]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
re PR target/56043 (ICE in rs6000_builtin_vectorized_libmass for vsx-mass-1.c)
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
d1e082c2 2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
23b2ce53 3
1322177d 4This file is part of GCC.
23b2ce53 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
23b2ce53 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
23b2ce53
RS
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
23b2ce53
RS
19
20
21/* Middle-to-low level generation of rtx code and insns.
22
f822fcf7
KH
23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
31 dependent is the kind of rtx's they make and what arguments they
32 use. */
23b2ce53
RS
33
34#include "config.h"
670ee920 35#include "system.h"
4977bab6
ZW
36#include "coretypes.h"
37#include "tm.h"
718f9c0f 38#include "diagnostic-core.h"
23b2ce53 39#include "rtl.h"
a25c7971 40#include "tree.h"
6baf1cc8 41#include "tm_p.h"
23b2ce53
RS
42#include "flags.h"
43#include "function.h"
44#include "expr.h"
45#include "regs.h"
aff48bca 46#include "hard-reg-set.h"
c13e8210 47#include "hashtab.h"
23b2ce53 48#include "insn-config.h"
e9a25f70 49#include "recog.h"
0dfa1860 50#include "bitmap.h"
a05924f9 51#include "basic-block.h"
87ff9c8e 52#include "ggc.h"
e1772ac0 53#include "debug.h"
d23c55c2 54#include "langhooks.h"
6fb5fa3c 55#include "df.h"
b5b8b0ac 56#include "params.h"
d4ebfa65 57#include "target.h"
ca695ac9 58
5fb0e246
RS
59struct target_rtl default_target_rtl;
60#if SWITCHABLE_TARGET
61struct target_rtl *this_target_rtl = &default_target_rtl;
62#endif
63
64#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
65
1d445e9e
ILT
66/* Commonly used modes. */
67
0f41302f
MS
68enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
69enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 70enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 71enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 72
bd60bab2
JH
73/* Datastructures maintained for currently processed function in RTL form. */
74
3e029763 75struct rtl_data x_rtl;
bd60bab2
JH
76
77/* Indexed by pseudo register number, gives the rtx for that pseudo.
b8698a0f 78 Allocated in parallel with regno_pointer_align.
bd60bab2
JH
79 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
80 with length attribute nested in top level structures. */
81
82rtx * regno_reg_rtx;
23b2ce53
RS
83
84/* This is *not* reset after each function. It gives each CODE_LABEL
85 in the entire compilation a unique label number. */
86
044b4de3 87static GTY(()) int label_num = 1;
23b2ce53 88
23b2ce53
RS
89/* We record floating-point CONST_DOUBLEs in each floating-point mode for
90 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
e7c82a99
JJ
91 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
92 is set only for MODE_INT and MODE_VECTOR_INT modes. */
23b2ce53 93
e7c82a99 94rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
23b2ce53 95
68d75312
JC
96rtx const_true_rtx;
97
23b2ce53
RS
98REAL_VALUE_TYPE dconst0;
99REAL_VALUE_TYPE dconst1;
100REAL_VALUE_TYPE dconst2;
101REAL_VALUE_TYPE dconstm1;
03f2ea93 102REAL_VALUE_TYPE dconsthalf;
23b2ce53 103
325217ed
CF
104/* Record fixed-point constant 0 and 1. */
105FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
106FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
107
23b2ce53
RS
108/* We make one copy of (const_int C) where C is in
109 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
110 to save space during the compilation and simplify comparisons of
111 integers. */
112
5da077de 113rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 114
ca4adc91
RS
115/* Standard pieces of rtx, to be substituted directly into things. */
116rtx pc_rtx;
117rtx ret_rtx;
118rtx simple_return_rtx;
119rtx cc0_rtx;
120
c13e8210
MM
121/* A hash table storing CONST_INTs whose absolute value is greater
122 than MAX_SAVED_CONST_INT. */
123
e2500fed
GK
124static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
125 htab_t const_int_htab;
c13e8210 126
173b24b9 127/* A hash table storing memory attribute structures. */
e2500fed
GK
128static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
129 htab_t mem_attrs_htab;
173b24b9 130
a560d4d4
JH
131/* A hash table storing register attribute structures. */
132static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
133 htab_t reg_attrs_htab;
134
5692c7bc 135/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
136static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
137 htab_t const_double_htab;
5692c7bc 138
091a3ac7
CF
139/* A hash table storing all CONST_FIXEDs. */
140static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
141 htab_t const_fixed_htab;
142
3e029763 143#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
b5b8b0ac 144#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
3e029763 145#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 146
502b8322 147static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
5eb2a9f2 148static void set_used_decls (tree);
502b8322
AJ
149static void mark_label_nuses (rtx);
150static hashval_t const_int_htab_hash (const void *);
151static int const_int_htab_eq (const void *, const void *);
152static hashval_t const_double_htab_hash (const void *);
153static int const_double_htab_eq (const void *, const void *);
154static rtx lookup_const_double (rtx);
091a3ac7
CF
155static hashval_t const_fixed_htab_hash (const void *);
156static int const_fixed_htab_eq (const void *, const void *);
157static rtx lookup_const_fixed (rtx);
502b8322
AJ
158static hashval_t mem_attrs_htab_hash (const void *);
159static int mem_attrs_htab_eq (const void *, const void *);
502b8322
AJ
160static hashval_t reg_attrs_htab_hash (const void *);
161static int reg_attrs_htab_eq (const void *, const void *);
162static reg_attrs *get_reg_attrs (tree, int);
a73b091d 163static rtx gen_const_vector (enum machine_mode, int);
32b32b16 164static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 165
6b24c259
JH
166/* Probability of the conditional branch currently proceeded by try_split.
167 Set to -1 otherwise. */
168int split_branch_probability = -1;
ca695ac9 169\f
c13e8210
MM
170/* Returns a hash code for X (which is a really a CONST_INT). */
171
172static hashval_t
502b8322 173const_int_htab_hash (const void *x)
c13e8210 174{
f7d504c2 175 return (hashval_t) INTVAL ((const_rtx) x);
c13e8210
MM
176}
177
cc2902df 178/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
179 CONST_INT) is the same as that given by Y (which is really a
180 HOST_WIDE_INT *). */
181
182static int
502b8322 183const_int_htab_eq (const void *x, const void *y)
c13e8210 184{
f7d504c2 185 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
5692c7bc
ZW
186}
187
188/* Returns a hash code for X (which is really a CONST_DOUBLE). */
189static hashval_t
502b8322 190const_double_htab_hash (const void *x)
5692c7bc 191{
f7d504c2 192 const_rtx const value = (const_rtx) x;
46b33600 193 hashval_t h;
5692c7bc 194
46b33600
RH
195 if (GET_MODE (value) == VOIDmode)
196 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
197 else
fe352c29 198 {
15c812e3 199 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
200 /* MODE is used in the comparison, so it should be in the hash. */
201 h ^= GET_MODE (value);
202 }
5692c7bc
ZW
203 return h;
204}
205
cc2902df 206/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
207 is the same as that represented by Y (really a ...) */
208static int
502b8322 209const_double_htab_eq (const void *x, const void *y)
5692c7bc 210{
f7d504c2 211 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
5692c7bc
ZW
212
213 if (GET_MODE (a) != GET_MODE (b))
214 return 0;
8580f7a0
RH
215 if (GET_MODE (a) == VOIDmode)
216 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
217 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
218 else
219 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
220 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
221}
222
091a3ac7
CF
223/* Returns a hash code for X (which is really a CONST_FIXED). */
224
225static hashval_t
226const_fixed_htab_hash (const void *x)
227{
3101faab 228 const_rtx const value = (const_rtx) x;
091a3ac7
CF
229 hashval_t h;
230
231 h = fixed_hash (CONST_FIXED_VALUE (value));
232 /* MODE is used in the comparison, so it should be in the hash. */
233 h ^= GET_MODE (value);
234 return h;
235}
236
237/* Returns nonzero if the value represented by X (really a ...)
238 is the same as that represented by Y (really a ...). */
239
240static int
241const_fixed_htab_eq (const void *x, const void *y)
242{
3101faab 243 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
091a3ac7
CF
244
245 if (GET_MODE (a) != GET_MODE (b))
246 return 0;
247 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
248}
249
173b24b9
RK
250/* Returns a hash code for X (which is a really a mem_attrs *). */
251
252static hashval_t
502b8322 253mem_attrs_htab_hash (const void *x)
173b24b9 254{
f7d504c2 255 const mem_attrs *const p = (const mem_attrs *) x;
173b24b9
RK
256
257 return (p->alias ^ (p->align * 1000)
09e881c9 258 ^ (p->addrspace * 4000)
754c3d5d
RS
259 ^ ((p->offset_known_p ? p->offset : 0) * 50000)
260 ^ ((p->size_known_p ? p->size : 0) * 2500000)
78b76d08 261 ^ (size_t) iterative_hash_expr (p->expr, 0));
173b24b9
RK
262}
263
f12144dd 264/* Return true if the given memory attributes are equal. */
c13e8210 265
f12144dd
RS
266static bool
267mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
c13e8210 268{
754c3d5d
RS
269 return (p->alias == q->alias
270 && p->offset_known_p == q->offset_known_p
271 && (!p->offset_known_p || p->offset == q->offset)
272 && p->size_known_p == q->size_known_p
273 && (!p->size_known_p || p->size == q->size)
274 && p->align == q->align
09e881c9 275 && p->addrspace == q->addrspace
78b76d08
SB
276 && (p->expr == q->expr
277 || (p->expr != NULL_TREE && q->expr != NULL_TREE
278 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
279}
280
f12144dd
RS
281/* Returns nonzero if the value represented by X (which is really a
282 mem_attrs *) is the same as that given by Y (which is also really a
283 mem_attrs *). */
173b24b9 284
f12144dd
RS
285static int
286mem_attrs_htab_eq (const void *x, const void *y)
173b24b9 287{
f12144dd
RS
288 return mem_attrs_eq_p ((const mem_attrs *) x, (const mem_attrs *) y);
289}
173b24b9 290
f12144dd 291/* Set MEM's memory attributes so that they are the same as ATTRS. */
10b76d73 292
f12144dd
RS
293static void
294set_mem_attrs (rtx mem, mem_attrs *attrs)
295{
296 void **slot;
297
298 /* If everything is the default, we can just clear the attributes. */
299 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
300 {
301 MEM_ATTRS (mem) = 0;
302 return;
303 }
173b24b9 304
f12144dd 305 slot = htab_find_slot (mem_attrs_htab, attrs, INSERT);
173b24b9
RK
306 if (*slot == 0)
307 {
a9429e29 308 *slot = ggc_alloc_mem_attrs ();
f12144dd 309 memcpy (*slot, attrs, sizeof (mem_attrs));
173b24b9
RK
310 }
311
f12144dd 312 MEM_ATTRS (mem) = (mem_attrs *) *slot;
c13e8210
MM
313}
314
a560d4d4
JH
315/* Returns a hash code for X (which is a really a reg_attrs *). */
316
317static hashval_t
502b8322 318reg_attrs_htab_hash (const void *x)
a560d4d4 319{
741ac903 320 const reg_attrs *const p = (const reg_attrs *) x;
a560d4d4 321
9841210f 322 return ((p->offset * 1000) ^ (intptr_t) p->decl);
a560d4d4
JH
323}
324
6356f892 325/* Returns nonzero if the value represented by X (which is really a
a560d4d4
JH
326 reg_attrs *) is the same as that given by Y (which is also really a
327 reg_attrs *). */
328
329static int
502b8322 330reg_attrs_htab_eq (const void *x, const void *y)
a560d4d4 331{
741ac903
KG
332 const reg_attrs *const p = (const reg_attrs *) x;
333 const reg_attrs *const q = (const reg_attrs *) y;
a560d4d4
JH
334
335 return (p->decl == q->decl && p->offset == q->offset);
336}
337/* Allocate a new reg_attrs structure and insert it into the hash table if
338 one identical to it is not already in the table. We are doing this for
339 MEM of mode MODE. */
340
341static reg_attrs *
502b8322 342get_reg_attrs (tree decl, int offset)
a560d4d4
JH
343{
344 reg_attrs attrs;
345 void **slot;
346
347 /* If everything is the default, we can just return zero. */
348 if (decl == 0 && offset == 0)
349 return 0;
350
351 attrs.decl = decl;
352 attrs.offset = offset;
353
354 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
355 if (*slot == 0)
356 {
a9429e29 357 *slot = ggc_alloc_reg_attrs ();
a560d4d4
JH
358 memcpy (*slot, &attrs, sizeof (reg_attrs));
359 }
360
1b4572a8 361 return (reg_attrs *) *slot;
a560d4d4
JH
362}
363
6fb5fa3c
DB
364
365#if !HAVE_blockage
adddc347
HPN
366/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
367 and to block register equivalences to be seen across this insn. */
6fb5fa3c
DB
368
369rtx
370gen_blockage (void)
371{
372 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
373 MEM_VOLATILE_P (x) = true;
374 return x;
375}
376#endif
377
378
08394eef
BS
379/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
380 don't attempt to share with the various global pieces of rtl (such as
381 frame_pointer_rtx). */
382
383rtx
502b8322 384gen_raw_REG (enum machine_mode mode, int regno)
08394eef
BS
385{
386 rtx x = gen_rtx_raw_REG (mode, regno);
387 ORIGINAL_REGNO (x) = regno;
388 return x;
389}
390
c5c76735
JL
391/* There are some RTL codes that require special attention; the generation
392 functions do the raw handling. If you add to this list, modify
393 special_rtx in gengenrtl.c as well. */
394
3b80f6ca 395rtx
502b8322 396gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca 397{
c13e8210
MM
398 void **slot;
399
3b80f6ca 400 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 401 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
402
403#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
404 if (const_true_rtx && arg == STORE_FLAG_VALUE)
405 return const_true_rtx;
406#endif
407
c13e8210 408 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
409 slot = htab_find_slot_with_hash (const_int_htab, &arg,
410 (hashval_t) arg, INSERT);
29105cea 411 if (*slot == 0)
1f8f4a0b 412 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
413
414 return (rtx) *slot;
3b80f6ca
RH
415}
416
2496c7bd 417rtx
502b8322 418gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2496c7bd
LB
419{
420 return GEN_INT (trunc_int_for_mode (c, mode));
421}
422
5692c7bc
ZW
423/* CONST_DOUBLEs might be created from pairs of integers, or from
424 REAL_VALUE_TYPEs. Also, their length is known only at run time,
425 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
426
427/* Determine whether REAL, a CONST_DOUBLE, already exists in the
428 hash table. If so, return its counterpart; otherwise add it
429 to the hash table and return it. */
430static rtx
502b8322 431lookup_const_double (rtx real)
5692c7bc
ZW
432{
433 void **slot = htab_find_slot (const_double_htab, real, INSERT);
434 if (*slot == 0)
435 *slot = real;
436
437 return (rtx) *slot;
438}
29105cea 439
5692c7bc
ZW
440/* Return a CONST_DOUBLE rtx for a floating-point value specified by
441 VALUE in mode MODE. */
0133b7d9 442rtx
502b8322 443const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
0133b7d9 444{
5692c7bc
ZW
445 rtx real = rtx_alloc (CONST_DOUBLE);
446 PUT_MODE (real, mode);
447
9e254451 448 real->u.rv = value;
5692c7bc
ZW
449
450 return lookup_const_double (real);
451}
452
091a3ac7
CF
453/* Determine whether FIXED, a CONST_FIXED, already exists in the
454 hash table. If so, return its counterpart; otherwise add it
455 to the hash table and return it. */
456
457static rtx
458lookup_const_fixed (rtx fixed)
459{
460 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
461 if (*slot == 0)
462 *slot = fixed;
463
464 return (rtx) *slot;
465}
466
467/* Return a CONST_FIXED rtx for a fixed-point value specified by
468 VALUE in mode MODE. */
469
470rtx
471const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
472{
473 rtx fixed = rtx_alloc (CONST_FIXED);
474 PUT_MODE (fixed, mode);
475
476 fixed->u.fv = value;
477
478 return lookup_const_fixed (fixed);
479}
480
3e93ff81
AS
481/* Constructs double_int from rtx CST. */
482
483double_int
484rtx_to_double_int (const_rtx cst)
485{
486 double_int r;
487
488 if (CONST_INT_P (cst))
27bcd47c 489 r = double_int::from_shwi (INTVAL (cst));
48175537 490 else if (CONST_DOUBLE_AS_INT_P (cst))
3e93ff81
AS
491 {
492 r.low = CONST_DOUBLE_LOW (cst);
493 r.high = CONST_DOUBLE_HIGH (cst);
494 }
495 else
496 gcc_unreachable ();
497
498 return r;
499}
500
501
54fb1ae0
AS
502/* Return a CONST_DOUBLE or CONST_INT for a value specified as
503 a double_int. */
504
505rtx
506immed_double_int_const (double_int i, enum machine_mode mode)
507{
508 return immed_double_const (i.low, i.high, mode);
509}
510
5692c7bc
ZW
511/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
512 of ints: I0 is the low-order word and I1 is the high-order word.
49ab6098 513 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
929e10f4
MS
514 implied upper bits are copies of the high bit of i1. The value
515 itself is neither signed nor unsigned. Do not use this routine for
516 non-integer modes; convert to REAL_VALUE_TYPE and use
517 CONST_DOUBLE_FROM_REAL_VALUE. */
5692c7bc
ZW
518
519rtx
502b8322 520immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
5692c7bc
ZW
521{
522 rtx value;
523 unsigned int i;
524
65acccdd 525 /* There are the following cases (note that there are no modes with
49ab6098 526 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
65acccdd
ZD
527
528 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
529 gen_int_mode.
929e10f4
MS
530 2) If the value of the integer fits into HOST_WIDE_INT anyway
531 (i.e., i1 consists only from copies of the sign bit, and sign
532 of i0 and i1 are the same), then we return a CONST_INT for i0.
65acccdd 533 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
5692c7bc
ZW
534 if (mode != VOIDmode)
535 {
5b0264cb
NS
536 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
537 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
538 /* We can get a 0 for an error mark. */
539 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
540 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
5692c7bc 541
65acccdd
ZD
542 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
543 return gen_int_mode (i0, mode);
5692c7bc
ZW
544 }
545
546 /* If this integer fits in one word, return a CONST_INT. */
547 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
548 return GEN_INT (i0);
549
550 /* We use VOIDmode for integers. */
551 value = rtx_alloc (CONST_DOUBLE);
552 PUT_MODE (value, VOIDmode);
553
554 CONST_DOUBLE_LOW (value) = i0;
555 CONST_DOUBLE_HIGH (value) = i1;
556
557 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
558 XWINT (value, i) = 0;
559
560 return lookup_const_double (value);
0133b7d9
RH
561}
562
3b80f6ca 563rtx
502b8322 564gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3b80f6ca
RH
565{
566 /* In case the MD file explicitly references the frame pointer, have
567 all such references point to the same frame pointer. This is
568 used during frame pointer elimination to distinguish the explicit
569 references to these registers from pseudos that happened to be
570 assigned to them.
571
572 If we have eliminated the frame pointer or arg pointer, we will
573 be using it as a normal register, for example as a spill
574 register. In such cases, we might be accessing it in a mode that
575 is not Pmode and therefore cannot use the pre-allocated rtx.
576
577 Also don't do this when we are making new REGs in reload, since
578 we don't want to get confused with the real pointers. */
579
55a2c322 580 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3b80f6ca 581 {
e10c79fe
LB
582 if (regno == FRAME_POINTER_REGNUM
583 && (!reload_completed || frame_pointer_needed))
3b80f6ca 584 return frame_pointer_rtx;
e3339d0f 585#if !HARD_FRAME_POINTER_IS_FRAME_POINTER
e10c79fe
LB
586 if (regno == HARD_FRAME_POINTER_REGNUM
587 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
588 return hard_frame_pointer_rtx;
589#endif
e3339d0f 590#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && !HARD_FRAME_POINTER_IS_ARG_POINTER
bcb33994 591 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
592 return arg_pointer_rtx;
593#endif
594#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 595 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
596 return return_address_pointer_rtx;
597#endif
fc555370 598 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
bf9412cd 599 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
2d67bd7b 600 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 601 return pic_offset_table_rtx;
bcb33994 602 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
603 return stack_pointer_rtx;
604 }
605
006a94b0 606#if 0
6cde4876 607 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
608 an existing entry in that table to avoid useless generation of RTL.
609
610 This code is disabled for now until we can fix the various backends
611 which depend on having non-shared hard registers in some cases. Long
612 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
613 on the amount of useless RTL that gets generated.
614
615 We'll also need to fix some code that runs after reload that wants to
616 set ORIGINAL_REGNO. */
617
6cde4876
JL
618 if (cfun
619 && cfun->emit
620 && regno_reg_rtx
621 && regno < FIRST_PSEUDO_REGISTER
622 && reg_raw_mode[regno] == mode)
623 return regno_reg_rtx[regno];
006a94b0 624#endif
6cde4876 625
08394eef 626 return gen_raw_REG (mode, regno);
3b80f6ca
RH
627}
628
41472af8 629rtx
502b8322 630gen_rtx_MEM (enum machine_mode mode, rtx addr)
41472af8
MM
631{
632 rtx rt = gen_rtx_raw_MEM (mode, addr);
633
634 /* This field is not cleared by the mere allocation of the rtx, so
635 we clear it here. */
173b24b9 636 MEM_ATTRS (rt) = 0;
41472af8
MM
637
638 return rt;
639}
ddef6bc7 640
542a8afa
RH
641/* Generate a memory referring to non-trapping constant memory. */
642
643rtx
644gen_const_mem (enum machine_mode mode, rtx addr)
645{
646 rtx mem = gen_rtx_MEM (mode, addr);
647 MEM_READONLY_P (mem) = 1;
648 MEM_NOTRAP_P (mem) = 1;
649 return mem;
650}
651
bf877a76
R
652/* Generate a MEM referring to fixed portions of the frame, e.g., register
653 save areas. */
654
655rtx
656gen_frame_mem (enum machine_mode mode, rtx addr)
657{
658 rtx mem = gen_rtx_MEM (mode, addr);
659 MEM_NOTRAP_P (mem) = 1;
660 set_mem_alias_set (mem, get_frame_alias_set ());
661 return mem;
662}
663
664/* Generate a MEM referring to a temporary use of the stack, not part
665 of the fixed stack frame. For example, something which is pushed
666 by a target splitter. */
667rtx
668gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
669{
670 rtx mem = gen_rtx_MEM (mode, addr);
671 MEM_NOTRAP_P (mem) = 1;
e3b5732b 672 if (!cfun->calls_alloca)
bf877a76
R
673 set_mem_alias_set (mem, get_frame_alias_set ());
674 return mem;
675}
676
beb72684
RH
677/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
678 this construct would be valid, and false otherwise. */
679
680bool
681validate_subreg (enum machine_mode omode, enum machine_mode imode,
ed7a4b4b 682 const_rtx reg, unsigned int offset)
ddef6bc7 683{
beb72684
RH
684 unsigned int isize = GET_MODE_SIZE (imode);
685 unsigned int osize = GET_MODE_SIZE (omode);
686
687 /* All subregs must be aligned. */
688 if (offset % osize != 0)
689 return false;
690
691 /* The subreg offset cannot be outside the inner object. */
692 if (offset >= isize)
693 return false;
694
695 /* ??? This should not be here. Temporarily continue to allow word_mode
696 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
697 Generally, backends are doing something sketchy but it'll take time to
698 fix them all. */
699 if (omode == word_mode)
700 ;
701 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
702 is the culprit here, and not the backends. */
703 else if (osize >= UNITS_PER_WORD && isize >= osize)
704 ;
705 /* Allow component subregs of complex and vector. Though given the below
706 extraction rules, it's not always clear what that means. */
707 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
708 && GET_MODE_INNER (imode) == omode)
709 ;
710 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
711 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
712 represent this. It's questionable if this ought to be represented at
713 all -- why can't this all be hidden in post-reload splitters that make
714 arbitrarily mode changes to the registers themselves. */
715 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
716 ;
717 /* Subregs involving floating point modes are not allowed to
718 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
719 (subreg:SI (reg:DF) 0) isn't. */
720 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
721 {
55a2c322
VM
722 if (! (isize == osize
723 /* LRA can use subreg to store a floating point value in
724 an integer mode. Although the floating point and the
725 integer modes need the same number of hard registers,
726 the size of floating point mode can be less than the
727 integer mode. LRA also uses subregs for a register
728 should be used in different mode in on insn. */
729 || lra_in_progress))
beb72684
RH
730 return false;
731 }
ddef6bc7 732
beb72684
RH
733 /* Paradoxical subregs must have offset zero. */
734 if (osize > isize)
735 return offset == 0;
736
737 /* This is a normal subreg. Verify that the offset is representable. */
738
739 /* For hard registers, we already have most of these rules collected in
740 subreg_offset_representable_p. */
741 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
742 {
743 unsigned int regno = REGNO (reg);
744
745#ifdef CANNOT_CHANGE_MODE_CLASS
746 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
747 && GET_MODE_INNER (imode) == omode)
748 ;
749 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
750 return false;
ddef6bc7 751#endif
beb72684
RH
752
753 return subreg_offset_representable_p (regno, imode, offset, omode);
754 }
755
756 /* For pseudo registers, we want most of the same checks. Namely:
757 If the register no larger than a word, the subreg must be lowpart.
758 If the register is larger than a word, the subreg must be the lowpart
759 of a subword. A subreg does *not* perform arbitrary bit extraction.
