]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
cppcharset.c: Use the correct return type for the fallback iconv macro.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
9d18e06b 3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
23b2ce53 4
1322177d 5This file is part of GCC.
23b2ce53 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
23b2ce53 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
23b2ce53
RS
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
23b2ce53
RS
21
22
23/* Middle-to-low level generation of rtx code and insns.
24
25 This file contains the functions `gen_rtx', `gen_reg_rtx'
26 and `gen_label_rtx' that are the usual ways of creating rtl
27 expressions for most purposes.
28
29 It also has the functions for creating insns and linking
30 them in the doubly-linked chain.
31
32 The patterns of the insns are created by machine-dependent
33 routines in insn-emit.c, which is generated automatically from
34 the machine description. These routines use `gen_rtx' to make
35 the individual rtx's of the pattern; what is machine dependent
36 is the kind of rtx's they make and what arguments they use. */
37
38#include "config.h"
670ee920 39#include "system.h"
4977bab6
ZW
40#include "coretypes.h"
41#include "tm.h"
01198c2f 42#include "toplev.h"
23b2ce53 43#include "rtl.h"
a25c7971 44#include "tree.h"
6baf1cc8 45#include "tm_p.h"
23b2ce53
RS
46#include "flags.h"
47#include "function.h"
48#include "expr.h"
49#include "regs.h"
aff48bca 50#include "hard-reg-set.h"
c13e8210 51#include "hashtab.h"
23b2ce53 52#include "insn-config.h"
e9a25f70 53#include "recog.h"
23b2ce53 54#include "real.h"
0dfa1860 55#include "bitmap.h"
a05924f9 56#include "basic-block.h"
87ff9c8e 57#include "ggc.h"
e1772ac0 58#include "debug.h"
d23c55c2 59#include "langhooks.h"
ca695ac9 60
1d445e9e
ILT
61/* Commonly used modes. */
62
0f41302f
MS
63enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
64enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 65enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 66enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 67
23b2ce53
RS
68
69/* This is *not* reset after each function. It gives each CODE_LABEL
70 in the entire compilation a unique label number. */
71
044b4de3 72static GTY(()) int label_num = 1;
23b2ce53 73
23b2ce53
RS
74/* Highest label number in current function.
75 Zero means use the value of label_num instead.
76 This is nonzero only when belatedly compiling an inline function. */
77
78static int last_label_num;
79
80/* Value label_num had when set_new_first_and_last_label_number was called.
81 If label_num has not changed since then, last_label_num is valid. */
82
83static int base_label_num;
84
85/* Nonzero means do not generate NOTEs for source line numbers. */
86
87static int no_line_numbers;
88
89/* Commonly used rtx's, so that we only need space for one copy.
90 These are initialized once for the entire compilation.
5692c7bc
ZW
91 All of these are unique; no other rtx-object will be equal to any
92 of these. */
23b2ce53 93
5da077de 94rtx global_rtl[GR_MAX];
23b2ce53 95
6cde4876
JL
96/* Commonly used RTL for hard registers. These objects are not necessarily
97 unique, so we allocate them separately from global_rtl. They are
98 initialized once per compilation unit, then copied into regno_reg_rtx
99 at the beginning of each function. */
100static GTY(()) rtx static_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
101
23b2ce53
RS
102/* We record floating-point CONST_DOUBLEs in each floating-point mode for
103 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
104 record a copy of const[012]_rtx. */
105
106rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
107
68d75312
JC
108rtx const_true_rtx;
109
23b2ce53
RS
110REAL_VALUE_TYPE dconst0;
111REAL_VALUE_TYPE dconst1;
112REAL_VALUE_TYPE dconst2;
113REAL_VALUE_TYPE dconstm1;
03f2ea93
RS
114REAL_VALUE_TYPE dconstm2;
115REAL_VALUE_TYPE dconsthalf;
23b2ce53
RS
116
117/* All references to the following fixed hard registers go through
118 these unique rtl objects. On machines where the frame-pointer and
119 arg-pointer are the same register, they use the same unique object.
120
121 After register allocation, other rtl objects which used to be pseudo-regs
122 may be clobbered to refer to the frame-pointer register.
123 But references that were originally to the frame-pointer can be
124 distinguished from the others because they contain frame_pointer_rtx.
125
ac6f08b0
DE
126 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
127 tricky: until register elimination has taken place hard_frame_pointer_rtx
750c9258 128 should be used if it is being set, and frame_pointer_rtx otherwise. After
ac6f08b0
DE
129 register elimination hard_frame_pointer_rtx should always be used.
130 On machines where the two registers are same (most) then these are the
131 same.
132
23b2ce53
RS
133 In an inline procedure, the stack and frame pointer rtxs may not be
134 used for anything else. */
23b2ce53
RS
135rtx struct_value_rtx; /* (REG:Pmode STRUCT_VALUE_REGNUM) */
136rtx struct_value_incoming_rtx; /* (REG:Pmode STRUCT_VALUE_INCOMING_REGNUM) */
137rtx static_chain_rtx; /* (REG:Pmode STATIC_CHAIN_REGNUM) */
138rtx static_chain_incoming_rtx; /* (REG:Pmode STATIC_CHAIN_INCOMING_REGNUM) */
139rtx pic_offset_table_rtx; /* (REG:Pmode PIC_OFFSET_TABLE_REGNUM) */
140
a4417a86
JW
141/* This is used to implement __builtin_return_address for some machines.
142 See for instance the MIPS port. */
143rtx return_address_pointer_rtx; /* (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM) */
144
23b2ce53
RS
145/* We make one copy of (const_int C) where C is in
146 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
147 to save space during the compilation and simplify comparisons of
148 integers. */
149
5da077de 150rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 151
c13e8210
MM
152/* A hash table storing CONST_INTs whose absolute value is greater
153 than MAX_SAVED_CONST_INT. */
154
e2500fed
GK
155static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
156 htab_t const_int_htab;
c13e8210 157
173b24b9 158/* A hash table storing memory attribute structures. */
e2500fed
GK
159static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
160 htab_t mem_attrs_htab;
173b24b9 161
a560d4d4
JH
162/* A hash table storing register attribute structures. */
163static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
164 htab_t reg_attrs_htab;
165
5692c7bc 166/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
167static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
168 htab_t const_double_htab;
5692c7bc 169
01d939e8
BS
170#define first_insn (cfun->emit->x_first_insn)
171#define last_insn (cfun->emit->x_last_insn)
172#define cur_insn_uid (cfun->emit->x_cur_insn_uid)
fd3acbb3 173#define last_location (cfun->emit->x_last_location)
01d939e8 174#define first_label_num (cfun->emit->x_first_label_num)
23b2ce53 175
502b8322
AJ
176static rtx make_jump_insn_raw (rtx);
177static rtx make_call_insn_raw (rtx);
178static rtx find_line_note (rtx);
179static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
180static void unshare_all_rtl_1 (rtx);
181static void unshare_all_decls (tree);
182static void reset_used_decls (tree);
183static void mark_label_nuses (rtx);
184static hashval_t const_int_htab_hash (const void *);
185static int const_int_htab_eq (const void *, const void *);
186static hashval_t const_double_htab_hash (const void *);
187static int const_double_htab_eq (const void *, const void *);
188static rtx lookup_const_double (rtx);
189static hashval_t mem_attrs_htab_hash (const void *);
190static int mem_attrs_htab_eq (const void *, const void *);
191static mem_attrs *get_mem_attrs (HOST_WIDE_INT, tree, rtx, rtx, unsigned int,
192 enum machine_mode);
193static hashval_t reg_attrs_htab_hash (const void *);
194static int reg_attrs_htab_eq (const void *, const void *);
195static reg_attrs *get_reg_attrs (tree, int);
196static tree component_ref_for_mem_expr (tree);
197static rtx gen_const_vector_0 (enum machine_mode);
198static rtx gen_complex_constant_part (enum machine_mode, rtx, int);
c13e8210 199
6b24c259
JH
200/* Probability of the conditional branch currently proceeded by try_split.
201 Set to -1 otherwise. */
202int split_branch_probability = -1;
ca695ac9 203\f
c13e8210
MM
204/* Returns a hash code for X (which is a really a CONST_INT). */
205
206static hashval_t
502b8322 207const_int_htab_hash (const void *x)
c13e8210 208{
5692c7bc 209 return (hashval_t) INTVAL ((struct rtx_def *) x);
c13e8210
MM
210}
211
cc2902df 212/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
213 CONST_INT) is the same as that given by Y (which is really a
214 HOST_WIDE_INT *). */
215
216static int
502b8322 217const_int_htab_eq (const void *x, const void *y)
c13e8210 218{
5692c7bc
ZW
219 return (INTVAL ((rtx) x) == *((const HOST_WIDE_INT *) y));
220}
221
222/* Returns a hash code for X (which is really a CONST_DOUBLE). */
223static hashval_t
502b8322 224const_double_htab_hash (const void *x)
5692c7bc 225{
5692c7bc 226 rtx value = (rtx) x;
46b33600 227 hashval_t h;
5692c7bc 228
46b33600
RH
229 if (GET_MODE (value) == VOIDmode)
230 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
231 else
fe352c29 232 {
15c812e3 233 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 }
5692c7bc
ZW
237 return h;
238}
239
cc2902df 240/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
241 is the same as that represented by Y (really a ...) */
242static int
502b8322 243const_double_htab_eq (const void *x, const void *y)
5692c7bc
ZW
244{
245 rtx a = (rtx)x, b = (rtx)y;
5692c7bc
ZW
246
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
8580f7a0
RH
249 if (GET_MODE (a) == VOIDmode)
250 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
251 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
252 else
253 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
254 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
255}
256
173b24b9
RK
257/* Returns a hash code for X (which is a really a mem_attrs *). */
258
259static hashval_t
502b8322 260mem_attrs_htab_hash (const void *x)
173b24b9
RK
261{
262 mem_attrs *p = (mem_attrs *) x;
263
264 return (p->alias ^ (p->align * 1000)
265 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
266 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
998d7deb 267 ^ (size_t) p->expr);
173b24b9
RK
268}
269
cc2902df 270/* Returns nonzero if the value represented by X (which is really a
173b24b9
RK
271 mem_attrs *) is the same as that given by Y (which is also really a
272 mem_attrs *). */
c13e8210
MM
273
274static int
502b8322 275mem_attrs_htab_eq (const void *x, const void *y)
c13e8210 276{
173b24b9
RK
277 mem_attrs *p = (mem_attrs *) x;
278 mem_attrs *q = (mem_attrs *) y;
279
998d7deb 280 return (p->alias == q->alias && p->expr == q->expr && p->offset == q->offset
173b24b9 281 && p->size == q->size && p->align == q->align);
c13e8210
MM
282}
283
173b24b9 284/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
173b24b9
RK
287
288static mem_attrs *
502b8322
AJ
289get_mem_attrs (HOST_WIDE_INT alias, tree expr, rtx offset, rtx size,
290 unsigned int align, enum machine_mode mode)
173b24b9
RK
291{
292 mem_attrs attrs;
293 void **slot;
294
bb056a77
OH
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
998d7deb 298 if (alias == 0 && expr == 0 && offset == 0
10b76d73
RK
299 && (size == 0
300 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
bb056a77
OH
301 && (STRICT_ALIGNMENT && mode != BLKmode
302 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
10b76d73
RK
303 return 0;
304
173b24b9 305 attrs.alias = alias;
998d7deb 306 attrs.expr = expr;
173b24b9
RK
307 attrs.offset = offset;
308 attrs.size = size;
309 attrs.align = align;
310
311 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
312 if (*slot == 0)
313 {
314 *slot = ggc_alloc (sizeof (mem_attrs));
315 memcpy (*slot, &attrs, sizeof (mem_attrs));
316 }
317
318 return *slot;
c13e8210
MM
319}
320
a560d4d4
JH
321/* Returns a hash code for X (which is a really a reg_attrs *). */
322
323static hashval_t
502b8322 324reg_attrs_htab_hash (const void *x)
a560d4d4
JH
325{
326 reg_attrs *p = (reg_attrs *) x;
327
328 return ((p->offset * 1000) ^ (long) p->decl);
329}
330
6356f892 331/* Returns nonzero if the value represented by X (which is really a
a560d4d4
JH
332 reg_attrs *) is the same as that given by Y (which is also really a
333 reg_attrs *). */
334
335static int
502b8322 336reg_attrs_htab_eq (const void *x, const void *y)
a560d4d4
JH
337{
338 reg_attrs *p = (reg_attrs *) x;
339 reg_attrs *q = (reg_attrs *) y;
340
341 return (p->decl == q->decl && p->offset == q->offset);
342}
343/* Allocate a new reg_attrs structure and insert it into the hash table if
344 one identical to it is not already in the table. We are doing this for
345 MEM of mode MODE. */
346
347static reg_attrs *
502b8322 348get_reg_attrs (tree decl, int offset)
a560d4d4
JH
349{
350 reg_attrs attrs;
351 void **slot;
352
353 /* If everything is the default, we can just return zero. */
354 if (decl == 0 && offset == 0)
355 return 0;
356
357 attrs.decl = decl;
358 attrs.offset = offset;
359
360 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
361 if (*slot == 0)
362 {
363 *slot = ggc_alloc (sizeof (reg_attrs));
364 memcpy (*slot, &attrs, sizeof (reg_attrs));
365 }
366
367 return *slot;
368}
369
08394eef
BS
370/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
371 don't attempt to share with the various global pieces of rtl (such as
372 frame_pointer_rtx). */
373
374rtx
502b8322 375gen_raw_REG (enum machine_mode mode, int regno)
08394eef
BS
376{
377 rtx x = gen_rtx_raw_REG (mode, regno);
378 ORIGINAL_REGNO (x) = regno;
379 return x;
380}
381
c5c76735
JL
382/* There are some RTL codes that require special attention; the generation
383 functions do the raw handling. If you add to this list, modify
384 special_rtx in gengenrtl.c as well. */
385
3b80f6ca 386rtx
502b8322 387gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca 388{
c13e8210
MM
389 void **slot;
390
3b80f6ca 391 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 392 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
393
394#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
395 if (const_true_rtx && arg == STORE_FLAG_VALUE)
396 return const_true_rtx;
397#endif
398
c13e8210 399 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
400 slot = htab_find_slot_with_hash (const_int_htab, &arg,
401 (hashval_t) arg, INSERT);
29105cea 402 if (*slot == 0)
1f8f4a0b 403 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
404
405 return (rtx) *slot;
3b80f6ca
RH
406}
407
2496c7bd 408rtx
502b8322 409gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2496c7bd
LB
410{
411 return GEN_INT (trunc_int_for_mode (c, mode));
412}
413
5692c7bc
ZW
414/* CONST_DOUBLEs might be created from pairs of integers, or from
415 REAL_VALUE_TYPEs. Also, their length is known only at run time,
416 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
417
418/* Determine whether REAL, a CONST_DOUBLE, already exists in the
419 hash table. If so, return its counterpart; otherwise add it
420 to the hash table and return it. */
421static rtx
502b8322 422lookup_const_double (rtx real)
5692c7bc
ZW
423{
424 void **slot = htab_find_slot (const_double_htab, real, INSERT);
425 if (*slot == 0)
426 *slot = real;
427
428 return (rtx) *slot;
429}
29105cea 430
5692c7bc
ZW
431/* Return a CONST_DOUBLE rtx for a floating-point value specified by
432 VALUE in mode MODE. */
0133b7d9 433rtx
502b8322 434const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
0133b7d9 435{
5692c7bc
ZW
436 rtx real = rtx_alloc (CONST_DOUBLE);
437 PUT_MODE (real, mode);
438
439 memcpy (&CONST_DOUBLE_LOW (real), &value, sizeof (REAL_VALUE_TYPE));
440
441 return lookup_const_double (real);
442}
443
444/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
445 of ints: I0 is the low-order word and I1 is the high-order word.
446 Do not use this routine for non-integer modes; convert to
447 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
448
449rtx
502b8322 450immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
5692c7bc
ZW
451{
452 rtx value;
453 unsigned int i;
454
455 if (mode != VOIDmode)
456 {
457 int width;
458 if (GET_MODE_CLASS (mode) != MODE_INT
cb2a532e
AH
459 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT
460 /* We can get a 0 for an error mark. */
461 && GET_MODE_CLASS (mode) != MODE_VECTOR_INT
462 && GET_MODE_CLASS (mode) != MODE_VECTOR_FLOAT)
5692c7bc
ZW
463 abort ();
464
465 /* We clear out all bits that don't belong in MODE, unless they and
466 our sign bit are all one. So we get either a reasonable negative
467 value or a reasonable unsigned value for this mode. */
468 width = GET_MODE_BITSIZE (mode);
469 if (width < HOST_BITS_PER_WIDE_INT
470 && ((i0 & ((HOST_WIDE_INT) (-1) << (width - 1)))
471 != ((HOST_WIDE_INT) (-1) << (width - 1))))
472 i0 &= ((HOST_WIDE_INT) 1 << width) - 1, i1 = 0;
473 else if (width == HOST_BITS_PER_WIDE_INT
474 && ! (i1 == ~0 && i0 < 0))
475 i1 = 0;
476 else if (width > 2 * HOST_BITS_PER_WIDE_INT)
477 /* We cannot represent this value as a constant. */
478 abort ();
479
480 /* If this would be an entire word for the target, but is not for
481 the host, then sign-extend on the host so that the number will
482 look the same way on the host that it would on the target.
483
484 For example, when building a 64 bit alpha hosted 32 bit sparc
485 targeted compiler, then we want the 32 bit unsigned value -1 to be
486 represented as a 64 bit value -1, and not as 0x00000000ffffffff.
487 The latter confuses the sparc backend. */
488
489 if (width < HOST_BITS_PER_WIDE_INT
490 && (i0 & ((HOST_WIDE_INT) 1 << (width - 1))))
491 i0 |= ((HOST_WIDE_INT) (-1) << width);
2454beaf 492
5692c7bc
ZW
493 /* If MODE fits within HOST_BITS_PER_WIDE_INT, always use a
494 CONST_INT.
2454beaf 495
5692c7bc
ZW
496 ??? Strictly speaking, this is wrong if we create a CONST_INT for
497 a large unsigned constant with the size of MODE being
498 HOST_BITS_PER_WIDE_INT and later try to interpret that constant
499 in a wider mode. In that case we will mis-interpret it as a
500 negative number.
