]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
poly_int: GET_MODE_BITSIZE
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
bccafa26 1/* Emit RTL for the GCC expander.
8e8f6434 2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
15bbde2b 3
f12b58b3 4This file is part of GCC.
15bbde2b 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
15bbde2b 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15bbde2b 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
15bbde2b 19
20
21/* Middle-to-low level generation of rtx code and insns.
22
74efa612 23 This file contains support functions for creating rtl expressions
24 and manipulating them in the doubly-linked chain of insns.
15bbde2b 25
26 The patterns of the insns are created by machine-dependent
27 routines in insn-emit.c, which is generated automatically from
74efa612 28 the machine description. These routines make the individual rtx's
29 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
30 which are automatically generated from rtl.def; what is machine
8fd5918e 31 dependent is the kind of rtx's they make and what arguments they
32 use. */
15bbde2b 33
34#include "config.h"
405711de 35#include "system.h"
805e22b2 36#include "coretypes.h"
ad7b10a2 37#include "memmodel.h"
9ef16211 38#include "backend.h"
7c29e30e 39#include "target.h"
15bbde2b 40#include "rtl.h"
7c29e30e 41#include "tree.h"
9ef16211 42#include "df.h"
7c29e30e 43#include "tm_p.h"
44#include "stringpool.h"
7c29e30e 45#include "insn-config.h"
46#include "regs.h"
47#include "emit-rtl.h"
48#include "recog.h"
9ef16211 49#include "diagnostic-core.h"
b20a8bb4 50#include "alias.h"
b20a8bb4 51#include "fold-const.h"
9ed99284 52#include "varasm.h"
94ea8568 53#include "cfgrtl.h"
94ea8568 54#include "tree-eh.h"
d53441c8 55#include "explow.h"
15bbde2b 56#include "expr.h"
9845d120 57#include "params.h"
f7715905 58#include "builtins.h"
4073adaa 59#include "rtl-iter.h"
94f92c36 60#include "stor-layout.h"
48a7e3d1 61#include "opts.h"
61cb1816 62#include "predict.h"
a80726d1 63#include "rtx-vector-builder.h"
649d8da6 64
679bcc8d 65struct target_rtl default_target_rtl;
66#if SWITCHABLE_TARGET
67struct target_rtl *this_target_rtl = &default_target_rtl;
68#endif
69
70#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
71
399d45d3 72/* Commonly used modes. */
73
af8303fa 74scalar_int_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
75scalar_int_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
76scalar_int_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
399d45d3 77
b079a207 78/* Datastructures maintained for currently processed function in RTL form. */
79
fd6ffb7c 80struct rtl_data x_rtl;
b079a207 81
82/* Indexed by pseudo register number, gives the rtx for that pseudo.
48e1416a 83 Allocated in parallel with regno_pointer_align.
b079a207 84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
86
87rtx * regno_reg_rtx;
15bbde2b 88
89/* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
91
9105005a 92static GTY(()) int label_num = 1;
15bbde2b 93
15bbde2b 94/* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
ba8dfb08 96 record a copy of const[012]_rtx and constm1_rtx. CONSTM1_RTX
97 is set only for MODE_INT and MODE_VECTOR_INT modes. */
15bbde2b 98
ba8dfb08 99rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
15bbde2b 100
1a60f06a 101rtx const_true_rtx;
102
15bbde2b 103REAL_VALUE_TYPE dconst0;
104REAL_VALUE_TYPE dconst1;
105REAL_VALUE_TYPE dconst2;
106REAL_VALUE_TYPE dconstm1;
77e89269 107REAL_VALUE_TYPE dconsthalf;
15bbde2b 108
06f0b99c 109/* Record fixed-point constant 0 and 1. */
110FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
111FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
112
15bbde2b 113/* We make one copy of (const_int C) where C is in
114 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
115 to save space during the compilation and simplify comparisons of
116 integers. */
117
57c097d5 118rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
15bbde2b 119
7d7b0bac 120/* Standard pieces of rtx, to be substituted directly into things. */
121rtx pc_rtx;
122rtx ret_rtx;
123rtx simple_return_rtx;
124rtx cc0_rtx;
125
f9a00e9e 126/* Marker used for denoting an INSN, which should never be accessed (i.e.,
127 this pointer should normally never be dereferenced), but is required to be
128 distinct from NULL_RTX. Currently used by peephole2 pass. */
129rtx_insn *invalid_insn_rtx;
130
73f5c1e3 131/* A hash table storing CONST_INTs whose absolute value is greater
132 than MAX_SAVED_CONST_INT. */
133
eae1ecb4 134struct const_int_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 135{
136 typedef HOST_WIDE_INT compare_type;
137
138 static hashval_t hash (rtx i);
139 static bool equal (rtx i, HOST_WIDE_INT h);
140};
73f5c1e3 141
f863a586 142static GTY ((cache)) hash_table<const_int_hasher> *const_int_htab;
143
eae1ecb4 144struct const_wide_int_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 145{
146 static hashval_t hash (rtx x);
147 static bool equal (rtx x, rtx y);
148};
149
150static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
e913b5cd 151
bbad7cd0 152struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
153{
154 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
155
156 static hashval_t hash (rtx x);
157 static bool equal (rtx x, const compare_type &y);
158};
159
160static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
161
ca74b940 162/* A hash table storing register attribute structures. */
eae1ecb4 163struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
f863a586 164{
165 static hashval_t hash (reg_attrs *x);
166 static bool equal (reg_attrs *a, reg_attrs *b);
167};
168
169static GTY ((cache)) hash_table<reg_attr_hasher> *reg_attrs_htab;
ca74b940 170
2ff23ed0 171/* A hash table storing all CONST_DOUBLEs. */
eae1ecb4 172struct const_double_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 173{
174 static hashval_t hash (rtx x);
175 static bool equal (rtx x, rtx y);
176};
177
178static GTY ((cache)) hash_table<const_double_hasher> *const_double_htab;
2ff23ed0 179
e397ad8e 180/* A hash table storing all CONST_FIXEDs. */
eae1ecb4 181struct const_fixed_hasher : ggc_cache_ptr_hash<rtx_def>
f863a586 182{
183 static hashval_t hash (rtx x);
184 static bool equal (rtx x, rtx y);
185};
186
187static GTY ((cache)) hash_table<const_fixed_hasher> *const_fixed_htab;
e397ad8e 188
fd6ffb7c 189#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
9845d120 190#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
fd6ffb7c 191#define first_label_num (crtl->emit.x_first_label_num)
15bbde2b 192
265be050 193static void set_used_decls (tree);
35cb5232 194static void mark_label_nuses (rtx);
e913b5cd 195#if TARGET_SUPPORTS_WIDE_INT
e913b5cd 196static rtx lookup_const_wide_int (rtx);
197#endif
35cb5232 198static rtx lookup_const_double (rtx);
e397ad8e 199static rtx lookup_const_fixed (rtx);
3754d046 200static rtx gen_const_vector (machine_mode, int);
0e0727c4 201static void copy_rtx_if_shared_1 (rtx *orig);
73f5c1e3 202
61cb1816 203/* Probability of the conditional branch currently proceeded by try_split. */
204profile_probability split_branch_probability;
649d8da6 205\f
73f5c1e3 206/* Returns a hash code for X (which is a really a CONST_INT). */
207
f863a586 208hashval_t
209const_int_hasher::hash (rtx x)
73f5c1e3 210{
f863a586 211 return (hashval_t) INTVAL (x);
73f5c1e3 212}
213
6ef828f9 214/* Returns nonzero if the value represented by X (which is really a
73f5c1e3 215 CONST_INT) is the same as that given by Y (which is really a
216 HOST_WIDE_INT *). */
217
f863a586 218bool
219const_int_hasher::equal (rtx x, HOST_WIDE_INT y)
73f5c1e3 220{
f863a586 221 return (INTVAL (x) == y);
2ff23ed0 222}
223
e913b5cd 224#if TARGET_SUPPORTS_WIDE_INT
225/* Returns a hash code for X (which is a really a CONST_WIDE_INT). */
226
f863a586 227hashval_t
228const_wide_int_hasher::hash (rtx x)
e913b5cd 229{
230 int i;
06b8401d 231 unsigned HOST_WIDE_INT hash = 0;
f863a586 232 const_rtx xr = x;
e913b5cd 233
234 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
235 hash += CONST_WIDE_INT_ELT (xr, i);
236
237 return (hashval_t) hash;
238}
239
240/* Returns nonzero if the value represented by X (which is really a
241 CONST_WIDE_INT) is the same as that given by Y (which is really a
242 CONST_WIDE_INT). */
243
f863a586 244bool
245const_wide_int_hasher::equal (rtx x, rtx y)
e913b5cd 246{
247 int i;
f863a586 248 const_rtx xr = x;
249 const_rtx yr = y;
e913b5cd 250 if (CONST_WIDE_INT_NUNITS (xr) != CONST_WIDE_INT_NUNITS (yr))
f863a586 251 return false;
e913b5cd 252
253 for (i = 0; i < CONST_WIDE_INT_NUNITS (xr); i++)
254 if (CONST_WIDE_INT_ELT (xr, i) != CONST_WIDE_INT_ELT (yr, i))
f863a586 255 return false;
ddb1be65 256
f863a586 257 return true;
e913b5cd 258}
259#endif
260
bbad7cd0 261/* Returns a hash code for CONST_POLY_INT X. */
262
263hashval_t
264const_poly_int_hasher::hash (rtx x)
265{
266 inchash::hash h;
267 h.add_int (GET_MODE (x));
268 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
269 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
270 return h.end ();
271}
272
273/* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
274
275bool
276const_poly_int_hasher::equal (rtx x, const compare_type &y)
277{
278 if (GET_MODE (x) != y.first)
279 return false;
280 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
281 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
282 return false;
283 return true;
284}
285
2ff23ed0 286/* Returns a hash code for X (which is really a CONST_DOUBLE). */
f863a586 287hashval_t
288const_double_hasher::hash (rtx x)
2ff23ed0 289{
f863a586 290 const_rtx const value = x;
3393215f 291 hashval_t h;
2ff23ed0 292
e913b5cd 293 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (value) == VOIDmode)
3393215f 294 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
295 else
a5760913 296 {
e2e205b3 297 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
a5760913 298 /* MODE is used in the comparison, so it should be in the hash. */
299 h ^= GET_MODE (value);
300 }
2ff23ed0 301 return h;
302}
303
6ef828f9 304/* Returns nonzero if the value represented by X (really a ...)
2ff23ed0 305 is the same as that represented by Y (really a ...) */
f863a586 306bool
307const_double_hasher::equal (rtx x, rtx y)
2ff23ed0 308{
f863a586 309 const_rtx const a = x, b = y;
2ff23ed0 310
311 if (GET_MODE (a) != GET_MODE (b))
312 return 0;
e913b5cd 313 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (a) == VOIDmode)
f82a103d 314 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
315 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
316 else
317 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
318 CONST_DOUBLE_REAL_VALUE (b));
73f5c1e3 319}
320
e397ad8e 321/* Returns a hash code for X (which is really a CONST_FIXED). */
322
f863a586 323hashval_t
324const_fixed_hasher::hash (rtx x)
e397ad8e 325{
f863a586 326 const_rtx const value = x;
e397ad8e 327 hashval_t h;
328
329 h = fixed_hash (CONST_FIXED_VALUE (value));
330 /* MODE is used in the comparison, so it should be in the hash. */
331 h ^= GET_MODE (value);
332 return h;
333}
334
f863a586 335/* Returns nonzero if the value represented by X is the same as that
336 represented by Y. */
e397ad8e 337
f863a586 338bool
339const_fixed_hasher::equal (rtx x, rtx y)
e397ad8e 340{
f863a586 341 const_rtx const a = x, b = y;
e397ad8e 342
343 if (GET_MODE (a) != GET_MODE (b))
344 return 0;
345 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
346}
347
d72886b5 348/* Return true if the given memory attributes are equal. */
73f5c1e3 349
7e304b71 350bool
d72886b5 351mem_attrs_eq_p (const struct mem_attrs *p, const struct mem_attrs *q)
73f5c1e3 352{
7e304b71 353 if (p == q)
354 return true;
355 if (!p || !q)
356 return false;
6d58bcba 357 return (p->alias == q->alias
358 && p->offset_known_p == q->offset_known_p
711f137f 359 && (!p->offset_known_p || known_eq (p->offset, q->offset))
6d58bcba 360 && p->size_known_p == q->size_known_p
711f137f 361 && (!p->size_known_p || known_eq (p->size, q->size))
6d58bcba 362 && p->align == q->align
bd1a81f7 363 && p->addrspace == q->addrspace
2f16183e 364 && (p->expr == q->expr
365 || (p->expr != NULL_TREE && q->expr != NULL_TREE
366 && operand_equal_p (p->expr, q->expr, 0))));
73f5c1e3 367}
368
d72886b5 369/* Set MEM's memory attributes so that they are the same as ATTRS. */
5cc193e7 370
d72886b5 371static void
372set_mem_attrs (rtx mem, mem_attrs *attrs)
373{
d72886b5 374 /* If everything is the default, we can just clear the attributes. */
375 if (mem_attrs_eq_p (attrs, mode_mem_attrs[(int) GET_MODE (mem)]))
376 {
377 MEM_ATTRS (mem) = 0;
378 return;
379 }
c6259b83 380
8dc3230c 381 if (!MEM_ATTRS (mem)
382 || !mem_attrs_eq_p (attrs, MEM_ATTRS (mem)))
c6259b83 383 {
25a27413 384 MEM_ATTRS (mem) = ggc_alloc<mem_attrs> ();
8dc3230c 385 memcpy (MEM_ATTRS (mem), attrs, sizeof (mem_attrs));
c6259b83 386 }
73f5c1e3 387}
388
ca74b940 389/* Returns a hash code for X (which is a really a reg_attrs *). */
390
f863a586 391hashval_t
392reg_attr_hasher::hash (reg_attrs *x)
ca74b940 393{
f863a586 394 const reg_attrs *const p = x;
ca74b940 395
a14d43f8 396 inchash::hash h;
397 h.add_ptr (p->decl);
398 h.add_poly_hwi (p->offset);
399 return h.end ();
ca74b940 400}
401
f863a586 402/* Returns nonzero if the value represented by X is the same as that given by
403 Y. */
ca74b940 404
f863a586 405bool
406reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
ca74b940 407{
f863a586 408 const reg_attrs *const p = x;
409 const reg_attrs *const q = y;
ca74b940 410
a14d43f8 411 return (p->decl == q->decl && known_eq (p->offset, q->offset));
ca74b940 412}
413/* Allocate a new reg_attrs structure and insert it into the hash table if
414 one identical to it is not already in the table. We are doing this for
415 MEM of mode MODE. */
416
417static reg_attrs *
a14d43f8 418get_reg_attrs (tree decl, poly_int64 offset)
ca74b940 419{
420 reg_attrs attrs;
ca74b940 421
422 /* If everything is the default, we can just return zero. */
a14d43f8 423 if (decl == 0 && known_eq (offset, 0))
ca74b940 424 return 0;
425
426 attrs.decl = decl;
427 attrs.offset = offset;
428
f863a586 429 reg_attrs **slot = reg_attrs_htab->find_slot (&attrs, INSERT);
ca74b940 430 if (*slot == 0)
431 {
25a27413 432 *slot = ggc_alloc<reg_attrs> ();
ca74b940 433 memcpy (*slot, &attrs, sizeof (reg_attrs));
434 }
435
f863a586 436 return *slot;
ca74b940 437}
438
3072d30e 439
440#if !HAVE_blockage
e12b44a3 441/* Generate an empty ASM_INPUT, which is used to block attempts to schedule,
442 and to block register equivalences to be seen across this insn. */
3072d30e 443
444rtx
445gen_blockage (void)
446{
447 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
448 MEM_VOLATILE_P (x) = true;
449 return x;
450}
451#endif
452
453
937ca48e 454/* Set the mode and register number of X to MODE and REGNO. */
455
456void
457set_mode_and_regno (rtx x, machine_mode mode, unsigned int regno)
458{
1c0849e5 459 unsigned int nregs = (HARD_REGISTER_NUM_P (regno)
92d2aec3 460 ? hard_regno_nregs (regno, mode)
1c0849e5 461 : 1);
937ca48e 462 PUT_MODE_RAW (x, mode);
1c0849e5 463 set_regno_raw (x, regno, nregs);
937ca48e 464}
465
22cf44bc 466/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
467 don't attempt to share with the various global pieces of rtl (such as
468 frame_pointer_rtx). */
469
470rtx
937ca48e 471gen_raw_REG (machine_mode mode, unsigned int regno)
22cf44bc 472{
68095389 473 rtx x = rtx_alloc (REG MEM_STAT_INFO);
937ca48e 474 set_mode_and_regno (x, mode, regno);
15183fd2 475 REG_ATTRS (x) = NULL;
22cf44bc 476 ORIGINAL_REGNO (x) = regno;
477 return x;
478}
479
7014838c 480/* There are some RTL codes that require special attention; the generation
481 functions do the raw handling. If you add to this list, modify
482 special_rtx in gengenrtl.c as well. */
483
ede4900a 484rtx_expr_list *
3754d046 485gen_rtx_EXPR_LIST (machine_mode mode, rtx expr, rtx expr_list)
ede4900a 486{
487 return as_a <rtx_expr_list *> (gen_rtx_fmt_ee (EXPR_LIST, mode, expr,
488 expr_list));
489}
490
13be9dc6 491rtx_insn_list *
3754d046 492gen_rtx_INSN_LIST (machine_mode mode, rtx insn, rtx insn_list)
13be9dc6 493{
494 return as_a <rtx_insn_list *> (gen_rtx_fmt_ue (INSN_LIST, mode, insn,
495 insn_list));
496}
497
f935868a 498rtx_insn *
3754d046 499gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
f935868a 500 basic_block bb, rtx pattern, int location, int code,
501 rtx reg_notes)
502{
503 return as_a <rtx_insn *> (gen_rtx_fmt_uuBeiie (INSN, mode,
504 prev_insn, next_insn,
505 bb, pattern, location, code,
506 reg_notes));
507}
508
3ad7bb1c 509rtx
3754d046 510gen_rtx_CONST_INT (machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3ad7bb1c 511{
512 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
57c097d5 513 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3ad7bb1c 514
515#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
516 if (const_true_rtx && arg == STORE_FLAG_VALUE)
517 return const_true_rtx;
518#endif
519
73f5c1e3 520 /* Look up the CONST_INT in the hash table. */
f863a586 521 rtx *slot = const_int_htab->find_slot_with_hash (arg, (hashval_t) arg,
522 INSERT);
7f2875d3 523 if (*slot == 0)
d7c47c0e 524 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
73f5c1e3 525
f863a586 526 return *slot;
3ad7bb1c 527}
528
2d232d05 529rtx
bbad7cd0 530gen_int_mode (poly_int64 c, machine_mode mode)
2d232d05 531{
bbad7cd0 532 c = trunc_int_for_mode (c, mode);
533 if (c.is_constant ())
534 return GEN_INT (c.coeffs[0]);
535 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
536 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
2d232d05 537}
538
2ff23ed0 539/* CONST_DOUBLEs might be created from pairs of integers, or from
540 REAL_VALUE_TYPEs. Also, their length is known only at run time,
541 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
542
543/* Determine whether REAL, a CONST_DOUBLE, already exists in the
544 hash table. If so, return its counterpart; otherwise add it
545 to the hash table and return it. */
546static rtx
35cb5232 547lookup_const_double (rtx real)
2ff23ed0 548{
f863a586 549 rtx *slot = const_double_htab->find_slot (real, INSERT);
2ff23ed0 550 if (*slot == 0)
551 *slot = real;
552
f863a586 553 return *slot;
2ff23ed0 554}
7f2875d3 555
2ff23ed0 556/* Return a CONST_DOUBLE rtx for a floating-point value specified by
557 VALUE in mode MODE. */
67f2a2eb 558rtx
3754d046 559const_double_from_real_value (REAL_VALUE_TYPE value, machine_mode mode)
67f2a2eb 560{
2ff23ed0 561 rtx real = rtx_alloc (CONST_DOUBLE);
562 PUT_MODE (real, mode);
563
e8aaae4e 564 real->u.rv = value;
2ff23ed0 565
566 return lookup_const_double (real);
567}
568
e397ad8e 569/* Determine whether FIXED, a CONST_FIXED, already exists in the
570 hash table. If so, return its counterpart; otherwise add it
571 to the hash table and return it. */
572
573static rtx
574lookup_const_fixed (rtx fixed)
575{
f863a586 576 rtx *slot = const_fixed_htab->find_slot (fixed, INSERT);
e397ad8e 577 if (*slot == 0)
578 *slot = fixed;
579
f863a586 580 return *slot;
e397ad8e 581}
582
583/* Return a CONST_FIXED rtx for a fixed-point value specified by
584 VALUE in mode MODE. */
585
586rtx
3754d046 587const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, machine_mode mode)
e397ad8e 588{
589 rtx fixed = rtx_alloc (CONST_FIXED);
590 PUT_MODE (fixed, mode);
591
592 fixed->u.fv = value;
593
594 return lookup_const_fixed (fixed);
595}
596
e913b5cd 597#if TARGET_SUPPORTS_WIDE_INT == 0
33274180 598/* Constructs double_int from rtx CST. */
599
600double_int
601rtx_to_double_int (const_rtx cst)
602{
603 double_int r;
604
605 if (CONST_INT_P (cst))
cf8f0e63 606 r = double_int::from_shwi (INTVAL (cst));
78f1962f 607 else if (CONST_DOUBLE_AS_INT_P (cst))
33274180 608 {
609 r.low = CONST_DOUBLE_LOW (cst);
610 r.high = CONST_DOUBLE_HIGH (cst);
611 }
612 else
613 gcc_unreachable ();
614
615 return r;
616}
e913b5cd 617#endif
618
619#if TARGET_SUPPORTS_WIDE_INT
a342dbb2 620/* Determine whether CONST_WIDE_INT WINT already exists in the hash table.
621 If so, return its counterpart; otherwise add it to the hash table and
e913b5cd 622 return it. */
33274180 623
e913b5cd 624static rtx
625lookup_const_wide_int (rtx wint)
626{
f863a586 627 rtx *slot = const_wide_int_htab->find_slot (wint, INSERT);
e913b5cd 628 if (*slot == 0)
629 *slot = wint;
33274180 630
f863a586 631 return *slot;
e913b5cd 632}
633#endif
3e052aec 634
a342dbb2 635/* Return an rtx constant for V, given that the constant has mode MODE.
636 The returned rtx will be a CONST_INT if V fits, otherwise it will be
637 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
638 (if TARGET_SUPPORTS_WIDE_INT). */
639
bbad7cd0 640static rtx
641immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
3e052aec 642{
e913b5cd 643 unsigned int len = v.get_len ();
074473dd 644 /* Not scalar_int_mode because we also allow pointer bound modes. */
645 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
e913b5cd 646
647 /* Allow truncation but not extension since we do not know if the
648 number is signed or unsigned. */
649 gcc_assert (prec <= v.get_precision ());
650
651 if (len < 2 || prec <= HOST_BITS_PER_WIDE_INT)
652 return gen_int_mode (v.elt (0), mode);
653
654#if TARGET_SUPPORTS_WIDE_INT
655 {
656 unsigned int i;
657 rtx value;
ddb1be65 658 unsigned int blocks_needed
e913b5cd 659 = (prec + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT;
660
661 if (len > blocks_needed)
662 len = blocks_needed;
663
664 value = const_wide_int_alloc (len);
665
666 /* It is so tempting to just put the mode in here. Must control
667 myself ... */
668 PUT_MODE (value, VOIDmode);
05c25ee6 669 CWI_PUT_NUM_ELEM (value, len);
e913b5cd 670
671 for (i = 0; i < len; i++)
05363b4a 672 CONST_WIDE_INT_ELT (value, i) = v.elt (i);
e913b5cd 673
674 return lookup_const_wide_int (value);
675 }
676#else
05363b4a 677 return immed_double_const (v.elt (0), v.elt (1), mode);
e913b5cd 678#endif
3e052aec 679}
680
e913b5cd 681#if TARGET_SUPPORTS_WIDE_INT == 0
2ff23ed0 682/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
683 of ints: I0 is the low-order word and I1 is the high-order word.
24cd46a7 684 For values that are larger than HOST_BITS_PER_DOUBLE_INT, the
db20fb47 685 implied upper bits are copies of the high bit of i1. The value
686 itself is neither signed nor unsigned. Do not use this routine for
687 non-integer modes; convert to REAL_VALUE_TYPE and use
d5f9611d 688 const_double_from_real_value. */
2ff23ed0 689
690rtx
3754d046 691immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, machine_mode mode)
2ff23ed0 692{
693 rtx value;
694 unsigned int i;
695
b1ca4af4 696 /* There are the following cases (note that there are no modes with
24cd46a7 697 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < HOST_BITS_PER_DOUBLE_INT):
b1ca4af4 698
699 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
700 gen_int_mode.
db20fb47 701 2) If the value of the integer fits into HOST_WIDE_INT anyway
702 (i.e., i1 consists only from copies of the sign bit, and sign
703 of i0 and i1 are the same), then we return a CONST_INT for i0.
b1ca4af4 704 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
074473dd 705 scalar_mode smode;
706 if (is_a <scalar_mode> (mode, &smode)
707 && GET_MODE_BITSIZE (smode) <= HOST_BITS_PER_WIDE_INT)
708 return gen_int_mode (i0, mode);
2ff23ed0 709
710 /* If this integer fits in one word, return a CONST_INT. */
711 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
712 return GEN_INT (i0);
713
714 /* We use VOIDmode for integers. */
715 value = rtx_alloc (CONST_DOUBLE);
716 PUT_MODE (value, VOIDmode);
717
718 CONST_DOUBLE_LOW (value) = i0;
719 CONST_DOUBLE_HIGH (value) = i1;
720
721 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
722 XWINT (value, i) = 0;
723
724 return lookup_const_double (value);
67f2a2eb 725}
e913b5cd 726#endif
67f2a2eb 727
bbad7cd0 728/* Return an rtx representation of C in mode MODE. */
729
730rtx
731immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
732{
733 if (c.is_constant ())
734 return immed_wide_int_const_1 (c.coeffs[0], mode);
735
736 /* Not scalar_int_mode because we also allow pointer bound modes. */
737 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
738
739 /* Allow truncation but not extension since we do not know if the
740 number is signed or unsigned. */
741 gcc_assert (prec <= c.coeffs[0].get_precision ());
742 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
743
744 /* See whether we already have an rtx for this constant. */
745 inchash::hash h;
746 h.add_int (mode);
747 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
748 h.add_wide_int (newc.coeffs[i]);
749 const_poly_int_hasher::compare_type typed_value (mode, newc);
750 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
751 h.end (), INSERT);
752 rtx x = *slot;
753 if (x)
754 return x;
755
756 /* Create a new rtx. There's a choice to be made here between installing
757 the actual mode of the rtx or leaving it as VOIDmode (for consistency
758 with CONST_INT). In practice the handling of the codes is different
759 enough that we get no benefit from using VOIDmode, and various places
760 assume that VOIDmode implies CONST_INT. Using the real mode seems like
761 the right long-term direction anyway. */
762 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
763 size_t extra_size = twi::extra_size (prec);
764 x = rtx_alloc_v (CONST_POLY_INT,
765 sizeof (struct const_poly_int_def) + extra_size);
766 PUT_MODE (x, mode);
767 CONST_POLY_INT_COEFFS (x).set_precision (prec);
768 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
769 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
770
771 *slot = x;
772 return x;
773}
774
3ad7bb1c 775rtx
3754d046 776gen_rtx_REG (machine_mode mode, unsigned int regno)
3ad7bb1c 777{
778 /* In case the MD file explicitly references the frame pointer, have
779 all such references point to the same frame pointer. This is
780 used during frame pointer elimination to distinguish the explicit
781 references to these registers from pseudos that happened to be
782 assigned to them.
783
784 If we have eliminated the frame pointer or arg pointer, we will
785 be using it as a normal register, for example as a spill
786 register. In such cases, we might be accessing it in a mode that
787 is not Pmode and therefore cannot use the pre-allocated rtx.
788
789 Also don't do this when we are making new REGs in reload, since
790 we don't want to get confused with the real pointers. */
791
c6a6cdaa 792 if (mode == Pmode && !reload_in_progress && !lra_in_progress)
3ad7bb1c 793 {
71801afc 794 if (regno == FRAME_POINTER_REGNUM
795 && (!reload_completed || frame_pointer_needed))
3ad7bb1c 796 return frame_pointer_rtx;
f703b3d6 797
798 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
799 && regno == HARD_FRAME_POINTER_REGNUM
71801afc 800 && (!reload_completed || frame_pointer_needed))
3ad7bb1c 801 return hard_frame_pointer_rtx;
c6bb296a 802#if !HARD_FRAME_POINTER_IS_ARG_POINTER
803 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
804 && regno == ARG_POINTER_REGNUM)
3ad7bb1c 805 return arg_pointer_rtx;
806#endif
807#ifdef RETURN_ADDRESS_POINTER_REGNUM
e8b59353 808 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3ad7bb1c 809 return return_address_pointer_rtx;
810#endif
3473aefe 811 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
8d43ad05 812 && PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
6ea47475 813 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
d4c5e26d 814 return pic_offset_table_rtx;
e8b59353 815 if (regno == STACK_POINTER_REGNUM)
3ad7bb1c 816 return stack_pointer_rtx;
817 }
818
32b53d83 819#if 0
90295bd2 820 /* If the per-function register table has been set up, try to re-use
32b53d83 821 an existing entry in that table to avoid useless generation of RTL.
822
823 This code is disabled for now until we can fix the various backends
824 which depend on having non-shared hard registers in some cases. Long
825 term we want to re-enable this code as it can significantly cut down
71801afc 826 on the amount of useless RTL that gets generated.