760 Given that we've already checked mode/offset alignment, we only have
761 to check subword subregs here. */
55a2c322
VM
762 if (osize < UNITS_PER_WORD
763 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
beb72684
RH
764 {
765 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
766 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
767 if (offset % UNITS_PER_WORD != low_off)
768 return false;
769 }
770 return true;
771}
772
773rtx
774gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
775{
776 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 777 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
778}
779
173b24b9
RK
780/* Generate a SUBREG representing the least-significant part of REG if MODE
781 is smaller than mode of REG, otherwise paradoxical SUBREG. */
782
ddef6bc7 783rtx
502b8322 784gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
ddef6bc7
JJ
785{
786 enum machine_mode inmode;
ddef6bc7
JJ
787
788 inmode = GET_MODE (reg);
789 if (inmode == VOIDmode)
790 inmode = mode;
e0e08ac2
JH
791 return gen_rtx_SUBREG (mode, reg,
792 subreg_lowpart_offset (mode, inmode));
ddef6bc7 793}
c5c76735 794\f
23b2ce53 795
80379f51
PB
796/* Create an rtvec and stores within it the RTXen passed in the arguments. */
797
23b2ce53 798rtvec
e34d07f2 799gen_rtvec (int n, ...)
23b2ce53 800{
80379f51
PB
801 int i;
802 rtvec rt_val;
e34d07f2 803 va_list p;
23b2ce53 804
e34d07f2 805 va_start (p, n);
23b2ce53 806
80379f51 807 /* Don't allocate an empty rtvec... */
23b2ce53 808 if (n == 0)
0edf1bb2
JL
809 {
810 va_end (p);
811 return NULL_RTVEC;
812 }
23b2ce53 813
80379f51 814 rt_val = rtvec_alloc (n);
4f90e4a0 815
23b2ce53 816 for (i = 0; i < n; i++)
80379f51 817 rt_val->elem[i] = va_arg (p, rtx);
6268b922 818
e34d07f2 819 va_end (p);
80379f51 820 return rt_val;
23b2ce53
RS
821}
822
823rtvec
502b8322 824gen_rtvec_v (int n, rtx *argp)
23b2ce53 825{
b3694847
SS
826 int i;
827 rtvec rt_val;
23b2ce53 828
80379f51 829 /* Don't allocate an empty rtvec... */
23b2ce53 830 if (n == 0)
80379f51 831 return NULL_RTVEC;
23b2ce53 832
80379f51 833 rt_val = rtvec_alloc (n);
23b2ce53
RS
834
835 for (i = 0; i < n; i++)
8f985ec4 836 rt_val->elem[i] = *argp++;
23b2ce53
RS
837
838 return rt_val;
839}
840\f
38ae7651
RS
841/* Return the number of bytes between the start of an OUTER_MODE
842 in-memory value and the start of an INNER_MODE in-memory value,
843 given that the former is a lowpart of the latter. It may be a
844 paradoxical lowpart, in which case the offset will be negative
845 on big-endian targets. */
846
847int
848byte_lowpart_offset (enum machine_mode outer_mode,
849 enum machine_mode inner_mode)
850{
851 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
852 return subreg_lowpart_offset (outer_mode, inner_mode);
853 else
854 return -subreg_lowpart_offset (inner_mode, outer_mode);
855}
856\f
23b2ce53
RS
857/* Generate a REG rtx for a new pseudo register of mode MODE.
858 This pseudo is assigned the next sequential register number. */
859
860rtx
502b8322 861gen_reg_rtx (enum machine_mode mode)
23b2ce53 862{
b3694847 863 rtx val;
2e3f842f 864 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 865
f8335a4f 866 gcc_assert (can_create_pseudo_p ());
23b2ce53 867
2e3f842f
L
868 /* If a virtual register with bigger mode alignment is generated,
869 increase stack alignment estimation because it might be spilled
870 to stack later. */
b8698a0f 871 if (SUPPORTS_STACK_ALIGNMENT
2e3f842f
L
872 && crtl->stack_alignment_estimated < align
873 && !crtl->stack_realign_processed)
ae58e548
JJ
874 {
875 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
876 if (crtl->stack_alignment_estimated < min_align)
877 crtl->stack_alignment_estimated = min_align;
878 }
2e3f842f 879
1b3d8f8a
GK
880 if (generating_concat_p
881 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
882 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
883 {
884 /* For complex modes, don't make a single pseudo.
885 Instead, make a CONCAT of two pseudos.
886 This allows noncontiguous allocation of the real and imaginary parts,
887 which makes much better code. Besides, allocating DCmode
888 pseudos overstrains reload on some machines like the 386. */
889 rtx realpart, imagpart;
27e58a70 890 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
891
892 realpart = gen_reg_rtx (partmode);
893 imagpart = gen_reg_rtx (partmode);
3b80f6ca 894 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
895 }
896
a560d4d4 897 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 898 enough to have an element for this pseudo reg number. */
23b2ce53 899
3e029763 900 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
23b2ce53 901 {
3e029763 902 int old_size = crtl->emit.regno_pointer_align_length;
60564289 903 char *tmp;
0d4903b8 904 rtx *new1;
0d4903b8 905
60564289
KG
906 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
907 memset (tmp + old_size, 0, old_size);
908 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
49ad7cfa 909
1b4572a8 910 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
49ad7cfa 911 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
912 regno_reg_rtx = new1;
913
3e029763 914 crtl->emit.regno_pointer_align_length = old_size * 2;
23b2ce53
RS
915 }
916
08394eef 917 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
918 regno_reg_rtx[reg_rtx_no++] = val;
919 return val;
920}
921
38ae7651
RS
922/* Update NEW with the same attributes as REG, but with OFFSET added
923 to the REG_OFFSET. */
a560d4d4 924
e53a16e7 925static void
60564289 926update_reg_offset (rtx new_rtx, rtx reg, int offset)
a560d4d4 927{
60564289 928 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
502b8322 929 REG_OFFSET (reg) + offset);
e53a16e7
ILT
930}
931
38ae7651
RS
932/* Generate a register with same attributes as REG, but with OFFSET
933 added to the REG_OFFSET. */
e53a16e7
ILT
934
935rtx
936gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
937 int offset)
938{
60564289 939 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 940
60564289
KG
941 update_reg_offset (new_rtx, reg, offset);
942 return new_rtx;
e53a16e7
ILT
943}
944
945/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 946 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
947
948rtx
949gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
950{
60564289 951 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 952
60564289
KG
953 update_reg_offset (new_rtx, reg, offset);
954 return new_rtx;
a560d4d4
JH
955}
956
38ae7651
RS
957/* Adjust REG in-place so that it has mode MODE. It is assumed that the
958 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
959
960void
38ae7651 961adjust_reg_mode (rtx reg, enum machine_mode mode)
a560d4d4 962{
38ae7651
RS
963 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
964 PUT_MODE (reg, mode);
965}
966
967/* Copy REG's attributes from X, if X has any attributes. If REG and X
968 have different modes, REG is a (possibly paradoxical) lowpart of X. */
969
970void
971set_reg_attrs_from_value (rtx reg, rtx x)
972{
973 int offset;
de6f3f7a
L
974 bool can_be_reg_pointer = true;
975
976 /* Don't call mark_reg_pointer for incompatible pointer sign
977 extension. */
978 while (GET_CODE (x) == SIGN_EXTEND
979 || GET_CODE (x) == ZERO_EXTEND
980 || GET_CODE (x) == TRUNCATE
981 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
982 {
983#if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
984 if ((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
985 || (GET_CODE (x) != SIGN_EXTEND && ! POINTERS_EXTEND_UNSIGNED))
986 can_be_reg_pointer = false;
987#endif
988 x = XEXP (x, 0);
989 }
38ae7651 990
923ba36f
JJ
991 /* Hard registers can be reused for multiple purposes within the same
992 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
993 on them is wrong. */
994 if (HARD_REGISTER_P (reg))
995 return;
996
38ae7651 997 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
998 if (MEM_P (x))
999 {
527210c4
RS
1000 if (MEM_OFFSET_KNOWN_P (x))
1001 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1002 MEM_OFFSET (x) + offset);
de6f3f7a 1003 if (can_be_reg_pointer && MEM_POINTER (x))
0a317111 1004 mark_reg_pointer (reg, 0);
46b71b03
PB
1005 }
1006 else if (REG_P (x))
1007 {
1008 if (REG_ATTRS (x))
1009 update_reg_offset (reg, x, offset);
de6f3f7a 1010 if (can_be_reg_pointer && REG_POINTER (x))
46b71b03
PB
1011 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1012 }
1013}
1014
1015/* Generate a REG rtx for a new pseudo register, copying the mode
1016 and attributes from X. */
1017
1018rtx
1019gen_reg_rtx_and_attrs (rtx x)
1020{
1021 rtx reg = gen_reg_rtx (GET_MODE (x));
1022 set_reg_attrs_from_value (reg, x);
1023 return reg;
a560d4d4
JH
1024}
1025
9d18e06b
JZ
1026/* Set the register attributes for registers contained in PARM_RTX.
1027 Use needed values from memory attributes of MEM. */
1028
1029void
502b8322 1030set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1031{
f8cfc6aa 1032 if (REG_P (parm_rtx))
38ae7651 1033 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1034 else if (GET_CODE (parm_rtx) == PARALLEL)
1035 {
1036 /* Check for a NULL entry in the first slot, used to indicate that the
1037 parameter goes both on the stack and in registers. */
1038 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1039 for (; i < XVECLEN (parm_rtx, 0); i++)
1040 {
1041 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1042 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1043 REG_ATTRS (XEXP (x, 0))
1044 = get_reg_attrs (MEM_EXPR (mem),
1045 INTVAL (XEXP (x, 1)));
1046 }
1047 }
1048}
1049
38ae7651
RS
1050/* Set the REG_ATTRS for registers in value X, given that X represents
1051 decl T. */
a560d4d4 1052
4e3825db 1053void
38ae7651
RS
1054set_reg_attrs_for_decl_rtl (tree t, rtx x)
1055{
1056 if (GET_CODE (x) == SUBREG)
fbe6ec81 1057 {
38ae7651
RS
1058 gcc_assert (subreg_lowpart_p (x));
1059 x = SUBREG_REG (x);
fbe6ec81 1060 }
f8cfc6aa 1061 if (REG_P (x))
38ae7651
RS
1062 REG_ATTRS (x)
1063 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
726612d2 1064 DECL_MODE (t)));
a560d4d4
JH
1065 if (GET_CODE (x) == CONCAT)
1066 {
1067 if (REG_P (XEXP (x, 0)))
1068 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1069 if (REG_P (XEXP (x, 1)))
1070 REG_ATTRS (XEXP (x, 1))
1071 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1072 }
1073 if (GET_CODE (x) == PARALLEL)
1074 {
d4afac5b
JZ
1075 int i, start;
1076
1077 /* Check for a NULL entry, used to indicate that the parameter goes
1078 both on the stack and in registers. */
1079 if (XEXP (XVECEXP (x, 0, 0), 0))
1080 start = 0;
1081 else
1082 start = 1;
1083
1084 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1085 {
1086 rtx y = XVECEXP (x, 0, i);
1087 if (REG_P (XEXP (y, 0)))
1088 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1089 }
1090 }
1091}
1092
38ae7651
RS
1093/* Assign the RTX X to declaration T. */
1094
1095void
1096set_decl_rtl (tree t, rtx x)
1097{
1098 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1099 if (x)
1100 set_reg_attrs_for_decl_rtl (t, x);
1101}
1102
5141868d
RS
1103/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1104 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1105
1106void
5141868d 1107set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1108{
1109 DECL_INCOMING_RTL (t) = x;
5141868d 1110 if (x && !by_reference_p)
38ae7651
RS
1111 set_reg_attrs_for_decl_rtl (t, x);
1112}
1113
754fdcca
RK
1114/* Identify REG (which may be a CONCAT) as a user register. */
1115
1116void
502b8322 1117mark_user_reg (rtx reg)
754fdcca
RK
1118{
1119 if (GET_CODE (reg) == CONCAT)
1120 {
1121 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1122 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1123 }
754fdcca 1124 else
5b0264cb
NS
1125 {
1126 gcc_assert (REG_P (reg));
1127 REG_USERVAR_P (reg) = 1;
1128 }
754fdcca
RK
1129}
1130
86fe05e0
RK
1131/* Identify REG as a probable pointer register and show its alignment
1132 as ALIGN, if nonzero. */
23b2ce53
RS
1133
1134void
502b8322 1135mark_reg_pointer (rtx reg, int align)
23b2ce53 1136{
3502dc9c 1137 if (! REG_POINTER (reg))
00995e78 1138 {
3502dc9c 1139 REG_POINTER (reg) = 1;
86fe05e0 1140
00995e78
RE
1141 if (align)
1142 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1143 }
1144 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1145 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1146 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1147}
1148
1149/* Return 1 plus largest pseudo reg number used in the current function. */
1150
1151int
502b8322 1152max_reg_num (void)
23b2ce53
RS
1153{
1154 return reg_rtx_no;
1155}
1156
1157/* Return 1 + the largest label number used so far in the current function. */
1158
1159int
502b8322 1160max_label_num (void)
23b2ce53 1161{
23b2ce53
RS
1162 return label_num;
1163}
1164
1165/* Return first label number used in this function (if any were used). */
1166
1167int
502b8322 1168get_first_label_num (void)
23b2ce53
RS
1169{
1170 return first_label_num;
1171}
6de9cd9a
DN
1172
1173/* If the rtx for label was created during the expansion of a nested
1174 function, then first_label_num won't include this label number.
fa10beec 1175 Fix this now so that array indices work later. */
6de9cd9a
DN
1176
1177void
1178maybe_set_first_label_num (rtx x)
1179{
1180 if (CODE_LABEL_NUMBER (x) < first_label_num)
1181 first_label_num = CODE_LABEL_NUMBER (x);
1182}
23b2ce53
RS
1183\f
1184/* Return a value representing some low-order bits of X, where the number
1185 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1186 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1187 representation is returned.
1188
1189 This function handles the cases in common between gen_lowpart, below,
1190 and two variants in cse.c and combine.c. These are the cases that can
1191 be safely handled at all points in the compilation.
1192
1193 If this is not a case we can handle, return 0. */
1194
1195rtx
502b8322 1196gen_lowpart_common (enum machine_mode mode, rtx x)
23b2ce53 1197{
ddef6bc7 1198 int msize = GET_MODE_SIZE (mode);
550d1387 1199 int xsize;
ddef6bc7 1200 int offset = 0;
550d1387
GK
1201 enum machine_mode innermode;
1202
1203 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1204 so we have to make one up. Yuk. */
1205 innermode = GET_MODE (x);
481683e1 1206 if (CONST_INT_P (x)
db487452 1207 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
550d1387
GK
1208 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1209 else if (innermode == VOIDmode)
49ab6098 1210 innermode = mode_for_size (HOST_BITS_PER_DOUBLE_INT, MODE_INT, 0);
b8698a0f 1211
550d1387
GK
1212 xsize = GET_MODE_SIZE (innermode);
1213
5b0264cb 1214 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1215
550d1387 1216 if (innermode == mode)
23b2ce53
RS
1217 return x;
1218
1219 /* MODE must occupy no more words than the mode of X. */
550d1387
GK
1220 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1221 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
23b2ce53
RS
1222 return 0;
1223
53501a19 1224 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
3d8bf70f 1225 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
53501a19
BS
1226 return 0;
1227
550d1387 1228 offset = subreg_lowpart_offset (mode, innermode);
23b2ce53
RS
1229
1230 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1231 && (GET_MODE_CLASS (mode) == MODE_INT
1232 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1233 {
1234 /* If we are getting the low-order part of something that has been
1235 sign- or zero-extended, we can either just use the object being
1236 extended or make a narrower extension. If we want an even smaller
1237 piece than the size of the object being extended, call ourselves
1238 recursively.
1239
1240 This case is used mostly by combine and cse. */
1241
1242 if (GET_MODE (XEXP (x, 0)) == mode)
1243 return XEXP (x, 0);
550d1387 1244 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
23b2ce53 1245 return gen_lowpart_common (mode, XEXP (x, 0));
550d1387 1246 else if (msize < xsize)
3b80f6ca 1247 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1248 }
f8cfc6aa 1249 else if (GET_CODE (x) == SUBREG || REG_P (x)
550d1387 1250 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
33ffb5c5 1251 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x))
550d1387 1252 return simplify_gen_subreg (mode, x, innermode, offset);
8aada4ad 1253
23b2ce53
RS
1254 /* Otherwise, we can't do this. */
1255 return 0;
1256}
1257\f
ccba022b 1258rtx
502b8322 1259gen_highpart (enum machine_mode mode, rtx x)
ccba022b 1260{
ddef6bc7 1261 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1262 rtx result;
ddef6bc7 1263
ccba022b
RS
1264 /* This case loses if X is a subreg. To catch bugs early,
1265 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1266 gcc_assert (msize <= UNITS_PER_WORD
1267 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1268
e0e08ac2
JH
1269 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1270 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb 1271 gcc_assert (result);
b8698a0f 1272
09482e0d
JW
1273 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1274 the target if we have a MEM. gen_highpart must return a valid operand,
1275 emitting code if necessary to do so. */
5b0264cb
NS
1276 if (MEM_P (result))
1277 {
1278 result = validize_mem (result);
1279 gcc_assert (result);
1280 }
b8698a0f 1281
e0e08ac2
JH
1282 return result;
1283}
5222e470 1284
26d249eb 1285/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1286 be VOIDmode constant. */
1287rtx
502b8322 1288gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
5222e470
JH
1289{
1290 if (GET_MODE (exp) != VOIDmode)
1291 {
5b0264cb 1292 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1293 return gen_highpart (outermode, exp);
1294 }
1295 return simplify_gen_subreg (outermode, exp, innermode,
1296 subreg_highpart_offset (outermode, innermode));
1297}
68252e27 1298
38ae7651 1299/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
8698cce3 1300
e0e08ac2 1301unsigned int
502b8322 1302subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
e0e08ac2
JH
1303{
1304 unsigned int offset = 0;
1305 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1306
e0e08ac2 1307 if (difference > 0)
ccba022b 1308 {
e0e08ac2
JH
1309 if (WORDS_BIG_ENDIAN)
1310 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1311 if (BYTES_BIG_ENDIAN)
1312 offset += difference % UNITS_PER_WORD;
ccba022b 1313 }
ddef6bc7 1314
e0e08ac2 1315 return offset;
ccba022b 1316}
eea50aa0 1317
e0e08ac2
JH
1318/* Return offset in bytes to get OUTERMODE high part
1319 of the value in mode INNERMODE stored in memory in target format. */
1320unsigned int
502b8322 1321subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
eea50aa0
JH
1322{
1323 unsigned int offset = 0;
1324 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1325
5b0264cb 1326 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
e0e08ac2 1327
eea50aa0
JH
1328 if (difference > 0)
1329 {
e0e08ac2 1330 if (! WORDS_BIG_ENDIAN)
eea50aa0 1331 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1332 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1333 offset += difference % UNITS_PER_WORD;
1334 }
1335
e0e08ac2 1336 return offset;
eea50aa0 1337}
ccba022b 1338
23b2ce53
RS
1339/* Return 1 iff X, assumed to be a SUBREG,
1340 refers to the least significant part of its containing reg.
1341 If X is not a SUBREG, always return 1 (it is its own low part!). */
1342
1343int
fa233e34 1344subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1345{
1346 if (GET_CODE (x) != SUBREG)
1347 return 1;
a3a03040
RK
1348 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1349 return 0;
23b2ce53 1350
e0e08ac2
JH
1351 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1352 == SUBREG_BYTE (x));
23b2ce53 1353}
6a4bdc79
BS
1354
1355/* Return true if X is a paradoxical subreg, false otherwise. */
1356bool
1357paradoxical_subreg_p (const_rtx x)
1358{
1359 if (GET_CODE (x) != SUBREG)
1360 return false;
1361 return (GET_MODE_PRECISION (GET_MODE (x))
1362 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))));
1363}
23b2ce53 1364\f
ddef6bc7
JJ
1365/* Return subword OFFSET of operand OP.
1366 The word number, OFFSET, is interpreted as the word number starting
1367 at the low-order address. OFFSET 0 is the low-order word if not
1368 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1369
1370 If we cannot extract the required word, we return zero. Otherwise,
1371 an rtx corresponding to the requested word will be returned.
1372
1373 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1374 reload has completed, a valid address will always be returned. After
1375 reload, if a valid address cannot be returned, we return zero.
1376
1377 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1378 it is the responsibility of the caller.
1379
1380 MODE is the mode of OP in case it is a CONST_INT.
1381
1382 ??? This is still rather broken for some cases. The problem for the
1383 moment is that all callers of this thing provide no 'goal mode' to
1384 tell us to work with. This exists because all callers were written
0631e0bf
JH
1385 in a word based SUBREG world.
1386 Now use of this function can be deprecated by simplify_subreg in most
1387 cases.
1388 */
ddef6bc7
JJ
1389
1390rtx
502b8322 1391operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
ddef6bc7
JJ
1392{
1393 if (mode == VOIDmode)
1394 mode = GET_MODE (op);
1395
5b0264cb 1396 gcc_assert (mode != VOIDmode);
ddef6bc7 1397
30f7a378 1398 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1399 if (mode != BLKmode
1400 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1401 return 0;
1402
30f7a378 1403 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1404 if (mode != BLKmode
1405 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1406 return const0_rtx;
1407
ddef6bc7 1408 /* Form a new MEM at the requested address. */
3c0cb5de 1409 if (MEM_P (op))
ddef6bc7 1410 {
60564289 1411 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1412
f1ec5147 1413 if (! validate_address)
60564289 1414 return new_rtx;
f1ec5147
RK
1415
1416 else if (reload_completed)
ddef6bc7 1417 {
09e881c9
BE
1418 if (! strict_memory_address_addr_space_p (word_mode,
1419 XEXP (new_rtx, 0),
1420 MEM_ADDR_SPACE (op)))
f1ec5147 1421 return 0;
ddef6bc7 1422 }
f1ec5147 1423 else
60564289 1424 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1425 }
1426
0631e0bf
JH
1427 /* Rest can be handled by simplify_subreg. */
1428 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1429}
1430
535a42b1
NS
1431/* Similar to `operand_subword', but never return 0. If we can't
1432 extract the required subword, put OP into a register and try again.
1433 The second attempt must succeed. We always validate the address in
1434 this case.