2454beaf 501
5692c7bc
ZW
502 Unfortunately, the only alternative is to make a CONST_DOUBLE for
503 any constant in any mode if it is an unsigned constant larger
504 than the maximum signed integer in an int on the host. However,
505 doing this will break everyone that always expects to see a
506 CONST_INT for SImode and smaller.
507
508 We have always been making CONST_INTs in this case, so nothing
509 new is being broken. */
510
511 if (width <= HOST_BITS_PER_WIDE_INT)
512 i1 = (i0 < 0) ? ~(HOST_WIDE_INT) 0 : 0;
513 }
514
515 /* If this integer fits in one word, return a CONST_INT. */
516 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
517 return GEN_INT (i0);
518
519 /* We use VOIDmode for integers. */
520 value = rtx_alloc (CONST_DOUBLE);
521 PUT_MODE (value, VOIDmode);
522
523 CONST_DOUBLE_LOW (value) = i0;
524 CONST_DOUBLE_HIGH (value) = i1;
525
526 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
527 XWINT (value, i) = 0;
528
529 return lookup_const_double (value);
0133b7d9
RH
530}
531
3b80f6ca 532rtx
502b8322 533gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3b80f6ca
RH
534{
535 /* In case the MD file explicitly references the frame pointer, have
536 all such references point to the same frame pointer. This is
537 used during frame pointer elimination to distinguish the explicit
538 references to these registers from pseudos that happened to be
539 assigned to them.
540
541 If we have eliminated the frame pointer or arg pointer, we will
542 be using it as a normal register, for example as a spill
543 register. In such cases, we might be accessing it in a mode that
544 is not Pmode and therefore cannot use the pre-allocated rtx.
545
546 Also don't do this when we are making new REGs in reload, since
547 we don't want to get confused with the real pointers. */
548
549 if (mode == Pmode && !reload_in_progress)
550 {
e10c79fe
LB
551 if (regno == FRAME_POINTER_REGNUM
552 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
553 return frame_pointer_rtx;
554#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e10c79fe
LB
555 if (regno == HARD_FRAME_POINTER_REGNUM
556 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
557 return hard_frame_pointer_rtx;
558#endif
559#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 560 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
561 return arg_pointer_rtx;
562#endif
563#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 564 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
565 return return_address_pointer_rtx;
566#endif
fc555370 567 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
2d67bd7b 568 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 569 return pic_offset_table_rtx;
bcb33994 570 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
571 return stack_pointer_rtx;
572 }
573
006a94b0 574#if 0
6cde4876 575 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
576 an existing entry in that table to avoid useless generation of RTL.
577
578 This code is disabled for now until we can fix the various backends
579 which depend on having non-shared hard registers in some cases. Long
580 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
581 on the amount of useless RTL that gets generated.
582
583 We'll also need to fix some code that runs after reload that wants to
584 set ORIGINAL_REGNO. */
585
6cde4876
JL
586 if (cfun
587 && cfun->emit
588 && regno_reg_rtx
589 && regno < FIRST_PSEUDO_REGISTER
590 && reg_raw_mode[regno] == mode)
591 return regno_reg_rtx[regno];
006a94b0 592#endif
6cde4876 593
08394eef 594 return gen_raw_REG (mode, regno);
3b80f6ca
RH
595}
596
41472af8 597rtx
502b8322 598gen_rtx_MEM (enum machine_mode mode, rtx addr)
41472af8
MM
599{
600 rtx rt = gen_rtx_raw_MEM (mode, addr);
601
602 /* This field is not cleared by the mere allocation of the rtx, so
603 we clear it here. */
173b24b9 604 MEM_ATTRS (rt) = 0;
41472af8
MM
605
606 return rt;
607}
ddef6bc7
JJ
608
609rtx
502b8322 610gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
ddef6bc7
JJ
611{
612 /* This is the most common failure type.
613 Catch it early so we can see who does it. */
614 if ((offset % GET_MODE_SIZE (mode)) != 0)
615 abort ();
616
617 /* This check isn't usable right now because combine will
618 throw arbitrary crap like a CALL into a SUBREG in
619 gen_lowpart_for_combine so we must just eat it. */
620#if 0
621 /* Check for this too. */
622 if (offset >= GET_MODE_SIZE (GET_MODE (reg)))
623 abort ();
624#endif
5692c7bc 625 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
626}
627
173b24b9
RK
628/* Generate a SUBREG representing the least-significant part of REG if MODE
629 is smaller than mode of REG, otherwise paradoxical SUBREG. */
630
ddef6bc7 631rtx
502b8322 632gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
ddef6bc7
JJ
633{
634 enum machine_mode inmode;
ddef6bc7
JJ
635
636 inmode = GET_MODE (reg);
637 if (inmode == VOIDmode)
638 inmode = mode;
e0e08ac2
JH
639 return gen_rtx_SUBREG (mode, reg,
640 subreg_lowpart_offset (mode, inmode));
ddef6bc7 641}
c5c76735 642\f
23b2ce53
RS
643/* rtx gen_rtx (code, mode, [element1, ..., elementn])
644**
645** This routine generates an RTX of the size specified by
646** <code>, which is an RTX code. The RTX structure is initialized
647** from the arguments <element1> through <elementn>, which are
648** interpreted according to the specific RTX type's format. The
649** special machine mode associated with the rtx (if any) is specified
650** in <mode>.
651**
1632afca 652** gen_rtx can be invoked in a way which resembles the lisp-like
23b2ce53
RS
653** rtx it will generate. For example, the following rtx structure:
654**
655** (plus:QI (mem:QI (reg:SI 1))
656** (mem:QI (plusw:SI (reg:SI 2) (reg:SI 3))))
657**
658** ...would be generated by the following C code:
659**
750c9258 660** gen_rtx (PLUS, QImode,
23b2ce53
RS
661** gen_rtx (MEM, QImode,
662** gen_rtx (REG, SImode, 1)),
663** gen_rtx (MEM, QImode,
664** gen_rtx (PLUS, SImode,
665** gen_rtx (REG, SImode, 2),
666** gen_rtx (REG, SImode, 3)))),
667*/
668
669/*VARARGS2*/
670rtx
e34d07f2 671gen_rtx (enum rtx_code code, enum machine_mode mode, ...)
23b2ce53 672{
b3694847
SS
673 int i; /* Array indices... */
674 const char *fmt; /* Current rtx's format... */
675 rtx rt_val; /* RTX to return to caller... */
e34d07f2 676 va_list p;
23b2ce53 677
e34d07f2 678 va_start (p, mode);
23b2ce53 679
0133b7d9 680 switch (code)
23b2ce53 681 {
0133b7d9
RH
682 case CONST_INT:
683 rt_val = gen_rtx_CONST_INT (mode, va_arg (p, HOST_WIDE_INT));
684 break;
685
686 case CONST_DOUBLE:
687 {
a79e3a45 688 HOST_WIDE_INT arg0 = va_arg (p, HOST_WIDE_INT);
0133b7d9 689 HOST_WIDE_INT arg1 = va_arg (p, HOST_WIDE_INT);
a79e3a45 690
0fb7aeda 691 rt_val = immed_double_const (arg0, arg1, mode);
0133b7d9
RH
692 }
693 break;
694
695 case REG:
696 rt_val = gen_rtx_REG (mode, va_arg (p, int));
697 break;
698
699 case MEM:
700 rt_val = gen_rtx_MEM (mode, va_arg (p, rtx));
701 break;
702
703 default:
23b2ce53
RS
704 rt_val = rtx_alloc (code); /* Allocate the storage space. */
705 rt_val->mode = mode; /* Store the machine mode... */
706
707 fmt = GET_RTX_FORMAT (code); /* Find the right format... */
708 for (i = 0; i < GET_RTX_LENGTH (code); i++)
709 {
710 switch (*fmt++)
711 {
a73071bc 712 case '0': /* Field with unknown use. Zero it. */
d5b9108c 713 X0EXP (rt_val, i) = NULL_RTX;
23b2ce53
RS
714 break;
715
716 case 'i': /* An integer? */
717 XINT (rt_val, i) = va_arg (p, int);
718 break;
719
906c4e36
RK
720 case 'w': /* A wide integer? */
721 XWINT (rt_val, i) = va_arg (p, HOST_WIDE_INT);
722 break;
723
23b2ce53
RS
724 case 's': /* A string? */
725 XSTR (rt_val, i) = va_arg (p, char *);
726 break;
727
728 case 'e': /* An expression? */
729 case 'u': /* An insn? Same except when printing. */
730 XEXP (rt_val, i) = va_arg (p, rtx);
731 break;
732
733 case 'E': /* An RTX vector? */
734 XVEC (rt_val, i) = va_arg (p, rtvec);
735 break;
736
0dfa1860
MM
737 case 'b': /* A bitmap? */
738 XBITMAP (rt_val, i) = va_arg (p, bitmap);
739 break;
740
741 case 't': /* A tree? */
742 XTREE (rt_val, i) = va_arg (p, tree);
743 break;
744
23b2ce53 745 default:
1632afca 746 abort ();
23b2ce53
RS
747 }
748 }
0133b7d9 749 break;
23b2ce53 750 }
0133b7d9 751
e34d07f2 752 va_end (p);
0133b7d9 753 return rt_val;
23b2ce53
RS
754}
755
756/* gen_rtvec (n, [rt1, ..., rtn])
757**
758** This routine creates an rtvec and stores within it the
759** pointers to rtx's which are its arguments.
760*/
761
762/*VARARGS1*/
763rtvec
e34d07f2 764gen_rtvec (int n, ...)
23b2ce53 765{
6268b922 766 int i, save_n;
23b2ce53 767 rtx *vector;
e34d07f2 768 va_list p;
23b2ce53 769
e34d07f2 770 va_start (p, n);
23b2ce53
RS
771
772 if (n == 0)
773 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
774
775 vector = (rtx *) alloca (n * sizeof (rtx));
4f90e4a0 776
23b2ce53
RS
777 for (i = 0; i < n; i++)
778 vector[i] = va_arg (p, rtx);
6268b922
KG
779
780 /* The definition of VA_* in K&R C causes `n' to go out of scope. */
781 save_n = n;
e34d07f2 782 va_end (p);
23b2ce53 783
6268b922 784 return gen_rtvec_v (save_n, vector);
23b2ce53
RS
785}
786
787rtvec
502b8322 788gen_rtvec_v (int n, rtx *argp)
23b2ce53 789{
b3694847
SS
790 int i;
791 rtvec rt_val;
23b2ce53
RS
792
793 if (n == 0)
794 return NULL_RTVEC; /* Don't allocate an empty rtvec... */
795
796 rt_val = rtvec_alloc (n); /* Allocate an rtvec... */
797
798 for (i = 0; i < n; i++)
8f985ec4 799 rt_val->elem[i] = *argp++;
23b2ce53
RS
800
801 return rt_val;
802}
803\f
804/* Generate a REG rtx for a new pseudo register of mode MODE.
805 This pseudo is assigned the next sequential register number. */
806
807rtx
502b8322 808gen_reg_rtx (enum machine_mode mode)
23b2ce53 809{
01d939e8 810 struct function *f = cfun;
b3694847 811 rtx val;
23b2ce53 812
f1db3576
JL
813 /* Don't let anything called after initial flow analysis create new
814 registers. */
815 if (no_new_pseudos)
23b2ce53
RS
816 abort ();
817
1b3d8f8a
GK
818 if (generating_concat_p
819 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
820 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
821 {
822 /* For complex modes, don't make a single pseudo.
823 Instead, make a CONCAT of two pseudos.
824 This allows noncontiguous allocation of the real and imaginary parts,
825 which makes much better code. Besides, allocating DCmode
826 pseudos overstrains reload on some machines like the 386. */
827 rtx realpart, imagpart;
27e58a70 828 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
829
830 realpart = gen_reg_rtx (partmode);
831 imagpart = gen_reg_rtx (partmode);
3b80f6ca 832 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
833 }
834
a560d4d4 835 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 836 enough to have an element for this pseudo reg number. */
23b2ce53 837
3502dc9c 838 if (reg_rtx_no == f->emit->regno_pointer_align_length)
23b2ce53 839 {
3502dc9c 840 int old_size = f->emit->regno_pointer_align_length;
e2ecd91c 841 char *new;
0d4903b8 842 rtx *new1;
0d4903b8 843
e2500fed 844 new = ggc_realloc (f->emit->regno_pointer_align, old_size * 2);
49ad7cfa 845 memset (new + old_size, 0, old_size);
f9e158c3 846 f->emit->regno_pointer_align = (unsigned char *) new;
49ad7cfa 847
e2500fed
GK
848 new1 = (rtx *) ggc_realloc (f->emit->x_regno_reg_rtx,
849 old_size * 2 * sizeof (rtx));
49ad7cfa 850 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
851 regno_reg_rtx = new1;
852
3502dc9c 853 f->emit->regno_pointer_align_length = old_size * 2;
23b2ce53
RS
854 }
855
08394eef 856 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
857 regno_reg_rtx[reg_rtx_no++] = val;
858 return val;
859}
860
a560d4d4
JH
861/* Generate an register with same attributes as REG,
862 but offsetted by OFFSET. */
863
864rtx
502b8322 865gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno, int offset)
a560d4d4
JH
866{
867 rtx new = gen_rtx_REG (mode, regno);
868 REG_ATTRS (new) = get_reg_attrs (REG_EXPR (reg),
502b8322 869 REG_OFFSET (reg) + offset);
a560d4d4
JH
870 return new;
871}
872
873/* Set the decl for MEM to DECL. */
874
875void
502b8322 876set_reg_attrs_from_mem (rtx reg, rtx mem)
a560d4d4
JH
877{
878 if (MEM_OFFSET (mem) && GET_CODE (MEM_OFFSET (mem)) == CONST_INT)
879 REG_ATTRS (reg)
880 = get_reg_attrs (MEM_EXPR (mem), INTVAL (MEM_OFFSET (mem)));
881}
882
9d18e06b
JZ
883/* Set the register attributes for registers contained in PARM_RTX.
884 Use needed values from memory attributes of MEM. */
885
886void
502b8322 887set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b
JZ
888{
889 if (GET_CODE (parm_rtx) == REG)
890 set_reg_attrs_from_mem (parm_rtx, mem);
891 else if (GET_CODE (parm_rtx) == PARALLEL)
892 {
893 /* Check for a NULL entry in the first slot, used to indicate that the
894 parameter goes both on the stack and in registers. */
895 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
896 for (; i < XVECLEN (parm_rtx, 0); i++)
897 {
898 rtx x = XVECEXP (parm_rtx, 0, i);
899 if (GET_CODE (XEXP (x, 0)) == REG)
900 REG_ATTRS (XEXP (x, 0))
901 = get_reg_attrs (MEM_EXPR (mem),
902 INTVAL (XEXP (x, 1)));
903 }
904 }
905}
906
a560d4d4
JH
907/* Assign the RTX X to declaration T. */
908void
502b8322 909set_decl_rtl (tree t, rtx x)
a560d4d4
JH
910{
911 DECL_CHECK (t)->decl.rtl = x;
912
913 if (!x)
914 return;
915 /* For register, we maitain the reverse information too. */
916 if (GET_CODE (x) == REG)
917 REG_ATTRS (x) = get_reg_attrs (t, 0);
918 else if (GET_CODE (x) == SUBREG)
919 REG_ATTRS (SUBREG_REG (x))
920 = get_reg_attrs (t, -SUBREG_BYTE (x));
921 if (GET_CODE (x) == CONCAT)
922 {
923 if (REG_P (XEXP (x, 0)))
924 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
925 if (REG_P (XEXP (x, 1)))
926 REG_ATTRS (XEXP (x, 1))
927 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
928 }
929 if (GET_CODE (x) == PARALLEL)
930 {
931 int i;
932 for (i = 0; i < XVECLEN (x, 0); i++)
933 {
934 rtx y = XVECEXP (x, 0, i);
935 if (REG_P (XEXP (y, 0)))
936 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
937 }
938 }
939}
940
754fdcca
RK
941/* Identify REG (which may be a CONCAT) as a user register. */
942
943void
502b8322 944mark_user_reg (rtx reg)
754fdcca
RK
945{
946 if (GET_CODE (reg) == CONCAT)
947 {
948 REG_USERVAR_P (XEXP (reg, 0)) = 1;
949 REG_USERVAR_P (XEXP (reg, 1)) = 1;
950 }
951 else if (GET_CODE (reg) == REG)
952 REG_USERVAR_P (reg) = 1;
953 else
954 abort ();
955}
956
86fe05e0
RK
957/* Identify REG as a probable pointer register and show its alignment
958 as ALIGN, if nonzero. */
23b2ce53
RS
959
960void
502b8322 961mark_reg_pointer (rtx reg, int align)
23b2ce53 962{
3502dc9c 963 if (! REG_POINTER (reg))
00995e78 964 {
3502dc9c 965 REG_POINTER (reg) = 1;
86fe05e0 966
00995e78
RE
967 if (align)
968 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
969 }
970 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
971 /* We can no-longer be sure just how aligned this pointer is */
86fe05e0 972 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
973}
974
975/* Return 1 plus largest pseudo reg number used in the current function. */
976
977int
502b8322 978max_reg_num (void)
23b2ce53
RS
979{
980 return reg_rtx_no;
981}
982
983/* Return 1 + the largest label number used so far in the current function. */
984
985int
502b8322 986max_label_num (void)
23b2ce53
RS
987{
988 if (last_label_num && label_num == base_label_num)
989 return last_label_num;
990 return label_num;
991}
992
993/* Return first label number used in this function (if any were used). */
994
995int
502b8322 996get_first_label_num (void)
23b2ce53
RS
997{
998 return first_label_num;
999}
1000\f
ddef6bc7
JJ
1001/* Return the final regno of X, which is a SUBREG of a hard
1002 register. */
1003int
502b8322 1004subreg_hard_regno (rtx x, int check_mode)
ddef6bc7
JJ
1005{
1006 enum machine_mode mode = GET_MODE (x);
1007 unsigned int byte_offset, base_regno, final_regno;
1008 rtx reg = SUBREG_REG (x);
1009
1010 /* This is where we attempt to catch illegal subregs
1011 created by the compiler. */
1012 if (GET_CODE (x) != SUBREG
1013 || GET_CODE (reg) != REG)
1014 abort ();
1015 base_regno = REGNO (reg);
1016 if (base_regno >= FIRST_PSEUDO_REGISTER)
1017 abort ();
0607953c 1018 if (check_mode && ! HARD_REGNO_MODE_OK (base_regno, GET_MODE (reg)))
ddef6bc7 1019 abort ();
04c5580f
JH
1020#ifdef ENABLE_CHECKING
1021 if (!subreg_offset_representable_p (REGNO (reg), GET_MODE (reg),
502b8322 1022 SUBREG_BYTE (x), mode))
04c5580f
JH
1023 abort ();
1024#endif
ddef6bc7
JJ
1025 /* Catch non-congruent offsets too. */
1026 byte_offset = SUBREG_BYTE (x);
1027 if ((byte_offset % GET_MODE_SIZE (mode)) != 0)
1028 abort ();
1029
1030 final_regno = subreg_regno (x);
1031
1032 return final_regno;
1033}
1034
23b2ce53
RS
1035/* Return a value representing some low-order bits of X, where the number
1036 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1037 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1038 representation is returned.
