]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
* sv.po: Update.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
2d593c86 3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
b6f65e3c 4 Free Software Foundation, Inc.
23b2ce53 5
1322177d 6This file is part of GCC.
23b2ce53 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
9dcd6f09 10Software Foundation; either version 3, or (at your option) any later
1322177d 11version.
23b2ce53 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
23b2ce53
RS
17
18You should have received a copy of the GNU General Public License
9dcd6f09
NC
19along with GCC; see the file COPYING3. If not see
20<http://www.gnu.org/licenses/>. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
f822fcf7
KH
25 This file contains support functions for creating rtl expressions
26 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
27
28 The patterns of the insns are created by machine-dependent
29 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
30 the machine description. These routines make the individual rtx's
31 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
32 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
33 dependent is the kind of rtx's they make and what arguments they
34 use. */
23b2ce53
RS
35
36#include "config.h"
670ee920 37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
01198c2f 40#include "toplev.h"
23b2ce53 41#include "rtl.h"
a25c7971 42#include "tree.h"
6baf1cc8 43#include "tm_p.h"
23b2ce53
RS
44#include "flags.h"
45#include "function.h"
46#include "expr.h"
47#include "regs.h"
aff48bca 48#include "hard-reg-set.h"
c13e8210 49#include "hashtab.h"
23b2ce53 50#include "insn-config.h"
e9a25f70 51#include "recog.h"
23b2ce53 52#include "real.h"
325217ed 53#include "fixed-value.h"
0dfa1860 54#include "bitmap.h"
a05924f9 55#include "basic-block.h"
87ff9c8e 56#include "ggc.h"
e1772ac0 57#include "debug.h"
d23c55c2 58#include "langhooks.h"
ef330312 59#include "tree-pass.h"
6fb5fa3c 60#include "df.h"
ca695ac9 61
1d445e9e
ILT
62/* Commonly used modes. */
63
0f41302f
MS
64enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
65enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 66enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 67enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 68
bd60bab2
JH
69/* Datastructures maintained for currently processed function in RTL form. */
70
3e029763 71struct rtl_data x_rtl;
bd60bab2
JH
72
73/* Indexed by pseudo register number, gives the rtx for that pseudo.
74 Allocated in parallel with regno_pointer_align.
75 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
76 with length attribute nested in top level structures. */
77
78rtx * regno_reg_rtx;
23b2ce53
RS
79
80/* This is *not* reset after each function. It gives each CODE_LABEL
81 in the entire compilation a unique label number. */
82
044b4de3 83static GTY(()) int label_num = 1;
23b2ce53 84
23b2ce53
RS
85/* Nonzero means do not generate NOTEs for source line numbers. */
86
87static int no_line_numbers;
88
89/* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
5692c7bc
ZW
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
23b2ce53 93
5da077de 94rtx global_rtl[GR_MAX];
23b2ce53 95
6cde4876
JL
96/* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
23b2ce53
RS
102/* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
68d75312
JC
108rtx const_true_rtx;
109
23b2ce53
RS
110REAL_VALUE_TYPE dconst0;
111REAL_VALUE_TYPE dconst1;
112REAL_VALUE_TYPE dconst2;
113REAL_VALUE_TYPE dconstm1;
03f2ea93 114REAL_VALUE_TYPE dconsthalf;
23b2ce53 115
325217ed
CF
116/* Record fixed-point constant 0 and 1. */
117FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
118FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
119
23b2ce53
RS
120/* All references to the following fixed hard registers go through
121 these unique rtl objects. On machines where the frame-pointer and
122 arg-pointer are the same register, they use the same unique object.
123
124 After register allocation, other rtl objects which used to be pseudo-regs
125 may be clobbered to refer to the frame-pointer register.
126 But references that were originally to the frame-pointer can be
127 distinguished from the others because they contain frame_pointer_rtx.
128
ac6f08b0
DE
129 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
130 tricky: until register elimination has taken place hard_frame_pointer_rtx
750c9258 131 should be used if it is being set, and frame_pointer_rtx otherwise. After
ac6f08b0
DE
132 register elimination hard_frame_pointer_rtx should always be used.
133 On machines where the two registers are same (most) then these are the
134 same.
135
23b2ce53
RS
136 In an inline procedure, the stack and frame pointer rtxs may not be
137 used for anything else. */
23b2ce53
RS
138rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
139rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
140rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
141
a4417a86
JW
142/* This is used to implement __builtin_return_address for some machines.
143 See for instance the MIPS port. */
144rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
145
23b2ce53
RS
146/* We make one copy of (const_int C) where C is in
147 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
148 to save space during the compilation and simplify comparisons of
149 integers. */
150
5da077de 151rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 152
c13e8210
MM
153/* A hash table storing CONST_INTs whose absolute value is greater
154 than MAX_SAVED_CONST_INT. */
155
e2500fed
GK
156static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
157 htab_t const_int_htab;
c13e8210 158
173b24b9 159/* A hash table storing memory attribute structures. */
e2500fed
GK
160static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
161 htab_t mem_attrs_htab;
173b24b9 162
a560d4d4
JH
163/* A hash table storing register attribute structures. */
164static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
165 htab_t reg_attrs_htab;
166
5692c7bc 167/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
168static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
169 htab_t const_double_htab;
5692c7bc 170
091a3ac7
CF
171/* A hash table storing all CONST_FIXEDs. */
172static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
173 htab_t const_fixed_htab;
174
3e029763
JH
175#define first_insn (crtl->emit.x_first_insn)
176#define last_insn (crtl->emit.x_last_insn)
177#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
178#define last_location (crtl->emit.x_last_location)
179#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 180
502b8322 181static rtx make_call_insn_raw (rtx);
502b8322 182static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
5eb2a9f2 183static void set_used_decls (tree);
502b8322
AJ
184static void mark_label_nuses (rtx);
185static hashval_t const_int_htab_hash (const void *);
186static int const_int_htab_eq (const void *, const void *);
187static hashval_t const_double_htab_hash (const void *);
188static int const_double_htab_eq (const void *, const void *);
189static rtx lookup_const_double (rtx);
091a3ac7
CF
190static hashval_t const_fixed_htab_hash (const void *);
191static int const_fixed_htab_eq (const void *, const void *);
192static rtx lookup_const_fixed (rtx);
502b8322
AJ
193static hashval_t mem_attrs_htab_hash (const void *);
194static int mem_attrs_htab_eq (const void *, const void *);
4862826d 195static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
502b8322
AJ
196 enum machine_mode);
197static hashval_t reg_attrs_htab_hash (const void *);
198static int reg_attrs_htab_eq (const void *, const void *);
199static reg_attrs *get_reg_attrs (tree, int);
200static tree component_ref_for_mem_expr (tree);
a73b091d 201static rtx gen_const_vector (enum machine_mode, int);
32b32b16 202static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 203
6b24c259
JH
204/* Probability of the conditional branch currently proceeded by try_split.
205 Set to -1 otherwise. */
206int split_branch_probability = -1;
ca695ac9 207\f
c13e8210
MM
208/* Returns a hash code for X (which is a really a CONST_INT). */
209
210static hashval_t
502b8322 211const_int_htab_hash (const void *x)
c13e8210 212{
f7d504c2 213 return (hashval_t) INTVAL ((const_rtx) x);
c13e8210
MM
214}
215
cc2902df 216/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
217 CONST_INT) is the same as that given by Y (which is really a
218 HOST_WIDE_INT *). */
219
220static int
502b8322 221const_int_htab_eq (const void *x, const void *y)
c13e8210 222{
f7d504c2 223 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
5692c7bc
ZW
224}
225
226/* Returns a hash code for X (which is really a CONST_DOUBLE). */
227static hashval_t
502b8322 228const_double_htab_hash (const void *x)
5692c7bc 229{
f7d504c2 230 const_rtx const value = (const_rtx) x;
46b33600 231 hashval_t h;
5692c7bc 232
46b33600
RH
233 if (GET_MODE (value) == VOIDmode)
234 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
235 else
fe352c29 236 {
15c812e3 237 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
238 /* MODE is used in the comparison, so it should be in the hash. */
239 h ^= GET_MODE (value);
240 }
5692c7bc
ZW
241 return h;
242}
243
cc2902df 244/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
245 is the same as that represented by Y (really a ...) */
246static int
502b8322 247const_double_htab_eq (const void *x, const void *y)
5692c7bc 248{
f7d504c2 249 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
5692c7bc
ZW
250
251 if (GET_MODE (a) != GET_MODE (b))
252 return 0;
8580f7a0
RH
253 if (GET_MODE (a) == VOIDmode)
254 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
255 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
256 else
257 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
258 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
259}
260
091a3ac7
CF
261/* Returns a hash code for X (which is really a CONST_FIXED). */
262
263static hashval_t
264const_fixed_htab_hash (const void *x)
265{
3101faab 266 const_rtx const value = (const_rtx) x;
091a3ac7
CF
267 hashval_t h;
268
269 h = fixed_hash (CONST_FIXED_VALUE (value));
270 /* MODE is used in the comparison, so it should be in the hash. */
271 h ^= GET_MODE (value);
272 return h;
273}
274
275/* Returns nonzero if the value represented by X (really a ...)
276 is the same as that represented by Y (really a ...). */
277
278static int
279const_fixed_htab_eq (const void *x, const void *y)
280{
3101faab 281 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
091a3ac7
CF
282
283 if (GET_MODE (a) != GET_MODE (b))
284 return 0;
285 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
286}
287
173b24b9
RK
288/* Returns a hash code for X (which is a really a mem_attrs *). */
289
290static hashval_t
502b8322 291mem_attrs_htab_hash (const void *x)
173b24b9 292{
f7d504c2 293 const mem_attrs *const p = (const mem_attrs *) x;
173b24b9
RK
294
295 return (p->alias ^ (p->align * 1000)
296 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
297 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
78b76d08 298 ^ (size_t) iterative_hash_expr (p->expr, 0));
173b24b9
RK
299}
300
cc2902df 301/* Returns nonzero if the value represented by X (which is really a
173b24b9
RK
302 mem_attrs *) is the same as that given by Y (which is also really a
303 mem_attrs *). */
c13e8210
MM
304
305static int
502b8322 306mem_attrs_htab_eq (const void *x, const void *y)
c13e8210 307{
741ac903
KG
308 const mem_attrs *const p = (const mem_attrs *) x;
309 const mem_attrs *const q = (const mem_attrs *) y;
173b24b9 310
78b76d08
SB
311 return (p->alias == q->alias && p->offset == q->offset
312 && p->size == q->size && p->align == q->align
313 && (p->expr == q->expr
314 || (p->expr != NULL_TREE && q->expr != NULL_TREE
315 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
316}
317
173b24b9 318/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
319 one identical to it is not already in the table. We are doing this for
320 MEM of mode MODE. */
173b24b9
RK
321
322static mem_attrs *
4862826d 323get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
502b8322 324 unsigned int align, enum machine_mode mode)
173b24b9
RK
325{
326 mem_attrs attrs;
327 void **slot;
328
bb056a77
OH
329 /* If everything is the default, we can just return zero.
330 This must match what the corresponding MEM_* macros return when the
331 field is not present. */
998d7deb 332 if (alias == 0 && expr == 0 && offset == 0
10b76d73
RK
333 && (size == 0
334 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
bb056a77
OH
335 && (STRICT_ALIGNMENT && mode != BLKmode
336 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
10b76d73
RK
337 return 0;
338
173b24b9 339 attrs.alias = alias;
998d7deb 340 attrs.expr = expr;
173b24b9
RK
341 attrs.offset = offset;
342 attrs.size = size;
343 attrs.align = align;
344
345 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
346 if (*slot == 0)
347 {
348 *slot = ggc_alloc (sizeof (mem_attrs));
349 memcpy (*slot, &attrs, sizeof (mem_attrs));
350 }
351
352 return *slot;
c13e8210
MM
353}
354
a560d4d4
JH
355/* Returns a hash code for X (which is a really a reg_attrs *). */
356
357static hashval_t
502b8322 358reg_attrs_htab_hash (const void *x)
a560d4d4 359{
741ac903 360 const reg_attrs *const p = (const reg_attrs *) x;
a560d4d4
JH
361
362 return ((p->offset * 1000) ^ (long) p->decl);
363}
364
6356f892 365/* Returns nonzero if the value represented by X (which is really a
a560d4d4
JH
366 reg_attrs *) is the same as that given by Y (which is also really a
367 reg_attrs *). */
368
369static int
502b8322 370reg_attrs_htab_eq (const void *x, const void *y)
a560d4d4 371{
741ac903
KG
372 const reg_attrs *const p = (const reg_attrs *) x;
373 const reg_attrs *const q = (const reg_attrs *) y;
a560d4d4
JH
374
375 return (p->decl == q->decl && p->offset == q->offset);
376}
377/* Allocate a new reg_attrs structure and insert it into the hash table if
378 one identical to it is not already in the table. We are doing this for
379 MEM of mode MODE. */
380
381static reg_attrs *
502b8322 382get_reg_attrs (tree decl, int offset)
a560d4d4
JH
383{
384 reg_attrs attrs;
385 void **slot;
386
387 /* If everything is the default, we can just return zero. */
388 if (decl == 0 && offset == 0)
389 return 0;
390
391 attrs.decl = decl;
392 attrs.offset = offset;
393
394 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
395 if (*slot == 0)
396 {
397 *slot = ggc_alloc (sizeof (reg_attrs));
398 memcpy (*slot, &attrs, sizeof (reg_attrs));
399 }
400
401 return *slot;
402}
403
6fb5fa3c
DB
404
405#if !HAVE_blockage
406/* Generate an empty ASM_INPUT, which is used to block attempts to schedule
407 across this insn. */
408
409rtx
410gen_blockage (void)
411{
412 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
413 MEM_VOLATILE_P (x) = true;
414 return x;
415}
416#endif
417
418
08394eef
BS
419/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
420 don't attempt to share with the various global pieces of rtl (such as
421 frame_pointer_rtx). */
422
423rtx
502b8322 424gen_raw_REG (enum machine_mode mode, int regno)
08394eef
BS
425{
426 rtx x = gen_rtx_raw_REG (mode, regno);
427 ORIGINAL_REGNO (x) = regno;
428 return x;
429}
430
c5c76735
JL
431/* There are some RTL codes that require special attention; the generation
432 functions do the raw handling. If you add to this list, modify
433 special_rtx in gengenrtl.c as well. */
434
3b80f6ca 435rtx
502b8322 436gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca 437{
c13e8210
MM
438 void **slot;
439
3b80f6ca 440 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 441 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
442
443#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
444 if (const_true_rtx && arg == STORE_FLAG_VALUE)
445 return const_true_rtx;
446#endif
447
c13e8210 448 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
449 slot = htab_find_slot_with_hash (const_int_htab, &arg,
450 (hashval_t) arg, INSERT);
29105cea 451 if (*slot == 0)
1f8f4a0b 452 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
453
454 return (rtx) *slot;
3b80f6ca
RH
455}
456
2496c7bd 457rtx
502b8322 458gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2496c7bd
LB
459{
460 return GEN_INT (trunc_int_for_mode (c, mode));
461}
462
5692c7bc
ZW
463/* CONST_DOUBLEs might be created from pairs of integers, or from
464 REAL_VALUE_TYPEs. Also, their length is known only at run time,
465 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
466
467/* Determine whether REAL, a CONST_DOUBLE, already exists in the
468 hash table. If so, return its counterpart; otherwise add it
469 to the hash table and return it. */
470static rtx
502b8322 471lookup_const_double (rtx real)
5692c7bc
ZW
472{
473 void **slot = htab_find_slot (const_double_htab, real, INSERT);
474 if (*slot == 0)
475 *slot = real;
476
477 return (rtx) *slot;
478}
29105cea 479
5692c7bc
ZW
480/* Return a CONST_DOUBLE rtx for a floating-point value specified by
481 VALUE in mode MODE. */
0133b7d9 482rtx
502b8322 483const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
0133b7d9 484{
5692c7bc
ZW
485 rtx real = rtx_alloc (CONST_DOUBLE);
486 PUT_MODE (real, mode);
487
9e254451 488 real->u.rv = value;
5692c7bc
ZW
489
490 return lookup_const_double (real);
491}
492
091a3ac7
CF
493/* Determine whether FIXED, a CONST_FIXED, already exists in the
494 hash table. If so, return its counterpart; otherwise add it
495 to the hash table and return it. */
496
497static rtx
498lookup_const_fixed (rtx fixed)
499{
500 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
501 if (*slot == 0)
502 *slot = fixed;
503
504 return (rtx) *slot;
505}
506
507/* Return a CONST_FIXED rtx for a fixed-point value specified by
508 VALUE in mode MODE. */
509
510rtx
511const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
512{
513 rtx fixed = rtx_alloc (CONST_FIXED);
514 PUT_MODE (fixed, mode);
515
516 fixed->u.fv = value;
517
518 return lookup_const_fixed (fixed);
519}
520
5692c7bc
ZW
521/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
522 of ints: I0 is the low-order word and I1 is the high-order word.
523 Do not use this routine for non-integer modes; convert to
524 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
525
526rtx
502b8322 527immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
5692c7bc
ZW
528{
529 rtx value;
530 unsigned int i;
531
65acccdd
ZD
532 /* There are the following cases (note that there are no modes with
533 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
534
535 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
536 gen_int_mode.
537 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
538 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
539 from copies of the sign bit, and sign of i0 and i1 are the same), then
540 we return a CONST_INT for i0.
541 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
5692c7bc
ZW
542 if (mode != VOIDmode)
543 {
5b0264cb
NS
544 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
545 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
546 /* We can get a 0 for an error mark. */
547 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
548 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
5692c7bc 549
65acccdd
ZD
550 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
551 return gen_int_mode (i0, mode);
552
553 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
5692c7bc
ZW
554 }
555
556 /* If this integer fits in one word, return a CONST_INT. */
557 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
558 return GEN_INT (i0);
559
560 /* We use VOIDmode for integers. */
561 value = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (value, VOIDmode);
563
564 CONST_DOUBLE_LOW (value) = i0;
565 CONST_DOUBLE_HIGH (value) = i1;
566
567 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
568 XWINT (value, i) = 0;
569
570 return lookup_const_double (value);
0133b7d9
RH
571}
572
3b80f6ca 573rtx
502b8322 574gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3b80f6ca
RH
575{
576 /* In case the MD file explicitly references the frame pointer, have
577 all such references point to the same frame pointer. This is
578 used during frame pointer elimination to distinguish the explicit
579 references to these registers from pseudos that happened to be
580 assigned to them.
581
582 If we have eliminated the frame pointer or arg pointer, we will
583 be using it as a normal register, for example as a spill
584 register. In such cases, we might be accessing it in a mode that
585 is not Pmode and therefore cannot use the pre-allocated rtx.
586
587 Also don't do this when we are making new REGs in reload, since
588 we don't want to get confused with the real pointers. */
589
590 if (mode == Pmode && !reload_in_progress)
591 {
e10c79fe
LB
592 if (regno == FRAME_POINTER_REGNUM
593 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
594 return frame_pointer_rtx;
595#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e10c79fe
LB
596 if (regno == HARD_FRAME_POINTER_REGNUM
597 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
598 return hard_frame_pointer_rtx;
599#endif
600#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 601 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
602 return arg_pointer_rtx;
603#endif
604#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 605 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
606 return return_address_pointer_rtx;
607#endif
fc555370 608 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
2d67bd7b 609 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 610 return pic_offset_table_rtx;
bcb33994 611 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
612 return stack_pointer_rtx;
613 }
614
006a94b0 615#if 0
6cde4876 616 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
617 an existing entry in that table to avoid useless generation of RTL.
618
619 This code is disabled for now until we can fix the various backends
620 which depend on having non-shared hard registers in some cases. Long
621 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
622 on the amount of useless RTL that gets generated.
623
624 We'll also need to fix some code that runs after reload that wants to
625 set ORIGINAL_REGNO. */
626
6cde4876
JL
627 if (cfun
628 && cfun->emit
629 && regno_reg_rtx
630 && regno < FIRST_PSEUDO_REGISTER
631 && reg_raw_mode[regno] == mode)
632 return regno_reg_rtx[regno];
006a94b0 633#endif
6cde4876 634
08394eef 635 return gen_raw_REG (mode, regno);
3b80f6ca
RH
636}
637
41472af8 638rtx
502b8322 639gen_rtx_MEM (enum machine_mode mode, rtx addr)
41472af8
MM
640{
641 rtx rt = gen_rtx_raw_MEM (mode, addr);
642
643 /* This field is not cleared by the mere allocation of the rtx, so
644 we clear it here. */
173b24b9 645 MEM_ATTRS (rt) = 0;
41472af8
MM
646
647 return rt;
648}
ddef6bc7 649
542a8afa
RH
650/* Generate a memory referring to non-trapping constant memory. */
651
652rtx
653gen_const_mem (enum machine_mode mode, rtx addr)
654{
655 rtx mem = gen_rtx_MEM (mode, addr);
656 MEM_READONLY_P (mem) = 1;
657 MEM_NOTRAP_P (mem) = 1;
658 return mem;
659}
660
bf877a76
R
661/* Generate a MEM referring to fixed portions of the frame, e.g., register
662 save areas. */
663
664rtx
665gen_frame_mem (enum machine_mode mode, rtx addr)
666{
667 rtx mem = gen_rtx_MEM (mode, addr);
668 MEM_NOTRAP_P (mem) = 1;
669 set_mem_alias_set (mem, get_frame_alias_set ());
670 return mem;
671}
672
673/* Generate a MEM referring to a temporary use of the stack, not part
674 of the fixed stack frame. For example, something which is pushed
675 by a target splitter. */
676rtx
677gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
678{
679 rtx mem = gen_rtx_MEM (mode, addr);
680 MEM_NOTRAP_P (mem) = 1;
e3b5732b 681 if (!cfun->calls_alloca)
bf877a76
R
682 set_mem_alias_set (mem, get_frame_alias_set ());
683 return mem;
684}
685
beb72684
RH
686/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
687 this construct would be valid, and false otherwise. */
688
689bool
690validate_subreg (enum machine_mode omode, enum machine_mode imode,
ed7a4b4b 691 const_rtx reg, unsigned int offset)
ddef6bc7 692{
beb72684
RH
693 unsigned int isize = GET_MODE_SIZE (imode);
694 unsigned int osize = GET_MODE_SIZE (omode);
695
696 /* All subregs must be aligned. */
697 if (offset % osize != 0)
698 return false;
699
700 /* The subreg offset cannot be outside the inner object. */
701 if (offset >= isize)
702 return false;
703
704 /* ??? This should not be here. Temporarily continue to allow word_mode
705 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
706 Generally, backends are doing something sketchy but it'll take time to
707 fix them all. */
708 if (omode == word_mode)
709 ;
710 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
711 is the culprit here, and not the backends. */
712 else if (osize >= UNITS_PER_WORD && isize >= osize)
713 ;
714 /* Allow component subregs of complex and vector. Though given the below
715 extraction rules, it's not always clear what that means. */
716 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
717 && GET_MODE_INNER (imode) == omode)
718 ;
719 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
720 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
721 represent this. It's questionable if this ought to be represented at
722 all -- why can't this all be hidden in post-reload splitters that make
723 arbitrarily mode changes to the registers themselves. */
724 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
725 ;
726 /* Subregs involving floating point modes are not allowed to
727 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
728 (subreg:SI (reg:DF) 0) isn't. */
729 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
730 {
731 if (isize != osize)
732 return false;
733 }
ddef6bc7 734
beb72684
RH
735 /* Paradoxical subregs must have offset zero. */
736 if (osize > isize)
737 return offset == 0;
738
739 /* This is a normal subreg. Verify that the offset is representable. */
740
741 /* For hard registers, we already have most of these rules collected in
742 subreg_offset_representable_p. */
743 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
744 {
745 unsigned int regno = REGNO (reg);
746
747#ifdef CANNOT_CHANGE_MODE_CLASS
748 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
749 && GET_MODE_INNER (imode) == omode)
750 ;
751 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
752 return false;
ddef6bc7 753#endif
beb72684
RH
754
755 return subreg_offset_representable_p (regno, imode, offset, omode);
756 }
757
758 /* For pseudo registers, we want most of the same checks. Namely:
759 If the register no larger than a word, the subreg must be lowpart.
760 If the register is larger than a word, the subreg must be the lowpart
761 of a subword. A subreg does *not* perform arbitrary bit extraction.
