]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
Update mainline egcs to gcc2 snapshot 971021.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
23b2ce53 1/* Emit RTL for the GNU C-Compiler expander.
a3a03040 2 Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
23b2ce53
RS
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
23b2ce53
RS
20
21
22/* Middle-to-low level generation of rtx code and insns.
23
24 This file contains the functions `gen_rtx', `gen_reg_rtx'
25 and `gen_label_rtx' that are the usual ways of creating rtl
26 expressions for most purposes.
27
28 It also has the functions for creating insns and linking
29 them in the doubly-linked chain.
30
31 The patterns of the insns are created by machine-dependent
32 routines in insn-emit.c, which is generated automatically from
33 the machine description. These routines use `gen_rtx' to make
34 the individual rtx's of the pattern; what is machine dependent
35 is the kind of rtx's they make and what arguments they use. */
36
37#include "config.h"
e9a25f70 38#include <stdio.h>
4f90e4a0 39#ifdef __STDC__
04fe4385 40#include <stdarg.h>
4f90e4a0 41#else
04fe4385 42#include <varargs.h>
4f90e4a0 43#endif
23b2ce53 44#include "rtl.h"
a25c7971 45#include "tree.h"
23b2ce53 46#include "flags.h"
1ef08c63 47#include "except.h"
23b2ce53
RS
48#include "function.h"
49#include "expr.h"
50#include "regs.h"
51#include "insn-config.h"
e9a25f70 52#include "recog.h"
23b2ce53 53#include "real.h"
ca695ac9
JB
54#include "obstack.h"
55
56#include "bytecode.h"
57#include "machmode.h"
58#include "bc-opcode.h"
59#include "bc-typecd.h"
60#include "bc-optab.h"
61#include "bc-emit.h"
62
ca695ac9
JB
63/* Opcode names */
64#ifdef BCDEBUG_PRINT_CODE
65char *opcode_name[] =
66{
67#include "bc-opname.h"
68
69"***END***"
70};
71#endif
72
73
1d445e9e
ILT
74/* Commonly used modes. */
75
0f41302f
MS
76enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
77enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
78enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 79
23b2ce53
RS
80/* This is reset to LAST_VIRTUAL_REGISTER + 1 at the start of each function.
81 After rtl generation, it is 1 plus the largest register number used. */
82
83int reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
84
85/* This is *not* reset after each function. It gives each CODE_LABEL
86 in the entire compilation a unique label number. */
87
88static int label_num = 1;
89
90/* Lowest label number in current function. */
91
92static int first_label_num;
93
94/* Highest label number in current function.
95 Zero means use the value of label_num instead.
96 This is nonzero only when belatedly compiling an inline function. */
97
98static int last_label_num;
99
100/* Value label_num had when set_new_first_and_last_label_number was called.
101 If label_num has not changed since then, last_label_num is valid. */
102
103static int base_label_num;
104
105/* Nonzero means do not generate NOTEs for source line numbers. */
106
107static int no_line_numbers;
108
109/* Commonly used rtx's, so that we only need space for one copy.
110 These are initialized once for the entire compilation.
111 All of these except perhaps the floating-point CONST_DOUBLEs
112 are unique; no other rtx-object will be equal to any of these. */
113
114rtx pc_rtx; /* (PC) */
115rtx cc0_rtx; /* (CC0) */
116rtx cc1_rtx; /* (CC1) (not actually used nowadays) */
117rtx const0_rtx; /* (CONST_INT 0) */
118rtx const1_rtx; /* (CONST_INT 1) */
119rtx const2_rtx; /* (CONST_INT 2) */
120rtx constm1_rtx; /* (CONST_INT -1) */
121rtx const_true_rtx; /* (CONST_INT STORE_FLAG_VALUE) */
122
123/* We record floating-point CONST_DOUBLEs in each floating-point mode for
124 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
125 record a copy of const[012]_rtx. */
126
127rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
128
129REAL_VALUE_TYPE dconst0;
130REAL_VALUE_TYPE dconst1;
131REAL_VALUE_TYPE dconst2;
132REAL_VALUE_TYPE dconstm1;
133
134/* All references to the following fixed hard registers go through
135 these unique rtl objects. On machines where the frame-pointer and
136 arg-pointer are the same register, they use the same unique object.
137
138 After register allocation, other rtl objects which used to be pseudo-regs
139 may be clobbered to refer to the frame-pointer register.
140 But references that were originally to the frame-pointer can be
141 distinguished from the others because they contain frame_pointer_rtx.
142
ac6f08b0
DE
143 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
144 tricky: until register elimination has taken place hard_frame_pointer_rtx
145 should be used if it is being set, and frame_pointer_rtx otherwise. After
146 register elimination hard_frame_pointer_rtx should always be used.
147 On machines where the two registers are same (most) then these are the
148 same.
149
23b2ce53
RS
150 In an inline procedure, the stack and frame pointer rtxs may not be
151 used for anything else. */
152rtx stack_pointer_rtx; /* (REG:Pmode STACK_POINTER_REGNUM) */
153rtx frame_pointer_rtx; /* (REG:Pmode FRAME_POINTER_REGNUM) */
ac6f08b0 154rtx hard_frame_pointer_rtx; /* (REG:Pmode HARD_FRAME_POINTER_REGNUM) */
23b2ce53
RS
155rtx arg_pointer_rtx; /* (REG:Pmode ARG_POINTER_REGNUM) */
156rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
157rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
158rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
159rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
160rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
161
a4417a86
JW
162/* This is used to implement __builtin_return_address for some machines.
163 See for instance the MIPS port. */
164rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
165
23b2ce53
RS
166rtx virtual_incoming_args_rtx; /* (REG:Pmode VIRTUAL_INCOMING_ARGS_REGNUM) */
167rtx virtual_stack_vars_rtx; /* (REG:Pmode VIRTUAL_STACK_VARS_REGNUM) */
168rtx virtual_stack_dynamic_rtx; /* (REG:Pmode VIRTUAL_STACK_DYNAMIC_REGNUM) */
169rtx virtual_outgoing_args_rtx; /* (REG:Pmode VIRTUAL_OUTGOING_ARGS_REGNUM) */
170
171/* We make one copy of (const_int C) where C is in
172 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
173 to save space during the compilation and simplify comparisons of
174 integers. */
175
176#define MAX_SAVED_CONST_INT 64
177
178static rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
179
180/* The ends of the doubly-linked chain of rtl for the current function.
181 Both are reset to null at the start of rtl generation for the function.
182
a25c7971
RK
183 start_sequence saves both of these on `sequence_stack' along with
184 `sequence_rtl_expr' and then starts a new, nested sequence of insns. */
23b2ce53
RS
185
186static rtx first_insn = NULL;
187static rtx last_insn = NULL;
188
a25c7971
RK
189/* RTL_EXPR within which the current sequence will be placed. Use to
190 prevent reuse of any temporaries within the sequence until after the
191 RTL_EXPR is emitted. */
192
193tree sequence_rtl_expr = NULL;
194
23b2ce53
RS
195/* INSN_UID for next insn emitted.
196 Reset to 1 for each function compiled. */
197
198static int cur_insn_uid = 1;
199
200/* Line number and source file of the last line-number NOTE emitted.
201 This is used to avoid generating duplicates. */
202
203static int last_linenum = 0;
204static char *last_filename = 0;
205
206/* A vector indexed by pseudo reg number. The allocated length
207 of this vector is regno_pointer_flag_length. Since this
208 vector is needed during the expansion phase when the total
209 number of registers in the function is not yet known,
210 it is copied and made bigger when necessary. */
211
212char *regno_pointer_flag;
213int regno_pointer_flag_length;
214
86fe05e0
RK
215/* Indexed by pseudo register number, if nonzero gives the known alignment
216 for that pseudo (if regno_pointer_flag is set).
217 Allocated in parallel with regno_pointer_flag. */
218char *regno_pointer_align;
219
23b2ce53
RS
220/* Indexed by pseudo register number, gives the rtx for that pseudo.
221 Allocated in parallel with regno_pointer_flag. */
222
223rtx *regno_reg_rtx;
224
225/* Stack of pending (incomplete) sequences saved by `start_sequence'.
226 Each element describes one pending sequence.
227 The main insn-chain is saved in the last element of the chain,
228 unless the chain is empty. */
229
230struct sequence_stack *sequence_stack;
231
232/* start_sequence and gen_sequence can make a lot of rtx expressions which are
233 shortly thrown away. We use two mechanisms to prevent this waste:
234
235 First, we keep a list of the expressions used to represent the sequence
236 stack in sequence_element_free_list.
237
238 Second, for sizes up to 5 elements, we keep a SEQUENCE and its associated
239 rtvec for use by gen_sequence. One entry for each size is sufficient
240 because most cases are calls to gen_sequence followed by immediately
241 emitting the SEQUENCE. Reuse is safe since emitting a sequence is
242 destructive on the insn in it anyway and hence can't be redone.
243
244 We do not bother to save this cached data over nested function calls.
245 Instead, we just reinitialize them. */
246
247#define SEQUENCE_RESULT_SIZE 5
248
249static struct sequence_stack *sequence_element_free_list;
250static rtx sequence_result[SEQUENCE_RESULT_SIZE];
251
0f41302f 252/* During RTL generation, we also keep a list of free INSN rtl codes. */
43127294
RK
253static rtx free_insn;
254
23b2ce53
RS
255extern int rtx_equal_function_value_matters;
256
257/* Filename and line number of last line-number note,
258 whether we actually emitted it or not. */
259extern char *emit_filename;
260extern int emit_lineno;
ca695ac9 261\f
23b2ce53
RS
262/* rtx gen_rtx (code, mode, [element1, ..., elementn])
263**
264** This routine generates an RTX of the size specified by
265** <code>, which is an RTX code. The RTX structure is initialized
266** from the arguments <element1> through <elementn>, which are
267** interpreted according to the specific RTX type's format. The
268** special machine mode associated with the rtx (if any) is specified
269** in <mode>.
270**
1632afca 271** gen_rtx can be invoked in a way which resembles the lisp-like
23b2ce53
RS
272** rtx it will generate. For example, the following rtx structure:
273**
274** (plus:QI (mem:QI (reg:SI 1))
275** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
276**
277** ...would be generated by the following C code:
278**
279** gen_rtx (PLUS, QImode,
280** gen_rtx (MEM, QImode,
281** gen_rtx (REG, SImode, 1)),
282** gen_rtx (MEM, QImode,
283** gen_rtx (PLUS, SImode,
284** gen_rtx (REG, SImode, 2),
285** gen_rtx (REG, SImode, 3)))),
286*/
287
288/*VARARGS2*/
289rtx
4f90e4a0 290gen_rtx VPROTO((enum rtx_code code, enum machine_mode mode, ...))
23b2ce53 291{
4f90e4a0 292#ifndef __STDC__
23b2ce53
RS
293 enum rtx_code code;
294 enum machine_mode mode;
4f90e4a0
RK
295#endif
296 va_list p;
23b2ce53
RS
297 register int i; /* Array indices... */
298 register char *fmt; /* Current rtx's format... */
299 register rtx rt_val; /* RTX to return to caller... */
300
4f90e4a0
RK
301 VA_START (p, mode);
302
303#ifndef __STDC__
23b2ce53
RS
304 code = va_arg (p, enum rtx_code);
305 mode = va_arg (p, enum machine_mode);
4f90e4a0 306#endif
23b2ce53
RS
307
308 if (code == CONST_INT)
309 {
906c4e36 310 HOST_WIDE_INT arg = va_arg (p, HOST_WIDE_INT);
23b2ce53
RS
311
312 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
313 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
314
315 if (const_true_rtx && arg == STORE_FLAG_VALUE)
316 return const_true_rtx;
317
318 rt_val = rtx_alloc (code);
319 INTVAL (rt_val) = arg;
320 }
321 else if (code == REG)
322 {
323 int regno = va_arg (p, int);
324
325 /* In case the MD file explicitly references the frame pointer, have
326 all such references point to the same frame pointer. This is used
327 during frame pointer elimination to distinguish the explicit
328 references to these registers from pseudos that happened to be
329 assigned to them.
330
331 If we have eliminated the frame pointer or arg pointer, we will
332 be using it as a normal register, for example as a spill register.
333 In such cases, we might be accessing it in a mode that is not
600a5d88 334 Pmode and therefore cannot use the pre-allocated rtx.
23b2ce53 335
600a5d88
RK
336 Also don't do this when we are making new REGs in reload,
337 since we don't want to get confused with the real pointers. */
338
339 if (frame_pointer_rtx && regno == FRAME_POINTER_REGNUM && mode == Pmode
340 && ! reload_in_progress)
23b2ce53 341 return frame_pointer_rtx;
ac6f08b0
DE
342#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
343 if (hard_frame_pointer_rtx && regno == HARD_FRAME_POINTER_REGNUM
344 && mode == Pmode && ! reload_in_progress)
345 return hard_frame_pointer_rtx;
346#endif
347#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
600a5d88
RK
348 if (arg_pointer_rtx && regno == ARG_POINTER_REGNUM && mode == Pmode
349 && ! reload_in_progress)
23b2ce53 350 return arg_pointer_rtx;
a4417a86
JW
351#endif
352#ifdef RETURN_ADDRESS_POINTER_REGNUM
353 if (return_address_pointer_rtx && regno == RETURN_ADDRESS_POINTER_REGNUM
354 && mode == Pmode && ! reload_in_progress)
355 return return_address_pointer_rtx;
23b2ce53 356#endif
600a5d88
RK
357 if (stack_pointer_rtx && regno == STACK_POINTER_REGNUM && mode == Pmode
358 && ! reload_in_progress)
23b2ce53
RS
359 return stack_pointer_rtx;
360 else
361 {
362 rt_val = rtx_alloc (code);
363 rt_val->mode = mode;
364 REGNO (rt_val) = regno;
365 return rt_val;
366 }
367 }
368 else
369 {
370 rt_val = rtx_alloc (code); /* Allocate the storage space. */
371 rt_val->mode = mode; /* Store the machine mode... */
372
373 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
374 for (i = 0; i < GET_RTX_LENGTH (code); i++)
375 {
376 switch (*fmt++)
377 {
378 case '0': /* Unused field. */
379 break;
380
381 case 'i': /* An integer? */
382 XINT (rt_val, i) = va_arg (p, int);
383 break;
384
906c4e36
RK
385 case 'w': /* A wide integer? */
386 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
387 break;
388
23b2ce53
RS
389 case 's': /* A string? */
390 XSTR (rt_val, i) = va_arg (p, char *);
391 break;
392
393 case 'e': /* An expression? */
394 case 'u': /* An insn? Same except when printing. */
395 XEXP (rt_val, i) = va_arg (p, rtx);
396 break;
397
398 case 'E': /* An RTX vector? */
399 XVEC (rt_val, i) = va_arg (p, rtvec);
400 break;
401
402 default:
1632afca 403 abort ();
23b2ce53
RS
404 }
405 }
406 }
407 va_end (p);
408 return rt_val; /* Return the new RTX... */
409}
410
411/* gen_rtvec (n, [rt1, ..., rtn])
412**
413** This routine creates an rtvec and stores within it the
414** pointers to rtx's which are its arguments.