23b2ce53
RS
1435
1436 MODE is the mode of OP, in case it is CONST_INT. */
1437
1438rtx
502b8322 1439operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
23b2ce53 1440{
ddef6bc7 1441 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1442
1443 if (result)
1444 return result;
1445
1446 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1447 {
1448 /* If this is a register which can not be accessed by words, copy it
1449 to a pseudo register. */
f8cfc6aa 1450 if (REG_P (op))
77e6b0eb
JC
1451 op = copy_to_reg (op);
1452 else
1453 op = force_reg (mode, op);
1454 }
23b2ce53 1455
ddef6bc7 1456 result = operand_subword (op, offset, 1, mode);
5b0264cb 1457 gcc_assert (result);
23b2ce53
RS
1458
1459 return result;
1460}
1461\f
2b3493c8
AK
1462/* Returns 1 if both MEM_EXPR can be considered equal
1463 and 0 otherwise. */
1464
1465int
4f588890 1466mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1467{
1468 if (expr1 == expr2)
1469 return 1;
1470
1471 if (! expr1 || ! expr2)
1472 return 0;
1473
1474 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1475 return 0;
1476
55b34b5f 1477 return operand_equal_p (expr1, expr2, 0);
2b3493c8
AK
1478}
1479
805903b5
JJ
1480/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1481 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1482 -1 if not known. */
1483
1484int
d9223014 1485get_mem_align_offset (rtx mem, unsigned int align)
805903b5
JJ
1486{
1487 tree expr;
1488 unsigned HOST_WIDE_INT offset;
1489
1490 /* This function can't use
527210c4 1491 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
e80c2726 1492 || (MAX (MEM_ALIGN (mem),
0eb77834 1493 MAX (align, get_object_alignment (MEM_EXPR (mem))))
805903b5
JJ
1494 < align))
1495 return -1;
1496 else
527210c4 1497 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
805903b5
JJ
1498 for two reasons:
1499 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1500 for <variable>. get_inner_reference doesn't handle it and
1501 even if it did, the alignment in that case needs to be determined
1502 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1503 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1504 isn't sufficiently aligned, the object it is in might be. */
1505 gcc_assert (MEM_P (mem));
1506 expr = MEM_EXPR (mem);
527210c4 1507 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
805903b5
JJ
1508 return -1;
1509
527210c4 1510 offset = MEM_OFFSET (mem);
805903b5
JJ
1511 if (DECL_P (expr))
1512 {
1513 if (DECL_ALIGN (expr) < align)
1514 return -1;
1515 }
1516 else if (INDIRECT_REF_P (expr))
1517 {
1518 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1519 return -1;
1520 }
1521 else if (TREE_CODE (expr) == COMPONENT_REF)
1522 {
1523 while (1)
1524 {
1525 tree inner = TREE_OPERAND (expr, 0);
1526 tree field = TREE_OPERAND (expr, 1);
1527 tree byte_offset = component_ref_field_offset (expr);
1528 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1529
1530 if (!byte_offset
1531 || !host_integerp (byte_offset, 1)
1532 || !host_integerp (bit_offset, 1))
1533 return -1;
1534
1535 offset += tree_low_cst (byte_offset, 1);
1536 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1537
1538 if (inner == NULL_TREE)
1539 {
1540 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1541 < (unsigned int) align)
1542 return -1;
1543 break;
1544 }
1545 else if (DECL_P (inner))
1546 {
1547 if (DECL_ALIGN (inner) < align)
1548 return -1;
1549 break;
1550 }
1551 else if (TREE_CODE (inner) != COMPONENT_REF)
1552 return -1;
1553 expr = inner;
1554 }
1555 }
1556 else
1557 return -1;
1558
1559 return offset & ((align / BITS_PER_UNIT) - 1);
1560}
1561
6926c713 1562/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1563 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1564 if we are making a new object of this type. BITPOS is nonzero if
1565 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1566
1567void
502b8322
AJ
1568set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1569 HOST_WIDE_INT bitpos)
173b24b9 1570{
6f1087be 1571 HOST_WIDE_INT apply_bitpos = 0;
173b24b9 1572 tree type;
f12144dd 1573 struct mem_attrs attrs, *defattrs, *refattrs;
f18a7b25 1574 addr_space_t as;
173b24b9
RK
1575
1576 /* It can happen that type_for_mode was given a mode for which there
1577 is no language-level type. In which case it returns NULL, which
1578 we can see here. */
1579 if (t == NULL_TREE)
1580 return;
1581
1582 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1583 if (type == error_mark_node)
1584 return;
173b24b9 1585
173b24b9
RK
1586 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1587 wrong answer, as it assumes that DECL_RTL already has the right alias
1588 info. Callers should not set DECL_RTL until after the call to
1589 set_mem_attributes. */
5b0264cb 1590 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1591
f12144dd
RS
1592 memset (&attrs, 0, sizeof (attrs));
1593
738cc472 1594 /* Get the alias set from the expression or type (perhaps using a
8ac61af7 1595 front-end routine) and use it. */
f12144dd 1596 attrs.alias = get_alias_set (t);
173b24b9 1597
a5e9c810 1598 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
f8ad8d7c 1599 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1600
268f7033 1601 /* Default values from pre-existing memory attributes if present. */
f12144dd
RS
1602 refattrs = MEM_ATTRS (ref);
1603 if (refattrs)
268f7033
UW
1604 {
1605 /* ??? Can this ever happen? Calling this routine on a MEM that
1606 already carries memory attributes should probably be invalid. */
f12144dd 1607 attrs.expr = refattrs->expr;
754c3d5d 1608 attrs.offset_known_p = refattrs->offset_known_p;
f12144dd 1609 attrs.offset = refattrs->offset;
754c3d5d 1610 attrs.size_known_p = refattrs->size_known_p;
f12144dd
RS
1611 attrs.size = refattrs->size;
1612 attrs.align = refattrs->align;
268f7033
UW
1613 }
1614
1615 /* Otherwise, default values from the mode of the MEM reference. */
f12144dd 1616 else
268f7033 1617 {
f12144dd
RS
1618 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1619 gcc_assert (!defattrs->expr);
754c3d5d 1620 gcc_assert (!defattrs->offset_known_p);
f12144dd 1621
268f7033 1622 /* Respect mode size. */
754c3d5d 1623 attrs.size_known_p = defattrs->size_known_p;
f12144dd 1624 attrs.size = defattrs->size;
268f7033
UW
1625 /* ??? Is this really necessary? We probably should always get
1626 the size from the type below. */
1627
1628 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1629 if T is an object, always compute the object alignment below. */
f12144dd
RS
1630 if (TYPE_P (t))
1631 attrs.align = defattrs->align;
1632 else
1633 attrs.align = BITS_PER_UNIT;
268f7033
UW
1634 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1635 e.g. if the type carries an alignment attribute. Should we be
1636 able to simply always use TYPE_ALIGN? */
1637 }
1638
c3d32120
RK
1639 /* We can set the alignment from the type if we are making an object,
1640 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
a80903ff 1641 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
f12144dd 1642 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
a80903ff 1643
70f34814
RG
1644 else if (TREE_CODE (t) == MEM_REF)
1645 {
a80903ff 1646 tree op0 = TREE_OPERAND (t, 0);
3e32c761
RG
1647 if (TREE_CODE (op0) == ADDR_EXPR
1648 && (DECL_P (TREE_OPERAND (op0, 0))
1649 || CONSTANT_CLASS_P (TREE_OPERAND (op0, 0))))
70f34814 1650 {
3e32c761 1651 if (DECL_P (TREE_OPERAND (op0, 0)))
f12144dd 1652 attrs.align = DECL_ALIGN (TREE_OPERAND (op0, 0));
3e32c761
RG
1653 else if (CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
1654 {
f12144dd 1655 attrs.align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
70f34814 1656#ifdef CONSTANT_ALIGNMENT
f12144dd
RS
1657 attrs.align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0),
1658 attrs.align);
70f34814 1659#endif
3e32c761
RG
1660 }
1661 if (TREE_INT_CST_LOW (TREE_OPERAND (t, 1)) != 0)
1662 {
1663 unsigned HOST_WIDE_INT ioff
1664 = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
1665 unsigned HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
f12144dd 1666 attrs.align = MIN (aoff, attrs.align);
3e32c761 1667 }
70f34814
RG
1668 }
1669 else
5951297a
EB
1670 /* ??? This isn't fully correct, we can't set the alignment from the
1671 type in all cases. */
f12144dd 1672 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
70f34814 1673 }
a80903ff 1674
9407f6bc
RG
1675 else if (TREE_CODE (t) == TARGET_MEM_REF)
1676 /* ??? This isn't fully correct, we can't set the alignment from the
1677 type in all cases. */
f12144dd 1678 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
9407f6bc 1679
738cc472 1680 /* If the size is known, we can set that. */
a787ccc3 1681 tree new_size = TYPE_SIZE_UNIT (type);
738cc472 1682
80965c18
RK
1683 /* If T is not a type, we may be able to deduce some more information about
1684 the expression. */
1685 if (! TYPE_P (t))
8ac61af7 1686 {
8476af98 1687 tree base;
df96b059 1688 bool align_computed = false;
389fdba0 1689
8ac61af7
RK
1690 if (TREE_THIS_VOLATILE (t))
1691 MEM_VOLATILE_P (ref) = 1;
173b24b9 1692
c56e3582
RK
1693 /* Now remove any conversions: they don't change what the underlying
1694 object is. Likewise for SAVE_EXPR. */
1043771b 1695 while (CONVERT_EXPR_P (t)
c56e3582
RK
1696 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1697 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1698 t = TREE_OPERAND (t, 0);
1699
4994da65
RG
1700 /* Note whether this expression can trap. */
1701 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
1702
1703 base = get_base_address (t);
f18a7b25
MJ
1704 if (base)
1705 {
1706 if (DECL_P (base)
1707 && TREE_READONLY (base)
1708 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
1709 && !TREE_THIS_VOLATILE (base))
1710 MEM_READONLY_P (ref) = 1;
1711
1712 /* Mark static const strings readonly as well. */
1713 if (TREE_CODE (base) == STRING_CST
1714 && TREE_READONLY (base)
1715 && TREE_STATIC (base))
1716 MEM_READONLY_P (ref) = 1;
1717
1718 if (TREE_CODE (base) == MEM_REF
1719 || TREE_CODE (base) == TARGET_MEM_REF)
1720 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
1721 0))));
1722 else
1723 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
1724 }
1725 else
1726 as = TYPE_ADDR_SPACE (type);
ba30e50d 1727
2039d7aa
RH
1728 /* If this expression uses it's parent's alias set, mark it such
1729 that we won't change it. */
1730 if (component_uses_parent_alias_set (t))
10b76d73
RK
1731 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1732
8ac61af7
RK
1733 /* If this is a decl, set the attributes of the MEM from it. */
1734 if (DECL_P (t))
1735 {
f12144dd 1736 attrs.expr = t;
754c3d5d
RS
1737 attrs.offset_known_p = true;
1738 attrs.offset = 0;
6f1087be 1739 apply_bitpos = bitpos;
a787ccc3 1740 new_size = DECL_SIZE_UNIT (t);
f12144dd 1741 attrs.align = DECL_ALIGN (t);
df96b059 1742 align_computed = true;
8ac61af7
RK
1743 }
1744
40c0668b 1745 /* If this is a constant, we know the alignment. */
6615c446 1746 else if (CONSTANT_CLASS_P (t))
9ddfb1a7 1747 {
f12144dd 1748 attrs.align = TYPE_ALIGN (type);
9ddfb1a7 1749#ifdef CONSTANT_ALIGNMENT
f12144dd 1750 attrs.align = CONSTANT_ALIGNMENT (t, attrs.align);
9ddfb1a7 1751#endif
df96b059 1752 align_computed = true;
9ddfb1a7 1753 }
998d7deb 1754
a787ccc3
RS
1755 /* If this is a field reference, record it. */
1756 else if (TREE_CODE (t) == COMPONENT_REF)
998d7deb 1757 {
f12144dd 1758 attrs.expr = t;
754c3d5d
RS
1759 attrs.offset_known_p = true;
1760 attrs.offset = 0;
6f1087be 1761 apply_bitpos = bitpos;
a787ccc3
RS
1762 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1763 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
998d7deb
RH
1764 }
1765
1766 /* If this is an array reference, look for an outer field reference. */
1767 else if (TREE_CODE (t) == ARRAY_REF)
1768 {
1769 tree off_tree = size_zero_node;
1b1838b6
JW
1770 /* We can't modify t, because we use it at the end of the
1771 function. */
1772 tree t2 = t;
998d7deb
RH
1773
1774 do
1775 {
1b1838b6 1776 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1777 tree low_bound = array_ref_low_bound (t2);
1778 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1779
1780 /* We assume all arrays have sizes that are a multiple of a byte.
1781 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1782 index, then convert to sizetype and multiply by the size of
1783 the array element. */
1784 if (! integer_zerop (low_bound))
4845b383
KH
1785 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1786 index, low_bound);
2567406a 1787
44de5aeb 1788 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1789 size_binop (MULT_EXPR,
1790 fold_convert (sizetype,
1791 index),
44de5aeb
RK
1792 unit_size),
1793 off_tree);
1b1838b6 1794 t2 = TREE_OPERAND (t2, 0);
998d7deb 1795 }
1b1838b6 1796 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1797
1b1838b6 1798 if (DECL_P (t2))
c67a1cf6 1799 {
f12144dd 1800 attrs.expr = t2;
754c3d5d 1801 attrs.offset_known_p = false;
c67a1cf6 1802 if (host_integerp (off_tree, 1))
40cb04f1
RH
1803 {
1804 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1805 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
f12144dd
RS
1806 attrs.align = DECL_ALIGN (t2);
1807 if (aoff && (unsigned HOST_WIDE_INT) aoff < attrs.align)
1808 attrs.align = aoff;
df96b059 1809 align_computed = true;
754c3d5d
RS
1810 attrs.offset_known_p = true;
1811 attrs.offset = ioff;
6f1087be 1812 apply_bitpos = bitpos;
40cb04f1 1813 }
c67a1cf6 1814 }
1b1838b6 1815 else if (TREE_CODE (t2) == COMPONENT_REF)
998d7deb 1816 {
f12144dd 1817 attrs.expr = t2;
754c3d5d 1818 attrs.offset_known_p = false;
998d7deb 1819 if (host_integerp (off_tree, 1))
6f1087be 1820 {
754c3d5d
RS
1821 attrs.offset_known_p = true;
1822 attrs.offset = tree_low_cst (off_tree, 1);
6f1087be
RH
1823 apply_bitpos = bitpos;
1824 }
998d7deb
RH
1825 /* ??? Any reason the field size would be different than
1826 the size we got from the type? */
1827 }
c67a1cf6
RH
1828 }
1829
56c47f22 1830 /* If this is an indirect reference, record it. */
70f34814 1831 else if (TREE_CODE (t) == MEM_REF
be1ac4ec 1832 || TREE_CODE (t) == TARGET_MEM_REF)
56c47f22 1833 {
f12144dd 1834 attrs.expr = t;
754c3d5d
RS
1835 attrs.offset_known_p = true;
1836 attrs.offset = 0;
56c47f22
RG
1837 apply_bitpos = bitpos;
1838 }
1839
0eb77834 1840 if (!align_computed)
df96b059 1841 {
783a3a05
RB
1842 unsigned int obj_align;
1843 unsigned HOST_WIDE_INT obj_bitpos;
1844 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1845 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1);
1846 if (obj_bitpos != 0)
1847 obj_align = (obj_bitpos & -obj_bitpos);
f12144dd 1848 attrs.align = MAX (attrs.align, obj_align);
df96b059 1849 }
8ac61af7 1850 }
f18a7b25
MJ
1851 else
1852 as = TYPE_ADDR_SPACE (type);
8ac61af7 1853
a787ccc3
RS
1854 if (host_integerp (new_size, 1))
1855 {
1856 attrs.size_known_p = true;
1857 attrs.size = tree_low_cst (new_size, 1);
1858 }
1859
15c812e3 1860 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1861 bit position offset. Similarly, increase the size of the accessed
1862 object to contain the negative offset. */
6f1087be 1863 if (apply_bitpos)
8c317c5f 1864 {
754c3d5d
RS
1865 gcc_assert (attrs.offset_known_p);
1866 attrs.offset -= apply_bitpos / BITS_PER_UNIT;
1867 if (attrs.size_known_p)
1868 attrs.size += apply_bitpos / BITS_PER_UNIT;
8c317c5f 1869 }
6f1087be 1870
8ac61af7 1871 /* Now set the attributes we computed above. */
f18a7b25 1872 attrs.addrspace = as;
f12144dd 1873 set_mem_attrs (ref, &attrs);
173b24b9
RK
1874}
1875
6f1087be 1876void
502b8322 1877set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
1878{
1879 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1880}
1881
173b24b9
RK
1882/* Set the alias set of MEM to SET. */
1883
1884void
4862826d 1885set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 1886{
f12144dd
RS
1887 struct mem_attrs attrs;
1888
173b24b9 1889 /* If the new and old alias sets don't conflict, something is wrong. */
77a74ed7 1890 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
f12144dd
RS
1891 attrs = *get_mem_attrs (mem);
1892 attrs.alias = set;
1893 set_mem_attrs (mem, &attrs);
09e881c9
BE
1894}
1895
1896/* Set the address space of MEM to ADDRSPACE (target-defined). */
1897
1898void
1899set_mem_addr_space (rtx mem, addr_space_t addrspace)
1900{
f12144dd
RS
1901 struct mem_attrs attrs;
1902
1903 attrs = *get_mem_attrs (mem);
1904 attrs.addrspace = addrspace;
1905 set_mem_attrs (mem, &attrs);
173b24b9 1906}
738cc472 1907
d022d93e 1908/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1909
1910void
502b8322 1911set_mem_align (rtx mem, unsigned int align)
738cc472 1912{
f12144dd
RS
1913 struct mem_attrs attrs;
1914
1915 attrs = *get_mem_attrs (mem);
1916 attrs.align = align;
1917 set_mem_attrs (mem, &attrs);
738cc472 1918}
1285011e 1919
998d7deb 1920/* Set the expr for MEM to EXPR. */
1285011e
RK
1921
1922void
502b8322 1923set_mem_expr (rtx mem, tree expr)
1285011e 1924{
f12144dd
RS
1925 struct mem_attrs attrs;
1926
1927 attrs = *get_mem_attrs (mem);
1928 attrs.expr = expr;
1929 set_mem_attrs (mem, &attrs);
1285011e 1930}
998d7deb
RH
1931
1932/* Set the offset of MEM to OFFSET. */
1933
1934void
527210c4 1935set_mem_offset (rtx mem, HOST_WIDE_INT offset)
998d7deb 1936{
f12144dd
RS
1937 struct mem_attrs attrs;
1938
1939 attrs = *get_mem_attrs (mem);
754c3d5d
RS
1940 attrs.offset_known_p = true;
1941 attrs.offset = offset;
527210c4
RS
1942 set_mem_attrs (mem, &attrs);
1943}
1944
1945/* Clear the offset of MEM. */
1946
1947void
1948clear_mem_offset (rtx mem)
1949{
1950 struct mem_attrs attrs;
1951
1952 attrs = *get_mem_attrs (mem);
754c3d5d 1953 attrs.offset_known_p = false;
f12144dd 1954 set_mem_attrs (mem, &attrs);
35aff10b
AM
1955}
1956
1957/* Set the size of MEM to SIZE. */
1958
1959void
f5541398 1960set_mem_size (rtx mem, HOST_WIDE_INT size)
35aff10b 1961{
f12144dd
RS
1962 struct mem_attrs attrs;
1963
1964 attrs = *get_mem_attrs (mem);
754c3d5d
RS
1965 attrs.size_known_p = true;
1966 attrs.size = size;
f5541398
RS
1967 set_mem_attrs (mem, &attrs);
1968}
1969
1970/* Clear the size of MEM. */
1971
1972void
1973clear_mem_size (rtx mem)
1974{
1975 struct mem_attrs attrs;
1976
1977 attrs = *get_mem_attrs (mem);
754c3d5d 1978 attrs.size_known_p = false;
f12144dd 1979 set_mem_attrs (mem, &attrs);
998d7deb 1980}
173b24b9 1981\f
738cc472
RK
1982/* Return a memory reference like MEMREF, but with its mode changed to MODE
1983 and its address changed to ADDR. (VOIDmode means don't change the mode.
1984 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1985 returned memory location is required to be valid. The memory
1986 attributes are not changed. */
23b2ce53 1987
738cc472 1988static rtx
502b8322 1989change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
23b2ce53 1990{
09e881c9 1991 addr_space_t as;
60564289 1992 rtx new_rtx;
23b2ce53 1993
5b0264cb 1994 gcc_assert (MEM_P (memref));
09e881c9 1995 as = MEM_ADDR_SPACE (memref);
23b2ce53
RS
1996 if (mode == VOIDmode)
1997 mode = GET_MODE (memref);
1998 if (addr == 0)
1999 addr = XEXP (memref, 0);
a74ff877 2000 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
09e881c9 2001 && (!validate || memory_address_addr_space_p (mode, addr, as)))
a74ff877 2002 return memref;
23b2ce53 2003
f1ec5147 2004 if (validate)
23b2ce53 2005 {
f1ec5147 2006 if (reload_in_progress || reload_completed)
09e881c9 2007 gcc_assert (memory_address_addr_space_p (mode, addr, as));
f1ec5147 2008 else
09e881c9 2009 addr = memory_address_addr_space (mode, addr, as);
23b2ce53 2010 }
750c9258 2011
9b04c6a8
RK
2012 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2013 return memref;
2014
60564289
KG
2015 new_rtx = gen_rtx_MEM (mode, addr);
2016 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2017 return new_rtx;
23b2ce53 2018}
792760b9 2019
738cc472
RK
2020/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2021 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
2022
2023rtx
502b8322 2024change_address (rtx memref, enum machine_mode mode, rtx addr)
f4ef873c 2025{
f12144dd 2026 rtx new_rtx = change_address_1 (memref, mode, addr, 1);
60564289 2027 enum machine_mode mmode = GET_MODE (new_rtx);
f12144dd 2028 struct mem_attrs attrs, *defattrs;
4e44c1ef 2029
f12144dd
RS
2030 attrs = *get_mem_attrs (memref);
2031 defattrs = mode_mem_attrs[(int) mmode];
754c3d5d
RS
2032 attrs.expr = NULL_TREE;
2033 attrs.offset_known_p = false;
2034 attrs.size_known_p = defattrs->size_known_p;
f12144dd
RS
2035 attrs.size = defattrs->size;
2036 attrs.align = defattrs->align;
c2f7bcc3 2037
fdb1c7b3 2038 /* If there are no changes, just return the original memory reference. */
60564289 2039 if (new_rtx == memref)
4e44c1ef 2040 {
f12144dd 2041 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
60564289 2042 return new_rtx;
4e44c1ef 2043
60564289
KG
2044 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2045 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 2046 }
fdb1c7b3 2047
f12144dd 2048 set_mem_attrs (new_rtx, &attrs);
60564289 2049 return new_rtx;
f4ef873c 2050}
792760b9 2051
738cc472
RK
2052/* Return a memory reference like MEMREF, but with its mode changed
2053 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6 2054 nonzero, the memory address is forced to be valid.
5ef0b50d
EB
2055 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2056 and the caller is responsible for adjusting MEMREF base register.
2057 If ADJUST_OBJECT is zero, the underlying object associated with the
2058 memory reference is left unchanged and the caller is responsible for
2059 dealing with it. Otherwise, if the new memory reference is outside
5f2cbd0d
RS
2060 the underlying object, even partially, then the object is dropped.
2061 SIZE, if nonzero, is the size of an access in cases where MODE
2062 has no inherent size. */
f1ec5147
RK
2063
2064rtx
502b8322 2065adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
5f2cbd0d
RS
2066 int validate, int adjust_address, int adjust_object,
2067 HOST_WIDE_INT size)
f1ec5147 2068{
823e3574 2069 rtx addr = XEXP (memref, 0);
60564289 2070 rtx new_rtx;
f12144dd 2071 enum machine_mode address_mode;
a6fe9ed4 2072 int pbits;
0207fa90 2073 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
f12144dd 2074 unsigned HOST_WIDE_INT max_align;
0207fa90
EB
2075#ifdef POINTERS_EXTEND_UNSIGNED
2076 enum machine_mode pointer_mode
2077 = targetm.addr_space.pointer_mode (attrs.addrspace);
2078#endif
823e3574 2079
ee88e690
EB
2080 /* VOIDmode means no mode change for change_address_1. */
2081 if (mode == VOIDmode)
2082 mode = GET_MODE (memref);
2083
5f2cbd0d
RS
2084 /* Take the size of non-BLKmode accesses from the mode. */
2085 defattrs = mode_mem_attrs[(int) mode];
2086 if (defattrs->size_known_p)
2087 size = defattrs->size;
2088
fdb1c7b3
JH
2089 /* If there are no changes, just return the original memory reference. */
2090 if (mode == GET_MODE (memref) && !offset
5f2cbd0d 2091 && (size == 0 || (attrs.size_known_p && attrs.size == size))
f12144dd
RS
2092 && (!validate || memory_address_addr_space_p (mode, addr,
2093 attrs.addrspace)))
fdb1c7b3
JH
2094 return memref;
2095
d14419e4 2096 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2097 This may happen even if offset is nonzero -- consider
d14419e4
RH
2098 (plus (plus reg reg) const_int) -- so do this always. */
2099 addr = copy_rtx (addr);
2100
a6fe9ed4
JM
2101 /* Convert a possibly large offset to a signed value within the
2102 range of the target address space. */
372d6395 2103 address_mode = get_address_mode (memref);
d4ebfa65 2104 pbits = GET_MODE_BITSIZE (address_mode);
a6fe9ed4
JM
2105 if (HOST_BITS_PER_WIDE_INT > pbits)
2106 {
2107 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2108 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2109 >> shift);
2110 }
2111
5ef0b50d 2112 if (adjust_address)
4a78c787
RH
2113 {
2114 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2115 object, we can merge it into the LO_SUM. */
2116 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2117 && offset >= 0
2118 && (unsigned HOST_WIDE_INT) offset
2119 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
d4ebfa65 2120 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
0a81f074
RS
2121 plus_constant (address_mode,
2122 XEXP (addr, 1), offset));
0207fa90
EB
2123#ifdef POINTERS_EXTEND_UNSIGNED
2124 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2125 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2126 the fact that pointers are not allowed to overflow. */
2127 else if (POINTERS_EXTEND_UNSIGNED > 0
2128 && GET_CODE (addr) == ZERO_EXTEND
2129 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2130 && trunc_int_for_mode (offset, pointer_mode) == offset)
2131 addr = gen_rtx_ZERO_EXTEND (address_mode,
2132 plus_constant (pointer_mode,
2133 XEXP (addr, 0), offset));
2134#endif
4a78c787 2135 else
0a81f074 2136 addr = plus_constant (address_mode, addr, offset);
4a78c787 2137 }
823e3574 2138
60564289 2139 new_rtx = change_address_1 (memref, mode, addr, validate);
738cc472 2140
09efeca1
PB
2141 /* If the address is a REG, change_address_1 rightfully returns memref,
2142 but this would destroy memref's MEM_ATTRS. */
2143 if (new_rtx == memref && offset != 0)
2144 new_rtx = copy_rtx (new_rtx);
2145
5ef0b50d
EB
2146 /* Conservatively drop the object if we don't know where we start from. */
2147 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2148 {
2149 attrs.expr = NULL_TREE;
2150 attrs.alias = 0;
2151 }
2152
738cc472
RK
2153 /* Compute the new values of the memory attributes due to this adjustment.