827
828 We'll also need to fix some code that runs after reload that wants to
829 set ORIGINAL_REGNO. */
830
90295bd2 831 if (cfun
832 && cfun->emit
833 && regno_reg_rtx
834 && regno < FIRST_PSEUDO_REGISTER
835 && reg_raw_mode[regno] == mode)
836 return regno_reg_rtx[regno];
32b53d83 837#endif
90295bd2 838
22cf44bc 839 return gen_raw_REG (mode, regno);
3ad7bb1c 840}
841
b5ba9f3a 842rtx
3754d046 843gen_rtx_MEM (machine_mode mode, rtx addr)
b5ba9f3a 844{
845 rtx rt = gen_rtx_raw_MEM (mode, addr);
846
847 /* This field is not cleared by the mere allocation of the rtx, so
848 we clear it here. */
c6259b83 849 MEM_ATTRS (rt) = 0;
b5ba9f3a 850
851 return rt;
852}
701e46d0 853
e265a6da 854/* Generate a memory referring to non-trapping constant memory. */
855
856rtx
3754d046 857gen_const_mem (machine_mode mode, rtx addr)
e265a6da 858{
859 rtx mem = gen_rtx_MEM (mode, addr);
860 MEM_READONLY_P (mem) = 1;
861 MEM_NOTRAP_P (mem) = 1;
862 return mem;
863}
864
00060fc2 865/* Generate a MEM referring to fixed portions of the frame, e.g., register
866 save areas. */
867
868rtx
3754d046 869gen_frame_mem (machine_mode mode, rtx addr)
00060fc2 870{
871 rtx mem = gen_rtx_MEM (mode, addr);
872 MEM_NOTRAP_P (mem) = 1;
873 set_mem_alias_set (mem, get_frame_alias_set ());
874 return mem;
875}
876
877/* Generate a MEM referring to a temporary use of the stack, not part
878 of the fixed stack frame. For example, something which is pushed
879 by a target splitter. */
880rtx
3754d046 881gen_tmp_stack_mem (machine_mode mode, rtx addr)
00060fc2 882{
883 rtx mem = gen_rtx_MEM (mode, addr);
884 MEM_NOTRAP_P (mem) = 1;
18d50ae6 885 if (!cfun->calls_alloca)
00060fc2 886 set_mem_alias_set (mem, get_frame_alias_set ());
887 return mem;
888}
889
2166bbaa 890/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
891 this construct would be valid, and false otherwise. */
892
893bool
3754d046 894validate_subreg (machine_mode omode, machine_mode imode,
9edf7ea8 895 const_rtx reg, poly_uint64 offset)
701e46d0 896{
68cc7e7b 897 poly_uint64 isize = GET_MODE_SIZE (imode);
898 poly_uint64 osize = GET_MODE_SIZE (omode);
899
900 /* The sizes must be ordered, so that we know whether the subreg
901 is partial, paradoxical or complete. */
902 if (!ordered_p (isize, osize))
903 return false;
2166bbaa 904
905 /* All subregs must be aligned. */
9edf7ea8 906 if (!multiple_p (offset, osize))
2166bbaa 907 return false;
908
909 /* The subreg offset cannot be outside the inner object. */
9edf7ea8 910 if (maybe_ge (offset, isize))
2166bbaa 911 return false;
912
68cc7e7b 913 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
44ce7b27 914
2166bbaa 915 /* ??? This should not be here. Temporarily continue to allow word_mode
916 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
917 Generally, backends are doing something sketchy but it'll take time to
918 fix them all. */
919 if (omode == word_mode)
920 ;
921 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
922 is the culprit here, and not the backends. */
68cc7e7b 923 else if (known_ge (osize, regsize) && known_ge (isize, osize))
2166bbaa 924 ;
925 /* Allow component subregs of complex and vector. Though given the below
926 extraction rules, it's not always clear what that means. */
927 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
928 && GET_MODE_INNER (imode) == omode)
929 ;
930 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
931 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
932 represent this. It's questionable if this ought to be represented at
933 all -- why can't this all be hidden in post-reload splitters that make
934 arbitrarily mode changes to the registers themselves. */
935 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
936 ;
937 /* Subregs involving floating point modes are not allowed to
938 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
939 (subreg:SI (reg:DF) 0) isn't. */
940 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
941 {
68cc7e7b 942 if (! (known_eq (isize, osize)
c6a6cdaa 943 /* LRA can use subreg to store a floating point value in
944 an integer mode. Although the floating point and the
945 integer modes need the same number of hard registers,
946 the size of floating point mode can be less than the
947 integer mode. LRA also uses subregs for a register
948 should be used in different mode in on insn. */
949 || lra_in_progress))
2166bbaa 950 return false;
951 }
701e46d0 952
2166bbaa 953 /* Paradoxical subregs must have offset zero. */
68cc7e7b 954 if (maybe_gt (osize, isize))
9edf7ea8 955 return known_eq (offset, 0U);
2166bbaa 956
957 /* This is a normal subreg. Verify that the offset is representable. */
958
959 /* For hard registers, we already have most of these rules collected in
960 subreg_offset_representable_p. */
961 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
962 {
963 unsigned int regno = REGNO (reg);
964
2166bbaa 965 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
966 && GET_MODE_INNER (imode) == omode)
967 ;
b56a9dbc 968 else if (!REG_CAN_CHANGE_MODE_P (regno, imode, omode))
2166bbaa 969 return false;
2166bbaa 970
971 return subreg_offset_representable_p (regno, imode, offset, omode);
972 }
973
68cc7e7b 974 /* The outer size must be ordered wrt the register size, otherwise
975 we wouldn't know at compile time how many registers the outer
976 mode occupies. */
977 if (!ordered_p (osize, regsize))
978 return false;
979
2166bbaa 980 /* For pseudo registers, we want most of the same checks. Namely:
44ce7b27 981
982 Assume that the pseudo register will be allocated to hard registers
983 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
984 the remainder must correspond to the lowpart of the containing hard
985 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
986 otherwise it is at the lowest offset.
987
988 Given that we've already checked the mode and offset alignment,
989 we only have to check subblock subregs here. */
68cc7e7b 990 if (maybe_lt (osize, regsize)
c6a6cdaa 991 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
2166bbaa 992 {
68cc7e7b 993 /* It is invalid for the target to pick a register size for a mode
994 that isn't ordered wrt to the size of that mode. */
995 poly_uint64 block_size = ordered_min (isize, regsize);
9edf7ea8 996 unsigned int start_reg;
997 poly_uint64 offset_within_reg;
998 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
999 || (BYTES_BIG_ENDIAN
1000 ? maybe_ne (offset_within_reg, block_size - osize)
1001 : maybe_ne (offset_within_reg, 0U)))
2166bbaa 1002 return false;
1003 }
1004 return true;
1005}
1006
1007rtx
9edf7ea8 1008gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
2166bbaa 1009{
1010 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
2ff23ed0 1011 return gen_rtx_raw_SUBREG (mode, reg, offset);
701e46d0 1012}
1013
c6259b83 1014/* Generate a SUBREG representing the least-significant part of REG if MODE
1015 is smaller than mode of REG, otherwise paradoxical SUBREG. */
1016
701e46d0 1017rtx
3754d046 1018gen_lowpart_SUBREG (machine_mode mode, rtx reg)
701e46d0 1019{
3754d046 1020 machine_mode inmode;
701e46d0 1021
1022 inmode = GET_MODE (reg);
1023 if (inmode == VOIDmode)
1024 inmode = mode;
81802af6 1025 return gen_rtx_SUBREG (mode, reg,
1026 subreg_lowpart_offset (mode, inmode));
701e46d0 1027}
e1398578 1028
1029rtx
3754d046 1030gen_rtx_VAR_LOCATION (machine_mode mode, tree decl, rtx loc,
e1398578 1031 enum var_init_status status)
1032{
1033 rtx x = gen_rtx_fmt_te (VAR_LOCATION, mode, decl, loc);
1034 PAT_VAR_LOCATION_STATUS (x) = status;
1035 return x;
1036}
7014838c 1037\f
15bbde2b 1038
cf9ac040 1039/* Create an rtvec and stores within it the RTXen passed in the arguments. */
1040
15bbde2b 1041rtvec
ee582a61 1042gen_rtvec (int n, ...)
15bbde2b 1043{
cf9ac040 1044 int i;
1045 rtvec rt_val;
ee582a61 1046 va_list p;
15bbde2b 1047
ee582a61 1048 va_start (p, n);
15bbde2b 1049
cf9ac040 1050 /* Don't allocate an empty rtvec... */
15bbde2b 1051 if (n == 0)
451c8e2f 1052 {
1053 va_end (p);
1054 return NULL_RTVEC;
1055 }
15bbde2b 1056
cf9ac040 1057 rt_val = rtvec_alloc (n);
e5fcd76a 1058
15bbde2b 1059 for (i = 0; i < n; i++)
cf9ac040 1060 rt_val->elem[i] = va_arg (p, rtx);
7ad77798 1061
ee582a61 1062 va_end (p);
cf9ac040 1063 return rt_val;
15bbde2b 1064}
1065
1066rtvec
35cb5232 1067gen_rtvec_v (int n, rtx *argp)
15bbde2b 1068{
19cb6b50 1069 int i;
1070 rtvec rt_val;
15bbde2b 1071
cf9ac040 1072 /* Don't allocate an empty rtvec... */
15bbde2b 1073 if (n == 0)
cf9ac040 1074 return NULL_RTVEC;
15bbde2b 1075
cf9ac040 1076 rt_val = rtvec_alloc (n);
15bbde2b 1077
1078 for (i = 0; i < n; i++)
a4070a91 1079 rt_val->elem[i] = *argp++;
15bbde2b 1080
1081 return rt_val;
1082}
f17e3fff 1083
1084rtvec
1085gen_rtvec_v (int n, rtx_insn **argp)
1086{
1087 int i;
1088 rtvec rt_val;
1089
1090 /* Don't allocate an empty rtvec... */
1091 if (n == 0)
1092 return NULL_RTVEC;
1093
1094 rt_val = rtvec_alloc (n);
1095
1096 for (i = 0; i < n; i++)
1097 rt_val->elem[i] = *argp++;
1098
1099 return rt_val;
1100}
1101
15bbde2b 1102\f
80c70e76 1103/* Return the number of bytes between the start of an OUTER_MODE
1104 in-memory value and the start of an INNER_MODE in-memory value,
1105 given that the former is a lowpart of the latter. It may be a
1106 paradoxical lowpart, in which case the offset will be negative
1107 on big-endian targets. */
1108
9edf7ea8 1109poly_int64
3754d046 1110byte_lowpart_offset (machine_mode outer_mode,
1111 machine_mode inner_mode)
80c70e76 1112{
d0257d43 1113 if (paradoxical_subreg_p (outer_mode, inner_mode))
80c70e76 1114 return -subreg_lowpart_offset (inner_mode, outer_mode);
d0257d43 1115 else
1116 return subreg_lowpart_offset (outer_mode, inner_mode);
80c70e76 1117}
57689c10 1118
1119/* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1120 from address X. For paradoxical big-endian subregs this is a
1121 negative value, otherwise it's the same as OFFSET. */
1122
9edf7ea8 1123poly_int64
57689c10 1124subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
9edf7ea8 1125 poly_uint64 offset)
57689c10 1126{
1127 if (paradoxical_subreg_p (outer_mode, inner_mode))
1128 {
9edf7ea8 1129 gcc_assert (known_eq (offset, 0U));
57689c10 1130 return -subreg_lowpart_offset (inner_mode, outer_mode);
1131 }
1132 return offset;
1133}
1134
1135/* As above, but return the offset that existing subreg X would have
1136 if SUBREG_REG (X) were stored in memory. The only significant thing
1137 about the current SUBREG_REG is its mode. */
1138
9edf7ea8 1139poly_int64
57689c10 1140subreg_memory_offset (const_rtx x)
1141{
1142 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1143 SUBREG_BYTE (x));
1144}
80c70e76 1145\f
15bbde2b 1146/* Generate a REG rtx for a new pseudo register of mode MODE.
1147 This pseudo is assigned the next sequential register number. */
1148
1149rtx
3754d046 1150gen_reg_rtx (machine_mode mode)
15bbde2b 1151{
19cb6b50 1152 rtx val;
27a7a23a 1153 unsigned int align = GET_MODE_ALIGNMENT (mode);
15bbde2b 1154
1b7ff857 1155 gcc_assert (can_create_pseudo_p ());
15bbde2b 1156
27a7a23a 1157 /* If a virtual register with bigger mode alignment is generated,
1158 increase stack alignment estimation because it might be spilled
1159 to stack later. */
48e1416a 1160 if (SUPPORTS_STACK_ALIGNMENT
27a7a23a 1161 && crtl->stack_alignment_estimated < align
1162 && !crtl->stack_realign_processed)
8645d3e7 1163 {
1164 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
1165 if (crtl->stack_alignment_estimated < min_align)
1166 crtl->stack_alignment_estimated = min_align;
1167 }
27a7a23a 1168
316bc009 1169 if (generating_concat_p
1170 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
1171 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
76c37538 1172 {
1173 /* For complex modes, don't make a single pseudo.
1174 Instead, make a CONCAT of two pseudos.
1175 This allows noncontiguous allocation of the real and imaginary parts,
1176 which makes much better code. Besides, allocating DCmode
1177 pseudos overstrains reload on some machines like the 386. */
1178 rtx realpart, imagpart;
3754d046 1179 machine_mode partmode = GET_MODE_INNER (mode);
76c37538 1180
1181 realpart = gen_reg_rtx (partmode);
1182 imagpart = gen_reg_rtx (partmode);
3ad7bb1c 1183 return gen_rtx_CONCAT (mode, realpart, imagpart);
76c37538 1184 }
1185
b4c6ce9b 1186 /* Do not call gen_reg_rtx with uninitialized crtl. */
1187 gcc_assert (crtl->emit.regno_pointer_align_length);
1188
cd769037 1189 crtl->emit.ensure_regno_capacity ();
1190 gcc_assert (reg_rtx_no < crtl->emit.regno_pointer_align_length);
15bbde2b 1191
cd769037 1192 val = gen_raw_REG (mode, reg_rtx_no);
1193 regno_reg_rtx[reg_rtx_no++] = val;
1194 return val;
1195}
fcdc122e 1196
cd769037 1197/* Make sure m_regno_pointer_align, and regno_reg_rtx are large
1198 enough to have elements in the range 0 <= idx <= reg_rtx_no. */
0a893c29 1199
cd769037 1200void
1201emit_status::ensure_regno_capacity ()
1202{
1203 int old_size = regno_pointer_align_length;
15bbde2b 1204
cd769037 1205 if (reg_rtx_no < old_size)
1206 return;
15bbde2b 1207
cd769037 1208 int new_size = old_size * 2;
1209 while (reg_rtx_no >= new_size)
1210 new_size *= 2;
1211
1212 char *tmp = XRESIZEVEC (char, regno_pointer_align, new_size);
1213 memset (tmp + old_size, 0, new_size - old_size);
1214 regno_pointer_align = (unsigned char *) tmp;
1215
1216 rtx *new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, new_size);
1217 memset (new1 + old_size, 0, (new_size - old_size) * sizeof (rtx));
1218 regno_reg_rtx = new1;
1219
1220 crtl->emit.regno_pointer_align_length = new_size;
15bbde2b 1221}
1222
ea239197 1223/* Return TRUE if REG is a PARM_DECL, FALSE otherwise. */
1224
1225bool
1226reg_is_parm_p (rtx reg)
1227{
1228 tree decl;
1229
1230 gcc_assert (REG_P (reg));
1231 decl = REG_EXPR (reg);
1232 return (decl && TREE_CODE (decl) == PARM_DECL);
1233}
1234
80c70e76 1235/* Update NEW with the same attributes as REG, but with OFFSET added
1236 to the REG_OFFSET. */
ca74b940 1237
1a6a0f2a 1238static void
a14d43f8 1239update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
ca74b940 1240{
9ce37fa7 1241 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
a14d43f8 1242 REG_OFFSET (reg) + offset);
1a6a0f2a 1243}
1244
80c70e76 1245/* Generate a register with same attributes as REG, but with OFFSET
1246 added to the REG_OFFSET. */
1a6a0f2a 1247
1248rtx
3754d046 1249gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
a14d43f8 1250 poly_int64 offset)
1a6a0f2a 1251{
9ce37fa7 1252 rtx new_rtx = gen_rtx_REG (mode, regno);
1a6a0f2a 1253
9ce37fa7 1254 update_reg_offset (new_rtx, reg, offset);
1255 return new_rtx;
1a6a0f2a 1256}
1257
1258/* Generate a new pseudo-register with the same attributes as REG, but
80c70e76 1259 with OFFSET added to the REG_OFFSET. */
1a6a0f2a 1260
1261rtx
3754d046 1262gen_reg_rtx_offset (rtx reg, machine_mode mode, int offset)
1a6a0f2a 1263{
9ce37fa7 1264 rtx new_rtx = gen_reg_rtx (mode);
1a6a0f2a 1265
9ce37fa7 1266 update_reg_offset (new_rtx, reg, offset);
1267 return new_rtx;
ca74b940 1268}
1269
80c70e76 1270/* Adjust REG in-place so that it has mode MODE. It is assumed that the
1271 new register is a (possibly paradoxical) lowpart of the old one. */
ca74b940 1272
1273void
3754d046 1274adjust_reg_mode (rtx reg, machine_mode mode)
ca74b940 1275{
80c70e76 1276 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
1277 PUT_MODE (reg, mode);
1278}
1279
1280/* Copy REG's attributes from X, if X has any attributes. If REG and X
1281 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1282
1283void
1284set_reg_attrs_from_value (rtx reg, rtx x)
1285{
a14d43f8 1286 poly_int64 offset;
e623c80a 1287 bool can_be_reg_pointer = true;
1288
1289 /* Don't call mark_reg_pointer for incompatible pointer sign
1290 extension. */
1291 while (GET_CODE (x) == SIGN_EXTEND
1292 || GET_CODE (x) == ZERO_EXTEND
1293 || GET_CODE (x) == TRUNCATE
1294 || (GET_CODE (x) == SUBREG && subreg_lowpart_p (x)))
1295 {
4dd7c283 1296#if defined(POINTERS_EXTEND_UNSIGNED)
1297 if (((GET_CODE (x) == SIGN_EXTEND && POINTERS_EXTEND_UNSIGNED)
afcace5c 1298 || (GET_CODE (x) == ZERO_EXTEND && ! POINTERS_EXTEND_UNSIGNED)
1299 || (paradoxical_subreg_p (x)
1300 && ! (SUBREG_PROMOTED_VAR_P (x)
1301 && SUBREG_CHECK_PROMOTED_SIGN (x,
1302 POINTERS_EXTEND_UNSIGNED))))
4dd7c283 1303 && !targetm.have_ptr_extend ())
e623c80a 1304 can_be_reg_pointer = false;
1305#endif
1306 x = XEXP (x, 0);
1307 }
80c70e76 1308
ac56145e 1309 /* Hard registers can be reused for multiple purposes within the same
1310 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
1311 on them is wrong. */
1312 if (HARD_REGISTER_P (reg))
1313 return;
1314
80c70e76 1315 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
ae12ddda 1316 if (MEM_P (x))
1317 {
da443c27 1318 if (MEM_OFFSET_KNOWN_P (x))
1319 REG_ATTRS (reg) = get_reg_attrs (MEM_EXPR (x),
1320 MEM_OFFSET (x) + offset);
e623c80a 1321 if (can_be_reg_pointer && MEM_POINTER (x))
40b93dba 1322 mark_reg_pointer (reg, 0);
ae12ddda 1323 }
1324 else if (REG_P (x))
1325 {
1326 if (REG_ATTRS (x))
1327 update_reg_offset (reg, x, offset);
e623c80a 1328 if (can_be_reg_pointer && REG_POINTER (x))
ae12ddda 1329 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
1330 }
1331}
1332
1333/* Generate a REG rtx for a new pseudo register, copying the mode
1334 and attributes from X. */
1335
1336rtx
1337gen_reg_rtx_and_attrs (rtx x)
1338{
1339 rtx reg = gen_reg_rtx (GET_MODE (x));
1340 set_reg_attrs_from_value (reg, x);
1341 return reg;
ca74b940 1342}
1343
263c416c 1344/* Set the register attributes for registers contained in PARM_RTX.
1345 Use needed values from memory attributes of MEM. */
1346
1347void
35cb5232 1348set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
263c416c 1349{
8ad4c111 1350 if (REG_P (parm_rtx))
80c70e76 1351 set_reg_attrs_from_value (parm_rtx, mem);
263c416c 1352 else if (GET_CODE (parm_rtx) == PARALLEL)
1353 {
1354 /* Check for a NULL entry in the first slot, used to indicate that the
1355 parameter goes both on the stack and in registers. */
1356 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1357 for (; i < XVECLEN (parm_rtx, 0); i++)
1358 {
1359 rtx x = XVECEXP (parm_rtx, 0, i);
8ad4c111 1360 if (REG_P (XEXP (x, 0)))
263c416c 1361 REG_ATTRS (XEXP (x, 0))
1362 = get_reg_attrs (MEM_EXPR (mem),
1363 INTVAL (XEXP (x, 1)));
1364 }
1365 }
1366}
1367
80c70e76 1368/* Set the REG_ATTRS for registers in value X, given that X represents
1369 decl T. */
ca74b940 1370
a8dd994c 1371void
80c70e76 1372set_reg_attrs_for_decl_rtl (tree t, rtx x)
1373{
94f92c36 1374 if (!t)
1375 return;
1376 tree tdecl = t;
80c70e76 1377 if (GET_CODE (x) == SUBREG)
ebfc27f5 1378 {
80c70e76 1379 gcc_assert (subreg_lowpart_p (x));
1380 x = SUBREG_REG (x);
ebfc27f5 1381 }
8ad4c111 1382 if (REG_P (x))
80c70e76 1383 REG_ATTRS (x)
1384 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
94f92c36 1385 DECL_P (tdecl)
1386 ? DECL_MODE (tdecl)
1387 : TYPE_MODE (TREE_TYPE (tdecl))));
ca74b940 1388 if (GET_CODE (x) == CONCAT)
1389 {
1390 if (REG_P (XEXP (x, 0)))
1391 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1392 if (REG_P (XEXP (x, 1)))
1393 REG_ATTRS (XEXP (x, 1))
1394 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1395 }
1396 if (GET_CODE (x) == PARALLEL)
1397 {
85d25060 1398 int i, start;
1399
1400 /* Check for a NULL entry, used to indicate that the parameter goes
1401 both on the stack and in registers. */
1402 if (XEXP (XVECEXP (x, 0, 0), 0))
1403 start = 0;
1404 else
1405 start = 1;
1406
1407 for (i = start; i < XVECLEN (x, 0); i++)
ca74b940 1408 {
1409 rtx y = XVECEXP (x, 0, i);
1410 if (REG_P (XEXP (y, 0)))
1411 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1412 }
1413 }
1414}
1415
80c70e76 1416/* Assign the RTX X to declaration T. */
1417
1418void
1419set_decl_rtl (tree t, rtx x)
1420{
1421 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1422 if (x)
1423 set_reg_attrs_for_decl_rtl (t, x);
1424}
1425
d91cf567 1426/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1427 if the ABI requires the parameter to be passed by reference. */
80c70e76 1428
1429void
d91cf567 1430set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
80c70e76 1431{
1432 DECL_INCOMING_RTL (t) = x;
d91cf567 1433 if (x && !by_reference_p)
80c70e76 1434 set_reg_attrs_for_decl_rtl (t, x);
1435}
1436
de8ecfb5 1437/* Identify REG (which may be a CONCAT) as a user register. */
1438
1439void
35cb5232 1440mark_user_reg (rtx reg)
de8ecfb5 1441{
1442 if (GET_CODE (reg) == CONCAT)
1443 {
1444 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1445 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1446 }
de8ecfb5 1447 else
611234b4 1448 {
1449 gcc_assert (REG_P (reg));
1450 REG_USERVAR_P (reg) = 1;
1451 }
de8ecfb5 1452}
1453
d4c332ff 1454/* Identify REG as a probable pointer register and show its alignment
1455 as ALIGN, if nonzero. */
15bbde2b 1456
1457void
35cb5232 1458mark_reg_pointer (rtx reg, int align)
15bbde2b 1459{
e61a0a7f 1460 if (! REG_POINTER (reg))
612409a6 1461 {
e61a0a7f 1462 REG_POINTER (reg) = 1;
d4c332ff 1463
612409a6 1464 if (align)
1465 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1466 }
1467 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
8b332087 1468 /* We can no-longer be sure just how aligned this pointer is. */
d4c332ff 1469 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
15bbde2b 1470}
1471
1472/* Return 1 plus largest pseudo reg number used in the current function. */
1473
1474int
35cb5232 1475max_reg_num (void)
15bbde2b 1476{
1477 return reg_rtx_no;
1478}
1479
1480/* Return 1 + the largest label number used so far in the current function. */
1481
1482int
35cb5232 1483max_label_num (void)
15bbde2b 1484{
15bbde2b 1485 return label_num;
1486}
1487
1488/* Return first label number used in this function (if any were used). */
1489
1490int
35cb5232 1491get_first_label_num (void)
15bbde2b 1492{
1493 return first_label_num;
1494}
4ee9c684 1495
1496/* If the rtx for label was created during the expansion of a nested
1497 function, then first_label_num won't include this label number.
f0b5f617 1498 Fix this now so that array indices work later. */
4ee9c684 1499
1500void
6313d5da 1501maybe_set_first_label_num (rtx_code_label *x)
4ee9c684 1502{
1503 if (CODE_LABEL_NUMBER (x) < first_label_num)
1504 first_label_num = CODE_LABEL_NUMBER (x);
1505}
836c1c68 1506
1507/* For use by the RTL function loader, when mingling with normal
1508 functions.
1509 Ensure that label_num is greater than the label num of X, to avoid
1510 duplicate labels in the generated assembler. */
1511
1512void
1513maybe_set_max_label_num (rtx_code_label *x)
1514{
1515 if (CODE_LABEL_NUMBER (x) >= label_num)
1516 label_num = CODE_LABEL_NUMBER (x) + 1;
1517}
1518
15bbde2b 1519\f
1520/* Return a value representing some low-order bits of X, where the number
1521 of low-order bits is given by MODE. Note that no conversion is done
d823ba47 1522 between floating-point and fixed-point values, rather, the bit
15bbde2b 1523 representation is returned.
1524
1525 This function handles the cases in common between gen_lowpart, below,
1526 and two variants in cse.c and combine.c. These are the cases that can
1527 be safely handled at all points in the compilation.
1528
1529 If this is not a case we can handle, return 0. */
1530
1531rtx
3754d046 1532gen_lowpart_common (machine_mode mode, rtx x)
15bbde2b 1533{
68cc7e7b 1534 poly_uint64 msize = GET_MODE_SIZE (mode);
3754d046 1535 machine_mode innermode;
791172c5 1536
1537 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1538 so we have to make one up. Yuk. */
1539 innermode = GET_MODE (x);
971ba038 1540 if (CONST_INT_P (x)
68cc7e7b 1541 && known_le (msize * BITS_PER_UNIT,
1542 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
517be012 1543 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
791172c5 1544 else if (innermode == VOIDmode)
517be012 1545 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
48e1416a 1546
611234b4 1547 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
15bbde2b 1548
791172c5 1549 if (innermode == mode)
15bbde2b 1550 return x;
1551
68cc7e7b 1552 /* The size of the outer and inner modes must be ordered. */
1553 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1554 if (!ordered_p (msize, xsize))
1555 return 0;
1556
44ce7b27 1557 if (SCALAR_FLOAT_MODE_P (mode))
1558 {
1559 /* Don't allow paradoxical FLOAT_MODE subregs. */
68cc7e7b 1560 if (maybe_gt (msize, xsize))
44ce7b27 1561 return 0;
1562 }
1563 else
1564 {
1565 /* MODE must occupy no more of the underlying registers than X. */
68cc7e7b 1566 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1567 unsigned int mregs, xregs;
1568 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1569 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1570 || mregs > xregs)
44ce7b27 1571 return 0;
1572 }
9abe1e73 1573
58a70f63 1574 scalar_int_mode int_mode, int_innermode, from_mode;
15bbde2b 1575 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
58a70f63 1576 && is_a <scalar_int_mode> (mode, &int_mode)
1577 && is_a <scalar_int_mode> (innermode, &int_innermode)
1578 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &from_mode))
15bbde2b 1579 {
1580 /* If we are getting the low-order part of something that has been
1581 sign- or zero-extended, we can either just use the object being
1582 extended or make a narrower extension. If we want an even smaller
1583 piece than the size of the object being extended, call ourselves
1584 recursively.
1585
1586 This case is used mostly by combine and cse. */
1587
58a70f63 1588 if (from_mode == int_mode)
15bbde2b 1589 return XEXP (x, 0);
58a70f63 1590 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (from_mode))
1591 return gen_lowpart_common (int_mode, XEXP (x, 0));
1592 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1593 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
15bbde2b 1594 }
8ad4c111 1595 else if (GET_CODE (x) == SUBREG || REG_P (x)
b58a8b74 1596 || GET_CODE (x) == CONCAT || const_vec_p (x)
bbad7cd0 1597 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1598 || CONST_POLY_INT_P (x))
a8a727ad 1599 return lowpart_subreg (mode, x, innermode);
4a307dd5 1600
15bbde2b 1601 /* Otherwise, we can't do this. */
1602 return 0;
1603}
1604\f
d56d0ca2 1605rtx
3754d046 1606gen_highpart (machine_mode mode, rtx x)
d56d0ca2 1607{
701e46d0 1608 unsigned int msize = GET_MODE_SIZE (mode);
81802af6 1609 rtx result;
701e46d0 1610
d56d0ca2 1611 /* This case loses if X is a subreg. To catch bugs early,
1612 complain if an invalid MODE is used even in other cases. */
611234b4 1613 gcc_assert (msize <= UNITS_PER_WORD
1614 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
701e46d0 1615
81802af6 1616 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1617 subreg_highpart_offset (mode, GET_MODE (x)));
611234b4 1618 gcc_assert (result);
48e1416a 1619
a8c36ab2 1620 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1621 the target if we have a MEM. gen_highpart must return a valid operand,
1622 emitting code if necessary to do so. */
611234b4 1623 if (MEM_P (result))
1624 {
1625 result = validize_mem (result);
1626 gcc_assert (result);
1627 }
48e1416a 1628
81802af6 1629 return result;
1630}
704fcf2b 1631
29d56731 1632/* Like gen_highpart, but accept mode of EXP operand in case EXP can
704fcf2b 1633 be VOIDmode constant. */
1634rtx
3754d046 1635gen_highpart_mode (machine_mode outermode, machine_mode innermode, rtx exp)
704fcf2b 1636{
1637 if (GET_MODE (exp) != VOIDmode)
1638 {
611234b4 1639 gcc_assert (GET_MODE (exp) == innermode);
704fcf2b 1640 return gen_highpart (outermode, exp);
1641 }
1642 return simplify_gen_subreg (outermode, exp, innermode,
1643 subreg_highpart_offset (outermode, innermode));
1644}
d4c5e26d 1645
ca99c787 1646/* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1647 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
10ef59ac 1648
9edf7ea8 1649poly_uint64
1650subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
81802af6 1651{
9edf7ea8 1652 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1653 if (maybe_gt (outer_bytes, inner_bytes))
ca99c787 1654 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1655 return 0;
701e46d0 1656
ca99c787 1657 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1658 return inner_bytes - outer_bytes;
1659 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1660 return 0;
1661 else
1662 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes, 0);
d56d0ca2 1663}
64ab453f 1664
ca99c787 1665/* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1666 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1667
9edf7ea8 1668poly_uint64
1669subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
64ab453f 1670{
9edf7ea8 1671 gcc_assert (known_ge (inner_bytes, outer_bytes));
64ab453f 1672
ca99c787 1673 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1674 return 0;
1675 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1676 return inner_bytes - outer_bytes;
1677 else
1678 return subreg_size_offset_from_lsb (outer_bytes, inner_bytes,
1679 (inner_bytes - outer_bytes)
1680 * BITS_PER_UNIT);
64ab453f 1681}
d56d0ca2 1682
15bbde2b 1683/* Return 1 iff X, assumed to be a SUBREG,
1684 refers to the least significant part of its containing reg.