762 Given that we've already checked mode/offset alignment, we only have
763 to check subword subregs here. */
764 if (osize < UNITS_PER_WORD)
765 {
766 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
767 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
768 if (offset % UNITS_PER_WORD != low_off)
769 return false;
770 }
771 return true;
772}
773
774rtx
775gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
776{
777 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 778 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
779}
780
173b24b9
RK
781/* Generate a SUBREG representing the least-significant part of REG if MODE
782 is smaller than mode of REG, otherwise paradoxical SUBREG. */
783
ddef6bc7 784rtx
502b8322 785gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
ddef6bc7
JJ
786{
787 enum machine_mode inmode;
ddef6bc7
JJ
788
789 inmode = GET_MODE (reg);
790 if (inmode == VOIDmode)
791 inmode = mode;
e0e08ac2
JH
792 return gen_rtx_SUBREG (mode, reg,
793 subreg_lowpart_offset (mode, inmode));
ddef6bc7 794}
c5c76735 795\f
23b2ce53
RS
796/* gen_rtvec (n, [rt1, ..., rtn])
797**
798** This routine creates an rtvec and stores within it the
799** pointers to rtx's which are its arguments.
800*/
801
802/*VARARGS1*/
803rtvec
e34d07f2 804gen_rtvec (int n, ...)
23b2ce53 805{
6268b922 806 int i, save_n;
23b2ce53 807 rtx *vector;
e34d07f2 808 va_list p;
23b2ce53 809
e34d07f2 810 va_start (p, n);
23b2ce53
RS
811
812 if (n == 0)
813 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
814
703ad42b 815 vector = alloca (n * sizeof (rtx));
4f90e4a0 816
23b2ce53
RS
817 for (i = 0; i < n; i++)
818 vector[i] = va_arg (p, rtx);
6268b922
KG
819
820 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
821 save_n = n;
e34d07f2 822 va_end (p);
23b2ce53 823
6268b922 824 return gen_rtvec_v (save_n, vector);
23b2ce53
RS
825}
826
827rtvec
502b8322 828gen_rtvec_v (int n, rtx *argp)
23b2ce53 829{
b3694847
SS
830 int i;
831 rtvec rt_val;
23b2ce53
RS
832
833 if (n == 0)
834 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
835
836 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
837
838 for (i = 0; i < n; i++)
8f985ec4 839 rt_val->elem[i] = *argp++;
23b2ce53
RS
840
841 return rt_val;
842}
843\f
38ae7651
RS
844/* Return the number of bytes between the start of an OUTER_MODE
845 in-memory value and the start of an INNER_MODE in-memory value,
846 given that the former is a lowpart of the latter. It may be a
847 paradoxical lowpart, in which case the offset will be negative
848 on big-endian targets. */
849
850int
851byte_lowpart_offset (enum machine_mode outer_mode,
852 enum machine_mode inner_mode)
853{
854 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
855 return subreg_lowpart_offset (outer_mode, inner_mode);
856 else
857 return -subreg_lowpart_offset (inner_mode, outer_mode);
858}
859\f
23b2ce53
RS
860/* Generate a REG rtx for a new pseudo register of mode MODE.
861 This pseudo is assigned the next sequential register number. */
862
863rtx
502b8322 864gen_reg_rtx (enum machine_mode mode)
23b2ce53 865{
b3694847 866 rtx val;
23b2ce53 867
f8335a4f 868 gcc_assert (can_create_pseudo_p ());
23b2ce53 869
1b3d8f8a
GK
870 if (generating_concat_p
871 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
872 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
873 {
874 /* For complex modes, don't make a single pseudo.
875 Instead, make a CONCAT of two pseudos.
876 This allows noncontiguous allocation of the real and imaginary parts,
877 which makes much better code. Besides, allocating DCmode
878 pseudos overstrains reload on some machines like the 386. */
879 rtx realpart, imagpart;
27e58a70 880 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
881
882 realpart = gen_reg_rtx (partmode);
883 imagpart = gen_reg_rtx (partmode);
3b80f6ca 884 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
885 }
886
a560d4d4 887 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 888 enough to have an element for this pseudo reg number. */
23b2ce53 889
3e029763 890 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
23b2ce53 891 {
3e029763 892 int old_size = crtl->emit.regno_pointer_align_length;
e2ecd91c 893 char *new;
0d4903b8 894 rtx *new1;
0d4903b8 895
3e029763 896 new = xrealloc (crtl->emit.regno_pointer_align, old_size * 2);
49ad7cfa 897 memset (new + old_size, 0, old_size);
3e029763 898 crtl->emit.regno_pointer_align = (unsigned char *) new;
49ad7cfa 899
bd60bab2 900 new1 = ggc_realloc (regno_reg_rtx,
703ad42b 901 old_size * 2 * sizeof (rtx));
49ad7cfa 902 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
903 regno_reg_rtx = new1;
904
3e029763 905 crtl->emit.regno_pointer_align_length = old_size * 2;
23b2ce53
RS
906 }
907
08394eef 908 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
909 regno_reg_rtx[reg_rtx_no++] = val;
910 return val;
911}
912
38ae7651
RS
913/* Update NEW with the same attributes as REG, but with OFFSET added
914 to the REG_OFFSET. */
a560d4d4 915
e53a16e7
ILT
916static void
917update_reg_offset (rtx new, rtx reg, int offset)
a560d4d4 918{
a560d4d4 919 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
502b8322 920 REG_OFFSET (reg) + offset);
e53a16e7
ILT
921}
922
38ae7651
RS
923/* Generate a register with same attributes as REG, but with OFFSET
924 added to the REG_OFFSET. */
e53a16e7
ILT
925
926rtx
927gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
928 int offset)
929{
930 rtx new = gen_rtx_REG (mode, regno);
931
932 update_reg_offset (new, reg, offset);
933 return new;
934}
935
936/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 937 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
938
939rtx
940gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
941{
942 rtx new = gen_reg_rtx (mode);
943
944 update_reg_offset (new, reg, offset);
a560d4d4
JH
945 return new;
946}
947
38ae7651
RS
948/* Adjust REG in-place so that it has mode MODE. It is assumed that the
949 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
950
951void
38ae7651 952adjust_reg_mode (rtx reg, enum machine_mode mode)
a560d4d4 953{
38ae7651
RS
954 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
955 PUT_MODE (reg, mode);
956}
957
958/* Copy REG's attributes from X, if X has any attributes. If REG and X
959 have different modes, REG is a (possibly paradoxical) lowpart of X. */
960
961void
962set_reg_attrs_from_value (rtx reg, rtx x)
963{
964 int offset;
965
966 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
967 if (MEM_P (x))
968 {
969 if (MEM_OFFSET (x) && GET_CODE (MEM_OFFSET (x)) == CONST_INT)
970 REG_ATTRS (reg)
971 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
972 if (MEM_POINTER (x))
973 mark_reg_pointer (reg, MEM_ALIGN (x));
974 }
975 else if (REG_P (x))
976 {
977 if (REG_ATTRS (x))
978 update_reg_offset (reg, x, offset);
979 if (REG_POINTER (x))
980 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
981 }
982}
983
984/* Generate a REG rtx for a new pseudo register, copying the mode
985 and attributes from X. */
986
987rtx
988gen_reg_rtx_and_attrs (rtx x)
989{
990 rtx reg = gen_reg_rtx (GET_MODE (x));
991 set_reg_attrs_from_value (reg, x);
992 return reg;
a560d4d4
JH
993}
994
9d18e06b
JZ
995/* Set the register attributes for registers contained in PARM_RTX.
996 Use needed values from memory attributes of MEM. */
997
998void
502b8322 999set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1000{
f8cfc6aa 1001 if (REG_P (parm_rtx))
38ae7651 1002 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1003 else if (GET_CODE (parm_rtx) == PARALLEL)
1004 {
1005 /* Check for a NULL entry in the first slot, used to indicate that the
1006 parameter goes both on the stack and in registers. */
1007 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1008 for (; i < XVECLEN (parm_rtx, 0); i++)
1009 {
1010 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1011 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1012 REG_ATTRS (XEXP (x, 0))
1013 = get_reg_attrs (MEM_EXPR (mem),
1014 INTVAL (XEXP (x, 1)));
1015 }
1016 }
1017}
1018
38ae7651
RS
1019/* Set the REG_ATTRS for registers in value X, given that X represents
1020 decl T. */
a560d4d4 1021
38ae7651
RS
1022static void
1023set_reg_attrs_for_decl_rtl (tree t, rtx x)
1024{
1025 if (GET_CODE (x) == SUBREG)
fbe6ec81 1026 {
38ae7651
RS
1027 gcc_assert (subreg_lowpart_p (x));
1028 x = SUBREG_REG (x);
fbe6ec81 1029 }
f8cfc6aa 1030 if (REG_P (x))
38ae7651
RS
1031 REG_ATTRS (x)
1032 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
726612d2 1033 DECL_MODE (t)));
a560d4d4
JH
1034 if (GET_CODE (x) == CONCAT)
1035 {
1036 if (REG_P (XEXP (x, 0)))
1037 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1038 if (REG_P (XEXP (x, 1)))
1039 REG_ATTRS (XEXP (x, 1))
1040 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1041 }
1042 if (GET_CODE (x) == PARALLEL)
1043 {
d4afac5b
JZ
1044 int i, start;
1045
1046 /* Check for a NULL entry, used to indicate that the parameter goes
1047 both on the stack and in registers. */
1048 if (XEXP (XVECEXP (x, 0, 0), 0))
1049 start = 0;
1050 else
1051 start = 1;
1052
1053 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1054 {
1055 rtx y = XVECEXP (x, 0, i);
1056 if (REG_P (XEXP (y, 0)))
1057 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1058 }
1059 }
1060}
1061
38ae7651
RS
1062/* Assign the RTX X to declaration T. */
1063
1064void
1065set_decl_rtl (tree t, rtx x)
1066{
1067 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1068 if (x)
1069 set_reg_attrs_for_decl_rtl (t, x);
1070}
1071
5141868d
RS
1072/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1073 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1074
1075void
5141868d 1076set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1077{
1078 DECL_INCOMING_RTL (t) = x;
5141868d 1079 if (x && !by_reference_p)
38ae7651
RS
1080 set_reg_attrs_for_decl_rtl (t, x);
1081}
1082
754fdcca
RK
1083/* Identify REG (which may be a CONCAT) as a user register. */
1084
1085void
502b8322 1086mark_user_reg (rtx reg)
754fdcca
RK
1087{
1088 if (GET_CODE (reg) == CONCAT)
1089 {
1090 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1091 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1092 }
754fdcca 1093 else
5b0264cb
NS
1094 {
1095 gcc_assert (REG_P (reg));
1096 REG_USERVAR_P (reg) = 1;
1097 }
754fdcca
RK
1098}
1099
86fe05e0
RK
1100/* Identify REG as a probable pointer register and show its alignment
1101 as ALIGN, if nonzero. */
23b2ce53
RS
1102
1103void
502b8322 1104mark_reg_pointer (rtx reg, int align)
23b2ce53 1105{
3502dc9c 1106 if (! REG_POINTER (reg))
00995e78 1107 {
3502dc9c 1108 REG_POINTER (reg) = 1;
86fe05e0 1109
00995e78
RE
1110 if (align)
1111 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1112 }
1113 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1114 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1115 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1116}
1117
1118/* Return 1 plus largest pseudo reg number used in the current function. */
1119
1120int
502b8322 1121max_reg_num (void)
23b2ce53
RS
1122{
1123 return reg_rtx_no;
1124}
1125
1126/* Return 1 + the largest label number used so far in the current function. */
1127
1128int
502b8322 1129max_label_num (void)
23b2ce53 1130{
23b2ce53
RS
1131 return label_num;
1132}
1133
1134/* Return first label number used in this function (if any were used). */
1135
1136int
502b8322 1137get_first_label_num (void)
23b2ce53
RS
1138{
1139 return first_label_num;
1140}
6de9cd9a
DN
1141
1142/* If the rtx for label was created during the expansion of a nested
1143 function, then first_label_num won't include this label number.
1144 Fix this now so that array indicies work later. */
1145
1146void
1147maybe_set_first_label_num (rtx x)
1148{
1149 if (CODE_LABEL_NUMBER (x) < first_label_num)
1150 first_label_num = CODE_LABEL_NUMBER (x);
1151}
23b2ce53
RS
1152\f
1153/* Return a value representing some low-order bits of X, where the number
1154 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1155 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1156 representation is returned.
1157
1158 This function handles the cases in common between gen_lowpart, below,
1159 and two variants in cse.c and combine.c. These are the cases that can
1160 be safely handled at all points in the compilation.
1161
1162 If this is not a case we can handle, return 0. */
1163
1164rtx
502b8322 1165gen_lowpart_common (enum machine_mode mode, rtx x)
23b2ce53 1166{
ddef6bc7 1167 int msize = GET_MODE_SIZE (mode);
550d1387 1168 int xsize;
ddef6bc7 1169 int offset = 0;
550d1387
GK
1170 enum machine_mode innermode;
1171
1172 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1173 so we have to make one up. Yuk. */
1174 innermode = GET_MODE (x);
db487452
R
1175 if (GET_CODE (x) == CONST_INT
1176 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
550d1387
GK
1177 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1178 else if (innermode == VOIDmode)
1179 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
1180
1181 xsize = GET_MODE_SIZE (innermode);
1182
5b0264cb 1183 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1184
550d1387 1185 if (innermode == mode)
23b2ce53
RS
1186 return x;
1187
1188 /* MODE must occupy no more words than the mode of X. */
550d1387
GK
1189 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1190 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
23b2ce53
RS
1191 return 0;
1192
53501a19 1193 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
3d8bf70f 1194 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
53501a19
BS
1195 return 0;
1196
550d1387 1197 offset = subreg_lowpart_offset (mode, innermode);
23b2ce53
RS
1198
1199 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1200 && (GET_MODE_CLASS (mode) == MODE_INT
1201 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1202 {
1203 /* If we are getting the low-order part of something that has been
1204 sign- or zero-extended, we can either just use the object being
1205 extended or make a narrower extension. If we want an even smaller
1206 piece than the size of the object being extended, call ourselves
1207 recursively.
1208
1209 This case is used mostly by combine and cse. */
1210
1211 if (GET_MODE (XEXP (x, 0)) == mode)
1212 return XEXP (x, 0);
550d1387 1213 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
23b2ce53 1214 return gen_lowpart_common (mode, XEXP (x, 0));
550d1387 1215 else if (msize < xsize)
3b80f6ca 1216 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1217 }
f8cfc6aa 1218 else if (GET_CODE (x) == SUBREG || REG_P (x)
550d1387
GK
1219 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1220 || GET_CODE (x) == CONST_DOUBLE || GET_CODE (x) == CONST_INT)
1221 return simplify_gen_subreg (mode, x, innermode, offset);
8aada4ad 1222
23b2ce53
RS
1223 /* Otherwise, we can't do this. */
1224 return 0;
1225}
1226\f
ccba022b 1227rtx
502b8322 1228gen_highpart (enum machine_mode mode, rtx x)
ccba022b 1229{
ddef6bc7 1230 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1231 rtx result;
ddef6bc7 1232
ccba022b
RS
1233 /* This case loses if X is a subreg. To catch bugs early,
1234 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1235 gcc_assert (msize <= UNITS_PER_WORD
1236 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1237
e0e08ac2
JH
1238 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1239 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb
NS
1240 gcc_assert (result);
1241
09482e0d
JW
1242 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1243 the target if we have a MEM. gen_highpart must return a valid operand,
1244 emitting code if necessary to do so. */
5b0264cb
NS
1245 if (MEM_P (result))
1246 {
1247 result = validize_mem (result);
1248 gcc_assert (result);
1249 }
1250
e0e08ac2
JH
1251 return result;
1252}
5222e470 1253
26d249eb 1254/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1255 be VOIDmode constant. */
1256rtx
502b8322 1257gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
5222e470
JH
1258{
1259 if (GET_MODE (exp) != VOIDmode)
1260 {
5b0264cb 1261 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1262 return gen_highpart (outermode, exp);
1263 }
1264 return simplify_gen_subreg (outermode, exp, innermode,
1265 subreg_highpart_offset (outermode, innermode));
1266}
68252e27 1267
38ae7651 1268/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
8698cce3 1269
e0e08ac2 1270unsigned int
502b8322 1271subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
e0e08ac2
JH
1272{
1273 unsigned int offset = 0;
1274 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1275
e0e08ac2 1276 if (difference > 0)
ccba022b 1277 {
e0e08ac2
JH
1278 if (WORDS_BIG_ENDIAN)
1279 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1280 if (BYTES_BIG_ENDIAN)
1281 offset += difference % UNITS_PER_WORD;
ccba022b 1282 }
ddef6bc7 1283
e0e08ac2 1284 return offset;
ccba022b 1285}
eea50aa0 1286
e0e08ac2
JH
1287/* Return offset in bytes to get OUTERMODE high part
1288 of the value in mode INNERMODE stored in memory in target format. */
1289unsigned int
502b8322 1290subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
eea50aa0
JH
1291{
1292 unsigned int offset = 0;
1293 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1294
5b0264cb 1295 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
e0e08ac2 1296
eea50aa0
JH
1297 if (difference > 0)
1298 {
e0e08ac2 1299 if (! WORDS_BIG_ENDIAN)
eea50aa0 1300 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1301 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1302 offset += difference % UNITS_PER_WORD;
1303 }
1304
e0e08ac2 1305 return offset;
eea50aa0 1306}
ccba022b 1307
23b2ce53
RS
1308/* Return 1 iff X, assumed to be a SUBREG,
1309 refers to the least significant part of its containing reg.
1310 If X is not a SUBREG, always return 1 (it is its own low part!). */
1311
1312int
fa233e34 1313subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1314{
1315 if (GET_CODE (x) != SUBREG)
1316 return 1;
a3a03040
RK
1317 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1318 return 0;
23b2ce53 1319
e0e08ac2
JH
1320 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1321 == SUBREG_BYTE (x));
23b2ce53
RS
1322}
1323\f
ddef6bc7
JJ
1324/* Return subword OFFSET of operand OP.
1325 The word number, OFFSET, is interpreted as the word number starting
1326 at the low-order address. OFFSET 0 is the low-order word if not
1327 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1328
1329 If we cannot extract the required word, we return zero. Otherwise,
1330 an rtx corresponding to the requested word will be returned.
1331
1332 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1333 reload has completed, a valid address will always be returned. After
1334 reload, if a valid address cannot be returned, we return zero.
1335
1336 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1337 it is the responsibility of the caller.
1338
1339 MODE is the mode of OP in case it is a CONST_INT.
1340
1341 ??? This is still rather broken for some cases. The problem for the
1342 moment is that all callers of this thing provide no 'goal mode' to
1343 tell us to work with. This exists because all callers were written
0631e0bf
JH
1344 in a word based SUBREG world.
1345 Now use of this function can be deprecated by simplify_subreg in most
1346 cases.
1347 */
ddef6bc7
JJ
1348
1349rtx
502b8322 1350operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
ddef6bc7
JJ
1351{
1352 if (mode == VOIDmode)
1353 mode = GET_MODE (op);
1354
5b0264cb 1355 gcc_assert (mode != VOIDmode);
ddef6bc7 1356
30f7a378 1357 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1358 if (mode != BLKmode
1359 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1360 return 0;
1361
30f7a378 1362 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1363 if (mode != BLKmode
1364 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1365 return const0_rtx;
1366
ddef6bc7 1367 /* Form a new MEM at the requested address. */
3c0cb5de 1368 if (MEM_P (op))
ddef6bc7 1369 {
f1ec5147 1370 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1371
f1ec5147
RK
1372 if (! validate_address)
1373 return new;
1374
1375 else if (reload_completed)
ddef6bc7 1376 {
f1ec5147
RK
1377 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1378 return 0;
ddef6bc7 1379 }
f1ec5147
RK
1380 else
1381 return replace_equiv_address (new, XEXP (new, 0));
ddef6bc7
JJ
1382 }
1383
0631e0bf
JH
1384 /* Rest can be handled by simplify_subreg. */
1385 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1386}
1387
535a42b1
NS
1388/* Similar to `operand_subword', but never return 0. If we can't
1389 extract the required subword, put OP into a register and try again.
