
4016 rtx x, before;
23b2ce53 4017{
d950dee3 4018 rtx insn, last = NULL_RTX;
aff507f4 4019
2f937369
DM
4020#ifdef ENABLE_RTL_CHECKING
4021 if (before == NULL_RTX)
4022 abort ();
4023#endif
4024
4025 switch (GET_CODE (x))
aff507f4 4026 {
2f937369
DM
4027 case INSN:
4028 case JUMP_INSN:
4029 case CALL_INSN:
4030 case CODE_LABEL:
4031 case BARRIER:
4032 case NOTE:
4033 insn = x;
4034 while (insn)
4035 {
4036 rtx next = NEXT_INSN (insn);
4037 add_insn_before (insn, before);
4038 last = insn;
4039 insn = next;
4040 }
4041 break;
4042
4043#ifdef ENABLE_RTL_CHECKING
4044 case SEQUENCE:
4045 abort ();
4046 break;
4047#endif
4048
4049 default:
4050 last = make_jump_insn_raw (x);
4051 add_insn_before (last, before);
4052 break;
aff507f4
RK
4053 }
4054
2f937369 4055 return last;
23b2ce53
RS
4056}
4057
2f937369 4058/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4059 and output it before the instruction BEFORE. */
4060
4061rtx
2f937369
DM
4062emit_call_insn_before (x, before)
4063 rtx x, before;
969d70ca 4064{
d950dee3 4065 rtx last = NULL_RTX, insn;
969d70ca 4066
2f937369
DM
4067#ifdef ENABLE_RTL_CHECKING
4068 if (before == NULL_RTX)
4069 abort ();
4070#endif
4071
4072 switch (GET_CODE (x))
969d70ca 4073 {
2f937369
DM
4074 case INSN:
4075 case JUMP_INSN:
4076 case CALL_INSN:
4077 case CODE_LABEL:
4078 case BARRIER:
4079 case NOTE:
4080 insn = x;
4081 while (insn)
4082 {
4083 rtx next = NEXT_INSN (insn);
4084 add_insn_before (insn, before);
4085 last = insn;
4086 insn = next;
4087 }
4088 break;
4089
4090#ifdef ENABLE_RTL_CHECKING
4091 case SEQUENCE:
4092 abort ();
4093 break;
4094#endif
4095
4096 default:
4097 last = make_call_insn_raw (x);
4098 add_insn_before (last, before);
4099 break;
969d70ca
JH
4100 }
4101
2f937369 4102 return last;
969d70ca
JH
4103}
4104
23b2ce53 4105/* Make an insn of code BARRIER
e881bb1b 4106 and output it before the insn BEFORE. */
23b2ce53
RS
4107
4108rtx
4109emit_barrier_before (before)
b3694847 4110 rtx before;
23b2ce53 4111{
b3694847 4112 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4113
4114 INSN_UID (insn) = cur_insn_uid++;
4115
a0ae8e8d 4116 add_insn_before (insn, before);
23b2ce53
RS
4117 return insn;
4118}
4119
e881bb1b
RH
4120/* Emit the label LABEL before the insn BEFORE. */
4121
4122rtx
4123emit_label_before (label, before)
4124 rtx label, before;
4125{
4126 /* This can be called twice for the same label as a result of the
4127 confusion that follows a syntax error! So make it harmless. */
4128 if (INSN_UID (label) == 0)
4129 {
4130 INSN_UID (label) = cur_insn_uid++;
4131 add_insn_before (label, before);
4132 }
4133
4134 return label;
4135}
4136
23b2ce53
RS
4137/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4138
4139rtx
4140emit_note_before (subtype, before)
4141 int subtype;
4142 rtx before;
4143{
b3694847 4144 rtx note = rtx_alloc (NOTE);
23b2ce53
RS
4145 INSN_UID (note) = cur_insn_uid++;
4146 NOTE_SOURCE_FILE (note) = 0;
4147 NOTE_LINE_NUMBER (note) = subtype;
ba4f7968 4148 BLOCK_FOR_INSN (note) = NULL;
23b2ce53 4149
a0ae8e8d 4150 add_insn_before (note, before);
23b2ce53
RS
4151 return note;
4152}
4153\f
2f937369
DM
4154/* Helper for emit_insn_after, handles lists of instructions
4155 efficiently. */
23b2ce53 4156
2f937369
DM
4157static rtx emit_insn_after_1 PARAMS ((rtx, rtx));
4158
4159static rtx
4160emit_insn_after_1 (first, after)
4161 rtx first, after;
23b2ce53 4162{
2f937369
DM
4163 rtx last;
4164 rtx after_after;
4165 basic_block bb;
23b2ce53 4166
2f937369
DM
4167 if (GET_CODE (after) != BARRIER
4168 && (bb = BLOCK_FOR_INSN (after)))
23b2ce53 4169 {
2f937369
DM
4170 bb->flags |= BB_DIRTY;
4171 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4172 if (GET_CODE (last) != BARRIER)
4173 set_block_for_insn (last, bb);
4174 if (GET_CODE (last) != BARRIER)
4175 set_block_for_insn (last, bb);
4176 if (bb->end == after)
4177 bb->end = last;
23b2ce53
RS
4178 }
4179 else
2f937369
DM
4180 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4181 continue;