1039
1040 This function handles the cases in common between gen_lowpart, below,
1041 and two variants in cse.c and combine.c. These are the cases that can
1042 be safely handled at all points in the compilation.
1043
1044 If this is not a case we can handle, return 0. */
1045
1046rtx
502b8322 1047gen_lowpart_common (enum machine_mode mode, rtx x)
23b2ce53 1048{
ddef6bc7
JJ
1049 int msize = GET_MODE_SIZE (mode);
1050 int xsize = GET_MODE_SIZE (GET_MODE (x));
1051 int offset = 0;
23b2ce53
RS
1052
1053 if (GET_MODE (x) == mode)
1054 return x;
1055
1056 /* MODE must occupy no more words than the mode of X. */
1057 if (GET_MODE (x) != VOIDmode
ddef6bc7
JJ
1058 && ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1059 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
23b2ce53
RS
1060 return 0;
1061
53501a19
BS
1062 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
1063 if (GET_MODE_CLASS (mode) == MODE_FLOAT
1064 && GET_MODE (x) != VOIDmode && msize > xsize)
1065 return 0;
1066
e0e08ac2 1067 offset = subreg_lowpart_offset (mode, GET_MODE (x));
23b2ce53
RS
1068
1069 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1070 && (GET_MODE_CLASS (mode) == MODE_INT
1071 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1072 {
1073 /* If we are getting the low-order part of something that has been
1074 sign- or zero-extended, we can either just use the object being
1075 extended or make a narrower extension. If we want an even smaller
1076 piece than the size of the object being extended, call ourselves
1077 recursively.
1078
1079 This case is used mostly by combine and cse. */
1080
1081 if (GET_MODE (XEXP (x, 0)) == mode)
1082 return XEXP (x, 0);
1083 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
1084 return gen_lowpart_common (mode, XEXP (x, 0));
1085 else if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (x)))
3b80f6ca 1086 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1087 }
76321db6 1088 else if (GET_CODE (x) == SUBREG || GET_CODE (x) == REG
34a80643 1089 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR)
e0e08ac2 1090 return simplify_gen_subreg (mode, x, GET_MODE (x), offset);
9f629a21 1091 else if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
0488fa7c 1092 return simplify_gen_subreg (mode, x, int_mode_for_mode (mode), offset);
23b2ce53
RS
1093 /* If X is a CONST_INT or a CONST_DOUBLE, extract the appropriate bits
1094 from the low-order part of the constant. */
83e9c679
RK
1095 else if ((GET_MODE_CLASS (mode) == MODE_INT
1096 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1097 && GET_MODE (x) == VOIDmode
23b2ce53 1098 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
1a5b457d
RK
1099 {
1100 /* If MODE is twice the host word size, X is already the desired
1101 representation. Otherwise, if MODE is wider than a word, we can't
e1389cac 1102 do this. If MODE is exactly a word, return just one CONST_INT. */
1a5b457d 1103
a8dd0e73 1104 if (GET_MODE_BITSIZE (mode) >= 2 * HOST_BITS_PER_WIDE_INT)
1a5b457d 1105 return x;
906c4e36 1106 else if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
1a5b457d 1107 return 0;
906c4e36 1108 else if (GET_MODE_BITSIZE (mode) == HOST_BITS_PER_WIDE_INT)
1a5b457d 1109 return (GET_CODE (x) == CONST_INT ? x
906c4e36 1110 : GEN_INT (CONST_DOUBLE_LOW (x)));
1a5b457d
RK
1111 else
1112 {
27eef9ce 1113 /* MODE must be narrower than HOST_BITS_PER_WIDE_INT. */
906c4e36
RK
1114 HOST_WIDE_INT val = (GET_CODE (x) == CONST_INT ? INTVAL (x)
1115 : CONST_DOUBLE_LOW (x));
1a5b457d 1116
27eef9ce 1117 /* Sign extend to HOST_WIDE_INT. */
e1389cac 1118 val = trunc_int_for_mode (val, mode);
1a5b457d
RK
1119
1120 return (GET_CODE (x) == CONST_INT && INTVAL (x) == val ? x
906c4e36 1121 : GEN_INT (val));
1a5b457d
RK
1122 }
1123 }
23b2ce53 1124
ba31d94e 1125 /* The floating-point emulator can handle all conversions between
a2061c0d
GK
1126 FP and integer operands. This simplifies reload because it
1127 doesn't have to deal with constructs like (subreg:DI
1128 (const_double:SF ...)) or (subreg:DF (const_int ...)). */
57dadce2
EC
1129 /* Single-precision floats are always 32-bits and double-precision
1130 floats are always 64-bits. */
a2061c0d 1131
76321db6 1132 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
57dadce2 1133 && GET_MODE_BITSIZE (mode) == 32
a2061c0d 1134 && GET_CODE (x) == CONST_INT)
68252e27 1135 {
a2061c0d 1136 REAL_VALUE_TYPE r;
efdc7e19 1137 long i = INTVAL (x);
a2061c0d 1138
efdc7e19 1139 real_from_target (&r, &i, mode);
a2061c0d 1140 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
68252e27 1141 }
76321db6 1142 else if (GET_MODE_CLASS (mode) == MODE_FLOAT
57dadce2 1143 && GET_MODE_BITSIZE (mode) == 64
a2061c0d
GK
1144 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE)
1145 && GET_MODE (x) == VOIDmode)
1146 {
1147 REAL_VALUE_TYPE r;
a2061c0d 1148 HOST_WIDE_INT low, high;
efdc7e19 1149 long i[2];
a2061c0d
GK
1150
1151 if (GET_CODE (x) == CONST_INT)
1152 {
1153 low = INTVAL (x);
1154 high = low >> (HOST_BITS_PER_WIDE_INT - 1);
1155 }
1156 else
1157 {
750c9258 1158 low = CONST_DOUBLE_LOW (x);
a2061c0d
GK
1159 high = CONST_DOUBLE_HIGH (x);
1160 }
1161
efdc7e19
RH
1162 if (HOST_BITS_PER_WIDE_INT > 32)
1163 high = low >> 31 >> 1;
1164
a2061c0d
GK
1165 /* REAL_VALUE_TARGET_DOUBLE takes the addressing order of the
1166 target machine. */
1167 if (WORDS_BIG_ENDIAN)
1168 i[0] = high, i[1] = low;
1169 else
1170 i[0] = low, i[1] = high;
1171
efdc7e19 1172 real_from_target (&r, i, mode);
a2061c0d
GK
1173 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
1174 }
1175 else if ((GET_MODE_CLASS (mode) == MODE_INT
1176 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
1177 && GET_CODE (x) == CONST_DOUBLE
1178 && GET_MODE_CLASS (GET_MODE (x)) == MODE_FLOAT)
1179 {
1180 REAL_VALUE_TYPE r;
1181 long i[4]; /* Only the low 32 bits of each 'long' are used. */
1182 int endian = WORDS_BIG_ENDIAN ? 1 : 0;
1183
8125704b
GK
1184 /* Convert 'r' into an array of four 32-bit words in target word
1185 order. */
a2061c0d 1186 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
57dadce2 1187 switch (GET_MODE_BITSIZE (GET_MODE (x)))
a2061c0d 1188 {
57dadce2 1189 case 32:
68252e27 1190 REAL_VALUE_TO_TARGET_SINGLE (r, i[3 * endian]);
8125704b
GK
1191 i[1] = 0;
1192 i[2] = 0;
68252e27
KH
1193 i[3 - 3 * endian] = 0;
1194 break;
57dadce2 1195 case 64:
68252e27 1196 REAL_VALUE_TO_TARGET_DOUBLE (r, i + 2 * endian);
8125704b
GK
1197 i[2 - 2 * endian] = 0;
1198 i[3 - 2 * endian] = 0;
68252e27 1199 break;
57dadce2 1200 case 96:
e389897b 1201 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i + endian);
8125704b 1202 i[3 - 3 * endian] = 0;
76321db6 1203 break;
57dadce2 1204 case 128:
a2061c0d
GK
1205 REAL_VALUE_TO_TARGET_LONG_DOUBLE (r, i);
1206 break;
1207 default:
1156b23c 1208 abort ();
a2061c0d 1209 }
a2061c0d
GK
1210 /* Now, pack the 32-bit elements of the array into a CONST_DOUBLE
1211 and return it. */
1212#if HOST_BITS_PER_WIDE_INT == 32
8125704b 1213 return immed_double_const (i[3 * endian], i[1 + endian], mode);
a2061c0d 1214#else
8125704b
GK
1215 if (HOST_BITS_PER_WIDE_INT != 64)
1216 abort ();
50e60bc3 1217
a76033a0
GK
1218 return immed_double_const ((((unsigned long) i[3 * endian])
1219 | ((HOST_WIDE_INT) i[1 + endian] << 32)),
1220 (((unsigned long) i[2 - endian])
1221 | ((HOST_WIDE_INT) i[3 - 3 * endian] << 32)),
8125704b 1222 mode);
a2061c0d
GK
1223#endif
1224 }
14ca333d
RS
1225 /* If MODE is a condition code and X is a CONST_INT, the value of X
1226 must already have been "recognized" by the back-end, and we can
1227 assume that it is valid for this mode. */
1228 else if (GET_MODE_CLASS (mode) == MODE_CC
1229 && GET_CODE (x) == CONST_INT)
1230 return x;
8aada4ad 1231
23b2ce53
RS
1232 /* Otherwise, we can't do this. */
1233 return 0;
1234}
1235\f
b1d673be
RS
1236/* Return the constant real or imaginary part (which has mode MODE)
1237 of a complex value X. The IMAGPART_P argument determines whether
1238 the real or complex component should be returned. This function
1239 returns NULL_RTX if the component isn't a constant. */
1240
1241static rtx
502b8322 1242gen_complex_constant_part (enum machine_mode mode, rtx x, int imagpart_p)
b1d673be
RS
1243{
1244 tree decl, part;
1245
1246 if (GET_CODE (x) == MEM
4c2da7f2 1247 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
b1d673be
RS
1248 {
1249 decl = SYMBOL_REF_DECL (XEXP (x, 0));
1250 if (decl != NULL_TREE && TREE_CODE (decl) == COMPLEX_CST)
1251 {
1252 part = imagpart_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
1253 if (TREE_CODE (part) == REAL_CST
1254 || TREE_CODE (part) == INTEGER_CST)
1255 return expand_expr (part, NULL_RTX, mode, 0);
1256 }
1257 }
1258 return NULL_RTX;
1259}
1260
280194b0
RS
1261/* Return the real part (which has mode MODE) of a complex value X.
1262 This always comes at the low address in memory. */
1263
1264rtx
502b8322 1265gen_realpart (enum machine_mode mode, rtx x)
280194b0 1266{
b1d673be
RS
1267 rtx part;
1268
1269 /* Handle complex constants. */
1270 part = gen_complex_constant_part (mode, x, 0);
1271 if (part != NULL_RTX)
1272 return part;
1273
e0e08ac2
JH
1274 if (WORDS_BIG_ENDIAN
1275 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1276 && REG_P (x)
1277 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4 1278 internal_error
c725bd79 1279 ("can't access real part of complex value in hard register");
dc139c90 1280 else if (WORDS_BIG_ENDIAN)
280194b0
RS
1281 return gen_highpart (mode, x);
1282 else
1283 return gen_lowpart (mode, x);
1284}
1285
1286/* Return the imaginary part (which has mode MODE) of a complex value X.
1287 This always comes at the high address in memory. */
1288
1289rtx
502b8322 1290gen_imagpart (enum machine_mode mode, rtx x)
280194b0 1291{
b1d673be
RS
1292 rtx part;
1293
1294 /* Handle complex constants. */
1295 part = gen_complex_constant_part (mode, x, 1);
1296 if (part != NULL_RTX)
1297 return part;
1298
e0e08ac2 1299 if (WORDS_BIG_ENDIAN)
280194b0 1300 return gen_lowpart (mode, x);
ddef6bc7 1301 else if (! WORDS_BIG_ENDIAN
40c0c3cf
JL
1302 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD
1303 && REG_P (x)
1304 && REGNO (x) < FIRST_PSEUDO_REGISTER)
400500c4
RK
1305 internal_error
1306 ("can't access imaginary part of complex value in hard register");
280194b0
RS
1307 else
1308 return gen_highpart (mode, x);
1309}
81284a6a
JW
1310
1311/* Return 1 iff X, assumed to be a SUBREG,
1312 refers to the real part of the complex value in its containing reg.
1313 Complex values are always stored with the real part in the first word,
1314 regardless of WORDS_BIG_ENDIAN. */
1315
1316int
502b8322 1317subreg_realpart_p (rtx x)
81284a6a
JW
1318{
1319 if (GET_CODE (x) != SUBREG)
1320 abort ();
1321
ddef6bc7 1322 return ((unsigned int) SUBREG_BYTE (x)
770ae6cc 1323 < GET_MODE_UNIT_SIZE (GET_MODE (SUBREG_REG (x))));
81284a6a 1324}
280194b0 1325\f
23b2ce53
RS
1326/* Assuming that X is an rtx (e.g., MEM, REG or SUBREG) for a value,
1327 return an rtx (MEM, SUBREG, or CONST_INT) that refers to the
1328 least-significant part of X.
1329 MODE specifies how big a part of X to return;
1330 it usually should not be larger than a word.
1331 If X is a MEM whose address is a QUEUED, the value may be so also. */
1332
1333rtx
502b8322 1334gen_lowpart (enum machine_mode mode, rtx x)
23b2ce53
RS
1335{
1336 rtx result = gen_lowpart_common (mode, x);
1337
1338 if (result)
1339 return result;
ea8262b0
RK
1340 else if (GET_CODE (x) == REG)
1341 {
1342 /* Must be a hard reg that's not valid in MODE. */
1343 result = gen_lowpart_common (mode, copy_to_reg (x));
1344 if (result == 0)
1345 abort ();
72c3833b 1346 return result;
ea8262b0 1347 }
23b2ce53
RS
1348 else if (GET_CODE (x) == MEM)
1349 {
1350 /* The only additional case we can do is MEM. */
b3694847 1351 int offset = 0;
37f5242b
RS
1352
1353 /* The following exposes the use of "x" to CSE. */
1354 if (GET_MODE_SIZE (GET_MODE (x)) <= UNITS_PER_WORD
9dd04ab5 1355 && SCALAR_INT_MODE_P (GET_MODE (x))
37f5242b
RS
1356 && ! no_new_pseudos)
1357 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
1358
23b2ce53
RS
1359 if (WORDS_BIG_ENDIAN)
1360 offset = (MAX (GET_MODE_SIZE (GET_MODE (x)), UNITS_PER_WORD)
1361 - MAX (GET_MODE_SIZE (mode), UNITS_PER_WORD));
1362
1363 if (BYTES_BIG_ENDIAN)
1364 /* Adjust the address so that the address-after-the-data
1365 is unchanged. */
1366 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (mode))
1367 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x))));
1368
f4ef873c 1369 return adjust_address (x, mode, offset);
23b2ce53 1370 }
e9a25f70
JL
1371 else if (GET_CODE (x) == ADDRESSOF)
1372 return gen_lowpart (mode, force_reg (GET_MODE (x), x));
23b2ce53
RS
1373 else
1374 abort ();
1375}
1376
750c9258 1377/* Like `gen_lowpart', but refer to the most significant part.
ccba022b
RS
1378 This is used to access the imaginary part of a complex number. */
1379
1380rtx
502b8322 1381gen_highpart (enum machine_mode mode, rtx x)
ccba022b 1382{
ddef6bc7 1383 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1384 rtx result;
ddef6bc7 1385
ccba022b
RS
1386 /* This case loses if X is a subreg. To catch bugs early,
1387 complain if an invalid MODE is used even in other cases. */
ddef6bc7
JJ
1388 if (msize > UNITS_PER_WORD
1389 && msize != GET_MODE_UNIT_SIZE (GET_MODE (x)))
ccba022b 1390 abort ();
ddef6bc7 1391
e0e08ac2
JH
1392 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1393 subreg_highpart_offset (mode, GET_MODE (x)));
09482e0d
JW
1394
1395 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1396 the target if we have a MEM. gen_highpart must return a valid operand,
1397 emitting code if necessary to do so. */
13b8c631 1398 if (result != NULL_RTX && GET_CODE (result) == MEM)
09482e0d
JW
1399 result = validize_mem (result);
1400
e0e08ac2
JH
1401 if (!result)
1402 abort ();
1403 return result;
1404}
5222e470 1405
26d249eb 1406/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1407 be VOIDmode constant. */
1408rtx
502b8322 1409gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
5222e470
JH
1410{
1411 if (GET_MODE (exp) != VOIDmode)
1412 {
1413 if (GET_MODE (exp) != innermode)
1414 abort ();
1415 return gen_highpart (outermode, exp);
1416 }
1417 return simplify_gen_subreg (outermode, exp, innermode,
1418 subreg_highpart_offset (outermode, innermode));
1419}
68252e27 1420
e0e08ac2
JH
1421/* Return offset in bytes to get OUTERMODE low part
1422 of the value in mode INNERMODE stored in memory in target format. */
8698cce3 1423
e0e08ac2 1424unsigned int
502b8322 1425subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
e0e08ac2
JH
1426{
1427 unsigned int offset = 0;
1428 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1429
e0e08ac2 1430 if (difference > 0)
ccba022b 1431 {
e0e08ac2
JH
1432 if (WORDS_BIG_ENDIAN)
1433 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1434 if (BYTES_BIG_ENDIAN)
1435 offset += difference % UNITS_PER_WORD;
ccba022b 1436 }
ddef6bc7 1437
e0e08ac2 1438 return offset;
ccba022b 1439}
eea50aa0 1440
e0e08ac2
JH
1441/* Return offset in bytes to get OUTERMODE high part
1442 of the value in mode INNERMODE stored in memory in target format. */
1443unsigned int
502b8322 1444subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
eea50aa0
JH
1445{
1446 unsigned int offset = 0;
1447 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1448
e0e08ac2 1449 if (GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
68252e27 1450 abort ();
e0e08ac2 1451
eea50aa0
JH
1452 if (difference > 0)
1453 {
e0e08ac2 1454 if (! WORDS_BIG_ENDIAN)
eea50aa0 1455 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1456 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1457 offset += difference % UNITS_PER_WORD;
1458 }
1459
e0e08ac2 1460 return offset;
eea50aa0 1461}
ccba022b 1462
23b2ce53
RS
1463/* Return 1 iff X, assumed to be a SUBREG,
1464 refers to the least significant part of its containing reg.