1685 If X is not a SUBREG, always return 1 (it is its own low part!). */
1686
1687int
b7bf20db 1688subreg_lowpart_p (const_rtx x)
15bbde2b 1689{
1690 if (GET_CODE (x) != SUBREG)
1691 return 1;
7e14c1bf 1692 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1693 return 0;
15bbde2b 1694
9edf7ea8 1695 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1696 GET_MODE (SUBREG_REG (x))),
1697 SUBREG_BYTE (x));
15bbde2b 1698}
1699\f
701e46d0 1700/* Return subword OFFSET of operand OP.
1701 The word number, OFFSET, is interpreted as the word number starting
1702 at the low-order address. OFFSET 0 is the low-order word if not
1703 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1704
1705 If we cannot extract the required word, we return zero. Otherwise,
1706 an rtx corresponding to the requested word will be returned.
1707
1708 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1709 reload has completed, a valid address will always be returned. After
1710 reload, if a valid address cannot be returned, we return zero.
1711
1712 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1713 it is the responsibility of the caller.
1714
1715 MODE is the mode of OP in case it is a CONST_INT.
1716
1717 ??? This is still rather broken for some cases. The problem for the
1718 moment is that all callers of this thing provide no 'goal mode' to
1719 tell us to work with. This exists because all callers were written
84e81e84 1720 in a word based SUBREG world.
1721 Now use of this function can be deprecated by simplify_subreg in most
1722 cases.
1723 */
701e46d0 1724
1725rtx
b3d467b7 1726operand_subword (rtx op, poly_uint64 offset, int validate_address,
1727 machine_mode mode)
701e46d0 1728{
1729 if (mode == VOIDmode)
1730 mode = GET_MODE (op);
1731
611234b4 1732 gcc_assert (mode != VOIDmode);
701e46d0 1733
6312a35e 1734 /* If OP is narrower than a word, fail. */
701e46d0 1735 if (mode != BLKmode
b3d467b7 1736 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
701e46d0 1737 return 0;
1738
6312a35e 1739 /* If we want a word outside OP, return zero. */
701e46d0 1740 if (mode != BLKmode
b3d467b7 1741 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
701e46d0 1742 return const0_rtx;
1743
701e46d0 1744 /* Form a new MEM at the requested address. */
e16ceb8e 1745 if (MEM_P (op))
701e46d0 1746 {
9ce37fa7 1747 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
701e46d0 1748
e4e86ec5 1749 if (! validate_address)
9ce37fa7 1750 return new_rtx;
e4e86ec5 1751
1752 else if (reload_completed)
701e46d0 1753 {
bd1a81f7 1754 if (! strict_memory_address_addr_space_p (word_mode,
1755 XEXP (new_rtx, 0),
1756 MEM_ADDR_SPACE (op)))
e4e86ec5 1757 return 0;
701e46d0 1758 }
e4e86ec5 1759 else
9ce37fa7 1760 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
701e46d0 1761 }
1762
84e81e84 1763 /* Rest can be handled by simplify_subreg. */
1764 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
701e46d0 1765}
1766
89f18f73 1767/* Similar to `operand_subword', but never return 0. If we can't
1768 extract the required subword, put OP into a register and try again.
1769 The second attempt must succeed. We always validate the address in
1770 this case.
15bbde2b 1771
1772 MODE is the mode of OP, in case it is CONST_INT. */
1773
1774rtx
b3d467b7 1775operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
15bbde2b 1776{
701e46d0 1777 rtx result = operand_subword (op, offset, 1, mode);
15bbde2b 1778
1779 if (result)
1780 return result;
1781
1782 if (mode != BLKmode && mode != VOIDmode)
ac825d29 1783 {
1784 /* If this is a register which can not be accessed by words, copy it
1785 to a pseudo register. */
8ad4c111 1786 if (REG_P (op))
ac825d29 1787 op = copy_to_reg (op);
1788 else
1789 op = force_reg (mode, op);
1790 }
15bbde2b 1791
701e46d0 1792 result = operand_subword (op, offset, 1, mode);
611234b4 1793 gcc_assert (result);
15bbde2b 1794
1795 return result;
1796}
1797\f
711f137f 1798mem_attrs::mem_attrs ()
1799 : expr (NULL_TREE),
1800 offset (0),
1801 size (0),
1802 alias (0),
1803 align (0),
1804 addrspace (ADDR_SPACE_GENERIC),
1805 offset_known_p (false),
1806 size_known_p (false)
1807{}
1808
b3ff8d90 1809/* Returns 1 if both MEM_EXPR can be considered equal
1810 and 0 otherwise. */
1811
1812int
52d07779 1813mem_expr_equal_p (const_tree expr1, const_tree expr2)
b3ff8d90 1814{
1815 if (expr1 == expr2)
1816 return 1;
1817
1818 if (! expr1 || ! expr2)
1819 return 0;
1820
1821 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1822 return 0;
1823
3a443843 1824 return operand_equal_p (expr1, expr2, 0);
b3ff8d90 1825}
1826
ad0a178f 1827/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1828 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1829 -1 if not known. */
1830
1831int
7cfdc2f0 1832get_mem_align_offset (rtx mem, unsigned int align)
ad0a178f 1833{
1834 tree expr;
711f137f 1835 poly_uint64 offset;
ad0a178f 1836
1837 /* This function can't use
da443c27 1838 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
98ab9e8f 1839 || (MAX (MEM_ALIGN (mem),
957d0361 1840 MAX (align, get_object_alignment (MEM_EXPR (mem))))
ad0a178f 1841 < align))
1842 return -1;
1843 else
da443c27 1844 return (- MEM_OFFSET (mem)) & (align / BITS_PER_UNIT - 1);
ad0a178f 1845 for two reasons:
1846 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1847 for <variable>. get_inner_reference doesn't handle it and
1848 even if it did, the alignment in that case needs to be determined
1849 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1850 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1851 isn't sufficiently aligned, the object it is in might be. */
1852 gcc_assert (MEM_P (mem));
1853 expr = MEM_EXPR (mem);
da443c27 1854 if (expr == NULL_TREE || !MEM_OFFSET_KNOWN_P (mem))
ad0a178f 1855 return -1;
1856
da443c27 1857 offset = MEM_OFFSET (mem);
ad0a178f 1858 if (DECL_P (expr))
1859 {
1860 if (DECL_ALIGN (expr) < align)
1861 return -1;
1862 }
1863 else if (INDIRECT_REF_P (expr))
1864 {
1865 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1866 return -1;
1867 }
1868 else if (TREE_CODE (expr) == COMPONENT_REF)
1869 {
1870 while (1)
1871 {
1872 tree inner = TREE_OPERAND (expr, 0);
1873 tree field = TREE_OPERAND (expr, 1);
1874 tree byte_offset = component_ref_field_offset (expr);
1875 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1876
711f137f 1877 poly_uint64 suboffset;
ad0a178f 1878 if (!byte_offset
711f137f 1879 || !poly_int_tree_p (byte_offset, &suboffset)
e913b5cd 1880 || !tree_fits_uhwi_p (bit_offset))
ad0a178f 1881 return -1;
1882
711f137f 1883 offset += suboffset;
e913b5cd 1884 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
ad0a178f 1885
1886 if (inner == NULL_TREE)
1887 {
1888 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1889 < (unsigned int) align)
1890 return -1;
1891 break;
1892 }
1893 else if (DECL_P (inner))
1894 {
1895 if (DECL_ALIGN (inner) < align)
1896 return -1;
1897 break;
1898 }
1899 else if (TREE_CODE (inner) != COMPONENT_REF)
1900 return -1;
1901 expr = inner;
1902 }
1903 }
1904 else
1905 return -1;
1906
711f137f 1907 HOST_WIDE_INT misalign;
1908 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1909 return -1;
1910 return misalign;
ad0a178f 1911}
1912
310b57a1 1913/* Given REF (a MEM) and T, either the type of X or the expression
c6259b83 1914 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f717f77 1915 if we are making a new object of this type. BITPOS is nonzero if
1916 there is an offset outstanding on T that will be applied later. */
c6259b83 1917
1918void
35cb5232 1919set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
711f137f 1920 poly_int64 bitpos)
c6259b83 1921{
711f137f 1922 poly_int64 apply_bitpos = 0;
c6259b83 1923 tree type;
d72886b5 1924 struct mem_attrs attrs, *defattrs, *refattrs;
3f06bd1b 1925 addr_space_t as;
c6259b83 1926
1927 /* It can happen that type_for_mode was given a mode for which there
1928 is no language-level type. In which case it returns NULL, which
1929 we can see here. */
1930 if (t == NULL_TREE)
1931 return;
1932
1933 type = TYPE_P (t) ? t : TREE_TYPE (t);
4ccffa39 1934 if (type == error_mark_node)
1935 return;
c6259b83 1936
c6259b83 1937 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1938 wrong answer, as it assumes that DECL_RTL already has the right alias
1939 info. Callers should not set DECL_RTL until after the call to
1940 set_mem_attributes. */
611234b4 1941 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
c6259b83 1942
96216d37 1943 /* Get the alias set from the expression or type (perhaps using a
2a631e19 1944 front-end routine) and use it. */
d72886b5 1945 attrs.alias = get_alias_set (t);
c6259b83 1946
fbc6244b 1947 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
8d350e69 1948 MEM_POINTER (ref) = POINTER_TYPE_P (type);
c6259b83 1949
d8dccfe9 1950 /* Default values from pre-existing memory attributes if present. */
d72886b5 1951 refattrs = MEM_ATTRS (ref);
1952 if (refattrs)
d8dccfe9 1953 {
1954 /* ??? Can this ever happen? Calling this routine on a MEM that
1955 already carries memory attributes should probably be invalid. */
d72886b5 1956 attrs.expr = refattrs->expr;
6d58bcba 1957 attrs.offset_known_p = refattrs->offset_known_p;
d72886b5 1958 attrs.offset = refattrs->offset;
6d58bcba 1959 attrs.size_known_p = refattrs->size_known_p;
d72886b5 1960 attrs.size = refattrs->size;
1961 attrs.align = refattrs->align;
d8dccfe9 1962 }
1963
1964 /* Otherwise, default values from the mode of the MEM reference. */
d72886b5 1965 else
d8dccfe9 1966 {
d72886b5 1967 defattrs = mode_mem_attrs[(int) GET_MODE (ref)];
1968 gcc_assert (!defattrs->expr);
6d58bcba 1969 gcc_assert (!defattrs->offset_known_p);
d72886b5 1970
d8dccfe9 1971 /* Respect mode size. */
6d58bcba 1972 attrs.size_known_p = defattrs->size_known_p;
d72886b5 1973 attrs.size = defattrs->size;
d8dccfe9 1974 /* ??? Is this really necessary? We probably should always get
1975 the size from the type below. */
1976
1977 /* Respect mode alignment for STRICT_ALIGNMENT targets if T is a type;
1978 if T is an object, always compute the object alignment below. */
d72886b5 1979 if (TYPE_P (t))
1980 attrs.align = defattrs->align;
1981 else
1982 attrs.align = BITS_PER_UNIT;
d8dccfe9 1983 /* ??? If T is a type, respecting mode alignment may *also* be wrong
1984 e.g. if the type carries an alignment attribute. Should we be
1985 able to simply always use TYPE_ALIGN? */
1986 }
1987
b3b6e4b5 1988 /* We can set the alignment from the type if we are making an object or if
1989 this is an INDIRECT_REF. */
1990 if (objectp || TREE_CODE (t) == INDIRECT_REF)
d72886b5 1991 attrs.align = MAX (attrs.align, TYPE_ALIGN (type));
679e0056 1992
96216d37 1993 /* If the size is known, we can set that. */
50ba3acc 1994 tree new_size = TYPE_SIZE_UNIT (type);
96216d37 1995
9eec20bf 1996 /* The address-space is that of the type. */
1997 as = TYPE_ADDR_SPACE (type);
1998
579bccf9 1999 /* If T is not a type, we may be able to deduce some more information about
2000 the expression. */
2001 if (! TYPE_P (t))
2a631e19 2002 {
ae2dd339 2003 tree base;
b04fab2a 2004
2a631e19 2005 if (TREE_THIS_VOLATILE (t))
2006 MEM_VOLATILE_P (ref) = 1;
c6259b83 2007
3c00f11c 2008 /* Now remove any conversions: they don't change what the underlying
2009 object is. Likewise for SAVE_EXPR. */
72dd6141 2010 while (CONVERT_EXPR_P (t)
3c00f11c 2011 || TREE_CODE (t) == VIEW_CONVERT_EXPR
2012 || TREE_CODE (t) == SAVE_EXPR)
2a631e19 2013 t = TREE_OPERAND (t, 0);
2014
73eb0a09 2015 /* Note whether this expression can trap. */
2016 MEM_NOTRAP_P (ref) = !tree_could_trap_p (t);
2017
2018 base = get_base_address (t);
3f06bd1b 2019 if (base)
2020 {
2021 if (DECL_P (base)
2022 && TREE_READONLY (base)
2023 && (TREE_STATIC (base) || DECL_EXTERNAL (base))
2024 && !TREE_THIS_VOLATILE (base))
2025 MEM_READONLY_P (ref) = 1;
2026
2027 /* Mark static const strings readonly as well. */
2028 if (TREE_CODE (base) == STRING_CST
2029 && TREE_READONLY (base)
2030 && TREE_STATIC (base))
2031 MEM_READONLY_P (ref) = 1;
2032
9eec20bf 2033 /* Address-space information is on the base object. */
3f06bd1b 2034 if (TREE_CODE (base) == MEM_REF
2035 || TREE_CODE (base) == TARGET_MEM_REF)
2036 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (base,
2037 0))));
2038 else
2039 as = TYPE_ADDR_SPACE (TREE_TYPE (base));
2040 }
cab98a0d 2041
2b02580f 2042 /* If this expression uses it's parent's alias set, mark it such
2043 that we won't change it. */
d400f5e1 2044 if (component_uses_parent_alias_set_from (t) != NULL_TREE)
5cc193e7 2045 MEM_KEEP_ALIAS_SET_P (ref) = 1;
2046
2a631e19 2047 /* If this is a decl, set the attributes of the MEM from it. */
2048 if (DECL_P (t))
2049 {
d72886b5 2050 attrs.expr = t;
6d58bcba 2051 attrs.offset_known_p = true;
2052 attrs.offset = 0;
6f717f77 2053 apply_bitpos = bitpos;
50ba3acc 2054 new_size = DECL_SIZE_UNIT (t);
2a631e19 2055 }
2056
9eec20bf 2057 /* ??? If we end up with a constant here do record a MEM_EXPR. */
ce45a448 2058 else if (CONSTANT_CLASS_P (t))
9eec20bf 2059 ;
b10dbbca 2060
50ba3acc 2061 /* If this is a field reference, record it. */
2062 else if (TREE_CODE (t) == COMPONENT_REF)
b10dbbca 2063 {
d72886b5 2064 attrs.expr = t;
6d58bcba 2065 attrs.offset_known_p = true;
2066 attrs.offset = 0;
6f717f77 2067 apply_bitpos = bitpos;
50ba3acc 2068 if (DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
2069 new_size = DECL_SIZE_UNIT (TREE_OPERAND (t, 1));
b10dbbca 2070 }
2071
2072 /* If this is an array reference, look for an outer field reference. */
2073 else if (TREE_CODE (t) == ARRAY_REF)
2074 {
2075 tree off_tree = size_zero_node;
6b039979 2076 /* We can't modify t, because we use it at the end of the
2077 function. */
2078 tree t2 = t;
b10dbbca 2079
2080 do
2081 {
6b039979 2082 tree index = TREE_OPERAND (t2, 1);
6374121b 2083 tree low_bound = array_ref_low_bound (t2);
2084 tree unit_size = array_ref_element_size (t2);
97f8ce30 2085
2086 /* We assume all arrays have sizes that are a multiple of a byte.
2087 First subtract the lower bound, if any, in the type of the
6374121b 2088 index, then convert to sizetype and multiply by the size of
2089 the array element. */
2090 if (! integer_zerop (low_bound))
faa43f85 2091 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
2092 index, low_bound);
97f8ce30 2093
6374121b 2094 off_tree = size_binop (PLUS_EXPR,
535664e3 2095 size_binop (MULT_EXPR,
2096 fold_convert (sizetype,
2097 index),
6374121b 2098 unit_size),
2099 off_tree);
6b039979 2100 t2 = TREE_OPERAND (t2, 0);
b10dbbca 2101 }
6b039979 2102 while (TREE_CODE (t2) == ARRAY_REF);
b10dbbca 2103
9eec20bf 2104 if (DECL_P (t2)
6a57a1e8 2105 || (TREE_CODE (t2) == COMPONENT_REF
2106 /* For trailing arrays t2 doesn't have a size that
2107 covers all valid accesses. */
07110764 2108 && ! array_at_struct_end_p (t)))
b10dbbca 2109 {
d72886b5 2110 attrs.expr = t2;
6d58bcba 2111 attrs.offset_known_p = false;
711f137f 2112 if (poly_int_tree_p (off_tree, &attrs.offset))
6f717f77 2113 {
6d58bcba 2114 attrs.offset_known_p = true;
6f717f77 2115 apply_bitpos = bitpos;
2116 }
b10dbbca 2117 }
9eec20bf 2118 /* Else do not record a MEM_EXPR. */
2d8fe5d0 2119 }
2120
6d72287b 2121 /* If this is an indirect reference, record it. */
182cf5a9 2122 else if (TREE_CODE (t) == MEM_REF
5d9de213 2123 || TREE_CODE (t) == TARGET_MEM_REF)
6d72287b 2124 {
d72886b5 2125 attrs.expr = t;
6d58bcba 2126 attrs.offset_known_p = true;
2127 attrs.offset = 0;
6d72287b 2128 apply_bitpos = bitpos;
2129 }
2130
9eec20bf 2131 /* Compute the alignment. */
2132 unsigned int obj_align;
2133 unsigned HOST_WIDE_INT obj_bitpos;
2134 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
711f137f 2135 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
2136 if (diff_align != 0)
2137 obj_align = MIN (obj_align, diff_align);
9eec20bf 2138 attrs.align = MAX (attrs.align, obj_align);
2a631e19 2139 }
2140
711f137f 2141 poly_uint64 const_size;
2142 if (poly_int_tree_p (new_size, &const_size))
50ba3acc 2143 {
2144 attrs.size_known_p = true;
711f137f 2145 attrs.size = const_size;
50ba3acc 2146 }
2147
e2e205b3 2148 /* If we modified OFFSET based on T, then subtract the outstanding
595f1461 2149 bit position offset. Similarly, increase the size of the accessed
2150 object to contain the negative offset. */
711f137f 2151 if (maybe_ne (apply_bitpos, 0))
595f1461 2152 {
6d58bcba 2153 gcc_assert (attrs.offset_known_p);
711f137f 2154 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2155 attrs.offset -= bytepos;
6d58bcba 2156 if (attrs.size_known_p)
711f137f 2157 attrs.size += bytepos;
595f1461 2158 }
6f717f77 2159
2a631e19 2160 /* Now set the attributes we computed above. */
3f06bd1b 2161 attrs.addrspace = as;
d72886b5 2162 set_mem_attrs (ref, &attrs);
c6259b83 2163}
2164
6f717f77 2165void
35cb5232 2166set_mem_attributes (rtx ref, tree t, int objectp)
6f717f77 2167{
2168 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2169}
2170
c6259b83 2171/* Set the alias set of MEM to SET. */
2172
2173void
32c2fdea 2174set_mem_alias_set (rtx mem, alias_set_type set)
c6259b83 2175{
c6259b83 2176 /* If the new and old alias sets don't conflict, something is wrong. */
1b4345f7 2177 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
711f137f 2178 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2179 attrs.alias = set;
2180 set_mem_attrs (mem, &attrs);
bd1a81f7 2181}
2182
2183/* Set the address space of MEM to ADDRSPACE (target-defined). */
2184
2185void
2186set_mem_addr_space (rtx mem, addr_space_t addrspace)
2187{
711f137f 2188 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2189 attrs.addrspace = addrspace;
2190 set_mem_attrs (mem, &attrs);
c6259b83 2191}
96216d37 2192
1c4512da 2193/* Set the alignment of MEM to ALIGN bits. */
96216d37 2194
2195void
35cb5232 2196set_mem_align (rtx mem, unsigned int align)
96216d37 2197{
711f137f 2198 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2199 attrs.align = align;
2200 set_mem_attrs (mem, &attrs);
96216d37 2201}
278fe152 2202
b10dbbca 2203/* Set the expr for MEM to EXPR. */
278fe152 2204
2205void
35cb5232 2206set_mem_expr (rtx mem, tree expr)
278fe152 2207{
711f137f 2208 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2209 attrs.expr = expr;
2210 set_mem_attrs (mem, &attrs);
278fe152 2211}
b10dbbca 2212
2213/* Set the offset of MEM to OFFSET. */
2214
2215void
711f137f 2216set_mem_offset (rtx mem, poly_int64 offset)
b10dbbca 2217{
711f137f 2218 mem_attrs attrs (*get_mem_attrs (mem));
6d58bcba 2219 attrs.offset_known_p = true;
2220 attrs.offset = offset;
da443c27 2221 set_mem_attrs (mem, &attrs);
2222}
2223
2224/* Clear the offset of MEM. */
2225
2226void
2227clear_mem_offset (rtx mem)
2228{
711f137f 2229 mem_attrs attrs (*get_mem_attrs (mem));
6d58bcba 2230 attrs.offset_known_p = false;
d72886b5 2231 set_mem_attrs (mem, &attrs);
f0500469 2232}
2233
2234/* Set the size of MEM to SIZE. */
2235
2236void
711f137f 2237set_mem_size (rtx mem, poly_int64 size)
f0500469 2238{
711f137f 2239 mem_attrs attrs (*get_mem_attrs (mem));
6d58bcba 2240 attrs.size_known_p = true;
2241 attrs.size = size;
5b2a69fa 2242 set_mem_attrs (mem, &attrs);
2243}
2244
2245/* Clear the size of MEM. */
2246
2247void
2248clear_mem_size (rtx mem)
2249{
711f137f 2250 mem_attrs attrs (*get_mem_attrs (mem));
6d58bcba 2251 attrs.size_known_p = false;
d72886b5 2252 set_mem_attrs (mem, &attrs);
b10dbbca 2253}
c6259b83 2254\f
96216d37 2255/* Return a memory reference like MEMREF, but with its mode changed to MODE
2256 and its address changed to ADDR. (VOIDmode means don't change the mode.
2257 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
5cc04e45 2258 returned memory location is required to be valid. INPLACE is true if any
2259 changes can be made directly to MEMREF or false if MEMREF must be treated
2260 as immutable.
2261
2262 The memory attributes are not changed. */
15bbde2b 2263
96216d37 2264static rtx
3754d046 2265change_address_1 (rtx memref, machine_mode mode, rtx addr, int validate,
5cc04e45 2266 bool inplace)
15bbde2b 2267{
bd1a81f7 2268 addr_space_t as;
9ce37fa7 2269 rtx new_rtx;
15bbde2b 2270
611234b4 2271 gcc_assert (MEM_P (memref));
bd1a81f7 2272 as = MEM_ADDR_SPACE (memref);
15bbde2b 2273 if (mode == VOIDmode)
2274 mode = GET_MODE (memref);
2275 if (addr == 0)
2276 addr = XEXP (memref, 0);
3988ef8b 2277 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
bd1a81f7 2278 && (!validate || memory_address_addr_space_p (mode, addr, as)))
3988ef8b 2279 return memref;
15bbde2b 2280
73a18f44 2281 /* Don't validate address for LRA. LRA can make the address valid
2282 by itself in most efficient way. */
2283 if (validate && !lra_in_progress)
15bbde2b 2284 {
e4e86ec5 2285 if (reload_in_progress || reload_completed)
bd1a81f7 2286 gcc_assert (memory_address_addr_space_p (mode, addr, as));
e4e86ec5 2287 else
bd1a81f7 2288 addr = memory_address_addr_space (mode, addr, as);
15bbde2b 2289 }
d823ba47 2290
e8976cd7 2291 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2292 return memref;
2293
5cc04e45 2294 if (inplace)
2295 {
2296 XEXP (memref, 0) = addr;
2297 return memref;
2298 }
2299
9ce37fa7 2300 new_rtx = gen_rtx_MEM (mode, addr);
2301 MEM_COPY_ATTRIBUTES (new_rtx, memref);
2302 return new_rtx;
15bbde2b 2303}
537ffcfc 2304
96216d37 2305/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2306 way we are changing MEMREF, so we only preserve the alias set. */
e513d163 2307
2308rtx
3754d046 2309change_address (rtx memref, machine_mode mode, rtx addr)
e513d163 2310{
5cc04e45 2311 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
3754d046 2312 machine_mode mmode = GET_MODE (new_rtx);
711f137f 2313 struct mem_attrs *defattrs;
0ab96142 2314
711f137f 2315 mem_attrs attrs (*get_mem_attrs (memref));
d72886b5 2316 defattrs = mode_mem_attrs[(int) mmode];
6d58bcba 2317 attrs.expr = NULL_TREE;
2318 attrs.offset_known_p = false;
2319 attrs.size_known_p = defattrs->size_known_p;
d72886b5 2320 attrs.size = defattrs->size;
2321 attrs.align = defattrs->align;
6cc60c4d 2322
d28edf0d 2323 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2324 if (new_rtx == memref)
0ab96142 2325 {
d72886b5 2326 if (mem_attrs_eq_p (get_mem_attrs (memref), &attrs))
9ce37fa7 2327 return new_rtx;
0ab96142 2328
9ce37fa7 2329 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
2330 MEM_COPY_ATTRIBUTES (new_rtx, memref);
0ab96142 2331 }
d28edf0d 2332
d72886b5 2333 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2334 return new_rtx;
e513d163 2335}
537ffcfc 2336
96216d37 2337/* Return a memory reference like MEMREF, but with its mode changed
2338 to MODE and its address offset by OFFSET bytes. If VALIDATE is
bf42c62d 2339 nonzero, the memory address is forced to be valid.
2d0fd66d 2340 If ADJUST_ADDRESS is zero, OFFSET is only used to update MEM_ATTRS
2341 and the caller is responsible for adjusting MEMREF base register.
2342 If ADJUST_OBJECT is zero, the underlying object associated with the
2343 memory reference is left unchanged and the caller is responsible for
2344 dealing with it. Otherwise, if the new memory reference is outside
226c6baf 2345 the underlying object, even partially, then the object is dropped.
2346 SIZE, if nonzero, is the size of an access in cases where MODE
2347 has no inherent size. */
e4e86ec5 2348
2349rtx
711f137f 2350adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
226c6baf 2351 int validate, int adjust_address, int adjust_object,
711f137f 2352 poly_int64 size)
e4e86ec5 2353{
fb257ae6 2354 rtx addr = XEXP (memref, 0);
9ce37fa7 2355 rtx new_rtx;
f77c4496 2356 scalar_int_mode address_mode;
711f137f 2357 struct mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
d72886b5 2358 unsigned HOST_WIDE_INT max_align;
21b8bc7e 2359#ifdef POINTERS_EXTEND_UNSIGNED
f77c4496 2360 scalar_int_mode pointer_mode
21b8bc7e 2361 = targetm.addr_space.pointer_mode (attrs.addrspace);
2362#endif
fb257ae6 2363
4733f549 2364 /* VOIDmode means no mode change for change_address_1. */
2365 if (mode == VOIDmode)
2366 mode = GET_MODE (memref);
2367
226c6baf 2368 /* Take the size of non-BLKmode accesses from the mode. */
2369 defattrs = mode_mem_attrs[(int) mode];
2370 if (defattrs->size_known_p)
2371 size = defattrs->size;
2372
d28edf0d 2373 /* If there are no changes, just return the original memory reference. */
711f137f 2374 if (mode == GET_MODE (memref)
2375 && known_eq (offset, 0)
2376 && (known_eq (size, 0)
2377 || (attrs.size_known_p && known_eq (attrs.size, size)))
d72886b5 2378 && (!validate || memory_address_addr_space_p (mode, addr,
2379 attrs.addrspace)))
d28edf0d 2380 return memref;
2381
e36c3d58 2382 /* ??? Prefer to create garbage instead of creating shared rtl.
6ef828f9 2383 This may happen even if offset is nonzero -- consider
e36c3d58 2384 (plus (plus reg reg) const_int) -- so do this always. */
2385 addr = copy_rtx (addr);
2386
cfb75cdf 2387 /* Convert a possibly large offset to a signed value within the
2388 range of the target address space. */
87cf5753 2389 address_mode = get_address_mode (memref);
711f137f 2390 offset = trunc_int_for_mode (offset, address_mode);
cfb75cdf 2391
2d0fd66d 2392 if (adjust_address)
cd358719 2393 {
2394 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2395 object, we can merge it into the LO_SUM. */
711f137f 2396 if (GET_MODE (memref) != BLKmode
2397 && GET_CODE (addr) == LO_SUM
2398 && known_in_range_p (offset,
2399 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2400 / BITS_PER_UNIT)))
98155838 2401 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
29c05e22 2402 plus_constant (address_mode,
2403 XEXP (addr, 1), offset));
21b8bc7e 2404#ifdef POINTERS_EXTEND_UNSIGNED
2405 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2406 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2407 the fact that pointers are not allowed to overflow. */
2408 else if (POINTERS_EXTEND_UNSIGNED > 0
2409 && GET_CODE (addr) == ZERO_EXTEND
2410 && GET_MODE (XEXP (addr, 0)) == pointer_mode
711f137f 2411 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
21b8bc7e 2412 addr = gen_rtx_ZERO_EXTEND (address_mode,
2413 plus_constant (pointer_mode,
2414 XEXP (addr, 0), offset));
2415#endif
cd358719 2416 else
29c05e22 2417 addr = plus_constant (address_mode, addr, offset);
cd358719 2418 }
fb257ae6 2419
5cc04e45 2420 new_rtx = change_address_1 (memref, mode, addr, validate, false);
96216d37 2421
e077413c 2422 /* If the address is a REG, change_address_1 rightfully returns memref,
2423 but this would destroy memref's MEM_ATTRS. */
711f137f 2424 if (new_rtx == memref && maybe_ne (offset, 0))
e077413c 2425 new_rtx = copy_rtx (new_rtx);
2426
2d0fd66d 2427 /* Conservatively drop the object if we don't know where we start from. */
2428 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2429 {
2430 attrs.expr = NULL_TREE;
2431 attrs.alias = 0;
2432 }
2433
96216d37 2434 /* Compute the new values of the memory attributes due to this adjustment.