415*/
416
417/*VARARGS1*/
418rtvec
4f90e4a0 419gen_rtvec VPROTO((int n, ...))
23b2ce53 420{
4f90e4a0
RK
421#ifndef __STDC__
422 int n;
423#endif
424 int i;
23b2ce53
RS
425 va_list p;
426 rtx *vector;
427
4f90e4a0
RK
428 VA_START (p, n);
429
430#ifndef __STDC__
23b2ce53 431 n = va_arg (p, int);
4f90e4a0 432#endif
23b2ce53
RS
433
434 if (n == 0)
435 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
436
437 vector = (rtx *) alloca (n * sizeof (rtx));
4f90e4a0 438
23b2ce53
RS
439 for (i = 0; i < n; i++)
440 vector[i] = va_arg (p, rtx);
441 va_end (p);
442
443 return gen_rtvec_v (n, vector);
444}
445
446rtvec
447gen_rtvec_v (n, argp)
448 int n;
449 rtx *argp;
450{
451 register int i;
452 register rtvec rt_val;
453
454 if (n == 0)
455 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
456
457 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
458
459 for (i = 0; i < n; i++)
460 rt_val->elem[i].rtx = *argp++;
461
462 return rt_val;
463}
ba444f92
RK
464
465rtvec
466gen_rtvec_vv (n, argp)
467 int n;
468 rtunion *argp;
469{
470 register int i;
471 register rtvec rt_val;
472
473 if (n == 0)
474 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
475
476 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
477
478 for (i = 0; i < n; i++)
479 rt_val->elem[i].rtx = (argp++)->rtx;
480
481 return rt_val;
482}
23b2ce53
RS
483\f
484/* Generate a REG rtx for a new pseudo register of mode MODE.
485 This pseudo is assigned the next sequential register number. */
486
487rtx
488gen_reg_rtx (mode)
489 enum machine_mode mode;
490{
491 register rtx val;
492
493 /* Don't let anything called by or after reload create new registers
494 (actually, registers can't be created after flow, but this is a good
495 approximation). */
496
497 if (reload_in_progress || reload_completed)
498 abort ();
499
fc84e8a8
RS
500 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
501 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT)
502 {
503 /* For complex modes, don't make a single pseudo.
504 Instead, make a CONCAT of two pseudos.
505 This allows noncontiguous allocation of the real and imaginary parts,
506 which makes much better code. Besides, allocating DCmode
507 pseudos overstrains reload on some machines like the 386. */
508 rtx realpart, imagpart;
509 int size = GET_MODE_UNIT_SIZE (mode);
510 enum machine_mode partmode
511 = mode_for_size (size * BITS_PER_UNIT,
512 (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
513 ? MODE_FLOAT : MODE_INT),
514 0);
515
516 realpart = gen_reg_rtx (partmode);
517 imagpart = gen_reg_rtx (partmode);
518 return gen_rtx (CONCAT, mode, realpart, imagpart);
519 }
520
23b2ce53
RS
521 /* Make sure regno_pointer_flag and regno_reg_rtx are large
522 enough to have an element for this pseudo reg number. */
523
524 if (reg_rtx_no == regno_pointer_flag_length)
525 {
526 rtx *new1;
527 char *new =
86fe05e0 528 (char *) savealloc (regno_pointer_flag_length * 2);
23b2ce53 529 bcopy (regno_pointer_flag, new, regno_pointer_flag_length);
c0b178d0 530 bzero (&new[regno_pointer_flag_length], regno_pointer_flag_length);
23b2ce53
RS
531 regno_pointer_flag = new;
532
86fe05e0
RK
533 new = (char *) savealloc (regno_pointer_flag_length * 2);
534 bcopy (regno_pointer_align, new, regno_pointer_flag_length);
535 bzero (&new[regno_pointer_flag_length], regno_pointer_flag_length);
536 regno_pointer_align = new;
537
538 new1 = (rtx *) savealloc (regno_pointer_flag_length * 2 * sizeof (rtx));
4c9a05bc
RK
539 bcopy ((char *) regno_reg_rtx, (char *) new1,
540 regno_pointer_flag_length * sizeof (rtx));
541 bzero ((char *) &new1[regno_pointer_flag_length],
c0b178d0 542 regno_pointer_flag_length * sizeof (rtx));
23b2ce53
RS
543 regno_reg_rtx = new1;
544
545 regno_pointer_flag_length *= 2;
546 }
547
548 val = gen_rtx (REG, mode, reg_rtx_no);
549 regno_reg_rtx[reg_rtx_no++] = val;
550 return val;
551}
552
754fdcca
RK
553/* Identify REG (which may be a CONCAT) as a user register. */
554
555void
556mark_user_reg (reg)
557 rtx reg;
558{
559 if (GET_CODE (reg) == CONCAT)
560 {
561 REG_USERVAR_P (XEXP (reg, 0)) = 1;
562 REG_USERVAR_P (XEXP (reg, 1)) = 1;
563 }
564 else if (GET_CODE (reg) == REG)
565 REG_USERVAR_P (reg) = 1;
566 else
567 abort ();
568}
569
86fe05e0
RK
570/* Identify REG as a probable pointer register and show its alignment
571 as ALIGN, if nonzero. */
23b2ce53
RS
572
573void
86fe05e0 574mark_reg_pointer (reg, align)
23b2ce53 575 rtx reg;
86fe05e0 576 int align;
23b2ce53
RS
577{
578 REGNO_POINTER_FLAG (REGNO (reg)) = 1;
86fe05e0
RK
579
580 if (align)
581 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
582}
583
584/* Return 1 plus largest pseudo reg number used in the current function. */
585
586int
587max_reg_num ()
588{
589 return reg_rtx_no;
590}
591
592/* Return 1 + the largest label number used so far in the current function. */
593
594int
595max_label_num ()
596{
597 if (last_label_num && label_num == base_label_num)
598 return last_label_num;
599 return label_num;
600}
601
602/* Return first label number used in this function (if any were used). */
603
604int
605get_first_label_num ()
606{
607 return first_label_num;
608}
609\f
610/* Return a value representing some low-order bits of X, where the number
611 of low-order bits is given by MODE. Note that no conversion is done
612 between floating-point and fixed-point values, rather, the bit
613 representation is returned.
614
615 This function handles the cases in common between gen_lowpart, below,
616 and two variants in cse.c and combine.c. These are the cases that can
617 be safely handled at all points in the compilation.
618
619 If this is not a case we can handle, return 0. */
620
621rtx
622gen_lowpart_common (mode, x)
623 enum machine_mode mode;
624 register rtx x;
625{
626 int word = 0;
627
628 if (GET_MODE (x) == mode)
629 return x;
630
631 /* MODE must occupy no more words than the mode of X. */
632 if (GET_MODE (x) != VOIDmode
633 && ((GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
634 > ((GET_MODE_SIZE (GET_MODE (x)) + (UNITS_PER_WORD - 1))
635 / UNITS_PER_WORD)))
636 return 0;
637
638 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
639 word = ((GET_MODE_SIZE (GET_MODE (x))
640 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
641 / UNITS_PER_WORD);
642
643 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
644 && (GET_MODE_CLASS (mode) == MODE_INT
645 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
646 {
647 /* If we are getting the low-order part of something that has been
648 sign- or zero-extended, we can either just use the object being
649 extended or make a narrower extension. If we want an even smaller
650 piece than the size of the object being extended, call ourselves
651 recursively.
652
653 This case is used mostly by combine and cse. */
654
655 if (GET_MODE (XEXP (x, 0)) == mode)
656 return XEXP (x, 0);
657 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
658 return gen_lowpart_common (mode, XEXP (x, 0));
659 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
660 return gen_rtx (GET_CODE (x), mode, XEXP (x, 0));
661 }
662 else if (GET_CODE (x) == SUBREG
663 && (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
664 || GET_MODE_SIZE (mode) == GET_MODE_UNIT_SIZE (GET_MODE (x))))
665 return (GET_MODE (SUBREG_REG (x)) == mode && SUBREG_WORD (x) == 0
666 ? SUBREG_REG (x)
04395f96 667 : gen_rtx (SUBREG, mode, SUBREG_REG (x), SUBREG_WORD (x) + word));
23b2ce53
RS
668 else if (GET_CODE (x) == REG)
669 {
670 /* If the register is not valid for MODE, return 0. If we don't
674d5d8b
RK
671 do this, there is no way to fix up the resulting REG later.
672 But we do do this if the current REG is not valid for its
673 mode. This latter is a kludge, but is required due to the
674 way that parameters are passed on some machines, most
675 notably Sparc. */
23b2ce53 676 if (REGNO (x) < FIRST_PSEUDO_REGISTER
674d5d8b
RK
677 && ! HARD_REGNO_MODE_OK (REGNO (x) + word, mode)
678 && HARD_REGNO_MODE_OK (REGNO (x), GET_MODE (x)))
23b2ce53
RS
679 return 0;
680 else if (REGNO (x) < FIRST_PSEUDO_REGISTER
681 /* integrate.c can't handle parts of a return value register. */
682 && (! REG_FUNCTION_VALUE_P (x)
cb00f51a
RK
683 || ! rtx_equal_function_value_matters)
684 /* We want to keep the stack, frame, and arg pointers
685 special. */
65e8fe02 686 && x != frame_pointer_rtx
cb00f51a 687#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
65e8fe02 688 && x != arg_pointer_rtx
cb00f51a 689#endif
65e8fe02 690 && x != stack_pointer_rtx)
23b2ce53
RS
691 return gen_rtx (REG, mode, REGNO (x) + word);
692 else
693 return gen_rtx (SUBREG, mode, x, word);
694 }
23b2ce53
RS
695 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
696 from the low-order part of the constant. */
83e9c679
RK
697 else if ((GET_MODE_CLASS (mode) == MODE_INT
698 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
699 && GET_MODE (x) == VOIDmode
23b2ce53 700 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1a5b457d
RK
701 {
702 /* If MODE is twice the host word size, X is already the desired
703 representation. Otherwise, if MODE is wider than a word, we can't
704 do this. If MODE is exactly a word, return just one CONST_INT.
705 If MODE is smaller than a word, clear the bits that don't belong
706 in our mode, unless they and our sign bit are all one. So we get
707 either a reasonable negative value or a reasonable unsigned value
708 for this mode. */
709
a8dd0e73 710 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1a5b457d 711 return x;
906c4e36 712 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1a5b457d 713 return 0;
906c4e36 714 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1a5b457d 715 return (GET_CODE (x) == CONST_INT ? x
906c4e36 716 : GEN_INT (CONST_DOUBLE_LOW (x)));
1a5b457d
RK
717 else
718 {
719 /* MODE must be narrower than HOST_BITS_PER_INT. */
720 int width = GET_MODE_BITSIZE (mode);
906c4e36
RK
721 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
722 : CONST_DOUBLE_LOW (x));
1a5b457d 723
906c4e36
RK
724 if (((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
725 != ((HOST_WIDE_INT) (-1) << (width - 1))))
726 val &= ((HOST_WIDE_INT) 1 << width) - 1;
1a5b457d
RK
727
728 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
906c4e36 729 : GEN_INT (val));
1a5b457d
RK
730 }
731 }
23b2ce53 732
8aada4ad
RK
733 /* If X is an integral constant but we want it in floating-point, it
734 must be the case that we have a union of an integer and a floating-point
735 value. If the machine-parameters allow it, simulate that union here
d6020413
RK
736 and return the result. The two-word and single-word cases are
737 different. */
8aada4ad 738
b3bf132d 739 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 740 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 741 || flag_pretend_float)
8aada4ad 742 && GET_MODE_CLASS (mode) == MODE_FLOAT
d6020413
RK
743 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
744 && GET_CODE (x) == CONST_INT
906c4e36 745 && sizeof (float) * HOST_BITS_PER_CHAR == HOST_BITS_PER_WIDE_INT)
b6a524cb
RS
746#ifdef REAL_ARITHMETIC
747 {
748 REAL_VALUE_TYPE r;
749 HOST_WIDE_INT i;
750
751 i = INTVAL (x);
752 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
53596fba 753 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
b6a524cb
RS
754 }
755#else
d6020413 756 {
906c4e36 757 union {HOST_WIDE_INT i; float d; } u;
d6020413
RK
758
759 u.i = INTVAL (x);
53596fba 760 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
d6020413 761 }
b6a524cb 762#endif
d6020413 763 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 764 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
d6020413
RK
765 || flag_pretend_float)
766 && GET_MODE_CLASS (mode) == MODE_FLOAT
767 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
8aada4ad
RK
768 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
769 && GET_MODE (x) == VOIDmode
906c4e36
RK
770 && (sizeof (double) * HOST_BITS_PER_CHAR
771 == 2 * HOST_BITS_PER_WIDE_INT))
b6a524cb
RS
772#ifdef REAL_ARITHMETIC
773 {
774 REAL_VALUE_TYPE r;
775 HOST_WIDE_INT i[2];
776 HOST_WIDE_INT low, high;
777
778 if (GET_CODE (x) == CONST_INT)
779 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
780 else
781 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
782
8698cce3 783 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
0f41302f 784 target machine. */
8698cce3
RK
785 if (WORDS_BIG_ENDIAN)
786 i[0] = high, i[1] = low;
787 else
788 i[0] = low, i[1] = high;
b6a524cb
RS
789
790 r = REAL_VALUE_FROM_TARGET_DOUBLE (i);
53596fba 791 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
b6a524cb
RS
792 }
793#else
8aada4ad 794 {
906c4e36
RK
795 union {HOST_WIDE_INT i[2]; double d; } u;
796 HOST_WIDE_INT low, high;
8aada4ad
RK
797
798 if (GET_CODE (x) == CONST_INT)
906c4e36 799 low = INTVAL (x), high = low >> (HOST_BITS_PER_WIDE_INT -1);
8aada4ad
RK
800 else
801 low = CONST_DOUBLE_LOW (x), high = CONST_DOUBLE_HIGH (x);
802
803#ifdef HOST_WORDS_BIG_ENDIAN
804 u.i[0] = high, u.i[1] = low;
805#else
806 u.i[0] = low, u.i[1] = high;
807#endif
808
53596fba 809 return CONST_DOUBLE_FROM_REAL_VALUE (u.d, mode);
8aada4ad 810 }
b6a524cb 811#endif
a6a503ed
JW
812
813 /* We need an extra case for machines where HOST_BITS_PER_WIDE_INT is the
814 same as sizeof (double), such as the alpha. We only handle the
815 REAL_ARITHMETIC case, which is easy. Testing HOST_BITS_PER_WIDE_INT
816 is not strictly necessary, but is done to restrict this code to cases
817 where it is known to work. */
818#ifdef REAL_ARITHMETIC
819 else if (mode == SFmode
820 && GET_CODE (x) == CONST_INT
821 && GET_MODE_BITSIZE (mode) * 2 == HOST_BITS_PER_WIDE_INT)
822 {
823 REAL_VALUE_TYPE r;
824 HOST_WIDE_INT i;
825
826 i = INTVAL (x);
827 r = REAL_VALUE_FROM_TARGET_SINGLE (i);
828 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
829 }
830#endif
831
b3bf132d
RK
832 /* Similarly, if this is converting a floating-point value into a
833 single-word integer. Only do this is the host and target parameters are
834 compatible. */
835
836 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 837 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 838 || flag_pretend_float)
83e9c679
RK
839 && (GET_MODE_CLASS (mode) == MODE_INT
840 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
b3bf132d
RK
841 && GET_CODE (x) == CONST_DOUBLE
842 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
843 && GET_MODE_BITSIZE (mode) == BITS_PER_WORD)
a80586cc 844 return operand_subword (x, word, 0, GET_MODE (x));
b3bf132d 845
8aada4ad
RK
846 /* Similarly, if this is converting a floating-point value into a
847 two-word integer, we can do this one word at a time and make an
848 integer. Only do this is the host and target parameters are
849 compatible. */
850
b3bf132d 851 else if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 852 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
b3bf132d 853 || flag_pretend_float)
83e9c679 854 && (GET_MODE_CLASS (mode) == MODE_INT
f5a2fb25 855 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
8aada4ad
RK
856 && GET_CODE (x) == CONST_DOUBLE
857 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT
858 && GET_MODE_BITSIZE (mode) == 2 * BITS_PER_WORD)
859 {
a80586cc
RK
860 rtx lowpart
861 = operand_subword (x, word + WORDS_BIG_ENDIAN, 0, GET_MODE (x));
862 rtx highpart
863 = operand_subword (x, word + ! WORDS_BIG_ENDIAN, 0, GET_MODE (x));
8aada4ad
RK
864
865 if (lowpart && GET_CODE (lowpart) == CONST_INT
866 && highpart && GET_CODE (highpart) == CONST_INT)
867 return immed_double_const (INTVAL (lowpart), INTVAL (highpart), mode);
868 }
869
23b2ce53
RS
870 /* Otherwise, we can't do this. */
871 return 0;
872}
873\f
280194b0
RS
874/* Return the real part (which has mode MODE) of a complex value X.