1465 If X is not a SUBREG, always return 1 (it is its own low part!). */
1466
1467int
502b8322 1468subreg_lowpart_p (rtx x)
23b2ce53
RS
1469{
1470 if (GET_CODE (x) != SUBREG)
1471 return 1;
a3a03040
RK
1472 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1473 return 0;
23b2ce53 1474
e0e08ac2
JH
1475 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1476 == SUBREG_BYTE (x));
23b2ce53
RS
1477}
1478\f
23b2ce53 1479
ddef6bc7
JJ
1480/* Helper routine for all the constant cases of operand_subword.
1481 Some places invoke this directly. */
23b2ce53
RS
1482
1483rtx
502b8322 1484constant_subword (rtx op, int offset, enum machine_mode mode)
23b2ce53 1485{
906c4e36 1486 int size_ratio = HOST_BITS_PER_WIDE_INT / BITS_PER_WORD;
ddef6bc7 1487 HOST_WIDE_INT val;
23b2ce53
RS
1488
1489 /* If OP is already an integer word, return it. */
1490 if (GET_MODE_CLASS (mode) == MODE_INT
1491 && GET_MODE_SIZE (mode) == UNITS_PER_WORD)
1492 return op;
1493
5495cc55
RH
1494 /* The output is some bits, the width of the target machine's word.
1495 A wider-word host can surely hold them in a CONST_INT. A narrower-word
1496 host can't. */
9847c2f6 1497 if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1632afca 1498 && GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1499 && GET_MODE_BITSIZE (mode) == 64
1632afca
RS
1500 && GET_CODE (op) == CONST_DOUBLE)
1501 {
9847c2f6 1502 long k[2];
1632afca
RS
1503 REAL_VALUE_TYPE rv;
1504
1505 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1506 REAL_VALUE_TO_TARGET_DOUBLE (rv, k);
7677ffa4 1507
9847c2f6 1508 /* We handle 32-bit and >= 64-bit words here. Note that the order in
7677ffa4 1509 which the words are written depends on the word endianness.
7677ffa4 1510 ??? This is a potential portability problem and should
7cae975e
RH
1511 be fixed at some point.
1512
a1f300c0 1513 We must exercise caution with the sign bit. By definition there
7cae975e
RH
1514 are 32 significant bits in K; there may be more in a HOST_WIDE_INT.
1515 Consider a host with a 32-bit long and a 64-bit HOST_WIDE_INT.
1516 So we explicitly mask and sign-extend as necessary. */
9847c2f6 1517 if (BITS_PER_WORD == 32)
7cae975e 1518 {
ddef6bc7 1519 val = k[offset];
7cae975e
RH
1520 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1521 return GEN_INT (val);
1522 }
1523#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1524 else if (BITS_PER_WORD >= 64 && offset == 0)
7cae975e
RH
1525 {
1526 val = k[! WORDS_BIG_ENDIAN];
1527 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
1528 val |= (HOST_WIDE_INT) k[WORDS_BIG_ENDIAN] & 0xffffffff;
1529 return GEN_INT (val);
1530 }
9847c2f6 1531#endif
47b34d40
JW
1532 else if (BITS_PER_WORD == 16)
1533 {
ddef6bc7
JJ
1534 val = k[offset >> 1];
1535 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1536 val >>= 16;
73de376f 1537 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
7cae975e 1538 return GEN_INT (val);
47b34d40 1539 }
7677ffa4
RK
1540 else
1541 abort ();
1632afca 1542 }
a5559dbc
RE
1543 else if (HOST_BITS_PER_WIDE_INT >= BITS_PER_WORD
1544 && GET_MODE_CLASS (mode) == MODE_FLOAT
1545 && GET_MODE_BITSIZE (mode) > 64
1546 && GET_CODE (op) == CONST_DOUBLE)
5495cc55
RH
1547 {
1548 long k[4];
1549 REAL_VALUE_TYPE rv;
a5559dbc 1550
5495cc55
RH
1551 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1552 REAL_VALUE_TO_TARGET_LONG_DOUBLE (rv, k);
a5559dbc 1553
5495cc55
RH
1554 if (BITS_PER_WORD == 32)
1555 {
ddef6bc7 1556 val = k[offset];
5495cc55
RH
1557 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
1558 return GEN_INT (val);
1559 }
1560#if HOST_BITS_PER_WIDE_INT >= 64
ddef6bc7 1561 else if (BITS_PER_WORD >= 64 && offset <= 1)
5495cc55 1562 {
ddef6bc7 1563 val = k[offset * 2 + ! WORDS_BIG_ENDIAN];
5495cc55 1564 val = (((val & 0xffffffff) ^ 0x80000000) - 0x80000000) << 32;
ddef6bc7 1565 val |= (HOST_WIDE_INT) k[offset * 2 + WORDS_BIG_ENDIAN] & 0xffffffff;
5495cc55
RH
1566 return GEN_INT (val);
1567 }
1568#endif
1569 else
1570 abort ();
1571 }
23b2ce53
RS
1572
1573 /* Single word float is a little harder, since single- and double-word
1574 values often do not have the same high-order bits. We have already
1575 verified that we want the only defined word of the single-word value. */
9847c2f6 1576 if (GET_MODE_CLASS (mode) == MODE_FLOAT
7677ffa4 1577 && GET_MODE_BITSIZE (mode) == 32
1632afca
RS
1578 && GET_CODE (op) == CONST_DOUBLE)
1579 {
9847c2f6 1580 long l;
1632afca
RS
1581 REAL_VALUE_TYPE rv;
1582
1583 REAL_VALUE_FROM_CONST_DOUBLE (rv, op);
1584 REAL_VALUE_TO_TARGET_SINGLE (rv, l);
aa2ae679 1585
7cae975e
RH
1586 /* Sign extend from known 32-bit value to HOST_WIDE_INT. */
1587 val = l;
1588 val = ((val & 0xffffffff) ^ 0x80000000) - 0x80000000;
b5a3eb84 1589
aa2ae679
JL
1590 if (BITS_PER_WORD == 16)
1591 {
ddef6bc7 1592 if ((offset & 1) == ! WORDS_BIG_ENDIAN)
7cae975e 1593 val >>= 16;
73de376f 1594 val = ((val & 0xffff) ^ 0x8000) - 0x8000;
aa2ae679 1595 }
7cae975e
RH
1596
1597 return GEN_INT (val);
1632afca 1598 }
750c9258 1599
23b2ce53
RS
1600 /* The only remaining cases that we can handle are integers.
1601 Convert to proper endianness now since these cases need it.
750c9258 1602 At this point, offset == 0 means the low-order word.
23b2ce53 1603
2d4f57f8
RK
1604 We do not want to handle the case when BITS_PER_WORD <= HOST_BITS_PER_INT
1605 in general. However, if OP is (const_int 0), we can just return
1606 it for any word. */
1607
1608 if (op == const0_rtx)
1609 return op;
23b2ce53
RS
1610
1611 if (GET_MODE_CLASS (mode) != MODE_INT
2d4f57f8 1612 || (GET_CODE (op) != CONST_INT && GET_CODE (op) != CONST_DOUBLE)
0cf214a0 1613 || BITS_PER_WORD > HOST_BITS_PER_WIDE_INT)
23b2ce53
RS
1614 return 0;
1615
1616 if (WORDS_BIG_ENDIAN)
ddef6bc7 1617 offset = GET_MODE_SIZE (mode) / UNITS_PER_WORD - 1 - offset;
23b2ce53
RS
1618
1619 /* Find out which word on the host machine this value is in and get
1620 it from the constant. */
ddef6bc7 1621 val = (offset / size_ratio == 0
23b2ce53
RS
1622 ? (GET_CODE (op) == CONST_INT ? INTVAL (op) : CONST_DOUBLE_LOW (op))
1623 : (GET_CODE (op) == CONST_INT
1624 ? (INTVAL (op) < 0 ? ~0 : 0) : CONST_DOUBLE_HIGH (op)));
1625
3f518020 1626 /* Get the value we want into the low bits of val. */
906c4e36 1627 if (BITS_PER_WORD < HOST_BITS_PER_WIDE_INT)
ddef6bc7 1628 val = ((val >> ((offset % size_ratio) * BITS_PER_WORD)));
3f518020 1629
7e4ce834 1630 val = trunc_int_for_mode (val, word_mode);
23b2ce53 1631
906c4e36 1632 return GEN_INT (val);
23b2ce53
RS
1633}
1634
ddef6bc7
JJ
1635/* Return subword OFFSET of operand OP.
1636 The word number, OFFSET, is interpreted as the word number starting
1637 at the low-order address. OFFSET 0 is the low-order word if not
1638 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1639
1640 If we cannot extract the required word, we return zero. Otherwise,
1641 an rtx corresponding to the requested word will be returned.
1642
1643 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1644 reload has completed, a valid address will always be returned. After
1645 reload, if a valid address cannot be returned, we return zero.
1646
1647 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1648 it is the responsibility of the caller.
1649
1650 MODE is the mode of OP in case it is a CONST_INT.
1651
1652 ??? This is still rather broken for some cases. The problem for the
1653 moment is that all callers of this thing provide no 'goal mode' to
1654 tell us to work with. This exists because all callers were written
0631e0bf
JH
1655 in a word based SUBREG world.
1656 Now use of this function can be deprecated by simplify_subreg in most
1657 cases.
1658 */
ddef6bc7
JJ
1659
1660rtx
502b8322 1661operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
ddef6bc7
JJ
1662{
1663 if (mode == VOIDmode)
1664 mode = GET_MODE (op);
1665
1666 if (mode == VOIDmode)
1667 abort ();
1668
30f7a378 1669 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1670 if (mode != BLKmode
1671 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1672 return 0;
1673
30f7a378 1674 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1675 if (mode != BLKmode
1676 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1677 return const0_rtx;
1678
ddef6bc7
JJ
1679 /* Form a new MEM at the requested address. */
1680 if (GET_CODE (op) == MEM)
1681 {
f1ec5147 1682 rtx new = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1683
f1ec5147
RK
1684 if (! validate_address)
1685 return new;
1686
1687 else if (reload_completed)
ddef6bc7 1688 {
f1ec5147
RK
1689 if (! strict_memory_address_p (word_mode, XEXP (new, 0)))
1690 return 0;
ddef6bc7 1691 }
f1ec5147
RK
1692 else
1693 return replace_equiv_address (new, XEXP (new, 0));
ddef6bc7
JJ
1694 }
1695
0631e0bf
JH
1696 /* Rest can be handled by simplify_subreg. */
1697 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1698}
1699
23b2ce53
RS
1700/* Similar to `operand_subword', but never return 0. If we can't extract
1701 the required subword, put OP into a register and try again. If that fails,
750c9258 1702 abort. We always validate the address in this case.
23b2ce53
RS
1703
1704 MODE is the mode of OP, in case it is CONST_INT. */
1705
1706rtx
502b8322 1707operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
23b2ce53 1708{
ddef6bc7 1709 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1710
1711 if (result)
1712 return result;
1713
1714 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1715 {
1716 /* If this is a register which can not be accessed by words, copy it
1717 to a pseudo register. */
1718 if (GET_CODE (op) == REG)
1719 op = copy_to_reg (op);
1720 else
1721 op = force_reg (mode, op);
1722 }
23b2ce53 1723
ddef6bc7 1724 result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1725 if (result == 0)
1726 abort ();
1727
1728 return result;
1729}
1730\f
1731/* Given a compare instruction, swap the operands.
1732 A test instruction is changed into a compare of 0 against the operand. */
1733
1734void
502b8322 1735reverse_comparison (rtx insn)
23b2ce53
RS
1736{
1737 rtx body = PATTERN (insn);
1738 rtx comp;
1739
1740 if (GET_CODE (body) == SET)
1741 comp = SET_SRC (body);
1742 else
1743 comp = SET_SRC (XVECEXP (body, 0, 0));
1744
1745 if (GET_CODE (comp) == COMPARE)
1746 {
1747 rtx op0 = XEXP (comp, 0);
1748 rtx op1 = XEXP (comp, 1);
1749 XEXP (comp, 0) = op1;
1750 XEXP (comp, 1) = op0;
1751 }
1752 else
1753 {
c5c76735
JL
1754 rtx new = gen_rtx_COMPARE (VOIDmode,
1755 CONST0_RTX (GET_MODE (comp)), comp);
23b2ce53
RS
1756 if (GET_CODE (body) == SET)
1757 SET_SRC (body) = new;
1758 else
1759 SET_SRC (XVECEXP (body, 0, 0)) = new;
1760 }
1761}
1762\f
998d7deb
RH
1763/* Within a MEM_EXPR, we care about either (1) a component ref of a decl,
1764 or (2) a component ref of something variable. Represent the later with
1765 a NULL expression. */
1766
1767static tree
502b8322 1768component_ref_for_mem_expr (tree ref)
998d7deb
RH
1769{
1770 tree inner = TREE_OPERAND (ref, 0);
1771
1772 if (TREE_CODE (inner) == COMPONENT_REF)
1773 inner = component_ref_for_mem_expr (inner);
c56e3582
RK
1774 else
1775 {
1776 tree placeholder_ptr = 0;
1777
1778 /* Now remove any conversions: they don't change what the underlying
1779 object is. Likewise for SAVE_EXPR. Also handle PLACEHOLDER_EXPR. */
1780 while (TREE_CODE (inner) == NOP_EXPR || TREE_CODE (inner) == CONVERT_EXPR
1781 || TREE_CODE (inner) == NON_LVALUE_EXPR
1782 || TREE_CODE (inner) == VIEW_CONVERT_EXPR
1783 || TREE_CODE (inner) == SAVE_EXPR
1784 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
68252e27
KH
1785 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
1786 inner = find_placeholder (inner, &placeholder_ptr);
1787 else
1788 inner = TREE_OPERAND (inner, 0);
c56e3582
RK
1789
1790 if (! DECL_P (inner))
1791 inner = NULL_TREE;
1792 }
998d7deb
RH
1793
1794 if (inner == TREE_OPERAND (ref, 0))
1795 return ref;
1796 else
c56e3582
RK
1797 return build (COMPONENT_REF, TREE_TYPE (ref), inner,
1798 TREE_OPERAND (ref, 1));
998d7deb 1799}
173b24b9
RK
1800
1801/* Given REF, a MEM, and T, either the type of X or the expression
1802 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1803 if we are making a new object of this type. BITPOS is nonzero if
1804 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1805
1806void
502b8322
AJ
1807set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1808 HOST_WIDE_INT bitpos)
173b24b9 1809{
8ac61af7 1810 HOST_WIDE_INT alias = MEM_ALIAS_SET (ref);
998d7deb 1811 tree expr = MEM_EXPR (ref);
8ac61af7
RK
1812 rtx offset = MEM_OFFSET (ref);
1813 rtx size = MEM_SIZE (ref);
1814 unsigned int align = MEM_ALIGN (ref);
6f1087be 1815 HOST_WIDE_INT apply_bitpos = 0;
173b24b9
RK
1816 tree type;
1817
1818 /* It can happen that type_for_mode was given a mode for which there
1819 is no language-level type. In which case it returns NULL, which
1820 we can see here. */
1821 if (t == NULL_TREE)
1822 return;
1823
1824 type = TYPE_P (t) ? t : TREE_TYPE (t);
1825
173b24b9
RK
1826 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1827 wrong answer, as it assumes that DECL_RTL already has the right alias
1828 info. Callers should not set DECL_RTL until after the call to
1829 set_mem_attributes. */
1830 if (DECL_P (t) && ref == DECL_RTL_IF_SET (t))
1831 abort ();
1832
738cc472 1833 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1834 front-end routine) and use it. */
1835 alias = get_alias_set (t);
173b24b9
RK
1836
1837 MEM_VOLATILE_P (ref) = TYPE_VOLATILE (type);
1838 MEM_IN_STRUCT_P (ref) = AGGREGATE_TYPE_P (type);
03bf2c23 1839 RTX_UNCHANGING_P (ref)
1285011e
RK
1840 |= ((lang_hooks.honor_readonly
1841 && (TYPE_READONLY (type) || TREE_READONLY (t)))
1842 || (! TYPE_P (t) && TREE_CONSTANT (t)));
173b24b9 1843
8ac61af7
RK
1844 /* If we are making an object of this type, or if this is a DECL, we know
1845 that it is a scalar if the type is not an aggregate. */
1846 if ((objectp || DECL_P (t)) && ! AGGREGATE_TYPE_P (type))
173b24b9
RK
1847 MEM_SCALAR_P (ref) = 1;
1848
c3d32120
RK
1849 /* We can set the alignment from the type if we are making an object,
1850 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
1851 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
1852 align = MAX (align, TYPE_ALIGN (type));
40c0668b 1853
738cc472
RK
1854 /* If the size is known, we can set that. */
1855 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1856 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1857
80965c18
RK
1858 /* If T is not a type, we may be able to deduce some more information about
1859 the expression. */
1860 if (! TYPE_P (t))
8ac61af7
RK
1861 {
1862 maybe_set_unchanging (ref, t);
1863 if (TREE_THIS_VOLATILE (t))
1864 MEM_VOLATILE_P (ref) = 1;
173b24b9 1865
c56e3582
RK
1866 /* Now remove any conversions: they don't change what the underlying
1867 object is. Likewise for SAVE_EXPR. */
8ac61af7 1868 while (TREE_CODE (t) == NOP_EXPR || TREE_CODE (t) == CONVERT_EXPR
c56e3582
RK
1869 || TREE_CODE (t) == NON_LVALUE_EXPR
1870 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1871 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1872 t = TREE_OPERAND (t, 0);
1873
10b76d73
RK
1874 /* If this expression can't be addressed (e.g., it contains a reference
1875 to a non-addressable field), show we don't change its alias set. */
1876 if (! can_address_p (t))
1877 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1878
8ac61af7
RK
1879 /* If this is a decl, set the attributes of the MEM from it. */
1880 if (DECL_P (t))
1881 {
998d7deb
RH
1882 expr = t;
1883 offset = const0_rtx;
6f1087be 1884 apply_bitpos = bitpos;
8ac61af7
RK
1885 size = (DECL_SIZE_UNIT (t)
1886 && host_integerp (DECL_SIZE_UNIT (t), 1)
1887 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
68252e27 1888 align = DECL_ALIGN (t);
8ac61af7
RK
1889 }
1890
40c0668b 1891 /* If this is a constant, we know the alignment. */
9ddfb1a7
RK
1892 else if (TREE_CODE_CLASS (TREE_CODE (t)) == 'c')
1893 {
1894 align = TYPE_ALIGN (type);
1895#ifdef CONSTANT_ALIGNMENT
1896 align = CONSTANT_ALIGNMENT (t, align);
1897#endif
1898 }
998d7deb
RH
1899
1900 /* If this is a field reference and not a bit-field, record it. */
1901 /* ??? There is some information that can be gleened from bit-fields,
1902 such as the word offset in the structure that might be modified.