4182
4183 after_after = NEXT_INSN (after);
4184
4185 NEXT_INSN (after) = first;
4186 PREV_INSN (first) = after;
4187 NEXT_INSN (last) = after_after;
4188 if (after_after)
4189 PREV_INSN (after_after) = last;
4190
4191 if (after == last_insn)
4192 last_insn = last;
4193 return last;
4194}
4195
4196/* Make X be output after the insn AFTER. */
4197
4198rtx
4199emit_insn_after (x, after)
4200 rtx x, after;
4201{
4202 rtx last = after;
4203
4204#ifdef ENABLE_RTL_CHECKING
4205 if (after == NULL_RTX)
4206 abort ();
4207#endif
4208
4209 if (x == NULL_RTX)
4210 return last;
4211
4212 switch (GET_CODE (x))
23b2ce53 4213 {
2f937369
DM
4214 case INSN:
4215 case JUMP_INSN:
4216 case CALL_INSN:
4217 case CODE_LABEL:
4218 case BARRIER:
4219 case NOTE:
4220 last = emit_insn_after_1 (x, after);
4221 break;
4222
4223#ifdef ENABLE_RTL_CHECKING
4224 case SEQUENCE:
4225 abort ();
4226 break;
4227#endif
4228
4229 default:
4230 last = make_insn_raw (x);
4231 add_insn_after (last, after);
4232 break;
23b2ce53
RS
4233 }
4234
2f937369 4235 return last;
23b2ce53
RS
4236}
4237
255680cf
RK
4238/* Similar to emit_insn_after, except that line notes are to be inserted so
4239 as to act as if this insn were at FROM. */
4240
4241void
2f937369
DM
4242emit_insn_after_with_line_notes (x, after, from)
4243 rtx x, after, from;
255680cf
RK
4244{
4245 rtx from_line = find_line_note (from);
4246 rtx after_line = find_line_note (after);
2f937369 4247 rtx insn = emit_insn_after (x, after);
255680cf
RK
4248
4249 if (from_line)
4250 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
4251 NOTE_LINE_NUMBER (from_line),
4252 after);
4253
4254 if (after_line)
4255 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
4256 NOTE_LINE_NUMBER (after_line),
4257 insn);
4258}
4259
2f937369 4260/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4261 and output it after the insn AFTER. */
4262
4263rtx
2f937369
DM
4264emit_jump_insn_after (x, after)
4265 rtx x, after;
23b2ce53 4266{
2f937369 4267 rtx last;
23b2ce53 4268
2f937369
DM
4269#ifdef ENABLE_RTL_CHECKING
4270 if (after == NULL_RTX)
4271 abort ();
4272#endif
4273
4274 switch (GET_CODE (x))
23b2ce53 4275 {
2f937369
DM
4276 case INSN:
4277 case JUMP_INSN:
4278 case CALL_INSN:
4279 case CODE_LABEL:
4280 case BARRIER:
4281 case NOTE:
4282 last = emit_insn_after_1 (x, after);
4283 break;
4284
4285#ifdef ENABLE_RTL_CHECKING
4286 case SEQUENCE:
4287 abort ();
4288 break;
4289#endif
4290
4291 default:
4292 last = make_jump_insn_raw (x);
4293 add_insn_after (last, after);
4294 break;
23b2ce53
RS
4295 }
4296
2f937369
DM
4297 return last;
4298}
4299
4300/* Make an instruction with body X and code CALL_INSN
4301 and output it after the instruction AFTER. */
4302
4303rtx
4304emit_call_insn_after (x, after)
4305 rtx x, after;
4306{
4307 rtx last;
4308
4309#ifdef ENABLE_RTL_CHECKING
4310 if (after == NULL_RTX)
4311 abort ();
4312#endif
4313
4314 switch (GET_CODE (x))
4315 {
4316 case INSN:
4317 case JUMP_INSN:
4318 case CALL_INSN:
4319 case CODE_LABEL:
4320 case BARRIER:
4321 case NOTE:
4322 last = emit_insn_after_1 (x, after);
4323 break;
4324
4325#ifdef ENABLE_RTL_CHECKING
4326 case SEQUENCE:
4327 abort ();
4328 break;
4329#endif
4330
4331 default:
4332 last = make_call_insn_raw (x);
4333 add_insn_after (last, after);
4334 break;
4335 }
4336
4337 return last;
23b2ce53
RS
4338}
4339
4340/* Make an insn of code BARRIER
4341 and output it after the insn AFTER. */
4342
4343rtx
4344emit_barrier_after (after)
b3694847 4345 rtx after;
23b2ce53 4346{
b3694847 4347 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4348
4349 INSN_UID (insn) = cur_insn_uid++;
4350
4351 add_insn_after (insn, after);
4352 return insn;
4353}
4354
4355/* Emit the label LABEL after the insn AFTER. */
4356
4357rtx
4358emit_label_after (label, after)
4359 rtx label, after;
4360{
4361 /* This can be called twice for the same label
4362 as a result of the confusion that follows a syntax error!