875 This always comes at the low address in memory. */
876
877rtx
878gen_realpart (mode, x)
879 enum machine_mode mode;
880 register rtx x;
881{
dc139c90
RK
882 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
883 return XEXP (x, 0);
884 else if (WORDS_BIG_ENDIAN)
280194b0
RS
885 return gen_highpart (mode, x);
886 else
887 return gen_lowpart (mode, x);
888}
889
890/* Return the imaginary part (which has mode MODE) of a complex value X.
891 This always comes at the high address in memory. */
892
893rtx
894gen_imagpart (mode, x)
895 enum machine_mode mode;
896 register rtx x;
897{
dc139c90
RK
898 if (GET_CODE (x) == CONCAT && GET_MODE (XEXP (x, 0)) == mode)
899 return XEXP (x, 1);
900 else if (WORDS_BIG_ENDIAN)
280194b0
RS
901 return gen_lowpart (mode, x);
902 else
903 return gen_highpart (mode, x);
904}
81284a6a
JW
905
906/* Return 1 iff X, assumed to be a SUBREG,
907 refers to the real part of the complex value in its containing reg.
908 Complex values are always stored with the real part in the first word,
909 regardless of WORDS_BIG_ENDIAN. */
910
911int
912subreg_realpart_p (x)
913 rtx x;
914{
915 if (GET_CODE (x) != SUBREG)
916 abort ();
917
918 return SUBREG_WORD (x) == 0;
919}
280194b0 920\f
23b2ce53
RS
921/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
922 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
923 least-significant part of X.
924 MODE specifies how big a part of X to return;
925 it usually should not be larger than a word.
926 If X is a MEM whose address is a QUEUED, the value may be so also. */
927
928rtx
929gen_lowpart (mode, x)
930 enum machine_mode mode;
931 register rtx x;
932{
933 rtx result = gen_lowpart_common (mode, x);
934
935 if (result)
936 return result;
ea8262b0
RK
937 else if (GET_CODE (x) == REG)
938 {
939 /* Must be a hard reg that's not valid in MODE. */
940 result = gen_lowpart_common (mode, copy_to_reg (x));
941 if (result == 0)
942 abort ();
72c3833b 943 return result;
ea8262b0 944 }
23b2ce53
RS
945 else if (GET_CODE (x) == MEM)
946 {
947 /* The only additional case we can do is MEM. */
948 register int offset = 0;
949 if (WORDS_BIG_ENDIAN)
950 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
951 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
952
953 if (BYTES_BIG_ENDIAN)
954 /* Adjust the address so that the address-after-the-data
955 is unchanged. */
956 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
957 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
958
959 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
960 }
e9a25f70
JL
961 else if (GET_CODE (x) == ADDRESSOF)
962 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
23b2ce53
RS
963 else
964 abort ();
965}
966
ccba022b
RS
967/* Like `gen_lowpart', but refer to the most significant part.
968 This is used to access the imaginary part of a complex number. */
969
970rtx
971gen_highpart (mode, x)
972 enum machine_mode mode;
973 register rtx x;
974{
975 /* This case loses if X is a subreg. To catch bugs early,
976 complain if an invalid MODE is used even in other cases. */
977 if (GET_MODE_SIZE (mode) > UNITS_PER_WORD
978 && GET_MODE_SIZE (mode) != GET_MODE_UNIT_SIZE (GET_MODE (x)))
979 abort ();
980 if (GET_CODE (x) == CONST_DOUBLE
1632afca 981#if !(TARGET_FLOAT_FORMAT != HOST_FLOAT_FORMAT || defined (REAL_IS_NOT_DOUBLE))
ccba022b
RS
982 && GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT
983#endif
984 )
985 return gen_rtx (CONST_INT, VOIDmode,
986 CONST_DOUBLE_HIGH (x) & GET_MODE_MASK (mode));
987 else if (GET_CODE (x) == CONST_INT)
988 return const0_rtx;
989 else if (GET_CODE (x) == MEM)
990 {
991 register int offset = 0;
8698cce3
RK
992 if (! WORDS_BIG_ENDIAN)
993 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
994 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
995
996 if (! BYTES_BIG_ENDIAN
997 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
ccba022b
RS
998 offset -= (GET_MODE_SIZE (mode)
999 - MIN (UNITS_PER_WORD,
1000 GET_MODE_SIZE (GET_MODE (x))));
8698cce3 1001
ccba022b
RS
1002 return change_address (x, mode, plus_constant (XEXP (x, 0), offset));
1003 }
1004 else if (GET_CODE (x) == SUBREG)
1005 {
1006 /* The only time this should occur is when we are looking at a
1007 multi-word item with a SUBREG whose mode is the same as that of the
1008 item. It isn't clear what we would do if it wasn't. */
1009 if (SUBREG_WORD (x) != 0)
1010 abort ();
1011 return gen_highpart (mode, SUBREG_REG (x));
1012 }
1013 else if (GET_CODE (x) == REG)
1014 {
1015 int word = 0;
1016
8698cce3
RK
1017 if (! WORDS_BIG_ENDIAN
1018 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
ccba022b
RS
1019 word = ((GET_MODE_SIZE (GET_MODE (x))
1020 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1021 / UNITS_PER_WORD);
8698cce3 1022
3e4a14ef
RK
1023 /*
1024 * ??? This fails miserably for complex values being passed in registers
1025 * where the sizeof the real and imaginary part are not equal to the
1026 * sizeof SImode. FIXME
1027 */
1028
cb00f51a 1029 if (REGNO (x) < FIRST_PSEUDO_REGISTER
0f41302f 1030 /* integrate.c can't handle parts of a return value register. */
4badc528
RS
1031 && (! REG_FUNCTION_VALUE_P (x)
1032 || ! rtx_equal_function_value_matters)
cb00f51a 1033 /* We want to keep the stack, frame, and arg pointers special. */
65e8fe02 1034 && x != frame_pointer_rtx
cb00f51a 1035#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
65e8fe02 1036 && x != arg_pointer_rtx
cb00f51a 1037#endif
65e8fe02 1038 && x != stack_pointer_rtx)
ccba022b
RS
1039 return gen_rtx (REG, mode, REGNO (x) + word);
1040 else
1041 return gen_rtx (SUBREG, mode, x, word);
1042 }
1043 else
1044 abort ();
1045}
1046
23b2ce53
RS
1047/* Return 1 iff X, assumed to be a SUBREG,
1048 refers to the least significant part of its containing reg.
1049 If X is not a SUBREG, always return 1 (it is its own low part!). */
1050
1051int
1052subreg_lowpart_p (x)
1053 rtx x;
1054{
1055 if (GET_CODE (x) != SUBREG)
1056 return 1;
a3a03040
RK
1057 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1058 return 0;
23b2ce53
RS
1059
1060 if (WORDS_BIG_ENDIAN
1061 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) > UNITS_PER_WORD)
1062 return (SUBREG_WORD (x)
1063 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))
1064 - MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD))
1065 / UNITS_PER_WORD));
1066
1067 return SUBREG_WORD (x) == 0;
1068}
1069\f
1070/* Return subword I of operand OP.
1071 The word number, I, is interpreted as the word number starting at the
1072 low-order address. Word 0 is the low-order word if not WORDS_BIG_ENDIAN,
1073 otherwise it is the high-order word.
1074
1075 If we cannot extract the required word, we return zero. Otherwise, an
1076 rtx corresponding to the requested word will be returned.
1077
1078 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1079 reload has completed, a valid address will always be returned. After
1080 reload, if a valid address cannot be returned, we return zero.
1081
1082 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1083 it is the responsibility of the caller.
1084
1085 MODE is the mode of OP in case it is a CONST_INT. */
1086
1087rtx
1088operand_subword (op, i, validate_address, mode)
1089 rtx op;
1090 int i;
1091 int validate_address;
1092 enum machine_mode mode;
1093{
906c4e36
RK
1094 HOST_WIDE_INT val;
1095 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
23b2ce53
RS
1096
1097 if (mode == VOIDmode)
1098 mode = GET_MODE (op);
1099
1100 if (mode == VOIDmode)
1101 abort ();
1102
1103 /* If OP is narrower than a word or if we want a word outside OP, fail. */
1104 if (mode != BLKmode
1105 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD
1106 || (i + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode)))
1107 return 0;
1108
1109 /* If OP is already an integer word, return it. */
1110 if (GET_MODE_CLASS (mode) == MODE_INT
1111 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1112 return op;
1113
1114 /* If OP is a REG or SUBREG, we can handle it very simply. */
1115 if (GET_CODE (op) == REG)
1116 {
1117 /* If the register is not valid for MODE, return 0. If we don't
1118 do this, there is no way to fix up the resulting REG later. */
1119 if (REGNO (op) < FIRST_PSEUDO_REGISTER
1120 && ! HARD_REGNO_MODE_OK (REGNO (op) + i, word_mode))
1121 return 0;
1122 else if (REGNO (op) >= FIRST_PSEUDO_REGISTER
1123 || (REG_FUNCTION_VALUE_P (op)
cb00f51a
RK
1124 && rtx_equal_function_value_matters)
1125 /* We want to keep the stack, frame, and arg pointers
1126 special. */
65e8fe02 1127 || op == frame_pointer_rtx
cb00f51a 1128#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
65e8fe02 1129 || op == arg_pointer_rtx
cb00f51a 1130#endif
65e8fe02 1131 || op == stack_pointer_rtx)
23b2ce53
RS
1132 return gen_rtx (SUBREG, word_mode, op, i);
1133 else
1134 return gen_rtx (REG, word_mode, REGNO (op) + i);
1135 }
1136 else if (GET_CODE (op) == SUBREG)
1137 return gen_rtx (SUBREG, word_mode, SUBREG_REG (op), i + SUBREG_WORD (op));
fc84e8a8
RS
1138 else if (GET_CODE (op) == CONCAT)
1139 {
1140 int partwords = GET_MODE_UNIT_SIZE (GET_MODE (op)) / UNITS_PER_WORD;
1141 if (i < partwords)
1142 return operand_subword (XEXP (op, 0), i, validate_address, mode);
1143 return operand_subword (XEXP (op, 1), i - partwords,
1144 validate_address, mode);
1145 }
23b2ce53
RS
1146
1147 /* Form a new MEM at the requested address. */
1148 if (GET_CODE (op) == MEM)
1149 {
1150 rtx addr = plus_constant (XEXP (op, 0), i * UNITS_PER_WORD);
1151 rtx new;
1152
1153 if (validate_address)
1154 {
1155 if (reload_completed)
1156 {
1157 if (! strict_memory_address_p (word_mode, addr))
1158 return 0;
1159 }
1160 else
1161 addr = memory_address (word_mode, addr);
1162 }
1163
1164 new = gen_rtx (MEM, word_mode, addr);
1165
1166 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (op);
1167 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (op);
1168 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (op);
1169
1170 return new;
1171 }
1172
1173 /* The only remaining cases are when OP is a constant. If the host and
1174 target floating formats are the same, handling two-word floating
7677ffa4 1175 constants are easy. Note that REAL_VALUE_TO_TARGET_{SINGLE,DOUBLE}
9847c2f6
RK
1176 are defined as returning one or two 32 bit values, respectively,
1177 and not values of BITS_PER_WORD bits. */
1632afca 1178#ifdef REAL_ARITHMETIC
9847c2f6
RK
1179/* The output is some bits, the width of the target machine's word.
1180 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1181 host can't. */
1182 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1632afca 1183 && GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1184 && GET_MODE_BITSIZE (mode) == 64
1632afca
RS
1185 && GET_CODE (op) == CONST_DOUBLE)
1186 {
9847c2f6 1187 long k[2];
1632afca
RS
1188 REAL_VALUE_TYPE rv;
1189
1190 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1191 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
7677ffa4 1192
9847c2f6 1193 /* We handle 32-bit and >= 64-bit words here. Note that the order in
7677ffa4
RK
1194 which the words are written depends on the word endianness.