1390 The second attempt must succeed. We always validate the address in
1391 this case.
23b2ce53
RS
1392
1393 MODE is the mode of OP, in case it is CONST_INT. */
1394
1395rtx
502b8322 1396operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
23b2ce53 1397{
ddef6bc7 1398 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1399
1400 if (result)
1401 return result;
1402
1403 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1404 {
1405 /* If this is a register which can not be accessed by words, copy it
1406 to a pseudo register. */
f8cfc6aa 1407 if (REG_P (op))
77e6b0eb
JC
1408 op = copy_to_reg (op);
1409 else
1410 op = force_reg (mode, op);
1411 }
23b2ce53 1412
ddef6bc7 1413 result = operand_subword (op, offset, 1, mode);
5b0264cb 1414 gcc_assert (result);
23b2ce53
RS
1415
1416 return result;
1417}
1418\f
998d7deb
RH
1419/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1420 or (2) a component ref of something variable. Represent the later with
1421 a NULL expression. */
1422
1423static tree
502b8322 1424component_ref_for_mem_expr (tree ref)
998d7deb
RH
1425{
1426 tree inner = TREE_OPERAND (ref, 0);
1427
1428 if (TREE_CODE (inner) == COMPONENT_REF)
1429 inner = component_ref_for_mem_expr (inner);
c56e3582
RK
1430 else
1431 {
c56e3582 1432 /* Now remove any conversions: they don't change what the underlying
6fce44af 1433 object is. Likewise for SAVE_EXPR. */
c56e3582 1434 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
c56e3582 1435 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
6fce44af
RK
1436 || TREE_CODE (inner) == SAVE_EXPR)
1437 inner = TREE_OPERAND (inner, 0);
c56e3582
RK
1438
1439 if (! DECL_P (inner))
1440 inner = NULL_TREE;
1441 }
998d7deb
RH
1442
1443 if (inner == TREE_OPERAND (ref, 0))
1444 return ref;
1445 else
3244e67d
RS
1446 return build3 (COMPONENT_REF, TREE_TYPE (ref), inner,
1447 TREE_OPERAND (ref, 1), NULL_TREE);
998d7deb 1448}
173b24b9 1449
2b3493c8
AK
1450/* Returns 1 if both MEM_EXPR can be considered equal
1451 and 0 otherwise. */
1452
1453int
4f588890 1454mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1455{
1456 if (expr1 == expr2)
1457 return 1;
1458
1459 if (! expr1 || ! expr2)
1460 return 0;
1461
1462 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1463 return 0;
1464
1465 if (TREE_CODE (expr1) == COMPONENT_REF)
1466 return
1467 mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1468 TREE_OPERAND (expr2, 0))
1469 && mem_expr_equal_p (TREE_OPERAND (expr1, 1), /* field decl */
1470 TREE_OPERAND (expr2, 1));
1471
1b096a0a 1472 if (INDIRECT_REF_P (expr1))
2b3493c8
AK
1473 return mem_expr_equal_p (TREE_OPERAND (expr1, 0),
1474 TREE_OPERAND (expr2, 0));
2b3493c8 1475
5b0264cb 1476 /* ARRAY_REFs, ARRAY_RANGE_REFs and BIT_FIELD_REFs should already
2b3493c8 1477 have been resolved here. */
5b0264cb
NS
1478 gcc_assert (DECL_P (expr1));
1479
1480 /* Decls with different pointers can't be equal. */
1481 return 0;
2b3493c8
AK
1482}
1483
173b24b9
RK
1484/* Given REF, a MEM, and T, either the type of X or the expression
1485 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1486 if we are making a new object of this type. BITPOS is nonzero if
1487 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1488
1489void
502b8322
AJ
1490set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1491 HOST_WIDE_INT bitpos)
173b24b9 1492{
4862826d 1493 alias_set_type alias = MEM_ALIAS_SET (ref);
998d7deb 1494 tree expr = MEM_EXPR (ref);
8ac61af7
RK
1495 rtx offset = MEM_OFFSET (ref);
1496 rtx size = MEM_SIZE (ref);
1497 unsigned int align = MEM_ALIGN (ref);
6f1087be 1498 HOST_WIDE_INT apply_bitpos = 0;
173b24b9
RK
1499 tree type;
1500
1501 /* It can happen that type_for_mode was given a mode for which there
1502 is no language-level type. In which case it returns NULL, which
1503 we can see here. */
1504 if (t == NULL_TREE)
1505 return;
1506
1507 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1508 if (type == error_mark_node)
1509 return;
173b24b9 1510
173b24b9
RK
1511 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1512 wrong answer, as it assumes that DECL_RTL already has the right alias
1513 info. Callers should not set DECL_RTL until after the call to
1514 set_mem_attributes. */
5b0264cb 1515 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1516
738cc472 1517 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1518 front-end routine) and use it. */
1519 alias = get_alias_set (t);
173b24b9 1520
a5e9c810 1521 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
07cb6e8c
JM
1522 MEM_IN_STRUCT_P (ref)
1523 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
f8ad8d7c 1524 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1525
8ac61af7
RK
1526 /* If we are making an object of this type, or if this is a DECL, we know
1527 that it is a scalar if the type is not an aggregate. */
07cb6e8c
JM
1528 if ((objectp || DECL_P (t))
1529 && ! AGGREGATE_TYPE_P (type)
1530 && TREE_CODE (type) != COMPLEX_TYPE)
173b24b9
RK
1531 MEM_SCALAR_P (ref) = 1;
1532
c3d32120
RK
1533 /* We can set the alignment from the type if we are making an object,
1534 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
7ccf35ed
DN
1535 if (objectp || TREE_CODE (t) == INDIRECT_REF
1536 || TREE_CODE (t) == ALIGN_INDIRECT_REF
1537 || TYPE_ALIGN_OK (type))
c3d32120 1538 align = MAX (align, TYPE_ALIGN (type));
7ccf35ed
DN
1539 else
1540 if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1541 {
1542 if (integer_zerop (TREE_OPERAND (t, 1)))
1543 /* We don't know anything about the alignment. */
1544 align = BITS_PER_UNIT;
1545 else
1546 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1547 }
40c0668b 1548
738cc472
RK
1549 /* If the size is known, we can set that. */
1550 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1551 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1552
80965c18
RK
1553 /* If T is not a type, we may be able to deduce some more information about
1554 the expression. */
1555 if (! TYPE_P (t))
8ac61af7 1556 {
8476af98 1557 tree base;
389fdba0 1558
8ac61af7
RK
1559 if (TREE_THIS_VOLATILE (t))
1560 MEM_VOLATILE_P (ref) = 1;
173b24b9 1561
c56e3582
RK
1562 /* Now remove any conversions: they don't change what the underlying
1563 object is. Likewise for SAVE_EXPR. */
8ac61af7 1564 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
c56e3582
RK
1565 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1566 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1567 t = TREE_OPERAND (t, 0);
1568
8476af98
RH
1569 /* We may look through structure-like accesses for the purposes of
1570 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1571 base = t;
1572 while (TREE_CODE (base) == COMPONENT_REF
1573 || TREE_CODE (base) == REALPART_EXPR
1574 || TREE_CODE (base) == IMAGPART_EXPR
1575 || TREE_CODE (base) == BIT_FIELD_REF)
1576 base = TREE_OPERAND (base, 0);
1577
1578 if (DECL_P (base))
1579 {
1580 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1581 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1582 else
1583 MEM_NOTRAP_P (ref) = 1;
1584 }
1585 else
1586 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1587
1588 base = get_base_address (base);
1589 if (base && DECL_P (base)
1590 && TREE_READONLY (base)
1591 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
1592 {
1593 tree base_type = TREE_TYPE (base);
1594 gcc_assert (!(base_type && TYPE_NEEDS_CONSTRUCTING (base_type))
1595 || DECL_ARTIFICIAL (base));
1596 MEM_READONLY_P (ref) = 1;
1597 }
1598
2039d7aa
RH
1599 /* If this expression uses it's parent's alias set, mark it such
1600 that we won't change it. */
1601 if (component_uses_parent_alias_set (t))
10b76d73
RK
1602 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1603
8ac61af7
RK
1604 /* If this is a decl, set the attributes of the MEM from it. */
1605 if (DECL_P (t))
1606 {
998d7deb
RH
1607 expr = t;
1608 offset = const0_rtx;
6f1087be 1609 apply_bitpos = bitpos;
8ac61af7
RK
1610 size = (DECL_SIZE_UNIT (t)
1611 && host_integerp (DECL_SIZE_UNIT (t), 1)
1612 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
68252e27 1613 align = DECL_ALIGN (t);
8ac61af7
RK
1614 }
1615
40c0668b 1616 /* If this is a constant, we know the alignment. */
6615c446 1617 else if (CONSTANT_CLASS_P (t))
9ddfb1a7
RK
1618 {
1619 align = TYPE_ALIGN (type);
1620#ifdef CONSTANT_ALIGNMENT
1621 align = CONSTANT_ALIGNMENT (t, align);
1622#endif
1623 }
998d7deb
RH
1624
1625 /* If this is a field reference and not a bit-field, record it. */
1626 /* ??? There is some information that can be gleened from bit-fields,
1627 such as the word offset in the structure that might be modified.
1628 But skip it for now. */
1629 else if (TREE_CODE (t) == COMPONENT_REF
1630 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1631 {
1632 expr = component_ref_for_mem_expr (t);
1633 offset = const0_rtx;
6f1087be 1634 apply_bitpos = bitpos;
998d7deb
RH
1635 /* ??? Any reason the field size would be different than
1636 the size we got from the type? */
1637 }
1638
1639 /* If this is an array reference, look for an outer field reference. */
1640 else if (TREE_CODE (t) == ARRAY_REF)
1641 {
1642 tree off_tree = size_zero_node;
1b1838b6
JW
1643 /* We can't modify t, because we use it at the end of the
1644 function. */
1645 tree t2 = t;
998d7deb
RH
1646
1647 do
1648 {
1b1838b6 1649 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1650 tree low_bound = array_ref_low_bound (t2);
1651 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1652
1653 /* We assume all arrays have sizes that are a multiple of a byte.
1654 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1655 index, then convert to sizetype and multiply by the size of
1656 the array element. */
1657 if (! integer_zerop (low_bound))
4845b383
KH
1658 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1659 index, low_bound);
2567406a 1660
44de5aeb 1661 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1662 size_binop (MULT_EXPR,
1663 fold_convert (sizetype,
1664 index),
44de5aeb
RK
1665 unit_size),
1666 off_tree);
1b1838b6 1667 t2 = TREE_OPERAND (t2, 0);
998d7deb 1668 }
1b1838b6 1669 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1670
1b1838b6 1671 if (DECL_P (t2))
c67a1cf6 1672 {
1b1838b6 1673 expr = t2;
40cb04f1 1674 offset = NULL;
c67a1cf6 1675 if (host_integerp (off_tree, 1))
40cb04f1
RH
1676 {
1677 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1678 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1b1838b6 1679 align = DECL_ALIGN (t2);
fc555370 1680 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
40cb04f1
RH
1681 align = aoff;
1682 offset = GEN_INT (ioff);
6f1087be 1683 apply_bitpos = bitpos;
40cb04f1 1684 }
c67a1cf6 1685 }
1b1838b6 1686 else if (TREE_CODE (t2) == COMPONENT_REF)
998d7deb 1687 {
1b1838b6 1688 expr = component_ref_for_mem_expr (t2);
998d7deb 1689 if (host_integerp (off_tree, 1))
6f1087be
RH
1690 {
1691 offset = GEN_INT (tree_low_cst (off_tree, 1));
1692 apply_bitpos = bitpos;
1693 }
998d7deb
RH
1694 /* ??? Any reason the field size would be different than
1695 the size we got from the type? */
1696 }
c67a1cf6 1697 else if (flag_argument_noalias > 1
1b096a0a 1698 && (INDIRECT_REF_P (t2))
1b1838b6 1699 && TREE_CODE (TREE_OPERAND (t2, 0)) == PARM_DECL)
c67a1cf6 1700 {
1b1838b6 1701 expr = t2;
c67a1cf6
RH
1702 offset = NULL;
1703 }
1704 }
1705
1706 /* If this is a Fortran indirect argument reference, record the
1707 parameter decl. */
1708 else if (flag_argument_noalias > 1
1b096a0a 1709 && (INDIRECT_REF_P (t))
c67a1cf6
RH
1710 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1711 {
1712 expr = t;
1713 offset = NULL;
998d7deb 1714 }
8ac61af7
RK
1715 }
1716
15c812e3 1717 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1718 bit position offset. Similarly, increase the size of the accessed
1719 object to contain the negative offset. */
6f1087be 1720 if (apply_bitpos)
8c317c5f
RH
1721 {
1722 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1723 if (size)
1724 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1725 }
6f1087be 1726
7ccf35ed
DN
1727 if (TREE_CODE (t) == ALIGN_INDIRECT_REF)
1728 {
1729 /* Force EXPR and OFFSE to NULL, since we don't know exactly what
1730 we're overlapping. */
1731 offset = NULL;
1732 expr = NULL;
1733 }
1734
8ac61af7 1735 /* Now set the attributes we computed above. */
10b76d73 1736 MEM_ATTRS (ref)
998d7deb 1737 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
8ac61af7
RK
1738
1739 /* If this is already known to be a scalar or aggregate, we are done. */
1740 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
1741 return;
1742
8ac61af7
RK
1743 /* If it is a reference into an aggregate, this is part of an aggregate.
1744 Otherwise we don't know. */
173b24b9
RK
1745 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1746 || TREE_CODE (t) == ARRAY_RANGE_REF
1747 || TREE_CODE (t) == BIT_FIELD_REF)
1748 MEM_IN_STRUCT_P (ref) = 1;
1749}
1750
6f1087be 1751void
502b8322 1752set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
1753{
1754 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1755}
1756
895a8136 1757/* Set MEM to the decl that REG refers to. */
a560d4d4
JH
1758
1759void
502b8322 1760set_mem_attrs_from_reg (rtx mem, rtx reg)
a560d4d4
JH
1761{
1762 MEM_ATTRS (mem)
1763 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
1764 GEN_INT (REG_OFFSET (reg)),
1765 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1766}
1767
173b24b9
RK
1768/* Set the alias set of MEM to SET. */
1769
1770void
4862826d 1771set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 1772{
68252e27 1773#ifdef ENABLE_CHECKING
173b24b9 1774 /* If the new and old alias sets don't conflict, something is wrong. */
5b0264cb 1775 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
173b24b9
RK
1776#endif
1777
998d7deb 1778 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
10b76d73
RK
1779 MEM_SIZE (mem), MEM_ALIGN (mem),
1780 GET_MODE (mem));
173b24b9 1781}
738cc472 1782
d022d93e 1783/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1784
1785void
502b8322 1786set_mem_align (rtx mem, unsigned int align)
738cc472 1787{
998d7deb 1788 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
10b76d73
RK
1789 MEM_OFFSET (mem), MEM_SIZE (mem), align,
1790 GET_MODE (mem));
738cc472 1791}
1285011e 1792
998d7deb 1793/* Set the expr for MEM to EXPR. */
1285011e
RK
1794
1795void
502b8322 1796set_mem_expr (rtx mem, tree expr)
1285011e
RK
1797{
1798 MEM_ATTRS (mem)
998d7deb 1799 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1285011e
RK
1800 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
1801}
998d7deb
RH
1802
1803/* Set the offset of MEM to OFFSET. */
1804
1805void
502b8322 1806set_mem_offset (rtx mem, rtx offset)
998d7deb
RH
1807{
1808 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1809 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
1810 GET_MODE (mem));
35aff10b
AM
1811}
1812
1813/* Set the size of MEM to SIZE. */
1814
1815void
502b8322 1816set_mem_size (rtx mem, rtx size)
35aff10b
AM
1817{
1818 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1819 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
1820 GET_MODE (mem));
998d7deb 1821}
173b24b9 1822\f
738cc472
RK
1823/* Return a memory reference like MEMREF, but with its mode changed to MODE
1824 and its address changed to ADDR. (VOIDmode means don't change the mode.
1825 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1826 returned memory location is required to be valid. The memory
1827 attributes are not changed. */
23b2ce53 1828
738cc472 1829static rtx
502b8322 1830change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
23b2ce53
RS
1831{
1832 rtx new;
1833
5b0264cb 1834 gcc_assert (MEM_P (memref));
23b2ce53
RS
1835 if (mode == VOIDmode)
1836 mode = GET_MODE (memref);
1837 if (addr == 0)
1838 addr = XEXP (memref, 0);
a74ff877
JH
1839 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
1840 && (!validate || memory_address_p (mode, addr)))
1841 return memref;
23b2ce53 1842
f1ec5147 1843 if (validate)
23b2ce53 1844 {
f1ec5147 1845 if (reload_in_progress || reload_completed)
5b0264cb 1846 gcc_assert (memory_address_p (mode, addr));
f1ec5147
RK
1847 else
1848 addr = memory_address (mode, addr);
23b2ce53 1849 }
750c9258 1850
9b04c6a8
RK
1851 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1852 return memref;
1853
3b80f6ca 1854 new = gen_rtx_MEM (mode, addr);
c6df88cb 1855 MEM_COPY_ATTRIBUTES (new, memref);
23b2ce53
RS
1856 return new;
1857}
792760b9 1858
738cc472
RK
1859/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1860 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
1861
1862rtx
502b8322 1863change_address (rtx memref, enum machine_mode mode, rtx addr)
f4ef873c 1864{
4e44c1ef 1865 rtx new = change_address_1 (memref, mode, addr, 1), size;
738cc472 1866 enum machine_mode mmode = GET_MODE (new);
4e44c1ef
JJ
1867 unsigned int align;
1868
1869 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1870 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
c2f7bcc3 1871
fdb1c7b3
JH
1872 /* If there are no changes, just return the original memory reference. */
1873 if (new == memref)
4e44c1ef
JJ
1874 {
1875 if (MEM_ATTRS (memref) == 0
1876 || (MEM_EXPR (memref) == NULL
1877 && MEM_OFFSET (memref) == NULL
1878 && MEM_SIZE (memref) == size
1879 && MEM_ALIGN (memref) == align))
1880 return new;
1881
64fc7c00 1882 new = gen_rtx_MEM (mmode, XEXP (memref, 0));
4e44c1ef
JJ
1883 MEM_COPY_ATTRIBUTES (new, memref);
1884 }
fdb1c7b3 1885
738cc472 1886 MEM_ATTRS (new)
4e44c1ef 1887 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align, mmode);
823e3574 1888
738cc472 1889 return new;
f4ef873c 1890}
792760b9 1891
738cc472
RK
1892/* Return a memory reference like MEMREF, but with its mode changed
1893 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
1894 nonzero, the memory address is forced to be valid.
1895 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1896 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
1897
1898rtx
502b8322
AJ
1899adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1900 int validate, int adjust)
f1ec5147 1901{
823e3574 1902 rtx addr = XEXP (memref, 0);
738cc472
RK
1903 rtx new;
1904 rtx memoffset = MEM_OFFSET (memref);
10b76d73 1905 rtx size = 0;
738cc472 1906 unsigned int memalign = MEM_ALIGN (memref);
823e3574 1907
fdb1c7b3
JH
1908 /* If there are no changes, just return the original memory reference. */
1909 if (mode == GET_MODE (memref) && !offset
1910 && (!validate || memory_address_p (mode, addr)))
1911 return memref;
1912
d14419e4 1913 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 1914 This may happen even if offset is nonzero -- consider
d14419e4
RH
1915 (plus (plus reg reg) const_int) -- so do this always. */
1916 addr = copy_rtx (addr);
1917
4a78c787
RH
1918 if (adjust)
1919 {
1920 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
1921 object, we can merge it into the LO_SUM. */
1922 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
1923 && offset >= 0
1924 && (unsigned HOST_WIDE_INT) offset
1925 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
1926 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
1927 plus_constant (XEXP (addr, 1), offset));
1928 else
1929 addr = plus_constant (addr, offset);
1930 }
823e3574 1931
738cc472
RK
1932 new = change_address_1 (memref, mode, addr, validate);
1933
1934 /* Compute the new values of the memory attributes due to this adjustment.
1935 We add the offsets and update the alignment. */
1936 if (memoffset)
1937 memoffset = GEN_INT (offset + INTVAL (memoffset));
1938
03bf2c23
RK
1939 /* Compute the new alignment by taking the MIN of the alignment and the
1940 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
1941 if zero. */
1942 if (offset != 0)
3bf1e984
RK
1943 memalign
1944 = MIN (memalign,
1945 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
738cc472 1946
10b76d73 1947 /* We can compute the size in a number of ways. */
a06ef755
RK
1948 if (GET_MODE (new) != BLKmode)
1949 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
10b76d73
RK
1950 else if (MEM_SIZE (memref))
1951 size = plus_constant (MEM_SIZE (memref), -offset);
1952
998d7deb 1953 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
10b76d73 1954 memoffset, size, memalign, GET_MODE (new));
738cc472
RK
1955
1956 /* At some point, we should validate that this offset is within the object,
1957 if all the appropriate values are known. */
1958 return new;
f1ec5147
RK
1959}
1960
630036c6
JJ
1961/* Return a memory reference like MEMREF, but with its mode changed
1962 to MODE and its address changed to ADDR, which is assumed to be
1963 MEMREF offseted by OFFSET bytes. If VALIDATE is
1964 nonzero, the memory address is forced to be valid. */
1965
1966rtx
502b8322
AJ
1967adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
1968 HOST_WIDE_INT offset, int validate)
630036c6
JJ
1969{
1970 memref = change_address_1 (memref, VOIDmode, addr, validate);
1971 return adjust_address_1 (memref, mode, offset, validate, 0);
1972}
1973
8ac61af7
RK
1974/* Return a memory reference like MEMREF, but whose address is changed by
1975 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
1976 known to be in OFFSET (possibly 1). */
0d4903b8
RK
1977
1978rtx
502b8322 1979offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 1980{
e3c8ea67
RH
1981 rtx new, addr = XEXP (memref, 0);
1982
1983 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1984
68252e27 1985 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 1986 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
1987
1988 However, if we did go and rearrange things, we can wind up not
1989 being able to recognize the magic around pic_offset_table_rtx.