1903 But skip it for now. */
1904 else if (TREE_CODE (t) == COMPONENT_REF
1905 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1906 {
1907 expr = component_ref_for_mem_expr (t);
1908 offset = const0_rtx;
6f1087be 1909 apply_bitpos = bitpos;
998d7deb
RH
1910 /* ??? Any reason the field size would be different than
1911 the size we got from the type? */
1912 }
1913
1914 /* If this is an array reference, look for an outer field reference. */
1915 else if (TREE_CODE (t) == ARRAY_REF)
1916 {
1917 tree off_tree = size_zero_node;
1918
1919 do
1920 {
2567406a
JH
1921 tree index = TREE_OPERAND (t, 1);
1922 tree array = TREE_OPERAND (t, 0);
1923 tree domain = TYPE_DOMAIN (TREE_TYPE (array));
1924 tree low_bound = (domain ? TYPE_MIN_VALUE (domain) : 0);
1925 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (array)));
1926
1927 /* We assume all arrays have sizes that are a multiple of a byte.
1928 First subtract the lower bound, if any, in the type of the
1929 index, then convert to sizetype and multiply by the size of the
1930 array element. */
1931 if (low_bound != 0 && ! integer_zerop (low_bound))
1932 index = fold (build (MINUS_EXPR, TREE_TYPE (index),
1933 index, low_bound));
1934
1935 /* If the index has a self-referential type, pass it to a
1936 WITH_RECORD_EXPR; if the component size is, pass our
1937 component to one. */
7a6cdb44 1938 if (CONTAINS_PLACEHOLDER_P (index))
2567406a 1939 index = build (WITH_RECORD_EXPR, TREE_TYPE (index), index, t);
7a6cdb44 1940 if (CONTAINS_PLACEHOLDER_P (unit_size))
2567406a
JH
1941 unit_size = build (WITH_RECORD_EXPR, sizetype,
1942 unit_size, array);
1943
998d7deb
RH
1944 off_tree
1945 = fold (build (PLUS_EXPR, sizetype,
1946 fold (build (MULT_EXPR, sizetype,
2567406a
JH
1947 index,
1948 unit_size)),
998d7deb
RH
1949 off_tree));
1950 t = TREE_OPERAND (t, 0);
1951 }
1952 while (TREE_CODE (t) == ARRAY_REF);
1953
c67a1cf6
RH
1954 if (DECL_P (t))
1955 {
1956 expr = t;
40cb04f1 1957 offset = NULL;
c67a1cf6 1958 if (host_integerp (off_tree, 1))
40cb04f1
RH
1959 {
1960 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1961 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1962 align = DECL_ALIGN (t);
fc555370 1963 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
40cb04f1
RH
1964 align = aoff;
1965 offset = GEN_INT (ioff);
6f1087be 1966 apply_bitpos = bitpos;
40cb04f1 1967 }
c67a1cf6
RH
1968 }
1969 else if (TREE_CODE (t) == COMPONENT_REF)
998d7deb
RH
1970 {
1971 expr = component_ref_for_mem_expr (t);
1972 if (host_integerp (off_tree, 1))
6f1087be
RH
1973 {
1974 offset = GEN_INT (tree_low_cst (off_tree, 1));
1975 apply_bitpos = bitpos;
1976 }
998d7deb
RH
1977 /* ??? Any reason the field size would be different than
1978 the size we got from the type? */
1979 }
c67a1cf6
RH
1980 else if (flag_argument_noalias > 1
1981 && TREE_CODE (t) == INDIRECT_REF
1982 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1983 {
1984 expr = t;
1985 offset = NULL;
1986 }
1987 }
1988
1989 /* If this is a Fortran indirect argument reference, record the
1990 parameter decl. */
1991 else if (flag_argument_noalias > 1
1992 && TREE_CODE (t) == INDIRECT_REF
1993 && TREE_CODE (TREE_OPERAND (t, 0)) == PARM_DECL)
1994 {
1995 expr = t;
1996 offset = NULL;
998d7deb 1997 }
8ac61af7
RK
1998 }
1999
15c812e3 2000 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
2001 bit position offset. Similarly, increase the size of the accessed
2002 object to contain the negative offset. */
6f1087be 2003 if (apply_bitpos)
8c317c5f
RH
2004 {
2005 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
2006 if (size)
2007 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
2008 }
6f1087be 2009
8ac61af7 2010 /* Now set the attributes we computed above. */
10b76d73 2011 MEM_ATTRS (ref)
998d7deb 2012 = get_mem_attrs (alias, expr, offset, size, align, GET_MODE (ref));
8ac61af7
RK
2013
2014 /* If this is already known to be a scalar or aggregate, we are done. */
2015 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
2016 return;
2017
8ac61af7
RK
2018 /* If it is a reference into an aggregate, this is part of an aggregate.
2019 Otherwise we don't know. */
173b24b9
RK
2020 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
2021 || TREE_CODE (t) == ARRAY_RANGE_REF
2022 || TREE_CODE (t) == BIT_FIELD_REF)
2023 MEM_IN_STRUCT_P (ref) = 1;
2024}
2025
6f1087be 2026void
502b8322 2027set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
2028{
2029 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
2030}
2031
a560d4d4
JH
2032/* Set the decl for MEM to DECL. */
2033
2034void
502b8322 2035set_mem_attrs_from_reg (rtx mem, rtx reg)
a560d4d4
JH
2036{
2037 MEM_ATTRS (mem)
2038 = get_mem_attrs (MEM_ALIAS_SET (mem), REG_EXPR (reg),
2039 GEN_INT (REG_OFFSET (reg)),
2040 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2041}
2042
173b24b9
RK
2043/* Set the alias set of MEM to SET. */
2044
2045void
502b8322 2046set_mem_alias_set (rtx mem, HOST_WIDE_INT set)
173b24b9 2047{
68252e27 2048#ifdef ENABLE_CHECKING
173b24b9
RK
2049 /* If the new and old alias sets don't conflict, something is wrong. */
2050 if (!alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)))
2051 abort ();
173b24b9
RK
2052#endif
2053
998d7deb 2054 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
10b76d73
RK
2055 MEM_SIZE (mem), MEM_ALIGN (mem),
2056 GET_MODE (mem));
173b24b9 2057}
738cc472 2058
d022d93e 2059/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
2060
2061void
502b8322 2062set_mem_align (rtx mem, unsigned int align)
738cc472 2063{
998d7deb 2064 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
10b76d73
RK
2065 MEM_OFFSET (mem), MEM_SIZE (mem), align,
2066 GET_MODE (mem));
738cc472 2067}
1285011e 2068
998d7deb 2069/* Set the expr for MEM to EXPR. */
1285011e
RK
2070
2071void
502b8322 2072set_mem_expr (rtx mem, tree expr)
1285011e
RK
2073{
2074 MEM_ATTRS (mem)
998d7deb 2075 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
1285011e
RK
2076 MEM_SIZE (mem), MEM_ALIGN (mem), GET_MODE (mem));
2077}
998d7deb
RH
2078
2079/* Set the offset of MEM to OFFSET. */
2080
2081void
502b8322 2082set_mem_offset (rtx mem, rtx offset)
998d7deb
RH
2083{
2084 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2085 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
2086 GET_MODE (mem));
35aff10b
AM
2087}
2088
2089/* Set the size of MEM to SIZE. */
2090
2091void
502b8322 2092set_mem_size (rtx mem, rtx size)
35aff10b
AM
2093{
2094 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
2095 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
2096 GET_MODE (mem));
998d7deb 2097}
173b24b9 2098\f
738cc472
RK
2099/* Return a memory reference like MEMREF, but with its mode changed to MODE
2100 and its address changed to ADDR. (VOIDmode means don't change the mode.
2101 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
2102 returned memory location is required to be valid. The memory
2103 attributes are not changed. */
23b2ce53 2104
738cc472 2105static rtx
502b8322 2106change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
23b2ce53
RS
2107{
2108 rtx new;
2109
2110 if (GET_CODE (memref) != MEM)
2111 abort ();
2112 if (mode == VOIDmode)
2113 mode = GET_MODE (memref);
2114 if (addr == 0)
2115 addr = XEXP (memref, 0);
2116
f1ec5147 2117 if (validate)
23b2ce53 2118 {
f1ec5147
RK
2119 if (reload_in_progress || reload_completed)
2120 {
2121 if (! memory_address_p (mode, addr))
2122 abort ();
2123 }
2124 else
2125 addr = memory_address (mode, addr);
23b2ce53 2126 }
750c9258 2127
9b04c6a8
RK
2128 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
2129 return memref;
2130
3b80f6ca 2131 new = gen_rtx_MEM (mode, addr);
c6df88cb 2132 MEM_COPY_ATTRIBUTES (new, memref);
23b2ce53
RS
2133 return new;
2134}
792760b9 2135
738cc472
RK
2136/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
2137 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
2138
2139rtx
502b8322 2140change_address (rtx memref, enum machine_mode mode, rtx addr)
f4ef873c 2141{
738cc472
RK
2142 rtx new = change_address_1 (memref, mode, addr, 1);
2143 enum machine_mode mmode = GET_MODE (new);
c2f7bcc3 2144
738cc472
RK
2145 MEM_ATTRS (new)
2146 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0,
2147 mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode)),
a06ef755
RK
2148 (mmode == BLKmode ? BITS_PER_UNIT
2149 : GET_MODE_ALIGNMENT (mmode)),
10b76d73 2150 mmode);
823e3574 2151
738cc472 2152 return new;
f4ef873c 2153}
792760b9 2154
738cc472
RK
2155/* Return a memory reference like MEMREF, but with its mode changed
2156 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2157 nonzero, the memory address is forced to be valid.
2158 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
2159 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
2160
2161rtx
502b8322
AJ
2162adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
2163 int validate, int adjust)
f1ec5147 2164{
823e3574 2165 rtx addr = XEXP (memref, 0);
738cc472
RK
2166 rtx new;
2167 rtx memoffset = MEM_OFFSET (memref);
10b76d73 2168 rtx size = 0;
738cc472 2169 unsigned int memalign = MEM_ALIGN (memref);
823e3574 2170
d14419e4 2171 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 2172 This may happen even if offset is nonzero -- consider
d14419e4
RH
2173 (plus (plus reg reg) const_int) -- so do this always. */
2174 addr = copy_rtx (addr);
2175
4a78c787
RH
2176 if (adjust)
2177 {
2178 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2179 object, we can merge it into the LO_SUM. */
2180 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2181 && offset >= 0
2182 && (unsigned HOST_WIDE_INT) offset
2183 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
2184 addr = gen_rtx_LO_SUM (Pmode, XEXP (addr, 0),
2185 plus_constant (XEXP (addr, 1), offset));
2186 else
2187 addr = plus_constant (addr, offset);
2188 }
823e3574 2189
738cc472
RK
2190 new = change_address_1 (memref, mode, addr, validate);
2191
2192 /* Compute the new values of the memory attributes due to this adjustment.
2193 We add the offsets and update the alignment. */
2194 if (memoffset)
2195 memoffset = GEN_INT (offset + INTVAL (memoffset));
2196
03bf2c23
RK
2197 /* Compute the new alignment by taking the MIN of the alignment and the
2198 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2199 if zero. */
2200 if (offset != 0)
3bf1e984
RK
2201 memalign
2202 = MIN (memalign,
2203 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
738cc472 2204
10b76d73 2205 /* We can compute the size in a number of ways. */
a06ef755
RK
2206 if (GET_MODE (new) != BLKmode)
2207 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new)));
10b76d73
RK
2208 else if (MEM_SIZE (memref))
2209 size = plus_constant (MEM_SIZE (memref), -offset);
2210
998d7deb 2211 MEM_ATTRS (new) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
10b76d73 2212 memoffset, size, memalign, GET_MODE (new));
738cc472
RK
2213
2214 /* At some point, we should validate that this offset is within the object,
2215 if all the appropriate values are known. */
2216 return new;
f1ec5147
RK
2217}
2218
630036c6
JJ
2219/* Return a memory reference like MEMREF, but with its mode changed
2220 to MODE and its address changed to ADDR, which is assumed to be
2221 MEMREF offseted by OFFSET bytes. If VALIDATE is
2222 nonzero, the memory address is forced to be valid. */
2223
2224rtx
502b8322
AJ
2225adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2226 HOST_WIDE_INT offset, int validate)
630036c6
JJ
2227{
2228 memref = change_address_1 (memref, VOIDmode, addr, validate);
2229 return adjust_address_1 (memref, mode, offset, validate, 0);
2230}
2231
8ac61af7
RK
2232/* Return a memory reference like MEMREF, but whose address is changed by
2233 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2234 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2235
2236rtx
502b8322 2237offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2238{
e3c8ea67
RH
2239 rtx new, addr = XEXP (memref, 0);
2240
2241 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2242
68252e27 2243 /* At this point we don't know _why_ the address is invalid. It
e3c8ea67
RH
2244 could have secondary memory refereces, multiplies or anything.
2245
2246 However, if we did go and rearrange things, we can wind up not
2247 being able to recognize the magic around pic_offset_table_rtx.
2248 This stuff is fragile, and is yet another example of why it is
2249 bad to expose PIC machinery too early. */
2250 if (! memory_address_p (GET_MODE (memref), new)
2251 && GET_CODE (addr) == PLUS
2252 && XEXP (addr, 0) == pic_offset_table_rtx)
2253 {
2254 addr = force_reg (GET_MODE (addr), addr);
2255 new = simplify_gen_binary (PLUS, Pmode, addr, offset);
2256 }
2257
f6041ed8 2258 update_temp_slot_address (XEXP (memref, 0), new);
e3c8ea67 2259 new = change_address_1 (memref, VOIDmode, new, 1);
0d4903b8
RK
2260
2261 /* Update the alignment to reflect the offset. Reset the offset, which
2262 we don't know. */
2cc2d4bb
RK
2263 MEM_ATTRS (new)
2264 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
9ceca302 2265 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
2cc2d4bb 2266 GET_MODE (new));
0d4903b8
RK
2267 return new;
2268}
68252e27 2269
792760b9
RK
2270/* Return a memory reference like MEMREF, but with its address changed to
2271 ADDR. The caller is asserting that the actual piece of memory pointed
2272 to is the same, just the form of the address is being changed, such as
2273 by putting something into a register. */
2274
2275rtx
502b8322 2276replace_equiv_address (rtx memref, rtx addr)
792760b9 2277{
738cc472
RK
2278 /* change_address_1 copies the memory attribute structure without change
2279 and that's exactly what we want here. */
40c0668b 2280 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2281 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2282}
738cc472 2283
f1ec5147
RK
2284/* Likewise, but the reference is not required to be valid. */
2285
2286rtx
502b8322 2287replace_equiv_address_nv (rtx memref, rtx addr)
f1ec5147 2288{
f1ec5147
RK
2289 return change_address_1 (memref, VOIDmode, addr, 0);
2290}
e7dfe4bb
RH
2291
2292/* Return a memory reference like MEMREF, but with its mode widened to
2293 MODE and offset by OFFSET. This would be used by targets that e.g.
2294 cannot issue QImode memory operations and have to use SImode memory
2295 operations plus masking logic. */
2296
2297rtx
502b8322 2298widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb
RH
2299{
2300 rtx new = adjust_address_1 (memref, mode, offset, 1, 1);
2301 tree expr = MEM_EXPR (new);
2302 rtx memoffset = MEM_OFFSET (new);
2303 unsigned int size = GET_MODE_SIZE (mode);
2304
2305 /* If we don't know what offset we were at within the expression, then
2306 we can't know if we've overstepped the bounds. */
fa1591cb 2307 if (! memoffset)
e7dfe4bb
RH
2308 expr = NULL_TREE;
2309
2310 while (expr)
2311 {
2312 if (TREE_CODE (expr) == COMPONENT_REF)
2313 {
2314 tree field = TREE_OPERAND (expr, 1);
2315
2316 if (! DECL_SIZE_UNIT (field))
2317 {
2318 expr = NULL_TREE;
2319 break;
2320 }
2321
2322 /* Is the field at least as large as the access? If so, ok,
2323 otherwise strip back to the containing structure. */
03667700
RK
2324 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2325 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
e7dfe4bb
RH
2326 && INTVAL (memoffset) >= 0)
2327 break;
2328
2329 if (! host_integerp (DECL_FIELD_OFFSET (field), 1))
2330 {
2331 expr = NULL_TREE;
2332 break;
2333 }
2334
2335 expr = TREE_OPERAND (expr, 0);
2336 memoffset = (GEN_INT (INTVAL (memoffset)
2337 + tree_low_cst (DECL_FIELD_OFFSET (field), 1)
2338 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2339 / BITS_PER_UNIT)));
2340 }
2341 /* Similarly for the decl. */
2342 else if (DECL_P (expr)
2343 && DECL_SIZE_UNIT (expr)
45f79783 2344 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
e7dfe4bb
RH
2345 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2346 && (! memoffset || INTVAL (memoffset) >= 0))
2347 break;
2348 else
2349 {
2350 /* The widened memory access overflows the expression, which means
2351 that it could alias another expression. Zap it. */
2352 expr = NULL_TREE;
2353 break;
2354 }
2355 }
2356
2357 if (! expr)
2358 memoffset = NULL_RTX;
2359
2360 /* The widened memory may alias other stuff, so zap the alias set. */
2361 /* ??? Maybe use get_alias_set on any remaining expression. */
2362
2363 MEM_ATTRS (new) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
2364 MEM_ALIGN (new), mode);
2365
2366 return new;
2367}
23b2ce53
RS
2368\f
2369/* Return a newly created CODE_LABEL rtx with a unique label number. */
2370
2371rtx
502b8322 2372gen_label_rtx (void)
23b2ce53 2373{
0dc36574 2374 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
502b8322 2375 NULL, label_num++, NULL);
23b2ce53
RS
2376}
2377\f
2378/* For procedure integration. */
2379
23b2ce53 2380/* Install new pointers to the first and last insns in the chain.