1195
1196 ??? This is a potential portability problem and should
1197 be fixed at some point. */
9847c2f6
RK
1198 if (BITS_PER_WORD == 32)
1199 return GEN_INT ((HOST_WIDE_INT) k[i]);
1200#if HOST_BITS_PER_WIDE_INT > 32
1201 else if (BITS_PER_WORD >= 64 && i == 0)
1202 return GEN_INT ((((HOST_WIDE_INT) k[! WORDS_BIG_ENDIAN]) << 32)
1203 | (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN]);
1204#endif
47b34d40
JW
1205 else if (BITS_PER_WORD == 16)
1206 {
1207 long value;
1208 value = k[i >> 1];
1209 if ((i & 0x1) == 0)
1210 value >>= 16;
1211 value &= 0xffff;
1212 return GEN_INT ((HOST_WIDE_INT) value);
1213 }
7677ffa4
RK
1214 else
1215 abort ();
1632afca 1216 }
a5559dbc
RE
1217 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1218 && GET_MODE_CLASS (mode) == MODE_FLOAT
1219 && GET_MODE_BITSIZE (mode) > 64
1220 && GET_CODE (op) == CONST_DOUBLE)
1221 {
1222 long k[4];
1223 REAL_VALUE_TYPE rv;
1224
1225 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1226 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
1227
1228 if (BITS_PER_WORD == 32)
1229 return GEN_INT ((HOST_WIDE_INT) k[i]);
1230 }
1632afca 1231#else /* no REAL_ARITHMETIC */
23b2ce53 1232 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 1233 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
23b2ce53
RS
1234 || flag_pretend_float)
1235 && GET_MODE_CLASS (mode) == MODE_FLOAT
1236 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1237 && GET_CODE (op) == CONST_DOUBLE)
7529ac93
CH
1238 {
1239 /* The constant is stored in the host's word-ordering,
1240 but we want to access it in the target's word-ordering. Some
1241 compilers don't like a conditional inside macro args, so we have two
1242 copies of the return. */
2fe02d7e 1243#ifdef HOST_WORDS_BIG_ENDIAN
7529ac93
CH
1244 return GEN_INT (i == WORDS_BIG_ENDIAN
1245 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
2fe02d7e 1246#else
7529ac93
CH
1247 return GEN_INT (i != WORDS_BIG_ENDIAN
1248 ? CONST_DOUBLE_HIGH (op) : CONST_DOUBLE_LOW (op));
2fe02d7e 1249#endif
7529ac93 1250 }
1632afca 1251#endif /* no REAL_ARITHMETIC */
23b2ce53
RS
1252
1253 /* Single word float is a little harder, since single- and double-word
1254 values often do not have the same high-order bits. We have already
1255 verified that we want the only defined word of the single-word value. */
1632afca 1256#ifdef REAL_ARITHMETIC
9847c2f6 1257 if (GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1258 && GET_MODE_BITSIZE (mode) == 32
1632afca
RS
1259 && GET_CODE (op) == CONST_DOUBLE)
1260 {
9847c2f6 1261 long l;
1632afca
RS
1262 REAL_VALUE_TYPE rv;
1263
1264 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1265 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
9847c2f6 1266 return GEN_INT ((HOST_WIDE_INT) l);
1632afca
RS
1267 }
1268#else
23b2ce53 1269 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
906c4e36 1270 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
23b2ce53 1271 || flag_pretend_float)
e01a2cec 1272 && sizeof (float) * 8 == HOST_BITS_PER_WIDE_INT
23b2ce53
RS
1273 && GET_MODE_CLASS (mode) == MODE_FLOAT
1274 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1275 && GET_CODE (op) == CONST_DOUBLE)
1276 {
1277 double d;
906c4e36 1278 union {float f; HOST_WIDE_INT i; } u;
23b2ce53
RS
1279
1280 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1281
1282 u.f = d;
906c4e36 1283 return GEN_INT (u.i);
23b2ce53 1284 }
e01a2cec
RK
1285 if (((HOST_FLOAT_FORMAT == TARGET_FLOAT_FORMAT
1286 && HOST_BITS_PER_WIDE_INT == BITS_PER_WORD)
1287 || flag_pretend_float)
1288 && sizeof (double) * 8 == HOST_BITS_PER_WIDE_INT
1289 && GET_MODE_CLASS (mode) == MODE_FLOAT
1290 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
1291 && GET_CODE (op) == CONST_DOUBLE)
1292 {
1293 double d;
1294 union {double d; HOST_WIDE_INT i; } u;
1295
1296 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1297
1298 u.d = d;
1299 return GEN_INT (u.i);
1300 }
1632afca 1301#endif /* no REAL_ARITHMETIC */
23b2ce53
RS
1302
1303 /* The only remaining cases that we can handle are integers.
1304 Convert to proper endianness now since these cases need it.
1305 At this point, i == 0 means the low-order word.
1306
2d4f57f8
RK
1307 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1308 in general. However, if OP is (const_int 0), we can just return
1309 it for any word. */
1310
1311 if (op == const0_rtx)
1312 return op;
23b2ce53
RS
1313
1314 if (GET_MODE_CLASS (mode) != MODE_INT
2d4f57f8 1315 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
0cf214a0 1316 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
23b2ce53
RS
1317 return 0;
1318
1319 if (WORDS_BIG_ENDIAN)
1320 i = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - i;
1321
1322 /* Find out which word on the host machine this value is in and get
1323 it from the constant. */
1324 val = (i / size_ratio == 0
1325 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1326 : (GET_CODE (op) == CONST_INT
1327 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1328
1329 /* If BITS_PER_WORD is smaller than an int, get the appropriate bits. */
906c4e36 1330 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
23b2ce53 1331 val = ((val >> ((i % size_ratio) * BITS_PER_WORD))
906c4e36
RK
1332 & (((HOST_WIDE_INT) 1
1333 << (BITS_PER_WORD % HOST_BITS_PER_WIDE_INT)) - 1));
23b2ce53 1334
906c4e36 1335 return GEN_INT (val);
23b2ce53
RS
1336}
1337
1338/* Similar to `operand_subword', but never return 0. If we can't extract
1339 the required subword, put OP into a register and try again. If that fails,
1340 abort. We always validate the address in this case. It is not valid
1341 to call this function after reload; it is mostly meant for RTL
1342 generation.
1343
1344 MODE is the mode of OP, in case it is CONST_INT. */
1345
1346rtx
1347operand_subword_force (op, i, mode)
1348 rtx op;
1349 int i;
1350 enum machine_mode mode;
1351{
1352 rtx result = operand_subword (op, i, 1, mode);
1353
1354 if (result)
1355 return result;
1356
1357 if (mode != BLKmode && mode != VOIDmode)
1358 op = force_reg (mode, op);
1359
1360 result = operand_subword (op, i, 1, mode);
1361 if (result == 0)
1362 abort ();
1363
1364 return result;
1365}
1366\f
1367/* Given a compare instruction, swap the operands.
1368 A test instruction is changed into a compare of 0 against the operand. */
1369
1370void
1371reverse_comparison (insn)
1372 rtx insn;
1373{
1374 rtx body = PATTERN (insn);
1375 rtx comp;
1376
1377 if (GET_CODE (body) == SET)
1378 comp = SET_SRC (body);
1379 else
1380 comp = SET_SRC (XVECEXP (body, 0, 0));
1381
1382 if (GET_CODE (comp) == COMPARE)
1383 {
1384 rtx op0 = XEXP (comp, 0);
1385 rtx op1 = XEXP (comp, 1);
1386 XEXP (comp, 0) = op1;
1387 XEXP (comp, 1) = op0;
1388 }
1389 else
1390 {
1391 rtx new = gen_rtx (COMPARE, VOIDmode,
1392 CONST0_RTX (GET_MODE (comp)), comp);
1393 if (GET_CODE (body) == SET)
1394 SET_SRC (body) = new;
1395 else
1396 SET_SRC (XVECEXP (body, 0, 0)) = new;
1397 }
1398}
1399\f
1400/* Return a memory reference like MEMREF, but with its mode changed
1401 to MODE and its address changed to ADDR.
1402 (VOIDmode means don't change the mode.
1403 NULL for ADDR means don't change the address.) */
1404
1405rtx
1406change_address (memref, mode, addr)
1407 rtx memref;
1408 enum machine_mode mode;
1409 rtx addr;
1410{
1411 rtx new;
1412
1413 if (GET_CODE (memref) != MEM)
1414 abort ();
1415 if (mode == VOIDmode)
1416 mode = GET_MODE (memref);
1417 if (addr == 0)
1418 addr = XEXP (memref, 0);
1419
1420 /* If reload is in progress or has completed, ADDR must be valid.
1421 Otherwise, we can call memory_address to make it valid. */
1422 if (reload_completed || reload_in_progress)
1423 {
1424 if (! memory_address_p (mode, addr))
1425 abort ();
1426 }
1427 else
1428 addr = memory_address (mode, addr);
1429
9b04c6a8
RK
1430 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1431 return memref;
1432
23b2ce53
RS
1433 new = gen_rtx (MEM, mode, addr);
1434 MEM_VOLATILE_P (new) = MEM_VOLATILE_P (memref);
1435 RTX_UNCHANGING_P (new) = RTX_UNCHANGING_P (memref);
1436 MEM_IN_STRUCT_P (new) = MEM_IN_STRUCT_P (memref);
1437 return new;
1438}
1439\f
1440/* Return a newly created CODE_LABEL rtx with a unique label number. */
1441
1442rtx
1443gen_label_rtx ()
1444{
ca695ac9
JB
1445 register rtx label;
1446
8b6813aa
RS
1447 label = (output_bytecode
1448 ? gen_rtx (CODE_LABEL, VOIDmode, NULL, bc_get_bytecode_label ())
9524f769
DM
1449 : gen_rtx (CODE_LABEL, VOIDmode, 0, NULL_RTX,
1450 NULL_RTX, label_num++, NULL_PTR));
ca695ac9 1451
23b2ce53
RS
1452 LABEL_NUSES (label) = 0;
1453 return label;
1454}
1455\f
1456/* For procedure integration. */
1457
1458/* Return a newly created INLINE_HEADER rtx. Should allocate this
1459 from a permanent obstack when the opportunity arises. */
1460
1461rtx
1462gen_inline_header_rtx (first_insn, first_parm_insn, first_labelno,
1463 last_labelno, max_parm_regnum, max_regnum, args_size,
a6108925 1464 pops_args, stack_slots, forced_labels, function_flags,
23b2ce53 1465 outgoing_args_size, original_arg_vector,
86fe05e0 1466 original_decl_initial, regno_rtx, regno_flag,
e9a25f70 1467 regno_align, parm_reg_stack_loc)
23b2ce53
RS
1468 rtx first_insn, first_parm_insn;
1469 int first_labelno, last_labelno, max_parm_regnum, max_regnum, args_size;
1470 int pops_args;
1471 rtx stack_slots;
a6108925 1472 rtx forced_labels;
23b2ce53
RS
1473 int function_flags;
1474 int outgoing_args_size;
1475 rtvec original_arg_vector;
1476 rtx original_decl_initial;
86fe05e0
RK
1477 rtvec regno_rtx;
1478 char *regno_flag;
1479 char *regno_align;
e9a25f70 1480 rtvec parm_reg_stack_loc;
23b2ce53
RS
1481{
1482 rtx header = gen_rtx (INLINE_HEADER, VOIDmode,
906c4e36 1483 cur_insn_uid++, NULL_RTX,
23b2ce53
RS
1484 first_insn, first_parm_insn,
1485 first_labelno, last_labelno,
1486 max_parm_regnum, max_regnum, args_size, pops_args,
a6108925 1487 stack_slots, forced_labels, function_flags,
86fe05e0
RK
1488 outgoing_args_size, original_arg_vector,
1489 original_decl_initial,
e9a25f70
JL
1490 regno_rtx, regno_flag, regno_align,
1491 parm_reg_stack_loc);
23b2ce53
RS
1492 return header;
1493}
1494
1495/* Install new pointers to the first and last insns in the chain.
86fe05e0 1496 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
1497 Used for an inline-procedure after copying the insn chain. */
1498
1499void
1500set_new_first_and_last_insn (first, last)
1501 rtx first, last;
1502{
86fe05e0
RK
1503 rtx insn;
1504
23b2ce53
RS
1505 first_insn = first;
1506 last_insn = last;
86fe05e0
RK
1507 cur_insn_uid = 0;
1508
1509 for (insn = first; insn; insn = NEXT_INSN (insn))
1510 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
1511
1512 cur_insn_uid++;
23b2ce53
RS
1513}
1514
1515/* Set the range of label numbers found in the current function.
1516 This is used when belatedly compiling an inline function. */
1517
1518void
1519set_new_first_and_last_label_num (first, last)
1520 int first, last;
1521{
1522 base_label_num = label_num;
1523 first_label_num = first;
1524 last_label_num = last;
1525}
1526\f
1527/* Save all variables describing the current status into the structure *P.
1528 This is used before starting a nested function. */
1529
1530void
1531save_emit_status (p)
1532 struct function *p;
1533{
1534 p->reg_rtx_no = reg_rtx_no;
1535 p->first_label_num = first_label_num;
1536 p->first_insn = first_insn;
1537 p->last_insn = last_insn;
a25c7971 1538 p->sequence_rtl_expr = sequence_rtl_expr;
23b2ce53
RS
1539 p->sequence_stack = sequence_stack;
1540 p->cur_insn_uid = cur_insn_uid;
1541 p->last_linenum = last_linenum;
1542 p->last_filename = last_filename;
1543 p->regno_pointer_flag = regno_pointer_flag;
86fe05e0 1544 p->regno_pointer_align = regno_pointer_align;
23b2ce53
RS
1545 p->regno_pointer_flag_length = regno_pointer_flag_length;
1546 p->regno_reg_rtx = regno_reg_rtx;
1547}
1548
1549/* Restore all variables describing the current status from the structure *P.
1550 This is used after a nested function. */
1551
1552void
1553restore_emit_status (p)
1554 struct function *p;
1555{
1556 int i;
1557
1558 reg_rtx_no = p->reg_rtx_no;
1559 first_label_num = p->first_label_num;
457a2d9c 1560 last_label_num = 0;
23b2ce53
RS
1561 first_insn = p->first_insn;
1562 last_insn = p->last_insn;
a25c7971 1563 sequence_rtl_expr = p->sequence_rtl_expr;
23b2ce53
RS
1564 sequence_stack = p->sequence_stack;
1565 cur_insn_uid = p->cur_insn_uid;
1566 last_linenum = p->last_linenum;
1567 last_filename = p->last_filename;
1568 regno_pointer_flag = p->regno_pointer_flag;
86fe05e0 1569 regno_pointer_align = p->regno_pointer_align;
23b2ce53
RS
1570 regno_pointer_flag_length = p->regno_pointer_flag_length;
1571 regno_reg_rtx = p->regno_reg_rtx;
1572
0f41302f
MS
1573 /* Clear our cache of rtx expressions for start_sequence and
1574 gen_sequence. */
23b2ce53
RS
1575 sequence_element_free_list = 0;
1576 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
1577 sequence_result[i] = 0;
43127294
RK
1578
1579 free_insn = 0;
23b2ce53
RS
1580}
1581\f
1582/* Go through all the RTL insn bodies and copy any invalid shared structure.
1583 It does not work to do this twice, because the mark bits set here
1584 are not cleared afterwards. */
1585
1586void
1587unshare_all_rtl (insn)
1588 register rtx insn;
1589{
1590 for (; insn; insn = NEXT_INSN (insn))
1591 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1592 || GET_CODE (insn) == CALL_INSN)
1593 {
1594 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
1595 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
1596 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
1597 }
1598
1599 /* Make sure the addresses of stack slots found outside the insn chain
1600 (such as, in DECL_RTL of a variable) are not shared
1601 with the insn chain.