2435 We add the offsets and update the alignment. */
6d58bcba 2436 if (attrs.offset_known_p)
2d0fd66d 2437 {
2438 attrs.offset += offset;
2439
2440 /* Drop the object if the new left end is not within its bounds. */
711f137f 2441 if (adjust_object && maybe_lt (attrs.offset, 0))
2d0fd66d 2442 {
2443 attrs.expr = NULL_TREE;
2444 attrs.alias = 0;
2445 }
2446 }
96216d37 2447
b8098e5b 2448 /* Compute the new alignment by taking the MIN of the alignment and the
2449 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2450 if zero. */
711f137f 2451 if (maybe_ne (offset, 0))
d72886b5 2452 {
711f137f 2453 max_align = known_alignment (offset) * BITS_PER_UNIT;
d72886b5 2454 attrs.align = MIN (attrs.align, max_align);
2455 }
96216d37 2456
711f137f 2457 if (maybe_ne (size, 0))
6d58bcba 2458 {
2d0fd66d 2459 /* Drop the object if the new right end is not within its bounds. */
711f137f 2460 if (adjust_object && maybe_gt (offset + size, attrs.size))
2d0fd66d 2461 {
2462 attrs.expr = NULL_TREE;
2463 attrs.alias = 0;
2464 }
6d58bcba 2465 attrs.size_known_p = true;
226c6baf 2466 attrs.size = size;
6d58bcba 2467 }
2468 else if (attrs.size_known_p)
2d0fd66d 2469 {
226c6baf 2470 gcc_assert (!adjust_object);
2d0fd66d 2471 attrs.size -= offset;
226c6baf 2472 /* ??? The store_by_pieces machinery generates negative sizes,
2473 so don't assert for that here. */
2d0fd66d 2474 }
5cc193e7 2475
d72886b5 2476 set_mem_attrs (new_rtx, &attrs);
96216d37 2477
9ce37fa7 2478 return new_rtx;
e4e86ec5 2479}
2480
bf42c62d 2481/* Return a memory reference like MEMREF, but with its mode changed
2482 to MODE and its address changed to ADDR, which is assumed to be
f0b5f617 2483 MEMREF offset by OFFSET bytes. If VALIDATE is
bf42c62d 2484 nonzero, the memory address is forced to be valid. */
2485
2486rtx
3754d046 2487adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
711f137f 2488 poly_int64 offset, int validate)
bf42c62d 2489{
5cc04e45 2490 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
226c6baf 2491 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
bf42c62d 2492}
2493
2a631e19 2494/* Return a memory reference like MEMREF, but whose address is changed by
2495 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2496 known to be in OFFSET (possibly 1). */
fcdc122e 2497
2498rtx
35cb5232 2499offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
fcdc122e 2500{
9ce37fa7 2501 rtx new_rtx, addr = XEXP (memref, 0);
3754d046 2502 machine_mode address_mode;
711f137f 2503 struct mem_attrs *defattrs;
fac6aae6 2504
711f137f 2505 mem_attrs attrs (*get_mem_attrs (memref));
87cf5753 2506 address_mode = get_address_mode (memref);
98155838 2507 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
fac6aae6 2508
d4c5e26d 2509 /* At this point we don't know _why_ the address is invalid. It
917bbcab 2510 could have secondary memory references, multiplies or anything.
fac6aae6 2511
2512 However, if we did go and rearrange things, we can wind up not
2513 being able to recognize the magic around pic_offset_table_rtx.
2514 This stuff is fragile, and is yet another example of why it is
2515 bad to expose PIC machinery too early. */
d72886b5 2516 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx,
2517 attrs.addrspace)
fac6aae6 2518 && GET_CODE (addr) == PLUS
2519 && XEXP (addr, 0) == pic_offset_table_rtx)
2520 {
2521 addr = force_reg (GET_MODE (addr), addr);
98155838 2522 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
fac6aae6 2523 }
2524
9ce37fa7 2525 update_temp_slot_address (XEXP (memref, 0), new_rtx);
5cc04e45 2526 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1, false);
fcdc122e 2527
d28edf0d 2528 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2529 if (new_rtx == memref)
2530 return new_rtx;
d28edf0d 2531
fcdc122e 2532 /* Update the alignment to reflect the offset. Reset the offset, which
2533 we don't know. */
6d58bcba 2534 defattrs = mode_mem_attrs[(int) GET_MODE (new_rtx)];
2535 attrs.offset_known_p = false;
2536 attrs.size_known_p = defattrs->size_known_p;
2537 attrs.size = defattrs->size;
d72886b5 2538 attrs.align = MIN (attrs.align, pow2 * BITS_PER_UNIT);
2539 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2540 return new_rtx;
fcdc122e 2541}
d4c5e26d 2542
537ffcfc 2543/* Return a memory reference like MEMREF, but with its address changed to
2544 ADDR. The caller is asserting that the actual piece of memory pointed
2545 to is the same, just the form of the address is being changed, such as
5cc04e45 2546 by putting something into a register. INPLACE is true if any changes
2547 can be made directly to MEMREF or false if MEMREF must be treated as
2548 immutable. */
537ffcfc 2549
2550rtx
5cc04e45 2551replace_equiv_address (rtx memref, rtx addr, bool inplace)
537ffcfc 2552{
96216d37 2553 /* change_address_1 copies the memory attribute structure without change
2554 and that's exactly what we want here. */
ecfe4ca9 2555 update_temp_slot_address (XEXP (memref, 0), addr);
5cc04e45 2556 return change_address_1 (memref, VOIDmode, addr, 1, inplace);
537ffcfc 2557}
96216d37 2558
e4e86ec5 2559/* Likewise, but the reference is not required to be valid. */
2560
2561rtx
5cc04e45 2562replace_equiv_address_nv (rtx memref, rtx addr, bool inplace)
e4e86ec5 2563{
5cc04e45 2564 return change_address_1 (memref, VOIDmode, addr, 0, inplace);
e4e86ec5 2565}
8259ab07 2566
2567/* Return a memory reference like MEMREF, but with its mode widened to
2568 MODE and offset by OFFSET. This would be used by targets that e.g.
2569 cannot issue QImode memory operations and have to use SImode memory
2570 operations plus masking logic. */
2571
2572rtx
711f137f 2573widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
8259ab07 2574{
226c6baf 2575 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
8259ab07 2576 unsigned int size = GET_MODE_SIZE (mode);
2577
d28edf0d 2578 /* If there are no changes, just return the original memory reference. */
9ce37fa7 2579 if (new_rtx == memref)
2580 return new_rtx;
d28edf0d 2581
711f137f 2582 mem_attrs attrs (*get_mem_attrs (new_rtx));
d72886b5 2583
8259ab07 2584 /* If we don't know what offset we were at within the expression, then
2585 we can't know if we've overstepped the bounds. */
6d58bcba 2586 if (! attrs.offset_known_p)
d72886b5 2587 attrs.expr = NULL_TREE;
8259ab07 2588
d72886b5 2589 while (attrs.expr)
8259ab07 2590 {
d72886b5 2591 if (TREE_CODE (attrs.expr) == COMPONENT_REF)
8259ab07 2592 {
d72886b5 2593 tree field = TREE_OPERAND (attrs.expr, 1);
2594 tree offset = component_ref_field_offset (attrs.expr);
8259ab07 2595
2596 if (! DECL_SIZE_UNIT (field))
2597 {
d72886b5 2598 attrs.expr = NULL_TREE;
8259ab07 2599 break;
2600 }
2601
2602 /* Is the field at least as large as the access? If so, ok,
2603 otherwise strip back to the containing structure. */
711f137f 2604 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2605 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2606 && known_ge (attrs.offset, 0))
8259ab07 2607 break;
2608
711f137f 2609 poly_uint64 suboffset;
2610 if (!poly_int_tree_p (offset, &suboffset))
8259ab07 2611 {
d72886b5 2612 attrs.expr = NULL_TREE;
8259ab07 2613 break;
2614 }
2615
d72886b5 2616 attrs.expr = TREE_OPERAND (attrs.expr, 0);
711f137f 2617 attrs.offset += suboffset;
e913b5cd 2618 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
6d58bcba 2619 / BITS_PER_UNIT);
8259ab07 2620 }
2621 /* Similarly for the decl. */
d72886b5 2622 else if (DECL_P (attrs.expr)
2623 && DECL_SIZE_UNIT (attrs.expr)
711f137f 2624 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2625 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2626 size)
2627 && known_ge (attrs.offset, 0))
8259ab07 2628 break;
2629 else
2630 {
2631 /* The widened memory access overflows the expression, which means
2632 that it could alias another expression. Zap it. */
d72886b5 2633 attrs.expr = NULL_TREE;
8259ab07 2634 break;
2635 }
2636 }
2637
d72886b5 2638 if (! attrs.expr)
6d58bcba 2639 attrs.offset_known_p = false;
8259ab07 2640
2641 /* The widened memory may alias other stuff, so zap the alias set. */
2642 /* ??? Maybe use get_alias_set on any remaining expression. */
d72886b5 2643 attrs.alias = 0;
6d58bcba 2644 attrs.size_known_p = true;
2645 attrs.size = size;
d72886b5 2646 set_mem_attrs (new_rtx, &attrs);
9ce37fa7 2647 return new_rtx;
8259ab07 2648}
15bbde2b 2649\f
ac681e84 2650/* A fake decl that is used as the MEM_EXPR of spill slots. */
2651static GTY(()) tree spill_slot_decl;
2652
58029e61 2653tree
2654get_spill_slot_decl (bool force_build_p)
ac681e84 2655{
2656 tree d = spill_slot_decl;
2657 rtx rd;
2658
58029e61 2659 if (d || !force_build_p)
ac681e84 2660 return d;
2661
e60a6f7b 2662 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2663 VAR_DECL, get_identifier ("%sfp"), void_type_node);
ac681e84 2664 DECL_ARTIFICIAL (d) = 1;
2665 DECL_IGNORED_P (d) = 1;
2666 TREE_USED (d) = 1;
ac681e84 2667 spill_slot_decl = d;
2668
2669 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2670 MEM_NOTRAP_P (rd) = 1;
711f137f 2671 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
d72886b5 2672 attrs.alias = new_alias_set ();
2673 attrs.expr = d;
2674 set_mem_attrs (rd, &attrs);
ac681e84 2675 SET_DECL_RTL (d, rd);
2676
2677 return d;
2678}
2679
2680/* Given MEM, a result from assign_stack_local, fill in the memory
2681 attributes as appropriate for a register allocator spill slot.
2682 These slots are not aliasable by other memory. We arrange for
2683 them all to use a single MEM_EXPR, so that the aliasing code can
2684 work properly in the case of shared spill slots. */
2685
2686void
2687set_mem_attrs_for_spill (rtx mem)
2688{
d72886b5 2689 rtx addr;
ac681e84 2690
711f137f 2691 mem_attrs attrs (*get_mem_attrs (mem));
d72886b5 2692 attrs.expr = get_spill_slot_decl (true);
2693 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2694 attrs.addrspace = ADDR_SPACE_GENERIC;
ac681e84 2695
2696 /* We expect the incoming memory to be of the form:
2697 (mem:MODE (plus (reg sfp) (const_int offset)))
2698 with perhaps the plus missing for offset = 0. */
2699 addr = XEXP (mem, 0);
6d58bcba 2700 attrs.offset_known_p = true;
711f137f 2701 strip_offset (addr, &attrs.offset);
ac681e84 2702
d72886b5 2703 set_mem_attrs (mem, &attrs);
ac681e84 2704 MEM_NOTRAP_P (mem) = 1;
2705}
2706\f
15bbde2b 2707/* Return a newly created CODE_LABEL rtx with a unique label number. */
2708
be95c7c7 2709rtx_code_label *
35cb5232 2710gen_label_rtx (void)
15bbde2b 2711{
be95c7c7 2712 return as_a <rtx_code_label *> (
2713 gen_rtx_CODE_LABEL (VOIDmode, NULL_RTX, NULL_RTX,
2714 NULL, label_num++, NULL));
15bbde2b 2715}
2716\f
2717/* For procedure integration. */
2718
15bbde2b 2719/* Install new pointers to the first and last insns in the chain.
d4c332ff 2720 Also, set cur_insn_uid to one higher than the last in use.
15bbde2b 2721 Used for an inline-procedure after copying the insn chain. */
2722
2723void
57c26b3a 2724set_new_first_and_last_insn (rtx_insn *first, rtx_insn *last)
15bbde2b 2725{
57c26b3a 2726 rtx_insn *insn;
d4c332ff 2727
06f9d6ef 2728 set_first_insn (first);
2729 set_last_insn (last);
d4c332ff 2730 cur_insn_uid = 0;
2731
9845d120 2732 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2733 {
2734 int debug_count = 0;
2735
2736 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2737 cur_debug_insn_uid = 0;
2738
2739 for (insn = first; insn; insn = NEXT_INSN (insn))
2740 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2741 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2742 else
2743 {
2744 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2745 if (DEBUG_INSN_P (insn))
2746 debug_count++;
2747 }
2748
2749 if (debug_count)
2750 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2751 else
2752 cur_debug_insn_uid++;
2753 }
2754 else
2755 for (insn = first; insn; insn = NEXT_INSN (insn))
2756 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
d4c332ff 2757
2758 cur_insn_uid++;
15bbde2b 2759}
15bbde2b 2760\f
d823ba47 2761/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2762 structure. This routine should only be called once. */
15bbde2b 2763
a40c0eeb 2764static void
58945f46 2765unshare_all_rtl_1 (rtx_insn *insn)
15bbde2b 2766{
2d96a59a 2767 /* Unshare just about everything else. */
1cd4cfea 2768 unshare_all_rtl_in_chain (insn);
d823ba47 2769
15bbde2b 2770 /* Make sure the addresses of stack slots found outside the insn chain
2771 (such as, in DECL_RTL of a variable) are not shared
2772 with the insn chain.
2773
2774 This special care is necessary when the stack slot MEM does not
2775 actually appear in the insn chain. If it does appear, its address
2776 is unshared from all else at that point. */
84f4f7bf 2777 unsigned int i;
2778 rtx temp;
2779 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2780 (*stack_slot_list)[i] = copy_rtx_if_shared (temp);
15bbde2b 2781}
2782
d823ba47 2783/* Go through all the RTL insn bodies and copy any invalid shared
2d96a59a 2784 structure, again. This is a fairly expensive thing to do so it
2785 should be done sparingly. */
2786
2787void
58945f46 2788unshare_all_rtl_again (rtx_insn *insn)
2d96a59a 2789{
58945f46 2790 rtx_insn *p;
5244079b 2791 tree decl;
2792
2d96a59a 2793 for (p = insn; p; p = NEXT_INSN (p))
9204e736 2794 if (INSN_P (p))
2d96a59a 2795 {
2796 reset_used_flags (PATTERN (p));
2797 reset_used_flags (REG_NOTES (p));
6d2a4bac 2798 if (CALL_P (p))
2799 reset_used_flags (CALL_INSN_FUNCTION_USAGE (p));
2d96a59a 2800 }
5244079b 2801
01dc9f0c 2802 /* Make sure that virtual stack slots are not shared. */
265be050 2803 set_used_decls (DECL_INITIAL (cfun->decl));
01dc9f0c 2804
5244079b 2805 /* Make sure that virtual parameters are not shared. */
1767a056 2806 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
265be050 2807 set_used_flags (DECL_RTL (decl));
5244079b 2808
84f4f7bf 2809 rtx temp;
2810 unsigned int i;
2811 FOR_EACH_VEC_SAFE_ELT (stack_slot_list, i, temp)
2812 reset_used_flags (temp);
5244079b 2813
df329266 2814 unshare_all_rtl_1 (insn);
a40c0eeb 2815}
2816
2a1990e9 2817unsigned int
a40c0eeb 2818unshare_all_rtl (void)
2819{
df329266 2820 unshare_all_rtl_1 (get_insns ());
607381a9 2821
2822 for (tree decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
2823 {
2824 if (DECL_RTL_SET_P (decl))
2825 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
2826 DECL_INCOMING_RTL (decl) = copy_rtx_if_shared (DECL_INCOMING_RTL (decl));
2827 }
2828
2a1990e9 2829 return 0;
2d96a59a 2830}
2831
77fce4cd 2832
1cd4cfea 2833/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2834 Recursively does the same for subexpressions. */
2835
2836static void
2837verify_rtx_sharing (rtx orig, rtx insn)
2838{
2839 rtx x = orig;
2840 int i;
2841 enum rtx_code code;
2842 const char *format_ptr;
2843
2844 if (x == 0)
2845 return;
2846
2847 code = GET_CODE (x);
2848
2849 /* These types may be freely shared. */
2850
2851 switch (code)
2852 {
2853 case REG:
688ff29b 2854 case DEBUG_EXPR:
2855 case VALUE:
0349edce 2856 CASE_CONST_ANY:
1cd4cfea 2857 case SYMBOL_REF:
2858 case LABEL_REF:
2859 case CODE_LABEL:
2860 case PC:
2861 case CC0:
1a860023 2862 case RETURN:
9cb2517e 2863 case SIMPLE_RETURN:
1cd4cfea 2864 case SCRATCH:
c09425a0 2865 /* SCRATCH must be shared because they represent distinct values. */
b291008a 2866 return;
c09425a0 2867 case CLOBBER:
b291008a 2868 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2869 clobbers or clobbers of hard registers that originated as pseudos.
2870 This is needed to allow safe register renaming. */
2b5f32ae 2871 if (REG_P (XEXP (x, 0))
2872 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
2873 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
c09425a0 2874 return;
2875 break;
1cd4cfea 2876
2877 case CONST:
3072d30e 2878 if (shared_const_p (orig))
1cd4cfea 2879 return;
2880 break;
2881
2882 case MEM:
2883 /* A MEM is allowed to be shared if its address is constant. */
2884 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2885 || reload_completed || reload_in_progress)
2886 return;
2887
2888 break;
2889
2890 default:
2891 break;
2892 }
2893
2894 /* This rtx may not be shared. If it has already been seen,
2895 replace it with a copy of itself. */
382ecba7 2896 if (flag_checking && RTX_FLAG (x, used))
1cd4cfea 2897 {
0a81f5a0 2898 error ("invalid rtl sharing found in the insn");
1cd4cfea 2899 debug_rtx (insn);
0a81f5a0 2900 error ("shared rtx");
1cd4cfea 2901 debug_rtx (x);
0a81f5a0 2902 internal_error ("internal consistency failure");
1cd4cfea 2903 }
9cee7c3f 2904 gcc_assert (!RTX_FLAG (x, used));
48e1416a 2905
1cd4cfea 2906 RTX_FLAG (x, used) = 1;
2907
8b332087 2908 /* Now scan the subexpressions recursively. */
1cd4cfea 2909
2910 format_ptr = GET_RTX_FORMAT (code);
2911
2912 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2913 {
2914 switch (*format_ptr++)
2915 {
2916 case 'e':
2917 verify_rtx_sharing (XEXP (x, i), insn);
2918 break;
2919
2920 case 'E':
2921 if (XVEC (x, i) != NULL)
2922 {
2923 int j;
2924 int len = XVECLEN (x, i);
2925
2926 for (j = 0; j < len; j++)
2927 {
9cee7c3f 2928 /* We allow sharing of ASM_OPERANDS inside single
2929 instruction. */
1cd4cfea 2930 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
9cee7c3f 2931 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2932 == ASM_OPERANDS))
1cd4cfea 2933 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2934 else
2935 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2936 }
2937 }
2938 break;
2939 }
2940 }
2941 return;
2942}
2943
1e9af25c 2944/* Reset used-flags for INSN. */
2945
2946static void
2947reset_insn_used_flags (rtx insn)
2948{
2949 gcc_assert (INSN_P (insn));
2950 reset_used_flags (PATTERN (insn));
2951 reset_used_flags (REG_NOTES (insn));
2952 if (CALL_P (insn))
2953 reset_used_flags (CALL_INSN_FUNCTION_USAGE (insn));
2954}
2955
7cdd84a2 2956/* Go through all the RTL insn bodies and clear all the USED bits. */
1cd4cfea 2957
7cdd84a2 2958static void
2959reset_all_used_flags (void)
1cd4cfea 2960{
4cd001d5 2961 rtx_insn *p;
1cd4cfea 2962
2963 for (p = get_insns (); p; p = NEXT_INSN (p))
2964 if (INSN_P (p))
2965 {
1e9af25c 2966 rtx pat = PATTERN (p);
2967 if (GET_CODE (pat) != SEQUENCE)
2968 reset_insn_used_flags (p);
2969 else
764f640f 2970 {
1e9af25c 2971 gcc_assert (REG_NOTES (p) == NULL);
2972 for (int i = 0; i < XVECLEN (pat, 0); i++)
11c8949c 2973 {
2974 rtx insn = XVECEXP (pat, 0, i);
2975 if (INSN_P (insn))
2976 reset_insn_used_flags (insn);
2977 }
764f640f 2978 }
1cd4cfea 2979 }
7cdd84a2 2980}
2981
1e9af25c 2982/* Verify sharing in INSN. */
2983
2984static void
2985verify_insn_sharing (rtx insn)
2986{
2987 gcc_assert (INSN_P (insn));
44bf3f4e 2988 verify_rtx_sharing (PATTERN (insn), insn);
2989 verify_rtx_sharing (REG_NOTES (insn), insn);
1e9af25c 2990 if (CALL_P (insn))
44bf3f4e 2991 verify_rtx_sharing (CALL_INSN_FUNCTION_USAGE (insn), insn);
1e9af25c 2992}
2993
7cdd84a2 2994/* Go through all the RTL insn bodies and check that there is no unexpected
2995 sharing in between the subexpressions. */
2996
2997DEBUG_FUNCTION void
2998verify_rtl_sharing (void)
2999{
4cd001d5 3000 rtx_insn *p;
7cdd84a2 3001
3002 timevar_push (TV_VERIFY_RTL_SHARING);
3003
3004 reset_all_used_flags ();
1cd4cfea 3005
3006 for (p = get_insns (); p; p = NEXT_INSN (p))
3007 if (INSN_P (p))
3008 {
1e9af25c 3009 rtx pat = PATTERN (p);
3010 if (GET_CODE (pat) != SEQUENCE)
3011 verify_insn_sharing (p);
3012 else
3013 for (int i = 0; i < XVECLEN (pat, 0); i++)
11c8949c 3014 {
3015 rtx insn = XVECEXP (pat, 0, i);
3016 if (INSN_P (insn))
3017 verify_insn_sharing (insn);
3018 }
1cd4cfea 3019 }
4b366dd3 3020
7cdd84a2 3021 reset_all_used_flags ();
3022
4b366dd3 3023 timevar_pop (TV_VERIFY_RTL_SHARING);
1cd4cfea 3024}
3025
2d96a59a 3026/* Go through all the RTL insn bodies and copy any invalid shared structure.
3027 Assumes the mark bits are cleared at entry. */
3028
1cd4cfea 3029void
4cd001d5 3030unshare_all_rtl_in_chain (rtx_insn *insn)
2d96a59a 3031{
3032 for (; insn; insn = NEXT_INSN (insn))
9204e736 3033 if (INSN_P (insn))
2d96a59a 3034 {
3035 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
3036 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
6d2a4bac 3037 if (CALL_P (insn))
3038 CALL_INSN_FUNCTION_USAGE (insn)
3039 = copy_rtx_if_shared (CALL_INSN_FUNCTION_USAGE (insn));
2d96a59a 3040 }
3041}
3042
01dc9f0c 3043/* Go through all virtual stack slots of a function and mark them as
265be050 3044 shared. We never replace the DECL_RTLs themselves with a copy,
3045 but expressions mentioned into a DECL_RTL cannot be shared with
3046 expressions in the instruction stream.
3047
3048 Note that reload may convert pseudo registers into memories in-place.
3049 Pseudo registers are always shared, but MEMs never are. Thus if we
3050 reset the used flags on MEMs in the instruction stream, we must set
3051 them again on MEMs that appear in DECL_RTLs. */
3052
01dc9f0c 3053static void
265be050 3054set_used_decls (tree blk)
01dc9f0c 3055{
3056 tree t;
3057
3058 /* Mark decls. */
1767a056 3059 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
0e8e37b2 3060 if (DECL_RTL_SET_P (t))
265be050 3061 set_used_flags (DECL_RTL (t));
01dc9f0c 3062
3063 /* Now process sub-blocks. */
93110716 3064 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
265be050 3065 set_used_decls (t);
01dc9f0c 3066}
3067
15bbde2b 3068/* Mark ORIG as in use, and return a copy of it if it was already in use.
7ba6ce7a 3069 Recursively does the same for subexpressions. Uses
3070 copy_rtx_if_shared_1 to reduce stack space. */
15bbde2b 3071
3072rtx
35cb5232 3073copy_rtx_if_shared (rtx orig)
15bbde2b 3074{
0e0727c4 3075 copy_rtx_if_shared_1 (&orig);
3076 return orig;
3077}
3078
7ba6ce7a 3079/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
3080 use. Recursively does the same for subexpressions. */
3081
0e0727c4 3082static void
3083copy_rtx_if_shared_1 (rtx *orig1)
3084{
3085 rtx x;
19cb6b50 3086 int i;
3087 enum rtx_code code;
0e0727c4 3088 rtx *last_ptr;
19cb6b50 3089 const char *format_ptr;
15bbde2b 3090 int copied = 0;
0e0727c4 3091 int length;
3092
3093 /* Repeat is used to turn tail-recursion into iteration. */
3094repeat:
3095 x = *orig1;
15bbde2b 3096
3097 if (x == 0)
0e0727c4 3098 return;
15bbde2b 3099
3100 code = GET_CODE (x);
3101
3102 /* These types may be freely shared. */
3103
3104 switch (code)
3105 {
3106 case REG:
688ff29b 3107 case DEBUG_EXPR:
3108 case VALUE:
0349edce 3109 CASE_CONST_ANY:
15bbde2b 3110 case SYMBOL_REF:
1cd4cfea 3111 case LABEL_REF:
15bbde2b 3112 case CODE_LABEL:
3113 case PC:
3114 case CC0:
e0691b9a 3115 case RETURN:
9cb2517e 3116 case SIMPLE_RETURN:
15bbde2b 3117 case SCRATCH:
a92771b8 3118 /* SCRATCH must be shared because they represent distinct values. */
0e0727c4 3119 return;
c09425a0 3120 case CLOBBER:
b291008a 3121 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3122 clobbers or clobbers of hard registers that originated as pseudos.
3123 This is needed to allow safe register renaming. */
2b5f32ae 3124 if (REG_P (XEXP (x, 0))
3125 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3126 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (x, 0))))
c09425a0 3127 return;
3128 break;
15bbde2b 3129
f63d12e3 3130 case CONST:
3072d30e 3131 if (shared_const_p (x))
0e0727c4 3132 return;
f63d12e3 3133 break;
3134
9845d120 3135 case DEBUG_INSN:
15bbde2b 3136 case INSN:
3137 case JUMP_INSN:
3138 case CALL_INSN:
3139 case NOTE:
15bbde2b 3140 case BARRIER:
3141 /* The chain of insns is not being copied. */
0e0727c4 3142 return;
15bbde2b 3143
0dbd1c74 3144 default:
3145 break;
15bbde2b 3146 }
3147
3148 /* This rtx may not be shared. If it has already been seen,
3149 replace it with a copy of itself. */
3150
7c25cb91 3151 if (RTX_FLAG (x, used))
15bbde2b 3152 {
f2d0e9f1 3153 x = shallow_copy_rtx (x);
15bbde2b 3154 copied = 1;
3155 }
7c25cb91 3156 RTX_FLAG (x, used) = 1;
15bbde2b 3157
3158 /* Now scan the subexpressions recursively.
3159 We can store any replaced subexpressions directly into X
3160 since we know X is not shared! Any vectors in X
3161 must be copied if X was copied. */
3162
3163 format_ptr = GET_RTX_FORMAT (code);
0e0727c4 3164 length = GET_RTX_LENGTH (code);
3165 last_ptr = NULL;
48e1416a 3166
0e0727c4 3167 for (i = 0; i < length; i++)
15bbde2b 3168 {
3169 switch (*format_ptr++)
3170 {
3171 case 'e':
0e0727c4 3172 if (last_ptr)
3173 copy_rtx_if_shared_1 (last_ptr);
3174 last_ptr = &XEXP (x, i);
15bbde2b 3175 break;
3176
3177 case 'E':
3178 if (XVEC (x, i) != NULL)
3179 {
19cb6b50 3180 int j;
ffe0869b 3181 int len = XVECLEN (x, i);
48e1416a 3182
8b332087 3183 /* Copy the vector iff I copied the rtx and the length
3184 is nonzero. */
ffe0869b 3185 if (copied && len > 0)
a4070a91 3186 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
48e1416a 3187
d632b59a 3188 /* Call recursively on all inside the vector. */
ffe0869b 3189 for (j = 0; j < len; j++)
0e0727c4 3190 {
3191 if (last_ptr)
3192 copy_rtx_if_shared_1 (last_ptr);
3193 last_ptr = &XVECEXP (x, i, j);
3194 }
15bbde2b 3195 }
3196 break;
3197 }
3198 }
0e0727c4 3199 *orig1 = x;
3200 if (last_ptr)
3201 {
3202 orig1 = last_ptr;
3203 goto repeat;
3204 }
3205 return;
15bbde2b 3206}
3207
709947e6 3208/* Set the USED bit in X and its non-shareable subparts to FLAG. */
15bbde2b 3209
709947e6 3210static void
3211mark_used_flags (rtx x, int flag)
15bbde2b 3212{
19cb6b50 3213 int i, j;
3214 enum rtx_code code;
3215 const char *format_ptr;
0e0727c4 3216 int length;
15bbde2b 3217
0e0727c4 3218 /* Repeat is used to turn tail-recursion into iteration. */
3219repeat:
15bbde2b 3220 if (x == 0)
3221 return;
3222
3223 code = GET_CODE (x);
3224
c3418f42 3225 /* These types may be freely shared so we needn't do any resetting
15bbde2b 3226 for them. */
3227
3228 switch (code)
3229 {
3230 case REG:
688ff29b 3231 case DEBUG_EXPR:
3232 case VALUE:
0349edce 3233 CASE_CONST_ANY:
15bbde2b 3234 case SYMBOL_REF:
3235 case CODE_LABEL:
3236 case PC:
3237 case CC0:
e0691b9a 3238 case RETURN:
9cb2517e 3239 case SIMPLE_RETURN:
15bbde2b 3240 return;
3241
9845d120 3242 case DEBUG_INSN:
15bbde2b 3243 case INSN:
3244 case JUMP_INSN:
3245 case CALL_INSN:
3246 case NOTE:
3247 case LABEL_REF:
3248 case BARRIER:
3249 /* The chain of insns is not being copied. */
3250 return;
d823ba47 3251
0dbd1c74 3252 default:
3253 break;
15bbde2b 3254 }
3255
709947e6 3256 RTX_FLAG (x, used) = flag;
15bbde2b 3257
3258 format_ptr = GET_RTX_FORMAT (code);
0e0727c4 3259 length = GET_RTX_LENGTH (code);
48e1416a 3260
0e0727c4 3261 for (i = 0; i < length; i++)
15bbde2b 3262 {
3263 switch (*format_ptr++)
3264 {
3265 case 'e':
0e0727c4 3266 if (i == length-1)
3267 {
3268 x = XEXP (x, i);
3269 goto repeat;
3270 }
709947e6 3271 mark_used_flags (XEXP (x, i), flag);
15bbde2b 3272 break;
3273
3274 case 'E':
3275 for (j = 0; j < XVECLEN (x, i); j++)
709947e6 3276 mark_used_flags (XVECEXP (x, i, j), flag);
15bbde2b 3277 break;
3278 }
3279 }
3280}
1cd4cfea 3281
709947e6 3282/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
1cd4cfea 3283 to look for shared sub-parts. */
3284
3285void
709947e6 3286reset_used_flags (rtx x)
1cd4cfea 3287{
709947e6 3288 mark_used_flags (x, 0);
3289}
1cd4cfea 3290
709947e6 3291/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
3292 to look for shared sub-parts. */
1cd4cfea 3293
709947e6 3294void
3295set_used_flags (rtx x)
3296{
3297 mark_used_flags (x, 1);
1cd4cfea 3298}
15bbde2b 3299\f
3300/* Copy X if necessary so that it won't be altered by changes in OTHER.