1990 This stuff is fragile, and is yet another example of why it is
1991 bad to expose PIC machinery too early. */
1992 if (! memory_address_p (GET_MODE (memref), new)
1993 && GET_CODE (addr) == PLUS
1994 && XEXP (addr, 0) == pic_offset_table_rtx)
1995 {
1996 addr = force_reg (GET_MODE (addr), addr);
1997 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
1998 }
1999
f6041ed8 2000 update_temp_slot_address (XEXP (memref, 0), new);
e3c8ea67 2001 new = change_address_1 (memref, VOIDmode, new, 1);
0d4903b8 2002
fdb1c7b3
JH
2003 /* If there are no changes, just return the original memory reference. */
2004 if (new == memref)
2005 return new;
2006
0d4903b8
RK
2007 /* Update the alignment to reflect the offset. Reset the offset, which
2008 we don't know. */
2cc2d4bb
RK
2009 MEM_ATTRS (new)
2010 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
9ceca302 2011 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2cc2d4bb 2012 GET_MODE (new));
0d4903b8
RK
2013 return new;
2014}
68252e27 2015
792760b9
RK
2016/* Return a memory reference like MEMREF, but with its address changed to
2017 ADDR. The caller is asserting that the actual piece of memory pointed
2018 to is the same, just the form of the address is being changed, such as
2019 by putting something into a register. */
2020
2021rtx
502b8322 2022replace_equiv_address (rtx memref, rtx addr)
792760b9 2023{
738cc472
RK
2024 /* change_address_1 copies the memory attribute structure without change
2025 and that's exactly what we want here. */
40c0668b 2026 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2027 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2028}
738cc472 2029
f1ec5147
RK
2030/* Likewise, but the reference is not required to be valid. */
2031
2032rtx
502b8322 2033replace_equiv_address_nv (rtx memref, rtx addr)
f1ec5147 2034{
f1ec5147
RK
2035 return change_address_1 (memref, VOIDmode, addr, 0);
2036}
e7dfe4bb
RH
2037
2038/* Return a memory reference like MEMREF, but with its mode widened to
2039 MODE and offset by OFFSET. This would be used by targets that e.g.
2040 cannot issue QImode memory operations and have to use SImode memory
2041 operations plus masking logic. */
2042
2043rtx
502b8322 2044widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb
RH
2045{
2046 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2047 tree expr = MEM_EXPR (new);
2048 rtx memoffset = MEM_OFFSET (new);
2049 unsigned int size = GET_MODE_SIZE (mode);
2050
fdb1c7b3
JH
2051 /* If there are no changes, just return the original memory reference. */
2052 if (new == memref)
2053 return new;
2054
e7dfe4bb
RH
2055 /* If we don't know what offset we were at within the expression, then
2056 we can't know if we've overstepped the bounds. */
fa1591cb 2057 if (! memoffset)
e7dfe4bb
RH
2058 expr = NULL_TREE;
2059
2060 while (expr)
2061 {
2062 if (TREE_CODE (expr) == COMPONENT_REF)
2063 {
2064 tree field = TREE_OPERAND (expr, 1);
44de5aeb 2065 tree offset = component_ref_field_offset (expr);
e7dfe4bb
RH
2066
2067 if (! DECL_SIZE_UNIT (field))
2068 {
2069 expr = NULL_TREE;
2070 break;
2071 }
2072
2073 /* Is the field at least as large as the access? If so, ok,
2074 otherwise strip back to the containing structure. */
03667700
RK
2075 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2076 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
e7dfe4bb
RH
2077 && INTVAL (memoffset) >= 0)
2078 break;
2079
44de5aeb 2080 if (! host_integerp (offset, 1))
e7dfe4bb
RH
2081 {
2082 expr = NULL_TREE;
2083 break;
2084 }
2085
2086 expr = TREE_OPERAND (expr, 0);
44de5aeb
RK
2087 memoffset
2088 = (GEN_INT (INTVAL (memoffset)
2089 + tree_low_cst (offset, 1)
2090 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2091 / BITS_PER_UNIT)));
e7dfe4bb
RH
2092 }
2093 /* Similarly for the decl. */
2094 else if (DECL_P (expr)
2095 && DECL_SIZE_UNIT (expr)
45f79783 2096 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
e7dfe4bb
RH
2097 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2098 && (! memoffset || INTVAL (memoffset) >= 0))
2099 break;
2100 else
2101 {
2102 /* The widened memory access overflows the expression, which means
2103 that it could alias another expression. Zap it. */
2104 expr = NULL_TREE;
2105 break;
2106 }
2107 }
2108
2109 if (! expr)
2110 memoffset = NULL_RTX;
2111
2112 /* The widened memory may alias other stuff, so zap the alias set. */
2113 /* ??? Maybe use get_alias_set on any remaining expression. */
2114
2115 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2116 MEM_ALIGN (new), mode);
2117
2118 return new;
2119}
23b2ce53
RS
2120\f
2121/* Return a newly created CODE_LABEL rtx with a unique label number. */
2122
2123rtx
502b8322 2124gen_label_rtx (void)
23b2ce53 2125{
0dc36574 2126 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
502b8322 2127 NULL, label_num++, NULL);
23b2ce53
RS
2128}
2129\f
2130/* For procedure integration. */
2131
23b2ce53 2132/* Install new pointers to the first and last insns in the chain.
86fe05e0 2133 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2134 Used for an inline-procedure after copying the insn chain. */
2135
2136void
502b8322 2137set_new_first_and_last_insn (rtx first, rtx last)
23b2ce53 2138{
86fe05e0
RK
2139 rtx insn;
2140
23b2ce53
RS
2141 first_insn = first;
2142 last_insn = last;
86fe05e0
RK
2143 cur_insn_uid = 0;
2144
2145 for (insn = first; insn; insn = NEXT_INSN (insn))
2146 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2147
2148 cur_insn_uid++;
23b2ce53 2149}
23b2ce53 2150\f
750c9258 2151/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2152 structure. This routine should only be called once. */
23b2ce53 2153
fd743bc1 2154static void
b4aaa77b 2155unshare_all_rtl_1 (rtx insn)
23b2ce53 2156{
d1b81779 2157 /* Unshare just about everything else. */
2c07f13b 2158 unshare_all_rtl_in_chain (insn);
750c9258 2159
23b2ce53
RS
2160 /* Make sure the addresses of stack slots found outside the insn chain
2161 (such as, in DECL_RTL of a variable) are not shared
2162 with the insn chain.
2163
2164 This special care is necessary when the stack slot MEM does not
2165 actually appear in the insn chain. If it does appear, its address
2166 is unshared from all else at that point. */
242b0ce6 2167 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2168}
2169
750c9258 2170/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2171 structure, again. This is a fairly expensive thing to do so it
2172 should be done sparingly. */
2173
2174void
502b8322 2175unshare_all_rtl_again (rtx insn)
d1b81779
GK
2176{
2177 rtx p;
624c87aa
RE
2178 tree decl;
2179
d1b81779 2180 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2181 if (INSN_P (p))
d1b81779
GK
2182 {
2183 reset_used_flags (PATTERN (p));
2184 reset_used_flags (REG_NOTES (p));
d1b81779 2185 }
624c87aa 2186
2d4aecb3 2187 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2188 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2189
624c87aa
RE
2190 /* Make sure that virtual parameters are not shared. */
2191 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
5eb2a9f2 2192 set_used_flags (DECL_RTL (decl));
624c87aa
RE
2193
2194 reset_used_flags (stack_slot_list);
2195
b4aaa77b 2196 unshare_all_rtl_1 (insn);
fd743bc1
PB
2197}
2198
c2924966 2199unsigned int
fd743bc1
PB
2200unshare_all_rtl (void)
2201{
b4aaa77b 2202 unshare_all_rtl_1 (get_insns ());
c2924966 2203 return 0;
d1b81779
GK
2204}
2205
8ddbbcae 2206struct rtl_opt_pass pass_unshare_all_rtl =
ef330312 2207{
8ddbbcae
JH
2208 {
2209 RTL_PASS,
defb77dc 2210 "unshare", /* name */
ef330312
PB
2211 NULL, /* gate */
2212 unshare_all_rtl, /* execute */
2213 NULL, /* sub */
2214 NULL, /* next */
2215 0, /* static_pass_number */
2216 0, /* tv_id */
2217 0, /* properties_required */
2218 0, /* properties_provided */
2219 0, /* properties_destroyed */
2220 0, /* todo_flags_start */
8ddbbcae
JH
2221 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2222 }
ef330312
PB
2223};
2224
2225
2c07f13b
JH
2226/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2227 Recursively does the same for subexpressions. */
2228
2229static void
2230verify_rtx_sharing (rtx orig, rtx insn)
2231{
2232 rtx x = orig;
2233 int i;
2234 enum rtx_code code;
2235 const char *format_ptr;
2236
2237 if (x == 0)
2238 return;
2239
2240 code = GET_CODE (x);
2241
2242 /* These types may be freely shared. */
2243
2244 switch (code)
2245 {
2246 case REG:
2c07f13b
JH
2247 case CONST_INT:
2248 case CONST_DOUBLE:
091a3ac7 2249 case CONST_FIXED:
2c07f13b
JH
2250 case CONST_VECTOR:
2251 case SYMBOL_REF:
2252 case LABEL_REF:
2253 case CODE_LABEL:
2254 case PC:
2255 case CC0:
2256 case SCRATCH:
2c07f13b 2257 return;
3e89ed8d
JH
2258 /* SCRATCH must be shared because they represent distinct values. */
2259 case CLOBBER:
2260 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2261 return;
2262 break;
2c07f13b
JH
2263
2264 case CONST:
6fb5fa3c 2265 if (shared_const_p (orig))
2c07f13b
JH
2266 return;
2267 break;
2268
2269 case MEM:
2270 /* A MEM is allowed to be shared if its address is constant. */
2271 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2272 || reload_completed || reload_in_progress)
2273 return;
2274
2275 break;
2276
2277 default:
2278 break;
2279 }
2280
2281 /* This rtx may not be shared. If it has already been seen,
2282 replace it with a copy of itself. */
1a2caa7a 2283#ifdef ENABLE_CHECKING
2c07f13b
JH
2284 if (RTX_FLAG (x, used))
2285 {
ab532386 2286 error ("invalid rtl sharing found in the insn");
2c07f13b 2287 debug_rtx (insn);
ab532386 2288 error ("shared rtx");
2c07f13b 2289 debug_rtx (x);
ab532386 2290 internal_error ("internal consistency failure");
2c07f13b 2291 }
1a2caa7a
NS
2292#endif
2293 gcc_assert (!RTX_FLAG (x, used));
2294
2c07f13b
JH
2295 RTX_FLAG (x, used) = 1;
2296
6614fd40 2297 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2298
2299 format_ptr = GET_RTX_FORMAT (code);
2300
2301 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2302 {
2303 switch (*format_ptr++)
2304 {
2305 case 'e':
2306 verify_rtx_sharing (XEXP (x, i), insn);
2307 break;
2308
2309 case 'E':
2310 if (XVEC (x, i) != NULL)
2311 {
2312 int j;
2313 int len = XVECLEN (x, i);
2314
2315 for (j = 0; j < len; j++)
2316 {
1a2caa7a
NS
2317 /* We allow sharing of ASM_OPERANDS inside single
2318 instruction. */
2c07f13b 2319 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2320 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2321 == ASM_OPERANDS))
2c07f13b
JH
2322 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2323 else
2324 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2325 }
2326 }
2327 break;
2328 }
2329 }
2330 return;
2331}
2332
ba228239 2333/* Go through all the RTL insn bodies and check that there is no unexpected
2c07f13b
JH
2334 sharing in between the subexpressions. */
2335
2336void
2337verify_rtl_sharing (void)
2338{
2339 rtx p;
2340
2341 for (p = get_insns (); p; p = NEXT_INSN (p))
2342 if (INSN_P (p))
2343 {
2344 reset_used_flags (PATTERN (p));
2345 reset_used_flags (REG_NOTES (p));
2954a813
KK
2346 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2347 {
2348 int i;
2349 rtx q, sequence = PATTERN (p);
2350
2351 for (i = 0; i < XVECLEN (sequence, 0); i++)
2352 {
2353 q = XVECEXP (sequence, 0, i);
2354 gcc_assert (INSN_P (q));
2355 reset_used_flags (PATTERN (q));
2356 reset_used_flags (REG_NOTES (q));
2954a813
KK
2357 }
2358 }
2c07f13b
JH
2359 }
2360
2361 for (p = get_insns (); p; p = NEXT_INSN (p))
2362 if (INSN_P (p))
2363 {
2364 verify_rtx_sharing (PATTERN (p), p);
2365 verify_rtx_sharing (REG_NOTES (p), p);
2c07f13b
JH
2366 }
2367}
2368
d1b81779
GK
2369/* Go through all the RTL insn bodies and copy any invalid shared structure.
2370 Assumes the mark bits are cleared at entry. */
2371
2c07f13b
JH
2372void
2373unshare_all_rtl_in_chain (rtx insn)
d1b81779
GK
2374{
2375 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2376 if (INSN_P (insn))
d1b81779
GK
2377 {
2378 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2379 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
d1b81779
GK
2380 }
2381}
2382
2d4aecb3 2383/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2384 shared. We never replace the DECL_RTLs themselves with a copy,
2385 but expressions mentioned into a DECL_RTL cannot be shared with
2386 expressions in the instruction stream.
2387
2388 Note that reload may convert pseudo registers into memories in-place.
2389 Pseudo registers are always shared, but MEMs never are. Thus if we
2390 reset the used flags on MEMs in the instruction stream, we must set
2391 them again on MEMs that appear in DECL_RTLs. */
2392
2d4aecb3 2393static void
5eb2a9f2 2394set_used_decls (tree blk)
2d4aecb3
AO
2395{
2396 tree t;
2397
2398 /* Mark decls. */
2399 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c 2400 if (DECL_RTL_SET_P (t))
5eb2a9f2 2401 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2402
2403 /* Now process sub-blocks. */
87caf699 2404 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 2405 set_used_decls (t);
2d4aecb3
AO
2406}
2407
23b2ce53 2408/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2409 Recursively does the same for subexpressions. Uses
2410 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2411
2412rtx
502b8322 2413copy_rtx_if_shared (rtx orig)
23b2ce53 2414{
32b32b16
AP
2415 copy_rtx_if_shared_1 (&orig);
2416 return orig;
2417}
2418
ff954f39
AP
2419/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2420 use. Recursively does the same for subexpressions. */
2421
32b32b16
AP
2422static void
2423copy_rtx_if_shared_1 (rtx *orig1)
2424{
2425 rtx x;
b3694847
SS
2426 int i;
2427 enum rtx_code code;
32b32b16 2428 rtx *last_ptr;
b3694847 2429 const char *format_ptr;
23b2ce53 2430 int copied = 0;
32b32b16
AP
2431 int length;
2432
2433 /* Repeat is used to turn tail-recursion into iteration. */
2434repeat:
2435 x = *orig1;
23b2ce53
RS
2436
2437 if (x == 0)
32b32b16 2438 return;
23b2ce53
RS
2439
2440 code = GET_CODE (x);
2441
2442 /* These types may be freely shared. */
2443
2444 switch (code)
2445 {
2446 case REG:
23b2ce53
RS
2447 case CONST_INT:
2448 case CONST_DOUBLE:
091a3ac7 2449 case CONST_FIXED:
69ef87e2 2450 case CONST_VECTOR:
23b2ce53 2451 case SYMBOL_REF:
2c07f13b 2452 case LABEL_REF:
23b2ce53
RS
2453 case CODE_LABEL:
2454 case PC:
2455 case CC0:
2456 case SCRATCH:
0f41302f 2457 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 2458 return;
3e89ed8d
JH
2459 case CLOBBER:
2460 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2461 return;
2462 break;
23b2ce53 2463
b851ea09 2464 case CONST:
6fb5fa3c 2465 if (shared_const_p (x))
32b32b16 2466 return;
b851ea09
RK
2467 break;
2468
23b2ce53
RS
2469 case INSN:
2470 case JUMP_INSN:
2471 case CALL_INSN:
2472 case NOTE:
23b2ce53
RS
2473 case BARRIER:
2474 /* The chain of insns is not being copied. */
32b32b16 2475 return;
23b2ce53 2476
e9a25f70
JL
2477 default:
2478 break;
23b2ce53
RS
2479 }
2480
2481 /* This rtx may not be shared. If it has already been seen,
2482 replace it with a copy of itself. */
2483
2adc7f12 2484 if (RTX_FLAG (x, used))
23b2ce53 2485 {
aacd3885 2486 x = shallow_copy_rtx (x);
23b2ce53
RS
2487 copied = 1;
2488 }
2adc7f12 2489 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2490
2491 /* Now scan the subexpressions recursively.
2492 We can store any replaced subexpressions directly into X
2493 since we know X is not shared! Any vectors in X
2494 must be copied if X was copied. */
2495
2496 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2497 length = GET_RTX_LENGTH (code);
2498 last_ptr = NULL;
2499
2500 for (i = 0; i < length; i++)
23b2ce53
RS
2501 {
2502 switch (*format_ptr++)
2503 {
2504 case 'e':
32b32b16
AP
2505 if (last_ptr)
2506 copy_rtx_if_shared_1 (last_ptr);
2507 last_ptr = &XEXP (x, i);
23b2ce53
RS
2508 break;
2509
2510 case 'E':
2511 if (XVEC (x, i) != NULL)
2512 {
b3694847 2513 int j;
f0722107 2514 int len = XVECLEN (x, i);
32b32b16 2515
6614fd40
KH
2516 /* Copy the vector iff I copied the rtx and the length
2517 is nonzero. */
f0722107 2518 if (copied && len > 0)
8f985ec4 2519 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
32b32b16 2520
5d3cc252 2521 /* Call recursively on all inside the vector. */
f0722107 2522 for (j = 0; j < len; j++)
32b32b16
AP
2523 {
2524 if (last_ptr)
2525 copy_rtx_if_shared_1 (last_ptr);
2526 last_ptr = &XVECEXP (x, i, j);
2527 }
23b2ce53
RS
2528 }
2529 break;
2530 }
2531 }
32b32b16
AP
2532 *orig1 = x;
2533 if (last_ptr)
2534 {
2535 orig1 = last_ptr;
2536 goto repeat;
2537 }
2538 return;
23b2ce53
RS
2539}
2540
2541/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2542 to look for shared sub-parts. */
2543
2544void
502b8322 2545reset_used_flags (rtx x)
23b2ce53 2546{
b3694847
SS
2547 int i, j;
2548 enum rtx_code code;
2549 const char *format_ptr;
32b32b16 2550 int length;
23b2ce53 2551
32b32b16
AP
2552 /* Repeat is used to turn tail-recursion into iteration. */
2553repeat:
23b2ce53
RS
2554 if (x == 0)
2555 return;
2556
2557 code = GET_CODE (x);
2558
9faa82d8 2559 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2560 for them. */
2561
2562 switch (code)
2563 {
2564 case REG:
23b2ce53
RS
2565 case CONST_INT:
2566 case CONST_DOUBLE:
091a3ac7 2567 case CONST_FIXED:
69ef87e2 2568 case CONST_VECTOR:
23b2ce53
RS
2569 case SYMBOL_REF:
2570 case CODE_LABEL:
2571 case PC:
2572 case CC0:
2573 return;
2574
2575 case INSN:
2576 case JUMP_INSN:
2577 case CALL_INSN:
2578 case NOTE:
2579 case LABEL_REF:
2580 case BARRIER:
2581 /* The chain of insns is not being copied. */
2582 return;
750c9258 2583
e9a25f70
JL
2584 default:
2585 break;
23b2ce53
RS
2586 }
2587
2adc7f12 2588 RTX_FLAG (x, used) = 0;
23b2ce53
RS
2589
2590 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2591 length = GET_RTX_LENGTH (code);
2592
2593 for (i = 0; i < length; i++)
23b2ce53
RS
2594 {
2595 switch (*format_ptr++)
2596 {
2597 case 'e':
32b32b16
AP
2598 if (i == length-1)
2599 {
2600 x = XEXP (x, i);
2601 goto repeat;
2602 }
23b2ce53
RS
2603 reset_used_flags (XEXP (x, i));
2604 break;
2605
2606 case 'E':
2607 for (j = 0; j < XVECLEN (x, i); j++)
2608 reset_used_flags (XVECEXP (x, i, j));
2609 break;
2610 }
2611 }
2612}
2c07f13b
JH
2613
2614/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2615 to look for shared sub-parts. */
2616
2617void
2618set_used_flags (rtx x)
2619{
2620 int i, j;
2621 enum rtx_code code;
2622 const char *format_ptr;
2623
2624 if (x == 0)
2625 return;
2626
2627 code = GET_CODE (x);
2628
2629 /* These types may be freely shared so we needn't do any resetting
2630 for them. */
2631
2632 switch (code)
2633 {
2634 case REG:
2c07f13b
JH
2635 case CONST_INT:
2636 case CONST_DOUBLE:
091a3ac7 2637 case CONST_FIXED:
2c07f13b
JH
2638 case CONST_VECTOR:
2639 case SYMBOL_REF:
2640 case CODE_LABEL:
2641 case PC:
2642 case CC0:
2643 return;
2644
2645 case INSN:
2646 case JUMP_INSN:
2647 case CALL_INSN:
2648 case NOTE:
2649 case LABEL_REF:
2650 case BARRIER:
2651 /* The chain of insns is not being copied. */
2652 return;
2653
2654 default:
2655 break;
2656 }
2657
2658 RTX_FLAG (x, used) = 1;
2659
2660 format_ptr = GET_RTX_FORMAT (code);
2661 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2662 {
2663 switch (*format_ptr++)
2664 {
2665 case 'e':
2666 set_used_flags (XEXP (x, i));
2667 break;
2668
2669 case 'E':
2670 for (j = 0; j < XVECLEN (x, i); j++)
2671 set_used_flags (XVECEXP (x, i, j));
2672 break;
2673 }
2674 }
2675}
23b2ce53
RS
2676\f
2677/* Copy X if necessary so that it won't be altered by changes in OTHER.