4363 So make it harmless. */
4364 if (INSN_UID (label) == 0)
4365 {
4366 INSN_UID (label) = cur_insn_uid++;
4367 add_insn_after (label, after);
4368 }
4369
4370 return label;
4371}
4372
4373/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4374
4375rtx
4376emit_note_after (subtype, after)
4377 int subtype;
4378 rtx after;
4379{
b3694847 4380 rtx note = rtx_alloc (NOTE);
23b2ce53
RS
4381 INSN_UID (note) = cur_insn_uid++;
4382 NOTE_SOURCE_FILE (note) = 0;
4383 NOTE_LINE_NUMBER (note) = subtype;
ba4f7968 4384 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4385 add_insn_after (note, after);
4386 return note;
4387}
4388
4389/* Emit a line note for FILE and LINE after the insn AFTER. */
4390
4391rtx
4392emit_line_note_after (file, line, after)
3cce094d 4393 const char *file;
23b2ce53
RS
4394 int line;
4395 rtx after;
4396{
b3694847 4397 rtx note;
23b2ce53
RS
4398
4399 if (no_line_numbers && line > 0)
4400 {
4401 cur_insn_uid++;
4402 return 0;
4403 }
4404
68252e27 4405 note = rtx_alloc (NOTE);
23b2ce53
RS
4406 INSN_UID (note) = cur_insn_uid++;
4407 NOTE_SOURCE_FILE (note) = file;
4408 NOTE_LINE_NUMBER (note) = line;
ba4f7968 4409 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4410 add_insn_after (note, after);
4411 return note;
4412}
4413\f
0d682900
JH
4414/* Like emit_insn_after, but set INSN_SCOPE according to SCOPE. */
4415rtx
4416emit_insn_after_scope (pattern, after, scope)
4417 rtx pattern, after;
4418 tree scope;
4419{
4420 rtx last = emit_insn_after (pattern, after);
0d682900 4421
2f937369
DM
4422 after = NEXT_INSN (after);
4423 while (1)
4424 {
d11cea13
DM
4425 if (active_insn_p (after))
4426 INSN_SCOPE (after) = scope;
2f937369
DM
4427 if (after == last)
4428 break;
4429 after = NEXT_INSN (after);
4430 }
0d682900
JH
4431 return last;
4432}
4433
4434/* Like emit_jump_insn_after, but set INSN_SCOPE according to SCOPE. */
4435rtx
4436emit_jump_insn_after_scope (pattern, after, scope)
4437 rtx pattern, after;
4438 tree scope;
4439{
4440 rtx last = emit_jump_insn_after (pattern, after);
2f937369
DM
4441
4442 after = NEXT_INSN (after);
4443 while (1)
4444 {
d11cea13
DM
4445 if (active_insn_p (after))
4446 INSN_SCOPE (after) = scope;
2f937369
DM
4447 if (after == last)
4448 break;
4449 after = NEXT_INSN (after);
4450 }
0d682900
JH
4451 return last;
4452}
4453
4454/* Like emit_call_insn_after, but set INSN_SCOPE according to SCOPE. */
4455rtx
4456emit_call_insn_after_scope (pattern, after, scope)
4457 rtx pattern, after;
4458 tree scope;
4459{
4460 rtx last = emit_call_insn_after (pattern, after);
2f937369
DM
4461
4462 after = NEXT_INSN (after);
4463 while (1)
4464 {
d11cea13
DM
4465 if (active_insn_p (after))
4466 INSN_SCOPE (after) = scope;
2f937369
DM
4467 if (after == last)
4468 break;
4469 after = NEXT_INSN (after);
4470 }
0d682900
JH
4471 return last;
4472}
4473
4474/* Like emit_insn_before, but set INSN_SCOPE according to SCOPE. */
4475rtx
4476emit_insn_before_scope (pattern, before, scope)
4477 rtx pattern, before;
4478 tree scope;
4479{
4480 rtx first = PREV_INSN (before);
4481 rtx last = emit_insn_before (pattern, before);
4482
2f937369
DM
4483 first = NEXT_INSN (first);
4484 while (1)
4485 {
d11cea13
DM
4486 if (active_insn_p (first))
4487 INSN_SCOPE (first) = scope;
2f937369
DM
4488 if (first == last)
4489 break;
4490 first = NEXT_INSN (first);
4491 }
0d682900
JH
4492 return last;
4493}
4494\f
2f937369
DM
4495/* Take X and emit it at the end of the doubly-linked
4496 INSN list.
23b2ce53
RS
4497
4498 Returns the last insn emitted. */
4499
4500rtx
2f937369
DM
4501emit_insn (x)
4502 rtx x;
23b2ce53 4503{
2f937369
DM
4504 rtx last = last_insn;
4505 rtx insn;
23b2ce53 4506
2f937369
DM
4507 if (x == NULL_RTX)
4508 return last;
23b2ce53 4509
2f937369
DM
4510 switch (GET_CODE (x))
4511 {
4512 case INSN:
4513 case JUMP_INSN:
4514 case CALL_INSN:
4515 case CODE_LABEL:
4516 case BARRIER:
4517 case NOTE:
4518 insn = x;
4519 while (insn)
23b2ce53 4520 {
2f937369 4521 rtx next = NEXT_INSN (insn);
23b2ce53 4522 add_insn (insn);
2f937369
DM
4523 last = insn;
4524 insn = next;
23b2ce53 4525 }
2f937369 4526 break;
23b2ce53 4527
2f937369
DM
4528#ifdef ENABLE_RTL_CHECKING
4529 case SEQUENCE:
4530 abort ();
4531 break;
4532#endif
23b2ce53 4533
2f937369
DM
4534 default:
4535 last = make_insn_raw (x);
4536 add_insn (last);
4537 break;
23b2ce53
RS
4538 }
4539
4540 return last;
4541}
4542
2f937369
DM
4543/* Make an insn of code JUMP_INSN with pattern X
4544 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4545
4546rtx
2f937369
DM
4547emit_jump_insn (x)
4548 rtx x;
23b2ce53 4549{
d950dee3 4550 rtx last = NULL_RTX, insn;
23b2ce53 4551
2f937369 4552 switch (GET_CODE (x))
23b2ce53 4553 {
2f937369
DM
4554 case INSN:
4555 case JUMP_INSN:
4556 case CALL_INSN:
4557 case CODE_LABEL:
4558 case BARRIER:
4559 case NOTE:
4560 insn = x;
4561 while (insn)
4562 {
4563 rtx next = NEXT_INSN (insn);
4564 add_insn (insn);
4565 last = insn;
4566 insn = next;
4567 }
4568 break;
e0a5c5eb 4569
2f937369
DM
4570#ifdef ENABLE_RTL_CHECKING
4571 case SEQUENCE:
4572 abort ();
4573 break;
4574#endif
e0a5c5eb 4575
2f937369
DM
4576 default:
4577 last = make_jump_insn_raw (x);
4578 add_insn (last);
4579 break;
3c030e88 4580 }
e0a5c5eb
RS
4581
4582 return last;
4583}
4584
2f937369 4585/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4586 and add it to the end of the doubly-linked list. */
4587
4588rtx
2f937369
DM
4589emit_call_insn (x)
4590 rtx x;
23b2ce53 4591{
2f937369
DM
4592 rtx insn;
4593
4594 switch (GET_CODE (x))
23b2ce53 4595 {
2f937369
DM
4596 case INSN:
4597 case JUMP_INSN:
4598 case CALL_INSN:
4599 case CODE_LABEL:
4600 case BARRIER:
4601 case NOTE:
4602 insn = emit_insn (x);
4603 break;
23b2ce53 4604
2f937369
DM
4605#ifdef ENABLE_RTL_CHECKING
4606 case SEQUENCE:
4607 abort ();
4608 break;
4609#endif
23b2ce53 4610
2f937369
DM
4611 default:
4612 insn = make_call_insn_raw (x);
23b2ce53 4613 add_insn (insn);
2f937369 4614 break;
23b2ce53 4615 }
2f937369
DM
4616
4617 return insn;
23b2ce53
RS
4618}
4619
4620/* Add the label LABEL to the end of the doubly-linked list. */
4621
4622rtx
4623emit_label (label)
4624 rtx label;
4625{
4626 /* This can be called twice for the same label
4627 as a result of the confusion that follows a syntax error!