86fe05e0 2381 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2382 Used for an inline-procedure after copying the insn chain. */
2383
2384void
502b8322 2385set_new_first_and_last_insn (rtx first, rtx last)
23b2ce53 2386{
86fe05e0
RK
2387 rtx insn;
2388
23b2ce53
RS
2389 first_insn = first;
2390 last_insn = last;
86fe05e0
RK
2391 cur_insn_uid = 0;
2392
2393 for (insn = first; insn; insn = NEXT_INSN (insn))
2394 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2395
2396 cur_insn_uid++;
23b2ce53
RS
2397}
2398
2399/* Set the range of label numbers found in the current function.
2400 This is used when belatedly compiling an inline function. */
2401
2402void
502b8322 2403set_new_first_and_last_label_num (int first, int last)
23b2ce53
RS
2404{
2405 base_label_num = label_num;
2406 first_label_num = first;
2407 last_label_num = last;
2408}
49ad7cfa
BS
2409
2410/* Set the last label number found in the current function.
2411 This is used when belatedly compiling an inline function. */
23b2ce53
RS
2412
2413void
502b8322 2414set_new_last_label_num (int last)
23b2ce53 2415{
49ad7cfa
BS
2416 base_label_num = label_num;
2417 last_label_num = last;
23b2ce53 2418}
49ad7cfa 2419\f
23b2ce53
RS
2420/* Restore all variables describing the current status from the structure *P.
2421 This is used after a nested function. */
2422
2423void
502b8322 2424restore_emit_status (struct function *p ATTRIBUTE_UNUSED)
23b2ce53 2425{
457a2d9c 2426 last_label_num = 0;
23b2ce53
RS
2427}
2428\f
750c9258 2429/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2430 structure. This routine should only be called once. */
23b2ce53
RS
2431
2432void
502b8322 2433unshare_all_rtl (tree fndecl, rtx insn)
23b2ce53 2434{
d1b81779 2435 tree decl;
23b2ce53 2436
d1b81779
GK
2437 /* Make sure that virtual parameters are not shared. */
2438 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
19e7881c 2439 SET_DECL_RTL (decl, copy_rtx_if_shared (DECL_RTL (decl)));
d1b81779 2440
5c6df058
AO
2441 /* Make sure that virtual stack slots are not shared. */
2442 unshare_all_decls (DECL_INITIAL (fndecl));
2443
d1b81779
GK
2444 /* Unshare just about everything else. */
2445 unshare_all_rtl_1 (insn);
750c9258 2446
23b2ce53
RS
2447 /* Make sure the addresses of stack slots found outside the insn chain
2448 (such as, in DECL_RTL of a variable) are not shared
2449 with the insn chain.
2450
2451 This special care is necessary when the stack slot MEM does not
2452 actually appear in the insn chain. If it does appear, its address
2453 is unshared from all else at that point. */
242b0ce6 2454 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2455}
2456
750c9258 2457/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2458 structure, again. This is a fairly expensive thing to do so it
2459 should be done sparingly. */
2460
2461void
502b8322 2462unshare_all_rtl_again (rtx insn)
d1b81779
GK
2463{
2464 rtx p;
624c87aa
RE
2465 tree decl;
2466
d1b81779 2467 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2468 if (INSN_P (p))
d1b81779
GK
2469 {
2470 reset_used_flags (PATTERN (p));
2471 reset_used_flags (REG_NOTES (p));
2472 reset_used_flags (LOG_LINKS (p));
2473 }
624c87aa 2474
2d4aecb3
AO
2475 /* Make sure that virtual stack slots are not shared. */
2476 reset_used_decls (DECL_INITIAL (cfun->decl));
2477
624c87aa
RE
2478 /* Make sure that virtual parameters are not shared. */
2479 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = TREE_CHAIN (decl))
2480 reset_used_flags (DECL_RTL (decl));
2481
2482 reset_used_flags (stack_slot_list);
2483
2484 unshare_all_rtl (cfun->decl, insn);
d1b81779
GK
2485}
2486
2487/* Go through all the RTL insn bodies and copy any invalid shared structure.
2488 Assumes the mark bits are cleared at entry. */
2489
2490static void
502b8322 2491unshare_all_rtl_1 (rtx insn)
d1b81779
GK
2492{
2493 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2494 if (INSN_P (insn))
d1b81779
GK
2495 {
2496 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2497 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
2498 LOG_LINKS (insn) = copy_rtx_if_shared (LOG_LINKS (insn));
2499 }
2500}
2501
5c6df058
AO
2502/* Go through all virtual stack slots of a function and copy any
2503 shared structure. */
2504static void
502b8322 2505unshare_all_decls (tree blk)
5c6df058
AO
2506{
2507 tree t;
2508
2509 /* Copy shared decls. */
2510 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
2511 if (DECL_RTL_SET_P (t))
2512 SET_DECL_RTL (t, copy_rtx_if_shared (DECL_RTL (t)));
5c6df058
AO
2513
2514 /* Now process sub-blocks. */
2515 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2516 unshare_all_decls (t);
2517}
2518
2d4aecb3 2519/* Go through all virtual stack slots of a function and mark them as
30f7a378 2520 not shared. */
2d4aecb3 2521static void
502b8322 2522reset_used_decls (tree blk)
2d4aecb3
AO
2523{
2524 tree t;
2525
2526 /* Mark decls. */
2527 for (t = BLOCK_VARS (blk); t; t = TREE_CHAIN (t))
19e7881c
MM
2528 if (DECL_RTL_SET_P (t))
2529 reset_used_flags (DECL_RTL (t));
2d4aecb3
AO
2530
2531 /* Now process sub-blocks. */
2532 for (t = BLOCK_SUBBLOCKS (blk); t; t = TREE_CHAIN (t))
2533 reset_used_decls (t);
2534}
2535
127c1ba5 2536/* Similar to `copy_rtx' except that if MAY_SHARE is present, it is
93fe8e92
RK
2537 placed in the result directly, rather than being copied. MAY_SHARE is
2538 either a MEM of an EXPR_LIST of MEMs. */
127c1ba5
RK
2539
2540rtx
502b8322 2541copy_most_rtx (rtx orig, rtx may_share)
127c1ba5
RK
2542{
2543 rtx copy;
2544 int i, j;
2545 RTX_CODE code;
2546 const char *format_ptr;
2547
93fe8e92
RK
2548 if (orig == may_share
2549 || (GET_CODE (may_share) == EXPR_LIST
2550 && in_expr_list_p (may_share, orig)))
127c1ba5
RK
2551 return orig;
2552
2553 code = GET_CODE (orig);
2554
2555 switch (code)
2556 {
2557 case REG:
2558 case QUEUED:
2559 case CONST_INT:
2560 case CONST_DOUBLE:
2561 case CONST_VECTOR:
2562 case SYMBOL_REF:
2563 case CODE_LABEL:
2564 case PC:
2565 case CC0:
2566 return orig;
2567 default:
2568 break;
2569 }
2570
2571 copy = rtx_alloc (code);
2572 PUT_MODE (copy, GET_MODE (orig));
2adc7f12
JJ
2573 RTX_FLAG (copy, in_struct) = RTX_FLAG (orig, in_struct);
2574 RTX_FLAG (copy, volatil) = RTX_FLAG (orig, volatil);
2575 RTX_FLAG (copy, unchanging) = RTX_FLAG (orig, unchanging);
2576 RTX_FLAG (copy, integrated) = RTX_FLAG (orig, integrated);
2577 RTX_FLAG (copy, frame_related) = RTX_FLAG (orig, frame_related);
127c1ba5
RK
2578
2579 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
2580
2581 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
2582 {
2583 switch (*format_ptr++)
2584 {
2585 case 'e':
2586 XEXP (copy, i) = XEXP (orig, i);
2587 if (XEXP (orig, i) != NULL && XEXP (orig, i) != may_share)
2588 XEXP (copy, i) = copy_most_rtx (XEXP (orig, i), may_share);
2589 break;
2590
2591 case 'u':
2592 XEXP (copy, i) = XEXP (orig, i);
2593 break;
2594
2595 case 'E':
2596 case 'V':
2597 XVEC (copy, i) = XVEC (orig, i);
2598 if (XVEC (orig, i) != NULL)
2599 {
2600 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
2601 for (j = 0; j < XVECLEN (copy, i); j++)
2602 XVECEXP (copy, i, j)
2603 = copy_most_rtx (XVECEXP (orig, i, j), may_share);
2604 }
2605 break;
2606
2607 case 'w':
2608 XWINT (copy, i) = XWINT (orig, i);
2609 break;
2610
2611 case 'n':
2612 case 'i':
2613 XINT (copy, i) = XINT (orig, i);
2614 break;
2615
2616 case 't':
2617 XTREE (copy, i) = XTREE (orig, i);
2618 break;
2619
2620 case 's':
2621 case 'S':
2622 XSTR (copy, i) = XSTR (orig, i);
2623 break;
2624
2625 case '0':
2626 /* Copy this through the wide int field; that's safest. */
2627 X0WINT (copy, i) = X0WINT (orig, i);
2628 break;
2629
2630 default:
2631 abort ();
2632 }
2633 }
2634 return copy;
2635}
2636
23b2ce53
RS
2637/* Mark ORIG as in use, and return a copy of it if it was already in use.
2638 Recursively does the same for subexpressions. */
2639
2640rtx
502b8322 2641copy_rtx_if_shared (rtx orig)
23b2ce53 2642{
b3694847
SS
2643 rtx x = orig;
2644 int i;
2645 enum rtx_code code;
2646 const char *format_ptr;
23b2ce53
RS
2647 int copied = 0;
2648
2649 if (x == 0)
2650 return 0;
2651
2652 code = GET_CODE (x);
2653
2654 /* These types may be freely shared. */
2655
2656 switch (code)
2657 {
2658 case REG:
2659 case QUEUED:
2660 case CONST_INT:
2661 case CONST_DOUBLE:
69ef87e2 2662 case CONST_VECTOR:
23b2ce53
RS
2663 case SYMBOL_REF:
2664 case CODE_LABEL:
2665 case PC:
2666 case CC0:
2667 case SCRATCH:
0f41302f 2668 /* SCRATCH must be shared because they represent distinct values. */
23b2ce53
RS
2669 return x;
2670
b851ea09
RK
2671 case CONST:
2672 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
2673 a LABEL_REF, it isn't sharable. */
2674 if (GET_CODE (XEXP (x, 0)) == PLUS
2675 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2676 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)
2677 return x;
2678 break;
2679
23b2ce53
RS
2680 case INSN:
2681 case JUMP_INSN:
2682 case CALL_INSN:
2683 case NOTE:
23b2ce53
RS
2684 case BARRIER:
2685 /* The chain of insns is not being copied. */
2686 return x;
2687
2688 case MEM:
83512665
JL
2689 /* A MEM is allowed to be shared if its address is constant.
2690
750c9258 2691 We used to allow sharing of MEMs which referenced
83512665
JL
2692 virtual_stack_vars_rtx or virtual_incoming_args_rtx, but
2693 that can lose. instantiate_virtual_regs will not unshare
2694 the MEMs, and combine may change the structure of the address
2695 because it looks safe and profitable in one context, but
2696 in some other context it creates unrecognizable RTL. */
2697 if (CONSTANT_ADDRESS_P (XEXP (x, 0)))
23b2ce53
RS
2698 return x;
2699
e9a25f70
JL
2700 break;
2701
2702 default:
2703 break;
23b2ce53
RS
2704 }
2705
2706 /* This rtx may not be shared. If it has already been seen,
2707 replace it with a copy of itself. */
2708
2adc7f12 2709 if (RTX_FLAG (x, used))
23b2ce53 2710 {
b3694847 2711 rtx copy;
23b2ce53
RS
2712
2713 copy = rtx_alloc (code);
4e135bdd 2714 memcpy (copy, x,
4c9a05bc
RK
2715 (sizeof (*copy) - sizeof (copy->fld)
2716 + sizeof (copy->fld[0]) * GET_RTX_LENGTH (code)));
23b2ce53
RS
2717 x = copy;
2718 copied = 1;
2719 }
2adc7f12 2720 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2721
2722 /* Now scan the subexpressions recursively.
2723 We can store any replaced subexpressions directly into X
2724 since we know X is not shared! Any vectors in X
2725 must be copied if X was copied. */
2726
2727 format_ptr = GET_RTX_FORMAT (code);
2728
2729 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2730 {
2731 switch (*format_ptr++)
2732 {
2733 case 'e':
2734 XEXP (x, i) = copy_rtx_if_shared (XEXP (x, i));
2735 break;
2736
2737 case 'E':
2738 if (XVEC (x, i) != NULL)
2739 {
b3694847 2740 int j;
f0722107 2741 int len = XVECLEN (x, i);
23b2ce53 2742
f0722107 2743 if (copied && len > 0)
8f985ec4 2744 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
f0722107
RS
2745 for (j = 0; j < len; j++)
2746 XVECEXP (x, i, j) = copy_rtx_if_shared (XVECEXP (x, i, j));
23b2ce53
RS
2747 }
2748 break;
2749 }
2750 }
2751 return x;
2752}
2753
2754/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2755 to look for shared sub-parts. */
2756
2757void
502b8322 2758reset_used_flags (rtx x)
23b2ce53 2759{
b3694847
SS
2760 int i, j;
2761 enum rtx_code code;
2762 const char *format_ptr;
23b2ce53
RS
2763
2764 if (x == 0)
2765 return;
2766
2767 code = GET_CODE (x);
2768
9faa82d8 2769 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2770 for them. */
2771
2772 switch (code)
2773 {
2774 case REG:
2775 case QUEUED:
2776 case CONST_INT:
2777 case CONST_DOUBLE:
69ef87e2 2778 case CONST_VECTOR:
23b2ce53
RS
2779 case SYMBOL_REF:
2780 case CODE_LABEL:
2781 case PC:
2782 case CC0:
2783 return;
2784
2785 case INSN:
2786 case JUMP_INSN:
2787 case CALL_INSN:
2788 case NOTE:
2789 case LABEL_REF:
2790 case BARRIER:
2791 /* The chain of insns is not being copied. */
2792 return;
750c9258 2793
e9a25f70
JL
2794 default:
2795 break;
23b2ce53
RS
2796 }
2797
2adc7f12 2798 RTX_FLAG (x, used) = 0;
23b2ce53
RS
2799
2800 format_ptr = GET_RTX_FORMAT (code);
2801 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2802 {
2803 switch (*format_ptr++)
2804 {
2805 case 'e':
2806 reset_used_flags (XEXP (x, i));
2807 break;
2808
2809 case 'E':
2810 for (j = 0; j < XVECLEN (x, i); j++)
2811 reset_used_flags (XVECEXP (x, i, j));
2812 break;
2813 }
2814 }
2815}
2816\f
2817/* Copy X if necessary so that it won't be altered by changes in OTHER.