2678 Return X or the rtx for the pseudo reg the value of X was copied into.
2679 OTHER must be valid as a SET_DEST. */
2680
2681rtx
502b8322 2682make_safe_from (rtx x, rtx other)
23b2ce53
RS
2683{
2684 while (1)
2685 switch (GET_CODE (other))
2686 {
2687 case SUBREG:
2688 other = SUBREG_REG (other);
2689 break;
2690 case STRICT_LOW_PART:
2691 case SIGN_EXTEND:
2692 case ZERO_EXTEND:
2693 other = XEXP (other, 0);
2694 break;
2695 default:
2696 goto done;
2697 }
2698 done:
3c0cb5de 2699 if ((MEM_P (other)
23b2ce53 2700 && ! CONSTANT_P (x)
f8cfc6aa 2701 && !REG_P (x)
23b2ce53 2702 && GET_CODE (x) != SUBREG)
f8cfc6aa 2703 || (REG_P (other)
23b2ce53
RS
2704 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2705 || reg_mentioned_p (other, x))))
2706 {
2707 rtx temp = gen_reg_rtx (GET_MODE (x));
2708 emit_move_insn (temp, x);
2709 return temp;
2710 }
2711 return x;
2712}
2713\f
2714/* Emission of insns (adding them to the doubly-linked list). */
2715
2716/* Return the first insn of the current sequence or current function. */
2717
2718rtx
502b8322 2719get_insns (void)
23b2ce53
RS
2720{
2721 return first_insn;
2722}
2723
3dec4024
JH
2724/* Specify a new insn as the first in the chain. */
2725
2726void
502b8322 2727set_first_insn (rtx insn)
3dec4024 2728{
5b0264cb 2729 gcc_assert (!PREV_INSN (insn));
3dec4024
JH
2730 first_insn = insn;
2731}
2732
23b2ce53
RS
2733/* Return the last insn emitted in current sequence or current function. */
2734
2735rtx
502b8322 2736get_last_insn (void)
23b2ce53
RS
2737{
2738 return last_insn;
2739}
2740
2741/* Specify a new insn as the last in the chain. */
2742
2743void
502b8322 2744set_last_insn (rtx insn)
23b2ce53 2745{
5b0264cb 2746 gcc_assert (!NEXT_INSN (insn));
23b2ce53
RS
2747 last_insn = insn;
2748}
2749
2750/* Return the last insn emitted, even if it is in a sequence now pushed. */
2751
2752rtx
502b8322 2753get_last_insn_anywhere (void)
23b2ce53
RS
2754{
2755 struct sequence_stack *stack;
2756 if (last_insn)
2757 return last_insn;
49ad7cfa 2758 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2759 if (stack->last != 0)
2760 return stack->last;
2761 return 0;
2762}
2763
2a496e8b
JDA
2764/* Return the first nonnote insn emitted in current sequence or current
2765 function. This routine looks inside SEQUENCEs. */
2766
2767rtx
502b8322 2768get_first_nonnote_insn (void)
2a496e8b 2769{
91373fe8
JDA
2770 rtx insn = first_insn;
2771
2772 if (insn)
2773 {
2774 if (NOTE_P (insn))
2775 for (insn = next_insn (insn);
2776 insn && NOTE_P (insn);
2777 insn = next_insn (insn))
2778 continue;
2779 else
2780 {
2ca202e7 2781 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2782 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2783 insn = XVECEXP (PATTERN (insn), 0, 0);
2784 }
2785 }
2a496e8b
JDA
2786
2787 return insn;
2788}
2789
2790/* Return the last nonnote insn emitted in current sequence or current
2791 function. This routine looks inside SEQUENCEs. */
2792
2793rtx
502b8322 2794get_last_nonnote_insn (void)
2a496e8b 2795{
91373fe8
JDA
2796 rtx insn = last_insn;
2797
2798 if (insn)
2799 {
2800 if (NOTE_P (insn))
2801 for (insn = previous_insn (insn);
2802 insn && NOTE_P (insn);
2803 insn = previous_insn (insn))
2804 continue;
2805 else
2806 {
2ca202e7 2807 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2808 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2809 insn = XVECEXP (PATTERN (insn), 0,
2810 XVECLEN (PATTERN (insn), 0) - 1);
2811 }
2812 }
2a496e8b
JDA
2813
2814 return insn;
2815}
2816
23b2ce53
RS
2817/* Return a number larger than any instruction's uid in this function. */
2818
2819int
502b8322 2820get_max_uid (void)
23b2ce53
RS
2821{
2822 return cur_insn_uid;
2823}
2824\f
2825/* Return the next insn. If it is a SEQUENCE, return the first insn
2826 of the sequence. */
2827
2828rtx
502b8322 2829next_insn (rtx insn)
23b2ce53 2830{
75547801
KG
2831 if (insn)
2832 {
2833 insn = NEXT_INSN (insn);
2834 if (insn && NONJUMP_INSN_P (insn)
2835 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2836 insn = XVECEXP (PATTERN (insn), 0, 0);
2837 }
23b2ce53 2838
75547801 2839 return insn;
23b2ce53
RS
2840}
2841
2842/* Return the previous insn. If it is a SEQUENCE, return the last insn
2843 of the sequence. */
2844
2845rtx
502b8322 2846previous_insn (rtx insn)
23b2ce53 2847{
75547801
KG
2848 if (insn)
2849 {
2850 insn = PREV_INSN (insn);
2851 if (insn && NONJUMP_INSN_P (insn)
2852 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2853 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
2854 }
23b2ce53 2855
75547801 2856 return insn;
23b2ce53
RS
2857}
2858
2859/* Return the next insn after INSN that is not a NOTE. This routine does not
2860 look inside SEQUENCEs. */
2861
2862rtx
502b8322 2863next_nonnote_insn (rtx insn)
23b2ce53 2864{
75547801
KG
2865 while (insn)
2866 {
2867 insn = NEXT_INSN (insn);
2868 if (insn == 0 || !NOTE_P (insn))
2869 break;
2870 }
23b2ce53 2871
75547801 2872 return insn;
23b2ce53
RS
2873}
2874
2875/* Return the previous insn before INSN that is not a NOTE. This routine does
2876 not look inside SEQUENCEs. */
2877
2878rtx
502b8322 2879prev_nonnote_insn (rtx insn)
23b2ce53 2880{
75547801
KG
2881 while (insn)
2882 {
2883 insn = PREV_INSN (insn);
2884 if (insn == 0 || !NOTE_P (insn))
2885 break;
2886 }
23b2ce53 2887
75547801 2888 return insn;
23b2ce53
RS
2889}
2890
2891/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
2892 or 0, if there is none. This routine does not look inside
0f41302f 2893 SEQUENCEs. */
23b2ce53
RS
2894
2895rtx
502b8322 2896next_real_insn (rtx insn)
23b2ce53 2897{
75547801
KG
2898 while (insn)
2899 {
2900 insn = NEXT_INSN (insn);
2901 if (insn == 0 || INSN_P (insn))
2902 break;
2903 }
23b2ce53 2904
75547801 2905 return insn;
23b2ce53
RS
2906}
2907
2908/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
2909 or 0, if there is none. This routine does not look inside
2910 SEQUENCEs. */
2911
2912rtx
502b8322 2913prev_real_insn (rtx insn)
23b2ce53 2914{
75547801
KG
2915 while (insn)
2916 {
2917 insn = PREV_INSN (insn);
2918 if (insn == 0 || INSN_P (insn))
2919 break;
2920 }
23b2ce53 2921
75547801 2922 return insn;
23b2ce53
RS
2923}
2924
ee960939
OH
2925/* Return the last CALL_INSN in the current list, or 0 if there is none.
2926 This routine does not look inside SEQUENCEs. */
2927
2928rtx
502b8322 2929last_call_insn (void)
ee960939
OH
2930{
2931 rtx insn;
2932
2933 for (insn = get_last_insn ();
4b4bf941 2934 insn && !CALL_P (insn);
ee960939
OH
2935 insn = PREV_INSN (insn))
2936 ;
2937
2938 return insn;
2939}
2940
23b2ce53
RS
2941/* Find the next insn after INSN that really does something. This routine
2942 does not look inside SEQUENCEs. Until reload has completed, this is the
2943 same as next_real_insn. */
2944
69732dcb 2945int
4f588890 2946active_insn_p (const_rtx insn)
69732dcb 2947{
4b4bf941
JQ
2948 return (CALL_P (insn) || JUMP_P (insn)
2949 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
2950 && (! reload_completed
2951 || (GET_CODE (PATTERN (insn)) != USE
2952 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
2953}
2954
23b2ce53 2955rtx
502b8322 2956next_active_insn (rtx insn)
23b2ce53 2957{
75547801
KG
2958 while (insn)
2959 {
2960 insn = NEXT_INSN (insn);
2961 if (insn == 0 || active_insn_p (insn))
2962 break;
2963 }
23b2ce53 2964
75547801 2965 return insn;
23b2ce53
RS
2966}
2967
2968/* Find the last insn before INSN that really does something. This routine
2969 does not look inside SEQUENCEs. Until reload has completed, this is the
2970 same as prev_real_insn. */
2971
2972rtx
502b8322 2973prev_active_insn (rtx insn)
23b2ce53 2974{
75547801
KG
2975 while (insn)
2976 {
2977 insn = PREV_INSN (insn);
2978 if (insn == 0 || active_insn_p (insn))
2979 break;
2980 }
23b2ce53 2981
75547801 2982 return insn;
23b2ce53
RS
2983}
2984
2985/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2986
2987rtx
502b8322 2988next_label (rtx insn)
23b2ce53 2989{
75547801
KG
2990 while (insn)
2991 {
2992 insn = NEXT_INSN (insn);
2993 if (insn == 0 || LABEL_P (insn))
2994 break;
2995 }
23b2ce53 2996
75547801 2997 return insn;
23b2ce53
RS
2998}
2999
3000/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3001
3002rtx
502b8322 3003prev_label (rtx insn)
23b2ce53 3004{
75547801
KG
3005 while (insn)
3006 {
3007 insn = PREV_INSN (insn);
3008 if (insn == 0 || LABEL_P (insn))
3009 break;
3010 }
23b2ce53 3011
75547801 3012 return insn;
23b2ce53 3013}
6c2511d3
RS
3014
3015/* Return the last label to mark the same position as LABEL. Return null
3016 if LABEL itself is null. */
3017
3018rtx
3019skip_consecutive_labels (rtx label)
3020{
3021 rtx insn;
3022
3023 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3024 if (LABEL_P (insn))
3025 label = insn;
3026
3027 return label;
3028}
23b2ce53
RS
3029\f
3030#ifdef HAVE_cc0
c572e5ba
JVA
3031/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3032 and REG_CC_USER notes so we can find it. */
3033
3034void
502b8322 3035link_cc0_insns (rtx insn)
c572e5ba
JVA
3036{
3037 rtx user = next_nonnote_insn (insn);
3038
4b4bf941 3039 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
c572e5ba
JVA
3040 user = XVECEXP (PATTERN (user), 0, 0);
3041
c5c76735
JL
3042 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3043 REG_NOTES (user));
3b80f6ca 3044 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
c572e5ba
JVA
3045}
3046
23b2ce53
RS
3047/* Return the next insn that uses CC0 after INSN, which is assumed to
3048 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3049 applied to the result of this function should yield INSN).
3050
3051 Normally, this is simply the next insn. However, if a REG_CC_USER note
3052 is present, it contains the insn that uses CC0.
3053
3054 Return 0 if we can't find the insn. */
3055
3056rtx
502b8322 3057next_cc0_user (rtx insn)
23b2ce53 3058{
906c4e36 3059 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3060
3061 if (note)
3062 return XEXP (note, 0);
3063
3064 insn = next_nonnote_insn (insn);
4b4bf941 3065 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
23b2ce53
RS
3066 insn = XVECEXP (PATTERN (insn), 0, 0);
3067
2c3c49de 3068 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3069 return insn;
3070
3071 return 0;
3072}
3073
3074/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3075 note, it is the previous insn. */
3076
3077rtx
502b8322 3078prev_cc0_setter (rtx insn)
23b2ce53 3079{
906c4e36 3080 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3081
3082 if (note)
3083 return XEXP (note, 0);
3084
3085 insn = prev_nonnote_insn (insn);
5b0264cb 3086 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53
RS
3087
3088 return insn;
3089}
3090#endif
e5bef2e4 3091
594f8779
RZ
3092#ifdef AUTO_INC_DEC
3093/* Find a RTX_AUTOINC class rtx which matches DATA. */
3094
3095static int
3096find_auto_inc (rtx *xp, void *data)
3097{
3098 rtx x = *xp;
3099 rtx reg = data;
3100
3101 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3102 return 0;
3103
3104 switch (GET_CODE (x))
3105 {
3106 case PRE_DEC:
3107 case PRE_INC:
3108 case POST_DEC:
3109 case POST_INC:
3110 case PRE_MODIFY:
3111 case POST_MODIFY:
3112 if (rtx_equal_p (reg, XEXP (x, 0)))
3113 return 1;
3114 break;
3115
3116 default:
3117 gcc_unreachable ();
3118 }
3119 return -1;
3120}
3121#endif
3122
e5bef2e4
HB
3123/* Increment the label uses for all labels present in rtx. */
3124
3125static void
502b8322 3126mark_label_nuses (rtx x)
e5bef2e4 3127{
b3694847
SS
3128 enum rtx_code code;
3129 int i, j;
3130 const char *fmt;
e5bef2e4
HB
3131
3132 code = GET_CODE (x);
7537fc90 3133 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
e5bef2e4
HB
3134 LABEL_NUSES (XEXP (x, 0))++;
3135
3136 fmt = GET_RTX_FORMAT (code);
3137 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3138 {
3139 if (fmt[i] == 'e')
0fb7aeda 3140 mark_label_nuses (XEXP (x, i));
e5bef2e4 3141 else if (fmt[i] == 'E')
0fb7aeda 3142 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3143 mark_label_nuses (XVECEXP (x, i, j));
3144 }
3145}
3146
23b2ce53
RS
3147\f
3148/* Try splitting insns that can be split for better scheduling.
3149 PAT is the pattern which might split.
3150 TRIAL is the insn providing PAT.
cc2902df 3151 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3152
3153 If this routine succeeds in splitting, it returns the first or last
11147ebe 3154 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3155 returns TRIAL. If the insn to be returned can be split, it will be. */
3156
3157rtx
502b8322 3158try_split (rtx pat, rtx trial, int last)
23b2ce53
RS
3159{
3160 rtx before = PREV_INSN (trial);
3161 rtx after = NEXT_INSN (trial);
23b2ce53 3162 int has_barrier = 0;
539c54ba 3163 rtx tem, note_retval, note_libcall;
6b24c259
JH
3164 rtx note, seq;
3165 int probability;
599aedd9
RH
3166 rtx insn_last, insn;
3167 int njumps = 0;
6b24c259
JH
3168
3169 if (any_condjump_p (trial)
3170 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3171 split_branch_probability = INTVAL (XEXP (note, 0));
3172 probability = split_branch_probability;
3173
3174 seq = split_insns (pat, trial);
3175
3176 split_branch_probability = -1;
23b2ce53
RS
3177
3178 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3179 We may need to handle this specially. */
4b4bf941 3180 if (after && BARRIER_P (after))
23b2ce53
RS
3181 {
3182 has_barrier = 1;
3183 after = NEXT_INSN (after);
3184 }
3185
599aedd9
RH
3186 if (!seq)
3187 return trial;
3188
3189 /* Avoid infinite loop if any insn of the result matches
3190 the original pattern. */
3191 insn_last = seq;
3192 while (1)
23b2ce53 3193 {
599aedd9
RH
3194 if (INSN_P (insn_last)
3195 && rtx_equal_p (PATTERN (insn_last), pat))
3196 return trial;
3197 if (!NEXT_INSN (insn_last))
3198 break;
3199 insn_last = NEXT_INSN (insn_last);
3200 }
750c9258 3201
6fb5fa3c
DB
3202 /* We will be adding the new sequence to the function. The splitters
3203 may have introduced invalid RTL sharing, so unshare the sequence now. */
3204 unshare_all_rtl_in_chain (seq);
3205
599aedd9
RH
3206 /* Mark labels. */
3207 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3208 {
4b4bf941 3209 if (JUMP_P (insn))
599aedd9
RH
3210 {
3211 mark_jump_label (PATTERN (insn), insn, 0);
3212 njumps++;
3213 if (probability != -1
3214 && any_condjump_p (insn)
3215 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3216 {
599aedd9
RH
3217 /* We can preserve the REG_BR_PROB notes only if exactly
3218 one jump is created, otherwise the machine description
3219 is responsible for this step using
3220 split_branch_probability variable. */
5b0264cb 3221 gcc_assert (njumps == 1);
599aedd9
RH
3222 REG_NOTES (insn)
3223 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3224 GEN_INT (probability),
3225 REG_NOTES (insn));
2f937369 3226 }
599aedd9
RH
3227 }
3228 }
3229
3230 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3231 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
4b4bf941 3232 if (CALL_P (trial))
599aedd9
RH
3233 {
3234 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3235 if (CALL_P (insn))
599aedd9 3236 {
f6a1f3f6
RH
3237 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3238 while (*p)
3239 p = &XEXP (*p, 1);
3240 *p = CALL_INSN_FUNCTION_USAGE (trial);
599aedd9
RH
3241 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3242 }
3243 }
4b5e8abe 3244
599aedd9
RH
3245 /* Copy notes, particularly those related to the CFG. */
3246 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3247 {
3248 switch (REG_NOTE_KIND (note))
3249 {
3250 case REG_EH_REGION:
594f8779 3251 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3252 {
4b4bf941 3253 if (CALL_P (insn)
d3a583b1 3254 || (flag_non_call_exceptions && INSN_P (insn)
599aedd9
RH
3255 && may_trap_p (PATTERN (insn))))
3256 REG_NOTES (insn)
3257 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3258 XEXP (note, 0),
3259 REG_NOTES (insn));
2f937369 3260 }
599aedd9 3261 break;
216183ce 3262
599aedd9
RH
3263 case REG_NORETURN:
3264 case REG_SETJMP:
594f8779 3265 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3266 {
4b4bf941 3267 if (CALL_P (insn))
599aedd9
RH
3268 REG_NOTES (insn)
3269 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3270 XEXP (note, 0),
3271 REG_NOTES (insn));
216183ce 3272 }
599aedd9 3273 break;
d6e95df8 3274
599aedd9 3275 case REG_NON_LOCAL_GOTO:
594f8779 3276 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3277 {
4b4bf941 3278 if (JUMP_P (insn))
599aedd9
RH
3279 REG_NOTES (insn)
3280 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3281 XEXP (note, 0),
3282 REG_NOTES (insn));
2f937369 3283 }
599aedd9 3284 break;
e5bef2e4 3285
594f8779
RZ
3286#ifdef AUTO_INC_DEC
3287 case REG_INC:
3288 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3289 {
3290 rtx reg = XEXP (note, 0);
3291 if (!FIND_REG_INC_NOTE (insn, reg)
3292 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
3293 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_INC, reg,
3294 REG_NOTES (insn));
3295 }
3296 break;
3297#endif
3298
1c7f7c66
SL
3299 case REG_LIBCALL:
3300 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3301 after split. */
3302 REG_NOTES (insn_last)
49317655 3303 = gen_rtx_INSN_LIST (REG_LIBCALL,
1c7f7c66
SL
3304 XEXP (note, 0),
3305 REG_NOTES (insn_last));
3306
3307 note_retval = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL);
3308 XEXP (note_retval, 0) = insn_last;
3309 break;
3310
539c54ba
KK
3311 case REG_RETVAL:
3312 /* Relink the insns with REG_LIBCALL note and with REG_RETVAL note
3313 after split. */
3314 REG_NOTES (insn_last)
3315 = gen_rtx_INSN_LIST (REG_RETVAL,
3316 XEXP (note, 0),
3317 REG_NOTES (insn_last));
3318
3319 note_libcall = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL);
3320 XEXP (note_libcall, 0) = insn_last;
3321 break;
3322
599aedd9
RH
3323 default:
3324 break;
23b2ce53 3325 }
599aedd9
RH
3326 }
3327
3328 /* If there are LABELS inside the split insns increment the
3329 usage count so we don't delete the label. */
cf7c4aa6 3330 if (INSN_P (trial))
599aedd9
RH
3331 {
3332 insn = insn_last;
3333 while (insn != NULL_RTX)
23b2ce53 3334 {
cf7c4aa6 3335 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3336 if (NONJUMP_INSN_P (insn))
599aedd9 3337 mark_label_nuses (PATTERN (insn));
23b2ce53 3338
599aedd9
RH
3339 insn = PREV_INSN (insn);
3340 }
23b2ce53
RS
3341 }
3342
0435312e 3343 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
599aedd9
RH
3344
3345 delete_insn (trial);
3346 if (has_barrier)
3347 emit_barrier_after (tem);
3348
3349 /* Recursively call try_split for each new insn created; by the
3350 time control returns here that insn will be fully split, so
3351 set LAST and continue from the insn after the one returned.