4628 So make it harmless. */
4629 if (INSN_UID (label) == 0)
4630 {
4631 INSN_UID (label) = cur_insn_uid++;
4632 add_insn (label);
4633 }
4634 return label;
4635}
4636
4637/* Make an insn of code BARRIER
4638 and add it to the end of the doubly-linked list. */
4639
4640rtx
4641emit_barrier ()
4642{
b3694847 4643 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4644 INSN_UID (barrier) = cur_insn_uid++;
4645 add_insn (barrier);
4646 return barrier;
4647}
4648
4649/* Make an insn of code NOTE
4650 with data-fields specified by FILE and LINE
4651 and add it to the end of the doubly-linked list,
4652 but only if line-numbers are desired for debugging info. */
4653
4654rtx
4655emit_line_note (file, line)
3cce094d 4656 const char *file;
23b2ce53
RS
4657 int line;
4658{
3f1d071b 4659 set_file_and_line_for_stmt (file, line);
23b2ce53
RS
4660
4661#if 0
4662 if (no_line_numbers)
4663 return 0;
4664#endif
4665
4666 return emit_note (file, line);
4667}
4668
4669/* Make an insn of code NOTE
4670 with data-fields specified by FILE and LINE
4671 and add it to the end of the doubly-linked list.
4672 If it is a line-number NOTE, omit it if it matches the previous one. */
4673
4674rtx
4675emit_note (file, line)
3cce094d 4676 const char *file;
23b2ce53
RS
4677 int line;
4678{
b3694847 4679 rtx note;
23b2ce53
RS
4680
4681 if (line > 0)
4682 {
4683 if (file && last_filename && !strcmp (file, last_filename)
4684 && line == last_linenum)
4685 return 0;
4686 last_filename = file;
4687 last_linenum = line;
4688 }
4689
4690 if (no_line_numbers && line > 0)
4691 {
4692 cur_insn_uid++;
4693 return 0;
4694 }
4695
4696 note = rtx_alloc (NOTE);
4697 INSN_UID (note) = cur_insn_uid++;
4698 NOTE_SOURCE_FILE (note) = file;
4699 NOTE_LINE_NUMBER (note) = line;
ba4f7968 4700 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4701 add_insn (note);
4702 return note;
4703}
4704
fe77a034 4705/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
23b2ce53
RS
4706
4707rtx
4708emit_line_note_force (file, line)
3cce094d 4709 const char *file;
23b2ce53
RS
4710 int line;
4711{
4712 last_linenum = -1;
4713 return emit_line_note (file, line);
4714}
4715
4716/* Cause next statement to emit a line note even if the line number
4717 has not changed. This is used at the beginning of a function. */
4718
4719void
4720force_next_line_note ()
4721{
4722 last_linenum = -1;
4723}
87b47c85
AM
4724
4725/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 4726 note of this type already exists, remove it first. */
87b47c85 4727
3d238248 4728rtx
87b47c85
AM
4729set_unique_reg_note (insn, kind, datum)
4730 rtx insn;
4731 enum reg_note kind;
4732 rtx datum;
4733{
4734 rtx note = find_reg_note (insn, kind, NULL_RTX);
4735
52488da1
JW
4736 switch (kind)
4737 {
4738 case REG_EQUAL:
4739 case REG_EQUIV:
4740 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4741 has multiple sets (some callers assume single_set
4742 means the insn only has one set, when in fact it
4743 means the insn only has one * useful * set). */
4744 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4745 {
4746 if (note)
4747 abort ();
4748 return NULL_RTX;
4749 }
4750
4751 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4752 It serves no useful purpose and breaks eliminate_regs. */
4753 if (GET_CODE (datum) == ASM_OPERANDS)
4754 return NULL_RTX;
4755 break;
4756
4757 default:
4758 break;
4759 }
3d238248 4760
750c9258 4761 if (note)
3d238248
JJ
4762 {
4763 XEXP (note, 0) = datum;
4764 return note;
4765 }
87b47c85
AM
4766
4767 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3d238248 4768 return REG_NOTES (insn);
87b47c85 4769}
23b2ce53
RS
4770\f
4771/* Return an indication of which type of insn should have X as a body.
4772 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4773
4774enum rtx_code
4775classify_insn (x)
4776 rtx x;
4777{
4778 if (GET_CODE (x) == CODE_LABEL)
4779 return CODE_LABEL;
4780 if (GET_CODE (x) == CALL)
4781 return CALL_INSN;
4782 if (GET_CODE (x) == RETURN)
4783 return JUMP_INSN;
4784 if (GET_CODE (x) == SET)
4785 {
4786 if (SET_DEST (x) == pc_rtx)
4787 return JUMP_INSN;
4788 else if (GET_CODE (SET_SRC (x)) == CALL)
4789 return CALL_INSN;
4790 else
4791 return INSN;
4792 }
4793 if (GET_CODE (x) == PARALLEL)
4794 {
b3694847 4795 int j;
23b2ce53
RS
4796 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4797 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4798 return CALL_INSN;
4799 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4800 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4801 return JUMP_INSN;
4802 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4803 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4804 return CALL_INSN;
4805 }
4806 return INSN;
4807}
4808
4809/* Emit the rtl pattern X as an appropriate kind of insn.