3301 Return X or the rtx for the pseudo reg the value of X was copied into.
3302 OTHER must be valid as a SET_DEST. */
3303
3304rtx
35cb5232 3305make_safe_from (rtx x, rtx other)
15bbde2b 3306{
3307 while (1)
3308 switch (GET_CODE (other))
3309 {
3310 case SUBREG:
3311 other = SUBREG_REG (other);
3312 break;
3313 case STRICT_LOW_PART:
3314 case SIGN_EXTEND:
3315 case ZERO_EXTEND:
3316 other = XEXP (other, 0);
3317 break;
3318 default:
3319 goto done;
3320 }
3321 done:
e16ceb8e 3322 if ((MEM_P (other)
15bbde2b 3323 && ! CONSTANT_P (x)
8ad4c111 3324 && !REG_P (x)
15bbde2b 3325 && GET_CODE (x) != SUBREG)
8ad4c111 3326 || (REG_P (other)
15bbde2b 3327 && (REGNO (other) < FIRST_PSEUDO_REGISTER
3328 || reg_mentioned_p (other, x))))
3329 {
3330 rtx temp = gen_reg_rtx (GET_MODE (x));
3331 emit_move_insn (temp, x);
3332 return temp;
3333 }
3334 return x;
3335}
3336\f
3337/* Emission of insns (adding them to the doubly-linked list). */
3338
15bbde2b 3339/* Return the last insn emitted, even if it is in a sequence now pushed. */
3340
447ab0fc 3341rtx_insn *
35cb5232 3342get_last_insn_anywhere (void)
15bbde2b 3343{
c36aa54b 3344 struct sequence_stack *seq;
3345 for (seq = get_current_sequence (); seq; seq = seq->next)
3346 if (seq->last != 0)
3347 return seq->last;
15bbde2b 3348 return 0;
3349}
3350
70545de4 3351/* Return the first nonnote insn emitted in current sequence or current
3352 function. This routine looks inside SEQUENCEs. */
3353
2eb8c261 3354rtx_insn *
35cb5232 3355get_first_nonnote_insn (void)
70545de4 3356{
4cd001d5 3357 rtx_insn *insn = get_insns ();
f86e856e 3358
3359 if (insn)
3360 {
3361 if (NOTE_P (insn))
3362 for (insn = next_insn (insn);
3363 insn && NOTE_P (insn);
3364 insn = next_insn (insn))
3365 continue;
3366 else
3367 {
1c14a50e 3368 if (NONJUMP_INSN_P (insn)
f86e856e 3369 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4cd001d5 3370 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
f86e856e 3371 }
3372 }
70545de4 3373
3374 return insn;
3375}
3376
3377/* Return the last nonnote insn emitted in current sequence or current
3378 function. This routine looks inside SEQUENCEs. */
3379
2eb8c261 3380rtx_insn *
35cb5232 3381get_last_nonnote_insn (void)
70545de4 3382{
4cd001d5 3383 rtx_insn *insn = get_last_insn ();
f86e856e 3384
3385 if (insn)
3386 {
3387 if (NOTE_P (insn))
3388 for (insn = previous_insn (insn);
3389 insn && NOTE_P (insn);
3390 insn = previous_insn (insn))
3391 continue;
3392 else
3393 {
4cd001d5 3394 if (NONJUMP_INSN_P (insn))
3395 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3396 insn = seq->insn (seq->len () - 1);
f86e856e 3397 }
3398 }
70545de4 3399
3400 return insn;
3401}
3402
9845d120 3403/* Return the number of actual (non-debug) insns emitted in this
3404 function. */
3405
3406int
3407get_max_insn_count (void)
3408{
3409 int n = cur_insn_uid;
3410
3411 /* The table size must be stable across -g, to avoid codegen
3412 differences due to debug insns, and not be affected by
3413 -fmin-insn-uid, to avoid excessive table size and to simplify
3414 debugging of -fcompare-debug failures. */
3415 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3416 n -= cur_debug_insn_uid;
3417 else
3418 n -= MIN_NONDEBUG_INSN_UID;
3419
3420 return n;
3421}
3422
15bbde2b 3423\f
3424/* Return the next insn. If it is a SEQUENCE, return the first insn
3425 of the sequence. */
3426
7bac25b3 3427rtx_insn *
50895eab 3428next_insn (rtx_insn *insn)
15bbde2b 3429{
ce4469fa 3430 if (insn)
3431 {
3432 insn = NEXT_INSN (insn);
3433 if (insn && NONJUMP_INSN_P (insn)
3434 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4cd001d5 3435 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
ce4469fa 3436 }
15bbde2b 3437
4cd001d5 3438 return insn;
15bbde2b 3439}
3440
3441/* Return the previous insn. If it is a SEQUENCE, return the last insn
3442 of the sequence. */
3443
7bac25b3 3444rtx_insn *
50895eab 3445previous_insn (rtx_insn *insn)
15bbde2b 3446{
ce4469fa 3447 if (insn)
3448 {
3449 insn = PREV_INSN (insn);
4cd001d5 3450 if (insn && NONJUMP_INSN_P (insn))
3451 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (PATTERN (insn)))
3452 insn = seq->insn (seq->len () - 1);
ce4469fa 3453 }
15bbde2b 3454
4cd001d5 3455 return insn;
15bbde2b 3456}
3457
3458/* Return the next insn after INSN that is not a NOTE. This routine does not
3459 look inside SEQUENCEs. */
3460
7bac25b3 3461rtx_insn *
4066f31e 3462next_nonnote_insn (rtx_insn *insn)
15bbde2b 3463{
ce4469fa 3464 while (insn)
3465 {
3466 insn = NEXT_INSN (insn);
3467 if (insn == 0 || !NOTE_P (insn))
3468 break;
3469 }
15bbde2b 3470
4cd001d5 3471 return insn;
15bbde2b 3472}
3473
18fc6357 3474/* Return the next insn after INSN that is not a DEBUG_INSN. This
3475 routine does not look inside SEQUENCEs. */
c4d13c5c 3476
7bac25b3 3477rtx_insn *
18fc6357 3478next_nondebug_insn (rtx_insn *insn)
c4d13c5c 3479{
3480 while (insn)
3481 {
3482 insn = NEXT_INSN (insn);
18fc6357 3483 if (insn == 0 || !DEBUG_INSN_P (insn))
c4d13c5c 3484 break;
c4d13c5c 3485 }
3486
4cd001d5 3487 return insn;
c4d13c5c 3488}
3489
15bbde2b 3490/* Return the previous insn before INSN that is not a NOTE. This routine does
3491 not look inside SEQUENCEs. */
3492
7bac25b3 3493rtx_insn *
4066f31e 3494prev_nonnote_insn (rtx_insn *insn)
15bbde2b 3495{
ce4469fa 3496 while (insn)
3497 {
3498 insn = PREV_INSN (insn);
3499 if (insn == 0 || !NOTE_P (insn))
3500 break;
3501 }
15bbde2b 3502
4cd001d5 3503 return insn;
15bbde2b 3504}
3505
18fc6357 3506/* Return the previous insn before INSN that is not a DEBUG_INSN.
3507 This routine does not look inside SEQUENCEs. */
bcc66782 3508
7bac25b3 3509rtx_insn *
18fc6357 3510prev_nondebug_insn (rtx_insn *insn)
bcc66782 3511{
3512 while (insn)
3513 {
3514 insn = PREV_INSN (insn);
18fc6357 3515 if (insn == 0 || !DEBUG_INSN_P (insn))
bcc66782 3516 break;
bcc66782 3517 }
3518
4cd001d5 3519 return insn;
bcc66782 3520}
3521
18fc6357 3522/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3523 This routine does not look inside SEQUENCEs. */
9845d120 3524
7bac25b3 3525rtx_insn *
18fc6357 3526next_nonnote_nondebug_insn (rtx_insn *insn)
9845d120 3527{
3528 while (insn)
3529 {
3530 insn = NEXT_INSN (insn);
18fc6357 3531 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
9845d120 3532 break;
3533 }
3534
4cd001d5 3535 return insn;
9845d120 3536}
3537
18fc6357 3538/* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3539 but stop the search before we enter another basic block. This
3540 routine does not look inside SEQUENCEs. */
9845d120 3541
7bac25b3 3542rtx_insn *
18fc6357 3543next_nonnote_nondebug_insn_bb (rtx_insn *insn)
9845d120 3544{
3545 while (insn)
3546 {
18fc6357 3547 insn = NEXT_INSN (insn);
3548 if (insn == 0)
3549 break;
3550 if (DEBUG_INSN_P (insn))
3551 continue;
3552 if (!NOTE_P (insn))
9845d120 3553 break;
18fc6357 3554 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3555 return NULL;
9845d120 3556 }
3557
4cd001d5 3558 return insn;
9845d120 3559}
3560
18fc6357 3561/* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
5b8537a8 3562 This routine does not look inside SEQUENCEs. */
3563
7bac25b3 3564rtx_insn *
18fc6357 3565prev_nonnote_nondebug_insn (rtx_insn *insn)
5b8537a8 3566{
3567 while (insn)
3568 {
18fc6357 3569 insn = PREV_INSN (insn);
5b8537a8 3570 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3571 break;
3572 }
3573
4cd001d5 3574 return insn;
5b8537a8 3575}
3576
18fc6357 3577/* Return the previous insn before INSN that is not a NOTE nor
3578 DEBUG_INSN, but stop the search before we enter another basic
3579 block. This routine does not look inside SEQUENCEs. */
5b8537a8 3580
7bac25b3 3581rtx_insn *
18fc6357 3582prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
5b8537a8 3583{
3584 while (insn)
3585 {
3586 insn = PREV_INSN (insn);
18fc6357 3587 if (insn == 0)
5b8537a8 3588 break;
18fc6357 3589 if (DEBUG_INSN_P (insn))
3590 continue;
3591 if (!NOTE_P (insn))
3592 break;
3593 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3594 return NULL;
5b8537a8 3595 }
3596
4cd001d5 3597 return insn;
5b8537a8 3598}
3599
15bbde2b 3600/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3601 or 0, if there is none. This routine does not look inside
a92771b8 3602 SEQUENCEs. */
15bbde2b 3603
7bac25b3 3604rtx_insn *
4cd001d5 3605next_real_insn (rtx uncast_insn)
15bbde2b 3606{
4cd001d5 3607 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3608
ce4469fa 3609 while (insn)
3610 {
3611 insn = NEXT_INSN (insn);
3612 if (insn == 0 || INSN_P (insn))
3613 break;
3614 }
15bbde2b 3615
4cd001d5 3616 return insn;
15bbde2b 3617}
3618
3619/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3620 or 0, if there is none. This routine does not look inside
3621 SEQUENCEs. */
3622
7bac25b3 3623rtx_insn *
4067fcc6 3624prev_real_insn (rtx_insn *insn)
15bbde2b 3625{
ce4469fa 3626 while (insn)
3627 {
3628 insn = PREV_INSN (insn);
3629 if (insn == 0 || INSN_P (insn))
3630 break;
3631 }
15bbde2b 3632
4cd001d5 3633 return insn;
15bbde2b 3634}
3635
d5f9786f 3636/* Return the last CALL_INSN in the current list, or 0 if there is none.
3637 This routine does not look inside SEQUENCEs. */
3638
ec22da62 3639rtx_call_insn *
35cb5232 3640last_call_insn (void)
d5f9786f 3641{
ec22da62 3642 rtx_insn *insn;
d5f9786f 3643
3644 for (insn = get_last_insn ();
6d7dc5b9 3645 insn && !CALL_P (insn);
d5f9786f 3646 insn = PREV_INSN (insn))
3647 ;
3648
ec22da62 3649 return safe_as_a <rtx_call_insn *> (insn);
d5f9786f 3650}
3651
15bbde2b 3652/* Find the next insn after INSN that really does something. This routine
084950ee 3653 does not look inside SEQUENCEs. After reload this also skips over
3654 standalone USE and CLOBBER insn. */
15bbde2b 3655
2215ca0d 3656int
41503955 3657active_insn_p (const rtx_insn *insn)
2215ca0d 3658{
6d7dc5b9 3659 return (CALL_P (insn) || JUMP_P (insn)
91f71fa3 3660 || JUMP_TABLE_DATA_P (insn) /* FIXME */
6d7dc5b9 3661 || (NONJUMP_INSN_P (insn)
3a66feab 3662 && (! reload_completed
3663 || (GET_CODE (PATTERN (insn)) != USE
3664 && GET_CODE (PATTERN (insn)) != CLOBBER))));
2215ca0d 3665}
3666
7bac25b3 3667rtx_insn *
41503955 3668next_active_insn (rtx_insn *insn)
15bbde2b 3669{
ce4469fa 3670 while (insn)
3671 {
3672 insn = NEXT_INSN (insn);
3673 if (insn == 0 || active_insn_p (insn))
3674 break;
3675 }
15bbde2b 3676
4cd001d5 3677 return insn;
15bbde2b 3678}
3679
3680/* Find the last insn before INSN that really does something. This routine
084950ee 3681 does not look inside SEQUENCEs. After reload this also skips over
3682 standalone USE and CLOBBER insn. */
15bbde2b 3683
7bac25b3 3684rtx_insn *
41503955 3685prev_active_insn (rtx_insn *insn)
15bbde2b 3686{
ce4469fa 3687 while (insn)
3688 {
3689 insn = PREV_INSN (insn);
3690 if (insn == 0 || active_insn_p (insn))
3691 break;
3692 }
15bbde2b 3693
4cd001d5 3694 return insn;
15bbde2b 3695}
15bbde2b 3696\f
15bbde2b 3697/* Return the next insn that uses CC0 after INSN, which is assumed to
3698 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3699 applied to the result of this function should yield INSN).
3700
3701 Normally, this is simply the next insn. However, if a REG_CC_USER note
3702 is present, it contains the insn that uses CC0.
3703
3704 Return 0 if we can't find the insn. */
3705
0be88abd 3706rtx_insn *
924a5cee 3707next_cc0_user (rtx_insn *insn)
15bbde2b 3708{
b572011e 3709 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
15bbde2b 3710
3711 if (note)
0be88abd 3712 return safe_as_a <rtx_insn *> (XEXP (note, 0));
15bbde2b 3713
3714 insn = next_nonnote_insn (insn);
6d7dc5b9 3715 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4cd001d5 3716 insn = as_a <rtx_sequence *> (PATTERN (insn))->insn (0);
15bbde2b 3717
9204e736 3718 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
4cd001d5 3719 return insn;
15bbde2b 3720
3721 return 0;
3722}
3723
3724/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3725 note, it is the previous insn. */
3726
0be88abd 3727rtx_insn *
fd8b0a1a 3728prev_cc0_setter (rtx_insn *insn)
15bbde2b 3729{
b572011e 3730 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
15bbde2b 3731
3732 if (note)
0be88abd 3733 return safe_as_a <rtx_insn *> (XEXP (note, 0));
15bbde2b 3734
3735 insn = prev_nonnote_insn (insn);
611234b4 3736 gcc_assert (sets_cc0_p (PATTERN (insn)));
15bbde2b 3737
4cd001d5 3738 return insn;
15bbde2b 3739}
344dc2fa 3740
698ff1f0 3741/* Find a RTX_AUTOINC class rtx which matches DATA. */
3742
3743static int
4073adaa 3744find_auto_inc (const_rtx x, const_rtx reg)
698ff1f0 3745{
4073adaa 3746 subrtx_iterator::array_type array;
3747 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
698ff1f0 3748 {
4073adaa 3749 const_rtx x = *iter;
3750 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC
3751 && rtx_equal_p (reg, XEXP (x, 0)))
3752 return true;
698ff1f0 3753 }
4073adaa 3754 return false;
698ff1f0 3755}
698ff1f0 3756
344dc2fa 3757/* Increment the label uses for all labels present in rtx. */
3758
3759static void
35cb5232 3760mark_label_nuses (rtx x)
344dc2fa 3761{
19cb6b50 3762 enum rtx_code code;
3763 int i, j;
3764 const char *fmt;
344dc2fa 3765
3766 code = GET_CODE (x);
c7799456 3767 if (code == LABEL_REF && LABEL_P (label_ref_label (x)))
3768 LABEL_NUSES (label_ref_label (x))++;
344dc2fa 3769
3770 fmt = GET_RTX_FORMAT (code);
3771 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3772 {
3773 if (fmt[i] == 'e')
ff385626 3774 mark_label_nuses (XEXP (x, i));
344dc2fa 3775 else if (fmt[i] == 'E')
ff385626 3776 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
344dc2fa 3777 mark_label_nuses (XVECEXP (x, i, j));
3778 }
3779}
3780
15bbde2b 3781\f
3782/* Try splitting insns that can be split for better scheduling.
3783 PAT is the pattern which might split.
3784 TRIAL is the insn providing PAT.
6ef828f9 3785 LAST is nonzero if we should return the last insn of the sequence produced.
15bbde2b 3786
3787 If this routine succeeds in splitting, it returns the first or last
0e69a50a 3788 replacement insn depending on the value of LAST. Otherwise, it
15bbde2b 3789 returns TRIAL. If the insn to be returned can be split, it will be. */
3790
bffa1357 3791rtx_insn *
58a87a29 3792try_split (rtx pat, rtx_insn *trial, int last)
15bbde2b 3793{
3b50f202 3794 rtx_insn *before, *after;
4cd001d5 3795 rtx note;
3796 rtx_insn *seq, *tem;
61cb1816 3797 profile_probability probability;
4cd001d5 3798 rtx_insn *insn_last, *insn;
e13693ec 3799 int njumps = 0;
9ed997be 3800 rtx_insn *call_insn = NULL;
3cd757b1 3801
25e880b1 3802 /* We're not good at redistributing frame information. */
3803 if (RTX_FRAME_RELATED_P (trial))
4cd001d5 3804 return trial;
25e880b1 3805
3cd757b1 3806 if (any_condjump_p (trial)
3807 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
61cb1816 3808 split_branch_probability
3809 = profile_probability::from_reg_br_prob_note (XINT (note, 0));
3810 else
3811 split_branch_probability = profile_probability::uninitialized ();
3812
3cd757b1 3813 probability = split_branch_probability;
3814
58a87a29 3815 seq = split_insns (pat, trial);
3cd757b1 3816
61cb1816 3817 split_branch_probability = profile_probability::uninitialized ();
15bbde2b 3818
e13693ec 3819 if (!seq)
4cd001d5 3820 return trial;
e13693ec 3821
3822 /* Avoid infinite loop if any insn of the result matches
3823 the original pattern. */
3824 insn_last = seq;
3825 while (1)
15bbde2b 3826 {
e13693ec 3827 if (INSN_P (insn_last)
3828 && rtx_equal_p (PATTERN (insn_last), pat))
4cd001d5 3829 return trial;
e13693ec 3830 if (!NEXT_INSN (insn_last))
3831 break;
3832 insn_last = NEXT_INSN (insn_last);
3833 }
d823ba47 3834
3072d30e 3835 /* We will be adding the new sequence to the function. The splitters
3836 may have introduced invalid RTL sharing, so unshare the sequence now. */
3837 unshare_all_rtl_in_chain (seq);
3838
8f869004 3839 /* Mark labels and copy flags. */
e13693ec 3840 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3841 {
6d7dc5b9 3842 if (JUMP_P (insn))
e13693ec 3843 {
8f869004 3844 if (JUMP_P (trial))
3845 CROSSING_JUMP_P (insn) = CROSSING_JUMP_P (trial);
e13693ec 3846 mark_jump_label (PATTERN (insn), insn, 0);
3847 njumps++;
61cb1816 3848 if (probability.initialized_p ()
e13693ec 3849 && any_condjump_p (insn)
3850 && !find_reg_note (insn, REG_BR_PROB, 0))
31d3e01c 3851 {
e13693ec 3852 /* We can preserve the REG_BR_PROB notes only if exactly
3853 one jump is created, otherwise the machine description
3854 is responsible for this step using
3855 split_branch_probability variable. */
611234b4 3856 gcc_assert (njumps == 1);
61cb1816 3857 add_reg_br_prob_note (insn, probability);
31d3e01c 3858 }
e13693ec 3859 }
3860 }
3861
3862 /* If we are splitting a CALL_INSN, look for the CALL_INSN
b0bd0491 3863 in SEQ and copy any additional information across. */
6d7dc5b9 3864 if (CALL_P (trial))
e13693ec 3865 {
3866 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
6d7dc5b9 3867 if (CALL_P (insn))
e13693ec 3868 {
4cd001d5 3869 rtx_insn *next;
3870 rtx *p;
b0bd0491 3871
2e3b0d0f 3872 gcc_assert (call_insn == NULL_RTX);
3873 call_insn = insn;
3874
b0bd0491 3875 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3876 target may have explicitly specified. */
3877 p = &CALL_INSN_FUNCTION_USAGE (insn);
0bb5a6cd 3878 while (*p)
3879 p = &XEXP (*p, 1);
3880 *p = CALL_INSN_FUNCTION_USAGE (trial);
b0bd0491 3881
3882 /* If the old call was a sibling call, the new one must
3883 be too. */
e13693ec 3884 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
b0bd0491 3885
3886 /* If the new call is the last instruction in the sequence,
3887 it will effectively replace the old call in-situ. Otherwise
3888 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3889 so that it comes immediately after the new call. */
3890 if (NEXT_INSN (insn))
47e1410d 3891 for (next = NEXT_INSN (trial);
3892 next && NOTE_P (next);
3893 next = NEXT_INSN (next))
3894 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
b0bd0491 3895 {
3896 remove_insn (next);
3897 add_insn_after (next, insn, NULL);
47e1410d 3898 break;
b0bd0491 3899 }
e13693ec 3900 }
3901 }
5262c253 3902
e13693ec 3903 /* Copy notes, particularly those related to the CFG. */
3904 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3905 {
3906 switch (REG_NOTE_KIND (note))
3907 {
3908 case REG_EH_REGION:
e38def9c 3909 copy_reg_eh_region_note_backward (note, insn_last, NULL);
e13693ec 3910 break;
381eb1e7 3911
e13693ec 3912 case REG_NORETURN:
3913 case REG_SETJMP:
4c0315d0 3914 case REG_TM:
3c0f15b4 3915 case REG_CALL_NOCF_CHECK:
698ff1f0 3916 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
381eb1e7 3917 {
6d7dc5b9 3918 if (CALL_P (insn))
a1ddb869 3919 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
381eb1e7 3920 }
e13693ec 3921 break;
5bb27a4b 3922
e13693ec 3923 case REG_NON_LOCAL_GOTO:
698ff1f0 3924 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
31d3e01c 3925 {
6d7dc5b9 3926 if (JUMP_P (insn))
a1ddb869 3927 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
31d3e01c 3928 }
e13693ec 3929 break;
344dc2fa 3930
698ff1f0 3931 case REG_INC:
32aa77d9 3932 if (!AUTO_INC_DEC)
3933 break;
3934
698ff1f0 3935 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3936 {
3937 rtx reg = XEXP (note, 0);
3938 if (!FIND_REG_INC_NOTE (insn, reg)
4073adaa 3939 && find_auto_inc (PATTERN (insn), reg))
a1ddb869 3940 add_reg_note (insn, REG_INC, reg);
698ff1f0 3941 }
3942 break;
698ff1f0 3943
dfe00a8f 3944 case REG_ARGS_SIZE:
f6a1fc98 3945 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
dfe00a8f 3946 break;
3947
2e3b0d0f 3948 case REG_CALL_DECL:
3949 gcc_assert (call_insn != NULL_RTX);
3950 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3951 break;
3952
e13693ec 3953 default:
3954 break;
15bbde2b 3955 }
e13693ec 3956 }
3957
3958 /* If there are LABELS inside the split insns increment the
3959 usage count so we don't delete the label. */
19d2fe05 3960 if (INSN_P (trial))
e13693ec 3961 {
3962 insn = insn_last;
3963 while (insn != NULL_RTX)
15bbde2b 3964 {
19d2fe05 3965 /* JUMP_P insns have already been "marked" above. */
6d7dc5b9 3966 if (NONJUMP_INSN_P (insn))
e13693ec 3967 mark_label_nuses (PATTERN (insn));
15bbde2b 3968
e13693ec 3969 insn = PREV_INSN (insn);
3970 }
15bbde2b 3971 }
3972
3b50f202 3973 before = PREV_INSN (trial);
3974 after = NEXT_INSN (trial);
3975
5169661d 3976 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATION (trial));
e13693ec 3977
3978 delete_insn (trial);
e13693ec 3979
3980 /* Recursively call try_split for each new insn created; by the
3981 time control returns here that insn will be fully split, so
3982 set LAST and continue from the insn after the one returned.
3983 We can't use next_active_insn here since AFTER may be a note.
3984 Ignore deleted insns, which can be occur if not optimizing. */
3985 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
dd1286fb 3986 if (! tem->deleted () && INSN_P (tem))
e13693ec 3987 tem = try_split (PATTERN (tem), tem, 1);
3988
3989 /* Return either the first or the last insn, depending on which was
3990 requested. */
3991 return last
06f9d6ef 3992 ? (after ? PREV_INSN (after) : get_last_insn ())
e13693ec 3993 : NEXT_INSN (before);
15bbde2b 3994}
3995\f
3996/* Make and return an INSN rtx, initializing all its slots.
6a84e367 3997 Store PATTERN in the pattern slots. */
15bbde2b 3998
2c57d586 3999rtx_insn *
35cb5232 4000make_insn_raw (rtx pattern)
15bbde2b 4001{
2c57d586 4002 rtx_insn *insn;
15bbde2b 4003
2c57d586 4004 insn = as_a <rtx_insn *> (rtx_alloc (INSN));
15bbde2b 4005
575333f9 4006 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 4007 PATTERN (insn) = pattern;
4008 INSN_CODE (insn) = -1;
fc92fa61 4009 REG_NOTES (insn) = NULL;
5169661d 4010 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 4011 BLOCK_FOR_INSN (insn) = NULL;
15bbde2b 4012
fe7f701d 4013#ifdef ENABLE_RTL_CHECKING
4014 if (insn
9204e736 4015 && INSN_P (insn)
fe7f701d 4016 && (returnjump_p (insn)
4017 || (GET_CODE (insn) == SET
4018 && SET_DEST (insn) == pc_rtx)))
4019 {
c3ceba8e 4020 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
fe7f701d 4021 debug_rtx (insn);
4022 }
4023#endif
d823ba47 4024
15bbde2b 4025 return insn;
4026}
4027
9845d120 4028/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
4029
2c57d586 4030static rtx_insn *
9845d120 4031make_debug_insn_raw (rtx pattern)
4032{
2c57d586 4033 rtx_debug_insn *insn;
9845d120 4034
2c57d586 4035 insn = as_a <rtx_debug_insn *> (rtx_alloc (DEBUG_INSN));
9845d120 4036 INSN_UID (insn) = cur_debug_insn_uid++;
4037 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
4038 INSN_UID (insn) = cur_insn_uid++;
4039
4040 PATTERN (insn) = pattern;
4041 INSN_CODE (insn) = -1;
4042 REG_NOTES (insn) = NULL;
5169661d 4043 INSN_LOCATION (insn) = curr_insn_location ();
9845d120 4044 BLOCK_FOR_INSN (insn) = NULL;
4045
4046 return insn;
4047}
4048
31d3e01c 4049/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
15bbde2b 4050
2c57d586 4051static rtx_insn *
35cb5232 4052make_jump_insn_raw (rtx pattern)
15bbde2b 4053{
2c57d586 4054 rtx_jump_insn *insn;
15bbde2b 4055
2c57d586 4056 insn = as_a <rtx_jump_insn *> (rtx_alloc (JUMP_INSN));
fc92fa61 4057 INSN_UID (insn) = cur_insn_uid++;
15bbde2b 4058
4059 PATTERN (insn) = pattern;
4060 INSN_CODE (insn) = -1;
fc92fa61 4061 REG_NOTES (insn) = NULL;
4062 JUMP_LABEL (insn) = NULL;
5169661d 4063 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 4064 BLOCK_FOR_INSN (insn) = NULL;
15bbde2b 4065
4066 return insn;
4067}
6e911104 4068
31d3e01c 4069/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
6e911104 4070
2c57d586 4071static rtx_insn *
35cb5232 4072make_call_insn_raw (rtx pattern)
6e911104 4073{
2c57d586 4074 rtx_call_insn *insn;
6e911104 4075
2c57d586 4076 insn = as_a <rtx_call_insn *> (rtx_alloc (CALL_INSN));
6e911104 4077 INSN_UID (insn) = cur_insn_uid++;
4078
4079 PATTERN (insn) = pattern;
4080 INSN_CODE (insn) = -1;
6e911104 4081 REG_NOTES (insn) = NULL;
4082 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
5169661d 4083 INSN_LOCATION (insn) = curr_insn_location ();
ab87d1bc 4084 BLOCK_FOR_INSN (insn) = NULL;
6e911104 4085
4086 return insn;
4087}
35f3420b 4088
4089/* Like `make_insn_raw' but make a NOTE instead of an insn. */
4090
cef3d8ad 4091static rtx_note *
35f3420b 4092make_note_raw (enum insn_note subtype)
4093{
4094 /* Some notes are never created this way at all. These notes are
4095 only created by patching out insns. */
4096 gcc_assert (subtype != NOTE_INSN_DELETED_LABEL
4097 && subtype != NOTE_INSN_DELETED_DEBUG_LABEL);
4098
cef3d8ad 4099 rtx_note *note = as_a <rtx_note *> (rtx_alloc (NOTE));
35f3420b 4100 INSN_UID (note) = cur_insn_uid++;
4101 NOTE_KIND (note) = subtype;
4102 BLOCK_FOR_INSN (note) = NULL;
4103 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
4104 return note;
4105}
15bbde2b 4106\f
35f3420b 4107/* Add INSN to the end of the doubly-linked list, between PREV and NEXT.