3352 We can't use next_active_insn here since AFTER may be a note.
3353 Ignore deleted insns, which can be occur if not optimizing. */
3354 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3355 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3356 tem = try_split (PATTERN (tem), tem, 1);
3357
3358 /* Return either the first or the last insn, depending on which was
3359 requested. */
3360 return last
3361 ? (after ? PREV_INSN (after) : last_insn)
3362 : NEXT_INSN (before);
23b2ce53
RS
3363}
3364\f
3365/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3366 Store PATTERN in the pattern slots. */
23b2ce53
RS
3367
3368rtx
502b8322 3369make_insn_raw (rtx pattern)
23b2ce53 3370{
b3694847 3371 rtx insn;
23b2ce53 3372
1f8f4a0b 3373 insn = rtx_alloc (INSN);
23b2ce53 3374
43127294 3375 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3376 PATTERN (insn) = pattern;
3377 INSN_CODE (insn) = -1;
1632afca 3378 REG_NOTES (insn) = NULL;
55e092c4 3379 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3380 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3381
47984720
NC
3382#ifdef ENABLE_RTL_CHECKING
3383 if (insn
2c3c49de 3384 && INSN_P (insn)
47984720
NC
3385 && (returnjump_p (insn)
3386 || (GET_CODE (insn) == SET
3387 && SET_DEST (insn) == pc_rtx)))
3388 {
d4ee4d25 3389 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3390 debug_rtx (insn);
3391 }
3392#endif
750c9258 3393
23b2ce53
RS
3394 return insn;
3395}
3396
2f937369 3397/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3398
38109dab 3399rtx
502b8322 3400make_jump_insn_raw (rtx pattern)
23b2ce53 3401{
b3694847 3402 rtx insn;
23b2ce53 3403
4b1f5e8c 3404 insn = rtx_alloc (JUMP_INSN);
1632afca 3405 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3406
3407 PATTERN (insn) = pattern;
3408 INSN_CODE (insn) = -1;
1632afca
RS
3409 REG_NOTES (insn) = NULL;
3410 JUMP_LABEL (insn) = NULL;
55e092c4 3411 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3412 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3413
3414 return insn;
3415}
aff507f4 3416
2f937369 3417/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3418
3419static rtx
502b8322 3420make_call_insn_raw (rtx pattern)
aff507f4 3421{
b3694847 3422 rtx insn;
aff507f4
RK
3423
3424 insn = rtx_alloc (CALL_INSN);
3425 INSN_UID (insn) = cur_insn_uid++;
3426
3427 PATTERN (insn) = pattern;
3428 INSN_CODE (insn) = -1;
aff507f4
RK
3429 REG_NOTES (insn) = NULL;
3430 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
55e092c4 3431 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3432 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3433
3434 return insn;
3435}
23b2ce53
RS
3436\f
3437/* Add INSN to the end of the doubly-linked list.
3438 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3439
3440void
502b8322 3441add_insn (rtx insn)
23b2ce53
RS
3442{
3443 PREV_INSN (insn) = last_insn;
3444 NEXT_INSN (insn) = 0;
3445
3446 if (NULL != last_insn)
3447 NEXT_INSN (last_insn) = insn;
3448
3449 if (NULL == first_insn)
3450 first_insn = insn;
3451
3452 last_insn = insn;
3453}
3454
a0ae8e8d
RK
3455/* Add INSN into the doubly-linked list after insn AFTER. This and
3456 the next should be the only functions called to insert an insn once
ba213285 3457 delay slots have been filled since only they know how to update a
a0ae8e8d 3458 SEQUENCE. */
23b2ce53
RS
3459
3460void
6fb5fa3c 3461add_insn_after (rtx insn, rtx after, basic_block bb)
23b2ce53
RS
3462{
3463 rtx next = NEXT_INSN (after);
3464
5b0264cb 3465 gcc_assert (!optimize || !INSN_DELETED_P (after));
ba213285 3466
23b2ce53
RS
3467 NEXT_INSN (insn) = next;
3468 PREV_INSN (insn) = after;
3469
3470 if (next)
3471 {
3472 PREV_INSN (next) = insn;
4b4bf941 3473 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
23b2ce53
RS
3474 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3475 }
3476 else if (last_insn == after)
3477 last_insn = insn;
3478 else
3479 {
49ad7cfa 3480 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3481 /* Scan all pending sequences too. */
3482 for (; stack; stack = stack->next)
3483 if (after == stack->last)
fef0509b
RK
3484 {
3485 stack->last = insn;
3486 break;
3487 }
a0ae8e8d 3488
5b0264cb 3489 gcc_assert (stack);
23b2ce53
RS
3490 }
3491
4b4bf941
JQ
3492 if (!BARRIER_P (after)
3493 && !BARRIER_P (insn)
3c030e88
JH
3494 && (bb = BLOCK_FOR_INSN (after)))
3495 {
3496 set_block_for_insn (insn, bb);
38c1593d 3497 if (INSN_P (insn))
6fb5fa3c 3498 df_insn_rescan (insn);
3c030e88 3499 /* Should not happen as first in the BB is always
a1f300c0 3500 either NOTE or LABEL. */
a813c111 3501 if (BB_END (bb) == after
3c030e88 3502 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 3503 && !BARRIER_P (insn)
a38e7aa5 3504 && !NOTE_INSN_BASIC_BLOCK_P (insn))
a813c111 3505 BB_END (bb) = insn;
3c030e88
JH
3506 }
3507
23b2ce53 3508 NEXT_INSN (after) = insn;
4b4bf941 3509 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
23b2ce53
RS
3510 {
3511 rtx sequence = PATTERN (after);
3512 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3513 }
3514}
3515
a0ae8e8d 3516/* Add INSN into the doubly-linked list before insn BEFORE. This and
6fb5fa3c
DB
3517 the previous should be the only functions called to insert an insn
3518 once delay slots have been filled since only they know how to
3519 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3520 bb from before. */
a0ae8e8d
RK
3521
3522void
6fb5fa3c 3523add_insn_before (rtx insn, rtx before, basic_block bb)
a0ae8e8d
RK
3524{
3525 rtx prev = PREV_INSN (before);
3526
5b0264cb 3527 gcc_assert (!optimize || !INSN_DELETED_P (before));
ba213285 3528
a0ae8e8d
RK
3529 PREV_INSN (insn) = prev;
3530 NEXT_INSN (insn) = before;
3531
3532 if (prev)
3533 {
3534 NEXT_INSN (prev) = insn;
4b4bf941 3535 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
a0ae8e8d
RK
3536 {
3537 rtx sequence = PATTERN (prev);
3538 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3539 }
3540 }
3541 else if (first_insn == before)
3542 first_insn = insn;
3543 else
3544 {
49ad7cfa 3545 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3546 /* Scan all pending sequences too. */
3547 for (; stack; stack = stack->next)
3548 if (before == stack->first)
fef0509b
RK
3549 {
3550 stack->first = insn;
3551 break;
3552 }
a0ae8e8d 3553
5b0264cb 3554 gcc_assert (stack);
a0ae8e8d
RK
3555 }
3556
6fb5fa3c
DB
3557 if (!bb
3558 && !BARRIER_P (before)
3559 && !BARRIER_P (insn))
3560 bb = BLOCK_FOR_INSN (before);
3561
3562 if (bb)
3c030e88
JH
3563 {
3564 set_block_for_insn (insn, bb);
38c1593d 3565 if (INSN_P (insn))
6fb5fa3c 3566 df_insn_rescan (insn);
5b0264cb 3567 /* Should not happen as first in the BB is always either NOTE or
43e05e45 3568 LABEL. */
5b0264cb
NS
3569 gcc_assert (BB_HEAD (bb) != insn
3570 /* Avoid clobbering of structure when creating new BB. */
3571 || BARRIER_P (insn)
a38e7aa5 3572 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88
JH
3573 }
3574
a0ae8e8d 3575 PREV_INSN (before) = insn;
4b4bf941 3576 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
a0ae8e8d
RK
3577 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3578}
3579
6fb5fa3c
DB
3580
3581/* Replace insn with an deleted instruction note. */
3582
3583void set_insn_deleted (rtx insn)
3584{
3585 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3586 PUT_CODE (insn, NOTE);
3587 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3588}
3589
3590
89e99eea
DB
3591/* Remove an insn from its doubly-linked list. This function knows how
3592 to handle sequences. */
3593void
502b8322 3594remove_insn (rtx insn)
89e99eea
DB
3595{
3596 rtx next = NEXT_INSN (insn);
3597 rtx prev = PREV_INSN (insn);
53c17031
JH
3598 basic_block bb;
3599
6fb5fa3c
DB
3600 /* Later in the code, the block will be marked dirty. */
3601 df_insn_delete (NULL, INSN_UID (insn));
3602
89e99eea
DB
3603 if (prev)
3604 {
3605 NEXT_INSN (prev) = next;
4b4bf941 3606 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea
DB
3607 {
3608 rtx sequence = PATTERN (prev);
3609 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3610 }
3611 }
3612 else if (first_insn == insn)
3613 first_insn = next;
3614 else
3615 {
49ad7cfa 3616 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3617 /* Scan all pending sequences too. */
3618 for (; stack; stack = stack->next)
3619 if (insn == stack->first)
3620 {
3621 stack->first = next;
3622 break;
3623 }
3624
5b0264cb 3625 gcc_assert (stack);
89e99eea
DB
3626 }
3627
3628 if (next)
3629 {
3630 PREV_INSN (next) = prev;
4b4bf941 3631 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
89e99eea
DB
3632 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3633 }
3634 else if (last_insn == insn)
3635 last_insn = prev;
3636 else
3637 {
49ad7cfa 3638 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3639 /* Scan all pending sequences too. */
3640 for (; stack; stack = stack->next)
3641 if (insn == stack->last)
3642 {
3643 stack->last = prev;
3644 break;
3645 }
3646
5b0264cb 3647 gcc_assert (stack);
89e99eea 3648 }
4b4bf941 3649 if (!BARRIER_P (insn)
53c17031
JH
3650 && (bb = BLOCK_FOR_INSN (insn)))
3651 {
38c1593d 3652 if (INSN_P (insn))
6fb5fa3c 3653 df_set_bb_dirty (bb);
a813c111 3654 if (BB_HEAD (bb) == insn)
53c17031 3655 {
3bf1e984
RK
3656 /* Never ever delete the basic block note without deleting whole
3657 basic block. */
5b0264cb 3658 gcc_assert (!NOTE_P (insn));
a813c111 3659 BB_HEAD (bb) = next;
53c17031 3660 }
a813c111
SB
3661 if (BB_END (bb) == insn)
3662 BB_END (bb) = prev;
53c17031 3663 }
89e99eea
DB
3664}
3665
ee960939
OH
3666/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3667
3668void
502b8322 3669add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 3670{
5b0264cb 3671 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
3672
3673 /* Put the register usage information on the CALL. If there is already
3674 some usage information, put ours at the end. */
3675 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3676 {
3677 rtx link;
3678
3679 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3680 link = XEXP (link, 1))
3681 ;
3682
3683 XEXP (link, 1) = call_fusage;
3684 }
3685 else
3686 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3687}
3688
23b2ce53
RS
3689/* Delete all insns made since FROM.
3690 FROM becomes the new last instruction. */
3691
3692void
502b8322 3693delete_insns_since (rtx from)
23b2ce53
RS
3694{
3695 if (from == 0)
3696 first_insn = 0;
3697 else
3698 NEXT_INSN (from) = 0;
3699 last_insn = from;
3700}
3701
5dab5552
MS
3702/* This function is deprecated, please use sequences instead.
3703
3704 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3705 The insns to be moved are those between FROM and TO.
3706 They are moved to a new position after the insn AFTER.
3707 AFTER must not be FROM or TO or any insn in between.
3708
3709 This function does not know about SEQUENCEs and hence should not be
3710 called after delay-slot filling has been done. */
3711
3712void
502b8322 3713reorder_insns_nobb (rtx from, rtx to, rtx after)
23b2ce53
RS
3714{
3715 /* Splice this bunch out of where it is now. */
3716 if (PREV_INSN (from))
3717 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3718 if (NEXT_INSN (to))
3719 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3720 if (last_insn == to)
3721 last_insn = PREV_INSN (from);
3722 if (first_insn == from)
3723 first_insn = NEXT_INSN (to);
3724
3725 /* Make the new neighbors point to it and it to them. */
3726 if (NEXT_INSN (after))
3727 PREV_INSN (NEXT_INSN (after)) = to;
3728
3729 NEXT_INSN (to) = NEXT_INSN (after);
3730 PREV_INSN (from) = after;
3731 NEXT_INSN (after) = from;
3732 if (after == last_insn)
3733 last_insn = to;
3734}
3735
3c030e88
JH
3736/* Same as function above, but take care to update BB boundaries. */
3737void
502b8322 3738reorder_insns (rtx from, rtx to, rtx after)
3c030e88
JH
3739{
3740 rtx prev = PREV_INSN (from);
3741 basic_block bb, bb2;
3742
3743 reorder_insns_nobb (from, to, after);
3744
4b4bf941 3745 if (!BARRIER_P (after)
3c030e88
JH
3746 && (bb = BLOCK_FOR_INSN (after)))
3747 {
3748 rtx x;
6fb5fa3c 3749 df_set_bb_dirty (bb);
68252e27 3750
4b4bf941 3751 if (!BARRIER_P (from)
3c030e88
JH
3752 && (bb2 = BLOCK_FOR_INSN (from)))
3753 {
a813c111
SB
3754 if (BB_END (bb2) == to)
3755 BB_END (bb2) = prev;
6fb5fa3c 3756 df_set_bb_dirty (bb2);
3c030e88
JH
3757 }
3758
a813c111
SB
3759 if (BB_END (bb) == after)
3760 BB_END (bb) = to;
3c030e88
JH
3761
3762 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 3763 if (!BARRIER_P (x))
63642d5a 3764 df_insn_change_bb (x, bb);
3c030e88
JH
3765 }
3766}
3767
23b2ce53 3768\f
2f937369
DM
3769/* Emit insn(s) of given code and pattern
3770 at a specified place within the doubly-linked list.
23b2ce53 3771
2f937369
DM
3772 All of the emit_foo global entry points accept an object
3773 X which is either an insn list or a PATTERN of a single
3774 instruction.
23b2ce53 3775
2f937369
DM
3776 There are thus a few canonical ways to generate code and
3777 emit it at a specific place in the instruction stream. For
3778 example, consider the instruction named SPOT and the fact that
3779 we would like to emit some instructions before SPOT. We might
3780 do it like this:
23b2ce53 3781
2f937369
DM
3782 start_sequence ();
3783 ... emit the new instructions ...
3784 insns_head = get_insns ();
3785 end_sequence ();
23b2ce53 3786
2f937369 3787 emit_insn_before (insns_head, SPOT);
23b2ce53 3788
2f937369
DM
3789 It used to be common to generate SEQUENCE rtl instead, but that
3790 is a relic of the past which no longer occurs. The reason is that
3791 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
3792 generated would almost certainly die right after it was created. */
23b2ce53 3793
2f937369 3794/* Make X be output before the instruction BEFORE. */
23b2ce53
RS
3795
3796rtx
6fb5fa3c 3797emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
23b2ce53 3798{
2f937369 3799 rtx last = before;
b3694847 3800 rtx insn;
23b2ce53 3801
5b0264cb 3802 gcc_assert (before);
2f937369
DM
3803
3804 if (x == NULL_RTX)
3805 return last;
3806
3807 switch (GET_CODE (x))
23b2ce53 3808 {
2f937369
DM
3809 case INSN:
3810 case JUMP_INSN:
3811 case CALL_INSN:
3812 case CODE_LABEL:
3813 case BARRIER:
3814 case NOTE:
3815 insn = x;
3816 while (insn)
3817 {
3818 rtx next = NEXT_INSN (insn);
6fb5fa3c 3819 add_insn_before (insn, before, bb);
2f937369
DM
3820 last = insn;
3821 insn = next;
3822 }
3823 break;
3824
3825#ifdef ENABLE_RTL_CHECKING
3826 case SEQUENCE:
5b0264cb 3827 gcc_unreachable ();
2f937369
DM
3828 break;
3829#endif
3830
3831 default:
3832 last = make_insn_raw (x);
6fb5fa3c 3833 add_insn_before (last, before, bb);
2f937369 3834 break;
23b2ce53
RS
3835 }
3836
2f937369 3837 return last;
23b2ce53
RS
3838}
3839
2f937369 3840/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
3841 and output it before the instruction BEFORE. */
3842
3843rtx
a7102479 3844emit_jump_insn_before_noloc (rtx x, rtx before)
23b2ce53 3845{
d950dee3 3846 rtx insn, last = NULL_RTX;
aff507f4 3847
5b0264cb 3848 gcc_assert (before);
2f937369
DM
3849
3850 switch (GET_CODE (x))
aff507f4 3851 {
2f937369
DM
3852 case INSN:
3853 case JUMP_INSN:
3854 case CALL_INSN:
3855 case CODE_LABEL:
3856 case BARRIER:
3857 case NOTE:
3858 insn = x;
3859 while (insn)
3860 {
3861 rtx next = NEXT_INSN (insn);
6fb5fa3c 3862 add_insn_before (insn, before, NULL);
2f937369
DM
3863 last = insn;
3864 insn = next;
3865 }
3866 break;
3867
3868#ifdef ENABLE_RTL_CHECKING
3869 case SEQUENCE:
5b0264cb 3870 gcc_unreachable ();
2f937369
DM
3871 break;
3872#endif
3873
3874 default:
3875 last = make_jump_insn_raw (x);
6fb5fa3c 3876 add_insn_before (last, before, NULL);
2f937369 3877 break;
aff507f4
RK
3878 }
3879
2f937369 3880 return last;
23b2ce53
RS
3881}
3882
2f937369 3883/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
3884 and output it before the instruction BEFORE. */
3885
3886rtx
a7102479 3887emit_call_insn_before_noloc (rtx x, rtx before)
969d70ca 3888{
d950dee3 3889 rtx last = NULL_RTX, insn;
969d70ca 3890
5b0264cb 3891 gcc_assert (before);
2f937369
DM
3892
3893 switch (GET_CODE (x))
969d70ca 3894 {
2f937369
DM
3895 case INSN:
3896 case JUMP_INSN:
3897 case CALL_INSN:
3898 case CODE_LABEL:
3899 case BARRIER:
3900 case NOTE:
3901 insn = x;
3902 while (insn)
3903 {
3904 rtx next = NEXT_INSN (insn);
6fb5fa3c 3905 add_insn_before (insn, before, NULL);
2f937369
DM
3906 last = insn;
3907 insn = next;
3908 }
3909 break;
3910
3911#ifdef ENABLE_RTL_CHECKING
3912 case SEQUENCE:
5b0264cb 3913 gcc_unreachable ();
2f937369
DM
3914 break;
3915#endif
3916
3917 default:
3918 last = make_call_insn_raw (x);
6fb5fa3c 3919 add_insn_before (last, before, NULL);
2f937369 3920 break;
969d70ca
JH
3921 }
3922
2f937369 3923 return last;
969d70ca
JH
3924}
3925
23b2ce53 3926/* Make an insn of code BARRIER
e881bb1b 3927 and output it before the insn BEFORE. */
23b2ce53
RS
3928
3929rtx
502b8322 3930emit_barrier_before (rtx before)
23b2ce53 3931{
b3694847 3932 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
3933
3934 INSN_UID (insn) = cur_insn_uid++;
3935
6fb5fa3c 3936 add_insn_before (insn, before, NULL);
23b2ce53
RS
3937 return insn;
3938}
3939
e881bb1b
RH
3940/* Emit the label LABEL before the insn BEFORE. */
3941
3942rtx
502b8322 3943emit_label_before (rtx label, rtx before)
e881bb1b
RH
3944{
3945 /* This can be called twice for the same label as a result of the
3946 confusion that follows a syntax error! So make it harmless. */
3947 if (INSN_UID (label) == 0)
3948 {
3949 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 3950 add_insn_before (label, before, NULL);
e881bb1b
RH
3951 }
3952
3953 return label;
3954}
3955
23b2ce53
RS
3956/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
3957
3958rtx
a38e7aa5 3959emit_note_before (enum insn_note subtype, rtx before)
23b2ce53 3960{
b3694847 3961 rtx note = rtx_alloc (NOTE);
23b2ce53 3962 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 3963 NOTE_KIND (note) = subtype;
ba4f7968 3964 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 3965 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
23b2ce53 3966
6fb5fa3c 3967 add_insn_before (note, before, NULL);
23b2ce53
RS
3968 return note;
3969}
3970\f
2f937369
DM
3971/* Helper for emit_insn_after, handles lists of instructions
3972 efficiently. */
23b2ce53 3973
2f937369 3974static rtx
6fb5fa3c 3975emit_insn_after_1 (rtx first, rtx after, basic_block bb)
23b2ce53 3976{
2f937369
DM
3977 rtx last;
3978 rtx after_after;
6fb5fa3c
DB
3979 if (!bb && !BARRIER_P (after))
3980 bb = BLOCK_FOR_INSN (after);
23b2ce53 3981
6fb5fa3c 3982 if (bb)
23b2ce53 3983 {
6fb5fa3c 3984 df_set_bb_dirty (bb);
2f937369 3985 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 3986 if (!BARRIER_P (last))
6fb5fa3c
DB
3987 {
3988 set_block_for_insn (last, bb);
3989 df_insn_rescan (last);
3990 }
4b4bf941 3991 if (!BARRIER_P (last))
6fb5fa3c
DB
3992 {
3993 set_block_for_insn (last, bb);
3994 df_insn_rescan (last);
3995 }
a813c111
SB
3996 if (BB_END (bb) == after)
3997 BB_END (bb) = last;
23b2ce53
RS
3998 }
3999 else
2f937369
DM
4000 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4001 continue;
4002
4003 after_after = NEXT_INSN (after);
4004
4005 NEXT_INSN (after) = first;
4006 PREV_INSN (first) = after;
4007 NEXT_INSN (last) = after_after;
4008 if (after_after)
4009 PREV_INSN (after_after) = last;
4010
4011 if (after == last_insn)
4012 last_insn = last;
4013 return last;
4014}
4015
6fb5fa3c
DB
4016/* Make X be output after the insn AFTER and set the BB of insn. If
4017 BB is NULL, an attempt is made to infer the BB from AFTER. */
2f937369
DM
4018
4019rtx
6fb5fa3c 4020emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
2f937369
DM
4021{
4022 rtx last = after;
4023
5b0264cb 4024 gcc_assert (after);
2f937369
DM
4025
4026 if (x == NULL_RTX)
4027 return last;
4028
4029 switch (GET_CODE (x))
23b2ce53 4030 {
2f937369
DM
4031 case INSN:
4032 case JUMP_INSN:
4033 case CALL_INSN:
4034 case CODE_LABEL:
4035 case BARRIER:
4036 case NOTE:
6fb5fa3c 4037 last = emit_insn_after_1 (x, after, bb);
2f937369
DM
4038 break;
4039
4040#ifdef ENABLE_RTL_CHECKING
4041 case SEQUENCE:
5b0264cb 4042 gcc_unreachable ();
2f937369
DM
4043 break;
4044#endif
4045
4046 default:
4047 last = make_insn_raw (x);
6fb5fa3c 4048 add_insn_after (last, after, bb);
2f937369 4049 break;
23b2ce53
RS
4050 }
4051
2f937369 4052 return last;
23b2ce53
RS
4053}
4054
255680cf 4055
2f937369 4056/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4057 and output it after the insn AFTER. */
4058
4059rtx
a7102479 4060emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4061{
2f937369 4062 rtx last;
23b2ce53 4063
5b0264cb 4064 gcc_assert (after);
2f937369
DM
4065
4066 switch (GET_CODE (x))
23b2ce53 4067 {
2f937369
DM
4068 case INSN:
4069 case JUMP_INSN:
4070 case CALL_INSN:
4071 case CODE_LABEL:
4072 case BARRIER:
4073 case NOTE:
6fb5fa3c 4074 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4075 break;
4076
4077#ifdef ENABLE_RTL_CHECKING
4078 case SEQUENCE:
5b0264cb 4079 gcc_unreachable ();
2f937369
DM
4080 break;
4081#endif
4082
4083 default:
4084 last = make_jump_insn_raw (x);
6fb5fa3c 4085 add_insn_after (last, after, NULL);
2f937369 4086 break;
23b2ce53
RS
4087 }
4088
2f937369
DM
4089 return last;
4090}
4091
4092/* Make an instruction with body X and code CALL_INSN
4093 and output it after the instruction AFTER. */
4094
4095rtx
a7102479 4096emit_call_insn_after_noloc (rtx x, rtx after)
2f937369
DM
4097{
4098 rtx last;
4099
5b0264cb 4100 gcc_assert (after);
2f937369
DM
4101
4102 switch (GET_CODE (x))
4103 {
4104 case INSN:
4105 case JUMP_INSN:
4106 case CALL_INSN:
4107 case CODE_LABEL:
4108 case BARRIER:
4109 case NOTE:
6fb5fa3c 4110 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4111 break;
4112
4113#ifdef ENABLE_RTL_CHECKING
4114 case SEQUENCE:
5b0264cb 4115 gcc_unreachable ();
2f937369
DM
4116 break;
4117#endif
4118
4119 default:
4120 last = make_call_insn_raw (x);
6fb5fa3c 4121 add_insn_after (last, after, NULL);
2f937369
DM
4122 break;
4123 }
4124
4125 return last;
23b2ce53
RS
4126}
4127
4128/* Make an insn of code BARRIER
4129 and output it after the insn AFTER. */
4130
4131rtx
502b8322 4132emit_barrier_after (rtx after)
23b2ce53 4133{
b3694847 4134 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4135
4136 INSN_UID (insn) = cur_insn_uid++;
4137
6fb5fa3c 4138 add_insn_after (insn, after, NULL);
23b2ce53
RS
4139 return insn;
4140}
4141
4142/* Emit the label LABEL after the insn AFTER. */
4143
4144rtx
502b8322 4145emit_label_after (rtx label, rtx after)
23b2ce53
RS
4146{
4147 /* This can be called twice for the same label
4148 as a result of the confusion that follows a syntax error!