2154 We add the offsets and update the alignment. */
754c3d5d 2155 if (attrs.offset_known_p)
5ef0b50d
EB
2156 {
2157 attrs.offset += offset;
2158
2159 /* Drop the object if the new left end is not within its bounds. */
2160 if (adjust_object && attrs.offset < 0)
2161 {
2162 attrs.expr = NULL_TREE;
2163 attrs.alias = 0;
2164 }
2165 }
738cc472 2166
03bf2c23
RK
2167 /* Compute the new alignment by taking the MIN of the alignment and the
2168 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2169 if zero. */
2170 if (offset != 0)
f12144dd
RS
2171 {
2172 max_align = (offset & -offset) * BITS_PER_UNIT;
2173 attrs.align = MIN (attrs.align, max_align);
2174 }
738cc472 2175
5f2cbd0d 2176 if (size)
754c3d5d 2177 {
5ef0b50d 2178 /* Drop the object if the new right end is not within its bounds. */
5f2cbd0d 2179 if (adjust_object && (offset + size) > attrs.size)
5ef0b50d
EB
2180 {
2181 attrs.expr = NULL_TREE;
2182 attrs.alias = 0;
2183 }
754c3d5d 2184 attrs.size_known_p = true;
5f2cbd0d 2185 attrs.size = size;
754c3d5d
RS
2186 }
2187 else if (attrs.size_known_p)
5ef0b50d 2188 {
5f2cbd0d 2189 gcc_assert (!adjust_object);
5ef0b50d 2190 attrs.size -= offset;
5f2cbd0d
RS
2191 /* ??? The store_by_pieces machinery generates negative sizes,
2192 so don't assert for that here. */
5ef0b50d 2193 }
10b76d73 2194
f12144dd 2195 set_mem_attrs (new_rtx, &attrs);
738cc472 2196
60564289 2197 return new_rtx;
f1ec5147
RK
2198}
2199
630036c6
JJ
2200/* Return a memory reference like MEMREF, but with its mode changed
2201 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 2202 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2203 nonzero, the memory address is forced to be valid. */
2204
2205rtx
502b8322
AJ
2206adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2207 HOST_WIDE_INT offset, int validate)
630036c6
JJ
2208{
2209 memref = change_address_1 (memref, VOIDmode, addr, validate);
5f2cbd0d 2210 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
630036c6
JJ
2211}
2212
8ac61af7
RK
2213/* Return a memory reference like MEMREF, but whose address is changed by
2214 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2215 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2216
2217rtx
502b8322 2218offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2219{
60564289 2220 rtx new_rtx, addr = XEXP (memref, 0);
f12144dd 2221 enum machine_mode address_mode;
754c3d5d 2222 struct mem_attrs attrs, *defattrs;
e3c8ea67 2223
f12144dd 2224 attrs = *get_mem_attrs (memref);
372d6395 2225 address_mode = get_address_mode (memref);
d4ebfa65 2226 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67 2227
68252e27 2228 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2229 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2230
2231 However, if we did go and rearrange things, we can wind up not
2232 being able to recognize the magic around pic_offset_table_rtx.
2233 This stuff is fragile, and is yet another example of why it is
2234 bad to expose PIC machinery too early. */
f12144dd
RS
2235 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2236 attrs.addrspace)
e3c8ea67
RH
2237 && GET_CODE (addr) == PLUS
2238 && XEXP (addr, 0) == pic_offset_table_rtx)
2239 {
2240 addr = force_reg (GET_MODE (addr), addr);
d4ebfa65 2241 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67
RH
2242 }
2243
60564289
KG
2244 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2245 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
0d4903b8 2246
fdb1c7b3 2247 /* If there are no changes, just return the original memory reference. */
60564289
KG
2248 if (new_rtx == memref)
2249 return new_rtx;
fdb1c7b3 2250
0d4903b8
RK
2251 /* Update the alignment to reflect the offset. Reset the offset, which
2252 we don't know. */
754c3d5d
RS
2253 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2254 attrs.offset_known_p = false;
2255 attrs.size_known_p = defattrs->size_known_p;
2256 attrs.size = defattrs->size;
f12144dd
RS
2257 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2258 set_mem_attrs (new_rtx, &attrs);
60564289 2259 return new_rtx;
0d4903b8 2260}
68252e27 2261
792760b9
RK
2262/* Return a memory reference like MEMREF, but with its address changed to
2263 ADDR. The caller is asserting that the actual piece of memory pointed
2264 to is the same, just the form of the address is being changed, such as
2265 by putting something into a register. */
2266
2267rtx
502b8322 2268replace_equiv_address (rtx memref, rtx addr)
792760b9 2269{
738cc472
RK
2270 /* change_address_1 copies the memory attribute structure without change
2271 and that's exactly what we want here. */
40c0668b 2272 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2273 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2274}
738cc472 2275
f1ec5147
RK
2276/* Likewise, but the reference is not required to be valid. */
2277
2278rtx
502b8322 2279replace_equiv_address_nv (rtx memref, rtx addr)
f1ec5147 2280{
f1ec5147
RK
2281 return change_address_1 (memref, VOIDmode, addr, 0);
2282}
e7dfe4bb
RH
2283
2284/* Return a memory reference like MEMREF, but with its mode widened to
2285 MODE and offset by OFFSET. This would be used by targets that e.g.
2286 cannot issue QImode memory operations and have to use SImode memory
2287 operations plus masking logic. */
2288
2289rtx
502b8322 2290widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb 2291{
5f2cbd0d 2292 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
f12144dd 2293 struct mem_attrs attrs;
e7dfe4bb
RH
2294 unsigned int size = GET_MODE_SIZE (mode);
2295
fdb1c7b3 2296 /* If there are no changes, just return the original memory reference. */
60564289
KG
2297 if (new_rtx == memref)
2298 return new_rtx;
fdb1c7b3 2299
f12144dd
RS
2300 attrs = *get_mem_attrs (new_rtx);
2301
e7dfe4bb
RH
2302 /* If we don't know what offset we were at within the expression, then
2303 we can't know if we've overstepped the bounds. */
754c3d5d 2304 if (! attrs.offset_known_p)
f12144dd 2305 attrs.expr = NULL_TREE;
e7dfe4bb 2306
f12144dd 2307 while (attrs.expr)
e7dfe4bb 2308 {
f12144dd 2309 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
e7dfe4bb 2310 {
f12144dd
RS
2311 tree field = TREE_OPERAND (attrs.expr, 1);
2312 tree offset = component_ref_field_offset (attrs.expr);
e7dfe4bb
RH
2313
2314 if (! DECL_SIZE_UNIT (field))
2315 {
f12144dd 2316 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2317 break;
2318 }
2319
2320 /* Is the field at least as large as the access? If so, ok,
2321 otherwise strip back to the containing structure. */
03667700
RK
2322 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2323 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
754c3d5d 2324 && attrs.offset >= 0)
e7dfe4bb
RH
2325 break;
2326
44de5aeb 2327 if (! host_integerp (offset, 1))
e7dfe4bb 2328 {
f12144dd 2329 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2330 break;
2331 }
2332
f12144dd 2333 attrs.expr = TREE_OPERAND (attrs.expr, 0);
754c3d5d
RS
2334 attrs.offset += tree_low_cst (offset, 1);
2335 attrs.offset += (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2336 / BITS_PER_UNIT);
e7dfe4bb
RH
2337 }
2338 /* Similarly for the decl. */
f12144dd
RS
2339 else if (DECL_P (attrs.expr)
2340 && DECL_SIZE_UNIT (attrs.expr)
2341 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST
2342 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0
754c3d5d 2343 && (! attrs.offset_known_p || attrs.offset >= 0))
e7dfe4bb
RH
2344 break;
2345 else
2346 {
2347 /* The widened memory access overflows the expression, which means
2348 that it could alias another expression. Zap it. */
f12144dd 2349 attrs.expr = NULL_TREE;
e7dfe4bb
RH
2350 break;
2351 }
2352 }
2353
f12144dd 2354 if (! attrs.expr)
754c3d5d 2355 attrs.offset_known_p = false;
e7dfe4bb
RH
2356
2357 /* The widened memory may alias other stuff, so zap the alias set. */
2358 /* ??? Maybe use get_alias_set on any remaining expression. */
f12144dd 2359 attrs.alias = 0;
754c3d5d
RS
2360 attrs.size_known_p = true;
2361 attrs.size = size;
f12144dd 2362 set_mem_attrs (new_rtx, &attrs);
60564289 2363 return new_rtx;
e7dfe4bb 2364}
23b2ce53 2365\f
f6129d66
RH
2366/* A fake decl that is used as the MEM_EXPR of spill slots. */
2367static GTY(()) tree spill_slot_decl;
2368
3d7e23f6
RH
2369tree
2370get_spill_slot_decl (bool force_build_p)
f6129d66
RH
2371{
2372 tree d = spill_slot_decl;
2373 rtx rd;
f12144dd 2374 struct mem_attrs attrs;
f6129d66 2375
3d7e23f6 2376 if (d || !force_build_p)
f6129d66
RH
2377 return d;
2378
c2255bc4
AH
2379 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2380 VAR_DECL, get_identifier ("%sfp"), void_type_node);
f6129d66
RH
2381 DECL_ARTIFICIAL (d) = 1;
2382 DECL_IGNORED_P (d) = 1;
2383 TREE_USED (d) = 1;
f6129d66
RH
2384 spill_slot_decl = d;
2385
2386 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2387 MEM_NOTRAP_P (rd) = 1;
f12144dd
RS
2388 attrs = *mode_mem_attrs[(int) BLKmode];
2389 attrs.alias = new_alias_set ();
2390 attrs.expr = d;
2391 set_mem_attrs (rd, &attrs);
f6129d66
RH
2392 SET_DECL_RTL (d, rd);
2393
2394 return d;
2395}
2396
2397/* Given MEM, a result from assign_stack_local, fill in the memory
2398 attributes as appropriate for a register allocator spill slot.
2399 These slots are not aliasable by other memory. We arrange for
2400 them all to use a single MEM_EXPR, so that the aliasing code can
2401 work properly in the case of shared spill slots. */
2402
2403void
2404set_mem_attrs_for_spill (rtx mem)
2405{
f12144dd
RS
2406 struct mem_attrs attrs;
2407 rtx addr;
f6129d66 2408
f12144dd
RS
2409 attrs = *get_mem_attrs (mem);
2410 attrs.expr = get_spill_slot_decl (true);
2411 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2412 attrs.addrspace = ADDR_SPACE_GENERIC;
f6129d66
RH
2413
2414 /* We expect the incoming memory to be of the form:
2415 (mem:MODE (plus (reg sfp) (const_int offset)))
2416 with perhaps the plus missing for offset = 0. */
2417 addr = XEXP (mem, 0);
754c3d5d
RS
2418 attrs.offset_known_p = true;
2419 attrs.offset = 0;
f6129d66 2420 if (GET_CODE (addr) == PLUS
481683e1 2421 && CONST_INT_P (XEXP (addr, 1)))
754c3d5d 2422 attrs.offset = INTVAL (XEXP (addr, 1));
f6129d66 2423
f12144dd 2424 set_mem_attrs (mem, &attrs);
f6129d66
RH
2425 MEM_NOTRAP_P (mem) = 1;
2426}
2427\f
23b2ce53
RS
2428/* Return a newly created CODE_LABEL rtx with a unique label number. */
2429
2430rtx
502b8322 2431gen_label_rtx (void)
23b2ce53 2432{
0dc36574 2433 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
502b8322 2434 NULL, label_num++, NULL);
23b2ce53
RS
2435}
2436\f
2437/* For procedure integration. */
2438
23b2ce53 2439/* Install new pointers to the first and last insns in the chain.
86fe05e0 2440 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2441 Used for an inline-procedure after copying the insn chain. */
2442
2443void
502b8322 2444set_new_first_and_last_insn (rtx first, rtx last)
23b2ce53 2445{
86fe05e0
RK
2446 rtx insn;
2447
5936d944
JH
2448 set_first_insn (first);
2449 set_last_insn (last);
86fe05e0
RK
2450 cur_insn_uid = 0;
2451
b5b8b0ac
AO
2452 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2453 {
2454 int debug_count = 0;
2455
2456 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2457 cur_debug_insn_uid = 0;
2458
2459 for (insn = first; insn; insn = NEXT_INSN (insn))
2460 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2461 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2462 else
2463 {
2464 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2465 if (DEBUG_INSN_P (insn))
2466 debug_count++;
2467 }
2468
2469 if (debug_count)
2470 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2471 else
2472 cur_debug_insn_uid++;
2473 }
2474 else
2475 for (insn = first; insn; insn = NEXT_INSN (insn))
2476 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
86fe05e0
RK
2477
2478 cur_insn_uid++;
23b2ce53 2479}
23b2ce53 2480\f
750c9258 2481/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2482 structure. This routine should only be called once. */
23b2ce53 2483
fd743bc1 2484static void
b4aaa77b 2485unshare_all_rtl_1 (rtx insn)
23b2ce53 2486{
d1b81779 2487 /* Unshare just about everything else. */
2c07f13b 2488 unshare_all_rtl_in_chain (insn);
750c9258 2489
23b2ce53
RS
2490 /* Make sure the addresses of stack slots found outside the insn chain
2491 (such as, in DECL_RTL of a variable) are not shared
2492 with the insn chain.
2493
2494 This special care is necessary when the stack slot MEM does not
2495 actually appear in the insn chain. If it does appear, its address
2496 is unshared from all else at that point. */
242b0ce6 2497 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2498}
2499
750c9258 2500/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2501 structure, again. This is a fairly expensive thing to do so it
2502 should be done sparingly. */
2503
2504void
502b8322 2505unshare_all_rtl_again (rtx insn)
d1b81779
GK
2506{
2507 rtx p;
624c87aa
RE
2508 tree decl;
2509
d1b81779 2510 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2511 if (INSN_P (p))
d1b81779
GK
2512 {
2513 reset_used_flags (PATTERN (p));
2514 reset_used_flags (REG_NOTES (p));
776bebcd
JJ
2515 if (CALL_P (p))
2516 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
d1b81779 2517 }
624c87aa 2518
2d4aecb3 2519 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2520 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2521
624c87aa 2522 /* Make sure that virtual parameters are not shared. */
910ad8de 2523 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
5eb2a9f2 2524 set_used_flags (DECL_RTL (decl));
624c87aa
RE
2525
2526 reset_used_flags (stack_slot_list);
2527
b4aaa77b 2528 unshare_all_rtl_1 (insn);
fd743bc1
PB
2529}
2530
c2924966 2531unsigned int
fd743bc1
PB
2532unshare_all_rtl (void)
2533{
b4aaa77b 2534 unshare_all_rtl_1 (get_insns ());
c2924966 2535 return 0;
d1b81779
GK
2536}
2537
ef330312 2538
2c07f13b
JH
2539/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2540 Recursively does the same for subexpressions. */
2541
2542static void
2543verify_rtx_sharing (rtx orig, rtx insn)
2544{
2545 rtx x = orig;
2546 int i;
2547 enum rtx_code code;
2548 const char *format_ptr;
2549
2550 if (x == 0)
2551 return;
2552
2553 code = GET_CODE (x);
2554
2555 /* These types may be freely shared. */
2556
2557 switch (code)
2558 {
2559 case REG:
0ca5af51
AO
2560 case DEBUG_EXPR:
2561 case VALUE:
d8116890 2562 CASE_CONST_ANY:
2c07f13b
JH
2563 case SYMBOL_REF:
2564 case LABEL_REF:
2565 case CODE_LABEL:
2566 case PC:
2567 case CC0:
3810076b 2568 case RETURN:
26898771 2569 case SIMPLE_RETURN:
2c07f13b 2570 case SCRATCH:
2c07f13b 2571 return;
3e89ed8d
JH
2572 /* SCRATCH must be shared because they represent distinct values. */
2573 case CLOBBER:
2574 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2575 return;
2576 break;
2c07f13b
JH
2577
2578 case CONST:
6fb5fa3c 2579 if (shared_const_p (orig))
2c07f13b
JH
2580 return;
2581 break;
2582
2583 case MEM:
2584 /* A MEM is allowed to be shared if its address is constant. */
2585 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2586 || reload_completed || reload_in_progress)
2587 return;
2588
2589 break;
2590
2591 default:
2592 break;
2593 }
2594
2595 /* This rtx may not be shared. If it has already been seen,
2596 replace it with a copy of itself. */
1a2caa7a 2597#ifdef ENABLE_CHECKING
2c07f13b
JH
2598 if (RTX_FLAG (x, used))
2599 {
ab532386 2600 error ("invalid rtl sharing found in the insn");
2c07f13b 2601 debug_rtx (insn);
ab532386 2602 error ("shared rtx");
2c07f13b 2603 debug_rtx (x);
ab532386 2604 internal_error ("internal consistency failure");
2c07f13b 2605 }
1a2caa7a
NS
2606#endif
2607 gcc_assert (!RTX_FLAG (x, used));
b8698a0f 2608
2c07f13b
JH
2609 RTX_FLAG (x, used) = 1;
2610
6614fd40 2611 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2612
2613 format_ptr = GET_RTX_FORMAT (code);
2614
2615 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2616 {
2617 switch (*format_ptr++)
2618 {
2619 case 'e':
2620 verify_rtx_sharing (XEXP (x, i), insn);
2621 break;
2622
2623 case 'E':
2624 if (XVEC (x, i) != NULL)
2625 {
2626 int j;
2627 int len = XVECLEN (x, i);
2628
2629 for (j = 0; j < len; j++)
2630 {
1a2caa7a
NS
2631 /* We allow sharing of ASM_OPERANDS inside single
2632 instruction. */
2c07f13b 2633 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2634 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2635 == ASM_OPERANDS))
2c07f13b
JH
2636 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2637 else
2638 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2639 }
2640 }
2641 break;
2642 }
2643 }
2644 return;
2645}
2646
ba228239 2647/* Go through all the RTL insn bodies and check that there is no unexpected
2c07f13b
JH
2648 sharing in between the subexpressions. */
2649
24e47c76 2650DEBUG_FUNCTION void
2c07f13b
JH
2651verify_rtl_sharing (void)
2652{
2653 rtx p;
2654
a222c01a
MM
2655 timevar_push (TV_VERIFY_RTL_SHARING);
2656
2c07f13b
JH
2657 for (p = get_insns (); p; p = NEXT_INSN (p))
2658 if (INSN_P (p))
2659 {
2660 reset_used_flags (PATTERN (p));
2661 reset_used_flags (REG_NOTES (p));
776bebcd
JJ
2662 if (CALL_P (p))
2663 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2954a813
KK
2664 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2665 {
2666 int i;
2667 rtx q, sequence = PATTERN (p);
2668
2669 for (i = 0; i < XVECLEN (sequence, 0); i++)
2670 {
2671 q = XVECEXP (sequence, 0, i);
2672 gcc_assert (INSN_P (q));
2673 reset_used_flags (PATTERN (q));
2674 reset_used_flags (REG_NOTES (q));
776bebcd
JJ
2675 if (CALL_P (q))
2676 reset_used_flags (CALL_INSN_FUNCTION_USAGE (q));
2954a813
KK
2677 }
2678 }
2c07f13b
JH
2679 }
2680
2681 for (p = get_insns (); p; p = NEXT_INSN (p))
2682 if (INSN_P (p))
2683 {
2684 verify_rtx_sharing (PATTERN (p), p);
2685 verify_rtx_sharing (REG_NOTES (p), p);
776bebcd
JJ
2686 if (CALL_P (p))
2687 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (p), p);
2c07f13b 2688 }
a222c01a
MM
2689
2690 timevar_pop (TV_VERIFY_RTL_SHARING);
2c07f13b
JH
2691}
2692
d1b81779
GK
2693/* Go through all the RTL insn bodies and copy any invalid shared structure.
2694 Assumes the mark bits are cleared at entry. */
2695
2c07f13b
JH
2696void
2697unshare_all_rtl_in_chain (rtx insn)
d1b81779
GK
2698{
2699 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2700 if (INSN_P (insn))
d1b81779
GK
2701 {
2702 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2703 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
776bebcd
JJ
2704 if (CALL_P (insn))
2705 CALL_INSN_FUNCTION_USAGE (insn)
2706 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
d1b81779
GK
2707 }
2708}
2709
2d4aecb3 2710/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2711 shared. We never replace the DECL_RTLs themselves with a copy,
2712 but expressions mentioned into a DECL_RTL cannot be shared with
2713 expressions in the instruction stream.
2714
2715 Note that reload may convert pseudo registers into memories in-place.
2716 Pseudo registers are always shared, but MEMs never are. Thus if we
2717 reset the used flags on MEMs in the instruction stream, we must set
2718 them again on MEMs that appear in DECL_RTLs. */
2719
2d4aecb3 2720static void
5eb2a9f2 2721set_used_decls (tree blk)
2d4aecb3
AO
2722{
2723 tree t;
2724
2725 /* Mark decls. */
910ad8de 2726 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
19e7881c 2727 if (DECL_RTL_SET_P (t))
5eb2a9f2 2728 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2729
2730 /* Now process sub-blocks. */
87caf699 2731 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 2732 set_used_decls (t);
2d4aecb3
AO
2733}
2734
23b2ce53 2735/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2736 Recursively does the same for subexpressions. Uses
2737 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2738
2739rtx
502b8322 2740copy_rtx_if_shared (rtx orig)
23b2ce53 2741{
32b32b16
AP
2742 copy_rtx_if_shared_1 (&orig);
2743 return orig;
2744}
2745
ff954f39
AP
2746/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2747 use. Recursively does the same for subexpressions. */
2748
32b32b16
AP
2749static void
2750copy_rtx_if_shared_1 (rtx *orig1)
2751{
2752 rtx x;
b3694847
SS
2753 int i;
2754 enum rtx_code code;
32b32b16 2755 rtx *last_ptr;
b3694847 2756 const char *format_ptr;
23b2ce53 2757 int copied = 0;
32b32b16
AP
2758 int length;
2759
2760 /* Repeat is used to turn tail-recursion into iteration. */
2761repeat:
2762 x = *orig1;
23b2ce53
RS
2763
2764 if (x == 0)
32b32b16 2765 return;
23b2ce53
RS
2766
2767 code = GET_CODE (x);
2768
2769 /* These types may be freely shared. */
2770
2771 switch (code)
2772 {
2773 case REG:
0ca5af51
AO
2774 case DEBUG_EXPR:
2775 case VALUE:
d8116890 2776 CASE_CONST_ANY:
23b2ce53 2777 case SYMBOL_REF:
2c07f13b 2778 case LABEL_REF:
23b2ce53
RS
2779 case CODE_LABEL:
2780 case PC:
2781 case CC0:
276e0224 2782 case RETURN:
26898771 2783 case SIMPLE_RETURN:
23b2ce53 2784 case SCRATCH:
0f41302f 2785 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 2786 return;
3e89ed8d
JH
2787 case CLOBBER:
2788 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2789 return;
2790 break;
23b2ce53 2791
b851ea09 2792 case CONST:
6fb5fa3c 2793 if (shared_const_p (x))
32b32b16 2794 return;
b851ea09
RK
2795 break;
2796
b5b8b0ac 2797 case DEBUG_INSN:
23b2ce53
RS
2798 case INSN:
2799 case JUMP_INSN:
2800 case CALL_INSN:
2801 case NOTE:
23b2ce53
RS
2802 case BARRIER:
2803 /* The chain of insns is not being copied. */
32b32b16 2804 return;
23b2ce53 2805
e9a25f70
JL
2806 default:
2807 break;
23b2ce53
RS
2808 }
2809
2810 /* This rtx may not be shared. If it has already been seen,
2811 replace it with a copy of itself. */
2812
2adc7f12 2813 if (RTX_FLAG (x, used))
23b2ce53 2814 {
aacd3885 2815 x = shallow_copy_rtx (x);
23b2ce53
RS
2816 copied = 1;
2817 }
2adc7f12 2818 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2819
2820 /* Now scan the subexpressions recursively.