4810 If X is a label, it is simply added into the insn chain. */
4811
4812rtx
4813emit (x)
4814 rtx x;
4815{
4816 enum rtx_code code = classify_insn (x);
4817
4818 if (code == CODE_LABEL)
4819 return emit_label (x);
4820 else if (code == INSN)
4821 return emit_insn (x);
4822 else if (code == JUMP_INSN)
4823 {
b3694847 4824 rtx insn = emit_jump_insn (x);
7f1c097d 4825 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
23b2ce53
RS
4826 return emit_barrier ();
4827 return insn;
4828 }
4829 else if (code == CALL_INSN)
4830 return emit_call_insn (x);
4831 else
4832 abort ();
4833}
4834\f
e2500fed
GK
4835/* Space for free sequence stack entries. */
4836static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4837
5c7a310f
MM
4838/* Begin emitting insns to a sequence which can be packaged in an
4839 RTL_EXPR. If this sequence will contain something that might cause
4840 the compiler to pop arguments to function calls (because those
4841 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4842 details), use do_pending_stack_adjust before calling this function.
4843 That will ensure that the deferred pops are not accidentally
4eb00163 4844 emitted in the middle of this sequence. */
23b2ce53
RS
4845
4846void
4847start_sequence ()
4848{
4849 struct sequence_stack *tem;
4850
e2500fed
GK
4851 if (free_sequence_stack != NULL)
4852 {
4853 tem = free_sequence_stack;
4854 free_sequence_stack = tem->next;
4855 }
4856 else
4857 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
23b2ce53 4858
49ad7cfa 4859 tem->next = seq_stack;
23b2ce53
RS
4860 tem->first = first_insn;
4861 tem->last = last_insn;
591ccf92 4862 tem->sequence_rtl_expr = seq_rtl_expr;
23b2ce53 4863
49ad7cfa 4864 seq_stack = tem;
23b2ce53
RS
4865
4866 first_insn = 0;
4867 last_insn = 0;
4868}
4869
591ccf92
MM
4870/* Similarly, but indicate that this sequence will be placed in T, an
4871 RTL_EXPR. See the documentation for start_sequence for more
4872 information about how to use this function. */
4873
4874void
4875start_sequence_for_rtl_expr (t)
4876 tree t;
4877{
4878 start_sequence ();
4879
4880 seq_rtl_expr = t;
4881}
4882
5c7a310f
MM
4883/* Set up the insn chain starting with FIRST as the current sequence,
4884 saving the previously current one. See the documentation for
4885 start_sequence for more information about how to use this function. */
23b2ce53
RS
4886
4887void
4888push_to_sequence (first)
4889 rtx first;
4890{
4891 rtx last;
4892
4893 start_sequence ();
4894
4895 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4896
4897 first_insn = first;
4898 last_insn = last;
4899}
4900
c14f7160
ML
4901/* Set up the insn chain from a chain stort in FIRST to LAST. */
4902
4903void
4904push_to_full_sequence (first, last)
4905 rtx first, last;
4906{
4907 start_sequence ();
4908 first_insn = first;
4909 last_insn = last;
4910 /* We really should have the end of the insn chain here. */
4911 if (last && NEXT_INSN (last))
4912 abort ();
4913}
4914
f15ae3a1
TW
4915/* Set up the outer-level insn chain
4916 as the current sequence, saving the previously current one. */
4917
4918void
4919push_topmost_sequence ()
4920{
aefdd5ab 4921 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
4922
4923 start_sequence ();
4924
49ad7cfa 4925 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4926 top = stack;
4927
4928 first_insn = top->first;
4929 last_insn = top->last;
591ccf92 4930 seq_rtl_expr = top->sequence_rtl_expr;
f15ae3a1
TW
4931}
4932
4933/* After emitting to the outer-level insn chain, update the outer-level
4934 insn chain, and restore the previous saved state. */
4935
4936void
4937pop_topmost_sequence ()
4938{
aefdd5ab 4939 struct sequence_stack *stack, *top = NULL;
f15ae3a1 4940
49ad7cfa 4941 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4942 top = stack;
4943
4944 top->first = first_insn;
4945 top->last = last_insn;
591ccf92 4946 /* ??? Why don't we save seq_rtl_expr here? */
f15ae3a1
TW
4947
4948 end_sequence ();
4949}
4950
23b2ce53
RS
4951/* After emitting to a sequence, restore previous saved state.
4952
5c7a310f 4953 To get the contents of the sequence just made, you must call
2f937369 4954 `get_insns' *before* calling here.
5c7a310f
MM
4955
4956 If the compiler might have deferred popping arguments while
4957 generating this sequence, and this sequence will not be immediately
4958 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 4959 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
4960 pops are inserted into this sequence, and not into some random
4961 location in the instruction stream. See INHIBIT_DEFER_POP for more
4962 information about deferred popping of arguments. */
23b2ce53
RS
4963
4964void
4965end_sequence ()
4966{
49ad7cfa 4967 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
4968
4969 first_insn = tem->first;
4970 last_insn = tem->last;
591ccf92 4971 seq_rtl_expr = tem->sequence_rtl_expr;
49ad7cfa 4972 seq_stack = tem->next;
23b2ce53 4973
e2500fed
GK
4974 memset (tem, 0, sizeof (*tem));
4975 tem->next = free_sequence_stack;
4976 free_sequence_stack = tem;
23b2ce53
RS
4977}
4978
c14f7160
ML
4979/* This works like end_sequence, but records the old sequence in FIRST
4980 and LAST. */
4981
4982void
4983end_full_sequence (first, last)
4984 rtx *first, *last;
4985{
4986 *first = first_insn;
4987 *last = last_insn;
68252e27 4988 end_sequence ();
c14f7160
ML
4989}
4990
23b2ce53
RS
4991/* Return 1 if currently emitting into a sequence. */
4992
4993int
4994in_sequence_p ()
4995{
49ad7cfa 4996 return seq_stack != 0;
23b2ce53 4997}
23b2ce53 4998\f
59ec66dc
MM
4999/* Put the various virtual registers into REGNO_REG_RTX. */
5000
5001void
49ad7cfa
BS
5002init_virtual_regs (es)
5003 struct emit_status *es;
59ec66dc 5004{
49ad7cfa
BS
5005 rtx *ptr = es->x_regno_reg_rtx;
5006 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5007 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5008 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5009 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5010 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5011}
5012
da43a810
BS
5013\f
5014/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5015static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5016static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5017static int copy_insn_n_scratches;
5018
5019/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5020 copied an ASM_OPERANDS.