1602
1603 This special care is necessary when the stack slot MEM does not
1604 actually appear in the insn chain. If it does appear, its address
1605 is unshared from all else at that point. */
1606
1607 copy_rtx_if_shared (stack_slot_list);
1608}
1609
1610/* Mark ORIG as in use, and return a copy of it if it was already in use.
1611 Recursively does the same for subexpressions. */
1612
1613rtx
1614copy_rtx_if_shared (orig)
1615 rtx orig;
1616{
1617 register rtx x = orig;
1618 register int i;
1619 register enum rtx_code code;
1620 register char *format_ptr;
1621 int copied = 0;
1622
1623 if (x == 0)
1624 return 0;
1625
1626 code = GET_CODE (x);
1627
1628 /* These types may be freely shared. */
1629
1630 switch (code)
1631 {
1632 case REG:
1633 case QUEUED:
1634 case CONST_INT:
1635 case CONST_DOUBLE:
1636 case SYMBOL_REF:
1637 case CODE_LABEL:
1638 case PC:
1639 case CC0:
1640 case SCRATCH:
0f41302f 1641 /* SCRATCH must be shared because they represent distinct values. */
23b2ce53
RS
1642 return x;
1643
b851ea09
RK
1644 case CONST:
1645 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
1646 a LABEL_REF, it isn't sharable. */
1647 if (GET_CODE (XEXP (x, 0)) == PLUS
1648 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1649 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
1650 return x;
1651 break;
1652
23b2ce53
RS
1653 case INSN:
1654 case JUMP_INSN:
1655 case CALL_INSN:
1656 case NOTE:
23b2ce53
RS
1657 case BARRIER:
1658 /* The chain of insns is not being copied. */
1659 return x;
1660
1661 case MEM:
1662 /* A MEM is allowed to be shared if its address is constant
1663 or is a constant plus one of the special registers. */
1664 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
1665 || XEXP (x, 0) == virtual_stack_vars_rtx
1666 || XEXP (x, 0) == virtual_incoming_args_rtx)
1667 return x;
1668
1669 if (GET_CODE (XEXP (x, 0)) == PLUS
1670 && (XEXP (XEXP (x, 0), 0) == virtual_stack_vars_rtx
1671 || XEXP (XEXP (x, 0), 0) == virtual_incoming_args_rtx)
1672 && CONSTANT_ADDRESS_P (XEXP (XEXP (x, 0), 1)))
1673 {
1674 /* This MEM can appear in more than one place,
1675 but its address better not be shared with anything else. */
1676 if (! x->used)
1677 XEXP (x, 0) = copy_rtx_if_shared (XEXP (x, 0));
1678 x->used = 1;
1679 return x;
1680 }
e9a25f70
JL
1681 break;
1682
1683 default:
1684 break;
23b2ce53
RS
1685 }
1686
1687 /* This rtx may not be shared. If it has already been seen,
1688 replace it with a copy of itself. */
1689
1690 if (x->used)
1691 {
1692 register rtx copy;
1693
1694 copy = rtx_alloc (code);
4c9a05bc
RK
1695 bcopy ((char *) x, (char *) copy,
1696 (sizeof (*copy) - sizeof (copy->fld)
1697 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
23b2ce53
RS
1698 x = copy;
1699 copied = 1;
1700 }
1701 x->used = 1;
1702
1703 /* Now scan the subexpressions recursively.
1704 We can store any replaced subexpressions directly into X
1705 since we know X is not shared! Any vectors in X
1706 must be copied if X was copied. */
1707
1708 format_ptr = GET_RTX_FORMAT (code);
1709
1710 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1711 {
1712 switch (*format_ptr++)
1713 {
1714 case 'e':
1715 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
1716 break;
1717
1718 case 'E':
1719 if (XVEC (x, i) != NULL)
1720 {
1721 register int j;
f0722107 1722 int len = XVECLEN (x, i);
23b2ce53 1723
f0722107 1724 if (copied && len > 0)
ba444f92 1725 XVEC (x, i) = gen_rtvec_vv (len, XVEC (x, i)->elem);
f0722107
RS
1726 for (j = 0; j < len; j++)
1727 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
23b2ce53
RS
1728 }
1729 break;
1730 }
1731 }
1732 return x;
1733}
1734
1735/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1736 to look for shared sub-parts. */
1737
1738void
1739reset_used_flags (x)
1740 rtx x;
1741{
1742 register int i, j;
1743 register enum rtx_code code;
1744 register char *format_ptr;
23b2ce53
RS
1745
1746 if (x == 0)
1747 return;
1748
1749 code = GET_CODE (x);
1750
9faa82d8 1751 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
1752 for them. */
1753
1754 switch (code)
1755 {
1756 case REG:
1757 case QUEUED:
1758 case CONST_INT:
1759 case CONST_DOUBLE:
1760 case SYMBOL_REF:
1761 case CODE_LABEL:
1762 case PC:
1763 case CC0:
1764 return;
1765
1766 case INSN:
1767 case JUMP_INSN:
1768 case CALL_INSN:
1769 case NOTE:
1770 case LABEL_REF:
1771 case BARRIER:
1772 /* The chain of insns is not being copied. */
1773 return;
e9a25f70
JL
1774
1775 default:
1776 break;
23b2ce53
RS
1777 }
1778
1779 x->used = 0;
1780
1781 format_ptr = GET_RTX_FORMAT (code);
1782 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1783 {
1784 switch (*format_ptr++)
1785 {
1786 case 'e':
1787 reset_used_flags (XEXP (x, i));
1788 break;
1789
1790 case 'E':
1791 for (j = 0; j < XVECLEN (x, i); j++)
1792 reset_used_flags (XVECEXP (x, i, j));
1793 break;
1794 }
1795 }
1796}
1797\f
1798/* Copy X if necessary so that it won't be altered by changes in OTHER.
1799 Return X or the rtx for the pseudo reg the value of X was copied into.
1800 OTHER must be valid as a SET_DEST. */
1801
1802rtx
1803make_safe_from (x, other)
1804 rtx x, other;
1805{
1806 while (1)
1807 switch (GET_CODE (other))
1808 {
1809 case SUBREG:
1810 other = SUBREG_REG (other);
1811 break;
1812 case STRICT_LOW_PART:
1813 case SIGN_EXTEND:
1814 case ZERO_EXTEND:
1815 other = XEXP (other, 0);
1816 break;
1817 default:
1818 goto done;
1819 }
1820 done:
1821 if ((GET_CODE (other) == MEM
1822 && ! CONSTANT_P (x)
1823 && GET_CODE (x) != REG
1824 && GET_CODE (x) != SUBREG)
1825 || (GET_CODE (other) == REG
1826 && (REGNO (other) < FIRST_PSEUDO_REGISTER
1827 || reg_mentioned_p (other, x))))
1828 {
1829 rtx temp = gen_reg_rtx (GET_MODE (x));
1830 emit_move_insn (temp, x);
1831 return temp;
1832 }
1833 return x;
1834}
1835\f
1836/* Emission of insns (adding them to the doubly-linked list). */
1837
1838/* Return the first insn of the current sequence or current function. */
1839
1840rtx
1841get_insns ()
1842{
1843 return first_insn;
1844}
1845
1846/* Return the last insn emitted in current sequence or current function. */
1847
1848rtx
1849get_last_insn ()
1850{
1851 return last_insn;
1852}
1853
1854/* Specify a new insn as the last in the chain. */
1855
1856void
1857set_last_insn (insn)
1858 rtx insn;
1859{
1860 if (NEXT_INSN (insn) != 0)
1861 abort ();
1862 last_insn = insn;
1863}
1864
1865/* Return the last insn emitted, even if it is in a sequence now pushed. */
1866
1867rtx
1868get_last_insn_anywhere ()
1869{
1870 struct sequence_stack *stack;
1871 if (last_insn)
1872 return last_insn;
1873 for (stack = sequence_stack; stack; stack = stack->next)
1874 if (stack->last != 0)
1875 return stack->last;
1876 return 0;
1877}
1878
1879/* Return a number larger than any instruction's uid in this function. */
1880
1881int
1882get_max_uid ()
1883{
1884 return cur_insn_uid;
1885}
1886\f
1887/* Return the next insn. If it is a SEQUENCE, return the first insn
1888 of the sequence. */
1889
1890rtx
1891next_insn (insn)
1892 rtx insn;
1893{
1894 if (insn)
1895 {
1896 insn = NEXT_INSN (insn);
1897 if (insn && GET_CODE (insn) == INSN
1898 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1899 insn = XVECEXP (PATTERN (insn), 0, 0);
1900 }
1901
1902 return insn;
1903}
1904
1905/* Return the previous insn. If it is a SEQUENCE, return the last insn
1906 of the sequence. */
1907
1908rtx
1909previous_insn (insn)
1910 rtx insn;
1911{
1912 if (insn)
1913 {
1914 insn = PREV_INSN (insn);
1915 if (insn && GET_CODE (insn) == INSN
1916 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1917 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
1918 }
1919
1920 return insn;
1921}
1922
1923/* Return the next insn after INSN that is not a NOTE. This routine does not
1924 look inside SEQUENCEs. */
1925
1926rtx
1927next_nonnote_insn (insn)
1928 rtx insn;
1929{
1930 while (insn)
1931 {
1932 insn = NEXT_INSN (insn);
1933 if (insn == 0 || GET_CODE (insn) != NOTE)
1934 break;
1935 }
1936
1937 return insn;
1938}
1939
1940/* Return the previous insn before INSN that is not a NOTE. This routine does
1941 not look inside SEQUENCEs. */
1942
1943rtx
1944prev_nonnote_insn (insn)
1945 rtx insn;
1946{
1947 while (insn)
1948 {
1949 insn = PREV_INSN (insn);
1950 if (insn == 0 || GET_CODE (insn) != NOTE)
1951 break;
1952 }
1953
1954 return insn;
1955}
1956
1957/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
1958 or 0, if there is none. This routine does not look inside
0f41302f 1959 SEQUENCEs. */
23b2ce53
RS
1960
1961rtx
1962next_real_insn (insn)
1963 rtx insn;
1964{
1965 while (insn)
1966 {
1967 insn = NEXT_INSN (insn);
1968 if (insn == 0 || GET_CODE (insn) == INSN
1969 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
1970 break;
1971 }
1972
1973 return insn;
1974}
1975
1976/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
1977 or 0, if there is none. This routine does not look inside
1978 SEQUENCEs. */
1979
1980rtx
1981prev_real_insn (insn)
1982 rtx insn;
1983{
1984 while (insn)
1985 {
1986 insn = PREV_INSN (insn);
1987 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
1988 || GET_CODE (insn) == JUMP_INSN)
1989 break;
1990 }
1991
1992 return insn;
1993}
1994
1995/* Find the next insn after INSN that really does something. This routine
1996 does not look inside SEQUENCEs. Until reload has completed, this is the
1997 same as next_real_insn. */
1998
1999rtx
2000next_active_insn (insn)
2001 rtx insn;
2002{
2003 while (insn)
2004 {
2005 insn = NEXT_INSN (insn);
2006 if (insn == 0
2007 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2008 || (GET_CODE (insn) == INSN
2009 && (! reload_completed
2010 || (GET_CODE (PATTERN (insn)) != USE
2011 && GET_CODE (PATTERN (insn)) != CLOBBER))))
2012 break;
2013 }
2014
2015 return insn;
2016}
2017
2018/* Find the last insn before INSN that really does something. This routine
2019 does not look inside SEQUENCEs. Until reload has completed, this is the
2020 same as prev_real_insn. */
2021
2022rtx
2023prev_active_insn (insn)
2024 rtx insn;
2025{
2026 while (insn)
2027 {
2028 insn = PREV_INSN (insn);
2029 if (insn == 0
2030 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
2031 || (GET_CODE (insn) == INSN
2032 && (! reload_completed
2033 || (GET_CODE (PATTERN (insn)) != USE
2034 && GET_CODE (PATTERN (insn)) != CLOBBER))))
2035 break;
2036 }
2037
2038 return insn;
2039}
2040
2041/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
2042
2043rtx
2044next_label (insn)
2045 rtx insn;
2046{
2047 while (insn)
2048 {
2049 insn = NEXT_INSN (insn);
2050 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2051 break;
2052 }
2053
2054 return insn;
2055}
2056
2057/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
2058
2059rtx
2060prev_label (insn)
2061 rtx insn;
2062{
2063 while (insn)
2064 {
2065 insn = PREV_INSN (insn);
2066 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
2067 break;
2068 }
2069
2070 return insn;
2071}
2072\f
2073#ifdef HAVE_cc0
c572e5ba
JVA
2074/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
2075 and REG_CC_USER notes so we can find it. */
2076
2077void
2078link_cc0_insns (insn)
2079 rtx insn;
2080{
2081 rtx user = next_nonnote_insn (insn);
2082
2083 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
2084 user = XVECEXP (PATTERN (user), 0, 0);
2085
2086 REG_NOTES (user) = gen_rtx (INSN_LIST, REG_CC_SETTER, insn,
2087 REG_NOTES (user));
2088 REG_NOTES (insn) = gen_rtx (INSN_LIST, REG_CC_USER, user, REG_NOTES (insn));
2089}
2090
23b2ce53
RS
2091/* Return the next insn that uses CC0 after INSN, which is assumed to
2092 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
2093 applied to the result of this function should yield INSN).
2094
2095 Normally, this is simply the next insn. However, if a REG_CC_USER note
2096 is present, it contains the insn that uses CC0.
2097
2098 Return 0 if we can't find the insn. */
2099
2100rtx
2101next_cc0_user (insn)
2102 rtx insn;
2103{
906c4e36 2104 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
2105
2106 if (note)
2107 return XEXP (note, 0);
2108
2109 insn = next_nonnote_insn (insn);
2110 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
2111 insn = XVECEXP (PATTERN (insn), 0, 0);
2112
2113 if (insn && GET_RTX_CLASS (GET_CODE (insn)) == 'i'
2114 && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
2115 return insn;
2116
2117 return 0;
2118}
2119
2120/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
2121 note, it is the previous insn. */
2122
2123rtx
2124prev_cc0_setter (insn)
2125 rtx insn;
2126{
906c4e36 2127 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
2128 rtx link;
2129
2130 if (note)
2131 return XEXP (note, 0);
2132
2133 insn = prev_nonnote_insn (insn);
2134 if (! sets_cc0_p (PATTERN (insn)))
2135 abort ();
2136
2137 return insn;
2138}
2139#endif
2140\f
2141/* Try splitting insns that can be split for better scheduling.
2142 PAT is the pattern which might split.
2143 TRIAL is the insn providing PAT.
11147ebe 2144 LAST is non-zero if we should return the last insn of the sequence produced.