2821 We can store any replaced subexpressions directly into X
2822 since we know X is not shared! Any vectors in X
2823 must be copied if X was copied. */
2824
2825 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2826 length = GET_RTX_LENGTH (code);
2827 last_ptr = NULL;
b8698a0f 2828
32b32b16 2829 for (i = 0; i < length; i++)
23b2ce53
RS
2830 {
2831 switch (*format_ptr++)
2832 {
2833 case 'e':
32b32b16
AP
2834 if (last_ptr)
2835 copy_rtx_if_shared_1 (last_ptr);
2836 last_ptr = &XEXP (x, i);
23b2ce53
RS
2837 break;
2838
2839 case 'E':
2840 if (XVEC (x, i) != NULL)
2841 {
b3694847 2842 int j;
f0722107 2843 int len = XVECLEN (x, i);
b8698a0f 2844
6614fd40
KH
2845 /* Copy the vector iff I copied the rtx and the length
2846 is nonzero. */
f0722107 2847 if (copied && len > 0)
8f985ec4 2848 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
b8698a0f 2849
5d3cc252 2850 /* Call recursively on all inside the vector. */
f0722107 2851 for (j = 0; j < len; j++)
32b32b16
AP
2852 {
2853 if (last_ptr)
2854 copy_rtx_if_shared_1 (last_ptr);
2855 last_ptr = &XVECEXP (x, i, j);
2856 }
23b2ce53
RS
2857 }
2858 break;
2859 }
2860 }
32b32b16
AP
2861 *orig1 = x;
2862 if (last_ptr)
2863 {
2864 orig1 = last_ptr;
2865 goto repeat;
2866 }
2867 return;
23b2ce53
RS
2868}
2869
76369a82 2870/* Set the USED bit in X and its non-shareable subparts to FLAG. */
23b2ce53 2871
76369a82
NF
2872static void
2873mark_used_flags (rtx x, int flag)
23b2ce53 2874{
b3694847
SS
2875 int i, j;
2876 enum rtx_code code;
2877 const char *format_ptr;
32b32b16 2878 int length;
23b2ce53 2879
32b32b16
AP
2880 /* Repeat is used to turn tail-recursion into iteration. */
2881repeat:
23b2ce53
RS
2882 if (x == 0)
2883 return;
2884
2885 code = GET_CODE (x);
2886
9faa82d8 2887 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2888 for them. */
2889
2890 switch (code)
2891 {
2892 case REG:
0ca5af51
AO
2893 case DEBUG_EXPR:
2894 case VALUE:
d8116890 2895 CASE_CONST_ANY:
23b2ce53
RS
2896 case SYMBOL_REF:
2897 case CODE_LABEL:
2898 case PC:
2899 case CC0:
276e0224 2900 case RETURN:
26898771 2901 case SIMPLE_RETURN:
23b2ce53
RS
2902 return;
2903
b5b8b0ac 2904 case DEBUG_INSN:
23b2ce53
RS
2905 case INSN:
2906 case JUMP_INSN:
2907 case CALL_INSN:
2908 case NOTE:
2909 case LABEL_REF:
2910 case BARRIER:
2911 /* The chain of insns is not being copied. */
2912 return;
750c9258 2913
e9a25f70
JL
2914 default:
2915 break;
23b2ce53
RS
2916 }
2917
76369a82 2918 RTX_FLAG (x, used) = flag;
23b2ce53
RS
2919
2920 format_ptr = GET_RTX_FORMAT (code);
32b32b16 2921 length = GET_RTX_LENGTH (code);
b8698a0f 2922
32b32b16 2923 for (i = 0; i < length; i++)
23b2ce53
RS
2924 {
2925 switch (*format_ptr++)
2926 {
2927 case 'e':
32b32b16
AP
2928 if (i == length-1)
2929 {
2930 x = XEXP (x, i);
2931 goto repeat;
2932 }
76369a82 2933 mark_used_flags (XEXP (x, i), flag);
23b2ce53
RS
2934 break;
2935
2936 case 'E':
2937 for (j = 0; j < XVECLEN (x, i); j++)
76369a82 2938 mark_used_flags (XVECEXP (x, i, j), flag);
23b2ce53
RS
2939 break;
2940 }
2941 }
2942}
2c07f13b 2943
76369a82 2944/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2c07f13b
JH
2945 to look for shared sub-parts. */
2946
2947void
76369a82 2948reset_used_flags (rtx x)
2c07f13b 2949{
76369a82
NF
2950 mark_used_flags (x, 0);
2951}
2c07f13b 2952
76369a82
NF
2953/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2954 to look for shared sub-parts. */
2c07f13b 2955
76369a82
NF
2956void
2957set_used_flags (rtx x)
2958{
2959 mark_used_flags (x, 1);
2c07f13b 2960}
23b2ce53
RS
2961\f
2962/* Copy X if necessary so that it won't be altered by changes in OTHER.
2963 Return X or the rtx for the pseudo reg the value of X was copied into.
2964 OTHER must be valid as a SET_DEST. */
2965
2966rtx
502b8322 2967make_safe_from (rtx x, rtx other)
23b2ce53
RS
2968{
2969 while (1)
2970 switch (GET_CODE (other))
2971 {
2972 case SUBREG:
2973 other = SUBREG_REG (other);
2974 break;
2975 case STRICT_LOW_PART:
2976 case SIGN_EXTEND:
2977 case ZERO_EXTEND:
2978 other = XEXP (other, 0);
2979 break;
2980 default:
2981 goto done;
2982 }
2983 done:
3c0cb5de 2984 if ((MEM_P (other)
23b2ce53 2985 && ! CONSTANT_P (x)
f8cfc6aa 2986 && !REG_P (x)
23b2ce53 2987 && GET_CODE (x) != SUBREG)
f8cfc6aa 2988 || (REG_P (other)
23b2ce53
RS
2989 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2990 || reg_mentioned_p (other, x))))
2991 {
2992 rtx temp = gen_reg_rtx (GET_MODE (x));
2993 emit_move_insn (temp, x);
2994 return temp;
2995 }
2996 return x;
2997}
2998\f
2999/* Emission of insns (adding them to the doubly-linked list). */
3000
23b2ce53
RS
3001/* Return the last insn emitted, even if it is in a sequence now pushed. */
3002
3003rtx
502b8322 3004get_last_insn_anywhere (void)
23b2ce53
RS
3005{
3006 struct sequence_stack *stack;
5936d944
JH
3007 if (get_last_insn ())
3008 return get_last_insn ();
49ad7cfa 3009 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
3010 if (stack->last != 0)
3011 return stack->last;
3012 return 0;
3013}
3014
2a496e8b
JDA
3015/* Return the first nonnote insn emitted in current sequence or current
3016 function. This routine looks inside SEQUENCEs. */
3017
3018rtx
502b8322 3019get_first_nonnote_insn (void)
2a496e8b 3020{
5936d944 3021 rtx insn = get_insns ();
91373fe8
JDA
3022
3023 if (insn)
3024 {
3025 if (NOTE_P (insn))
3026 for (insn = next_insn (insn);
3027 insn && NOTE_P (insn);
3028 insn = next_insn (insn))
3029 continue;
3030 else
3031 {
2ca202e7 3032 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
3033 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3034 insn = XVECEXP (PATTERN (insn), 0, 0);
3035 }
3036 }
2a496e8b
JDA
3037
3038 return insn;
3039}
3040
3041/* Return the last nonnote insn emitted in current sequence or current
3042 function. This routine looks inside SEQUENCEs. */
3043
3044rtx
502b8322 3045get_last_nonnote_insn (void)
2a496e8b 3046{
5936d944 3047 rtx insn = get_last_insn ();
91373fe8
JDA
3048
3049 if (insn)
3050 {
3051 if (NOTE_P (insn))
3052 for (insn = previous_insn (insn);
3053 insn && NOTE_P (insn);
3054 insn = previous_insn (insn))
3055 continue;
3056 else
3057 {
2ca202e7 3058 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
3059 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3060 insn = XVECEXP (PATTERN (insn), 0,
3061 XVECLEN (PATTERN (insn), 0) - 1);
3062 }
3063 }
2a496e8b
JDA
3064
3065 return insn;
3066}
3067
b5b8b0ac
AO
3068/* Return the number of actual (non-debug) insns emitted in this
3069 function. */
3070
3071int
3072get_max_insn_count (void)
3073{
3074 int n = cur_insn_uid;
3075
3076 /* The table size must be stable across -g, to avoid codegen
3077 differences due to debug insns, and not be affected by
3078 -fmin-insn-uid, to avoid excessive table size and to simplify
3079 debugging of -fcompare-debug failures. */
3080 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3081 n -= cur_debug_insn_uid;
3082 else
3083 n -= MIN_NONDEBUG_INSN_UID;
3084
3085 return n;
3086}
3087
23b2ce53
RS
3088\f
3089/* Return the next insn. If it is a SEQUENCE, return the first insn
3090 of the sequence. */
3091
3092rtx
502b8322 3093next_insn (rtx insn)
23b2ce53 3094{
75547801
KG
3095 if (insn)
3096 {
3097 insn = NEXT_INSN (insn);
3098 if (insn && NONJUMP_INSN_P (insn)
3099 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3100 insn = XVECEXP (PATTERN (insn), 0, 0);
3101 }
23b2ce53 3102
75547801 3103 return insn;
23b2ce53
RS
3104}
3105
3106/* Return the previous insn. If it is a SEQUENCE, return the last insn
3107 of the sequence. */
3108
3109rtx
502b8322 3110previous_insn (rtx insn)
23b2ce53 3111{
75547801
KG
3112 if (insn)
3113 {
3114 insn = PREV_INSN (insn);
3115 if (insn && NONJUMP_INSN_P (insn)
3116 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3117 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3118 }
23b2ce53 3119
75547801 3120 return insn;
23b2ce53
RS
3121}
3122
3123/* Return the next insn after INSN that is not a NOTE. This routine does not
3124 look inside SEQUENCEs. */
3125
3126rtx
502b8322 3127next_nonnote_insn (rtx insn)
23b2ce53 3128{
75547801
KG
3129 while (insn)
3130 {
3131 insn = NEXT_INSN (insn);
3132 if (insn == 0 || !NOTE_P (insn))
3133 break;
3134 }
23b2ce53 3135
75547801 3136 return insn;
23b2ce53
RS
3137}
3138
1e211590
DD
3139/* Return the next insn after INSN that is not a NOTE, but stop the
3140 search before we enter another basic block. This routine does not
3141 look inside SEQUENCEs. */
3142
3143rtx
3144next_nonnote_insn_bb (rtx insn)
3145{
3146 while (insn)
3147 {
3148 insn = NEXT_INSN (insn);
3149 if (insn == 0 || !NOTE_P (insn))
3150 break;
3151 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3152 return NULL_RTX;
3153 }
3154
3155 return insn;
3156}
3157
23b2ce53
RS
3158/* Return the previous insn before INSN that is not a NOTE. This routine does
3159 not look inside SEQUENCEs. */
3160
3161rtx
502b8322 3162prev_nonnote_insn (rtx insn)
23b2ce53 3163{
75547801
KG
3164 while (insn)
3165 {
3166 insn = PREV_INSN (insn);
3167 if (insn == 0 || !NOTE_P (insn))
3168 break;
3169 }
23b2ce53 3170
75547801 3171 return insn;
23b2ce53
RS
3172}
3173
896aa4ea
DD
3174/* Return the previous insn before INSN that is not a NOTE, but stop
3175 the search before we enter another basic block. This routine does
3176 not look inside SEQUENCEs. */
3177
3178rtx
3179prev_nonnote_insn_bb (rtx insn)
3180{
3181 while (insn)
3182 {
3183 insn = PREV_INSN (insn);
3184 if (insn == 0 || !NOTE_P (insn))
3185 break;
3186 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3187 return NULL_RTX;
3188 }
3189
3190 return insn;
3191}
3192
b5b8b0ac
AO
3193/* Return the next insn after INSN that is not a DEBUG_INSN. This
3194 routine does not look inside SEQUENCEs. */
3195
3196rtx
3197next_nondebug_insn (rtx insn)
3198{
3199 while (insn)
3200 {
3201 insn = NEXT_INSN (insn);
3202 if (insn == 0 || !DEBUG_INSN_P (insn))
3203 break;
3204 }
3205
3206 return insn;
3207}
3208
3209/* Return the previous insn before INSN that is not a DEBUG_INSN.
3210 This routine does not look inside SEQUENCEs. */
3211
3212rtx
3213prev_nondebug_insn (rtx insn)
3214{
3215 while (insn)
3216 {
3217 insn = PREV_INSN (insn);
3218 if (insn == 0 || !DEBUG_INSN_P (insn))
3219 break;
3220 }
3221
3222 return insn;
3223}
3224
f0fc0803
JJ
3225/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3226 This routine does not look inside SEQUENCEs. */
3227
3228rtx
3229next_nonnote_nondebug_insn (rtx insn)
3230{
3231 while (insn)
3232 {
3233 insn = NEXT_INSN (insn);
3234 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3235 break;
3236 }
3237
3238 return insn;
3239}
3240
3241/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3242 This routine does not look inside SEQUENCEs. */
3243
3244rtx
3245prev_nonnote_nondebug_insn (rtx insn)
3246{
3247 while (insn)
3248 {
3249 insn = PREV_INSN (insn);
3250 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3251 break;
3252 }
3253
3254 return insn;
3255}
3256
23b2ce53
RS
3257/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3258 or 0, if there is none. This routine does not look inside
0f41302f 3259 SEQUENCEs. */
23b2ce53
RS
3260
3261rtx
502b8322 3262next_real_insn (rtx insn)
23b2ce53 3263{
75547801
KG
3264 while (insn)
3265 {
3266 insn = NEXT_INSN (insn);
3267 if (insn == 0 || INSN_P (insn))
3268 break;
3269 }
23b2ce53 3270
75547801 3271 return insn;
23b2ce53
RS
3272}
3273
3274/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3275 or 0, if there is none. This routine does not look inside
3276 SEQUENCEs. */
3277
3278rtx
502b8322 3279prev_real_insn (rtx insn)
23b2ce53 3280{
75547801
KG
3281 while (insn)
3282 {
3283 insn = PREV_INSN (insn);
3284 if (insn == 0 || INSN_P (insn))
3285 break;
3286 }
23b2ce53 3287
75547801 3288 return insn;
23b2ce53
RS
3289}
3290
ee960939
OH
3291/* Return the last CALL_INSN in the current list, or 0 if there is none.
3292 This routine does not look inside SEQUENCEs. */
3293
3294rtx
502b8322 3295last_call_insn (void)
ee960939
OH
3296{
3297 rtx insn;
3298
3299 for (insn = get_last_insn ();
4b4bf941 3300 insn && !CALL_P (insn);
ee960939
OH
3301 insn = PREV_INSN (insn))
3302 ;
3303
3304 return insn;
3305}
3306
23b2ce53 3307/* Find the next insn after INSN that really does something. This routine
9c517bf3
AK
3308 does not look inside SEQUENCEs. After reload this also skips over
3309 standalone USE and CLOBBER insn. */
23b2ce53 3310
69732dcb 3311int
4f588890 3312active_insn_p (const_rtx insn)
69732dcb 3313{
4b4bf941
JQ
3314 return (CALL_P (insn) || JUMP_P (insn)
3315 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3316 && (! reload_completed
3317 || (GET_CODE (PATTERN (insn)) != USE
3318 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3319}
3320
23b2ce53 3321rtx
502b8322 3322next_active_insn (rtx insn)
23b2ce53 3323{
75547801
KG
3324 while (insn)
3325 {
3326 insn = NEXT_INSN (insn);
3327 if (insn == 0 || active_insn_p (insn))
3328 break;
3329 }
23b2ce53 3330
75547801 3331 return insn;
23b2ce53
RS
3332}
3333
3334/* Find the last insn before INSN that really does something. This routine
9c517bf3
AK
3335 does not look inside SEQUENCEs. After reload this also skips over
3336 standalone USE and CLOBBER insn. */
23b2ce53
RS
3337
3338rtx
502b8322 3339prev_active_insn (rtx insn)
23b2ce53 3340{
75547801
KG
3341 while (insn)
3342 {
3343 insn = PREV_INSN (insn);
3344 if (insn == 0 || active_insn_p (insn))
3345 break;
3346 }
23b2ce53 3347
75547801 3348 return insn;
23b2ce53
RS
3349}
3350
3351/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3352
3353rtx
502b8322 3354next_label (rtx insn)
23b2ce53 3355{
75547801
KG
3356 while (insn)
3357 {
3358 insn = NEXT_INSN (insn);
3359 if (insn == 0 || LABEL_P (insn))
3360 break;
3361 }
23b2ce53 3362
75547801 3363 return insn;
23b2ce53
RS
3364}
3365
dc0ff1c8
BS
3366/* Return the last label to mark the same position as LABEL. Return LABEL
3367 itself if it is null or any return rtx. */
6c2511d3
RS
3368
3369rtx
3370skip_consecutive_labels (rtx label)
3371{
3372 rtx insn;
3373
dc0ff1c8
BS
3374 if (label && ANY_RETURN_P (label))
3375 return label;
3376
6c2511d3
RS
3377 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3378 if (LABEL_P (insn))
3379 label = insn;
3380
3381 return label;
3382}
23b2ce53
RS
3383\f
3384#ifdef HAVE_cc0
c572e5ba
JVA
3385/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3386 and REG_CC_USER notes so we can find it. */
3387
3388void
502b8322 3389link_cc0_insns (rtx insn)
c572e5ba
JVA
3390{
3391 rtx user = next_nonnote_insn (insn);
3392
4b4bf941 3393 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
c572e5ba
JVA
3394 user = XVECEXP (PATTERN (user), 0, 0);
3395
65c5f2a6
ILT
3396 add_reg_note (user, REG_CC_SETTER, insn);
3397 add_reg_note (insn, REG_CC_USER, user);
c572e5ba
JVA
3398}
3399
23b2ce53
RS
3400/* Return the next insn that uses CC0 after INSN, which is assumed to
3401 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3402 applied to the result of this function should yield INSN).
3403
3404 Normally, this is simply the next insn. However, if a REG_CC_USER note
3405 is present, it contains the insn that uses CC0.
3406
3407 Return 0 if we can't find the insn. */
3408
3409rtx
502b8322 3410next_cc0_user (rtx insn)
23b2ce53 3411{
906c4e36 3412 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3413
3414 if (note)
3415 return XEXP (note, 0);
3416
3417 insn = next_nonnote_insn (insn);
4b4bf941 3418 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
23b2ce53
RS
3419 insn = XVECEXP (PATTERN (insn), 0, 0);
3420
2c3c49de 3421 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3422 return insn;
3423
3424 return 0;
3425}
3426
3427/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3428 note, it is the previous insn. */
3429
3430rtx
502b8322 3431prev_cc0_setter (rtx insn)
23b2ce53 3432{
906c4e36 3433 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3434
3435 if (note)
3436 return XEXP (note, 0);
3437
3438 insn = prev_nonnote_insn (insn);
5b0264cb 3439 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53
RS
3440
3441 return insn;
3442}
3443#endif
e5bef2e4 3444
594f8779
RZ
3445#ifdef AUTO_INC_DEC
3446/* Find a RTX_AUTOINC class rtx which matches DATA. */
3447
3448static int
3449find_auto_inc (rtx *xp, void *data)
3450{
3451 rtx x = *xp;
5ead67f6 3452 rtx reg = (rtx) data;
594f8779
RZ
3453
3454 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3455 return 0;
3456
3457 switch (GET_CODE (x))
3458 {
3459 case PRE_DEC:
3460 case PRE_INC:
3461 case POST_DEC:
3462 case POST_INC:
3463 case PRE_MODIFY:
3464 case POST_MODIFY:
3465 if (rtx_equal_p (reg, XEXP (x, 0)))
3466 return 1;
3467 break;
3468
3469 default:
3470 gcc_unreachable ();
3471 }
3472 return -1;
3473}
3474#endif
3475
e5bef2e4
HB
3476/* Increment the label uses for all labels present in rtx. */
3477
3478static void
502b8322 3479mark_label_nuses (rtx x)
e5bef2e4 3480{
b3694847
SS
3481 enum rtx_code code;
3482 int i, j;
3483 const char *fmt;
e5bef2e4
HB
3484
3485 code = GET_CODE (x);
7537fc90 3486 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
e5bef2e4
HB
3487 LABEL_NUSES (XEXP (x, 0))++;
3488
3489 fmt = GET_RTX_FORMAT (code);
3490 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3491 {
3492 if (fmt[i] == 'e')
0fb7aeda 3493 mark_label_nuses (XEXP (x, i));
e5bef2e4 3494 else if (fmt[i] == 'E')
0fb7aeda 3495 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3496 mark_label_nuses (XVECEXP (x, i, j));
3497 }
3498}
3499
23b2ce53
RS
3500\f
3501/* Try splitting insns that can be split for better scheduling.
3502 PAT is the pattern which might split.
3503 TRIAL is the insn providing PAT.
cc2902df 3504 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3505
3506 If this routine succeeds in splitting, it returns the first or last
11147ebe 3507 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3508 returns TRIAL. If the insn to be returned can be split, it will be. */
3509
3510rtx
502b8322 3511try_split (rtx pat, rtx trial, int last)
23b2ce53
RS
3512{
3513 rtx before = PREV_INSN (trial);
3514 rtx after = NEXT_INSN (trial);
23b2ce53 3515 int has_barrier = 0;
4a8cae83 3516 rtx note, seq, tem;
6b24c259 3517 int probability;
599aedd9
RH
3518 rtx insn_last, insn;
3519 int njumps = 0;
6b24c259 3520
cd9c1ca8
RH
3521 /* We're not good at redistributing frame information. */
3522 if (RTX_FRAME_RELATED_P (trial))
3523 return trial;
3524
6b24c259
JH
3525 if (any_condjump_p (trial)
3526 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3527 split_branch_probability = INTVAL (XEXP (note, 0));
3528 probability = split_branch_probability;
3529
3530 seq = split_insns (pat, trial);
3531
3532 split_branch_probability = -1;
23b2ce53
RS
3533
3534 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3535 We may need to handle this specially. */
4b4bf941 3536 if (after && BARRIER_P (after))
23b2ce53
RS
3537 {
3538 has_barrier = 1;
3539 after = NEXT_INSN (after);
3540 }
3541
599aedd9
RH
3542 if (!seq)
3543 return trial;
3544
3545 /* Avoid infinite loop if any insn of the result matches
3546 the original pattern. */
3547 insn_last = seq;
3548 while (1)
23b2ce53 3549 {
599aedd9
RH
3550 if (INSN_P (insn_last)
3551 && rtx_equal_p (PATTERN (insn_last), pat))
3552 return trial;
3553 if (!NEXT_INSN (insn_last))
3554 break;
3555 insn_last = NEXT_INSN (insn_last);
3556 }
750c9258 3557
6fb5fa3c
DB
3558 /* We will be adding the new sequence to the function. The splitters
3559 may have introduced invalid RTL sharing, so unshare the sequence now. */
3560 unshare_all_rtl_in_chain (seq);
3561
599aedd9
RH
3562 /* Mark labels. */
3563 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3564 {
4b4bf941 3565 if (JUMP_P (insn))
599aedd9
RH
3566 {
3567 mark_jump_label (PATTERN (insn), insn, 0);
3568 njumps++;
3569 if (probability != -1
3570 && any_condjump_p (insn)
3571 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3572 {
599aedd9
RH
3573 /* We can preserve the REG_BR_PROB notes only if exactly
3574 one jump is created, otherwise the machine description
3575 is responsible for this step using
3576 split_branch_probability variable. */
5b0264cb 3577 gcc_assert (njumps == 1);
65c5f2a6 3578 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
2f937369 3579 }
599aedd9
RH
3580 }
3581 }
3582
3583 /* If we are splitting a CALL_INSN, look for the CALL_INSN
65712d5c 3584 in SEQ and copy any additional information across. */
4b4bf941 3585 if (CALL_P (trial))
599aedd9
RH
3586 {
3587 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3588 if (CALL_P (insn))
599aedd9 3589 {
65712d5c
RS
3590 rtx next, *p;
3591
3592 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3593 target may have explicitly specified. */
3594 p = &CALL_INSN_FUNCTION_USAGE (insn);
f6a1f3f6
RH
3595 while (*p)
3596 p = &XEXP (*p, 1);
3597 *p = CALL_INSN_FUNCTION_USAGE (trial);
65712d5c
RS
3598
3599 /* If the old call was a sibling call, the new one must
3600 be too. */
599aedd9 3601 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
65712d5c
RS
3602
3603 /* If the new call is the last instruction in the sequence,
3604 it will effectively replace the old call in-situ. Otherwise
3605 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3606 so that it comes immediately after the new call. */
3607 if (NEXT_INSN (insn))
65f3dedb
RS
3608 for (next = NEXT_INSN (trial);
3609 next && NOTE_P (next);
3610 next = NEXT_INSN (next))
3611 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
65712d5c
RS
3612 {
3613 remove_insn (next);
3614 add_insn_after (next, insn, NULL);
65f3dedb 3615 break;
65712d5c 3616 }
599aedd9
RH
3617 }
3618 }
4b5e8abe 3619
599aedd9
RH
3620 /* Copy notes, particularly those related to the CFG. */
3621 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3622 {
3623 switch (REG_NOTE_KIND (note))
3624 {
3625 case REG_EH_REGION:
1d65f45c 3626 copy_reg_eh_region_note_backward (note, insn_last, NULL);
599aedd9 3627 break;
216183ce 3628
599aedd9
RH
3629 case REG_NORETURN:
3630 case REG_SETJMP:
0a35513e 3631 case REG_TM:
594f8779 3632 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3633 {
4b4bf941 3634 if (CALL_P (insn))
65c5f2a6 3635 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3636 }
599aedd9 3637 break;
d6e95df8 3638
599aedd9 3639 case REG_NON_LOCAL_GOTO:
594f8779 3640 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3641 {
4b4bf941 3642 if (JUMP_P (insn))
65c5f2a6 3643 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3644 }
599aedd9 3645 break;
e5bef2e4 3646
594f8779
RZ
3647#ifdef AUTO_INC_DEC
3648 case REG_INC:
3649 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3650 {
3651 rtx reg = XEXP (note, 0);
3652 if (!FIND_REG_INC_NOTE (insn, reg)
3653 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
65c5f2a6 3654 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3655 }
3656 break;
3657#endif
3658
9a08d230
RH
3659 case REG_ARGS_SIZE:
3660 fixup_args_size_notes (NULL_RTX, insn_last, INTVAL (XEXP (note, 0)));
3661 break;
3662
599aedd9
RH
3663 default:
3664 break;
23b2ce53 3665 }
599aedd9
RH
3666 }
3667
3668 /* If there are LABELS inside the split insns increment the
3669 usage count so we don't delete the label. */
cf7c4aa6 3670 if (INSN_P (trial))
599aedd9
RH
3671 {
3672 insn = insn_last;
3673 while (insn != NULL_RTX)
23b2ce53 3674 {
cf7c4aa6 3675 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3676 if (NONJUMP_INSN_P (insn))
599aedd9 3677 mark_label_nuses (PATTERN (insn));
23b2ce53 3678
599aedd9
RH
3679 insn = PREV_INSN (insn);
3680 }
23b2ce53
RS
3681 }
3682
5368224f 3683 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
599aedd9
RH
3684
3685 delete_insn (trial);
3686 if (has_barrier)
3687 emit_barrier_after (tem);
3688
3689 /* Recursively call try_split for each new insn created; by the
3690 time control returns here that insn will be fully split, so
3691 set LAST and continue from the insn after the one returned.