2818 Return X or the rtx for the pseudo reg the value of X was copied into.
2819 OTHER must be valid as a SET_DEST. */
2820
2821rtx
502b8322 2822make_safe_from (rtx x, rtx other)
23b2ce53
RS
2823{
2824 while (1)
2825 switch (GET_CODE (other))
2826 {
2827 case SUBREG:
2828 other = SUBREG_REG (other);
2829 break;
2830 case STRICT_LOW_PART:
2831 case SIGN_EXTEND:
2832 case ZERO_EXTEND:
2833 other = XEXP (other, 0);
2834 break;
2835 default:
2836 goto done;
2837 }
2838 done:
2839 if ((GET_CODE (other) == MEM
2840 && ! CONSTANT_P (x)
2841 && GET_CODE (x) != REG
2842 && GET_CODE (x) != SUBREG)
2843 || (GET_CODE (other) == REG
2844 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2845 || reg_mentioned_p (other, x))))
2846 {
2847 rtx temp = gen_reg_rtx (GET_MODE (x));
2848 emit_move_insn (temp, x);
2849 return temp;
2850 }
2851 return x;
2852}
2853\f
2854/* Emission of insns (adding them to the doubly-linked list). */
2855
2856/* Return the first insn of the current sequence or current function. */
2857
2858rtx
502b8322 2859get_insns (void)
23b2ce53
RS
2860{
2861 return first_insn;
2862}
2863
3dec4024
JH
2864/* Specify a new insn as the first in the chain. */
2865
2866void
502b8322 2867set_first_insn (rtx insn)
3dec4024
JH
2868{
2869 if (PREV_INSN (insn) != 0)
2870 abort ();
2871 first_insn = insn;
2872}
2873
23b2ce53
RS
2874/* Return the last insn emitted in current sequence or current function. */
2875
2876rtx
502b8322 2877get_last_insn (void)
23b2ce53
RS
2878{
2879 return last_insn;
2880}
2881
2882/* Specify a new insn as the last in the chain. */
2883
2884void
502b8322 2885set_last_insn (rtx insn)
23b2ce53
RS
2886{
2887 if (NEXT_INSN (insn) != 0)
2888 abort ();
2889 last_insn = insn;
2890}
2891
2892/* Return the last insn emitted, even if it is in a sequence now pushed. */
2893
2894rtx
502b8322 2895get_last_insn_anywhere (void)
23b2ce53
RS
2896{
2897 struct sequence_stack *stack;
2898 if (last_insn)
2899 return last_insn;
49ad7cfa 2900 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2901 if (stack->last != 0)
2902 return stack->last;
2903 return 0;
2904}
2905
2a496e8b
JDA
2906/* Return the first nonnote insn emitted in current sequence or current
2907 function. This routine looks inside SEQUENCEs. */
2908
2909rtx
502b8322 2910get_first_nonnote_insn (void)
2a496e8b
JDA
2911{
2912 rtx insn = first_insn;
2913
2914 while (insn)
2915 {
2916 insn = next_insn (insn);
2917 if (insn == 0 || GET_CODE (insn) != NOTE)
2918 break;
2919 }
2920
2921 return insn;
2922}
2923
2924/* Return the last nonnote insn emitted in current sequence or current
2925 function. This routine looks inside SEQUENCEs. */
2926
2927rtx
502b8322 2928get_last_nonnote_insn (void)
2a496e8b
JDA
2929{
2930 rtx insn = last_insn;
2931
2932 while (insn)
2933 {
2934 insn = previous_insn (insn);
2935 if (insn == 0 || GET_CODE (insn) != NOTE)
2936 break;
2937 }
2938
2939 return insn;
2940}
2941
23b2ce53
RS
2942/* Return a number larger than any instruction's uid in this function. */
2943
2944int
502b8322 2945get_max_uid (void)
23b2ce53
RS
2946{
2947 return cur_insn_uid;
2948}
aeeeda03 2949
673b5311
MM
2950/* Renumber instructions so that no instruction UIDs are wasted. */
2951
aeeeda03 2952void
502b8322 2953renumber_insns (FILE *stream)
aeeeda03
MM
2954{
2955 rtx insn;
aeeeda03 2956
673b5311
MM
2957 /* If we're not supposed to renumber instructions, don't. */
2958 if (!flag_renumber_insns)
2959 return;
2960
aeeeda03
MM
2961 /* If there aren't that many instructions, then it's not really
2962 worth renumbering them. */
673b5311 2963 if (flag_renumber_insns == 1 && get_max_uid () < 25000)
aeeeda03
MM
2964 return;
2965
2966 cur_insn_uid = 1;
2967
2968 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
673b5311
MM
2969 {
2970 if (stream)
750c9258 2971 fprintf (stream, "Renumbering insn %d to %d\n",
673b5311
MM
2972 INSN_UID (insn), cur_insn_uid);
2973 INSN_UID (insn) = cur_insn_uid++;
2974 }
aeeeda03 2975}
23b2ce53
RS
2976\f
2977/* Return the next insn. If it is a SEQUENCE, return the first insn
2978 of the sequence. */
2979
2980rtx
502b8322 2981next_insn (rtx insn)
23b2ce53
RS
2982{
2983 if (insn)
2984 {
2985 insn = NEXT_INSN (insn);
2986 if (insn && GET_CODE (insn) == INSN
2987 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2988 insn = XVECEXP (PATTERN (insn), 0, 0);
2989 }
2990
2991 return insn;
2992}
2993
2994/* Return the previous insn. If it is a SEQUENCE, return the last insn
2995 of the sequence. */
2996
2997rtx
502b8322 2998previous_insn (rtx insn)
23b2ce53
RS
2999{
3000 if (insn)
3001 {
3002 insn = PREV_INSN (insn);
3003 if (insn && GET_CODE (insn) == INSN
3004 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3005 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3006 }
3007
3008 return insn;
3009}
3010
3011/* Return the next insn after INSN that is not a NOTE. This routine does not
3012 look inside SEQUENCEs. */
3013
3014rtx
502b8322 3015next_nonnote_insn (rtx insn)
23b2ce53
RS
3016{
3017 while (insn)
3018 {
3019 insn = NEXT_INSN (insn);
3020 if (insn == 0 || GET_CODE (insn) != NOTE)
3021 break;
3022 }
3023
3024 return insn;
3025}
3026
3027/* Return the previous insn before INSN that is not a NOTE. This routine does
3028 not look inside SEQUENCEs. */
3029
3030rtx
502b8322 3031prev_nonnote_insn (rtx insn)
23b2ce53
RS
3032{
3033 while (insn)
3034 {
3035 insn = PREV_INSN (insn);
3036 if (insn == 0 || GET_CODE (insn) != NOTE)
3037 break;
3038 }
3039
3040 return insn;
3041}
3042
3043/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3044 or 0, if there is none. This routine does not look inside
0f41302f 3045 SEQUENCEs. */
23b2ce53
RS
3046
3047rtx
502b8322 3048next_real_insn (rtx insn)
23b2ce53
RS
3049{
3050 while (insn)
3051 {
3052 insn = NEXT_INSN (insn);
3053 if (insn == 0 || GET_CODE (insn) == INSN
3054 || GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN)
3055 break;
3056 }
3057
3058 return insn;
3059}
3060
3061/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3062 or 0, if there is none. This routine does not look inside
3063 SEQUENCEs. */
3064
3065rtx
502b8322 3066prev_real_insn (rtx insn)
23b2ce53
RS
3067{
3068 while (insn)
3069 {
3070 insn = PREV_INSN (insn);
3071 if (insn == 0 || GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN
3072 || GET_CODE (insn) == JUMP_INSN)
3073 break;
3074 }
3075
3076 return insn;
3077}
3078
ee960939
OH
3079/* Return the last CALL_INSN in the current list, or 0 if there is none.
3080 This routine does not look inside SEQUENCEs. */
3081
3082rtx
502b8322 3083last_call_insn (void)
ee960939
OH
3084{
3085 rtx insn;
3086
3087 for (insn = get_last_insn ();
3088 insn && GET_CODE (insn) != CALL_INSN;
3089 insn = PREV_INSN (insn))
3090 ;
3091
3092 return insn;
3093}
3094
23b2ce53
RS
3095/* Find the next insn after INSN that really does something. This routine
3096 does not look inside SEQUENCEs. Until reload has completed, this is the
3097 same as next_real_insn. */
3098
69732dcb 3099int
502b8322 3100active_insn_p (rtx insn)
69732dcb 3101{
23b8ba81
RH
3102 return (GET_CODE (insn) == CALL_INSN || GET_CODE (insn) == JUMP_INSN
3103 || (GET_CODE (insn) == INSN
3104 && (! reload_completed
3105 || (GET_CODE (PATTERN (insn)) != USE
3106 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3107}
3108
23b2ce53 3109rtx
502b8322 3110next_active_insn (rtx insn)
23b2ce53
RS
3111{
3112 while (insn)
3113 {
3114 insn = NEXT_INSN (insn);
69732dcb 3115 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
3116 break;
3117 }
3118
3119 return insn;
3120}
3121
3122/* Find the last insn before INSN that really does something. This routine
3123 does not look inside SEQUENCEs. Until reload has completed, this is the
3124 same as prev_real_insn. */
3125
3126rtx
502b8322 3127prev_active_insn (rtx insn)
23b2ce53
RS
3128{
3129 while (insn)
3130 {
3131 insn = PREV_INSN (insn);
69732dcb 3132 if (insn == 0 || active_insn_p (insn))
23b2ce53
RS
3133 break;
3134 }
3135
3136 return insn;
3137}
3138
3139/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3140
3141rtx
502b8322 3142next_label (rtx insn)
23b2ce53
RS
3143{
3144 while (insn)
3145 {
3146 insn = NEXT_INSN (insn);
3147 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3148 break;
3149 }
3150
3151 return insn;
3152}
3153
3154/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3155
3156rtx
502b8322 3157prev_label (rtx insn)
23b2ce53
RS
3158{
3159 while (insn)
3160 {
3161 insn = PREV_INSN (insn);
3162 if (insn == 0 || GET_CODE (insn) == CODE_LABEL)
3163 break;
3164 }
3165
3166 return insn;
3167}
3168\f
3169#ifdef HAVE_cc0
c572e5ba
JVA
3170/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3171 and REG_CC_USER notes so we can find it. */
3172
3173void
502b8322 3174link_cc0_insns (rtx insn)
c572e5ba
JVA
3175{
3176 rtx user = next_nonnote_insn (insn);
3177
3178 if (GET_CODE (user) == INSN && GET_CODE (PATTERN (user)) == SEQUENCE)
3179 user = XVECEXP (PATTERN (user), 0, 0);
3180
c5c76735
JL
3181 REG_NOTES (user) = gen_rtx_INSN_LIST (REG_CC_SETTER, insn,
3182 REG_NOTES (user));
3b80f6ca 3183 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_CC_USER, user, REG_NOTES (insn));
c572e5ba
JVA
3184}
3185
23b2ce53
RS
3186/* Return the next insn that uses CC0 after INSN, which is assumed to
3187 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3188 applied to the result of this function should yield INSN).
3189
3190 Normally, this is simply the next insn. However, if a REG_CC_USER note
3191 is present, it contains the insn that uses CC0.
3192
3193 Return 0 if we can't find the insn. */
3194
3195rtx
502b8322 3196next_cc0_user (rtx insn)
23b2ce53 3197{
906c4e36 3198 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3199
3200 if (note)
3201 return XEXP (note, 0);
3202
3203 insn = next_nonnote_insn (insn);
3204 if (insn && GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
3205 insn = XVECEXP (PATTERN (insn), 0, 0);
3206
2c3c49de 3207 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3208 return insn;
3209
3210 return 0;
3211}
3212
3213/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3214 note, it is the previous insn. */
3215
3216rtx
502b8322 3217prev_cc0_setter (rtx insn)
23b2ce53 3218{
906c4e36 3219 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3220
3221 if (note)
3222 return XEXP (note, 0);
3223
3224 insn = prev_nonnote_insn (insn);
3225 if (! sets_cc0_p (PATTERN (insn)))
3226 abort ();
3227
3228 return insn;
3229}
3230#endif
e5bef2e4
HB
3231
3232/* Increment the label uses for all labels present in rtx. */
3233
3234static void
502b8322 3235mark_label_nuses (rtx x)
e5bef2e4 3236{
b3694847
SS
3237 enum rtx_code code;
3238 int i, j;
3239 const char *fmt;
e5bef2e4
HB
3240
3241 code = GET_CODE (x);
3242 if (code == LABEL_REF)
3243 LABEL_NUSES (XEXP (x, 0))++;
3244
3245 fmt = GET_RTX_FORMAT (code);
3246 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3247 {
3248 if (fmt[i] == 'e')
0fb7aeda 3249 mark_label_nuses (XEXP (x, i));
e5bef2e4 3250 else if (fmt[i] == 'E')
0fb7aeda 3251 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3252 mark_label_nuses (XVECEXP (x, i, j));
3253 }
3254}
3255
23b2ce53
RS
3256\f
3257/* Try splitting insns that can be split for better scheduling.
3258 PAT is the pattern which might split.
3259 TRIAL is the insn providing PAT.
cc2902df 3260 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3261
3262 If this routine succeeds in splitting, it returns the first or last
11147ebe 3263 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3264 returns TRIAL. If the insn to be returned can be split, it will be. */
3265
3266rtx
502b8322 3267try_split (rtx pat, rtx trial, int last)
23b2ce53
RS
3268{
3269 rtx before = PREV_INSN (trial);
3270 rtx after = NEXT_INSN (trial);
23b2ce53
RS
3271 int has_barrier = 0;
3272 rtx tem;
6b24c259
JH
3273 rtx note, seq;
3274 int probability;
599aedd9
RH
3275 rtx insn_last, insn;
3276 int njumps = 0;
6b24c259
JH
3277
3278 if (any_condjump_p (trial)
3279 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3280 split_branch_probability = INTVAL (XEXP (note, 0));
3281 probability = split_branch_probability;
3282
3283 seq = split_insns (pat, trial);
3284
3285 split_branch_probability = -1;
23b2ce53
RS
3286
3287 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3288 We may need to handle this specially. */
3289 if (after && GET_CODE (after) == BARRIER)
3290 {
3291 has_barrier = 1;
3292 after = NEXT_INSN (after);
3293 }
3294
599aedd9
RH
3295 if (!seq)
3296 return trial;
3297
3298 /* Avoid infinite loop if any insn of the result matches
3299 the original pattern. */
3300 insn_last = seq;
3301 while (1)
23b2ce53 3302 {
599aedd9
RH
3303 if (INSN_P (insn_last)
3304 && rtx_equal_p (PATTERN (insn_last), pat))
3305 return trial;
3306 if (!NEXT_INSN (insn_last))
3307 break;
3308 insn_last = NEXT_INSN (insn_last);
3309 }
750c9258 3310
599aedd9
RH
3311 /* Mark labels. */
3312 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3313 {
3314 if (GET_CODE (insn) == JUMP_INSN)
3315 {
3316 mark_jump_label (PATTERN (insn), insn, 0);
3317 njumps++;
3318 if (probability != -1
3319 && any_condjump_p (insn)
3320 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3321 {
599aedd9
RH
3322 /* We can preserve the REG_BR_PROB notes only if exactly
3323 one jump is created, otherwise the machine description
3324 is responsible for this step using
3325 split_branch_probability variable. */
3326 if (njumps != 1)
3327 abort ();
3328 REG_NOTES (insn)
3329 = gen_rtx_EXPR_LIST (REG_BR_PROB,
3330 GEN_INT (probability),
3331 REG_NOTES (insn));
2f937369 3332 }
599aedd9
RH
3333 }
3334 }
3335
3336 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3337 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
3338 if (GET_CODE (trial) == CALL_INSN)
3339 {
3340 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3341 if (GET_CODE (insn) == CALL_INSN)
3342 {
f6a1f3f6
RH
3343 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3344 while (*p)
3345 p = &XEXP (*p, 1);
3346 *p = CALL_INSN_FUNCTION_USAGE (trial);
599aedd9
RH
3347 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3348 }
3349 }
4b5e8abe 3350
599aedd9
RH
3351 /* Copy notes, particularly those related to the CFG. */
3352 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3353 {
3354 switch (REG_NOTE_KIND (note))
3355 {
3356 case REG_EH_REGION:
2f937369
DM
3357 insn = insn_last;
3358 while (insn != NULL_RTX)
3359 {
599aedd9
RH
3360 if (GET_CODE (insn) == CALL_INSN
3361 || (flag_non_call_exceptions
3362 && may_trap_p (PATTERN (insn))))
3363 REG_NOTES (insn)
3364 = gen_rtx_EXPR_LIST (REG_EH_REGION,
3365 XEXP (note, 0),
3366 REG_NOTES (insn));
2f937369
DM
3367 insn = PREV_INSN (insn);
3368 }
599aedd9 3369 break;
216183ce 3370
599aedd9
RH
3371 case REG_NORETURN:
3372 case REG_SETJMP:
3373 case REG_ALWAYS_RETURN:
3374 insn = insn_last;
3375 while (insn != NULL_RTX)
216183ce 3376 {
599aedd9
RH
3377 if (GET_CODE (insn) == CALL_INSN)
3378 REG_NOTES (insn)
3379 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3380 XEXP (note, 0),
3381 REG_NOTES (insn));
3382 insn = PREV_INSN (insn);
216183ce 3383 }
599aedd9 3384 break;
d6e95df8 3385
599aedd9
RH
3386 case REG_NON_LOCAL_GOTO:
3387 insn = insn_last;
3388 while (insn != NULL_RTX)
2f937369 3389 {
599aedd9
RH
3390 if (GET_CODE (insn) == JUMP_INSN)
3391 REG_NOTES (insn)
3392 = gen_rtx_EXPR_LIST (REG_NOTE_KIND (note),
3393 XEXP (note, 0),
3394 REG_NOTES (insn));
3395 insn = PREV_INSN (insn);
2f937369 3396 }
599aedd9 3397 break;
e5bef2e4 3398
599aedd9
RH
3399 default:
3400 break;
23b2ce53 3401 }
599aedd9
RH
3402 }
3403
3404 /* If there are LABELS inside the split insns increment the
3405 usage count so we don't delete the label. */
3406 if (GET_CODE (trial) == INSN)
3407 {
3408 insn = insn_last;
3409 while (insn != NULL_RTX)
23b2ce53 3410 {
599aedd9
RH
3411 if (GET_CODE (insn) == INSN)
3412 mark_label_nuses (PATTERN (insn));
23b2ce53 3413
599aedd9
RH
3414 insn = PREV_INSN (insn);
3415 }
23b2ce53
RS
3416 }
3417
0435312e 3418 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
599aedd9
RH
3419
3420 delete_insn (trial);
3421 if (has_barrier)
3422 emit_barrier_after (tem);
3423
3424 /* Recursively call try_split for each new insn created; by the
3425 time control returns here that insn will be fully split, so
3426 set LAST and continue from the insn after the one returned.
3427 We can't use next_active_insn here since AFTER may be a note.
3428 Ignore deleted insns, which can be occur if not optimizing. */
3429 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3430 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3431 tem = try_split (PATTERN (tem), tem, 1);
3432
3433 /* Return either the first or the last insn, depending on which was
3434 requested. */
3435 return last
3436 ? (after ? PREV_INSN (after) : last_insn)
3437 : NEXT_INSN (before);
23b2ce53
RS
3438}
3439\f
3440/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3441 Store PATTERN in the pattern slots. */
23b2ce53
RS
3442
3443rtx
502b8322 3444make_insn_raw (rtx pattern)
23b2ce53 3445{
b3694847 3446 rtx insn;
23b2ce53 3447
1f8f4a0b 3448 insn = rtx_alloc (INSN);
23b2ce53 3449
43127294 3450 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3451 PATTERN (insn) = pattern;
3452 INSN_CODE (insn) = -1;
1632afca
RS
3453 LOG_LINKS (insn) = NULL;
3454 REG_NOTES (insn) = NULL;
0435312e 3455 INSN_LOCATOR (insn) = 0;
ba4f7968 3456 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3457
47984720
NC
3458#ifdef ENABLE_RTL_CHECKING
3459 if (insn
2c3c49de 3460 && INSN_P (insn)
47984720
NC
3461 && (returnjump_p (insn)
3462 || (GET_CODE (insn) == SET
3463 && SET_DEST (insn) == pc_rtx)))
3464 {
3465 warning ("ICE: emit_insn used where emit_jump_insn needed:\n");
3466 debug_rtx (insn);
3467 }
3468#endif
750c9258 3469
23b2ce53
RS
3470 return insn;
3471}
3472
2f937369 3473/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53
RS
3474
3475static rtx
502b8322 3476make_jump_insn_raw (rtx pattern)
23b2ce53 3477{
b3694847 3478 rtx insn;
23b2ce53 3479
4b1f5e8c 3480 insn = rtx_alloc (JUMP_INSN);
1632afca 3481 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3482
3483 PATTERN (insn) = pattern;
3484 INSN_CODE (insn) = -1;
1632afca
RS
3485 LOG_LINKS (insn) = NULL;
3486 REG_NOTES (insn) = NULL;
3487 JUMP_LABEL (insn) = NULL;
0435312e 3488 INSN_LOCATOR (insn) = 0;
ba4f7968 3489 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3490
3491 return insn;
3492}
aff507f4 3493
2f937369 3494/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3495
3496static rtx
502b8322 3497make_call_insn_raw (rtx pattern)
aff507f4 3498{
b3694847 3499 rtx insn;
aff507f4
RK
3500
3501 insn = rtx_alloc (CALL_INSN);
3502 INSN_UID (insn) = cur_insn_uid++;
3503
3504 PATTERN (insn) = pattern;
3505 INSN_CODE (insn) = -1;
3506 LOG_LINKS (insn) = NULL;
3507 REG_NOTES (insn) = NULL;
3508 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
0435312e 3509 INSN_LOCATOR (insn) = 0;
ba4f7968 3510 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3511
3512 return insn;
3513}
23b2ce53
RS
3514\f
3515/* Add INSN to the end of the doubly-linked list.