23b2ce53
RS
2145
2146 If this routine succeeds in splitting, it returns the first or last
11147ebe 2147 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
2148 returns TRIAL. If the insn to be returned can be split, it will be. */
2149
2150rtx
11147ebe 2151try_split (pat, trial, last)
23b2ce53 2152 rtx pat, trial;
11147ebe 2153 int last;
23b2ce53
RS
2154{
2155 rtx before = PREV_INSN (trial);
2156 rtx after = NEXT_INSN (trial);
2157 rtx seq = split_insns (pat, trial);
2158 int has_barrier = 0;
2159 rtx tem;
2160
2161 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
2162 We may need to handle this specially. */
2163 if (after && GET_CODE (after) == BARRIER)
2164 {
2165 has_barrier = 1;
2166 after = NEXT_INSN (after);
2167 }
2168
2169 if (seq)
2170 {
2171 /* SEQ can either be a SEQUENCE or the pattern of a single insn.
2172 The latter case will normally arise only when being done so that
2173 it, in turn, will be split (SFmode on the 29k is an example). */
2174 if (GET_CODE (seq) == SEQUENCE)
2175 {
2176 /* If we are splitting a JUMP_INSN, look for the JUMP_INSN in
2177 SEQ and copy our JUMP_LABEL to it. If JUMP_LABEL is non-zero,
2178 increment the usage count so we don't delete the label. */
2179 int i;
2180
2181 if (GET_CODE (trial) == JUMP_INSN)
2182 for (i = XVECLEN (seq, 0) - 1; i >= 0; i--)
2183 if (GET_CODE (XVECEXP (seq, 0, i)) == JUMP_INSN)
2184 {
2185 JUMP_LABEL (XVECEXP (seq, 0, i)) = JUMP_LABEL (trial);
2186
2187 if (JUMP_LABEL (trial))
2188 LABEL_NUSES (JUMP_LABEL (trial))++;
2189 }
2190
2191 tem = emit_insn_after (seq, before);
2192
2193 delete_insn (trial);
2194 if (has_barrier)
2195 emit_barrier_after (tem);
11147ebe
RK
2196
2197 /* Recursively call try_split for each new insn created; by the
2198 time control returns here that insn will be fully split, so
2199 set LAST and continue from the insn after the one returned.
f4a3cd05
RK
2200 We can't use next_active_insn here since AFTER may be a note.
2201 Ignore deleted insns, which can be occur if not optimizing. */
11147ebe
RK
2202 for (tem = NEXT_INSN (before); tem != after;
2203 tem = NEXT_INSN (tem))
f4a3cd05
RK
2204 if (! INSN_DELETED_P (tem))
2205 tem = try_split (PATTERN (tem), tem, 1);
23b2ce53
RS
2206 }
2207 /* Avoid infinite loop if the result matches the original pattern. */
2208 else if (rtx_equal_p (seq, pat))
2209 return trial;
2210 else
2211 {
2212 PATTERN (trial) = seq;
2213 INSN_CODE (trial) = -1;
11147ebe 2214 try_split (seq, trial, last);
23b2ce53
RS
2215 }
2216
11147ebe
RK
2217 /* Return either the first or the last insn, depending on which was
2218 requested. */
2219 return last ? prev_active_insn (after) : next_active_insn (before);
23b2ce53
RS
2220 }
2221
2222 return trial;
2223}
2224\f
2225/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 2226 Store PATTERN in the pattern slots. */
23b2ce53
RS
2227
2228rtx
4b1f5e8c 2229make_insn_raw (pattern)
23b2ce53 2230 rtx pattern;
23b2ce53
RS
2231{
2232 register rtx insn;
2233
43127294
RK
2234 /* If in RTL generation phase, see if FREE_INSN can be used. */
2235 if (free_insn != 0 && rtx_equal_function_value_matters)
2236 {
2237 insn = free_insn;
2238 free_insn = NEXT_INSN (free_insn);
2239 PUT_CODE (insn, INSN);
2240 }
2241 else
2242 insn = rtx_alloc (INSN);
23b2ce53 2243
43127294 2244 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
2245 PATTERN (insn) = pattern;
2246 INSN_CODE (insn) = -1;
1632afca
RS
2247 LOG_LINKS (insn) = NULL;
2248 REG_NOTES (insn) = NULL;
23b2ce53
RS
2249
2250 return insn;
2251}
2252
2253/* Like `make_insn' but make a JUMP_INSN instead of an insn. */
2254
2255static rtx
4b1f5e8c 2256make_jump_insn_raw (pattern)
23b2ce53 2257 rtx pattern;
23b2ce53
RS
2258{
2259 register rtx insn;
2260
4b1f5e8c 2261 insn = rtx_alloc (JUMP_INSN);
1632afca 2262 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
2263
2264 PATTERN (insn) = pattern;
2265 INSN_CODE (insn) = -1;
1632afca
RS
2266 LOG_LINKS (insn) = NULL;
2267 REG_NOTES (insn) = NULL;
2268 JUMP_LABEL (insn) = NULL;
23b2ce53
RS
2269
2270 return insn;
2271}
aff507f4
RK
2272
2273/* Like `make_insn' but make a CALL_INSN instead of an insn. */
2274
2275static rtx
2276make_call_insn_raw (pattern)
2277 rtx pattern;
2278{
2279 register rtx insn;
2280
2281 insn = rtx_alloc (CALL_INSN);
2282 INSN_UID (insn) = cur_insn_uid++;
2283
2284 PATTERN (insn) = pattern;
2285 INSN_CODE (insn) = -1;
2286 LOG_LINKS (insn) = NULL;
2287 REG_NOTES (insn) = NULL;
2288 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
2289
2290 return insn;
2291}
23b2ce53
RS
2292\f
2293/* Add INSN to the end of the doubly-linked list.
2294 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
2295
2296void
2297add_insn (insn)
2298 register rtx insn;
2299{
2300 PREV_INSN (insn) = last_insn;
2301 NEXT_INSN (insn) = 0;
2302
2303 if (NULL != last_insn)
2304 NEXT_INSN (last_insn) = insn;
2305
2306 if (NULL == first_insn)
2307 first_insn = insn;
2308
2309 last_insn = insn;
2310}
2311
a0ae8e8d
RK
2312/* Add INSN into the doubly-linked list after insn AFTER. This and
2313 the next should be the only functions called to insert an insn once
ba213285 2314 delay slots have been filled since only they know how to update a
a0ae8e8d 2315 SEQUENCE. */
23b2ce53
RS
2316
2317void
2318add_insn_after (insn, after)
2319 rtx insn, after;
2320{
2321 rtx next = NEXT_INSN (after);
2322
6782074d 2323 if (optimize && INSN_DELETED_P (after))
ba213285
RK
2324 abort ();
2325
23b2ce53
RS
2326 NEXT_INSN (insn) = next;
2327 PREV_INSN (insn) = after;
2328
2329 if (next)
2330 {
2331 PREV_INSN (next) = insn;
2332 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2333 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
2334 }
2335 else if (last_insn == after)
2336 last_insn = insn;
2337 else
2338 {
2339 struct sequence_stack *stack = sequence_stack;
2340 /* Scan all pending sequences too. */
2341 for (; stack; stack = stack->next)
2342 if (after == stack->last)
fef0509b
RK
2343 {
2344 stack->last = insn;
2345 break;
2346 }
a0ae8e8d
RK
2347
2348 if (stack == 0)
2349 abort ();
23b2ce53
RS
2350 }
2351
2352 NEXT_INSN (after) = insn;
2353 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
2354 {
2355 rtx sequence = PATTERN (after);
2356 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2357 }
2358}
2359
a0ae8e8d
RK
2360/* Add INSN into the doubly-linked list before insn BEFORE. This and
2361 the previous should be the only functions called to insert an insn once
ba213285 2362 delay slots have been filled since only they know how to update a
a0ae8e8d
RK
2363 SEQUENCE. */
2364
2365void
2366add_insn_before (insn, before)
2367 rtx insn, before;
2368{
2369 rtx prev = PREV_INSN (before);
2370
6782074d 2371 if (optimize && INSN_DELETED_P (before))
ba213285
RK
2372 abort ();
2373
a0ae8e8d
RK
2374 PREV_INSN (insn) = prev;
2375 NEXT_INSN (insn) = before;
2376
2377 if (prev)
2378 {
2379 NEXT_INSN (prev) = insn;
2380 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2381 {
2382 rtx sequence = PATTERN (prev);
2383 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
2384 }
2385 }
2386 else if (first_insn == before)
2387 first_insn = insn;
2388 else
2389 {
2390 struct sequence_stack *stack = sequence_stack;
2391 /* Scan all pending sequences too. */
2392 for (; stack; stack = stack->next)
2393 if (before == stack->first)
fef0509b
RK
2394 {
2395 stack->first = insn;
2396 break;
2397 }
a0ae8e8d
RK
2398
2399 if (stack == 0)
2400 abort ();
2401 }
2402
2403 PREV_INSN (before) = insn;
2404 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
2405 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
2406}
2407
23b2ce53
RS
2408/* Delete all insns made since FROM.
2409 FROM becomes the new last instruction. */
2410
2411void
2412delete_insns_since (from)
2413 rtx from;
2414{
2415 if (from == 0)
2416 first_insn = 0;
2417 else
2418 NEXT_INSN (from) = 0;
2419 last_insn = from;
2420}
2421
5dab5552
MS
2422/* This function is deprecated, please use sequences instead.
2423
2424 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
2425 The insns to be moved are those between FROM and TO.
2426 They are moved to a new position after the insn AFTER.
2427 AFTER must not be FROM or TO or any insn in between.
2428
2429 This function does not know about SEQUENCEs and hence should not be
2430 called after delay-slot filling has been done. */
2431
2432void
2433reorder_insns (from, to, after)
2434 rtx from, to, after;
2435{
2436 /* Splice this bunch out of where it is now. */
2437 if (PREV_INSN (from))
2438 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
2439 if (NEXT_INSN (to))
2440 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
2441 if (last_insn == to)
2442 last_insn = PREV_INSN (from);
2443 if (first_insn == from)
2444 first_insn = NEXT_INSN (to);
2445
2446 /* Make the new neighbors point to it and it to them. */
2447 if (NEXT_INSN (after))
2448 PREV_INSN (NEXT_INSN (after)) = to;
2449
2450 NEXT_INSN (to) = NEXT_INSN (after);
2451 PREV_INSN (from) = after;
2452 NEXT_INSN (after) = from;
2453 if (after == last_insn)
2454 last_insn = to;
2455}
2456
2457/* Return the line note insn preceding INSN. */
2458
2459static rtx
2460find_line_note (insn)
2461 rtx insn;
2462{
2463 if (no_line_numbers)
2464 return 0;
2465
2466 for (; insn; insn = PREV_INSN (insn))
2467 if (GET_CODE (insn) == NOTE
2468 && NOTE_LINE_NUMBER (insn) >= 0)
2469 break;
2470
2471 return insn;
2472}
2473
2474/* Like reorder_insns, but inserts line notes to preserve the line numbers
2475 of the moved insns when debugging. This may insert a note between AFTER
2476 and FROM, and another one after TO. */
2477
2478void
2479reorder_insns_with_line_notes (from, to, after)
2480 rtx from, to, after;
2481{
2482 rtx from_line = find_line_note (from);
2483 rtx after_line = find_line_note (after);
2484
2485 reorder_insns (from, to, after);
2486
2487 if (from_line == after_line)
2488 return;
2489
2490 if (from_line)
2491 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2492 NOTE_LINE_NUMBER (from_line),
2493 after);
2494 if (after_line)
2495 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2496 NOTE_LINE_NUMBER (after_line),
2497 to);
2498}
2499\f
2500/* Emit an insn of given code and pattern
2501 at a specified place within the doubly-linked list. */
2502
2503/* Make an instruction with body PATTERN
2504 and output it before the instruction BEFORE. */
2505
2506rtx
2507emit_insn_before (pattern, before)
2508 register rtx pattern, before;
2509{
2510 register rtx insn = before;
2511
2512 if (GET_CODE (pattern) == SEQUENCE)
2513 {
2514 register int i;
2515
2516 for (i = 0; i < XVECLEN (pattern, 0); i++)
2517 {
2518 insn = XVECEXP (pattern, 0, i);
a0ae8e8d 2519 add_insn_before (insn, before);
23b2ce53
RS
2520 }
2521 if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
2522 sequence_result[XVECLEN (pattern, 0)] = pattern;
2523 }
2524 else
2525 {
4b1f5e8c 2526 insn = make_insn_raw (pattern);
a0ae8e8d 2527 add_insn_before (insn, before);
23b2ce53
RS
2528 }
2529
2530 return insn;
2531}
2532
2533/* Make an instruction with body PATTERN and code JUMP_INSN
2534 and output it before the instruction BEFORE. */
2535
2536rtx
2537emit_jump_insn_before (pattern, before)
2538 register rtx pattern, before;
2539{
2540 register rtx insn;
2541
2542 if (GET_CODE (pattern) == SEQUENCE)
2543 insn = emit_insn_before (pattern, before);
2544 else
2545 {
85cf32bc 2546 insn = make_jump_insn_raw (pattern);
a0ae8e8d 2547 add_insn_before (insn, before);
23b2ce53
RS
2548 }
2549
2550 return insn;
2551}
2552
2553/* Make an instruction with body PATTERN and code CALL_INSN
2554 and output it before the instruction BEFORE. */
2555
2556rtx
2557emit_call_insn_before (pattern, before)
2558 register rtx pattern, before;
2559{
aff507f4
RK
2560 register rtx insn;
2561
2562 if (GET_CODE (pattern) == SEQUENCE)
2563 insn = emit_insn_before (pattern, before);
2564 else
2565 {
2566 insn = make_call_insn_raw (pattern);
a0ae8e8d 2567 add_insn_before (insn, before);
aff507f4
RK
2568 PUT_CODE (insn, CALL_INSN);
2569 }
2570
23b2ce53
RS
2571 return insn;
2572}
2573
2574/* Make an insn of code BARRIER
2575 and output it before the insn AFTER. */
2576
2577rtx
2578emit_barrier_before (before)
2579 register rtx before;
2580{
2581 register rtx insn = rtx_alloc (BARRIER);
2582
2583 INSN_UID (insn) = cur_insn_uid++;
2584
a0ae8e8d 2585 add_insn_before (insn, before);
23b2ce53
RS
2586 return insn;
2587}
2588
2589/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
2590
2591rtx
2592emit_note_before (subtype, before)
2593 int subtype;
2594 rtx before;
2595{
2596 register rtx note = rtx_alloc (NOTE);
2597 INSN_UID (note) = cur_insn_uid++;
2598 NOTE_SOURCE_FILE (note) = 0;
2599 NOTE_LINE_NUMBER (note) = subtype;
2600
a0ae8e8d 2601 add_insn_before (note, before);
23b2ce53
RS
2602 return note;
2603}
2604\f
2605/* Make an insn of code INSN with body PATTERN
2606 and output it after the insn AFTER. */
2607
2608rtx
2609emit_insn_after (pattern, after)
2610 register rtx pattern, after;
2611{
2612 register rtx insn = after;
2613
2614 if (GET_CODE (pattern) == SEQUENCE)
2615 {
2616 register int i;
2617
2618 for (i = 0; i < XVECLEN (pattern, 0); i++)
2619 {
2620 insn = XVECEXP (pattern, 0, i);
2621 add_insn_after (insn, after);
2622 after = insn;
2623 }
2624 if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
2625 sequence_result[XVECLEN (pattern, 0)] = pattern;
2626 }
2627 else
2628 {
4b1f5e8c 2629 insn = make_insn_raw (pattern);
23b2ce53
RS
2630 add_insn_after (insn, after);
2631 }
2632
2633 return insn;
2634}
2635
255680cf
RK
2636/* Similar to emit_insn_after, except that line notes are to be inserted so
2637 as to act as if this insn were at FROM. */
2638
2639void
2640emit_insn_after_with_line_notes (pattern, after, from)
2641 rtx pattern, after, from;
2642{
2643 rtx from_line = find_line_note (from);
2644 rtx after_line = find_line_note (after);
2645 rtx insn = emit_insn_after (pattern, after);
2646
2647 if (from_line)
2648 emit_line_note_after (NOTE_SOURCE_FILE (from_line),
2649 NOTE_LINE_NUMBER (from_line),
2650 after);
2651
2652 if (after_line)
2653 emit_line_note_after (NOTE_SOURCE_FILE (after_line),
2654 NOTE_LINE_NUMBER (after_line),
2655 insn);
2656}
2657
23b2ce53
RS
2658/* Make an insn of code JUMP_INSN with body PATTERN
2659 and output it after the insn AFTER. */
2660
2661rtx
2662emit_jump_insn_after (pattern, after)
2663 register rtx pattern, after;
2664{
2665 register rtx insn;
2666
2667 if (GET_CODE (pattern) == SEQUENCE)
2668 insn = emit_insn_after (pattern, after);
2669 else
2670 {
85cf32bc 2671 insn = make_jump_insn_raw (pattern);
23b2ce53
RS
2672 add_insn_after (insn, after);
2673 }
2674
2675 return insn;
2676}
2677
2678/* Make an insn of code BARRIER
2679 and output it after the insn AFTER. */
2680
2681rtx
2682emit_barrier_after (after)
2683 register rtx after;
2684{
2685 register rtx insn = rtx_alloc (BARRIER);
2686
2687 INSN_UID (insn) = cur_insn_uid++;
2688
2689 add_insn_after (insn, after);
2690 return insn;
2691}
2692
2693/* Emit the label LABEL after the insn AFTER. */
2694
2695rtx
2696emit_label_after (label, after)
2697 rtx label, after;
2698{
2699 /* This can be called twice for the same label
2700 as a result of the confusion that follows a syntax error!