3692 We can't use next_active_insn here since AFTER may be a note.
3693 Ignore deleted insns, which can be occur if not optimizing. */
3694 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3695 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3696 tem = try_split (PATTERN (tem), tem, 1);
3697
3698 /* Return either the first or the last insn, depending on which was
3699 requested. */
3700 return last
5936d944 3701 ? (after ? PREV_INSN (after) : get_last_insn ())
599aedd9 3702 : NEXT_INSN (before);
23b2ce53
RS
3703}
3704\f
3705/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3706 Store PATTERN in the pattern slots. */
23b2ce53
RS
3707
3708rtx
502b8322 3709make_insn_raw (rtx pattern)
23b2ce53 3710{
b3694847 3711 rtx insn;
23b2ce53 3712
1f8f4a0b 3713 insn = rtx_alloc (INSN);
23b2ce53 3714
43127294 3715 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3716 PATTERN (insn) = pattern;
3717 INSN_CODE (insn) = -1;
1632afca 3718 REG_NOTES (insn) = NULL;
5368224f 3719 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3720 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3721
47984720
NC
3722#ifdef ENABLE_RTL_CHECKING
3723 if (insn
2c3c49de 3724 && INSN_P (insn)
47984720
NC
3725 && (returnjump_p (insn)
3726 || (GET_CODE (insn) == SET
3727 && SET_DEST (insn) == pc_rtx)))
3728 {
d4ee4d25 3729 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3730 debug_rtx (insn);
3731 }
3732#endif
750c9258 3733
23b2ce53
RS
3734 return insn;
3735}
3736
b5b8b0ac
AO
3737/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3738
e4da1e17 3739static rtx
b5b8b0ac
AO
3740make_debug_insn_raw (rtx pattern)
3741{
3742 rtx insn;
3743
3744 insn = rtx_alloc (DEBUG_INSN);
3745 INSN_UID (insn) = cur_debug_insn_uid++;
3746 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3747 INSN_UID (insn) = cur_insn_uid++;
3748
3749 PATTERN (insn) = pattern;
3750 INSN_CODE (insn) = -1;
3751 REG_NOTES (insn) = NULL;
5368224f 3752 INSN_LOCATION (insn) = curr_insn_location ();
b5b8b0ac
AO
3753 BLOCK_FOR_INSN (insn) = NULL;
3754
3755 return insn;
3756}
3757
2f937369 3758/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3759
e4da1e17 3760static rtx
502b8322 3761make_jump_insn_raw (rtx pattern)
23b2ce53 3762{
b3694847 3763 rtx insn;
23b2ce53 3764
4b1f5e8c 3765 insn = rtx_alloc (JUMP_INSN);
1632afca 3766 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3767
3768 PATTERN (insn) = pattern;
3769 INSN_CODE (insn) = -1;
1632afca
RS
3770 REG_NOTES (insn) = NULL;
3771 JUMP_LABEL (insn) = NULL;
5368224f 3772 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3773 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3774
3775 return insn;
3776}
aff507f4 3777
2f937369 3778/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3779
3780static rtx
502b8322 3781make_call_insn_raw (rtx pattern)
aff507f4 3782{
b3694847 3783 rtx insn;
aff507f4
RK
3784
3785 insn = rtx_alloc (CALL_INSN);
3786 INSN_UID (insn) = cur_insn_uid++;
3787
3788 PATTERN (insn) = pattern;
3789 INSN_CODE (insn) = -1;
aff507f4
RK
3790 REG_NOTES (insn) = NULL;
3791 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5368224f 3792 INSN_LOCATION (insn) = curr_insn_location ();
ba4f7968 3793 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3794
3795 return insn;
3796}
23b2ce53
RS
3797\f
3798/* Add INSN to the end of the doubly-linked list.
3799 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3800
3801void
502b8322 3802add_insn (rtx insn)
23b2ce53 3803{
5936d944 3804 PREV_INSN (insn) = get_last_insn();
23b2ce53
RS
3805 NEXT_INSN (insn) = 0;
3806
5936d944
JH
3807 if (NULL != get_last_insn())
3808 NEXT_INSN (get_last_insn ()) = insn;
23b2ce53 3809
5936d944
JH
3810 if (NULL == get_insns ())
3811 set_first_insn (insn);
23b2ce53 3812
5936d944 3813 set_last_insn (insn);
23b2ce53
RS
3814}
3815
a0ae8e8d
RK
3816/* Add INSN into the doubly-linked list after insn AFTER. This and
3817 the next should be the only functions called to insert an insn once
ba213285 3818 delay slots have been filled since only they know how to update a
a0ae8e8d 3819 SEQUENCE. */
23b2ce53
RS
3820
3821void
6fb5fa3c 3822add_insn_after (rtx insn, rtx after, basic_block bb)
23b2ce53
RS
3823{
3824 rtx next = NEXT_INSN (after);
3825
5b0264cb 3826 gcc_assert (!optimize || !INSN_DELETED_P (after));
ba213285 3827
23b2ce53
RS
3828 NEXT_INSN (insn) = next;
3829 PREV_INSN (insn) = after;
3830
3831 if (next)
3832 {
3833 PREV_INSN (next) = insn;
4b4bf941 3834 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
23b2ce53
RS
3835 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3836 }
5936d944
JH
3837 else if (get_last_insn () == after)
3838 set_last_insn (insn);
23b2ce53
RS
3839 else
3840 {
49ad7cfa 3841 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3842 /* Scan all pending sequences too. */
3843 for (; stack; stack = stack->next)
3844 if (after == stack->last)
fef0509b
RK
3845 {
3846 stack->last = insn;
3847 break;
3848 }
a0ae8e8d 3849
5b0264cb 3850 gcc_assert (stack);
23b2ce53
RS
3851 }
3852
4b4bf941
JQ
3853 if (!BARRIER_P (after)
3854 && !BARRIER_P (insn)
3c030e88
JH
3855 && (bb = BLOCK_FOR_INSN (after)))
3856 {
3857 set_block_for_insn (insn, bb);
38c1593d 3858 if (INSN_P (insn))
6fb5fa3c 3859 df_insn_rescan (insn);
3c030e88 3860 /* Should not happen as first in the BB is always
a1f300c0 3861 either NOTE or LABEL. */
a813c111 3862 if (BB_END (bb) == after
3c030e88 3863 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 3864 && !BARRIER_P (insn)
a38e7aa5 3865 && !NOTE_INSN_BASIC_BLOCK_P (insn))
a813c111 3866 BB_END (bb) = insn;
3c030e88
JH
3867 }
3868
23b2ce53 3869 NEXT_INSN (after) = insn;
4b4bf941 3870 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
23b2ce53
RS
3871 {
3872 rtx sequence = PATTERN (after);
3873 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3874 }
3875}
3876
a0ae8e8d 3877/* Add INSN into the doubly-linked list before insn BEFORE. This and
6fb5fa3c
DB
3878 the previous should be the only functions called to insert an insn
3879 once delay slots have been filled since only they know how to
3880 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3881 bb from before. */
a0ae8e8d
RK
3882
3883void
6fb5fa3c 3884add_insn_before (rtx insn, rtx before, basic_block bb)
a0ae8e8d
RK
3885{
3886 rtx prev = PREV_INSN (before);
3887
5b0264cb 3888 gcc_assert (!optimize || !INSN_DELETED_P (before));
ba213285 3889
a0ae8e8d
RK
3890 PREV_INSN (insn) = prev;
3891 NEXT_INSN (insn) = before;
3892
3893 if (prev)
3894 {
3895 NEXT_INSN (prev) = insn;
4b4bf941 3896 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
a0ae8e8d
RK
3897 {
3898 rtx sequence = PATTERN (prev);
3899 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3900 }
3901 }
5936d944
JH
3902 else if (get_insns () == before)
3903 set_first_insn (insn);
a0ae8e8d
RK
3904 else
3905 {
49ad7cfa 3906 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3907 /* Scan all pending sequences too. */
3908 for (; stack; stack = stack->next)
3909 if (before == stack->first)
fef0509b
RK
3910 {
3911 stack->first = insn;
3912 break;
3913 }
a0ae8e8d 3914
5b0264cb 3915 gcc_assert (stack);
a0ae8e8d
RK
3916 }
3917
b8698a0f 3918 if (!bb
6fb5fa3c
DB
3919 && !BARRIER_P (before)
3920 && !BARRIER_P (insn))
3921 bb = BLOCK_FOR_INSN (before);
3922
3923 if (bb)
3c030e88
JH
3924 {
3925 set_block_for_insn (insn, bb);
38c1593d 3926 if (INSN_P (insn))
6fb5fa3c 3927 df_insn_rescan (insn);
5b0264cb 3928 /* Should not happen as first in the BB is always either NOTE or
43e05e45 3929 LABEL. */
5b0264cb
NS
3930 gcc_assert (BB_HEAD (bb) != insn
3931 /* Avoid clobbering of structure when creating new BB. */
3932 || BARRIER_P (insn)
a38e7aa5 3933 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88
JH
3934 }
3935
a0ae8e8d 3936 PREV_INSN (before) = insn;
4b4bf941 3937 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
a0ae8e8d
RK
3938 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3939}
3940
6fb5fa3c
DB
3941
3942/* Replace insn with an deleted instruction note. */
3943
0ce2b299
EB
3944void
3945set_insn_deleted (rtx insn)
6fb5fa3c
DB
3946{
3947 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3948 PUT_CODE (insn, NOTE);
3949 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3950}
3951
3952
89e99eea
DB
3953/* Remove an insn from its doubly-linked list. This function knows how
3954 to handle sequences. */
3955void
502b8322 3956remove_insn (rtx insn)
89e99eea
DB
3957{
3958 rtx next = NEXT_INSN (insn);
3959 rtx prev = PREV_INSN (insn);
53c17031
JH
3960 basic_block bb;
3961
6fb5fa3c
DB
3962 /* Later in the code, the block will be marked dirty. */
3963 df_insn_delete (NULL, INSN_UID (insn));
3964
89e99eea
DB
3965 if (prev)
3966 {
3967 NEXT_INSN (prev) = next;
4b4bf941 3968 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea
DB
3969 {
3970 rtx sequence = PATTERN (prev);
3971 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3972 }
3973 }
5936d944
JH
3974 else if (get_insns () == insn)
3975 {
fb9ef4c1
JH
3976 if (next)
3977 PREV_INSN (next) = NULL;
5936d944
JH
3978 set_first_insn (next);
3979 }
89e99eea
DB
3980 else
3981 {
49ad7cfa 3982 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3983 /* Scan all pending sequences too. */
3984 for (; stack; stack = stack->next)
3985 if (insn == stack->first)
3986 {
3987 stack->first = next;
3988 break;
3989 }
3990
5b0264cb 3991 gcc_assert (stack);
89e99eea
DB
3992 }
3993
3994 if (next)
3995 {
3996 PREV_INSN (next) = prev;
4b4bf941 3997 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
89e99eea
DB
3998 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3999 }
5936d944
JH
4000 else if (get_last_insn () == insn)
4001 set_last_insn (prev);
89e99eea
DB
4002 else
4003 {
49ad7cfa 4004 struct sequence_stack *stack = seq_stack;
89e99eea
DB
4005 /* Scan all pending sequences too. */
4006 for (; stack; stack = stack->next)
4007 if (insn == stack->last)
4008 {
4009 stack->last = prev;
4010 break;
4011 }
4012
5b0264cb 4013 gcc_assert (stack);
89e99eea 4014 }
4b4bf941 4015 if (!BARRIER_P (insn)
53c17031
JH
4016 && (bb = BLOCK_FOR_INSN (insn)))
4017 {
4e0084e4 4018 if (NONDEBUG_INSN_P (insn))
6fb5fa3c 4019 df_set_bb_dirty (bb);
a813c111 4020 if (BB_HEAD (bb) == insn)
53c17031 4021 {
3bf1e984
RK
4022 /* Never ever delete the basic block note without deleting whole
4023 basic block. */
5b0264cb 4024 gcc_assert (!NOTE_P (insn));
a813c111 4025 BB_HEAD (bb) = next;
53c17031 4026 }
a813c111
SB
4027 if (BB_END (bb) == insn)
4028 BB_END (bb) = prev;
53c17031 4029 }
89e99eea
DB
4030}
4031
ee960939
OH
4032/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4033
4034void
502b8322 4035add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 4036{
5b0264cb 4037 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
4038
4039 /* Put the register usage information on the CALL. If there is already
4040 some usage information, put ours at the end. */
4041 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4042 {
4043 rtx link;
4044
4045 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4046 link = XEXP (link, 1))
4047 ;
4048
4049 XEXP (link, 1) = call_fusage;
4050 }
4051 else
4052 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4053}
4054
23b2ce53
RS
4055/* Delete all insns made since FROM.
4056 FROM becomes the new last instruction. */
4057
4058void
502b8322 4059delete_insns_since (rtx from)
23b2ce53
RS
4060{
4061 if (from == 0)
5936d944 4062 set_first_insn (0);
23b2ce53
RS
4063 else
4064 NEXT_INSN (from) = 0;
5936d944 4065 set_last_insn (from);
23b2ce53
RS
4066}
4067
5dab5552
MS
4068/* This function is deprecated, please use sequences instead.
4069
4070 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
4071 The insns to be moved are those between FROM and TO.
4072 They are moved to a new position after the insn AFTER.
4073 AFTER must not be FROM or TO or any insn in between.
4074
4075 This function does not know about SEQUENCEs and hence should not be
4076 called after delay-slot filling has been done. */
4077
4078void
502b8322 4079reorder_insns_nobb (rtx from, rtx to, rtx after)
23b2ce53 4080{
4f8344eb
HPN
4081#ifdef ENABLE_CHECKING
4082 rtx x;
4083 for (x = from; x != to; x = NEXT_INSN (x))
4084 gcc_assert (after != x);
4085 gcc_assert (after != to);
4086#endif
4087
23b2ce53
RS
4088 /* Splice this bunch out of where it is now. */
4089 if (PREV_INSN (from))
4090 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
4091 if (NEXT_INSN (to))
4092 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
5936d944
JH
4093 if (get_last_insn () == to)
4094 set_last_insn (PREV_INSN (from));
4095 if (get_insns () == from)
4096 set_first_insn (NEXT_INSN (to));
23b2ce53
RS
4097
4098 /* Make the new neighbors point to it and it to them. */
4099 if (NEXT_INSN (after))
4100 PREV_INSN (NEXT_INSN (after)) = to;
4101
4102 NEXT_INSN (to) = NEXT_INSN (after);
4103 PREV_INSN (from) = after;
4104 NEXT_INSN (after) = from;
5936d944
JH
4105 if (after == get_last_insn())
4106 set_last_insn (to);
23b2ce53
RS
4107}
4108
3c030e88
JH
4109/* Same as function above, but take care to update BB boundaries. */
4110void
502b8322 4111reorder_insns (rtx from, rtx to, rtx after)
3c030e88
JH
4112{
4113 rtx prev = PREV_INSN (from);
4114 basic_block bb, bb2;
4115
4116 reorder_insns_nobb (from, to, after);
4117
4b4bf941 4118 if (!BARRIER_P (after)
3c030e88
JH
4119 && (bb = BLOCK_FOR_INSN (after)))
4120 {
4121 rtx x;
6fb5fa3c 4122 df_set_bb_dirty (bb);
68252e27 4123
4b4bf941 4124 if (!BARRIER_P (from)
3c030e88
JH
4125 && (bb2 = BLOCK_FOR_INSN (from)))
4126 {
a813c111
SB
4127 if (BB_END (bb2) == to)
4128 BB_END (bb2) = prev;
6fb5fa3c 4129 df_set_bb_dirty (bb2);
3c030e88
JH
4130 }
4131
a813c111
SB
4132 if (BB_END (bb) == after)
4133 BB_END (bb) = to;
3c030e88
JH
4134
4135 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 4136 if (!BARRIER_P (x))
63642d5a 4137 df_insn_change_bb (x, bb);
3c030e88
JH
4138 }
4139}
4140
23b2ce53 4141\f
2f937369
DM
4142/* Emit insn(s) of given code and pattern
4143 at a specified place within the doubly-linked list.
23b2ce53 4144
2f937369
DM
4145 All of the emit_foo global entry points accept an object
4146 X which is either an insn list or a PATTERN of a single
4147 instruction.
23b2ce53 4148
2f937369
DM
4149 There are thus a few canonical ways to generate code and
4150 emit it at a specific place in the instruction stream. For
4151 example, consider the instruction named SPOT and the fact that
4152 we would like to emit some instructions before SPOT. We might
4153 do it like this:
23b2ce53 4154
2f937369
DM
4155 start_sequence ();
4156 ... emit the new instructions ...
4157 insns_head = get_insns ();
4158 end_sequence ();
23b2ce53 4159
2f937369 4160 emit_insn_before (insns_head, SPOT);
23b2ce53 4161
2f937369
DM
4162 It used to be common to generate SEQUENCE rtl instead, but that
4163 is a relic of the past which no longer occurs. The reason is that
4164 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4165 generated would almost certainly die right after it was created. */
23b2ce53 4166
5f02387d
NF
4167static rtx
4168emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
4169 rtx (*make_raw) (rtx))
23b2ce53 4170{
b3694847 4171 rtx insn;
23b2ce53 4172
5b0264cb 4173 gcc_assert (before);
2f937369
DM
4174
4175 if (x == NULL_RTX)
4176 return last;
4177
4178 switch (GET_CODE (x))
23b2ce53 4179 {
b5b8b0ac 4180 case DEBUG_INSN:
2f937369
DM
4181 case INSN:
4182 case JUMP_INSN:
4183 case CALL_INSN:
4184 case CODE_LABEL:
4185 case BARRIER:
4186 case NOTE:
4187 insn = x;
4188 while (insn)
4189 {
4190 rtx next = NEXT_INSN (insn);
6fb5fa3c 4191 add_insn_before (insn, before, bb);
2f937369
DM
4192 last = insn;
4193 insn = next;
4194 }
4195 break;
4196
4197#ifdef ENABLE_RTL_CHECKING
4198 case SEQUENCE:
5b0264cb 4199 gcc_unreachable ();
2f937369
DM
4200 break;
4201#endif
4202
4203 default:
5f02387d 4204 last = (*make_raw) (x);
6fb5fa3c 4205 add_insn_before (last, before, bb);
2f937369 4206 break;
23b2ce53
RS
4207 }
4208
2f937369 4209 return last;
23b2ce53
RS
4210}
4211
5f02387d
NF
4212/* Make X be output before the instruction BEFORE. */
4213
4214rtx
4215emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
4216{
4217 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4218}
4219
2f937369 4220/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4221 and output it before the instruction BEFORE. */
4222
4223rtx
a7102479 4224emit_jump_insn_before_noloc (rtx x, rtx before)
23b2ce53 4225{
5f02387d
NF
4226 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4227 make_jump_insn_raw);
23b2ce53
RS
4228}
4229
2f937369 4230/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4231 and output it before the instruction BEFORE. */
4232
4233rtx
a7102479 4234emit_call_insn_before_noloc (rtx x, rtx before)
969d70ca 4235{
5f02387d
NF
4236 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4237 make_call_insn_raw);
969d70ca
JH
4238}
4239
b5b8b0ac
AO
4240/* Make an instruction with body X and code DEBUG_INSN
4241 and output it before the instruction BEFORE. */
4242
4243rtx
4244emit_debug_insn_before_noloc (rtx x, rtx before)
4245{
5f02387d
NF
4246 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4247 make_debug_insn_raw);
b5b8b0ac
AO
4248}
4249
23b2ce53 4250/* Make an insn of code BARRIER
e881bb1b 4251 and output it before the insn BEFORE. */
23b2ce53
RS
4252
4253rtx
502b8322 4254emit_barrier_before (rtx before)
23b2ce53 4255{
b3694847 4256 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4257
4258 INSN_UID (insn) = cur_insn_uid++;
4259
6fb5fa3c 4260 add_insn_before (insn, before, NULL);
23b2ce53
RS
4261 return insn;
4262}
4263
e881bb1b
RH
4264/* Emit the label LABEL before the insn BEFORE. */
4265
4266rtx
502b8322 4267emit_label_before (rtx label, rtx before)
e881bb1b 4268{
468660d3
SB
4269 gcc_checking_assert (INSN_UID (label) == 0);
4270 INSN_UID (label) = cur_insn_uid++;
4271 add_insn_before (label, before, NULL);
e881bb1b
RH
4272 return label;
4273}
4274
23b2ce53
RS
4275/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4276
4277rtx
a38e7aa5 4278emit_note_before (enum insn_note subtype, rtx before)
23b2ce53 4279{
b3694847 4280 rtx note = rtx_alloc (NOTE);
23b2ce53 4281 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4282 NOTE_KIND (note) = subtype;
ba4f7968 4283 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4284 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
23b2ce53 4285
6fb5fa3c 4286 add_insn_before (note, before, NULL);
23b2ce53
RS
4287 return note;
4288}
4289\f
2f937369
DM
4290/* Helper for emit_insn_after, handles lists of instructions
4291 efficiently. */
23b2ce53 4292
2f937369 4293static rtx
6fb5fa3c 4294emit_insn_after_1 (rtx first, rtx after, basic_block bb)
23b2ce53 4295{
2f937369
DM
4296 rtx last;
4297 rtx after_after;
6fb5fa3c
DB
4298 if (!bb && !BARRIER_P (after))
4299 bb = BLOCK_FOR_INSN (after);
23b2ce53 4300
6fb5fa3c 4301 if (bb)
23b2ce53 4302 {
6fb5fa3c 4303 df_set_bb_dirty (bb);
2f937369 4304 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4305 if (!BARRIER_P (last))
6fb5fa3c
DB
4306 {
4307 set_block_for_insn (last, bb);
4308 df_insn_rescan (last);
4309 }
4b4bf941 4310 if (!BARRIER_P (last))
6fb5fa3c
DB
4311 {
4312 set_block_for_insn (last, bb);
4313 df_insn_rescan (last);
4314 }
a813c111
SB
4315 if (BB_END (bb) == after)
4316 BB_END (bb) = last;
23b2ce53
RS
4317 }
4318 else
2f937369
DM
4319 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4320 continue;
4321
4322 after_after = NEXT_INSN (after);
4323
4324 NEXT_INSN (after) = first;
4325 PREV_INSN (first) = after;
4326 NEXT_INSN (last) = after_after;
4327 if (after_after)
4328 PREV_INSN (after_after) = last;
4329
5936d944
JH
4330 if (after == get_last_insn())
4331 set_last_insn (last);
e855c69d 4332
2f937369
DM
4333 return last;
4334}
4335
5f02387d
NF
4336static rtx
4337emit_pattern_after_noloc (rtx x, rtx after, basic_block bb,
4338 rtx (*make_raw)(rtx))
2f937369
DM
4339{
4340 rtx last = after;
4341
5b0264cb 4342 gcc_assert (after);
2f937369
DM
4343
4344 if (x == NULL_RTX)
4345 return last;
4346
4347 switch (GET_CODE (x))
23b2ce53 4348 {
b5b8b0ac 4349 case DEBUG_INSN:
2f937369
DM
4350 case INSN:
4351 case JUMP_INSN:
4352 case CALL_INSN:
4353 case CODE_LABEL:
4354 case BARRIER:
4355 case NOTE:
6fb5fa3c 4356 last = emit_insn_after_1 (x, after, bb);
2f937369
DM
4357 break;
4358
4359#ifdef ENABLE_RTL_CHECKING
4360 case SEQUENCE:
5b0264cb 4361 gcc_unreachable ();
2f937369
DM
4362 break;
4363#endif
4364
4365 default:
5f02387d 4366 last = (*make_raw) (x);
6fb5fa3c 4367 add_insn_after (last, after, bb);
2f937369 4368 break;
23b2ce53
RS
4369 }
4370
2f937369 4371 return last;
23b2ce53
RS
4372}
4373
5f02387d
NF
4374/* Make X be output after the insn AFTER and set the BB of insn. If
4375 BB is NULL, an attempt is made to infer the BB from AFTER. */
4376
4377rtx
4378emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4379{
4380 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4381}
4382
255680cf 4383
2f937369 4384/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4385 and output it after the insn AFTER. */
4386
4387rtx
a7102479 4388emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4389{
5f02387d 4390 return emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw);
2f937369
DM
4391}
4392
4393/* Make an instruction with body X and code CALL_INSN
4394 and output it after the instruction AFTER. */
4395
4396rtx
a7102479 4397emit_call_insn_after_noloc (rtx x, rtx after)
2f937369 4398{
5f02387d 4399 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
23b2ce53
RS
4400}
4401
b5b8b0ac
AO
4402/* Make an instruction with body X and code CALL_INSN
4403 and output it after the instruction AFTER. */
4404
4405rtx
4406emit_debug_insn_after_noloc (rtx x, rtx after)
4407{
5f02387d 4408 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
b5b8b0ac
AO
4409}
4410
23b2ce53
RS
4411/* Make an insn of code BARRIER
4412 and output it after the insn AFTER. */
4413
4414rtx
502b8322 4415emit_barrier_after (rtx after)
23b2ce53 4416{
b3694847 4417 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4418
4419 INSN_UID (insn) = cur_insn_uid++;
4420
6fb5fa3c 4421 add_insn_after (insn, after, NULL);
23b2ce53
RS
4422 return insn;
4423}
4424
4425/* Emit the label LABEL after the insn AFTER. */
4426
4427rtx
502b8322 4428emit_label_after (rtx label, rtx after)
23b2ce53 4429{
468660d3
SB
4430 gcc_checking_assert (INSN_UID (label) == 0);
4431 INSN_UID (label) = cur_insn_uid++;
4432 add_insn_after (label, after, NULL);
23b2ce53
RS
4433 return label;
4434}
4435
4436/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4437
4438rtx
a38e7aa5 4439emit_note_after (enum insn_note subtype, rtx after)
23b2ce53 4440{
b3694847 4441 rtx note = rtx_alloc (NOTE);
23b2ce53 4442 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4443 NOTE_KIND (note) = subtype;
ba4f7968 4444 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4445 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