4108 INSN may be any object that can appear in the chain: INSN_P and NOTE_P objects,
4109 but also BARRIERs and JUMP_TABLE_DATAs. PREV and NEXT may be NULL. */
4110
4111static inline void
3e75e92b 4112link_insn_into_chain (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
35f3420b 4113{
4a57a2e8 4114 SET_PREV_INSN (insn) = prev;
4115 SET_NEXT_INSN (insn) = next;
35f3420b 4116 if (prev != NULL)
4117 {
4a57a2e8 4118 SET_NEXT_INSN (prev) = insn;
35f3420b 4119 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
4120 {
f17e3fff 4121 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4122 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = insn;
35f3420b 4123 }
4124 }
4125 if (next != NULL)
4126 {
4a57a2e8 4127 SET_PREV_INSN (next) = insn;
35f3420b 4128 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
f17e3fff 4129 {
4130 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4131 SET_PREV_INSN (sequence->insn (0)) = insn;
4132 }
35f3420b 4133 }
34f5b9ac 4134
4135 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4136 {
f17e3fff 4137 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (insn));
4138 SET_PREV_INSN (sequence->insn (0)) = prev;
4139 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
34f5b9ac 4140 }
35f3420b 4141}
4142
15bbde2b 4143/* Add INSN to the end of the doubly-linked list.
4144 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
4145
4146void
3e75e92b 4147add_insn (rtx_insn *insn)
15bbde2b 4148{
3e75e92b 4149 rtx_insn *prev = get_last_insn ();
35f3420b 4150 link_insn_into_chain (insn, prev, NULL);
c9281ef8 4151 if (get_insns () == NULL)
06f9d6ef 4152 set_first_insn (insn);
06f9d6ef 4153 set_last_insn (insn);
15bbde2b 4154}
4155
35f3420b 4156/* Add INSN into the doubly-linked list after insn AFTER. */
15bbde2b 4157
35f3420b 4158static void
3e75e92b 4159add_insn_after_nobb (rtx_insn *insn, rtx_insn *after)
15bbde2b 4160{
3e75e92b 4161 rtx_insn *next = NEXT_INSN (after);
15bbde2b 4162
dd1286fb 4163 gcc_assert (!optimize || !after->deleted ());
f65c10c0 4164
35f3420b 4165 link_insn_into_chain (insn, after, next);
15bbde2b 4166
35f3420b 4167 if (next == NULL)
15bbde2b 4168 {
c36aa54b 4169 struct sequence_stack *seq;
4170
4171 for (seq = get_current_sequence (); seq; seq = seq->next)
4172 if (after == seq->last)
4173 {
4174 seq->last = insn;
4175 break;
4176 }
15bbde2b 4177 }
35f3420b 4178}
4179
4180/* Add INSN into the doubly-linked list before insn BEFORE. */
4181
4182static void
3e75e92b 4183add_insn_before_nobb (rtx_insn *insn, rtx_insn *before)
35f3420b 4184{
3e75e92b 4185 rtx_insn *prev = PREV_INSN (before);
35f3420b 4186
dd1286fb 4187 gcc_assert (!optimize || !before->deleted ());
35f3420b 4188
4189 link_insn_into_chain (insn, prev, before);
4190
4191 if (prev == NULL)
15bbde2b 4192 {
c36aa54b 4193 struct sequence_stack *seq;
312de84d 4194
c36aa54b 4195 for (seq = get_current_sequence (); seq; seq = seq->next)
4196 if (before == seq->first)
4197 {
4198 seq->first = insn;
4199 break;
4200 }
4201
4202 gcc_assert (seq);
15bbde2b 4203 }
35f3420b 4204}
4205
4206/* Like add_insn_after_nobb, but try to set BLOCK_FOR_INSN.
4207 If BB is NULL, an attempt is made to infer the bb from before.
4208
4209 This and the next function should be the only functions called
4210 to insert an insn once delay slots have been filled since only
4211 they know how to update a SEQUENCE. */
15bbde2b 4212
35f3420b 4213void
3e75e92b 4214add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb)
35f3420b 4215{
26bb3cb2 4216 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
3e75e92b 4217 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
35f3420b 4218 add_insn_after_nobb (insn, after);
6d7dc5b9 4219 if (!BARRIER_P (after)
4220 && !BARRIER_P (insn)
9dda7915 4221 && (bb = BLOCK_FOR_INSN (after)))
4222 {
4223 set_block_for_insn (insn, bb);
308f9b79 4224 if (INSN_P (insn))
3072d30e 4225 df_insn_rescan (insn);
9dda7915 4226 /* Should not happen as first in the BB is always
3fb1e43b 4227 either NOTE or LABEL. */
5496dbfc 4228 if (BB_END (bb) == after
9dda7915 4229 /* Avoid clobbering of structure when creating new BB. */
6d7dc5b9 4230 && !BARRIER_P (insn)
ad4583d9 4231 && !NOTE_INSN_BASIC_BLOCK_P (insn))
26bb3cb2 4232 BB_END (bb) = insn;
9dda7915 4233 }
15bbde2b 4234}
4235
35f3420b 4236/* Like add_insn_before_nobb, but try to set BLOCK_FOR_INSN.
4237 If BB is NULL, an attempt is made to infer the bb from before.
4238
4239 This and the previous function should be the only functions called
4240 to insert an insn once delay slots have been filled since only
4241 they know how to update a SEQUENCE. */
312de84d 4242
4243void
3e75e92b 4244add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb)
312de84d 4245{
3e75e92b 4246 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4247 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
35f3420b 4248 add_insn_before_nobb (insn, before);
312de84d 4249
48e1416a 4250 if (!bb
3072d30e 4251 && !BARRIER_P (before)
4252 && !BARRIER_P (insn))
4253 bb = BLOCK_FOR_INSN (before);
4254
4255 if (bb)
9dda7915 4256 {
4257 set_block_for_insn (insn, bb);
308f9b79 4258 if (INSN_P (insn))
3072d30e 4259 df_insn_rescan (insn);
611234b4 4260 /* Should not happen as first in the BB is always either NOTE or
ba821eb1 4261 LABEL. */
611234b4 4262 gcc_assert (BB_HEAD (bb) != insn
4263 /* Avoid clobbering of structure when creating new BB. */
4264 || BARRIER_P (insn)
ad4583d9 4265 || NOTE_INSN_BASIC_BLOCK_P (insn));
9dda7915 4266 }
312de84d 4267}
4268
3072d30e 4269/* Replace insn with an deleted instruction note. */
4270
fc3d1695 4271void
4272set_insn_deleted (rtx insn)
3072d30e 4273{
91f71fa3 4274 if (INSN_P (insn))
e149ca56 4275 df_insn_delete (as_a <rtx_insn *> (insn));
3072d30e 4276 PUT_CODE (insn, NOTE);
4277 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4278}
4279
4280
93ff53d3 4281/* Unlink INSN from the insn chain.
4282
4283 This function knows how to handle sequences.
4284
4285 This function does not invalidate data flow information associated with
4286 INSN (i.e. does not call df_insn_delete). That makes this function
4287 usable for only disconnecting an insn from the chain, and re-emit it
4288 elsewhere later.
4289
4290 To later insert INSN elsewhere in the insn chain via add_insn and
4291 similar functions, PREV_INSN and NEXT_INSN must be nullified by
4292 the caller. Nullifying them here breaks many insn chain walks.
4293
4294 To really delete an insn and related DF information, use delete_insn. */
4295
7ddcf2bf 4296void
4cd001d5 4297remove_insn (rtx uncast_insn)
7ddcf2bf 4298{
4cd001d5 4299 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
26bb3cb2 4300 rtx_insn *next = NEXT_INSN (insn);
4301 rtx_insn *prev = PREV_INSN (insn);
e4bf866d 4302 basic_block bb;
4303
7ddcf2bf 4304 if (prev)
4305 {
4a57a2e8 4306 SET_NEXT_INSN (prev) = next;
6d7dc5b9 4307 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
7ddcf2bf 4308 {
f17e3fff 4309 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (prev));
4310 SET_NEXT_INSN (sequence->insn (sequence->len () - 1)) = next;
7ddcf2bf 4311 }
4312 }
7ddcf2bf 4313 else
4314 {
c36aa54b 4315 struct sequence_stack *seq;
4316
4317 for (seq = get_current_sequence (); seq; seq = seq->next)
4318 if (insn == seq->first)
7ddcf2bf 4319 {
c36aa54b 4320 seq->first = next;
7ddcf2bf 4321 break;
4322 }
4323
c36aa54b 4324 gcc_assert (seq);
7ddcf2bf 4325 }
4326
4327 if (next)
4328 {
4a57a2e8 4329 SET_PREV_INSN (next) = prev;
6d7dc5b9 4330 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
f17e3fff 4331 {
4332 rtx_sequence *sequence = as_a <rtx_sequence *> (PATTERN (next));
4333 SET_PREV_INSN (sequence->insn (0)) = prev;
4334 }
7ddcf2bf 4335 }
7ddcf2bf 4336 else
4337 {
c36aa54b 4338 struct sequence_stack *seq;
4339
4340 for (seq = get_current_sequence (); seq; seq = seq->next)
4341 if (insn == seq->last)
7ddcf2bf 4342 {
c36aa54b 4343 seq->last = prev;
7ddcf2bf 4344 break;
4345 }
4346
c36aa54b 4347 gcc_assert (seq);
7ddcf2bf 4348 }
b983ea33 4349
b983ea33 4350 /* Fix up basic block boundaries, if necessary. */
6d7dc5b9 4351 if (!BARRIER_P (insn)
e4bf866d 4352 && (bb = BLOCK_FOR_INSN (insn)))
4353 {
5496dbfc 4354 if (BB_HEAD (bb) == insn)
e4bf866d 4355 {
f4aee538 4356 /* Never ever delete the basic block note without deleting whole
4357 basic block. */
611234b4 4358 gcc_assert (!NOTE_P (insn));
26bb3cb2 4359 BB_HEAD (bb) = next;
e4bf866d 4360 }
5496dbfc 4361 if (BB_END (bb) == insn)
26bb3cb2 4362 BB_END (bb) = prev;
e4bf866d 4363 }
7ddcf2bf 4364}
4365
d5f9786f 4366/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
4367
4368void
35cb5232 4369add_function_usage_to (rtx call_insn, rtx call_fusage)
d5f9786f 4370{
611234b4 4371 gcc_assert (call_insn && CALL_P (call_insn));
d5f9786f 4372
4373 /* Put the register usage information on the CALL. If there is already
4374 some usage information, put ours at the end. */
4375 if (CALL_INSN_FUNCTION_USAGE (call_insn))
4376 {
4377 rtx link;
4378
4379 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
4380 link = XEXP (link, 1))
4381 ;
4382
4383 XEXP (link, 1) = call_fusage;
4384 }
4385 else
4386 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
4387}
4388
15bbde2b 4389/* Delete all insns made since FROM.
4390 FROM becomes the new last instruction. */
4391
4392void
57c26b3a 4393delete_insns_since (rtx_insn *from)
15bbde2b 4394{
4395 if (from == 0)
06f9d6ef 4396 set_first_insn (0);
15bbde2b 4397 else
4a57a2e8 4398 SET_NEXT_INSN (from) = 0;
06f9d6ef 4399 set_last_insn (from);
15bbde2b 4400}
4401
34e2ddcd 4402/* This function is deprecated, please use sequences instead.
4403
4404 Move a consecutive bunch of insns to a different place in the chain.
15bbde2b 4405 The insns to be moved are those between FROM and TO.
4406 They are moved to a new position after the insn AFTER.
4407 AFTER must not be FROM or TO or any insn in between.
4408
4409 This function does not know about SEQUENCEs and hence should not be
4410 called after delay-slot filling has been done. */
4411
4412void
57c26b3a 4413reorder_insns_nobb (rtx_insn *from, rtx_insn *to, rtx_insn *after)
15bbde2b 4414{
382ecba7 4415 if (flag_checking)
4416 {
4417 for (rtx_insn *x = from; x != to; x = NEXT_INSN (x))
4418 gcc_assert (after != x);
4419 gcc_assert (after != to);
4420 }
7f6ca11f 4421
15bbde2b 4422 /* Splice this bunch out of where it is now. */
4423 if (PREV_INSN (from))
4a57a2e8 4424 SET_NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
15bbde2b 4425 if (NEXT_INSN (to))
4a57a2e8 4426 SET_PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
06f9d6ef 4427 if (get_last_insn () == to)
4428 set_last_insn (PREV_INSN (from));
4429 if (get_insns () == from)
4430 set_first_insn (NEXT_INSN (to));
15bbde2b 4431
4432 /* Make the new neighbors point to it and it to them. */
4433 if (NEXT_INSN (after))
4a57a2e8 4434 SET_PREV_INSN (NEXT_INSN (after)) = to;
15bbde2b 4435
4a57a2e8 4436 SET_NEXT_INSN (to) = NEXT_INSN (after);
4437 SET_PREV_INSN (from) = after;
4438 SET_NEXT_INSN (after) = from;
9af5ce0c 4439 if (after == get_last_insn ())
06f9d6ef 4440 set_last_insn (to);
15bbde2b 4441}
4442
9dda7915 4443/* Same as function above, but take care to update BB boundaries. */
4444void
4a3fb716 4445reorder_insns (rtx_insn *from, rtx_insn *to, rtx_insn *after)
9dda7915 4446{
4a3fb716 4447 rtx_insn *prev = PREV_INSN (from);
9dda7915 4448 basic_block bb, bb2;
4449
4450 reorder_insns_nobb (from, to, after);
4451
6d7dc5b9 4452 if (!BARRIER_P (after)
9dda7915 4453 && (bb = BLOCK_FOR_INSN (after)))
4454 {
e149ca56 4455 rtx_insn *x;
3072d30e 4456 df_set_bb_dirty (bb);
d4c5e26d 4457
6d7dc5b9 4458 if (!BARRIER_P (from)
9dda7915 4459 && (bb2 = BLOCK_FOR_INSN (from)))
4460 {
5496dbfc 4461 if (BB_END (bb2) == to)
26bb3cb2 4462 BB_END (bb2) = prev;
3072d30e 4463 df_set_bb_dirty (bb2);
9dda7915 4464 }
4465
5496dbfc 4466 if (BB_END (bb) == after)
26bb3cb2 4467 BB_END (bb) = to;
9dda7915 4468
4469 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7097dd0c 4470 if (!BARRIER_P (x))
a2bdd643 4471 df_insn_change_bb (x, bb);
9dda7915 4472 }
4473}
4474
15bbde2b 4475\f
31d3e01c 4476/* Emit insn(s) of given code and pattern
4477 at a specified place within the doubly-linked list.
15bbde2b 4478
31d3e01c 4479 All of the emit_foo global entry points accept an object
4480 X which is either an insn list or a PATTERN of a single
4481 instruction.
15bbde2b 4482
31d3e01c 4483 There are thus a few canonical ways to generate code and
4484 emit it at a specific place in the instruction stream. For
4485 example, consider the instruction named SPOT and the fact that
4486 we would like to emit some instructions before SPOT. We might
4487 do it like this:
15bbde2b 4488
31d3e01c 4489 start_sequence ();
4490 ... emit the new instructions ...
4491 insns_head = get_insns ();
4492 end_sequence ();
15bbde2b 4493
31d3e01c 4494 emit_insn_before (insns_head, SPOT);
15bbde2b 4495
31d3e01c 4496 It used to be common to generate SEQUENCE rtl instead, but that
4497 is a relic of the past which no longer occurs. The reason is that
4498 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4499 generated would almost certainly die right after it was created. */
15bbde2b 4500
722334ea 4501static rtx_insn *
5f7c5ddd 4502emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb,
2c57d586 4503 rtx_insn *(*make_raw) (rtx))
15bbde2b 4504{
2c57d586 4505 rtx_insn *insn;
15bbde2b 4506
611234b4 4507 gcc_assert (before);
31d3e01c 4508
4509 if (x == NULL_RTX)
722334ea 4510 return safe_as_a <rtx_insn *> (last);
31d3e01c 4511
4512 switch (GET_CODE (x))
15bbde2b 4513 {
9845d120 4514 case DEBUG_INSN:
31d3e01c 4515 case INSN:
4516 case JUMP_INSN:
4517 case CALL_INSN:
4518 case CODE_LABEL:
4519 case BARRIER:
4520 case NOTE:
2c57d586 4521 insn = as_a <rtx_insn *> (x);
31d3e01c 4522 while (insn)
4523 {
2c57d586 4524 rtx_insn *next = NEXT_INSN (insn);
3072d30e 4525 add_insn_before (insn, before, bb);
31d3e01c 4526 last = insn;
4527 insn = next;
4528 }
4529 break;
4530
4531#ifdef ENABLE_RTL_CHECKING
4532 case SEQUENCE:
611234b4 4533 gcc_unreachable ();
31d3e01c 4534 break;
4535#endif
4536
4537 default:
5f7c5ddd 4538 last = (*make_raw) (x);
3072d30e 4539 add_insn_before (last, before, bb);
31d3e01c 4540 break;
15bbde2b 4541 }
4542
722334ea 4543 return safe_as_a <rtx_insn *> (last);
15bbde2b 4544}
4545
5f7c5ddd 4546/* Make X be output before the instruction BEFORE. */
4547
722334ea 4548rtx_insn *
c9a09955 4549emit_insn_before_noloc (rtx x, rtx_insn *before, basic_block bb)
5f7c5ddd 4550{
4551 return emit_pattern_before_noloc (x, before, before, bb, make_insn_raw);
4552}
4553
31d3e01c 4554/* Make an instruction with body X and code JUMP_INSN
15bbde2b 4555 and output it before the instruction BEFORE. */
4556
f9a00e9e 4557rtx_jump_insn *
c9a09955 4558emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
15bbde2b 4559{
f9a00e9e 4560 return as_a <rtx_jump_insn *> (
4561 emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4562 make_jump_insn_raw));
15bbde2b 4563}
4564
31d3e01c 4565/* Make an instruction with body X and code CALL_INSN
cd0fe062 4566 and output it before the instruction BEFORE. */
4567
722334ea 4568rtx_insn *
c9a09955 4569emit_call_insn_before_noloc (rtx x, rtx_insn *before)
cd0fe062 4570{
5f7c5ddd 4571 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4572 make_call_insn_raw);
cd0fe062 4573}
4574
9845d120 4575/* Make an instruction with body X and code DEBUG_INSN
4576 and output it before the instruction BEFORE. */
4577
722334ea 4578rtx_insn *
9845d120 4579emit_debug_insn_before_noloc (rtx x, rtx before)
4580{
5f7c5ddd 4581 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL,
4582 make_debug_insn_raw);
9845d120 4583}
4584
15bbde2b 4585/* Make an insn of code BARRIER
71caadc0 4586 and output it before the insn BEFORE. */
15bbde2b 4587
722334ea 4588rtx_barrier *
35cb5232 4589emit_barrier_before (rtx before)
15bbde2b 4590{
722334ea 4591 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 4592
4593 INSN_UID (insn) = cur_insn_uid++;
4594
3072d30e 4595 add_insn_before (insn, before, NULL);
15bbde2b 4596 return insn;
4597}
4598
71caadc0 4599/* Emit the label LABEL before the insn BEFORE. */
4600
f9a00e9e 4601rtx_code_label *
c9a09955 4602emit_label_before (rtx label, rtx_insn *before)
71caadc0 4603{
596ef494 4604 gcc_checking_assert (INSN_UID (label) == 0);
4605 INSN_UID (label) = cur_insn_uid++;
4606 add_insn_before (label, before, NULL);
f9a00e9e 4607 return as_a <rtx_code_label *> (label);
71caadc0 4608}
15bbde2b 4609\f
31d3e01c 4610/* Helper for emit_insn_after, handles lists of instructions
4611 efficiently. */
15bbde2b 4612
f17e3fff 4613static rtx_insn *
4614emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb)
15bbde2b 4615{
f17e3fff 4616 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
26bb3cb2 4617 rtx_insn *last;
4618 rtx_insn *after_after;
3072d30e 4619 if (!bb && !BARRIER_P (after))
4620 bb = BLOCK_FOR_INSN (after);
15bbde2b 4621
3072d30e 4622 if (bb)
15bbde2b 4623 {
3072d30e 4624 df_set_bb_dirty (bb);
31d3e01c 4625 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
6d7dc5b9 4626 if (!BARRIER_P (last))
3072d30e 4627 {
4628 set_block_for_insn (last, bb);
4629 df_insn_rescan (last);
4630 }
6d7dc5b9 4631 if (!BARRIER_P (last))
3072d30e 4632 {
4633 set_block_for_insn (last, bb);
4634 df_insn_rescan (last);
4635 }
5496dbfc 4636 if (BB_END (bb) == after)
26bb3cb2 4637 BB_END (bb) = last;
15bbde2b 4638 }
4639 else
31d3e01c 4640 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4641 continue;
4642
4643 after_after = NEXT_INSN (after);
4644
4a57a2e8 4645 SET_NEXT_INSN (after) = first;
4646 SET_PREV_INSN (first) = after;
4647 SET_NEXT_INSN (last) = after_after;
31d3e01c 4648 if (after_after)
4a57a2e8 4649 SET_PREV_INSN (after_after) = last;
31d3e01c 4650
9af5ce0c 4651 if (after == get_last_insn ())
06f9d6ef 4652 set_last_insn (last);
e1ab7874 4653
31d3e01c 4654 return last;
4655}
4656
722334ea 4657static rtx_insn *
f17e3fff 4658emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb,
2c57d586 4659 rtx_insn *(*make_raw)(rtx))
31d3e01c 4660{
f17e3fff 4661 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4662 rtx_insn *last = after;
31d3e01c 4663
611234b4 4664 gcc_assert (after);
31d3e01c 4665
4666 if (x == NULL_RTX)
f17e3fff 4667 return last;
31d3e01c 4668
4669 switch (GET_CODE (x))
15bbde2b 4670 {
9845d120 4671 case DEBUG_INSN:
31d3e01c 4672 case INSN:
4673 case JUMP_INSN:
4674 case CALL_INSN:
4675 case CODE_LABEL:
4676 case BARRIER:
4677 case NOTE:
26bb3cb2 4678 last = emit_insn_after_1 (as_a <rtx_insn *> (x), after, bb);
31d3e01c 4679 break;
4680
4681#ifdef ENABLE_RTL_CHECKING
4682 case SEQUENCE:
611234b4 4683 gcc_unreachable ();
31d3e01c 4684 break;
4685#endif
4686
4687 default:
5f7c5ddd 4688 last = (*make_raw) (x);
3072d30e 4689 add_insn_after (last, after, bb);
31d3e01c 4690 break;
15bbde2b 4691 }
4692
f17e3fff 4693 return last;
15bbde2b 4694}
4695
5f7c5ddd 4696/* Make X be output after the insn AFTER and set the BB of insn. If
4697 BB is NULL, an attempt is made to infer the BB from AFTER. */
4698
722334ea 4699rtx_insn *
5f7c5ddd 4700emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
4701{
4702 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4703}
4704
1bea98fb 4705
31d3e01c 4706/* Make an insn of code JUMP_INSN with body X
15bbde2b 4707 and output it after the insn AFTER. */
4708
f9a00e9e 4709rtx_jump_insn *
0891f67c 4710emit_jump_insn_after_noloc (rtx x, rtx after)
15bbde2b 4711{
f9a00e9e 4712 return as_a <rtx_jump_insn *> (
4713 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
31d3e01c 4714}
4715
4716/* Make an instruction with body X and code CALL_INSN
4717 and output it after the instruction AFTER. */
4718
722334ea 4719rtx_insn *
0891f67c 4720emit_call_insn_after_noloc (rtx x, rtx after)
31d3e01c 4721{
5f7c5ddd 4722 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
15bbde2b 4723}
4724
9845d120 4725/* Make an instruction with body X and code CALL_INSN
4726 and output it after the instruction AFTER. */
4727
722334ea 4728rtx_insn *
9845d120 4729emit_debug_insn_after_noloc (rtx x, rtx after)
4730{
5f7c5ddd 4731 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
9845d120 4732}
4733
15bbde2b 4734/* Make an insn of code BARRIER
4735 and output it after the insn AFTER. */
4736
722334ea 4737rtx_barrier *
35cb5232 4738emit_barrier_after (rtx after)
15bbde2b 4739{
722334ea 4740 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 4741
4742 INSN_UID (insn) = cur_insn_uid++;
4743
3072d30e 4744 add_insn_after (insn, after, NULL);
15bbde2b 4745 return insn;
4746}
4747
4748/* Emit the label LABEL after the insn AFTER. */
4749
722334ea 4750rtx_insn *
c9a09955 4751emit_label_after (rtx label, rtx_insn *after)
15bbde2b 4752{
596ef494 4753 gcc_checking_assert (INSN_UID (label) == 0);
4754 INSN_UID (label) = cur_insn_uid++;
4755 add_insn_after (label, after, NULL);
722334ea 4756 return as_a <rtx_insn *> (label);
15bbde2b 4757}
35f3420b 4758\f
4759/* Notes require a bit of special handling: Some notes need to have their
4760 BLOCK_FOR_INSN set, others should never have it set, and some should
4761 have it set or clear depending on the context. */
4762
4763/* Return true iff a note of kind SUBTYPE should be emitted with routines
4764 that never set BLOCK_FOR_INSN on NOTE. BB_BOUNDARY is true if the
4765 caller is asked to emit a note before BB_HEAD, or after BB_END. */
4766
4767static bool
4768note_outside_basic_block_p (enum insn_note subtype, bool on_bb_boundary_p)
4769{
4770 switch (subtype)
4771 {
4772 /* NOTE_INSN_SWITCH_TEXT_SECTIONS only appears between basic blocks. */
4773 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
4774 return true;
4775
4776 /* Notes for var tracking and EH region markers can appear between or
4777 inside basic blocks. If the caller is emitting on the basic block
4778 boundary, do not set BLOCK_FOR_INSN on the new note. */
4779 case NOTE_INSN_VAR_LOCATION:
4780 case NOTE_INSN_CALL_ARG_LOCATION:
4781 case NOTE_INSN_EH_REGION_BEG:
4782 case NOTE_INSN_EH_REGION_END:
4783 return on_bb_boundary_p;
4784
4785 /* Otherwise, BLOCK_FOR_INSN must be set. */
4786 default:
4787 return false;
4788 }
4789}
15bbde2b 4790
4791/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4792
cef3d8ad 4793rtx_note *
4d86329d 4794emit_note_after (enum insn_note subtype, rtx_insn *after)
15bbde2b 4795{
cef3d8ad 4796 rtx_note *note = make_note_raw (subtype);
35f3420b 4797 basic_block bb = BARRIER_P (after) ? NULL : BLOCK_FOR_INSN (after);
4798 bool on_bb_boundary_p = (bb != NULL && BB_END (bb) == after);
4799
4800 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4801 add_insn_after_nobb (note, after);
4802 else
4803 add_insn_after (note, after, bb);
4804 return note;
4805}
4806
4807/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4808
cef3d8ad 4809rtx_note *
1dc26636 4810emit_note_before (enum insn_note subtype, rtx_insn *before)
35f3420b 4811{
cef3d8ad 4812 rtx_note *note = make_note_raw (subtype);
35f3420b 4813 basic_block bb = BARRIER_P (before) ? NULL : BLOCK_FOR_INSN (before);
4814 bool on_bb_boundary_p = (bb != NULL && BB_HEAD (bb) == before);
4815
4816 if (note_outside_basic_block_p (subtype, on_bb_boundary_p))
4817 add_insn_before_nobb (note, before);
4818 else
4819 add_insn_before (note, before, bb);
15bbde2b 4820 return note;
4821}
15bbde2b 4822\f
ede4ebcb 4823/* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4824 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4825
722334ea 4826static rtx_insn *
4cd001d5 4827emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc,
2c57d586 4828 rtx_insn *(*make_raw) (rtx))
d321a68b 4829{
4cd001d5 4830 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
9ed997be 4831 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
d321a68b 4832
0891f67c 4833 if (pattern == NULL_RTX || !loc)
9ed997be 4834 return last;
ca154f3f 4835
31d3e01c 4836 after = NEXT_INSN (after);
4837 while (1)
4838 {
57e999d9 4839 if (active_insn_p (after)
4840 && !JUMP_TABLE_DATA_P (after) /* FIXME */
4841 && !INSN_LOCATION (after))
5169661d 4842 INSN_LOCATION (after) = loc;
31d3e01c 4843 if (after == last)
4844 break;
4845 after = NEXT_INSN (after);
4846 }
9ed997be 4847 return last;
d321a68b 4848}
4849
ede4ebcb 4850/* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4851 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4852 any DEBUG_INSNs. */
4853
722334ea 4854static rtx_insn *
4cd001d5 4855emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns,
2c57d586 4856 rtx_insn *(*make_raw) (rtx))
0891f67c 4857{
4cd001d5 4858 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4859 rtx_insn *prev = after;
9845d120 4860
ede4ebcb 4861 if (skip_debug_insns)
4862 while (DEBUG_INSN_P (prev))
4863 prev = PREV_INSN (prev);
9845d120 4864
4865 if (INSN_P (prev))
5169661d 4866 return emit_pattern_after_setloc (pattern, after, INSN_LOCATION (prev),
ede4ebcb 4867 make_raw);
0891f67c 4868 else
ede4ebcb 4869 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
0891f67c 4870}
4871
5169661d 4872/* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4873rtx_insn *
ede4ebcb 4874emit_insn_after_setloc (rtx pattern, rtx after, int loc)
d321a68b 4875{
ede4ebcb 4876 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4877}
31d3e01c 4878
5169661d 4879/* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4880rtx_insn *
ede4ebcb 4881emit_insn_after (rtx pattern, rtx after)
4882{
4883 return emit_pattern_after (pattern, after, true, make_insn_raw);
4884}
ca154f3f 4885
5169661d 4886/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
f9a00e9e 4887rtx_jump_insn *
ede4ebcb 4888emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
4889{
f9a00e9e 4890 return as_a <rtx_jump_insn *> (
4891 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
d321a68b 4892}
4893
5169661d 4894/* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
f9a00e9e 4895rtx_jump_insn *
0891f67c 4896emit_jump_insn_after (rtx pattern, rtx after)
4897{
f9a00e9e 4898 return as_a <rtx_jump_insn *> (
4899 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
0891f67c 4900}
4901
5169661d 4902/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4903rtx_insn *
35cb5232 4904emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
d321a68b 4905{
ede4ebcb 4906 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
d321a68b 4907}
4908
5169661d 4909/* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4910rtx_insn *
0891f67c 4911emit_call_insn_after (rtx pattern, rtx after)
4912{
ede4ebcb 4913 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
0891f67c 4914}
4915
5169661d 4916/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4917rtx_insn *
9845d120 4918emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4919{
ede4ebcb 4920 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
9845d120 4921}
4922
5169661d 4923/* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
722334ea 4924rtx_insn *
9845d120 4925emit_debug_insn_after (rtx pattern, rtx after)
4926{
ede4ebcb 4927 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
9845d120 4928}
4929
ede4ebcb 4930/* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4931 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4932 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4933 CALL_INSN, etc. */
4934
722334ea 4935static rtx_insn *
4cd001d5 4936emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp,
2c57d586 4937 rtx_insn *(*make_raw) (rtx))
d321a68b 4938{
4cd001d5 4939 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4940 rtx_insn *first = PREV_INSN (before);
4941 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4942 insnp ? before : NULL_RTX,
4943 NULL, make_raw);
0891f67c 4944
4945 if (pattern == NULL_RTX || !loc)
4cd001d5 4946 return last;
0891f67c 4947
4486418e 4948 if (!first)
4949 first = get_insns ();
4950 else
4951 first = NEXT_INSN (first);
0891f67c 4952 while (1)
4953 {
57e999d9 4954 if (active_insn_p (first)
4955 && !JUMP_TABLE_DATA_P (first) /* FIXME */
4956 && !INSN_LOCATION (first))
5169661d 4957 INSN_LOCATION (first) = loc;
0891f67c 4958 if (first == last)
4959 break;
4960 first = NEXT_INSN (first);
4961 }
4cd001d5 4962 return last;
0891f67c 4963}
4964
ede4ebcb 4965/* Insert PATTERN before BEFORE. MAKE_RAW indicates how to turn PATTERN
4966 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4967 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4968 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4969
722334ea 4970static rtx_insn *
4cd001d5 4971emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns,
2c57d586 4972 bool insnp, rtx_insn *(*make_raw) (rtx))
0891f67c 4973{
4cd001d5 4974 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4975 rtx_insn *next = before;
9845d120 4976
ede4ebcb 4977 if (skip_debug_insns)
4978 while (DEBUG_INSN_P (next))
4979 next = PREV_INSN (next);
9845d120 4980
4981 if (INSN_P (next))
5169661d 4982 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
ede4ebcb 4983 insnp, make_raw);
0891f67c 4984 else
ede4ebcb 4985 return emit_pattern_before_noloc (pattern, before,
db7dd023 4986 insnp ? before : NULL_RTX,
ede4ebcb 4987 NULL, make_raw);
0891f67c 4988}
4989
5169661d 4990/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 4991rtx_insn *
c9a09955 4992emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
0891f67c 4993{
ede4ebcb 4994 return emit_pattern_before_setloc (pattern, before, loc, true,
4995 make_insn_raw);
4996}
0891f67c 4997
5169661d 4998/* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
722334ea 4999rtx_insn *
ede4ebcb 5000emit_insn_before (rtx pattern, rtx before)
5001{
5002 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
5003}
0891f67c 5004
5169661d 5005/* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
f9a00e9e 5006rtx_jump_insn *
c9a09955 5007emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
ede4ebcb 5008{
f9a00e9e 5009 return as_a <rtx_jump_insn *> (
5010 emit_pattern_before_setloc (pattern, before, loc, false,
5011 make_jump_insn_raw));
0891f67c 5012}
5013
5169661d 5014/* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
f9a00e9e 5015rtx_jump_insn *
0891f67c 5016emit_jump_insn_before (rtx pattern, rtx before)
5017{
f9a00e9e 5018 return as_a <rtx_jump_insn *> (
5019 emit_pattern_before (pattern, before, true, false,
5020 make_jump_insn_raw));
0891f67c 5021}
5022
5169661d 5023/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 5024rtx_insn *
c9a09955 5025emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc)
0891f67c 5026{
ede4ebcb 5027 return emit_pattern_before_setloc (pattern, before, loc, false,
5028 make_call_insn_raw);
d321a68b 5029}
0891f67c 5030
ede4ebcb 5031/* Like emit_call_insn_before_noloc,
5169661d 5032 but set insn_location according to BEFORE. */
722334ea 5033rtx_insn *
c9a09955 5034emit_call_insn_before (rtx pattern, rtx_insn *before)
0891f67c 5035{
ede4ebcb 5036 return emit_pattern_before (pattern, before, true, false,
5037 make_call_insn_raw);
0891f67c 5038}
9845d120 5039
5169661d 5040/* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
722334ea 5041rtx_insn *
9845d120 5042emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
5043{
ede4ebcb 5044 return emit_pattern_before_setloc (pattern, before, loc, false,
5045 make_debug_insn_raw);
9845d120 5046}
5047
ede4ebcb 5048/* Like emit_debug_insn_before_noloc,
5169661d 5049 but set insn_location according to BEFORE. */
722334ea 5050rtx_insn *
5518cf83 5051emit_debug_insn_before (rtx pattern, rtx_insn *before)
9845d120 5052{
ede4ebcb 5053 return emit_pattern_before (pattern, before, false, false,
5054 make_debug_insn_raw);