2701 So make it harmless. */
2702 if (INSN_UID (label) == 0)
2703 {
2704 INSN_UID (label) = cur_insn_uid++;
2705 add_insn_after (label, after);
2706 }
2707
2708 return label;
2709}
2710
2711/* Emit a note of subtype SUBTYPE after the insn AFTER. */
2712
2713rtx
2714emit_note_after (subtype, after)
2715 int subtype;
2716 rtx after;
2717{
2718 register rtx note = rtx_alloc (NOTE);
2719 INSN_UID (note) = cur_insn_uid++;
2720 NOTE_SOURCE_FILE (note) = 0;
2721 NOTE_LINE_NUMBER (note) = subtype;
2722 add_insn_after (note, after);
2723 return note;
2724}
2725
2726/* Emit a line note for FILE and LINE after the insn AFTER. */
2727
2728rtx
2729emit_line_note_after (file, line, after)
2730 char *file;
2731 int line;
2732 rtx after;
2733{
2734 register rtx note;
2735
2736 if (no_line_numbers && line > 0)
2737 {
2738 cur_insn_uid++;
2739 return 0;
2740 }
2741
2742 note = rtx_alloc (NOTE);
2743 INSN_UID (note) = cur_insn_uid++;
2744 NOTE_SOURCE_FILE (note) = file;
2745 NOTE_LINE_NUMBER (note) = line;
2746 add_insn_after (note, after);
2747 return note;
2748}
2749\f
2750/* Make an insn of code INSN with pattern PATTERN
2751 and add it to the end of the doubly-linked list.
2752 If PATTERN is a SEQUENCE, take the elements of it
2753 and emit an insn for each element.
2754
2755 Returns the last insn emitted. */
2756
2757rtx
2758emit_insn (pattern)
2759 rtx pattern;
2760{
2761 rtx insn = last_insn;
2762
2763 if (GET_CODE (pattern) == SEQUENCE)
2764 {
2765 register int i;
2766
2767 for (i = 0; i < XVECLEN (pattern, 0); i++)
2768 {
2769 insn = XVECEXP (pattern, 0, i);
2770 add_insn (insn);
2771 }
2772 if (XVECLEN (pattern, 0) < SEQUENCE_RESULT_SIZE)
2773 sequence_result[XVECLEN (pattern, 0)] = pattern;
2774 }
2775 else
2776 {
4b1f5e8c 2777 insn = make_insn_raw (pattern);
23b2ce53
RS
2778 add_insn (insn);
2779 }
2780
2781 return insn;
2782}
2783
2784/* Emit the insns in a chain starting with INSN.
2785 Return the last insn emitted. */
2786
2787rtx
2788emit_insns (insn)
2789 rtx insn;
2790{
2791 rtx last = 0;
2792
2793 while (insn)
2794 {
2795 rtx next = NEXT_INSN (insn);
2796 add_insn (insn);
2797 last = insn;
2798 insn = next;
2799 }
2800
2801 return last;
2802}
2803
2804/* Emit the insns in a chain starting with INSN and place them in front of
2805 the insn BEFORE. Return the last insn emitted. */
2806
2807rtx
2808emit_insns_before (insn, before)
2809 rtx insn;
2810 rtx before;
2811{
2812 rtx last = 0;
2813
2814 while (insn)
2815 {
2816 rtx next = NEXT_INSN (insn);
a0ae8e8d 2817 add_insn_before (insn, before);
23b2ce53
RS
2818 last = insn;
2819 insn = next;
2820 }
2821
2822 return last;
2823}
2824
e0a5c5eb
RS
2825/* Emit the insns in a chain starting with FIRST and place them in back of
2826 the insn AFTER. Return the last insn emitted. */
2827
2828rtx
2829emit_insns_after (first, after)
2830 register rtx first;
2831 register rtx after;
2832{
2833 register rtx last;
2834 register rtx after_after;
2835
2836 if (!after)
2837 abort ();
2838
2839 if (!first)
2840 return first;
2841
2842 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
2843 continue;
2844
2845 after_after = NEXT_INSN (after);
2846
2847 NEXT_INSN (after) = first;
2848 PREV_INSN (first) = after;
2849 NEXT_INSN (last) = after_after;
2850 if (after_after)
2851 PREV_INSN (after_after) = last;
2852
c4d990db
RS
2853 if (after == last_insn)
2854 last_insn = last;
e0a5c5eb
RS
2855 return last;
2856}
2857
23b2ce53
RS
2858/* Make an insn of code JUMP_INSN with pattern PATTERN
2859 and add it to the end of the doubly-linked list. */
2860
2861rtx
2862emit_jump_insn (pattern)
2863 rtx pattern;
2864{
2865 if (GET_CODE (pattern) == SEQUENCE)
2866 return emit_insn (pattern);
2867 else
2868 {
85cf32bc 2869 register rtx insn = make_jump_insn_raw (pattern);
23b2ce53
RS
2870 add_insn (insn);
2871 return insn;
2872 }
2873}
2874
2875/* Make an insn of code CALL_INSN with pattern PATTERN
2876 and add it to the end of the doubly-linked list. */
2877
2878rtx
2879emit_call_insn (pattern)
2880 rtx pattern;
2881{
2882 if (GET_CODE (pattern) == SEQUENCE)
2883 return emit_insn (pattern);
2884 else
2885 {
aff507f4 2886 register rtx insn = make_call_insn_raw (pattern);
23b2ce53
RS
2887 add_insn (insn);
2888 PUT_CODE (insn, CALL_INSN);
2889 return insn;
2890 }
2891}
2892
2893/* Add the label LABEL to the end of the doubly-linked list. */
2894
2895rtx
2896emit_label (label)
2897 rtx label;
2898{
2899 /* This can be called twice for the same label
2900 as a result of the confusion that follows a syntax error!
2901 So make it harmless. */
2902 if (INSN_UID (label) == 0)
2903 {
2904 INSN_UID (label) = cur_insn_uid++;
2905 add_insn (label);
2906 }
2907 return label;
2908}
2909
2910/* Make an insn of code BARRIER
2911 and add it to the end of the doubly-linked list. */
2912
2913rtx
2914emit_barrier ()
2915{
2916 register rtx barrier = rtx_alloc (BARRIER);
2917 INSN_UID (barrier) = cur_insn_uid++;
2918 add_insn (barrier);
2919 return barrier;
2920}
2921
2922/* Make an insn of code NOTE
2923 with data-fields specified by FILE and LINE
2924 and add it to the end of the doubly-linked list,
2925 but only if line-numbers are desired for debugging info. */
2926
2927rtx
2928emit_line_note (file, line)
2929 char *file;
2930 int line;
2931{
ca695ac9
JB
2932 if (output_bytecode)
2933 {
2934 /* FIXME: for now we do nothing, but eventually we will have to deal with
2935 debugging information. */
2936 return 0;
2937 }
2938
23b2ce53
RS
2939 emit_filename = file;
2940 emit_lineno = line;
2941
2942#if 0
2943 if (no_line_numbers)
2944 return 0;
2945#endif
2946
2947 return emit_note (file, line);
2948}
2949
2950/* Make an insn of code NOTE
2951 with data-fields specified by FILE and LINE
2952 and add it to the end of the doubly-linked list.
2953 If it is a line-number NOTE, omit it if it matches the previous one. */
2954
2955rtx
2956emit_note (file, line)
2957 char *file;
2958 int line;
2959{
2960 register rtx note;
2961
2962 if (line > 0)
2963 {
2964 if (file && last_filename && !strcmp (file, last_filename)
2965 && line == last_linenum)
2966 return 0;
2967 last_filename = file;
2968 last_linenum = line;
2969 }
2970
2971 if (no_line_numbers && line > 0)
2972 {
2973 cur_insn_uid++;
2974 return 0;
2975 }
2976
2977 note = rtx_alloc (NOTE);
2978 INSN_UID (note) = cur_insn_uid++;
2979 NOTE_SOURCE_FILE (note) = file;
2980 NOTE_LINE_NUMBER (note) = line;
2981 add_insn (note);
2982 return note;
2983}
2984
2985/* Emit a NOTE, and don't omit it even if LINE it the previous note. */
2986
2987rtx
2988emit_line_note_force (file, line)
2989 char *file;
2990 int line;
2991{
2992 last_linenum = -1;
2993 return emit_line_note (file, line);
2994}
2995
2996/* Cause next statement to emit a line note even if the line number
2997 has not changed. This is used at the beginning of a function. */
2998
2999void
3000force_next_line_note ()
3001{
3002 last_linenum = -1;
3003}
3004\f
3005/* Return an indication of which type of insn should have X as a body.
3006 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
3007
3008enum rtx_code
3009classify_insn (x)
3010 rtx x;
3011{
3012 if (GET_CODE (x) == CODE_LABEL)
3013 return CODE_LABEL;
3014 if (GET_CODE (x) == CALL)
3015 return CALL_INSN;
3016 if (GET_CODE (x) == RETURN)
3017 return JUMP_INSN;
3018 if (GET_CODE (x) == SET)
3019 {
3020 if (SET_DEST (x) == pc_rtx)
3021 return JUMP_INSN;
3022 else if (GET_CODE (SET_SRC (x)) == CALL)
3023 return CALL_INSN;
3024 else
3025 return INSN;
3026 }
3027 if (GET_CODE (x) == PARALLEL)
3028 {
3029 register int j;
3030 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
3031 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
3032 return CALL_INSN;
3033 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3034 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
3035 return JUMP_INSN;
3036 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
3037 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
3038 return CALL_INSN;
3039 }
3040 return INSN;
3041}
3042
3043/* Emit the rtl pattern X as an appropriate kind of insn.
3044 If X is a label, it is simply added into the insn chain. */
3045
3046rtx
3047emit (x)
3048 rtx x;
3049{
3050 enum rtx_code code = classify_insn (x);
3051
3052 if (code == CODE_LABEL)
3053 return emit_label (x);
3054 else if (code == INSN)
3055 return emit_insn (x);
3056 else if (code == JUMP_INSN)
3057 {
3058 register rtx insn = emit_jump_insn (x);
3059 if (simplejump_p (insn) || GET_CODE (x) == RETURN)
3060 return emit_barrier ();
3061 return insn;
3062 }
3063 else if (code == CALL_INSN)
3064 return emit_call_insn (x);
3065 else
3066 abort ();
3067}
3068\f
3069/* Begin emitting insns to a sequence which can be packaged in an RTL_EXPR. */
3070
3071void
3072start_sequence ()
3073{
3074 struct sequence_stack *tem;
3075
3076 if (sequence_element_free_list)
3077 {
3078 /* Reuse a previously-saved struct sequence_stack. */
3079 tem = sequence_element_free_list;
3080 sequence_element_free_list = tem->next;
3081 }
3082 else
3083 tem = (struct sequence_stack *) permalloc (sizeof (struct sequence_stack));
3084
3085 tem->next = sequence_stack;
3086 tem->first = first_insn;
3087 tem->last = last_insn;
3ae24368 3088 tem->sequence_rtl_expr = sequence_rtl_expr;
23b2ce53
RS
3089
3090 sequence_stack = tem;
3091
3092 first_insn = 0;
3093 last_insn = 0;
3094}
3095
a25c7971
RK
3096/* Similarly, but indicate that this sequence will be placed in
3097 T, an RTL_EXPR. */
3098
3099void
3100start_sequence_for_rtl_expr (t)
3101 tree t;
3102{
3103 start_sequence ();
3104
3105 sequence_rtl_expr = t;
3106}
3107
23b2ce53
RS
3108/* Set up the insn chain starting with FIRST
3109 as the current sequence, saving the previously current one. */
3110
3111void
3112push_to_sequence (first)
3113 rtx first;
3114{
3115 rtx last;
3116
3117 start_sequence ();
3118
3119 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
3120
3121 first_insn = first;
3122 last_insn = last;
3123}
3124
f15ae3a1
TW
3125/* Set up the outer-level insn chain
3126 as the current sequence, saving the previously current one. */
3127
3128void
3129push_topmost_sequence ()
3130{
3131 struct sequence_stack *stack, *top;
3132
3133 start_sequence ();
3134
3135 for (stack = sequence_stack; stack; stack = stack->next)
3136 top = stack;
3137
3138 first_insn = top->first;
3139 last_insn = top->last;
629a4238 3140 sequence_rtl_expr = top->sequence_rtl_expr;
f15ae3a1
TW
3141}
3142
3143/* After emitting to the outer-level insn chain, update the outer-level
3144 insn chain, and restore the previous saved state. */
3145
3146void
3147pop_topmost_sequence ()
3148{
3149 struct sequence_stack *stack, *top;
3150
3151 for (stack = sequence_stack; stack; stack = stack->next)
3152 top = stack;
3153
3154 top->first = first_insn;
3155 top->last = last_insn;
3ae24368 3156 /* ??? Why don't we save sequence_rtl_expr here? */
f15ae3a1
TW
3157
3158 end_sequence ();
3159}
3160
23b2ce53
RS
3161/* After emitting to a sequence, restore previous saved state.