6fb5fa3c 4446 add_insn_after (note, after, NULL);
23b2ce53
RS
4447 return note;
4448}
23b2ce53 4449\f
e8110d6f
NF
4450/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4451 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4452
4453static rtx
4454emit_pattern_after_setloc (rtx pattern, rtx after, int loc,
4455 rtx (*make_raw) (rtx))
0d682900 4456{
e8110d6f 4457 rtx last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0d682900 4458
a7102479 4459 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4460 return last;
4461
2f937369
DM
4462 after = NEXT_INSN (after);
4463 while (1)
4464 {
5368224f
DC
4465 if (active_insn_p (after) && !INSN_LOCATION (after))
4466 INSN_LOCATION (after) = loc;
2f937369
DM
4467 if (after == last)
4468 break;
4469 after = NEXT_INSN (after);
4470 }
0d682900
JH
4471 return last;
4472}
4473
e8110d6f
NF
4474/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4475 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4476 any DEBUG_INSNs. */
4477
4478static rtx
4479emit_pattern_after (rtx pattern, rtx after, bool skip_debug_insns,
4480 rtx (*make_raw) (rtx))
a7102479 4481{
b5b8b0ac
AO
4482 rtx prev = after;
4483
e8110d6f
NF
4484 if (skip_debug_insns)
4485 while (DEBUG_INSN_P (prev))
4486 prev = PREV_INSN (prev);
b5b8b0ac
AO
4487
4488 if (INSN_P (prev))
5368224f 4489 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
e8110d6f 4490 make_raw);
a7102479 4491 else
e8110d6f 4492 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
a7102479
JH
4493}
4494
5368224f 4495/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
0d682900 4496rtx
e8110d6f 4497emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4498{
e8110d6f
NF
4499 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4500}
2f937369 4501
5368224f 4502/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
e8110d6f
NF
4503rtx
4504emit_insn_after (rtx pattern, rtx after)
4505{
4506 return emit_pattern_after (pattern, after, true, make_insn_raw);
4507}
dd3adcf8 4508
5368224f 4509/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
e8110d6f
NF
4510rtx
4511emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4512{
4513 return emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw);
0d682900
JH
4514}
4515
5368224f 4516/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
a7102479
JH
4517rtx
4518emit_jump_insn_after (rtx pattern, rtx after)
4519{
e8110d6f 4520 return emit_pattern_after (pattern, after, true, make_jump_insn_raw);
a7102479
JH
4521}
4522
5368224f 4523/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
0d682900 4524rtx
502b8322 4525emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4526{
e8110d6f 4527 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
0d682900
JH
4528}
4529
5368224f 4530/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
a7102479
JH
4531rtx
4532emit_call_insn_after (rtx pattern, rtx after)
4533{
e8110d6f 4534 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
a7102479
JH
4535}
4536
5368224f 4537/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
b5b8b0ac
AO
4538rtx
4539emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4540{
e8110d6f 4541 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
b5b8b0ac
AO
4542}
4543
5368224f 4544/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
b5b8b0ac
AO
4545rtx
4546emit_debug_insn_after (rtx pattern, rtx after)
4547{
e8110d6f 4548 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
b5b8b0ac
AO
4549}
4550
e8110d6f
NF
4551/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4552 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4553 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4554 CALL_INSN, etc. */
4555
4556static rtx
4557emit_pattern_before_setloc (rtx pattern, rtx before, int loc, bool insnp,
4558 rtx (*make_raw) (rtx))
0d682900
JH
4559{
4560 rtx first = PREV_INSN (before);
e8110d6f
NF
4561 rtx last = emit_pattern_before_noloc (pattern, before,
4562 insnp ? before : NULL_RTX,
4563 NULL, make_raw);
a7102479
JH
4564
4565 if (pattern == NULL_RTX || !loc)
4566 return last;
4567
26cb3993
JH
4568 if (!first)
4569 first = get_insns ();
4570 else
4571 first = NEXT_INSN (first);
a7102479
JH
4572 while (1)
4573 {
5368224f
DC
4574 if (active_insn_p (first) && !INSN_LOCATION (first))
4575 INSN_LOCATION (first) = loc;
a7102479
JH
4576 if (first == last)
4577 break;
4578 first = NEXT_INSN (first);
4579 }
4580 return last;
4581}
4582
e8110d6f
NF
4583/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4584 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4585 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4586 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4587
4588static rtx
4589emit_pattern_before (rtx pattern, rtx before, bool skip_debug_insns,
4590 bool insnp, rtx (*make_raw) (rtx))
a7102479 4591{
b5b8b0ac
AO
4592 rtx next = before;
4593
e8110d6f
NF
4594 if (skip_debug_insns)
4595 while (DEBUG_INSN_P (next))
4596 next = PREV_INSN (next);
b5b8b0ac
AO
4597
4598 if (INSN_P (next))
5368224f 4599 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
e8110d6f 4600 insnp, make_raw);
a7102479 4601 else
e8110d6f
NF
4602 return emit_pattern_before_noloc (pattern, before,
4603 insnp ? before : NULL_RTX,
4604 NULL, make_raw);
a7102479
JH
4605}
4606
5368224f 4607/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
a7102479 4608rtx
e8110d6f 4609emit_insn_before_setloc (rtx pattern, rtx before, int loc)
a7102479 4610{
e8110d6f
NF
4611 return emit_pattern_before_setloc (pattern, before, loc, true,
4612 make_insn_raw);
4613}
a7102479 4614
5368224f 4615/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
e8110d6f
NF
4616rtx
4617emit_insn_before (rtx pattern, rtx before)
4618{
4619 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4620}
a7102479 4621
5368224f 4622/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
e8110d6f
NF
4623rtx
4624emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4625{
4626 return emit_pattern_before_setloc (pattern, before, loc, false,
4627 make_jump_insn_raw);
a7102479
JH
4628}
4629
5368224f 4630/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
a7102479
JH
4631rtx
4632emit_jump_insn_before (rtx pattern, rtx before)
4633{
e8110d6f
NF
4634 return emit_pattern_before (pattern, before, true, false,
4635 make_jump_insn_raw);
a7102479
JH
4636}
4637
5368224f 4638/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
a7102479
JH
4639rtx
4640emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4641{
e8110d6f
NF
4642 return emit_pattern_before_setloc (pattern, before, loc, false,
4643 make_call_insn_raw);
0d682900 4644}
a7102479 4645
e8110d6f 4646/* Like emit_call_insn_before_noloc,
5368224f 4647 but set insn_location according to BEFORE. */
a7102479
JH
4648rtx
4649emit_call_insn_before (rtx pattern, rtx before)
4650{
e8110d6f
NF
4651 return emit_pattern_before (pattern, before, true, false,
4652 make_call_insn_raw);
a7102479 4653}
b5b8b0ac 4654
5368224f 4655/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
b5b8b0ac
AO
4656rtx
4657emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4658{
e8110d6f
NF
4659 return emit_pattern_before_setloc (pattern, before, loc, false,
4660 make_debug_insn_raw);
b5b8b0ac
AO
4661}
4662
e8110d6f 4663/* Like emit_debug_insn_before_noloc,
5368224f 4664 but set insn_location according to BEFORE. */
b5b8b0ac
AO
4665rtx
4666emit_debug_insn_before (rtx pattern, rtx before)
4667{
e8110d6f
NF
4668 return emit_pattern_before (pattern, before, false, false,
4669 make_debug_insn_raw);
b5b8b0ac 4670}
0d682900 4671\f
2f937369
DM
4672/* Take X and emit it at the end of the doubly-linked
4673 INSN list.
23b2ce53
RS
4674
4675 Returns the last insn emitted. */
4676
4677rtx
502b8322 4678emit_insn (rtx x)
23b2ce53 4679{
5936d944 4680 rtx last = get_last_insn();
2f937369 4681 rtx insn;
23b2ce53 4682
2f937369
DM
4683 if (x == NULL_RTX)
4684 return last;
23b2ce53 4685
2f937369
DM
4686 switch (GET_CODE (x))
4687 {
b5b8b0ac 4688 case DEBUG_INSN:
2f937369
DM
4689 case INSN:
4690 case JUMP_INSN:
4691 case CALL_INSN:
4692 case CODE_LABEL:
4693 case BARRIER:
4694 case NOTE:
4695 insn = x;
4696 while (insn)
23b2ce53 4697 {
2f937369 4698 rtx next = NEXT_INSN (insn);
23b2ce53 4699 add_insn (insn);
2f937369
DM
4700 last = insn;
4701 insn = next;
23b2ce53 4702 }
2f937369 4703 break;
23b2ce53 4704
2f937369
DM
4705#ifdef ENABLE_RTL_CHECKING
4706 case SEQUENCE:
5b0264cb 4707 gcc_unreachable ();
2f937369
DM
4708 break;
4709#endif
23b2ce53 4710
2f937369
DM
4711 default:
4712 last = make_insn_raw (x);
4713 add_insn (last);
4714 break;
23b2ce53
RS
4715 }
4716
4717 return last;
4718}
4719
b5b8b0ac
AO
4720/* Make an insn of code DEBUG_INSN with pattern X
4721 and add it to the end of the doubly-linked list. */
4722
4723rtx
4724emit_debug_insn (rtx x)
4725{
5936d944 4726 rtx last = get_last_insn();
b5b8b0ac
AO
4727 rtx insn;
4728
4729 if (x == NULL_RTX)
4730 return last;
4731
4732 switch (GET_CODE (x))
4733 {
4734 case DEBUG_INSN:
4735 case INSN:
4736 case JUMP_INSN:
4737 case CALL_INSN:
4738 case CODE_LABEL:
4739 case BARRIER:
4740 case NOTE:
4741 insn = x;
4742 while (insn)
4743 {
4744 rtx next = NEXT_INSN (insn);
4745 add_insn (insn);
4746 last = insn;
4747 insn = next;
4748 }
4749 break;
4750
4751#ifdef ENABLE_RTL_CHECKING
4752 case SEQUENCE:
4753 gcc_unreachable ();
4754 break;
4755#endif
4756
4757 default:
4758 last = make_debug_insn_raw (x);
4759 add_insn (last);
4760 break;
4761 }
4762
4763 return last;
4764}
4765
2f937369
DM
4766/* Make an insn of code JUMP_INSN with pattern X
4767 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4768
4769rtx
502b8322 4770emit_jump_insn (rtx x)
23b2ce53 4771{
d950dee3 4772 rtx last = NULL_RTX, insn;
23b2ce53 4773
2f937369 4774 switch (GET_CODE (x))
23b2ce53 4775 {
b5b8b0ac 4776 case DEBUG_INSN:
2f937369
DM
4777 case INSN:
4778 case JUMP_INSN:
4779 case CALL_INSN:
4780 case CODE_LABEL:
4781 case BARRIER:
4782 case NOTE:
4783 insn = x;
4784 while (insn)
4785 {
4786 rtx next = NEXT_INSN (insn);
4787 add_insn (insn);
4788 last = insn;
4789 insn = next;
4790 }
4791 break;
e0a5c5eb 4792
2f937369
DM
4793#ifdef ENABLE_RTL_CHECKING
4794 case SEQUENCE:
5b0264cb 4795 gcc_unreachable ();
2f937369
DM
4796 break;
4797#endif
e0a5c5eb 4798
2f937369
DM
4799 default:
4800 last = make_jump_insn_raw (x);
4801 add_insn (last);
4802 break;
3c030e88 4803 }
e0a5c5eb
RS
4804
4805 return last;
4806}
4807
2f937369 4808/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4809 and add it to the end of the doubly-linked list. */
4810
4811rtx
502b8322 4812emit_call_insn (rtx x)
23b2ce53 4813{
2f937369
DM
4814 rtx insn;
4815
4816 switch (GET_CODE (x))
23b2ce53 4817 {
b5b8b0ac 4818 case DEBUG_INSN:
2f937369
DM
4819 case INSN:
4820 case JUMP_INSN:
4821 case CALL_INSN:
4822 case CODE_LABEL:
4823 case BARRIER:
4824 case NOTE:
4825 insn = emit_insn (x);
4826 break;
23b2ce53 4827
2f937369
DM
4828#ifdef ENABLE_RTL_CHECKING
4829 case SEQUENCE:
5b0264cb 4830 gcc_unreachable ();
2f937369
DM
4831 break;
4832#endif
23b2ce53 4833
2f937369
DM
4834 default:
4835 insn = make_call_insn_raw (x);
23b2ce53 4836 add_insn (insn);
2f937369 4837 break;
23b2ce53 4838 }
2f937369
DM
4839
4840 return insn;
23b2ce53
RS
4841}
4842
4843/* Add the label LABEL to the end of the doubly-linked list. */
4844
4845rtx
502b8322 4846emit_label (rtx label)
23b2ce53 4847{
468660d3
SB
4848 gcc_checking_assert (INSN_UID (label) == 0);
4849 INSN_UID (label) = cur_insn_uid++;
4850 add_insn (label);
23b2ce53
RS
4851 return label;
4852}
4853
4854/* Make an insn of code BARRIER
4855 and add it to the end of the doubly-linked list. */
4856
4857rtx
502b8322 4858emit_barrier (void)
23b2ce53 4859{
b3694847 4860 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4861 INSN_UID (barrier) = cur_insn_uid++;
4862 add_insn (barrier);
4863 return barrier;
4864}
4865
5f2fc772 4866/* Emit a copy of note ORIG. */
502b8322 4867
5f2fc772
NS
4868rtx
4869emit_note_copy (rtx orig)
4870{
4871 rtx note;
b8698a0f 4872
5f2fc772 4873 note = rtx_alloc (NOTE);
b8698a0f 4874
5f2fc772
NS
4875 INSN_UID (note) = cur_insn_uid++;
4876 NOTE_DATA (note) = NOTE_DATA (orig);
a38e7aa5 4877 NOTE_KIND (note) = NOTE_KIND (orig);
5f2fc772
NS
4878 BLOCK_FOR_INSN (note) = NULL;
4879 add_insn (note);
b8698a0f 4880
2e040219 4881 return note;
23b2ce53
RS
4882}
4883
2e040219
NS
4884/* Make an insn of code NOTE or type NOTE_NO
4885 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4886
4887rtx
a38e7aa5 4888emit_note (enum insn_note kind)
23b2ce53 4889{
b3694847 4890 rtx note;
23b2ce53 4891
23b2ce53
RS
4892 note = rtx_alloc (NOTE);
4893 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4894 NOTE_KIND (note) = kind;
dd107e66 4895 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
ba4f7968 4896 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4897 add_insn (note);
4898 return note;
4899}
4900
c41c1387
RS
4901/* Emit a clobber of lvalue X. */
4902
4903rtx
4904emit_clobber (rtx x)
4905{
4906 /* CONCATs should not appear in the insn stream. */
4907 if (GET_CODE (x) == CONCAT)
4908 {
4909 emit_clobber (XEXP (x, 0));
4910 return emit_clobber (XEXP (x, 1));
4911 }
4912 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
4913}
4914
4915/* Return a sequence of insns to clobber lvalue X. */
4916
4917rtx
4918gen_clobber (rtx x)
4919{
4920 rtx seq;
4921
4922 start_sequence ();
4923 emit_clobber (x);
4924 seq = get_insns ();
4925 end_sequence ();
4926 return seq;
4927}
4928
4929/* Emit a use of rvalue X. */
4930
4931rtx
4932emit_use (rtx x)
4933{
4934 /* CONCATs should not appear in the insn stream. */
4935 if (GET_CODE (x) == CONCAT)
4936 {
4937 emit_use (XEXP (x, 0));
4938 return emit_use (XEXP (x, 1));
4939 }
4940 return emit_insn (gen_rtx_USE (VOIDmode, x));
4941}
4942
4943/* Return a sequence of insns to use rvalue X. */
4944
4945rtx
4946gen_use (rtx x)
4947{
4948 rtx seq;
4949
4950 start_sequence ();
4951 emit_use (x);
4952 seq = get_insns ();
4953 end_sequence ();
4954 return seq;
4955}
4956
87b47c85 4957/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 4958 note of this type already exists, remove it first. */
87b47c85 4959
3d238248 4960rtx
502b8322 4961set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
4962{
4963 rtx note = find_reg_note (insn, kind, NULL_RTX);
4964
52488da1
JW
4965 switch (kind)
4966 {
4967 case REG_EQUAL:
4968 case REG_EQUIV:
4969 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4970 has multiple sets (some callers assume single_set
4971 means the insn only has one set, when in fact it
4972 means the insn only has one * useful * set). */
4973 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4974 {
5b0264cb 4975 gcc_assert (!note);
52488da1
JW
4976 return NULL_RTX;
4977 }
4978
4979 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4980 It serves no useful purpose and breaks eliminate_regs. */
4981 if (GET_CODE (datum) == ASM_OPERANDS)
4982 return NULL_RTX;
6fb5fa3c
DB
4983
4984 if (note)
4985 {
4986 XEXP (note, 0) = datum;
4987 df_notes_rescan (insn);
4988 return note;
4989 }
52488da1
JW
4990 break;
4991
4992 default:
6fb5fa3c
DB
4993 if (note)
4994 {
4995 XEXP (note, 0) = datum;
4996 return note;
4997 }
52488da1
JW
4998 break;
4999 }
3d238248 5000
65c5f2a6 5001 add_reg_note (insn, kind, datum);
6fb5fa3c
DB
5002
5003 switch (kind)
3d238248 5004 {
6fb5fa3c
DB
5005 case REG_EQUAL:
5006 case REG_EQUIV:
5007 df_notes_rescan (insn);
5008 break;
5009 default:
5010 break;
3d238248 5011 }
87b47c85 5012
3d238248 5013 return REG_NOTES (insn);
87b47c85 5014}
7543f918
JR
5015
5016/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5017rtx
5018set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5019{
5020 rtx set = single_set (insn);
5021
5022 if (set && SET_DEST (set) == dst)
5023 return set_unique_reg_note (insn, kind, datum);
5024 return NULL_RTX;
5025}
23b2ce53
RS
5026\f
5027/* Return an indication of which type of insn should have X as a body.
5028 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5029
d78db459 5030static enum rtx_code
502b8322 5031classify_insn (rtx x)
23b2ce53 5032{
4b4bf941 5033 if (LABEL_P (x))
23b2ce53
RS
5034 return CODE_LABEL;
5035 if (GET_CODE (x) == CALL)
5036 return CALL_INSN;
26898771 5037 if (ANY_RETURN_P (x))
23b2ce53
RS
5038 return JUMP_INSN;
5039 if (GET_CODE (x) == SET)
5040 {
5041 if (SET_DEST (x) == pc_rtx)
5042 return JUMP_INSN;
5043 else if (GET_CODE (SET_SRC (x)) == CALL)
5044 return CALL_INSN;
5045 else
5046 return INSN;
5047 }
5048 if (GET_CODE (x) == PARALLEL)
5049 {
b3694847 5050 int j;
23b2ce53
RS
5051 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5052 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5053 return CALL_INSN;
5054 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5055 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5056 return JUMP_INSN;
5057 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5058 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5059 return CALL_INSN;
5060 }
5061 return INSN;
5062}
5063
5064/* Emit the rtl pattern X as an appropriate kind of insn.
5065 If X is a label, it is simply added into the insn chain. */
5066
5067rtx
502b8322 5068emit (rtx x)
23b2ce53
RS
5069{
5070 enum rtx_code code = classify_insn (x);
5071
5b0264cb 5072 switch (code)
23b2ce53 5073 {
5b0264cb
NS
5074 case CODE_LABEL:
5075 return emit_label (x);
5076 case INSN:
5077 return emit_insn (x);
5078 case JUMP_INSN:
5079 {
5080 rtx insn = emit_jump_insn (x);
5081 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5082 return emit_barrier ();
5083 return insn;
5084 }
5085 case CALL_INSN:
5086 return emit_call_insn (x);
b5b8b0ac
AO
5087 case DEBUG_INSN:
5088 return emit_debug_insn (x);
5b0264cb
NS
5089 default:
5090 gcc_unreachable ();
23b2ce53 5091 }
23b2ce53
RS
5092}
5093\f
e2500fed 5094/* Space for free sequence stack entries. */
1431042e 5095static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 5096
4dfa0342
RH
5097/* Begin emitting insns to a sequence. If this sequence will contain
5098 something that might cause the compiler to pop arguments to function
5099 calls (because those pops have previously been deferred; see
5100 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5101 before calling this function. That will ensure that the deferred
5102 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
5103
5104void
502b8322 5105start_sequence (void)
23b2ce53
RS
5106{
5107 struct sequence_stack *tem;
5108
e2500fed
GK
5109 if (free_sequence_stack != NULL)
5110 {
5111 tem = free_sequence_stack;
5112 free_sequence_stack = tem->next;
5113 }
5114 else
a9429e29 5115 tem = ggc_alloc_sequence_stack ();
23b2ce53 5116
49ad7cfa 5117 tem->next = seq_stack;
5936d944
JH
5118 tem->first = get_insns ();
5119 tem->last = get_last_insn ();
23b2ce53 5120
49ad7cfa 5121 seq_stack = tem;
23b2ce53 5122
5936d944
JH
5123 set_first_insn (0);
5124 set_last_insn (0);
23b2ce53
RS
5125}
5126
5c7a310f
MM
5127/* Set up the insn chain starting with FIRST as the current sequence,
5128 saving the previously current one. See the documentation for
5129 start_sequence for more information about how to use this function. */
23b2ce53
RS
5130
5131void
502b8322 5132push_to_sequence (rtx first)
23b2ce53
RS
5133{
5134 rtx last;
5135
5136 start_sequence ();
5137
e84a58ff
EB
5138 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5139 ;
23b2ce53 5140
5936d944
JH
5141 set_first_insn (first);
5142 set_last_insn (last);
23b2ce53
RS
5143}
5144
bb27eeda
SE
5145/* Like push_to_sequence, but take the last insn as an argument to avoid
5146 looping through the list. */
5147
5148void
5149push_to_sequence2 (rtx first, rtx last)
5150{
5151 start_sequence ();
5152
5936d944
JH
5153 set_first_insn (first);
5154 set_last_insn (last);
bb27eeda
SE
5155}
5156
f15ae3a1
TW
5157/* Set up the outer-level insn chain
5158 as the current sequence, saving the previously current one. */
5159
5160void
502b8322 5161push_topmost_sequence (void)
f15ae3a1 5162{
aefdd5ab 5163 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
5164
5165 start_sequence ();
5166
49ad7cfa 5167 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
5168 top = stack;
5169
5936d944
JH
5170 set_first_insn (top->first);
5171 set_last_insn (top->last);
f15ae3a1
TW
5172}
5173
5174/* After emitting to the outer-level insn chain, update the outer-level
5175 insn chain, and restore the previous saved state. */
5176
5177void
502b8322 5178pop_topmost_sequence (void)
f15ae3a1 5179{
aefdd5ab 5180 struct sequence_stack *stack, *top = NULL;
f15ae3a1 5181
49ad7cfa 5182 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
5183 top = stack;
5184
5936d944
JH
5185 top->first = get_insns ();
5186 top->last = get_last_insn ();
f15ae3a1
TW
5187
5188 end_sequence ();
5189}
5190
23b2ce53
RS
5191/* After emitting to a sequence, restore previous saved state.
5192
5c7a310f 5193 To get the contents of the sequence just made, you must call
2f937369 5194 `get_insns' *before* calling here.
5c7a310f
MM
5195
5196 If the compiler might have deferred popping arguments while
5197 generating this sequence, and this sequence will not be immediately
5198 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 5199 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
5200 pops are inserted into this sequence, and not into some random
5201 location in the instruction stream. See INHIBIT_DEFER_POP for more
5202 information about deferred popping of arguments. */
23b2ce53
RS
5203
5204void
502b8322 5205end_sequence (void)
23b2ce53 5206{
49ad7cfa 5207 struct sequence_stack *tem = seq_stack;
23b2ce53 5208
5936d944
JH
5209 set_first_insn (tem->first);
5210 set_last_insn (tem->last);
49ad7cfa 5211 seq_stack = tem->next;
23b2ce53 5212
e2500fed
GK
5213 memset (tem, 0, sizeof (*tem));
5214 tem->next = free_sequence_stack;
5215 free_sequence_stack = tem;
23b2ce53
RS
5216}
5217
5218/* Return 1 if currently emitting into a sequence. */
5219
5220int
502b8322 5221in_sequence_p (void)
23b2ce53 5222{
49ad7cfa 5223 return seq_stack != 0;
23b2ce53 5224}
23b2ce53 5225\f
59ec66dc
MM
5226/* Put the various virtual registers into REGNO_REG_RTX. */
5227
2bbdec73 5228static void
bd60bab2 5229init_virtual_regs (void)
59ec66dc 5230{
bd60bab2
JH
5231 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5232 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5233 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5234 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5235 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
32990d5b
JJ
5236 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5237 = virtual_preferred_stack_boundary_rtx;
49ad7cfa
BS
5238}
5239
da43a810
BS
5240\f
5241/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5242static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5243static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5244static int copy_insn_n_scratches;
5245
5246/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5247 copied an ASM_OPERANDS.