4149 So make it harmless. */
4150 if (INSN_UID (label) == 0)
4151 {
4152 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 4153 add_insn_after (label, after, NULL);
23b2ce53
RS
4154 }
4155
4156 return label;
4157}
4158
4159/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4160
4161rtx
a38e7aa5 4162emit_note_after (enum insn_note subtype, rtx after)
23b2ce53 4163{
b3694847 4164 rtx note = rtx_alloc (NOTE);
23b2ce53 4165 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4166 NOTE_KIND (note) = subtype;
ba4f7968 4167 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4168 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
6fb5fa3c 4169 add_insn_after (note, after, NULL);
23b2ce53
RS
4170 return note;
4171}
23b2ce53 4172\f
a7102479 4173/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4174rtx
502b8322 4175emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4176{
6fb5fa3c 4177 rtx last = emit_insn_after_noloc (pattern, after, NULL);
0d682900 4178
a7102479 4179 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4180 return last;
4181
2f937369
DM
4182 after = NEXT_INSN (after);
4183 while (1)
4184 {
a7102479 4185 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4186 INSN_LOCATOR (after) = loc;
2f937369
DM
4187 if (after == last)
4188 break;
4189 after = NEXT_INSN (after);
4190 }
0d682900
JH
4191 return last;
4192}
4193
a7102479
JH
4194/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4195rtx
4196emit_insn_after (rtx pattern, rtx after)
4197{
4198 if (INSN_P (after))
4199 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4200 else
6fb5fa3c 4201 return emit_insn_after_noloc (pattern, after, NULL);
a7102479
JH
4202}
4203
4204/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4205rtx
502b8322 4206emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4207{
a7102479 4208 rtx last = emit_jump_insn_after_noloc (pattern, after);
2f937369 4209
a7102479 4210 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4211 return last;
4212
2f937369
DM
4213 after = NEXT_INSN (after);
4214 while (1)
4215 {
a7102479 4216 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4217 INSN_LOCATOR (after) = loc;
2f937369
DM
4218 if (after == last)
4219 break;
4220 after = NEXT_INSN (after);
4221 }
0d682900
JH
4222 return last;
4223}
4224
a7102479
JH
4225/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4226rtx
4227emit_jump_insn_after (rtx pattern, rtx after)
4228{
4229 if (INSN_P (after))
4230 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4231 else
4232 return emit_jump_insn_after_noloc (pattern, after);
4233}
4234
4235/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4236rtx
502b8322 4237emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4238{
a7102479 4239 rtx last = emit_call_insn_after_noloc (pattern, after);
2f937369 4240
a7102479 4241 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4242 return last;
4243
2f937369
DM
4244 after = NEXT_INSN (after);
4245 while (1)
4246 {
a7102479 4247 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4248 INSN_LOCATOR (after) = loc;
2f937369
DM
4249 if (after == last)
4250 break;
4251 after = NEXT_INSN (after);
4252 }
0d682900
JH
4253 return last;
4254}
4255
a7102479
JH
4256/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4257rtx
4258emit_call_insn_after (rtx pattern, rtx after)
4259{
4260 if (INSN_P (after))
4261 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4262 else
4263 return emit_call_insn_after_noloc (pattern, after);
4264}
4265
4266/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4267rtx
502b8322 4268emit_insn_before_setloc (rtx pattern, rtx before, int loc)
0d682900
JH
4269{
4270 rtx first = PREV_INSN (before);
6fb5fa3c 4271 rtx last = emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4272
4273 if (pattern == NULL_RTX || !loc)
4274 return last;
4275
26cb3993
JH
4276 if (!first)
4277 first = get_insns ();
4278 else
4279 first = NEXT_INSN (first);
a7102479
JH
4280 while (1)
4281 {
4282 if (active_insn_p (first) && !INSN_LOCATOR (first))
4283 INSN_LOCATOR (first) = loc;
4284 if (first == last)
4285 break;
4286 first = NEXT_INSN (first);
4287 }
4288 return last;
4289}
4290
4291/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4292rtx
4293emit_insn_before (rtx pattern, rtx before)
4294{
4295 if (INSN_P (before))
4296 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4297 else
6fb5fa3c 4298 return emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4299}
4300
4301/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4302rtx
4303emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4304{
4305 rtx first = PREV_INSN (before);
4306 rtx last = emit_jump_insn_before_noloc (pattern, before);
4307
4308 if (pattern == NULL_RTX)
4309 return last;
4310
4311 first = NEXT_INSN (first);
4312 while (1)
4313 {
4314 if (active_insn_p (first) && !INSN_LOCATOR (first))
4315 INSN_LOCATOR (first) = loc;
4316 if (first == last)
4317 break;
4318 first = NEXT_INSN (first);
4319 }
4320 return last;
4321}
4322
4323/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4324rtx
4325emit_jump_insn_before (rtx pattern, rtx before)
4326{
4327 if (INSN_P (before))
4328 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4329 else
4330 return emit_jump_insn_before_noloc (pattern, before);
4331}
4332
4333/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4334rtx
4335emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4336{
4337 rtx first = PREV_INSN (before);
4338 rtx last = emit_call_insn_before_noloc (pattern, before);
0d682900 4339
dd3adcf8
DJ
4340 if (pattern == NULL_RTX)
4341 return last;
4342
2f937369
DM
4343 first = NEXT_INSN (first);
4344 while (1)
4345 {
a7102479 4346 if (active_insn_p (first) && !INSN_LOCATOR (first))
0435312e 4347 INSN_LOCATOR (first) = loc;
2f937369
DM
4348 if (first == last)
4349 break;
4350 first = NEXT_INSN (first);
4351 }
0d682900
JH
4352 return last;
4353}
a7102479
JH
4354
4355/* like emit_call_insn_before_noloc,
4356 but set insn_locator according to before. */
4357rtx
4358emit_call_insn_before (rtx pattern, rtx before)
4359{
4360 if (INSN_P (before))
4361 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4362 else
4363 return emit_call_insn_before_noloc (pattern, before);
4364}
0d682900 4365\f
2f937369
DM
4366/* Take X and emit it at the end of the doubly-linked
4367 INSN list.
23b2ce53
RS
4368
4369 Returns the last insn emitted. */
4370
4371rtx
502b8322 4372emit_insn (rtx x)
23b2ce53 4373{
2f937369
DM
4374 rtx last = last_insn;
4375 rtx insn;
23b2ce53 4376
2f937369
DM
4377 if (x == NULL_RTX)
4378 return last;
23b2ce53 4379
2f937369
DM
4380 switch (GET_CODE (x))
4381 {
4382 case INSN:
4383 case JUMP_INSN:
4384 case CALL_INSN:
4385 case CODE_LABEL:
4386 case BARRIER:
4387 case NOTE:
4388 insn = x;
4389 while (insn)
23b2ce53 4390 {
2f937369 4391 rtx next = NEXT_INSN (insn);
23b2ce53 4392 add_insn (insn);
2f937369
DM
4393 last = insn;
4394 insn = next;
23b2ce53 4395 }
2f937369 4396 break;
23b2ce53 4397
2f937369
DM
4398#ifdef ENABLE_RTL_CHECKING
4399 case SEQUENCE:
5b0264cb 4400 gcc_unreachable ();
2f937369
DM
4401 break;
4402#endif
23b2ce53 4403
2f937369
DM
4404 default:
4405 last = make_insn_raw (x);
4406 add_insn (last);
4407 break;
23b2ce53
RS
4408 }
4409
4410 return last;
4411}
4412
2f937369
DM
4413/* Make an insn of code JUMP_INSN with pattern X
4414 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4415
4416rtx
502b8322 4417emit_jump_insn (rtx x)
23b2ce53 4418{
d950dee3 4419 rtx last = NULL_RTX, insn;
23b2ce53 4420
2f937369 4421 switch (GET_CODE (x))
23b2ce53 4422 {
2f937369
DM
4423 case INSN:
4424 case JUMP_INSN:
4425 case CALL_INSN:
4426 case CODE_LABEL:
4427 case BARRIER:
4428 case NOTE:
4429 insn = x;
4430 while (insn)
4431 {
4432 rtx next = NEXT_INSN (insn);
4433 add_insn (insn);
4434 last = insn;
4435 insn = next;
4436 }
4437 break;
e0a5c5eb 4438
2f937369
DM
4439#ifdef ENABLE_RTL_CHECKING
4440 case SEQUENCE:
5b0264cb 4441 gcc_unreachable ();
2f937369
DM
4442 break;
4443#endif
e0a5c5eb 4444
2f937369
DM
4445 default:
4446 last = make_jump_insn_raw (x);
4447 add_insn (last);
4448 break;
3c030e88 4449 }
e0a5c5eb
RS
4450
4451 return last;
4452}
4453
2f937369 4454/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4455 and add it to the end of the doubly-linked list. */
4456
4457rtx
502b8322 4458emit_call_insn (rtx x)
23b2ce53 4459{
2f937369
DM
4460 rtx insn;
4461
4462 switch (GET_CODE (x))
23b2ce53 4463 {
2f937369
DM
4464 case INSN:
4465 case JUMP_INSN:
4466 case CALL_INSN:
4467 case CODE_LABEL:
4468 case BARRIER:
4469 case NOTE:
4470 insn = emit_insn (x);
4471 break;
23b2ce53 4472
2f937369
DM
4473#ifdef ENABLE_RTL_CHECKING
4474 case SEQUENCE:
5b0264cb 4475 gcc_unreachable ();
2f937369
DM
4476 break;
4477#endif
23b2ce53 4478
2f937369
DM
4479 default:
4480 insn = make_call_insn_raw (x);
23b2ce53 4481 add_insn (insn);
2f937369 4482 break;
23b2ce53 4483 }
2f937369
DM
4484
4485 return insn;
23b2ce53
RS
4486}
4487
4488/* Add the label LABEL to the end of the doubly-linked list. */
4489
4490rtx
502b8322 4491emit_label (rtx label)
23b2ce53
RS
4492{
4493 /* This can be called twice for the same label
4494 as a result of the confusion that follows a syntax error!
4495 So make it harmless. */
4496 if (INSN_UID (label) == 0)
4497 {
4498 INSN_UID (label) = cur_insn_uid++;
4499 add_insn (label);
4500 }
4501 return label;
4502}
4503
4504/* Make an insn of code BARRIER
4505 and add it to the end of the doubly-linked list. */
4506
4507rtx
502b8322 4508emit_barrier (void)
23b2ce53 4509{
b3694847 4510 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4511 INSN_UID (barrier) = cur_insn_uid++;
4512 add_insn (barrier);
4513 return barrier;
4514}
4515
5f2fc772 4516/* Emit a copy of note ORIG. */
502b8322 4517
5f2fc772
NS
4518rtx
4519emit_note_copy (rtx orig)
4520{
4521 rtx note;
4522
5f2fc772
NS
4523 note = rtx_alloc (NOTE);
4524
4525 INSN_UID (note) = cur_insn_uid++;
4526 NOTE_DATA (note) = NOTE_DATA (orig);
a38e7aa5 4527 NOTE_KIND (note) = NOTE_KIND (orig);
5f2fc772
NS
4528 BLOCK_FOR_INSN (note) = NULL;
4529 add_insn (note);
4530
2e040219 4531 return note;
23b2ce53
RS
4532}
4533
2e040219
NS
4534/* Make an insn of code NOTE or type NOTE_NO
4535 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4536
4537rtx
a38e7aa5 4538emit_note (enum insn_note kind)
23b2ce53 4539{
b3694847 4540 rtx note;
23b2ce53 4541
23b2ce53
RS
4542 note = rtx_alloc (NOTE);
4543 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4544 NOTE_KIND (note) = kind;
dd107e66 4545 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
ba4f7968 4546 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4547 add_insn (note);
4548 return note;
4549}
4550
23b2ce53 4551/* Cause next statement to emit a line note even if the line number
0cea056b 4552 has not changed. */
23b2ce53
RS
4553
4554void
502b8322 4555force_next_line_note (void)
23b2ce53 4556{
6773e15f 4557 last_location = -1;
23b2ce53 4558}
87b47c85
AM
4559
4560/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 4561 note of this type already exists, remove it first. */
87b47c85 4562
3d238248 4563rtx
502b8322 4564set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
4565{
4566 rtx note = find_reg_note (insn, kind, NULL_RTX);
6fb5fa3c 4567 rtx new_note = NULL;
87b47c85 4568
52488da1
JW
4569 switch (kind)
4570 {
4571 case REG_EQUAL:
4572 case REG_EQUIV:
4573 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4574 has multiple sets (some callers assume single_set
4575 means the insn only has one set, when in fact it
4576 means the insn only has one * useful * set). */
4577 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4578 {
5b0264cb 4579 gcc_assert (!note);
52488da1
JW
4580 return NULL_RTX;
4581 }
4582
4583 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4584 It serves no useful purpose and breaks eliminate_regs. */
4585 if (GET_CODE (datum) == ASM_OPERANDS)
4586 return NULL_RTX;
6fb5fa3c
DB
4587
4588 if (note)
4589 {
4590 XEXP (note, 0) = datum;
4591 df_notes_rescan (insn);
4592 return note;
4593 }
52488da1
JW
4594 break;
4595
4596 default:
6fb5fa3c
DB
4597 if (note)
4598 {
4599 XEXP (note, 0) = datum;
4600 return note;
4601 }
52488da1
JW
4602 break;
4603 }
3d238248 4604
6fb5fa3c
DB
4605 new_note = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
4606 REG_NOTES (insn) = new_note;
4607
4608 switch (kind)
3d238248 4609 {
6fb5fa3c
DB
4610 case REG_EQUAL:
4611 case REG_EQUIV:
4612 df_notes_rescan (insn);
4613 break;
4614 default:
4615 break;
3d238248 4616 }
87b47c85 4617
3d238248 4618 return REG_NOTES (insn);
87b47c85 4619}
23b2ce53
RS
4620\f
4621/* Return an indication of which type of insn should have X as a body.
4622 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4623
d78db459 4624static enum rtx_code
502b8322 4625classify_insn (rtx x)
23b2ce53 4626{
4b4bf941 4627 if (LABEL_P (x))
23b2ce53
RS
4628 return CODE_LABEL;
4629 if (GET_CODE (x) == CALL)
4630 return CALL_INSN;
4631 if (GET_CODE (x) == RETURN)
4632 return JUMP_INSN;
4633 if (GET_CODE (x) == SET)
4634 {
4635 if (SET_DEST (x) == pc_rtx)
4636 return JUMP_INSN;
4637 else if (GET_CODE (SET_SRC (x)) == CALL)
4638 return CALL_INSN;
4639 else
4640 return INSN;
4641 }
4642 if (GET_CODE (x) == PARALLEL)
4643 {
b3694847 4644 int j;
23b2ce53
RS
4645 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4646 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4647 return CALL_INSN;
4648 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4649 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4650 return JUMP_INSN;
4651 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4652 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4653 return CALL_INSN;
4654 }
4655 return INSN;
4656}
4657
4658/* Emit the rtl pattern X as an appropriate kind of insn.
4659 If X is a label, it is simply added into the insn chain. */
4660
4661rtx
502b8322 4662emit (rtx x)
23b2ce53
RS
4663{
4664 enum rtx_code code = classify_insn (x);
4665
5b0264cb 4666 switch (code)
23b2ce53 4667 {
5b0264cb
NS
4668 case CODE_LABEL:
4669 return emit_label (x);
4670 case INSN:
4671 return emit_insn (x);
4672 case JUMP_INSN:
4673 {
4674 rtx insn = emit_jump_insn (x);
4675 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
4676 return emit_barrier ();
4677 return insn;
4678 }
4679 case CALL_INSN:
4680 return emit_call_insn (x);
4681 default:
4682 gcc_unreachable ();
23b2ce53 4683 }
23b2ce53
RS
4684}
4685\f
e2500fed 4686/* Space for free sequence stack entries. */
1431042e 4687static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 4688
4dfa0342
RH
4689/* Begin emitting insns to a sequence. If this sequence will contain
4690 something that might cause the compiler to pop arguments to function
4691 calls (because those pops have previously been deferred; see
4692 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
4693 before calling this function. That will ensure that the deferred
4694 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
4695
4696void
502b8322 4697start_sequence (void)
23b2ce53
RS
4698{
4699 struct sequence_stack *tem;
4700
e2500fed
GK
4701 if (free_sequence_stack != NULL)
4702 {
4703 tem = free_sequence_stack;
4704 free_sequence_stack = tem->next;
4705 }
4706 else
703ad42b 4707 tem = ggc_alloc (sizeof (struct sequence_stack));
23b2ce53 4708
49ad7cfa 4709 tem->next = seq_stack;
23b2ce53
RS
4710 tem->first = first_insn;
4711 tem->last = last_insn;
4712
49ad7cfa 4713 seq_stack = tem;
23b2ce53
RS
4714
4715 first_insn = 0;
4716 last_insn = 0;
4717}
4718
5c7a310f
MM
4719/* Set up the insn chain starting with FIRST as the current sequence,
4720 saving the previously current one. See the documentation for
4721 start_sequence for more information about how to use this function. */
23b2ce53
RS
4722
4723void
502b8322 4724push_to_sequence (rtx first)
23b2ce53
RS
4725{
4726 rtx last;
4727
4728 start_sequence ();
4729
4730 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4731
4732 first_insn = first;
4733 last_insn = last;
4734}
4735
bb27eeda
SE
4736/* Like push_to_sequence, but take the last insn as an argument to avoid
4737 looping through the list. */
4738
4739void
4740push_to_sequence2 (rtx first, rtx last)
4741{
4742 start_sequence ();
4743
4744 first_insn = first;
4745 last_insn = last;
4746}
4747
f15ae3a1
TW
4748/* Set up the outer-level insn chain
4749 as the current sequence, saving the previously current one. */
4750
4751void
502b8322 4752push_topmost_sequence (void)
f15ae3a1 4753{
aefdd5ab 4754 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
4755
4756 start_sequence ();
4757
49ad7cfa 4758 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4759 top = stack;
4760
4761 first_insn = top->first;
4762 last_insn = top->last;
4763}
4764
4765/* After emitting to the outer-level insn chain, update the outer-level
4766 insn chain, and restore the previous saved state. */
4767
4768void
502b8322 4769pop_topmost_sequence (void)
f15ae3a1 4770{
aefdd5ab 4771 struct sequence_stack *stack, *top = NULL;
f15ae3a1 4772
49ad7cfa 4773 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4774 top = stack;
4775
4776 top->first = first_insn;
4777 top->last = last_insn;
4778
4779 end_sequence ();
4780}
4781
23b2ce53
RS
4782/* After emitting to a sequence, restore previous saved state.
4783
5c7a310f 4784 To get the contents of the sequence just made, you must call
2f937369 4785 `get_insns' *before* calling here.
5c7a310f
MM
4786
4787 If the compiler might have deferred popping arguments while
4788 generating this sequence, and this sequence will not be immediately
4789 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 4790 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
4791 pops are inserted into this sequence, and not into some random
4792 location in the instruction stream. See INHIBIT_DEFER_POP for more
4793 information about deferred popping of arguments. */
23b2ce53
RS
4794
4795void
502b8322 4796end_sequence (void)
23b2ce53 4797{
49ad7cfa 4798 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
4799
4800 first_insn = tem->first;
4801 last_insn = tem->last;
49ad7cfa 4802 seq_stack = tem->next;
23b2ce53 4803
e2500fed
GK
4804 memset (tem, 0, sizeof (*tem));
4805 tem->next = free_sequence_stack;
4806 free_sequence_stack = tem;
23b2ce53
RS
4807}
4808
4809/* Return 1 if currently emitting into a sequence. */
4810
4811int
502b8322 4812in_sequence_p (void)
23b2ce53 4813{
49ad7cfa 4814 return seq_stack != 0;
23b2ce53 4815}
23b2ce53 4816\f
59ec66dc
MM
4817/* Put the various virtual registers into REGNO_REG_RTX. */
4818
2bbdec73 4819static void
bd60bab2 4820init_virtual_regs (void)
59ec66dc 4821{
bd60bab2
JH
4822 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
4823 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
4824 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
4825 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
4826 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
49ad7cfa
BS
4827}
4828
da43a810
BS
4829\f
4830/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
4831static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
4832static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
4833static int copy_insn_n_scratches;
4834
4835/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4836 copied an ASM_OPERANDS.