3162
3163 To get the contents of the sequence just made,
3164 you must call `gen_sequence' *before* calling here. */
3165
3166void
3167end_sequence ()
3168{
3169 struct sequence_stack *tem = sequence_stack;
3170
3171 first_insn = tem->first;
3172 last_insn = tem->last;
629a4238 3173 sequence_rtl_expr = tem->sequence_rtl_expr;
23b2ce53
RS
3174 sequence_stack = tem->next;
3175
3176 tem->next = sequence_element_free_list;
3177 sequence_element_free_list = tem;
3178}
3179
3180/* Return 1 if currently emitting into a sequence. */
3181
3182int
3183in_sequence_p ()
3184{
3185 return sequence_stack != 0;
3186}
3187
3188/* Generate a SEQUENCE rtx containing the insns already emitted
3189 to the current sequence.
3190
3191 This is how the gen_... function from a DEFINE_EXPAND
3192 constructs the SEQUENCE that it returns. */
3193
3194rtx
3195gen_sequence ()
3196{
3197 rtx result;
3198 rtx tem;
23b2ce53
RS
3199 int i;
3200 int len;
3201
3202 /* Count the insns in the chain. */
3203 len = 0;
3204 for (tem = first_insn; tem; tem = NEXT_INSN (tem))
3205 len++;
3206
3207 /* If only one insn, return its pattern rather than a SEQUENCE.
3208 (Now that we cache SEQUENCE expressions, it isn't worth special-casing
3209 the case of an empty list.) */
3210 if (len == 1
ca55abae 3211 && ! RTX_FRAME_RELATED_P (first_insn)
23b2ce53
RS
3212 && (GET_CODE (first_insn) == INSN
3213 || GET_CODE (first_insn) == JUMP_INSN
15d23f2b
DE
3214 /* Don't discard the call usage field. */
3215 || (GET_CODE (first_insn) == CALL_INSN
3216 && CALL_INSN_FUNCTION_USAGE (first_insn) == NULL_RTX)))
43127294
RK
3217 {
3218 NEXT_INSN (first_insn) = free_insn;
3219 free_insn = first_insn;
3220 return PATTERN (first_insn);
3221 }
23b2ce53
RS
3222
3223 /* Put them in a vector. See if we already have a SEQUENCE of the
3224 appropriate length around. */
3225 if (len < SEQUENCE_RESULT_SIZE && (result = sequence_result[len]) != 0)
3226 sequence_result[len] = 0;
3227 else
3228 {
9faa82d8
RK
3229 /* Ensure that this rtl goes in saveable_obstack, since we may
3230 cache it. */
d508ebba
JW
3231 push_obstacks_nochange ();
3232 rtl_in_saveable_obstack ();
23b2ce53 3233 result = gen_rtx (SEQUENCE, VOIDmode, rtvec_alloc (len));
d508ebba 3234 pop_obstacks ();
23b2ce53
RS
3235 }
3236
3237 for (i = 0, tem = first_insn; tem; tem = NEXT_INSN (tem), i++)
3238 XVECEXP (result, 0, i) = tem;
3239
3240 return result;
3241}
3242\f
23b2ce53
RS
3243/* Initialize data structures and variables in this file
3244 before generating rtl for each function. */
3245
3246void
3247init_emit ()
3248{
3249 int i;
3250
3251 first_insn = NULL;
3252 last_insn = NULL;
a25c7971 3253 sequence_rtl_expr = NULL;
23b2ce53
RS
3254 cur_insn_uid = 1;
3255 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
3256 last_linenum = 0;
3257 last_filename = 0;
3258 first_label_num = label_num;
3259 last_label_num = 0;
24d11a9a 3260 sequence_stack = NULL;
23b2ce53
RS
3261
3262 /* Clear the start_sequence/gen_sequence cache. */
3263 sequence_element_free_list = 0;
3264 for (i = 0; i < SEQUENCE_RESULT_SIZE; i++)
3265 sequence_result[i] = 0;
43127294 3266 free_insn = 0;
23b2ce53
RS
3267
3268 /* Init the tables that describe all the pseudo regs. */
3269
3270 regno_pointer_flag_length = LAST_VIRTUAL_REGISTER + 101;
3271
3272 regno_pointer_flag
86fe05e0 3273 = (char *) savealloc (regno_pointer_flag_length);
23b2ce53
RS
3274 bzero (regno_pointer_flag, regno_pointer_flag_length);
3275
86fe05e0
RK
3276 regno_pointer_align
3277 = (char *) savealloc (regno_pointer_flag_length);
3278 bzero (regno_pointer_align, regno_pointer_flag_length);
3279
23b2ce53 3280 regno_reg_rtx
86fe05e0 3281 = (rtx *) savealloc (regno_pointer_flag_length * sizeof (rtx));
4c9a05bc 3282 bzero ((char *) regno_reg_rtx, regno_pointer_flag_length * sizeof (rtx));
23b2ce53
RS
3283
3284 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
3285 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
3286 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
3287 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
3288 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
740ab4a2
RK
3289
3290 /* Indicate that the virtual registers and stack locations are
3291 all pointers. */
3292 REGNO_POINTER_FLAG (STACK_POINTER_REGNUM) = 1;
3293 REGNO_POINTER_FLAG (FRAME_POINTER_REGNUM) = 1;
15c9248c 3294 REGNO_POINTER_FLAG (HARD_FRAME_POINTER_REGNUM) = 1;
740ab4a2
RK
3295 REGNO_POINTER_FLAG (ARG_POINTER_REGNUM) = 1;
3296
3297 REGNO_POINTER_FLAG (VIRTUAL_INCOMING_ARGS_REGNUM) = 1;
3298 REGNO_POINTER_FLAG (VIRTUAL_STACK_VARS_REGNUM) = 1;
3299 REGNO_POINTER_FLAG (VIRTUAL_STACK_DYNAMIC_REGNUM) = 1;
3300 REGNO_POINTER_FLAG (VIRTUAL_OUTGOING_ARGS_REGNUM) = 1;
5e82e7bd 3301
86fe05e0
RK
3302#ifdef STACK_BOUNDARY
3303 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY / BITS_PER_UNIT;
3304 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY / BITS_PER_UNIT;
3305 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM)
3306 = STACK_BOUNDARY / BITS_PER_UNIT;
3307 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY / BITS_PER_UNIT;
3308
3309 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM)
3310 = STACK_BOUNDARY / BITS_PER_UNIT;
3311 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM)
3312 = STACK_BOUNDARY / BITS_PER_UNIT;
3313 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM)
3314 = STACK_BOUNDARY / BITS_PER_UNIT;
3315 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM)
3316 = STACK_BOUNDARY / BITS_PER_UNIT;
3317#endif
3318
5e82e7bd
JVA
3319#ifdef INIT_EXPANDERS
3320 INIT_EXPANDERS;
3321#endif
23b2ce53
RS
3322}
3323
3324/* Create some permanent unique rtl objects shared between all functions.
3325 LINE_NUMBERS is nonzero if line numbers are to be generated. */
3326
3327void
3328init_emit_once (line_numbers)
3329 int line_numbers;
3330{
3331 int i;
3332 enum machine_mode mode;
3333
3334 no_line_numbers = ! line_numbers;
3335
3336 sequence_stack = NULL;
3337
1d445e9e
ILT
3338 /* Compute the word and byte modes. */
3339
3340 byte_mode = VOIDmode;
3341 word_mode = VOIDmode;
3342
3343 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
3344 mode = GET_MODE_WIDER_MODE (mode))
3345 {
3346 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
3347 && byte_mode == VOIDmode)
3348 byte_mode = mode;
3349
3350 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
3351 && word_mode == VOIDmode)
3352 word_mode = mode;
3353 }
3354
15c9248c
RK
3355 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
3356
23b2ce53
RS
3357 /* Create the unique rtx's for certain rtx codes and operand values. */
3358
3359 pc_rtx = gen_rtx (PC, VOIDmode);
3360 cc0_rtx = gen_rtx (CC0, VOIDmode);
3361
3362 /* Don't use gen_rtx here since gen_rtx in this case
3363 tries to use these variables. */
3364 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
3365 {
3366 const_int_rtx[i + MAX_SAVED_CONST_INT] = rtx_alloc (CONST_INT);
3367 PUT_MODE (const_int_rtx[i + MAX_SAVED_CONST_INT], VOIDmode);
3368 INTVAL (const_int_rtx[i + MAX_SAVED_CONST_INT]) = i;
3369 }
3370
3371 /* These four calls obtain some of the rtx expressions made above. */
906c4e36
RK
3372 const0_rtx = GEN_INT (0);
3373 const1_rtx = GEN_INT (1);
3374 const2_rtx = GEN_INT (2);
3375 constm1_rtx = GEN_INT (-1);
23b2ce53
RS
3376
3377 /* This will usually be one of the above constants, but may be a new rtx. */
906c4e36 3378 const_true_rtx = GEN_INT (STORE_FLAG_VALUE);
23b2ce53 3379
1632afca
RS
3380 dconst0 = REAL_VALUE_ATOF ("0", DFmode);
3381 dconst1 = REAL_VALUE_ATOF ("1", DFmode);
3382 dconst2 = REAL_VALUE_ATOF ("2", DFmode);
3383 dconstm1 = REAL_VALUE_ATOF ("-1", DFmode);
23b2ce53
RS
3384
3385 for (i = 0; i <= 2; i++)
3386 {
3387 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
3388 mode = GET_MODE_WIDER_MODE (mode))
3389 {
3390 rtx tem = rtx_alloc (CONST_DOUBLE);
3391 union real_extract u;
3392
4c9a05bc 3393 bzero ((char *) &u, sizeof u); /* Zero any holes in a structure. */
23b2ce53
RS
3394 u.d = i == 0 ? dconst0 : i == 1 ? dconst1 : dconst2;
3395
4c9a05bc 3396 bcopy ((char *) &u, (char *) &CONST_DOUBLE_LOW (tem), sizeof u);
23b2ce53
RS
3397 CONST_DOUBLE_MEM (tem) = cc0_rtx;
3398 PUT_MODE (tem, mode);
3399
3400 const_tiny_rtx[i][(int) mode] = tem;
3401 }
3402
906c4e36 3403 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53
RS
3404
3405 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
3406 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 3407 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
3408
3409 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
3410 mode != VOIDmode;
3411 mode = GET_MODE_WIDER_MODE (mode))
3412 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
3413 }
3414
dfa09e23
TW
3415 for (mode = GET_CLASS_NARROWEST_MODE (MODE_CC); mode != VOIDmode;
3416 mode = GET_MODE_WIDER_MODE (mode))
3417 const_tiny_rtx[0][(int) mode] = const0_rtx;
3418
23b2ce53
RS
3419 stack_pointer_rtx = gen_rtx (REG, Pmode, STACK_POINTER_REGNUM);
3420 frame_pointer_rtx = gen_rtx (REG, Pmode, FRAME_POINTER_REGNUM);
3421
ac6f08b0
DE
3422 if (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3423 hard_frame_pointer_rtx = frame_pointer_rtx;
3424 else
3425 hard_frame_pointer_rtx = gen_rtx (REG, Pmode, HARD_FRAME_POINTER_REGNUM);
3426
23b2ce53
RS
3427 if (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3428 arg_pointer_rtx = frame_pointer_rtx;
ac6f08b0
DE
3429 else if (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3430 arg_pointer_rtx = hard_frame_pointer_rtx;
23b2ce53
RS
3431 else if (STACK_POINTER_REGNUM == ARG_POINTER_REGNUM)
3432 arg_pointer_rtx = stack_pointer_rtx;
3433 else
3434 arg_pointer_rtx = gen_rtx (REG, Pmode, ARG_POINTER_REGNUM);
3435
a4417a86
JW
3436#ifdef RETURN_ADDRESS_POINTER_REGNUM
3437 return_address_pointer_rtx = gen_rtx (REG, Pmode,
3438 RETURN_ADDRESS_POINTER_REGNUM);
3439#endif
3440
23b2ce53
RS
3441 /* Create the virtual registers. Do so here since the following objects
3442 might reference them. */
3443
3444 virtual_incoming_args_rtx = gen_rtx (REG, Pmode,
3445 VIRTUAL_INCOMING_ARGS_REGNUM);
3446 virtual_stack_vars_rtx = gen_rtx (REG, Pmode,
3447 VIRTUAL_STACK_VARS_REGNUM);
3448 virtual_stack_dynamic_rtx = gen_rtx (REG, Pmode,
3449 VIRTUAL_STACK_DYNAMIC_REGNUM);
3450 virtual_outgoing_args_rtx = gen_rtx (REG, Pmode,
3451 VIRTUAL_OUTGOING_ARGS_REGNUM);
3452
3453#ifdef STRUCT_VALUE
3454 struct_value_rtx = STRUCT_VALUE;
3455#else
3456 struct_value_rtx = gen_rtx (REG, Pmode, STRUCT_VALUE_REGNUM);
3457#endif
3458
3459#ifdef STRUCT_VALUE_INCOMING
3460 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
3461#else
3462#ifdef STRUCT_VALUE_INCOMING_REGNUM
3463 struct_value_incoming_rtx
3464 = gen_rtx (REG, Pmode, STRUCT_VALUE_INCOMING_REGNUM);
3465#else
3466 struct_value_incoming_rtx = struct_value_rtx;
3467#endif
3468#endif
3469
3470#ifdef STATIC_CHAIN_REGNUM
3471 static_chain_rtx = gen_rtx (REG, Pmode, STATIC_CHAIN_REGNUM);
3472
3473#ifdef STATIC_CHAIN_INCOMING_REGNUM
3474 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
3475 static_chain_incoming_rtx = gen_rtx (REG, Pmode, STATIC_CHAIN_INCOMING_REGNUM);
3476 else
3477#endif
3478 static_chain_incoming_rtx = static_chain_rtx;
3479#endif
3480
3481#ifdef STATIC_CHAIN
3482 static_chain_rtx = STATIC_CHAIN;
3483
3484#ifdef STATIC_CHAIN_INCOMING
3485 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
3486#else
3487 static_chain_incoming_rtx = static_chain_rtx;
3488#endif
3489#endif
3490
3491#ifdef PIC_OFFSET_TABLE_REGNUM
3492 pic_offset_table_rtx = gen_rtx (REG, Pmode, PIC_OFFSET_TABLE_REGNUM);
3493#endif
3494}