5021 In that case, it is the original input-operand vector. */
5022static rtvec orig_asm_operands_vector;
5023
5024/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5025 copied an ASM_OPERANDS.
5026 In that case, it is the copied input-operand vector. */
5027static rtvec copy_asm_operands_vector;
5028
5029/* Likewise for the constraints vector. */
5030static rtvec orig_asm_constraints_vector;
5031static rtvec copy_asm_constraints_vector;
5032
5033/* Recursively create a new copy of an rtx for copy_insn.
5034 This function differs from copy_rtx in that it handles SCRATCHes and
5035 ASM_OPERANDs properly.
5036 Normally, this function is not used directly; use copy_insn as front end.
5037 However, you could first copy an insn pattern with copy_insn and then use
5038 this function afterwards to properly copy any REG_NOTEs containing
5039 SCRATCHes. */
5040
5041rtx
5042copy_insn_1 (orig)
b3694847 5043 rtx orig;
da43a810 5044{
b3694847
SS
5045 rtx copy;
5046 int i, j;
5047 RTX_CODE code;
5048 const char *format_ptr;
da43a810
BS
5049
5050 code = GET_CODE (orig);
5051
5052 switch (code)
5053 {
5054 case REG:
5055 case QUEUED:
5056 case CONST_INT:
5057 case CONST_DOUBLE:
69ef87e2 5058 case CONST_VECTOR:
da43a810
BS
5059 case SYMBOL_REF:
5060 case CODE_LABEL:
5061 case PC:
5062 case CC0:
5063 case ADDRESSOF:
5064 return orig;
5065
5066 case SCRATCH:
5067 for (i = 0; i < copy_insn_n_scratches; i++)
5068 if (copy_insn_scratch_in[i] == orig)
5069 return copy_insn_scratch_out[i];
5070 break;
5071
5072 case CONST:
5073 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5074 a LABEL_REF, it isn't sharable. */
5075 if (GET_CODE (XEXP (orig, 0)) == PLUS
5076 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5077 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5078 return orig;
5079 break;
750c9258 5080
da43a810
BS
5081 /* A MEM with a constant address is not sharable. The problem is that
5082 the constant address may need to be reloaded. If the mem is shared,
5083 then reloading one copy of this mem will cause all copies to appear
5084 to have been reloaded. */
5085
5086 default:
5087 break;
5088 }
5089
5090 copy = rtx_alloc (code);
5091
5092 /* Copy the various flags, and other information. We assume that
5093 all fields need copying, and then clear the fields that should
5094 not be copied. That is the sensible default behavior, and forces
5095 us to explicitly document why we are *not* copying a flag. */
5096 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5097
5098 /* We do not copy the USED flag, which is used as a mark bit during
5099 walks over the RTL. */
2adc7f12 5100 RTX_FLAG (copy, used) = 0;
da43a810
BS
5101
5102 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5103 if (GET_RTX_CLASS (code) == 'i')
5104 {
2adc7f12
JJ
5105 RTX_FLAG (copy, jump) = 0;
5106 RTX_FLAG (copy, call) = 0;
5107 RTX_FLAG (copy, frame_related) = 0;
da43a810 5108 }
750c9258 5109
da43a810
BS
5110 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5111
5112 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5113 {
e63db8f6 5114 copy->fld[i] = orig->fld[i];
da43a810
BS
5115 switch (*format_ptr++)
5116 {
5117 case 'e':
da43a810
BS
5118 if (XEXP (orig, i) != NULL)
5119 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5120 break;
5121
da43a810
BS
5122 case 'E':
5123 case 'V':
da43a810
BS
5124 if (XVEC (orig, i) == orig_asm_constraints_vector)
5125 XVEC (copy, i) = copy_asm_constraints_vector;
5126 else if (XVEC (orig, i) == orig_asm_operands_vector)
5127 XVEC (copy, i) = copy_asm_operands_vector;
5128 else if (XVEC (orig, i) != NULL)
5129 {
5130 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5131 for (j = 0; j < XVECLEN (copy, i); j++)
5132 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5133 }
5134 break;
5135
da43a810 5136 case 't':
da43a810 5137 case 'w':
da43a810 5138 case 'i':
da43a810
BS
5139 case 's':
5140 case 'S':
e63db8f6
BS
5141 case 'u':
5142 case '0':
5143 /* These are left unchanged. */
da43a810
BS
5144 break;
5145
5146 default:
5147 abort ();
5148 }
5149 }
5150
5151 if (code == SCRATCH)
5152 {
5153 i = copy_insn_n_scratches++;
5154 if (i >= MAX_RECOG_OPERANDS)
5155 abort ();
5156 copy_insn_scratch_in[i] = orig;
5157 copy_insn_scratch_out[i] = copy;
5158 }
5159 else if (code == ASM_OPERANDS)
5160 {
6462bb43
AO
5161 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5162 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5163 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5164 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5165 }
5166
5167 return copy;
5168}
5169
5170/* Create a new copy of an rtx.