4837 In that case, it is the original input-operand vector. */
4838static rtvec orig_asm_operands_vector;
4839
4840/* When an insn is being copied by copy_insn_1, this is nonzero if we have
4841 copied an ASM_OPERANDS.
4842 In that case, it is the copied input-operand vector. */
4843static rtvec copy_asm_operands_vector;
4844
4845/* Likewise for the constraints vector. */
4846static rtvec orig_asm_constraints_vector;
4847static rtvec copy_asm_constraints_vector;
4848
4849/* Recursively create a new copy of an rtx for copy_insn.
4850 This function differs from copy_rtx in that it handles SCRATCHes and
4851 ASM_OPERANDs properly.
4852 Normally, this function is not used directly; use copy_insn as front end.
4853 However, you could first copy an insn pattern with copy_insn and then use
4854 this function afterwards to properly copy any REG_NOTEs containing
4855 SCRATCHes. */
4856
4857rtx
502b8322 4858copy_insn_1 (rtx orig)
da43a810 4859{
b3694847
SS
4860 rtx copy;
4861 int i, j;
4862 RTX_CODE code;
4863 const char *format_ptr;
da43a810
BS
4864
4865 code = GET_CODE (orig);
4866
4867 switch (code)
4868 {
4869 case REG:
da43a810
BS
4870 case CONST_INT:
4871 case CONST_DOUBLE:
091a3ac7 4872 case CONST_FIXED:
69ef87e2 4873 case CONST_VECTOR:
da43a810
BS
4874 case SYMBOL_REF:
4875 case CODE_LABEL:
4876 case PC:
4877 case CC0:
da43a810 4878 return orig;
3e89ed8d
JH
4879 case CLOBBER:
4880 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
4881 return orig;
4882 break;
da43a810
BS
4883
4884 case SCRATCH:
4885 for (i = 0; i < copy_insn_n_scratches; i++)
4886 if (copy_insn_scratch_in[i] == orig)
4887 return copy_insn_scratch_out[i];
4888 break;
4889
4890 case CONST:
6fb5fa3c 4891 if (shared_const_p (orig))
da43a810
BS
4892 return orig;
4893 break;
750c9258 4894
da43a810
BS
4895 /* A MEM with a constant address is not sharable. The problem is that
4896 the constant address may need to be reloaded. If the mem is shared,
4897 then reloading one copy of this mem will cause all copies to appear
4898 to have been reloaded. */
4899
4900 default:
4901 break;
4902 }
4903
aacd3885
RS
4904 /* Copy the various flags, fields, and other information. We assume
4905 that all fields need copying, and then clear the fields that should
da43a810
BS
4906 not be copied. That is the sensible default behavior, and forces
4907 us to explicitly document why we are *not* copying a flag. */
aacd3885 4908 copy = shallow_copy_rtx (orig);
da43a810
BS
4909
4910 /* We do not copy the USED flag, which is used as a mark bit during
4911 walks over the RTL. */
2adc7f12 4912 RTX_FLAG (copy, used) = 0;
da43a810
BS
4913
4914 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 4915 if (INSN_P (orig))
da43a810 4916 {
2adc7f12
JJ
4917 RTX_FLAG (copy, jump) = 0;
4918 RTX_FLAG (copy, call) = 0;
4919 RTX_FLAG (copy, frame_related) = 0;
da43a810 4920 }
750c9258 4921
da43a810
BS
4922 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
4923
4924 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
4925 switch (*format_ptr++)
4926 {
4927 case 'e':
4928 if (XEXP (orig, i) != NULL)
4929 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
4930 break;
da43a810 4931
aacd3885
RS
4932 case 'E':
4933 case 'V':
4934 if (XVEC (orig, i) == orig_asm_constraints_vector)
4935 XVEC (copy, i) = copy_asm_constraints_vector;
4936 else if (XVEC (orig, i) == orig_asm_operands_vector)
4937 XVEC (copy, i) = copy_asm_operands_vector;
4938 else if (XVEC (orig, i) != NULL)
4939 {
4940 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
4941 for (j = 0; j < XVECLEN (copy, i); j++)
4942 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
4943 }
4944 break;
da43a810 4945
aacd3885
RS
4946 case 't':
4947 case 'w':
4948 case 'i':
4949 case 's':
4950 case 'S':
4951 case 'u':
4952 case '0':
4953 /* These are left unchanged. */
4954 break;
da43a810 4955
aacd3885
RS
4956 default:
4957 gcc_unreachable ();
4958 }
da43a810
BS
4959
4960 if (code == SCRATCH)
4961 {
4962 i = copy_insn_n_scratches++;
5b0264cb 4963 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
4964 copy_insn_scratch_in[i] = orig;
4965 copy_insn_scratch_out[i] = copy;
4966 }
4967 else if (code == ASM_OPERANDS)
4968 {
6462bb43
AO
4969 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
4970 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
4971 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
4972 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
4973 }
4974
4975 return copy;
4976}
4977
4978/* Create a new copy of an rtx.
4979 This function differs from copy_rtx in that it handles SCRATCHes and
4980 ASM_OPERANDs properly.
4981 INSN doesn't really have to be a full INSN; it could be just the
4982 pattern. */
4983rtx
502b8322 4984copy_insn (rtx insn)
da43a810
BS
4985{
4986 copy_insn_n_scratches = 0;
4987 orig_asm_operands_vector = 0;
4988 orig_asm_constraints_vector = 0;
4989 copy_asm_operands_vector = 0;
4990 copy_asm_constraints_vector = 0;
4991 return copy_insn_1 (insn);
4992}
59ec66dc 4993
23b2ce53
RS
4994/* Initialize data structures and variables in this file
4995 before generating rtl for each function. */
4996
4997void
502b8322 4998init_emit (void)
23b2ce53 4999{
23b2ce53
RS
5000 first_insn = NULL;
5001 last_insn = NULL;
5002 cur_insn_uid = 1;
5003 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
6773e15f 5004 last_location = UNKNOWN_LOCATION;
23b2ce53 5005 first_label_num = label_num;
49ad7cfa 5006 seq_stack = NULL;
23b2ce53 5007
23b2ce53
RS
5008 /* Init the tables that describe all the pseudo regs. */
5009
3e029763 5010 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5011
3e029763
JH
5012 crtl->emit.regno_pointer_align
5013 = xcalloc (crtl->emit.regno_pointer_align_length
9fb7564e 5014 * sizeof (unsigned char), 1);
86fe05e0 5015
750c9258 5016 regno_reg_rtx
3e029763 5017 = ggc_alloc (crtl->emit.regno_pointer_align_length * sizeof (rtx));
0d4903b8 5018
e50126e8 5019 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876
JL
5020 memcpy (regno_reg_rtx,
5021 static_regno_reg_rtx,
5022 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5023
23b2ce53 5024 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5025 init_virtual_regs ();
740ab4a2
RK
5026
5027 /* Indicate that the virtual registers and stack locations are
5028 all pointers. */
3502dc9c
JDA
5029 REG_POINTER (stack_pointer_rtx) = 1;
5030 REG_POINTER (frame_pointer_rtx) = 1;
5031 REG_POINTER (hard_frame_pointer_rtx) = 1;
5032 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5033
3502dc9c
JDA
5034 REG_POINTER (virtual_incoming_args_rtx) = 1;
5035 REG_POINTER (virtual_stack_vars_rtx) = 1;
5036 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5037 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5038 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5039
86fe05e0 5040#ifdef STACK_BOUNDARY
bdb429a5
RK
5041 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5042 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5043 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5044 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5045
5046 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5047 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5048 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5049 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5050 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5051#endif
5052
5e82e7bd
JVA
5053#ifdef INIT_EXPANDERS
5054 INIT_EXPANDERS;
5055#endif
23b2ce53
RS
5056}
5057
a73b091d 5058/* Generate a vector constant for mode MODE and constant value CONSTANT. */
69ef87e2
AH
5059
5060static rtx
a73b091d 5061gen_const_vector (enum machine_mode mode, int constant)
69ef87e2
AH
5062{
5063 rtx tem;
5064 rtvec v;
5065 int units, i;
5066 enum machine_mode inner;
5067
5068 units = GET_MODE_NUNITS (mode);
5069 inner = GET_MODE_INNER (mode);
5070
15ed7b52
JG
5071 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5072
69ef87e2
AH
5073 v = rtvec_alloc (units);
5074
a73b091d
JW
5075 /* We need to call this function after we set the scalar const_tiny_rtx
5076 entries. */
5077 gcc_assert (const_tiny_rtx[constant][(int) inner]);
69ef87e2
AH
5078
5079 for (i = 0; i < units; ++i)
a73b091d 5080 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
69ef87e2 5081
a06e3c40 5082 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5083 return tem;
5084}
5085
a06e3c40 5086/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5087 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5088rtx
502b8322 5089gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
a06e3c40 5090{
a73b091d
JW
5091 enum machine_mode inner = GET_MODE_INNER (mode);
5092 int nunits = GET_MODE_NUNITS (mode);
5093 rtx x;
a06e3c40
R
5094 int i;
5095
a73b091d
JW
5096 /* Check to see if all of the elements have the same value. */
5097 x = RTVEC_ELT (v, nunits - 1);
5098 for (i = nunits - 2; i >= 0; i--)
5099 if (RTVEC_ELT (v, i) != x)
5100 break;
5101
5102 /* If the values are all the same, check to see if we can use one of the
5103 standard constant vectors. */
5104 if (i == -1)
5105 {
5106 if (x == CONST0_RTX (inner))
5107 return CONST0_RTX (mode);
5108 else if (x == CONST1_RTX (inner))
5109 return CONST1_RTX (mode);
5110 }
5111
5112 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5113}
5114
b5deb7b6
SL
5115/* Initialise global register information required by all functions. */
5116
5117void
5118init_emit_regs (void)
5119{
5120 int i;
5121
5122 /* Reset register attributes */
5123 htab_empty (reg_attrs_htab);
5124
5125 /* We need reg_raw_mode, so initialize the modes now. */
5126 init_reg_modes_target ();
5127
5128 /* Assign register numbers to the globally defined register rtx. */
5129 pc_rtx = gen_rtx_PC (VOIDmode);
5130 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5131 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5132 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5133 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5134 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5135 virtual_incoming_args_rtx =
5136 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5137 virtual_stack_vars_rtx =
5138 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5139 virtual_stack_dynamic_rtx =
5140 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5141 virtual_outgoing_args_rtx =
5142 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5143 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5144
5145 /* Initialize RTL for commonly used hard registers. These are
5146 copied into regno_reg_rtx as we begin to compile each function. */
5147 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5148 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5149
5150#ifdef RETURN_ADDRESS_POINTER_REGNUM
5151 return_address_pointer_rtx
5152 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5153#endif
5154
5155#ifdef STATIC_CHAIN_REGNUM
5156 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5157
5158#ifdef STATIC_CHAIN_INCOMING_REGNUM
5159 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5160 static_chain_incoming_rtx
5161 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5162 else
5163#endif
5164 static_chain_incoming_rtx = static_chain_rtx;
5165#endif
5166
5167#ifdef STATIC_CHAIN
5168 static_chain_rtx = STATIC_CHAIN;
5169
5170#ifdef STATIC_CHAIN_INCOMING
5171 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5172#else
5173 static_chain_incoming_rtx = static_chain_rtx;
5174#endif
5175#endif
5176
5177 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5178 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5179 else
5180 pic_offset_table_rtx = NULL_RTX;
5181}
5182
23b2ce53
RS
5183/* Create some permanent unique rtl objects shared between all functions.
5184 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5185
5186void
502b8322 5187init_emit_once (int line_numbers)
23b2ce53
RS
5188{
5189 int i;
5190 enum machine_mode mode;
9ec36da5 5191 enum machine_mode double_mode;
23b2ce53 5192
091a3ac7
CF
5193 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5194 hash tables. */
17211ab5
GK
5195 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5196 const_int_htab_eq, NULL);
173b24b9 5197
17211ab5
GK
5198 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5199 const_double_htab_eq, NULL);
5692c7bc 5200
091a3ac7
CF
5201 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5202 const_fixed_htab_eq, NULL);
5203
17211ab5
GK
5204 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5205 mem_attrs_htab_eq, NULL);
a560d4d4
JH
5206 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5207 reg_attrs_htab_eq, NULL);
67673f5c 5208
23b2ce53
RS
5209 no_line_numbers = ! line_numbers;
5210
43fa6302
AS
5211 /* Compute the word and byte modes. */
5212
5213 byte_mode = VOIDmode;
5214 word_mode = VOIDmode;
5215 double_mode = VOIDmode;
5216
15ed7b52
JG
5217 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5218 mode != VOIDmode;
43fa6302
AS
5219 mode = GET_MODE_WIDER_MODE (mode))
5220 {
5221 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5222 && byte_mode == VOIDmode)
5223 byte_mode = mode;
5224
5225 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5226 && word_mode == VOIDmode)
5227 word_mode = mode;
5228 }
5229
15ed7b52
JG
5230 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5231 mode != VOIDmode;
43fa6302
AS
5232 mode = GET_MODE_WIDER_MODE (mode))
5233 {
5234 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5235 && double_mode == VOIDmode)
5236 double_mode = mode;
5237 }
5238
5239 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5240
5da077de 5241#ifdef INIT_EXPANDERS
414c4dc4
NC
5242 /* This is to initialize {init|mark|free}_machine_status before the first
5243 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5244 end which calls push_function_context_to before the first call to
5da077de
AS
5245 init_function_start. */
5246 INIT_EXPANDERS;
5247#endif
5248
23b2ce53
RS
5249 /* Create the unique rtx's for certain rtx codes and operand values. */
5250
a2a8cc44 5251 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 5252 tries to use these variables. */
23b2ce53 5253 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5254 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5255 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5256
68d75312
JC
5257 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5258 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5259 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5260 else
3b80f6ca 5261 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5262
5692c7bc
ZW
5263 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5264 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5265 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
aefa9d43
KG
5266
5267 dconstm1 = dconst1;
5268 dconstm1.sign = 1;
03f2ea93
RS
5269
5270 dconsthalf = dconst1;
1e92bbb9 5271 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 5272
f7657db9 5273 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
23b2ce53 5274 {
aefa9d43 5275 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
5276 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5277
15ed7b52
JG
5278 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5279 mode != VOIDmode;
5280 mode = GET_MODE_WIDER_MODE (mode))
5281 const_tiny_rtx[i][(int) mode] =
5282 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5283
5284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5285 mode != VOIDmode;
23b2ce53 5286 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5287 const_tiny_rtx[i][(int) mode] =
5288 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5289
906c4e36 5290 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 5291
15ed7b52
JG
5292 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5293 mode != VOIDmode;
23b2ce53 5294 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5295 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
5296
5297 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5298 mode != VOIDmode;
5299 mode = GET_MODE_WIDER_MODE (mode))
5300 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5301 }
5302
e90721b1
AP
5303 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5304 mode != VOIDmode;
5305 mode = GET_MODE_WIDER_MODE (mode))
5306 {
5307 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5308 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5309 }
5310
5311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5312 mode != VOIDmode;
5313 mode = GET_MODE_WIDER_MODE (mode))
5314 {
5315 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5316 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5317 }
5318
69ef87e2
AH
5319 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5320 mode != VOIDmode;
5321 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5322 {
5323 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5324 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5325 }
69ef87e2
AH
5326
5327 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5328 mode != VOIDmode;
5329 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5330 {
5331 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5332 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5333 }
69ef87e2 5334
325217ed
CF
5335 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5336 mode != VOIDmode;
5337 mode = GET_MODE_WIDER_MODE (mode))
5338 {
5339 FCONST0(mode).data.high = 0;
5340 FCONST0(mode).data.low = 0;
5341 FCONST0(mode).mode = mode;
091a3ac7
CF
5342 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5343 FCONST0 (mode), mode);
325217ed
CF
5344 }
5345
5346 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5347 mode != VOIDmode;
5348 mode = GET_MODE_WIDER_MODE (mode))
5349 {
5350 FCONST0(mode).data.high = 0;
5351 FCONST0(mode).data.low = 0;
5352 FCONST0(mode).mode = mode;
091a3ac7
CF
5353 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5354 FCONST0 (mode), mode);
325217ed
CF
5355 }
5356
5357 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5358 mode != VOIDmode;
5359 mode = GET_MODE_WIDER_MODE (mode))
5360 {
5361 FCONST0(mode).data.high = 0;
5362 FCONST0(mode).data.low = 0;
5363 FCONST0(mode).mode = mode;
091a3ac7
CF
5364 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5365 FCONST0 (mode), mode);
325217ed
CF
5366
5367 /* We store the value 1. */
5368 FCONST1(mode).data.high = 0;
5369 FCONST1(mode).data.low = 0;
5370 FCONST1(mode).mode = mode;
5371 lshift_double (1, 0, GET_MODE_FBIT (mode),
5372 2 * HOST_BITS_PER_WIDE_INT,
5373 &FCONST1(mode).data.low,
5374 &FCONST1(mode).data.high,
5375 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5376 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5377 FCONST1 (mode), mode);
325217ed
CF
5378 }
5379
5380 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5381 mode != VOIDmode;
5382 mode = GET_MODE_WIDER_MODE (mode))
5383 {
5384 FCONST0(mode).data.high = 0;
5385 FCONST0(mode).data.low = 0;
5386 FCONST0(mode).mode = mode;
091a3ac7
CF
5387 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5388 FCONST0 (mode), mode);
325217ed
CF
5389
5390 /* We store the value 1. */
5391 FCONST1(mode).data.high = 0;
5392 FCONST1(mode).data.low = 0;
5393 FCONST1(mode).mode = mode;
5394 lshift_double (1, 0, GET_MODE_FBIT (mode),
5395 2 * HOST_BITS_PER_WIDE_INT,
5396 &FCONST1(mode).data.low,
5397 &FCONST1(mode).data.high,
5398 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5399 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5400 FCONST1 (mode), mode);
5401 }
5402
5403 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5404 mode != VOIDmode;
5405 mode = GET_MODE_WIDER_MODE (mode))
5406 {
5407 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5408 }
5409
5410 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5411 mode != VOIDmode;
5412 mode = GET_MODE_WIDER_MODE (mode))
5413 {
5414 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5415 }
5416
5417 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5418 mode != VOIDmode;
5419 mode = GET_MODE_WIDER_MODE (mode))
5420 {
5421 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5422 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5423 }
5424
5425 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5426 mode != VOIDmode;
5427 mode = GET_MODE_WIDER_MODE (mode))
5428 {
5429 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5430 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
5431 }
5432
dbbbbf3b
JDA
5433 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5434 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5435 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5436
f0417c82
RH
5437 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5438 if (STORE_FLAG_VALUE == 1)
5439 const_tiny_rtx[1][(int) BImode] = const1_rtx;
23b2ce53 5440}
a11759a3 5441\f
969d70ca
JH
5442/* Produce exact duplicate of insn INSN after AFTER.
5443 Care updating of libcall regions if present. */
5444
5445rtx
502b8322 5446emit_copy_of_insn_after (rtx insn, rtx after)
969d70ca
JH
5447{
5448 rtx new;
5449 rtx note1, note2, link;
5450
5451 switch (GET_CODE (insn))
5452 {
5453 case INSN:
5454 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5455 break;
5456
5457 case JUMP_INSN:
5458 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5459 break;
5460
5461 case CALL_INSN:
5462 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5463 if (CALL_INSN_FUNCTION_USAGE (insn))
5464 CALL_INSN_FUNCTION_USAGE (new)
5465 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5466 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5467 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5468 break;
5469
5470 default:
5b0264cb 5471 gcc_unreachable ();
969d70ca
JH
5472 }
5473
5474 /* Update LABEL_NUSES. */
5475 mark_jump_label (PATTERN (new), new, 0);
5476
0435312e 5477 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
ba4f7968 5478
0a3d71f5
JW
5479 /* If the old insn is frame related, then so is the new one. This is
5480 primarily needed for IA-64 unwind info which marks epilogue insns,
5481 which may be duplicated by the basic block reordering code. */
5482 RTX_FRAME_RELATED_P (new) = RTX_FRAME_RELATED_P (insn);
5483
cf7c4aa6
HPN
5484 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5485 will make them. REG_LABEL_TARGETs are created there too, but are
5486 supposed to be sticky, so we copy them. */
969d70ca 5487 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 5488 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca
JH
5489 {
5490 if (GET_CODE (link) == EXPR_LIST)
5491 REG_NOTES (new)
4b73962b
JH
5492 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5493 copy_insn_1 (XEXP (link, 0)), REG_NOTES (new));
969d70ca
JH
5494 else
5495 REG_NOTES (new)
4b73962b 5496 = gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
95e2a53b 5497 XEXP (link, 0), REG_NOTES (new));
969d70ca
JH
5498 }
5499
5500 /* Fix the libcall sequences. */
5501 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5502 {
5503 rtx p = new;
5504 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5505 p = PREV_INSN (p);
5506 XEXP (note1, 0) = p;
5507 XEXP (note2, 0) = new;
5508 }
6f0d3566 5509 INSN_CODE (new) = INSN_CODE (insn);
969d70ca
JH
5510 return new;
5511}
e2500fed 5512
1431042e 5513static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d
JH
5514rtx
5515gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5516{
5517 if (hard_reg_clobbers[mode][regno])
5518 return hard_reg_clobbers[mode][regno];
5519 else
5520 return (hard_reg_clobbers[mode][regno] =
5521 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5522}
5523
e2500fed 5524#include "gt-emit-rtl.h"