9845d120 5055}
d321a68b 5056\f
31d3e01c 5057/* Take X and emit it at the end of the doubly-linked
5058 INSN list.
15bbde2b 5059
5060 Returns the last insn emitted. */
5061
722334ea 5062rtx_insn *
35cb5232 5063emit_insn (rtx x)
15bbde2b 5064{
722334ea 5065 rtx_insn *last = get_last_insn ();
5066 rtx_insn *insn;
15bbde2b 5067
31d3e01c 5068 if (x == NULL_RTX)
5069 return last;
15bbde2b 5070
31d3e01c 5071 switch (GET_CODE (x))
5072 {
9845d120 5073 case DEBUG_INSN:
31d3e01c 5074 case INSN:
5075 case JUMP_INSN:
5076 case CALL_INSN:
5077 case CODE_LABEL:
5078 case BARRIER:
5079 case NOTE:
722334ea 5080 insn = as_a <rtx_insn *> (x);
31d3e01c 5081 while (insn)
15bbde2b 5082 {
722334ea 5083 rtx_insn *next = NEXT_INSN (insn);
15bbde2b 5084 add_insn (insn);
31d3e01c 5085 last = insn;
5086 insn = next;
15bbde2b 5087 }
31d3e01c 5088 break;
15bbde2b 5089
31d3e01c 5090#ifdef ENABLE_RTL_CHECKING
91f71fa3 5091 case JUMP_TABLE_DATA:
31d3e01c 5092 case SEQUENCE:
611234b4 5093 gcc_unreachable ();
31d3e01c 5094 break;
5095#endif
15bbde2b 5096
31d3e01c 5097 default:
5098 last = make_insn_raw (x);
5099 add_insn (last);
5100 break;
15bbde2b 5101 }
5102
5103 return last;
5104}
5105
9845d120 5106/* Make an insn of code DEBUG_INSN with pattern X
5107 and add it to the end of the doubly-linked list. */
5108
722334ea 5109rtx_insn *
9845d120 5110emit_debug_insn (rtx x)
5111{
722334ea 5112 rtx_insn *last = get_last_insn ();
5113 rtx_insn *insn;
9845d120 5114
5115 if (x == NULL_RTX)
5116 return last;
5117
5118 switch (GET_CODE (x))
5119 {
5120 case DEBUG_INSN:
5121 case INSN:
5122 case JUMP_INSN:
5123 case CALL_INSN:
5124 case CODE_LABEL:
5125 case BARRIER:
5126 case NOTE:
722334ea 5127 insn = as_a <rtx_insn *> (x);
9845d120 5128 while (insn)
5129 {
722334ea 5130 rtx_insn *next = NEXT_INSN (insn);
9845d120 5131 add_insn (insn);
5132 last = insn;
5133 insn = next;
5134 }
5135 break;
5136
5137#ifdef ENABLE_RTL_CHECKING
91f71fa3 5138 case JUMP_TABLE_DATA:
9845d120 5139 case SEQUENCE:
5140 gcc_unreachable ();
5141 break;
5142#endif
5143
5144 default:
5145 last = make_debug_insn_raw (x);
5146 add_insn (last);
5147 break;
5148 }
5149
5150 return last;
5151}
5152
31d3e01c 5153/* Make an insn of code JUMP_INSN with pattern X
5154 and add it to the end of the doubly-linked list. */
15bbde2b 5155
722334ea 5156rtx_insn *
35cb5232 5157emit_jump_insn (rtx x)
15bbde2b 5158{
722334ea 5159 rtx_insn *last = NULL;
5160 rtx_insn *insn;
15bbde2b 5161
31d3e01c 5162 switch (GET_CODE (x))
15bbde2b 5163 {
9845d120 5164 case DEBUG_INSN:
31d3e01c 5165 case INSN:
5166 case JUMP_INSN:
5167 case CALL_INSN:
5168 case CODE_LABEL:
5169 case BARRIER:
5170 case NOTE:
722334ea 5171 insn = as_a <rtx_insn *> (x);
31d3e01c 5172 while (insn)
5173 {
722334ea 5174 rtx_insn *next = NEXT_INSN (insn);
31d3e01c 5175 add_insn (insn);
5176 last = insn;
5177 insn = next;
5178 }
5179 break;
b36b07d8 5180
31d3e01c 5181#ifdef ENABLE_RTL_CHECKING
91f71fa3 5182 case JUMP_TABLE_DATA:
31d3e01c 5183 case SEQUENCE:
611234b4 5184 gcc_unreachable ();
31d3e01c 5185 break;
5186#endif
b36b07d8 5187
31d3e01c 5188 default:
5189 last = make_jump_insn_raw (x);
5190 add_insn (last);
5191 break;
9dda7915 5192 }
b36b07d8 5193
5194 return last;
5195}
5196
31d3e01c 5197/* Make an insn of code CALL_INSN with pattern X
15bbde2b 5198 and add it to the end of the doubly-linked list. */
5199
722334ea 5200rtx_insn *
35cb5232 5201emit_call_insn (rtx x)
15bbde2b 5202{
722334ea 5203 rtx_insn *insn;
31d3e01c 5204
5205 switch (GET_CODE (x))
15bbde2b 5206 {
9845d120 5207 case DEBUG_INSN:
31d3e01c 5208 case INSN:
5209 case JUMP_INSN:
5210 case CALL_INSN:
5211 case CODE_LABEL:
5212 case BARRIER:
5213 case NOTE:
5214 insn = emit_insn (x);
5215 break;
15bbde2b 5216
31d3e01c 5217#ifdef ENABLE_RTL_CHECKING
5218 case SEQUENCE:
91f71fa3 5219 case JUMP_TABLE_DATA:
611234b4 5220 gcc_unreachable ();
31d3e01c 5221 break;
5222#endif
15bbde2b 5223
31d3e01c 5224 default:
5225 insn = make_call_insn_raw (x);
15bbde2b 5226 add_insn (insn);
31d3e01c 5227 break;
15bbde2b 5228 }
31d3e01c 5229
5230 return insn;
15bbde2b 5231}
5232
5233/* Add the label LABEL to the end of the doubly-linked list. */
5234
f9a00e9e 5235rtx_code_label *
5236emit_label (rtx uncast_label)
15bbde2b 5237{
f9a00e9e 5238 rtx_code_label *label = as_a <rtx_code_label *> (uncast_label);
5239
596ef494 5240 gcc_checking_assert (INSN_UID (label) == 0);
5241 INSN_UID (label) = cur_insn_uid++;
f9a00e9e 5242 add_insn (label);
5243 return label;
15bbde2b 5244}
5245
91f71fa3 5246/* Make an insn of code JUMP_TABLE_DATA
5247 and add it to the end of the doubly-linked list. */
5248
e41badc0 5249rtx_jump_table_data *
91f71fa3 5250emit_jump_table_data (rtx table)
5251{
e41badc0 5252 rtx_jump_table_data *jump_table_data =
5253 as_a <rtx_jump_table_data *> (rtx_alloc (JUMP_TABLE_DATA));
91f71fa3 5254 INSN_UID (jump_table_data) = cur_insn_uid++;
5255 PATTERN (jump_table_data) = table;
5256 BLOCK_FOR_INSN (jump_table_data) = NULL;
5257 add_insn (jump_table_data);
5258 return jump_table_data;
5259}
5260
15bbde2b 5261/* Make an insn of code BARRIER
5262 and add it to the end of the doubly-linked list. */
5263
722334ea 5264rtx_barrier *
35cb5232 5265emit_barrier (void)
15bbde2b 5266{
722334ea 5267 rtx_barrier *barrier = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
15bbde2b 5268 INSN_UID (barrier) = cur_insn_uid++;
5269 add_insn (barrier);
5270 return barrier;
5271}
5272
2f57e3d9 5273/* Emit a copy of note ORIG. */
35cb5232 5274
cef3d8ad 5275rtx_note *
5276emit_note_copy (rtx_note *orig)
2f57e3d9 5277{
35f3420b 5278 enum insn_note kind = (enum insn_note) NOTE_KIND (orig);
cef3d8ad 5279 rtx_note *note = make_note_raw (kind);
2f57e3d9 5280 NOTE_DATA (note) = NOTE_DATA (orig);
2f57e3d9 5281 add_insn (note);
31b97e8f 5282 return note;
15bbde2b 5283}
5284
31b97e8f 5285/* Make an insn of code NOTE or type NOTE_NO
5286 and add it to the end of the doubly-linked list. */
15bbde2b 5287
cef3d8ad 5288rtx_note *
ad4583d9 5289emit_note (enum insn_note kind)
15bbde2b 5290{
cef3d8ad 5291 rtx_note *note = make_note_raw (kind);
15bbde2b 5292 add_insn (note);
5293 return note;
5294}
5295
18b42941 5296/* Emit a clobber of lvalue X. */
5297
722334ea 5298rtx_insn *
18b42941 5299emit_clobber (rtx x)
5300{
5301 /* CONCATs should not appear in the insn stream. */
5302 if (GET_CODE (x) == CONCAT)
5303 {
5304 emit_clobber (XEXP (x, 0));
5305 return emit_clobber (XEXP (x, 1));
5306 }
5307 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5308}
5309
5310/* Return a sequence of insns to clobber lvalue X. */
5311
722334ea 5312rtx_insn *
18b42941 5313gen_clobber (rtx x)
5314{
722334ea 5315 rtx_insn *seq;
18b42941 5316
5317 start_sequence ();
5318 emit_clobber (x);
5319 seq = get_insns ();
5320 end_sequence ();
5321 return seq;
5322}
5323
5324/* Emit a use of rvalue X. */
5325
722334ea 5326rtx_insn *
18b42941 5327emit_use (rtx x)
5328{
5329 /* CONCATs should not appear in the insn stream. */
5330 if (GET_CODE (x) == CONCAT)
5331 {
5332 emit_use (XEXP (x, 0));
5333 return emit_use (XEXP (x, 1));
5334 }
5335 return emit_insn (gen_rtx_USE (VOIDmode, x));
5336}
5337
5338/* Return a sequence of insns to use rvalue X. */
5339
722334ea 5340rtx_insn *
18b42941 5341gen_use (rtx x)
5342{
722334ea 5343 rtx_insn *seq;
18b42941 5344
5345 start_sequence ();
5346 emit_use (x);
5347 seq = get_insns ();
5348 end_sequence ();
5349 return seq;
5350}
5351
3a286419 5352/* Notes like REG_EQUAL and REG_EQUIV refer to a set in an instruction.
5353 Return the set in INSN that such notes describe, or NULL if the notes
5354 have no meaning for INSN. */
5355
5356rtx
5357set_for_reg_notes (rtx insn)
5358{
5359 rtx pat, reg;
5360
5361 if (!INSN_P (insn))
5362 return NULL_RTX;
5363
5364 pat = PATTERN (insn);
5365 if (GET_CODE (pat) == PARALLEL)
5366 {
5367 /* We do not use single_set because that ignores SETs of unused
5368 registers. REG_EQUAL and REG_EQUIV notes really do require the
5369 PARALLEL to have a single SET. */
5370 if (multiple_sets (insn))
5371 return NULL_RTX;
5372 pat = XVECEXP (pat, 0, 0);
5373 }
5374
5375 if (GET_CODE (pat) != SET)
5376 return NULL_RTX;
5377
5378 reg = SET_DEST (pat);
5379
5380 /* Notes apply to the contents of a STRICT_LOW_PART. */
f2c7e335 5381 if (GET_CODE (reg) == STRICT_LOW_PART
5382 || GET_CODE (reg) == ZERO_EXTRACT)
3a286419 5383 reg = XEXP (reg, 0);
5384
5385 /* Check that we have a register. */
5386 if (!(REG_P (reg) || GET_CODE (reg) == SUBREG))
5387 return NULL_RTX;
5388
5389 return pat;
5390}
5391
f1934a33 5392/* Place a note of KIND on insn INSN with DATUM as the datum. If a
6312a35e 5393 note of this type already exists, remove it first. */
f1934a33 5394
c080d8f0 5395rtx
35cb5232 5396set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
f1934a33 5397{
5398 rtx note = find_reg_note (insn, kind, NULL_RTX);
5399
7e6224ab 5400 switch (kind)
5401 {
5402 case REG_EQUAL:
5403 case REG_EQUIV:
7b0b2add 5404 /* We need to support the REG_EQUAL on USE trick of find_reloads. */
5405 if (!set_for_reg_notes (insn) && GET_CODE (PATTERN (insn)) != USE)
3a286419 5406 return NULL_RTX;
7e6224ab 5407
5408 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5409 It serves no useful purpose and breaks eliminate_regs. */
5410 if (GET_CODE (datum) == ASM_OPERANDS)
5411 return NULL_RTX;
2f8cf22c 5412
5413 /* Notes with side effects are dangerous. Even if the side-effect
5414 initially mirrors one in PATTERN (INSN), later optimizations
5415 might alter the way that the final register value is calculated
5416 and so move or alter the side-effect in some way. The note would
5417 then no longer be a valid substitution for SET_SRC. */
5418 if (side_effects_p (datum))
5419 return NULL_RTX;
7e6224ab 5420 break;
5421
5422 default:
5423 break;
5424 }
c080d8f0 5425
3a286419 5426 if (note)
5427 XEXP (note, 0) = datum;
5428 else
5429 {
5430 add_reg_note (insn, kind, datum);
5431 note = REG_NOTES (insn);
5432 }
3072d30e 5433
5434 switch (kind)
c080d8f0 5435 {
3072d30e 5436 case REG_EQUAL:
5437 case REG_EQUIV:
e149ca56 5438 df_notes_rescan (as_a <rtx_insn *> (insn));
3072d30e 5439 break;
5440 default:
5441 break;
c080d8f0 5442 }
f1934a33 5443
3a286419 5444 return note;
f1934a33 5445}
41cf444a 5446
5447/* Like set_unique_reg_note, but don't do anything unless INSN sets DST. */
5448rtx
5449set_dst_reg_note (rtx insn, enum reg_note kind, rtx datum, rtx dst)
5450{
3a286419 5451 rtx set = set_for_reg_notes (insn);
41cf444a 5452
5453 if (set && SET_DEST (set) == dst)
5454 return set_unique_reg_note (insn, kind, datum);
5455 return NULL_RTX;
5456}
15bbde2b 5457\f
16d83c02 5458/* Emit the rtl pattern X as an appropriate kind of insn. Also emit a
5459 following barrier if the instruction needs one and if ALLOW_BARRIER_P
5460 is true.
5461
15bbde2b 5462 If X is a label, it is simply added into the insn chain. */
5463
722334ea 5464rtx_insn *
16d83c02 5465emit (rtx x, bool allow_barrier_p)
15bbde2b 5466{
5467 enum rtx_code code = classify_insn (x);
5468
611234b4 5469 switch (code)
15bbde2b 5470 {
611234b4 5471 case CODE_LABEL:
5472 return emit_label (x);
5473 case INSN:
5474 return emit_insn (x);
5475 case JUMP_INSN:
5476 {
722334ea 5477 rtx_insn *insn = emit_jump_insn (x);
16d83c02 5478 if (allow_barrier_p
5479 && (any_uncondjump_p (insn) || GET_CODE (x) == RETURN))
611234b4 5480 return emit_barrier ();
5481 return insn;
5482 }
5483 case CALL_INSN:
5484 return emit_call_insn (x);
9845d120 5485 case DEBUG_INSN:
5486 return emit_debug_insn (x);
611234b4 5487 default:
5488 gcc_unreachable ();
15bbde2b 5489 }
15bbde2b 5490}
5491\f
1f3233d1 5492/* Space for free sequence stack entries. */
7035b2ab 5493static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
1f3233d1 5494
735f4358 5495/* Begin emitting insns to a sequence. If this sequence will contain
5496 something that might cause the compiler to pop arguments to function
5497 calls (because those pops have previously been deferred; see
5498 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5499 before calling this function. That will ensure that the deferred
5500 pops are not accidentally emitted in the middle of this sequence. */
15bbde2b 5501
5502void
35cb5232 5503start_sequence (void)
15bbde2b 5504{
5505 struct sequence_stack *tem;
5506
1f3233d1 5507 if (free_sequence_stack != NULL)
5508 {
5509 tem = free_sequence_stack;
5510 free_sequence_stack = tem->next;
5511 }
5512 else
25a27413 5513 tem = ggc_alloc<sequence_stack> ();
15bbde2b 5514
c36aa54b 5515 tem->next = get_current_sequence ()->next;
06f9d6ef 5516 tem->first = get_insns ();
5517 tem->last = get_last_insn ();
c36aa54b 5518 get_current_sequence ()->next = tem;
15bbde2b 5519
06f9d6ef 5520 set_first_insn (0);
5521 set_last_insn (0);
15bbde2b 5522}
5523
b49854c6 5524/* Set up the insn chain starting with FIRST as the current sequence,
5525 saving the previously current one. See the documentation for
5526 start_sequence for more information about how to use this function. */
15bbde2b 5527
5528void
57c26b3a 5529push_to_sequence (rtx_insn *first)
15bbde2b 5530{
57c26b3a 5531 rtx_insn *last;
15bbde2b 5532
5533 start_sequence ();
5534
3c802a1e 5535 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last))
5536 ;
15bbde2b 5537
06f9d6ef 5538 set_first_insn (first);
5539 set_last_insn (last);
15bbde2b 5540}
5541
28bf151d 5542/* Like push_to_sequence, but take the last insn as an argument to avoid
5543 looping through the list. */
5544
5545void
57c26b3a 5546push_to_sequence2 (rtx_insn *first, rtx_insn *last)
28bf151d 5547{
5548 start_sequence ();
5549
06f9d6ef 5550 set_first_insn (first);
5551 set_last_insn (last);
28bf151d 5552}
5553
ab74c92f 5554/* Set up the outer-level insn chain
5555 as the current sequence, saving the previously current one. */
5556
5557void
35cb5232 5558push_topmost_sequence (void)
ab74c92f 5559{
c36aa54b 5560 struct sequence_stack *top;
ab74c92f 5561
5562 start_sequence ();
5563
c36aa54b 5564 top = get_topmost_sequence ();
06f9d6ef 5565 set_first_insn (top->first);
5566 set_last_insn (top->last);
ab74c92f 5567}
5568
5569/* After emitting to the outer-level insn chain, update the outer-level
5570 insn chain, and restore the previous saved state. */
5571
5572void
35cb5232 5573pop_topmost_sequence (void)
ab74c92f 5574{
c36aa54b 5575 struct sequence_stack *top;
ab74c92f 5576
c36aa54b 5577 top = get_topmost_sequence ();
06f9d6ef 5578 top->first = get_insns ();
5579 top->last = get_last_insn ();
ab74c92f 5580
5581 end_sequence ();
5582}
5583
15bbde2b 5584/* After emitting to a sequence, restore previous saved state.
5585
b49854c6 5586 To get the contents of the sequence just made, you must call
31d3e01c 5587 `get_insns' *before* calling here.
b49854c6 5588
5589 If the compiler might have deferred popping arguments while
5590 generating this sequence, and this sequence will not be immediately
5591 inserted into the instruction stream, use do_pending_stack_adjust
31d3e01c 5592 before calling get_insns. That will ensure that the deferred
b49854c6 5593 pops are inserted into this sequence, and not into some random
5594 location in the instruction stream. See INHIBIT_DEFER_POP for more
5595 information about deferred popping of arguments. */
15bbde2b 5596
5597void
35cb5232 5598end_sequence (void)
15bbde2b 5599{
c36aa54b 5600 struct sequence_stack *tem = get_current_sequence ()->next;
15bbde2b 5601
06f9d6ef 5602 set_first_insn (tem->first);
5603 set_last_insn (tem->last);
c36aa54b 5604 get_current_sequence ()->next = tem->next;
15bbde2b 5605
1f3233d1 5606 memset (tem, 0, sizeof (*tem));
5607 tem->next = free_sequence_stack;
5608 free_sequence_stack = tem;
15bbde2b 5609}
5610
5611/* Return 1 if currently emitting into a sequence. */
5612
5613int
35cb5232 5614in_sequence_p (void)
15bbde2b 5615{
c36aa54b 5616 return get_current_sequence ()->next != 0;
15bbde2b 5617}
15bbde2b 5618\f
02ebfa52 5619/* Put the various virtual registers into REGNO_REG_RTX. */
5620
2f3874ce 5621static void
b079a207 5622init_virtual_regs (void)
02ebfa52 5623{
b079a207 5624 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5625 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5626 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5627 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5628 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
60778e62 5629 regno_reg_rtx[VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM]
5630 = virtual_preferred_stack_boundary_rtx;
0a893c29 5631}
5632
928d57e3 5633\f
5634/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5635static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5636static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5637static int copy_insn_n_scratches;
5638
5639/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5640 copied an ASM_OPERANDS.
5641 In that case, it is the original input-operand vector. */
5642static rtvec orig_asm_operands_vector;
5643
5644/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5645 copied an ASM_OPERANDS.
5646 In that case, it is the copied input-operand vector. */
5647static rtvec copy_asm_operands_vector;
5648
5649/* Likewise for the constraints vector. */
5650static rtvec orig_asm_constraints_vector;
5651static rtvec copy_asm_constraints_vector;
5652
5653/* Recursively create a new copy of an rtx for copy_insn.
5654 This function differs from copy_rtx in that it handles SCRATCHes and
5655 ASM_OPERANDs properly.
5656 Normally, this function is not used directly; use copy_insn as front end.
5657 However, you could first copy an insn pattern with copy_insn and then use
5658 this function afterwards to properly copy any REG_NOTEs containing
5659 SCRATCHes. */
5660
5661rtx
35cb5232 5662copy_insn_1 (rtx orig)
928d57e3 5663{
19cb6b50 5664 rtx copy;
5665 int i, j;
5666 RTX_CODE code;
5667 const char *format_ptr;
928d57e3 5668
25e880b1 5669 if (orig == NULL)
5670 return NULL;
5671
928d57e3 5672 code = GET_CODE (orig);
5673
5674 switch (code)
5675 {
5676 case REG:
d7fce3c8 5677 case DEBUG_EXPR:
0349edce 5678 CASE_CONST_ANY:
928d57e3 5679 case SYMBOL_REF:
5680 case CODE_LABEL:
5681 case PC:
5682 case CC0:
e0691b9a 5683 case RETURN:
9cb2517e 5684 case SIMPLE_RETURN:
928d57e3 5685 return orig;
c09425a0 5686 case CLOBBER:
b291008a 5687 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5688 clobbers or clobbers of hard registers that originated as pseudos.
5689 This is needed to allow safe register renaming. */
2b5f32ae 5690 if (REG_P (XEXP (orig, 0))
5691 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5692 && HARD_REGISTER_NUM_P (ORIGINAL_REGNO (XEXP (orig, 0))))
c09425a0 5693 return orig;
5694 break;
928d57e3 5695
5696 case SCRATCH:
5697 for (i = 0; i < copy_insn_n_scratches; i++)
5698 if (copy_insn_scratch_in[i] == orig)
5699 return copy_insn_scratch_out[i];
5700 break;
5701
5702 case CONST:
3072d30e 5703 if (shared_const_p (orig))
928d57e3 5704 return orig;
5705 break;
d823ba47 5706
928d57e3 5707 /* A MEM with a constant address is not sharable. The problem is that
5708 the constant address may need to be reloaded. If the mem is shared,
5709 then reloading one copy of this mem will cause all copies to appear
5710 to have been reloaded. */
5711
5712 default:
5713 break;
5714 }
5715
f2d0e9f1 5716 /* Copy the various flags, fields, and other information. We assume
5717 that all fields need copying, and then clear the fields that should
928d57e3 5718 not be copied. That is the sensible default behavior, and forces
5719 us to explicitly document why we are *not* copying a flag. */
f2d0e9f1 5720 copy = shallow_copy_rtx (orig);
928d57e3 5721
928d57e3 5722 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
6720e96c 5723 if (INSN_P (orig))
928d57e3 5724 {
7c25cb91 5725 RTX_FLAG (copy, jump) = 0;
5726 RTX_FLAG (copy, call) = 0;
5727 RTX_FLAG (copy, frame_related) = 0;
928d57e3 5728 }
d823ba47 5729
928d57e3 5730 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5731
5732 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
f2d0e9f1 5733 switch (*format_ptr++)
5734 {
5735 case 'e':
5736 if (XEXP (orig, i) != NULL)
5737 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5738 break;
928d57e3 5739
f2d0e9f1 5740 case 'E':
5741 case 'V':
5742 if (XVEC (orig, i) == orig_asm_constraints_vector)
5743 XVEC (copy, i) = copy_asm_constraints_vector;
5744 else if (XVEC (orig, i) == orig_asm_operands_vector)
5745 XVEC (copy, i) = copy_asm_operands_vector;
5746 else if (XVEC (orig, i) != NULL)
5747 {
5748 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5749 for (j = 0; j < XVECLEN (copy, i); j++)
5750 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5751 }
5752 break;
928d57e3 5753
f2d0e9f1 5754 case 't':
5755 case 'w':
5756 case 'i':
9edf7ea8 5757 case 'p':
f2d0e9f1 5758 case 's':
5759 case 'S':
5760 case 'u':
5761 case '0':
5762 /* These are left unchanged. */
5763 break;
928d57e3 5764
f2d0e9f1 5765 default:
5766 gcc_unreachable ();
5767 }
928d57e3 5768
5769 if (code == SCRATCH)
5770 {
5771 i = copy_insn_n_scratches++;
611234b4 5772 gcc_assert (i < MAX_RECOG_OPERANDS);
928d57e3 5773 copy_insn_scratch_in[i] = orig;
5774 copy_insn_scratch_out[i] = copy;
5775 }
5776 else if (code == ASM_OPERANDS)
5777 {
d91f2122 5778 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5779 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5780 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5781 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
928d57e3 5782 }
5783
5784 return copy;
5785}
5786
5787/* Create a new copy of an rtx.