5171 This function differs from copy_rtx in that it handles SCRATCHes and
5172 ASM_OPERANDs properly.
5173 INSN doesn't really have to be a full INSN; it could be just the
5174 pattern. */
5175rtx
5176copy_insn (insn)
5177 rtx insn;
5178{
5179 copy_insn_n_scratches = 0;
5180 orig_asm_operands_vector = 0;
5181 orig_asm_constraints_vector = 0;
5182 copy_asm_operands_vector = 0;
5183 copy_asm_constraints_vector = 0;
5184 return copy_insn_1 (insn);
5185}
59ec66dc 5186
23b2ce53
RS
5187/* Initialize data structures and variables in this file
5188 before generating rtl for each function. */
5189
5190void
5191init_emit ()
5192{
01d939e8 5193 struct function *f = cfun;
23b2ce53 5194
e2500fed 5195 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
23b2ce53
RS
5196 first_insn = NULL;
5197 last_insn = NULL;
591ccf92 5198 seq_rtl_expr = NULL;
23b2ce53
RS
5199 cur_insn_uid = 1;
5200 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
5201 last_linenum = 0;
5202 last_filename = 0;
5203 first_label_num = label_num;
5204 last_label_num = 0;
49ad7cfa 5205 seq_stack = NULL;
23b2ce53 5206
23b2ce53
RS
5207 /* Init the tables that describe all the pseudo regs. */
5208
3502dc9c 5209 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5210
49ad7cfa 5211 f->emit->regno_pointer_align
e2500fed
GK
5212 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5213 * sizeof (unsigned char));
86fe05e0 5214
750c9258 5215 regno_reg_rtx
e2500fed
GK
5216 = (rtx *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5217 * sizeof (rtx));
0d4903b8
RK
5218
5219 f->emit->regno_decl
e2500fed
GK
5220 = (tree *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5221 * sizeof (tree));
23b2ce53 5222
e50126e8 5223 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876
JL
5224 memcpy (regno_reg_rtx,
5225 static_regno_reg_rtx,
5226 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5227
23b2ce53 5228 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
49ad7cfa 5229 init_virtual_regs (f->emit);
740ab4a2
RK
5230
5231 /* Indicate that the virtual registers and stack locations are
5232 all pointers. */
3502dc9c
JDA
5233 REG_POINTER (stack_pointer_rtx) = 1;
5234 REG_POINTER (frame_pointer_rtx) = 1;
5235 REG_POINTER (hard_frame_pointer_rtx) = 1;
5236 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5237
3502dc9c
JDA
5238 REG_POINTER (virtual_incoming_args_rtx) = 1;
5239 REG_POINTER (virtual_stack_vars_rtx) = 1;
5240 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5241 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5242 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5243
86fe05e0 5244#ifdef STACK_BOUNDARY
bdb429a5
RK
5245 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5246 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5247 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5248 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5249
5250 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5251 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5252 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5253 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5254 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5255#endif
5256
5e82e7bd
JVA
5257#ifdef INIT_EXPANDERS
5258 INIT_EXPANDERS;
5259#endif
23b2ce53
RS
5260}
5261
ff88fe10 5262/* Generate the constant 0. */
69ef87e2
AH
5263
5264static rtx
ff88fe10 5265gen_const_vector_0 (mode)
69ef87e2
AH
5266 enum machine_mode mode;
5267{
5268 rtx tem;
5269 rtvec v;
5270 int units, i;
5271 enum machine_mode inner;
5272
5273 units = GET_MODE_NUNITS (mode);
5274 inner = GET_MODE_INNER (mode);
5275
5276 v = rtvec_alloc (units);
5277
5278 /* We need to call this function after we to set CONST0_RTX first. */
5279 if (!CONST0_RTX (inner))
5280 abort ();
5281
5282 for (i = 0; i < units; ++i)
5283 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5284
a06e3c40 5285 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5286 return tem;
5287}
5288
a06e3c40
R
5289/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5290 all elements are zero. */
5291rtx
5292gen_rtx_CONST_VECTOR (mode, v)
5293 enum machine_mode mode;
5294 rtvec v;
5295{
5296 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5297 int i;
5298
5299 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5300 if (RTVEC_ELT (v, i) != inner_zero)
5301 return gen_rtx_raw_CONST_VECTOR (mode, v);
5302 return CONST0_RTX (mode);
5303}
5304
23b2ce53
RS
5305/* Create some permanent unique rtl objects shared between all functions.
5306 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5307
5308void
5309init_emit_once (line_numbers)
5310 int line_numbers;
5311{
5312 int i;
5313 enum machine_mode mode;
9ec36da5 5314 enum machine_mode double_mode;
23b2ce53 5315
5692c7bc
ZW
5316 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5317 tables. */
17211ab5
GK
5318 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5319 const_int_htab_eq, NULL);
173b24b9 5320
17211ab5
GK
5321 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5322 const_double_htab_eq, NULL);
5692c7bc 5323
17211ab5
GK
5324 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5325 mem_attrs_htab_eq, NULL);
67673f5c 5326
23b2ce53
RS
5327 no_line_numbers = ! line_numbers;
5328
43fa6302
AS
5329 /* Compute the word and byte modes. */
5330
5331 byte_mode = VOIDmode;
5332 word_mode = VOIDmode;
5333 double_mode = VOIDmode;
5334
5335 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5336 mode = GET_MODE_WIDER_MODE (mode))
5337 {
5338 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5339 && byte_mode == VOIDmode)
5340 byte_mode = mode;
5341
5342 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5343 && word_mode == VOIDmode)
5344 word_mode = mode;
5345 }
5346
43fa6302
AS
5347 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5348 mode = GET_MODE_WIDER_MODE (mode))
5349 {
5350 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5351 && double_mode == VOIDmode)
5352 double_mode = mode;
5353 }
5354
5355 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5356
5da077de
AS
5357 /* Assign register numbers to the globally defined register rtx.