5248 In that case, it is the original input-operand vector. */
5249static rtvec orig_asm_operands_vector;
5250
5251/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5252 copied an ASM_OPERANDS.
5253 In that case, it is the copied input-operand vector. */
5254static rtvec copy_asm_operands_vector;
5255
5256/* Likewise for the constraints vector. */
5257static rtvec orig_asm_constraints_vector;
5258static rtvec copy_asm_constraints_vector;
5259
5260/* Recursively create a new copy of an rtx for copy_insn.
5261 This function differs from copy_rtx in that it handles SCRATCHes and
5262 ASM_OPERANDs properly.
5263 Normally, this function is not used directly; use copy_insn as front end.
5264 However, you could first copy an insn pattern with copy_insn and then use
5265 this function afterwards to properly copy any REG_NOTEs containing
5266 SCRATCHes. */
5267
5268rtx
502b8322 5269copy_insn_1 (rtx orig)
da43a810 5270{
b3694847
SS
5271 rtx copy;
5272 int i, j;
5273 RTX_CODE code;
5274 const char *format_ptr;
da43a810 5275
cd9c1ca8
RH
5276 if (orig == NULL)
5277 return NULL;
5278
da43a810
BS
5279 code = GET_CODE (orig);
5280
5281 switch (code)
5282 {
5283 case REG:
a52a87c3 5284 case DEBUG_EXPR:
d8116890 5285 CASE_CONST_ANY:
da43a810
BS
5286 case SYMBOL_REF:
5287 case CODE_LABEL:
5288 case PC:
5289 case CC0:
276e0224 5290 case RETURN:
26898771 5291 case SIMPLE_RETURN:
da43a810 5292 return orig;
3e89ed8d
JH
5293 case CLOBBER:
5294 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5295 return orig;
5296 break;
da43a810
BS
5297
5298 case SCRATCH:
5299 for (i = 0; i < copy_insn_n_scratches; i++)
5300 if (copy_insn_scratch_in[i] == orig)
5301 return copy_insn_scratch_out[i];
5302 break;
5303
5304 case CONST:
6fb5fa3c 5305 if (shared_const_p (orig))
da43a810
BS
5306 return orig;
5307 break;
750c9258 5308
da43a810
BS
5309 /* A MEM with a constant address is not sharable. The problem is that
5310 the constant address may need to be reloaded. If the mem is shared,
5311 then reloading one copy of this mem will cause all copies to appear
5312 to have been reloaded. */
5313
5314 default:
5315 break;
5316 }
5317
aacd3885
RS
5318 /* Copy the various flags, fields, and other information. We assume
5319 that all fields need copying, and then clear the fields that should
da43a810
BS
5320 not be copied. That is the sensible default behavior, and forces
5321 us to explicitly document why we are *not* copying a flag. */
aacd3885 5322 copy = shallow_copy_rtx (orig);
da43a810
BS
5323
5324 /* We do not copy the USED flag, which is used as a mark bit during
5325 walks over the RTL. */
2adc7f12 5326 RTX_FLAG (copy, used) = 0;
da43a810
BS
5327
5328 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5329 if (INSN_P (orig))
da43a810 5330 {
2adc7f12
JJ
5331 RTX_FLAG (copy, jump) = 0;
5332 RTX_FLAG (copy, call) = 0;
5333 RTX_FLAG (copy, frame_related) = 0;
da43a810 5334 }
750c9258 5335
da43a810
BS
5336 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5337
5338 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5339 switch (*format_ptr++)
5340 {
5341 case 'e':
5342 if (XEXP (orig, i) != NULL)
5343 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5344 break;
da43a810 5345
aacd3885
RS
5346 case 'E':
5347 case 'V':
5348 if (XVEC (orig, i) == orig_asm_constraints_vector)
5349 XVEC (copy, i) = copy_asm_constraints_vector;
5350 else if (XVEC (orig, i) == orig_asm_operands_vector)
5351 XVEC (copy, i) = copy_asm_operands_vector;
5352 else if (XVEC (orig, i) != NULL)
5353 {
5354 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5355 for (j = 0; j < XVECLEN (copy, i); j++)
5356 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5357 }
5358 break;
da43a810 5359
aacd3885
RS
5360 case 't':
5361 case 'w':
5362 case 'i':
5363 case 's':
5364 case 'S':
5365 case 'u':
5366 case '0':
5367 /* These are left unchanged. */
5368 break;
da43a810 5369
aacd3885
RS
5370 default:
5371 gcc_unreachable ();
5372 }
da43a810
BS
5373
5374 if (code == SCRATCH)
5375 {
5376 i = copy_insn_n_scratches++;
5b0264cb 5377 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5378 copy_insn_scratch_in[i] = orig;
5379 copy_insn_scratch_out[i] = copy;
5380 }
5381 else if (code == ASM_OPERANDS)
5382 {
6462bb43
AO
5383 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5384 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5385 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5386 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5387 }
5388
5389 return copy;
5390}
5391
5392/* Create a new copy of an rtx.
5393 This function differs from copy_rtx in that it handles SCRATCHes and
5394 ASM_OPERANDs properly.
5395 INSN doesn't really have to be a full INSN; it could be just the
5396 pattern. */
5397rtx
502b8322 5398copy_insn (rtx insn)
da43a810
BS
5399{
5400 copy_insn_n_scratches = 0;
5401 orig_asm_operands_vector = 0;
5402 orig_asm_constraints_vector = 0;
5403 copy_asm_operands_vector = 0;
5404 copy_asm_constraints_vector = 0;
5405 return copy_insn_1 (insn);
5406}
59ec66dc 5407
8e383849
JR
5408/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5409 on that assumption that INSN itself remains in its original place. */
5410
5411rtx
5412copy_delay_slot_insn (rtx insn)
5413{
5414 /* Copy INSN with its rtx_code, all its notes, location etc. */
5415 insn = copy_rtx (insn);
5416 INSN_UID (insn) = cur_insn_uid++;
5417 return insn;
5418}
5419
23b2ce53
RS
5420/* Initialize data structures and variables in this file
5421 before generating rtl for each function. */
5422
5423void
502b8322 5424init_emit (void)
23b2ce53 5425{
5936d944
JH
5426 set_first_insn (NULL);
5427 set_last_insn (NULL);
b5b8b0ac
AO
5428 if (MIN_NONDEBUG_INSN_UID)
5429 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5430 else
5431 cur_insn_uid = 1;
5432 cur_debug_insn_uid = 1;
23b2ce53 5433 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
23b2ce53 5434 first_label_num = label_num;
49ad7cfa 5435 seq_stack = NULL;
23b2ce53 5436
23b2ce53
RS
5437 /* Init the tables that describe all the pseudo regs. */
5438
3e029763 5439 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5440
3e029763 5441 crtl->emit.regno_pointer_align
1b4572a8 5442 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5443
a9429e29 5444 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
0d4903b8 5445
e50126e8 5446 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876 5447 memcpy (regno_reg_rtx,
5fb0e246 5448 initial_regno_reg_rtx,
6cde4876 5449 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5450
23b2ce53 5451 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5452 init_virtual_regs ();
740ab4a2
RK
5453
5454 /* Indicate that the virtual registers and stack locations are
5455 all pointers. */
3502dc9c
JDA
5456 REG_POINTER (stack_pointer_rtx) = 1;
5457 REG_POINTER (frame_pointer_rtx) = 1;
5458 REG_POINTER (hard_frame_pointer_rtx) = 1;
5459 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5460
3502dc9c
JDA
5461 REG_POINTER (virtual_incoming_args_rtx) = 1;
5462 REG_POINTER (virtual_stack_vars_rtx) = 1;
5463 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5464 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5465 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5466
86fe05e0 5467#ifdef STACK_BOUNDARY
bdb429a5
RK
5468 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5469 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5470 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5471 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5472
5473 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5474 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5475 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5476 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5477 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5478#endif
5479
5e82e7bd
JVA
5480#ifdef INIT_EXPANDERS
5481 INIT_EXPANDERS;
5482#endif
23b2ce53
RS
5483}
5484
a73b091d 5485/* Generate a vector constant for mode MODE and constant value CONSTANT. */
69ef87e2
AH
5486
5487static rtx
a73b091d 5488gen_const_vector (enum machine_mode mode, int constant)
69ef87e2
AH
5489{
5490 rtx tem;
5491 rtvec v;
5492 int units, i;
5493 enum machine_mode inner;
5494
5495 units = GET_MODE_NUNITS (mode);
5496 inner = GET_MODE_INNER (mode);
5497
15ed7b52
JG
5498 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5499
69ef87e2
AH
5500 v = rtvec_alloc (units);
5501
a73b091d
JW
5502 /* We need to call this function after we set the scalar const_tiny_rtx
5503 entries. */
5504 gcc_assert (const_tiny_rtx[constant][(int) inner]);
69ef87e2
AH
5505
5506 for (i = 0; i < units; ++i)
a73b091d 5507 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
69ef87e2 5508
a06e3c40 5509 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5510 return tem;
5511}
5512
a06e3c40 5513/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5514 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5515rtx
502b8322 5516gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
a06e3c40 5517{
a73b091d
JW
5518 enum machine_mode inner = GET_MODE_INNER (mode);
5519 int nunits = GET_MODE_NUNITS (mode);
5520 rtx x;
a06e3c40
R
5521 int i;
5522
a73b091d
JW
5523 /* Check to see if all of the elements have the same value. */
5524 x = RTVEC_ELT (v, nunits - 1);
5525 for (i = nunits - 2; i >= 0; i--)
5526 if (RTVEC_ELT (v, i) != x)
5527 break;
5528
5529 /* If the values are all the same, check to see if we can use one of the
5530 standard constant vectors. */
5531 if (i == -1)
5532 {
5533 if (x == CONST0_RTX (inner))
5534 return CONST0_RTX (mode);
5535 else if (x == CONST1_RTX (inner))
5536 return CONST1_RTX (mode);
e7c82a99
JJ
5537 else if (x == CONSTM1_RTX (inner))
5538 return CONSTM1_RTX (mode);
a73b091d
JW
5539 }
5540
5541 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5542}
5543
b5deb7b6
SL
5544/* Initialise global register information required by all functions. */
5545
5546void
5547init_emit_regs (void)
5548{
5549 int i;
1c3f523e
RS
5550 enum machine_mode mode;
5551 mem_attrs *attrs;
b5deb7b6
SL
5552
5553 /* Reset register attributes */
5554 htab_empty (reg_attrs_htab);
5555
5556 /* We need reg_raw_mode, so initialize the modes now. */
5557 init_reg_modes_target ();
5558
5559 /* Assign register numbers to the globally defined register rtx. */
b5deb7b6
SL
5560 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5561 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5562 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5563 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5564 virtual_incoming_args_rtx =
5565 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5566 virtual_stack_vars_rtx =
5567 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5568 virtual_stack_dynamic_rtx =
5569 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5570 virtual_outgoing_args_rtx =
5571 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5572 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
32990d5b
JJ
5573 virtual_preferred_stack_boundary_rtx =
5574 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
b5deb7b6
SL
5575
5576 /* Initialize RTL for commonly used hard registers. These are
5577 copied into regno_reg_rtx as we begin to compile each function. */
5578 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5fb0e246 5579 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
b5deb7b6
SL
5580
5581#ifdef RETURN_ADDRESS_POINTER_REGNUM
5582 return_address_pointer_rtx
5583 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5584#endif
5585
b5deb7b6
SL
5586 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5587 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5588 else
5589 pic_offset_table_rtx = NULL_RTX;
1c3f523e
RS
5590
5591 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
5592 {
5593 mode = (enum machine_mode) i;
5594 attrs = ggc_alloc_cleared_mem_attrs ();
5595 attrs->align = BITS_PER_UNIT;
5596 attrs->addrspace = ADDR_SPACE_GENERIC;
5597 if (mode != BLKmode)
5598 {
754c3d5d
RS
5599 attrs->size_known_p = true;
5600 attrs->size = GET_MODE_SIZE (mode);
1c3f523e
RS
5601 if (STRICT_ALIGNMENT)
5602 attrs->align = GET_MODE_ALIGNMENT (mode);
5603 }
5604 mode_mem_attrs[i] = attrs;
5605 }
b5deb7b6
SL
5606}
5607
2d888286 5608/* Create some permanent unique rtl objects shared between all functions. */
23b2ce53
RS
5609
5610void
2d888286 5611init_emit_once (void)
23b2ce53
RS
5612{
5613 int i;
5614 enum machine_mode mode;
9ec36da5 5615 enum machine_mode double_mode;
23b2ce53 5616
091a3ac7
CF
5617 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5618 hash tables. */
17211ab5
GK
5619 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5620 const_int_htab_eq, NULL);
173b24b9 5621
17211ab5
GK
5622 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5623 const_double_htab_eq, NULL);
5692c7bc 5624
091a3ac7
CF
5625 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5626 const_fixed_htab_eq, NULL);
5627
17211ab5
GK
5628 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5629 mem_attrs_htab_eq, NULL);
a560d4d4
JH
5630 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5631 reg_attrs_htab_eq, NULL);
67673f5c 5632
43fa6302
AS
5633 /* Compute the word and byte modes. */
5634
5635 byte_mode = VOIDmode;
5636 word_mode = VOIDmode;
5637 double_mode = VOIDmode;
5638
15ed7b52
JG
5639 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5640 mode != VOIDmode;
43fa6302
AS
5641 mode = GET_MODE_WIDER_MODE (mode))
5642 {
5643 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5644 && byte_mode == VOIDmode)
5645 byte_mode = mode;
5646
5647 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5648 && word_mode == VOIDmode)
5649 word_mode = mode;
5650 }
5651
15ed7b52
JG
5652 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5653 mode != VOIDmode;
43fa6302
AS
5654 mode = GET_MODE_WIDER_MODE (mode))
5655 {
5656 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5657 && double_mode == VOIDmode)
5658 double_mode = mode;
5659 }
5660
5661 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5662
5da077de 5663#ifdef INIT_EXPANDERS
414c4dc4
NC
5664 /* This is to initialize {init|mark|free}_machine_status before the first
5665 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5666 end which calls push_function_context_to before the first call to
5da077de
AS
5667 init_function_start. */
5668 INIT_EXPANDERS;
5669#endif
5670
23b2ce53
RS
5671 /* Create the unique rtx's for certain rtx codes and operand values. */
5672
a2a8cc44 5673 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 5674 tries to use these variables. */
23b2ce53 5675 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5676 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5677 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5678
68d75312
JC
5679 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5680 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5681 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5682 else
3b80f6ca 5683 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5684
5692c7bc
ZW
5685 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5686 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5687 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
aefa9d43
KG
5688
5689 dconstm1 = dconst1;
5690 dconstm1.sign = 1;
03f2ea93
RS
5691
5692 dconsthalf = dconst1;
1e92bbb9 5693 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 5694
e7c82a99 5695 for (i = 0; i < 3; i++)
23b2ce53 5696 {
aefa9d43 5697 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
5698 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5699
15ed7b52
JG
5700 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5701 mode != VOIDmode;
5702 mode = GET_MODE_WIDER_MODE (mode))
5703 const_tiny_rtx[i][(int) mode] =
5704 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5705
5706 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5707 mode != VOIDmode;
23b2ce53 5708 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5709 const_tiny_rtx[i][(int) mode] =
5710 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5711
906c4e36 5712 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 5713
15ed7b52
JG
5714 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5715 mode != VOIDmode;
23b2ce53 5716 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5717 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559 5718
ede6c734
MS
5719 for (mode = MIN_MODE_PARTIAL_INT;
5720 mode <= MAX_MODE_PARTIAL_INT;
5721 mode = (enum machine_mode)((int)(mode) + 1))
33d3e559 5722 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5723 }
5724
e7c82a99
JJ
5725 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5726
5727 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5728 mode != VOIDmode;
5729 mode = GET_MODE_WIDER_MODE (mode))
5730 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5731
ede6c734
MS
5732 for (mode = MIN_MODE_PARTIAL_INT;
5733 mode <= MAX_MODE_PARTIAL_INT;
5734 mode = (enum machine_mode)((int)(mode) + 1))
c8a89d2a
BS
5735 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5736
e90721b1
AP
5737 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5738 mode != VOIDmode;
5739 mode = GET_MODE_WIDER_MODE (mode))
5740 {
5741 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5742 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5743 }
5744
5745 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5746 mode != VOIDmode;
5747 mode = GET_MODE_WIDER_MODE (mode))
5748 {
5749 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5750 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5751 }
5752
69ef87e2
AH
5753 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5754 mode != VOIDmode;
5755 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5756 {
5757 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5758 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
e7c82a99 5759 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
a73b091d 5760 }
69ef87e2
AH
5761
5762 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5763 mode != VOIDmode;
5764 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5765 {
5766 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5767 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5768 }
69ef87e2 5769
325217ed
CF
5770 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5771 mode != VOIDmode;
5772 mode = GET_MODE_WIDER_MODE (mode))
5773 {
5774 FCONST0(mode).data.high = 0;
5775 FCONST0(mode).data.low = 0;
5776 FCONST0(mode).mode = mode;
091a3ac7
CF
5777 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5778 FCONST0 (mode), mode);
325217ed
CF
5779 }
5780
5781 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5782 mode != VOIDmode;
5783 mode = GET_MODE_WIDER_MODE (mode))
5784 {
5785 FCONST0(mode).data.high = 0;
5786 FCONST0(mode).data.low = 0;
5787 FCONST0(mode).mode = mode;
091a3ac7
CF
5788 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5789 FCONST0 (mode), mode);
325217ed
CF
5790 }
5791
5792 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5793 mode != VOIDmode;
5794 mode = GET_MODE_WIDER_MODE (mode))
5795 {
5796 FCONST0(mode).data.high = 0;
5797 FCONST0(mode).data.low = 0;
5798 FCONST0(mode).mode = mode;
091a3ac7
CF
5799 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5800 FCONST0 (mode), mode);
325217ed
CF
5801
5802 /* We store the value 1. */
5803 FCONST1(mode).data.high = 0;
5804 FCONST1(mode).data.low = 0;
5805 FCONST1(mode).mode = mode;
9be0ac8c
LC
5806 FCONST1(mode).data
5807 = double_int_one.lshift (GET_MODE_FBIT (mode),
5808 HOST_BITS_PER_DOUBLE_INT,
5809 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5810 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5811 FCONST1 (mode), mode);
325217ed
CF
5812 }
5813
5814 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5815 mode != VOIDmode;
5816 mode = GET_MODE_WIDER_MODE (mode))
5817 {
5818 FCONST0(mode).data.high = 0;
5819 FCONST0(mode).data.low = 0;
5820 FCONST0(mode).mode = mode;
091a3ac7
CF
5821 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5822 FCONST0 (mode), mode);
325217ed
CF
5823
5824 /* We store the value 1. */
5825 FCONST1(mode).data.high = 0;
5826 FCONST1(mode).data.low = 0;
5827 FCONST1(mode).mode = mode;
9be0ac8c
LC
5828 FCONST1(mode).data
5829 = double_int_one.lshift (GET_MODE_FBIT (mode),
5830 HOST_BITS_PER_DOUBLE_INT,
5831 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5832 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5833 FCONST1 (mode), mode);
5834 }
5835
5836 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5837 mode != VOIDmode;
5838 mode = GET_MODE_WIDER_MODE (mode))
5839 {
5840 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5841 }
5842
5843 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5844 mode != VOIDmode;
5845 mode = GET_MODE_WIDER_MODE (mode))
5846 {
5847 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5848 }
5849
5850 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5851 mode != VOIDmode;
5852 mode = GET_MODE_WIDER_MODE (mode))
5853 {
5854 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5855 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5856 }
5857
5858 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5859 mode != VOIDmode;
5860 mode = GET_MODE_WIDER_MODE (mode))
5861 {
5862 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5863 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
5864 }
5865
dbbbbf3b
JDA
5866 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5867 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5868 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5869
f0417c82
RH
5870 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5871 if (STORE_FLAG_VALUE == 1)
5872 const_tiny_rtx[1][(int) BImode] = const1_rtx;
ca4adc91
RS
5873
5874 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
5875 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
5876 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
5877 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
23b2ce53 5878}
a11759a3 5879\f
969d70ca
JH
5880/* Produce exact duplicate of insn INSN after AFTER.
5881 Care updating of libcall regions if present. */
5882
5883rtx
502b8322 5884emit_copy_of_insn_after (rtx insn, rtx after)
969d70ca 5885{
60564289 5886 rtx new_rtx, link;
969d70ca
JH
5887
5888 switch (GET_CODE (insn))
5889 {
5890 case INSN:
60564289 5891 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
5892 break;
5893
5894 case JUMP_INSN:
60564289 5895 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
5896 break;
5897
b5b8b0ac
AO
5898 case DEBUG_INSN:
5899 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5900 break;
5901
969d70ca 5902 case CALL_INSN:
60564289 5903 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 5904 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 5905 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 5906 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
5907 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5908 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5909 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
b8698a0f 5910 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 5911 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
5912 break;
5913
5914 default:
5b0264cb 5915 gcc_unreachable ();
969d70ca
JH
5916 }
5917
5918 /* Update LABEL_NUSES. */
60564289 5919 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 5920
5368224f 5921 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ba4f7968 5922
0a3d71f5
JW
5923 /* If the old insn is frame related, then so is the new one. This is
5924 primarily needed for IA-64 unwind info which marks epilogue insns,
5925 which may be duplicated by the basic block reordering code. */
60564289 5926 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 5927
cf7c4aa6
HPN
5928 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5929 will make them. REG_LABEL_TARGETs are created there too, but are
5930 supposed to be sticky, so we copy them. */
969d70ca 5931 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 5932 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca
JH
5933 {
5934 if (GET_CODE (link) == EXPR_LIST)
60564289 5935 add_reg_note (new_rtx, REG_NOTE_KIND (link),
65c5f2a6 5936 copy_insn_1 (XEXP (link, 0)));
969d70ca 5937 else
60564289 5938 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
969d70ca
JH
5939 }
5940
60564289
KG
5941 INSN_CODE (new_rtx) = INSN_CODE (insn);
5942 return new_rtx;
969d70ca 5943}
e2500fed 5944
1431042e 5945static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d
JH
5946rtx
5947gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
5948{
5949 if (hard_reg_clobbers[mode][regno])
5950 return hard_reg_clobbers[mode][regno];
5951 else
5952 return (hard_reg_clobbers[mode][regno] =
5953 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
5954}
5955
5368224f
DC
5956location_t prologue_location;
5957location_t epilogue_location;
78bde837
SB
5958
5959/* Hold current location information and last location information, so the
5960 datastructures are built lazily only when some instructions in given
5961 place are needed. */
3a50da34 5962static location_t curr_location;
78bde837 5963
5368224f 5964/* Allocate insn location datastructure. */
78bde837 5965void
5368224f 5966insn_locations_init (void)
78bde837 5967{
5368224f 5968 prologue_location = epilogue_location = 0;
78bde837 5969 curr_location = UNKNOWN_LOCATION;
78bde837
SB
5970}
5971
5972/* At the end of emit stage, clear current location. */
5973void
5368224f 5974insn_locations_finalize (void)
78bde837 5975{
5368224f
DC
5976 epilogue_location = curr_location;
5977 curr_location = UNKNOWN_LOCATION;
78bde837
SB
5978}
5979
5980/* Set current location. */
5981void
5368224f 5982set_curr_insn_location (location_t location)
78bde837 5983{
78bde837
SB
5984 curr_location = location;
5985}
5986
5987/* Get current location. */
5988location_t
5368224f 5989curr_insn_location (void)
78bde837
SB
5990{
5991 return curr_location;
5992}
5993
78bde837
SB
5994/* Return lexical scope block insn belongs to. */
5995tree
5996insn_scope (const_rtx insn)
5997{
5368224f 5998 return LOCATION_BLOCK (INSN_LOCATION (insn));
78bde837
SB
5999}
6000
6001/* Return line number of the statement that produced this insn. */
6002int
6003insn_line (const_rtx insn)
6004{
5368224f 6005 return LOCATION_LINE (INSN_LOCATION (insn));
78bde837
SB
6006}
6007
6008/* Return source file of the statement that produced this insn. */
6009const char *
6010insn_file (const_rtx insn)
6011{
5368224f 6012 return LOCATION_FILE (INSN_LOCATION (insn));
78bde837 6013}
8930883e
MK
6014
6015/* Return true if memory model MODEL requires a pre-operation (release-style)
6016 barrier or a post-operation (acquire-style) barrier. While not universal,
6017 this function matches behavior of several targets. */
6018
6019bool
6020need_atomic_barrier_p (enum memmodel model, bool pre)
6021{
88e784e6 6022 switch (model & MEMMODEL_MASK)
8930883e
MK
6023 {
6024 case MEMMODEL_RELAXED:
6025 case MEMMODEL_CONSUME:
6026 return false;
6027 case MEMMODEL_RELEASE:
6028 return pre;
6029 case MEMMODEL_ACQUIRE:
6030 return !pre;
6031 case MEMMODEL_ACQ_REL:
6032 case MEMMODEL_SEQ_CST:
6033 return true;
6034 default:
6035 gcc_unreachable ();
6036 }
6037}
6038\f
e2500fed 6039#include "gt-emit-rtl.h"