5788 This function differs from copy_rtx in that it handles SCRATCHes and
5789 ASM_OPERANDs properly.
5790 INSN doesn't really have to be a full INSN; it could be just the
5791 pattern. */
5792rtx
35cb5232 5793copy_insn (rtx insn)
928d57e3 5794{
5795 copy_insn_n_scratches = 0;
5796 orig_asm_operands_vector = 0;
5797 orig_asm_constraints_vector = 0;
5798 copy_asm_operands_vector = 0;
5799 copy_asm_constraints_vector = 0;
5800 return copy_insn_1 (insn);
5801}
02ebfa52 5802
a9abe1f1 5803/* Return a copy of INSN that can be used in a SEQUENCE delay slot,
5804 on that assumption that INSN itself remains in its original place. */
5805
575a12f2 5806rtx_insn *
5807copy_delay_slot_insn (rtx_insn *insn)
a9abe1f1 5808{
5809 /* Copy INSN with its rtx_code, all its notes, location etc. */
575a12f2 5810 insn = as_a <rtx_insn *> (copy_rtx (insn));
a9abe1f1 5811 INSN_UID (insn) = cur_insn_uid++;
5812 return insn;
5813}
5814
15bbde2b 5815/* Initialize data structures and variables in this file
5816 before generating rtl for each function. */
5817
5818void
35cb5232 5819init_emit (void)
15bbde2b 5820{
06f9d6ef 5821 set_first_insn (NULL);
5822 set_last_insn (NULL);
9845d120 5823 if (MIN_NONDEBUG_INSN_UID)
5824 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5825 else
5826 cur_insn_uid = 1;
5827 cur_debug_insn_uid = 1;
15bbde2b 5828 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
15bbde2b 5829 first_label_num = label_num;
c36aa54b 5830 get_current_sequence ()->next = NULL;
15bbde2b 5831
15bbde2b 5832 /* Init the tables that describe all the pseudo regs. */
5833
fd6ffb7c 5834 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
15bbde2b 5835
fd6ffb7c 5836 crtl->emit.regno_pointer_align
2457c754 5837 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
d4c332ff 5838
cd769037 5839 regno_reg_rtx
5840 = ggc_cleared_vec_alloc<rtx> (crtl->emit.regno_pointer_align_length);
fcdc122e 5841
936082bb 5842 /* Put copies of all the hard registers into regno_reg_rtx. */
90295bd2 5843 memcpy (regno_reg_rtx,
679bcc8d 5844 initial_regno_reg_rtx,
90295bd2 5845 FIRST_PSEUDO_REGISTER * sizeof (rtx));
936082bb 5846
15bbde2b 5847 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
b079a207 5848 init_virtual_regs ();
888e0d33 5849
5850 /* Indicate that the virtual registers and stack locations are
5851 all pointers. */
e61a0a7f 5852 REG_POINTER (stack_pointer_rtx) = 1;
5853 REG_POINTER (frame_pointer_rtx) = 1;
5854 REG_POINTER (hard_frame_pointer_rtx) = 1;
5855 REG_POINTER (arg_pointer_rtx) = 1;
888e0d33 5856
e61a0a7f 5857 REG_POINTER (virtual_incoming_args_rtx) = 1;
5858 REG_POINTER (virtual_stack_vars_rtx) = 1;
5859 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5860 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5861 REG_POINTER (virtual_cfa_rtx) = 1;
89525da0 5862
d4c332ff 5863#ifdef STACK_BOUNDARY
80909c64 5864 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5865 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5866 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5867 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5868
5869 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5870 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5871 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5872 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
213d1448 5873
80909c64 5874 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
d4c332ff 5875#endif
5876
89525da0 5877#ifdef INIT_EXPANDERS
5878 INIT_EXPANDERS;
5879#endif
15bbde2b 5880}
5881
0f78b37a 5882/* Return the value of element I of CONST_VECTOR X as a wide_int. */
5883
5884wide_int
5885const_vector_int_elt (const_rtx x, unsigned int i)
5886{
5887 /* First handle elements that are directly encoded. */
5888 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5889 if (i < (unsigned int) XVECLEN (x, 0))
5890 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5891
5892 /* Identify the pattern that contains element I and work out the index of
5893 the last encoded element for that pattern. */
5894 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5895 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5896 unsigned int count = i / npatterns;
5897 unsigned int pattern = i % npatterns;
5898 unsigned int final_i = encoded_nelts - npatterns + pattern;
5899
5900 /* If there are no steps, the final encoded value is the right one. */
5901 if (!CONST_VECTOR_STEPPED_P (x))
5902 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5903
5904 /* Otherwise work out the value from the last two encoded elements. */
5905 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5906 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5907 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5908 rtx_mode_t (v1, elt_mode));
5909 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5910}
5911
5912/* Return the value of element I of CONST_VECTOR X. */
5913
5914rtx
5915const_vector_elt (const_rtx x, unsigned int i)
5916{
5917 /* First handle elements that are directly encoded. */
5918 if (i < (unsigned int) XVECLEN (x, 0))
5919 return CONST_VECTOR_ENCODED_ELT (x, i);
5920
5921 /* If there are no steps, the final encoded value is the right one. */
5922 if (!CONST_VECTOR_STEPPED_P (x))
5923 {
5924 /* Identify the pattern that contains element I and work out the index of
5925 the last encoded element for that pattern. */
5926 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5927 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5928 unsigned int pattern = i % npatterns;
5929 unsigned int final_i = encoded_nelts - npatterns + pattern;
5930 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5931 }
5932
5933 /* Otherwise work out the value from the last two encoded elements. */
5934 return immed_wide_int_const (const_vector_int_elt (x, i),
5935 GET_MODE_INNER (GET_MODE (x)));
5936}
5937
ca4bb72c 5938/* Return true if X is a valid element for a CONST_VECTOR of the given
5939 mode. */
67c52133 5940
5941bool
ca4bb72c 5942valid_for_const_vector_p (machine_mode, rtx x)
67c52133 5943{
5944 return (CONST_SCALAR_INT_P (x)
5945 || CONST_DOUBLE_AS_FLOAT_P (x)
5946 || CONST_FIXED_P (x));
5947}
5948
0b51f5ce 5949/* Generate a vector constant of mode MODE in which every element has
5950 value ELT. */
886cfd4f 5951
0b51f5ce 5952rtx
5953gen_const_vec_duplicate (machine_mode mode, rtx elt)
5954{
a80726d1 5955 rtx_vector_builder builder (mode, 1, 1);
5956 builder.quick_push (elt);
5957 return builder.build ();
0b51f5ce 5958}
5959
5960/* Return a vector rtx of mode MODE in which every element has value X.
5961 The result will be a constant if X is constant. */
5962
5963rtx
5964gen_vec_duplicate (machine_mode mode, rtx x)
5965{
ca4bb72c 5966 if (valid_for_const_vector_p (mode, x))
0b51f5ce 5967 return gen_const_vec_duplicate (mode, x);
5968 return gen_rtx_VEC_DUPLICATE (mode, x);
5969}
069b07bf 5970
a80726d1 5971/* A subroutine of const_vec_series_p that handles the case in which:
5972
5973 (GET_CODE (X) == CONST_VECTOR
5974 && CONST_VECTOR_NPATTERNS (X) == 1
5975 && !CONST_VECTOR_DUPLICATE_P (X))
5976
5977 is known to hold. */
ccc2ef18 5978
5979bool
5980const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5981{
a80726d1 5982 /* Stepped sequences are only defined for integers, to avoid specifying
5983 rounding behavior. */
5984 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5985 return false;
5986
5987 /* A non-duplicated vector with two elements can always be seen as a
5988 series with a nonzero step. Longer vectors must have a stepped
5989 encoding. */
ba7efd65 5990 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
a80726d1 5991 && !CONST_VECTOR_STEPPED_P (x))
ccc2ef18 5992 return false;
5993
a80726d1 5994 /* Calculate the step between the first and second elements. */
ccc2ef18 5995 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
5996 rtx base = CONST_VECTOR_ELT (x, 0);
5997 rtx step = simplify_binary_operation (MINUS, inner,
a80726d1 5998 CONST_VECTOR_ENCODED_ELT (x, 1), base);
ccc2ef18 5999 if (rtx_equal_p (step, CONST0_RTX (inner)))
6000 return false;
6001
a80726d1 6002 /* If we have a stepped encoding, check that the step between the
6003 second and third elements is the same as STEP. */
6004 if (CONST_VECTOR_STEPPED_P (x))
ccc2ef18 6005 {
6006 rtx diff = simplify_binary_operation (MINUS, inner,
a80726d1 6007 CONST_VECTOR_ENCODED_ELT (x, 2),
6008 CONST_VECTOR_ENCODED_ELT (x, 1));
ccc2ef18 6009 if (!rtx_equal_p (step, diff))
6010 return false;
6011 }
6012
6013 *base_out = base;
6014 *step_out = step;
6015 return true;
6016}
6017
6018/* Generate a vector constant of mode MODE in which element I has
6019 the value BASE + I * STEP. */
6020
6021rtx
6022gen_const_vec_series (machine_mode mode, rtx base, rtx step)
6023{
8c5096cc 6024 gcc_assert (valid_for_const_vector_p (mode, base)
6025 && valid_for_const_vector_p (mode, step));
ccc2ef18 6026
a80726d1 6027 rtx_vector_builder builder (mode, 1, 3);
6028 builder.quick_push (base);
6029 for (int i = 1; i < 3; ++i)
6030 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
6031 builder[i - 1], step));
6032 return builder.build ();
ccc2ef18 6033}
6034
6035/* Generate a vector of mode MODE in which element I has the value
6036 BASE + I * STEP. The result will be a constant if BASE and STEP
6037 are both constants. */
6038
6039rtx
6040gen_vec_series (machine_mode mode, rtx base, rtx step)
6041{
6042 if (step == const0_rtx)
6043 return gen_vec_duplicate (mode, base);
8c5096cc 6044 if (valid_for_const_vector_p (mode, base)
6045 && valid_for_const_vector_p (mode, step))
ccc2ef18 6046 return gen_const_vec_series (mode, base, step);
6047 return gen_rtx_VEC_SERIES (mode, base, step);
6048}
6049
0b51f5ce 6050/* Generate a new vector constant for mode MODE and constant value
6051 CONSTANT. */
886cfd4f 6052
0b51f5ce 6053static rtx
6054gen_const_vector (machine_mode mode, int constant)
6055{
6056 machine_mode inner = GET_MODE_INNER (mode);
886cfd4f 6057
0b51f5ce 6058 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
6059
6060 rtx el = const_tiny_rtx[constant][(int) inner];
6061 gcc_assert (el);
886cfd4f 6062
a80726d1 6063 return gen_const_vec_duplicate (mode, el);
886cfd4f 6064}
6065
9426b612 6066/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
6e68dcb2 6067 all elements are zero, and the one vector when all elements are one. */
9426b612 6068rtx
3754d046 6069gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
9426b612 6070{
ba7efd65 6071 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
6e68dcb2 6072
6073 /* If the values are all the same, check to see if we can use one of the
6074 standard constant vectors. */
0b51f5ce 6075 if (rtvec_all_equal_p (v))
6076 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
6e68dcb2 6077
a80726d1 6078 unsigned int nunits = GET_NUM_ELEM (v);
6079 rtx_vector_builder builder (mode, nunits, 1);
6080 for (unsigned int i = 0; i < nunits; ++i)
6081 builder.quick_push (RTVEC_ELT (v, i));
6082 return builder.build (v);
9426b612 6083}
6084
6d8b68a3 6085/* Initialise global register information required by all functions. */
6086
6087void
6088init_emit_regs (void)
6089{
6090 int i;
3754d046 6091 machine_mode mode;
d83fcaa1 6092 mem_attrs *attrs;
6d8b68a3 6093
6094 /* Reset register attributes */
f863a586 6095 reg_attrs_htab->empty ();
6d8b68a3 6096
6097 /* We need reg_raw_mode, so initialize the modes now. */
6098 init_reg_modes_target ();
6099
6100 /* Assign register numbers to the globally defined register rtx. */
6d8b68a3 6101 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
6102 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
6103 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
6104 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
6105 virtual_incoming_args_rtx =
6106 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
6107 virtual_stack_vars_rtx =
6108 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
6109 virtual_stack_dynamic_rtx =
6110 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
6111 virtual_outgoing_args_rtx =
6112 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
6113 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
60778e62 6114 virtual_preferred_stack_boundary_rtx =
6115 gen_raw_REG (Pmode, VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM);
6d8b68a3 6116
6117 /* Initialize RTL for commonly used hard registers. These are
6118 copied into regno_reg_rtx as we begin to compile each function. */
6119 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
679bcc8d 6120 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
6d8b68a3 6121
6122#ifdef RETURN_ADDRESS_POINTER_REGNUM
6123 return_address_pointer_rtx
6124 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
6125#endif
6126
639f32a2 6127 pic_offset_table_rtx = NULL_RTX;
6d8b68a3 6128 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
6129 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
d83fcaa1 6130
6131 for (i = 0; i < (int) MAX_MACHINE_MODE; i++)
6132 {
3754d046 6133 mode = (machine_mode) i;
25a27413 6134 attrs = ggc_cleared_alloc<mem_attrs> ();
d83fcaa1 6135 attrs->align = BITS_PER_UNIT;
6136 attrs->addrspace = ADDR_SPACE_GENERIC;
6137 if (mode != BLKmode)
6138 {
6d58bcba 6139 attrs->size_known_p = true;
6140 attrs->size = GET_MODE_SIZE (mode);
d83fcaa1 6141 if (STRICT_ALIGNMENT)
6142 attrs->align = GET_MODE_ALIGNMENT (mode);
6143 }
6144 mode_mem_attrs[i] = attrs;
6145 }
15b08c01 6146
6147 split_branch_probability = profile_probability::uninitialized ();
6d8b68a3 6148}
6149
8059b95a 6150/* Initialize global machine_mode variables. */
6151
6152void
6153init_derived_machine_modes (void)
6154{
af8303fa 6155 opt_scalar_int_mode mode_iter, opt_byte_mode, opt_word_mode;
6156 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
8059b95a 6157 {
af8303fa 6158 scalar_int_mode mode = mode_iter.require ();
6159
8059b95a 6160 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
af8303fa 6161 && !opt_byte_mode.exists ())
6162 opt_byte_mode = mode;
8059b95a 6163
6164 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
af8303fa 6165 && !opt_word_mode.exists ())
6166 opt_word_mode = mode;
8059b95a 6167 }
6168
af8303fa 6169 byte_mode = opt_byte_mode.require ();
6170 word_mode = opt_word_mode.require ();
db22dc71 6171 ptr_mode = as_a <scalar_int_mode>
6172 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
8059b95a 6173}
6174
01703575 6175/* Create some permanent unique rtl objects shared between all functions. */
15bbde2b 6176
6177void
01703575 6178init_emit_once (void)
15bbde2b 6179{
6180 int i;
3754d046 6181 machine_mode mode;
99d671f4 6182 scalar_float_mode double_mode;
2b8f5b8a 6183 opt_scalar_mode smode_iter;
15bbde2b 6184
e913b5cd 6185 /* Initialize the CONST_INT, CONST_WIDE_INT, CONST_DOUBLE,
6186 CONST_FIXED, and memory attribute hash tables. */
f863a586 6187 const_int_htab = hash_table<const_int_hasher>::create_ggc (37);
c6259b83 6188
e913b5cd 6189#if TARGET_SUPPORTS_WIDE_INT
f863a586 6190 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
e913b5cd 6191#endif
f863a586 6192 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
2ff23ed0 6193
bbad7cd0 6194 if (NUM_POLY_INT_COEFFS > 1)
6195 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
6196
f863a586 6197 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
e397ad8e 6198
f863a586 6199 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
77695070 6200
57c097d5 6201#ifdef INIT_EXPANDERS
ab5beff9 6202 /* This is to initialize {init|mark|free}_machine_status before the first
6203 call to push_function_context_to. This is needed by the Chill front
3fb1e43b 6204 end which calls push_function_context_to before the first call to
57c097d5 6205 init_function_start. */
6206 INIT_EXPANDERS;
6207#endif
6208
15bbde2b 6209 /* Create the unique rtx's for certain rtx codes and operand values. */
6210
48a7e3d1 6211 /* Process stack-limiting command-line options. */
6212 if (opt_fstack_limit_symbol_arg != NULL)
6213 stack_limit_rtx
6214 = gen_rtx_SYMBOL_REF (Pmode, ggc_strdup (opt_fstack_limit_symbol_arg));
6215 if (opt_fstack_limit_register_no >= 0)
6216 stack_limit_rtx = gen_rtx_REG (Pmode, opt_fstack_limit_register_no);
6217
8fd5918e 6218 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
7014838c 6219 tries to use these variables. */
15bbde2b 6220 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
d823ba47 6221 const_int_rtx[i + MAX_SAVED_CONST_INT] =
a717d5b4 6222 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
15bbde2b 6223
1a60f06a 6224 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
6225 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
57c097d5 6226 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
1a60f06a 6227 else
3ad7bb1c 6228 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
15bbde2b 6229
99d671f4 6230 double_mode = float_mode_for_size (DOUBLE_TYPE_SIZE).require ();
8059b95a 6231
cc69d08a 6232 real_from_integer (&dconst0, double_mode, 0, SIGNED);
6233 real_from_integer (&dconst1, double_mode, 1, SIGNED);
6234 real_from_integer (&dconst2, double_mode, 2, SIGNED);
3fa759a9 6235
6236 dconstm1 = dconst1;
6237 dconstm1.sign = 1;
77e89269 6238
6239 dconsthalf = dconst1;
9d96125b 6240 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
15bbde2b 6241
ba8dfb08 6242 for (i = 0; i < 3; i++)
15bbde2b 6243 {
3fa759a9 6244 const REAL_VALUE_TYPE *const r =
badfe841 6245 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
6246
19a4dce4 6247 FOR_EACH_MODE_IN_CLASS (mode, MODE_FLOAT)
069b07bf 6248 const_tiny_rtx[i][(int) mode] =
d5f9611d 6249 const_double_from_real_value (*r, mode);
069b07bf 6250
19a4dce4 6251 FOR_EACH_MODE_IN_CLASS (mode, MODE_DECIMAL_FLOAT)
2ff23ed0 6252 const_tiny_rtx[i][(int) mode] =
d5f9611d 6253 const_double_from_real_value (*r, mode);
15bbde2b 6254
b572011e 6255 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
15bbde2b 6256
19a4dce4 6257 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
b572011e 6258 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
7540dcc4 6259
8c20007a 6260 for (mode = MIN_MODE_PARTIAL_INT;
6261 mode <= MAX_MODE_PARTIAL_INT;
3754d046 6262 mode = (machine_mode)((int)(mode) + 1))
7540dcc4 6263 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
15bbde2b 6264 }
6265
ba8dfb08 6266 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
6267
19a4dce4 6268 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
ba8dfb08 6269 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6270
8c20007a 6271 for (mode = MIN_MODE_PARTIAL_INT;
6272 mode <= MAX_MODE_PARTIAL_INT;
3754d046 6273 mode = (machine_mode)((int)(mode) + 1))
dd276d20 6274 const_tiny_rtx[3][(int) mode] = constm1_rtx;
19a4dce4 6275
6276 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_INT)
4248fc32 6277 {
6278 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6279 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6280 }
6281
19a4dce4 6282 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
4248fc32 6283 {
6284 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6285 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6286 }
6287
19a4dce4 6288 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6e68dcb2 6289 {
6290 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6291 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
ba8dfb08 6292 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6e68dcb2 6293 }
886cfd4f 6294
19a4dce4 6295 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FLOAT)
6e68dcb2 6296 {
6297 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6298 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6299 }
886cfd4f 6300
2b8f5b8a 6301 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_FRACT)
06f0b99c 6302 {
2b8f5b8a 6303 scalar_mode smode = smode_iter.require ();
6304 FCONST0 (smode).data.high = 0;
6305 FCONST0 (smode).data.low = 0;
6306 FCONST0 (smode).mode = smode;
6307 const_tiny_rtx[0][(int) smode]
6308 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
06f0b99c 6309 }
6310
2b8f5b8a 6311 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UFRACT)
06f0b99c 6312 {
2b8f5b8a 6313 scalar_mode smode = smode_iter.require ();
6314 FCONST0 (smode).data.high = 0;
6315 FCONST0 (smode).data.low = 0;
6316 FCONST0 (smode).mode = smode;
6317 const_tiny_rtx[0][(int) smode]
6318 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
06f0b99c 6319 }
6320
2b8f5b8a 6321 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_ACCUM)
06f0b99c 6322 {
2b8f5b8a 6323 scalar_mode smode = smode_iter.require ();
6324 FCONST0 (smode).data.high = 0;
6325 FCONST0 (smode).data.low = 0;
6326 FCONST0 (smode).mode = smode;
6327 const_tiny_rtx[0][(int) smode]
6328 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
06f0b99c 6329
6330 /* We store the value 1. */
2b8f5b8a 6331 FCONST1 (smode).data.high = 0;
6332 FCONST1 (smode).data.low = 0;
6333 FCONST1 (smode).mode = smode;
6334 FCONST1 (smode).data
6335 = double_int_one.lshift (GET_MODE_FBIT (smode),
d67b7119 6336 HOST_BITS_PER_DOUBLE_INT,
2b8f5b8a 6337 SIGNED_FIXED_POINT_MODE_P (smode));
6338 const_tiny_rtx[1][(int) smode]
6339 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
06f0b99c 6340 }
6341
2b8f5b8a 6342 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_UACCUM)
06f0b99c 6343 {
2b8f5b8a 6344 scalar_mode smode = smode_iter.require ();
6345 FCONST0 (smode).data.high = 0;
6346 FCONST0 (smode).data.low = 0;
6347 FCONST0 (smode).mode = smode;
6348 const_tiny_rtx[0][(int) smode]
6349 = CONST_FIXED_FROM_FIXED_VALUE (FCONST0 (smode), smode);
06f0b99c 6350
6351 /* We store the value 1. */
2b8f5b8a 6352 FCONST1 (smode).data.high = 0;
6353 FCONST1 (smode).data.low = 0;
6354 FCONST1 (smode).mode = smode;
6355 FCONST1 (smode).data
6356 = double_int_one.lshift (GET_MODE_FBIT (smode),
d67b7119 6357 HOST_BITS_PER_DOUBLE_INT,
2b8f5b8a 6358 SIGNED_FIXED_POINT_MODE_P (smode));
6359 const_tiny_rtx[1][(int) smode]
6360 = CONST_FIXED_FROM_FIXED_VALUE (FCONST1 (smode), smode);
e397ad8e 6361 }
6362
19a4dce4 6363 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_FRACT)
e397ad8e 6364 {
6365 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6366 }
6367
19a4dce4 6368 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UFRACT)
e397ad8e 6369 {
6370 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6371 }
6372
19a4dce4 6373 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_ACCUM)
e397ad8e 6374 {
6375 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6376 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
6377 }
6378
19a4dce4 6379 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_UACCUM)
e397ad8e 6380 {
6381 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6382 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
06f0b99c 6383 }
6384
0fd4500a 6385 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
3754d046 6386 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
0fd4500a 6387 const_tiny_rtx[0][i] = const0_rtx;
15bbde2b 6388
065336b4 6389 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6390 if (STORE_FLAG_VALUE == 1)
6391 const_tiny_rtx[1][(int) BImode] = const1_rtx;
7d7b0bac 6392
2b8f5b8a 6393 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_POINTER_BOUNDS)
058a1b7a 6394 {
2b8f5b8a 6395 scalar_mode smode = smode_iter.require ();
6396 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (smode));
6397 const_tiny_rtx[0][smode] = immed_wide_int_const (wi_zero, smode);
058a1b7a 6398 }
6399
7d7b0bac 6400 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6401 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6402 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6403 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
f9a00e9e 6404 invalid_insn_rtx = gen_rtx_INSN (VOIDmode,
6405 /*prev_insn=*/NULL,
6406 /*next_insn=*/NULL,
6407 /*bb=*/NULL,
6408 /*pattern=*/NULL_RTX,
6409 /*location=*/-1,
6410 CODE_FOR_nothing,
6411 /*reg_notes=*/NULL_RTX);
15bbde2b 6412}
ac6c481d 6413\f
cd0fe062 6414/* Produce exact duplicate of insn INSN after AFTER.
6415 Care updating of libcall regions if present. */
6416
722334ea 6417rtx_insn *
5e9c670f 6418emit_copy_of_insn_after (rtx_insn *insn, rtx_insn *after)
cd0fe062 6419{
722334ea 6420 rtx_insn *new_rtx;
6421 rtx link;
cd0fe062 6422
6423 switch (GET_CODE (insn))
6424 {
6425 case INSN:
9ce37fa7 6426 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
cd0fe062 6427 break;
6428
6429 case JUMP_INSN:
9ce37fa7 6430 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
01762951 6431 CROSSING_JUMP_P (new_rtx) = CROSSING_JUMP_P (insn);
cd0fe062 6432 break;
6433
9845d120 6434 case DEBUG_INSN:
6435 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
6436 break;
6437
cd0fe062 6438 case CALL_INSN:
9ce37fa7 6439 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
cd0fe062 6440 if (CALL_INSN_FUNCTION_USAGE (insn))
9ce37fa7 6441 CALL_INSN_FUNCTION_USAGE (new_rtx)
cd0fe062 6442 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
9ce37fa7 6443 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
6444 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
6445 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
48e1416a 6446 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
9c2a0c05 6447 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
cd0fe062 6448 break;
6449
6450 default:
611234b4 6451 gcc_unreachable ();
cd0fe062 6452 }
6453
6454 /* Update LABEL_NUSES. */
9ce37fa7 6455 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
cd0fe062 6456
5169661d 6457 INSN_LOCATION (new_rtx) = INSN_LOCATION (insn);
ab87d1bc 6458
98116afd 6459 /* If the old insn is frame related, then so is the new one. This is
6460 primarily needed for IA-64 unwind info which marks epilogue insns,
6461 which may be duplicated by the basic block reordering code. */
9ce37fa7 6462 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
98116afd 6463
bb99ba64 6464 /* Locate the end of existing REG_NOTES in NEW_RTX. */
6465 rtx *ptail = &REG_NOTES (new_rtx);
6466 while (*ptail != NULL_RTX)
6467 ptail = &XEXP (*ptail, 1);
6468
19d2fe05 6469 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
6470 will make them. REG_LABEL_TARGETs are created there too, but are
6471 supposed to be sticky, so we copy them. */
cd0fe062 6472 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
19d2fe05 6473 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
cd0fe062 6474 {
bb99ba64 6475 *ptail = duplicate_reg_note (link);
6476 ptail = &XEXP (*ptail, 1);
cd0fe062 6477 }
6478
9ce37fa7 6479 INSN_CODE (new_rtx) = INSN_CODE (insn);
6480 return new_rtx;
cd0fe062 6481}
1f3233d1 6482
7035b2ab 6483static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
c09425a0 6484rtx
3754d046 6485gen_hard_reg_clobber (machine_mode mode, unsigned int regno)
c09425a0 6486{
6487 if (hard_reg_clobbers[mode][regno])
6488 return hard_reg_clobbers[mode][regno];
6489 else
6490 return (hard_reg_clobbers[mode][regno] =
6491 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6492}
6493
5169661d 6494location_t prologue_location;
6495location_t epilogue_location;
23a070f3 6496
6497/* Hold current location information and last location information, so the
6498 datastructures are built lazily only when some instructions in given
6499 place are needed. */
c7abeac5 6500static location_t curr_location;
23a070f3 6501
5169661d 6502/* Allocate insn location datastructure. */
23a070f3 6503void
5169661d 6504insn_locations_init (void)
23a070f3 6505{
5169661d 6506 prologue_location = epilogue_location = 0;
23a070f3 6507 curr_location = UNKNOWN_LOCATION;
23a070f3 6508}
6509
6510/* At the end of emit stage, clear current location. */
6511void
5169661d 6512insn_locations_finalize (void)
23a070f3 6513{
5169661d 6514 epilogue_location = curr_location;
6515 curr_location = UNKNOWN_LOCATION;
23a070f3 6516}
6517
6518/* Set current location. */
6519void
5169661d 6520set_curr_insn_location (location_t location)
23a070f3 6521{
23a070f3 6522 curr_location = location;
6523}
6524
6525/* Get current location. */
6526location_t
5169661d 6527curr_insn_location (void)
23a070f3 6528{
6529 return curr_location;
6530}
6531
23a070f3 6532/* Return lexical scope block insn belongs to. */
6533tree
5e9c670f 6534insn_scope (const rtx_insn *insn)
23a070f3 6535{
5169661d 6536 return LOCATION_BLOCK (INSN_LOCATION (insn));
23a070f3 6537}
6538
6539/* Return line number of the statement that produced this insn. */
6540int
5e9c670f 6541insn_line (const rtx_insn *insn)
23a070f3 6542{
5169661d 6543 return LOCATION_LINE (INSN_LOCATION (insn));
23a070f3 6544}
6545
6546/* Return source file of the statement that produced this insn. */
6547const char *
5e9c670f 6548insn_file (const rtx_insn *insn)
23a070f3 6549{
5169661d 6550 return LOCATION_FILE (INSN_LOCATION (insn));
23a070f3 6551}
30c3c442 6552
0e7ae557 6553/* Return expanded location of the statement that produced this insn. */
6554expanded_location
5e9c670f 6555insn_location (const rtx_insn *insn)
0e7ae557 6556{
6557 return expand_location (INSN_LOCATION (insn));
6558}
6559
30c3c442 6560/* Return true if memory model MODEL requires a pre-operation (release-style)
6561 barrier or a post-operation (acquire-style) barrier. While not universal,
6562 this function matches behavior of several targets. */
6563
6564bool
6565need_atomic_barrier_p (enum memmodel model, bool pre)
6566{
e205c62d 6567 switch (model & MEMMODEL_BASE_MASK)
30c3c442 6568 {
6569 case MEMMODEL_RELAXED:
6570 case MEMMODEL_CONSUME:
6571 return false;
6572 case MEMMODEL_RELEASE:
6573 return pre;
6574 case MEMMODEL_ACQUIRE:
6575 return !pre;
6576 case MEMMODEL_ACQ_REL:
6577 case MEMMODEL_SEQ_CST:
6578 return true;
6579 default:
6580 gcc_unreachable ();
6581 }
6582}
2add0b64 6583
bd39703a 6584/* Return a constant shift amount for shifting a value of mode MODE
6585 by VALUE bits. */
6586
6587rtx
bbad7cd0 6588gen_int_shift_amount (machine_mode, poly_int64 value)
bd39703a 6589{
6590 /* Use a 64-bit mode, to avoid any truncation.
6591
6592 ??? Perhaps this should be automatically derived from the .md files
6593 instead, or perhaps have a target hook. */
6594 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6595 ? DImode
6596 : int_mode_for_size (64, 0).require ());
6597 return gen_int_mode (value, shift_mode);
6598}
6599
2add0b64 6600/* Initialize fields of rtl_data related to stack alignment. */
6601
6602void
6603rtl_data::init_stack_alignment ()
6604{
6605 stack_alignment_needed = STACK_BOUNDARY;
6606 max_used_stack_slot_alignment = STACK_BOUNDARY;
6607 stack_alignment_estimated = 0;
6608 preferred_stack_boundary = STACK_BOUNDARY;
6609}
6610
30c3c442 6611\f
1f3233d1 6612#include "gt-emit-rtl.h"