5358 This must be done at runtime because the register number field
5359 is in a union and some compilers can't initialize unions. */
5360
5361 pc_rtx = gen_rtx (PC, VOIDmode);
5362 cc0_rtx = gen_rtx (CC0, VOIDmode);
08394eef
BS
5363 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5364 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5da077de 5365 if (hard_frame_pointer_rtx == 0)
750c9258 5366 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
08394eef 5367 HARD_FRAME_POINTER_REGNUM);
5da077de 5368 if (arg_pointer_rtx == 0)
08394eef 5369 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
750c9258 5370 virtual_incoming_args_rtx =
08394eef 5371 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
750c9258 5372 virtual_stack_vars_rtx =
08394eef 5373 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
750c9258 5374 virtual_stack_dynamic_rtx =
08394eef 5375 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
750c9258
AJ
5376 virtual_outgoing_args_rtx =
5377 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
08394eef 5378 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5da077de 5379
6cde4876
JL
5380 /* Initialize RTL for commonly used hard registers. These are
5381 copied into regno_reg_rtx as we begin to compile each function. */
5382 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5383 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5384
5da077de 5385#ifdef INIT_EXPANDERS
414c4dc4
NC
5386 /* This is to initialize {init|mark|free}_machine_status before the first
5387 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5388 end which calls push_function_context_to before the first call to
5da077de
AS
5389 init_function_start. */
5390 INIT_EXPANDERS;
5391#endif
5392
23b2ce53
RS
5393 /* Create the unique rtx's for certain rtx codes and operand values. */
5394
c5c76735
JL
5395 /* Don't use gen_rtx here since gen_rtx in this case
5396 tries to use these variables. */
23b2ce53 5397 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5398 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5399 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5400
68d75312
JC
5401 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5402 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5403 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5404 else
3b80f6ca 5405 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5406
5692c7bc
ZW
5407 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5408 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5409 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5410 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
23b2ce53
RS
5411
5412 for (i = 0; i <= 2; i++)
5413 {
b216cd4a
ZW
5414 REAL_VALUE_TYPE *r =
5415 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5416
23b2ce53
RS
5417 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5418 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5419 const_tiny_rtx[i][(int) mode] =
5420 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5421
906c4e36 5422 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53
RS
5423
5424 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5425 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5426 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
5427
5428 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5429 mode != VOIDmode;
5430 mode = GET_MODE_WIDER_MODE (mode))
5431 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5432 }
5433
69ef87e2
AH
5434 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5435 mode != VOIDmode;
5436 mode = GET_MODE_WIDER_MODE (mode))
ff88fe10 5437 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
69ef87e2
AH
5438
5439 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5440 mode != VOIDmode;
5441 mode = GET_MODE_WIDER_MODE (mode))
ff88fe10 5442 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
69ef87e2 5443
dbbbbf3b
JDA
5444 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5445 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5446 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5447
f0417c82
RH
5448 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5449 if (STORE_FLAG_VALUE == 1)
5450 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5451
a7e1e2ac
AO
5452#ifdef RETURN_ADDRESS_POINTER_REGNUM
5453 return_address_pointer_rtx
08394eef 5454 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
a7e1e2ac
AO
5455#endif
5456
5457#ifdef STRUCT_VALUE
5458 struct_value_rtx = STRUCT_VALUE;
5459#else
5460 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5461#endif
5462
5463#ifdef STRUCT_VALUE_INCOMING
5464 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5465#else
5466#ifdef STRUCT_VALUE_INCOMING_REGNUM
5467 struct_value_incoming_rtx
5468 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5469#else
5470 struct_value_incoming_rtx = struct_value_rtx;
5471#endif
5472#endif
5473
5474#ifdef STATIC_CHAIN_REGNUM
5475 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5476
5477#ifdef STATIC_CHAIN_INCOMING_REGNUM
5478 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5479 static_chain_incoming_rtx
5480 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5481 else
5482#endif
5483 static_chain_incoming_rtx = static_chain_rtx;
5484#endif
5485
5486#ifdef STATIC_CHAIN
5487 static_chain_rtx = STATIC_CHAIN;
5488
5489#ifdef STATIC_CHAIN_INCOMING
5490 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5491#else
5492 static_chain_incoming_rtx = static_chain_rtx;
5493#endif
5494#endif
5495
fc555370 5496 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
751551d5 5497 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
23b2ce53 5498}
a11759a3
JR
5499\f
5500/* Query and clear/ restore no_line_numbers. This is used by the
5501 switch / case handling in stmt.c to give proper line numbers in
5502 warnings about unreachable code. */
5503
5504int
5505force_line_numbers ()
5506{
5507 int old = no_line_numbers;
5508
5509 no_line_numbers = 0;
5510 if (old)
5511 force_next_line_note ();
5512 return old;
5513}
5514
5515void
5516restore_line_number_status (old_value)
5517 int old_value;
5518{
5519 no_line_numbers = old_value;
5520}
969d70ca
JH
5521
5522/* Produce exact duplicate of insn INSN after AFTER.
5523 Care updating of libcall regions if present. */
5524
5525rtx
5526emit_copy_of_insn_after (insn, after)
5527 rtx insn, after;
5528{
5529 rtx new;
5530 rtx note1, note2, link;
5531
5532 switch (GET_CODE (insn))
5533 {
5534 case INSN:
5535 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5536 break;
5537
5538 case JUMP_INSN:
5539 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5540 break;
5541
5542 case CALL_INSN:
5543 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5544 if (CALL_INSN_FUNCTION_USAGE (insn))
5545 CALL_INSN_FUNCTION_USAGE (new)
5546 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5547 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5548 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5549 break;
5550
5551 default:
5552 abort ();
5553 }
5554
5555 /* Update LABEL_NUSES. */
5556 mark_jump_label (PATTERN (new), new, 0);
5557
ba4f7968
JH
5558 INSN_SCOPE (new) = INSN_SCOPE (insn);
5559
969d70ca
JH
5560 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5561 make them. */
5562 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5563 if (REG_NOTE_KIND (link) != REG_LABEL)
5564 {
5565 if (GET_CODE (link) == EXPR_LIST)
5566 REG_NOTES (new)
5567 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5568 XEXP (link, 0),
5569 REG_NOTES (new)));
5570 else
5571 REG_NOTES (new)
5572 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5573 XEXP (link, 0),
5574 REG_NOTES (new)));
5575 }
5576
5577 /* Fix the libcall sequences. */
5578 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5579 {
5580 rtx p = new;
5581 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5582 p = PREV_INSN (p);
5583 XEXP (note1, 0) = p;
5584 XEXP (note2, 0) = new;
5585 }
5586 return new;
5587}
e2500fed
GK
5588
5589#include "gt-emit-rtl.h"