3516 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3517
3518void
502b8322 3519add_insn (rtx insn)
23b2ce53
RS
3520{
3521 PREV_INSN (insn) = last_insn;
3522 NEXT_INSN (insn) = 0;
3523
3524 if (NULL != last_insn)
3525 NEXT_INSN (last_insn) = insn;
3526
3527 if (NULL == first_insn)
3528 first_insn = insn;
3529
3530 last_insn = insn;
3531}
3532
a0ae8e8d
RK
3533/* Add INSN into the doubly-linked list after insn AFTER. This and
3534 the next should be the only functions called to insert an insn once
ba213285 3535 delay slots have been filled since only they know how to update a
a0ae8e8d 3536 SEQUENCE. */
23b2ce53
RS
3537
3538void
502b8322 3539add_insn_after (rtx insn, rtx after)
23b2ce53
RS
3540{
3541 rtx next = NEXT_INSN (after);
3c030e88 3542 basic_block bb;
23b2ce53 3543
6782074d 3544 if (optimize && INSN_DELETED_P (after))
ba213285
RK
3545 abort ();
3546
23b2ce53
RS
3547 NEXT_INSN (insn) = next;
3548 PREV_INSN (insn) = after;
3549
3550 if (next)
3551 {
3552 PREV_INSN (next) = insn;
3553 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3554 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3555 }
3556 else if (last_insn == after)
3557 last_insn = insn;
3558 else
3559 {
49ad7cfa 3560 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3561 /* Scan all pending sequences too. */
3562 for (; stack; stack = stack->next)
3563 if (after == stack->last)
fef0509b
RK
3564 {
3565 stack->last = insn;
3566 break;
3567 }
a0ae8e8d
RK
3568
3569 if (stack == 0)
3570 abort ();
23b2ce53
RS
3571 }
3572
ba4f7968
JH
3573 if (GET_CODE (after) != BARRIER
3574 && GET_CODE (insn) != BARRIER
3c030e88
JH
3575 && (bb = BLOCK_FOR_INSN (after)))
3576 {
3577 set_block_for_insn (insn, bb);
38c1593d 3578 if (INSN_P (insn))
68252e27 3579 bb->flags |= BB_DIRTY;
3c030e88 3580 /* Should not happen as first in the BB is always
a1f300c0 3581 either NOTE or LABEL. */
3c030e88
JH
3582 if (bb->end == after
3583 /* Avoid clobbering of structure when creating new BB. */
3584 && GET_CODE (insn) != BARRIER
3585 && (GET_CODE (insn) != NOTE
3586 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3587 bb->end = insn;
3588 }
3589
23b2ce53
RS
3590 NEXT_INSN (after) = insn;
3591 if (GET_CODE (after) == INSN && GET_CODE (PATTERN (after)) == SEQUENCE)
3592 {
3593 rtx sequence = PATTERN (after);
3594 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3595 }
3596}
3597
a0ae8e8d
RK
3598/* Add INSN into the doubly-linked list before insn BEFORE. This and
3599 the previous should be the only functions called to insert an insn once
ba213285 3600 delay slots have been filled since only they know how to update a
a0ae8e8d
RK
3601 SEQUENCE. */
3602
3603void
502b8322 3604add_insn_before (rtx insn, rtx before)
a0ae8e8d
RK
3605{
3606 rtx prev = PREV_INSN (before);
3c030e88 3607 basic_block bb;
a0ae8e8d 3608
6782074d 3609 if (optimize && INSN_DELETED_P (before))
ba213285
RK
3610 abort ();
3611
a0ae8e8d
RK
3612 PREV_INSN (insn) = prev;
3613 NEXT_INSN (insn) = before;
3614
3615 if (prev)
3616 {
3617 NEXT_INSN (prev) = insn;
3618 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3619 {
3620 rtx sequence = PATTERN (prev);
3621 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3622 }
3623 }
3624 else if (first_insn == before)
3625 first_insn = insn;
3626 else
3627 {
49ad7cfa 3628 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3629 /* Scan all pending sequences too. */
3630 for (; stack; stack = stack->next)
3631 if (before == stack->first)
fef0509b
RK
3632 {
3633 stack->first = insn;
3634 break;
3635 }
a0ae8e8d
RK
3636
3637 if (stack == 0)
3638 abort ();
3639 }
3640
ba4f7968
JH
3641 if (GET_CODE (before) != BARRIER
3642 && GET_CODE (insn) != BARRIER
3c030e88
JH
3643 && (bb = BLOCK_FOR_INSN (before)))
3644 {
3645 set_block_for_insn (insn, bb);
38c1593d 3646 if (INSN_P (insn))
68252e27 3647 bb->flags |= BB_DIRTY;
3c030e88 3648 /* Should not happen as first in the BB is always
a1f300c0 3649 either NOTE or LABEl. */
3c030e88
JH
3650 if (bb->head == insn
3651 /* Avoid clobbering of structure when creating new BB. */
3652 && GET_CODE (insn) != BARRIER
3653 && (GET_CODE (insn) != NOTE
3654 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_BASIC_BLOCK))
3655 abort ();
3656 }
3657
a0ae8e8d
RK
3658 PREV_INSN (before) = insn;
3659 if (GET_CODE (before) == INSN && GET_CODE (PATTERN (before)) == SEQUENCE)
3660 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3661}
3662
89e99eea
DB
3663/* Remove an insn from its doubly-linked list. This function knows how
3664 to handle sequences. */
3665void
502b8322 3666remove_insn (rtx insn)
89e99eea
DB
3667{
3668 rtx next = NEXT_INSN (insn);
3669 rtx prev = PREV_INSN (insn);
53c17031
JH
3670 basic_block bb;
3671
89e99eea
DB
3672 if (prev)
3673 {
3674 NEXT_INSN (prev) = next;
3675 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
3676 {
3677 rtx sequence = PATTERN (prev);
3678 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3679 }
3680 }
3681 else if (first_insn == insn)
3682 first_insn = next;
3683 else
3684 {
49ad7cfa 3685 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3686 /* Scan all pending sequences too. */
3687 for (; stack; stack = stack->next)
3688 if (insn == stack->first)
3689 {
3690 stack->first = next;
3691 break;
3692 }
3693
3694 if (stack == 0)
3695 abort ();
3696 }
3697
3698 if (next)
3699 {
3700 PREV_INSN (next) = prev;
3701 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
3702 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3703 }
3704 else if (last_insn == insn)
3705 last_insn = prev;
3706 else
3707 {
49ad7cfa 3708 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3709 /* Scan all pending sequences too. */
3710 for (; stack; stack = stack->next)
3711 if (insn == stack->last)
3712 {
3713 stack->last = prev;
3714 break;
3715 }
3716
3717 if (stack == 0)
3718 abort ();
3719 }
ba4f7968 3720 if (GET_CODE (insn) != BARRIER
53c17031
JH
3721 && (bb = BLOCK_FOR_INSN (insn)))
3722 {
38c1593d 3723 if (INSN_P (insn))
68252e27 3724 bb->flags |= BB_DIRTY;
53c17031
JH
3725 if (bb->head == insn)
3726 {
3bf1e984
RK
3727 /* Never ever delete the basic block note without deleting whole
3728 basic block. */
53c17031
JH
3729 if (GET_CODE (insn) == NOTE)
3730 abort ();
3731 bb->head = next;
3732 }
3733 if (bb->end == insn)
3734 bb->end = prev;
3735 }
89e99eea
DB
3736}
3737
ee960939
OH
3738/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3739
3740void
502b8322 3741add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939
OH
3742{
3743 if (! call_insn || GET_CODE (call_insn) != CALL_INSN)
3744 abort ();
3745
3746 /* Put the register usage information on the CALL. If there is already
3747 some usage information, put ours at the end. */
3748 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3749 {
3750 rtx link;
3751
3752 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3753 link = XEXP (link, 1))
3754 ;
3755
3756 XEXP (link, 1) = call_fusage;
3757 }
3758 else
3759 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3760}
3761
23b2ce53
RS
3762/* Delete all insns made since FROM.
3763 FROM becomes the new last instruction. */
3764
3765void
502b8322 3766delete_insns_since (rtx from)
23b2ce53
RS
3767{
3768 if (from == 0)
3769 first_insn = 0;
3770 else
3771 NEXT_INSN (from) = 0;
3772 last_insn = from;
3773}
3774
5dab5552
MS
3775/* This function is deprecated, please use sequences instead.
3776
3777 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3778 The insns to be moved are those between FROM and TO.
3779 They are moved to a new position after the insn AFTER.
3780 AFTER must not be FROM or TO or any insn in between.
3781
3782 This function does not know about SEQUENCEs and hence should not be
3783 called after delay-slot filling has been done. */
3784
3785void
502b8322 3786reorder_insns_nobb (rtx from, rtx to, rtx after)
23b2ce53
RS
3787{
3788 /* Splice this bunch out of where it is now. */
3789 if (PREV_INSN (from))
3790 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3791 if (NEXT_INSN (to))
3792 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
3793 if (last_insn == to)
3794 last_insn = PREV_INSN (from);
3795 if (first_insn == from)
3796 first_insn = NEXT_INSN (to);
3797
3798 /* Make the new neighbors point to it and it to them. */
3799 if (NEXT_INSN (after))
3800 PREV_INSN (NEXT_INSN (after)) = to;
3801
3802 NEXT_INSN (to) = NEXT_INSN (after);
3803 PREV_INSN (from) = after;
3804 NEXT_INSN (after) = from;
3805 if (after == last_insn)
3806 last_insn = to;
3807}
3808
3c030e88
JH
3809/* Same as function above, but take care to update BB boundaries. */
3810void
502b8322 3811reorder_insns (rtx from, rtx to, rtx after)
3c030e88
JH
3812{
3813 rtx prev = PREV_INSN (from);
3814 basic_block bb, bb2;
3815
3816 reorder_insns_nobb (from, to, after);
3817
ba4f7968 3818 if (GET_CODE (after) != BARRIER
3c030e88
JH
3819 && (bb = BLOCK_FOR_INSN (after)))
3820 {
3821 rtx x;
38c1593d 3822 bb->flags |= BB_DIRTY;
68252e27 3823
ba4f7968 3824 if (GET_CODE (from) != BARRIER
3c030e88
JH
3825 && (bb2 = BLOCK_FOR_INSN (from)))
3826 {
3827 if (bb2->end == to)
3828 bb2->end = prev;
38c1593d 3829 bb2->flags |= BB_DIRTY;
3c030e88
JH
3830 }
3831
3832 if (bb->end == after)
3833 bb->end = to;
3834
3835 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
3836 set_block_for_insn (x, bb);
3837 }
3838}
3839
23b2ce53
RS
3840/* Return the line note insn preceding INSN. */
3841
3842static rtx
502b8322 3843find_line_note (rtx insn)
23b2ce53
RS
3844{
3845 if (no_line_numbers)
3846 return 0;
3847
3848 for (; insn; insn = PREV_INSN (insn))
3849 if (GET_CODE (insn) == NOTE
0fb7aeda 3850 && NOTE_LINE_NUMBER (insn) >= 0)
23b2ce53
RS
3851 break;
3852
3853 return insn;
3854}
3855
3856/* Like reorder_insns, but inserts line notes to preserve the line numbers
3857 of the moved insns when debugging. This may insert a note between AFTER
3858 and FROM, and another one after TO. */
3859
3860void
502b8322 3861reorder_insns_with_line_notes (rtx from, rtx to, rtx after)
23b2ce53
RS
3862{
3863 rtx from_line = find_line_note (from);
3864 rtx after_line = find_line_note (after);
3865
3866 reorder_insns (from, to, after);
3867
3868 if (from_line == after_line)
3869 return;
3870
3871 if (from_line)
5f2fc772 3872 emit_note_copy_after (from_line, after);
23b2ce53 3873 if (after_line)
5f2fc772 3874 emit_note_copy_after (after_line, to);
23b2ce53 3875}
aeeeda03 3876
64b59a80 3877/* Remove unnecessary notes from the instruction stream. */
aeeeda03
MM
3878
3879void
502b8322 3880remove_unnecessary_notes (void)
aeeeda03 3881{
542d73ae
RH
3882 rtx block_stack = NULL_RTX;
3883 rtx eh_stack = NULL_RTX;
aeeeda03
MM
3884 rtx insn;
3885 rtx next;
542d73ae 3886 rtx tmp;
aeeeda03 3887
116eebd6
MM
3888 /* We must not remove the first instruction in the function because
3889 the compiler depends on the first instruction being a note. */
aeeeda03
MM
3890 for (insn = NEXT_INSN (get_insns ()); insn; insn = next)
3891 {
3892 /* Remember what's next. */
3893 next = NEXT_INSN (insn);
3894
3895 /* We're only interested in notes. */
3896 if (GET_CODE (insn) != NOTE)
3897 continue;
3898
542d73ae 3899 switch (NOTE_LINE_NUMBER (insn))
18c038b9 3900 {
542d73ae 3901 case NOTE_INSN_DELETED:
e803a64b 3902 case NOTE_INSN_LOOP_END_TOP_COND:
542d73ae
RH
3903 remove_insn (insn);
3904 break;
3905
3906 case NOTE_INSN_EH_REGION_BEG:
3907 eh_stack = alloc_INSN_LIST (insn, eh_stack);
3908 break;
3909
3910 case NOTE_INSN_EH_REGION_END:
3911 /* Too many end notes. */
3912 if (eh_stack == NULL_RTX)
3913 abort ();
3914 /* Mismatched nesting. */
3915 if (NOTE_EH_HANDLER (XEXP (eh_stack, 0)) != NOTE_EH_HANDLER (insn))
3916 abort ();
3917 tmp = eh_stack;
3918 eh_stack = XEXP (eh_stack, 1);
3919 free_INSN_LIST_node (tmp);
3920 break;
3921
3922 case NOTE_INSN_BLOCK_BEG:
3923 /* By now, all notes indicating lexical blocks should have
3924 NOTE_BLOCK filled in. */
3925 if (NOTE_BLOCK (insn) == NULL_TREE)
3926 abort ();
3927 block_stack = alloc_INSN_LIST (insn, block_stack);
3928 break;
3929
3930 case NOTE_INSN_BLOCK_END:
3931 /* Too many end notes. */
3932 if (block_stack == NULL_RTX)
3933 abort ();
3934 /* Mismatched nesting. */
3935 if (NOTE_BLOCK (XEXP (block_stack, 0)) != NOTE_BLOCK (insn))
3936 abort ();
3937 tmp = block_stack;
3938 block_stack = XEXP (block_stack, 1);
3939 free_INSN_LIST_node (tmp);
3940
18c038b9
MM
3941 /* Scan back to see if there are any non-note instructions
3942 between INSN and the beginning of this block. If not,
3943 then there is no PC range in the generated code that will
3944 actually be in this block, so there's no point in
3945 remembering the existence of the block. */
68252e27 3946 for (tmp = PREV_INSN (insn); tmp; tmp = PREV_INSN (tmp))
18c038b9
MM
3947 {
3948 /* This block contains a real instruction. Note that we
3949 don't include labels; if the only thing in the block
3950 is a label, then there are still no PC values that
3951 lie within the block. */
542d73ae 3952 if (INSN_P (tmp))
18c038b9
MM
3953 break;
3954
3955 /* We're only interested in NOTEs. */
542d73ae 3956 if (GET_CODE (tmp) != NOTE)
18c038b9
MM
3957 continue;
3958
542d73ae 3959 if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_BEG)
18c038b9 3960 {
e1772ac0
NB
3961 /* We just verified that this BLOCK matches us with
3962 the block_stack check above. Never delete the
3963 BLOCK for the outermost scope of the function; we
3964 can refer to names from that scope even if the
3965 block notes are messed up. */
3966 if (! is_body_block (NOTE_BLOCK (insn))
3967 && (*debug_hooks->ignore_block) (NOTE_BLOCK (insn)))
deb5e280 3968 {
542d73ae 3969 remove_insn (tmp);
deb5e280
JM
3970 remove_insn (insn);
3971 }
18c038b9
MM
3972 break;
3973 }
542d73ae 3974 else if (NOTE_LINE_NUMBER (tmp) == NOTE_INSN_BLOCK_END)
18c038b9
MM
3975 /* There's a nested block. We need to leave the
3976 current block in place since otherwise the debugger
3977 wouldn't be able to show symbols from our block in
3978 the nested block. */
3979 break;
3980 }
3981 }
aeeeda03 3982 }
542d73ae
RH
3983
3984 /* Too many begin notes. */
3985 if (block_stack || eh_stack)
3986 abort ();
aeeeda03
MM
3987}
3988
23b2ce53 3989\f
2f937369
DM
3990/* Emit insn(s) of given code and pattern
3991 at a specified place within the doubly-linked list.
23b2ce53 3992
2f937369
DM
3993 All of the emit_foo global entry points accept an object
3994 X which is either an insn list or a PATTERN of a single
3995 instruction.
23b2ce53 3996
2f937369
DM
3997 There are thus a few canonical ways to generate code and
3998 emit it at a specific place in the instruction stream. For
3999 example, consider the instruction named SPOT and the fact that
4000 we would like to emit some instructions before SPOT. We might
4001 do it like this:
23b2ce53 4002
2f937369
DM
4003 start_sequence ();
4004 ... emit the new instructions ...
4005 insns_head = get_insns ();
4006 end_sequence ();
23b2ce53 4007
2f937369 4008 emit_insn_before (insns_head, SPOT);
23b2ce53 4009
2f937369
DM
4010 It used to be common to generate SEQUENCE rtl instead, but that
4011 is a relic of the past which no longer occurs. The reason is that
4012 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4013 generated would almost certainly die right after it was created. */
23b2ce53 4014
2f937369 4015/* Make X be output before the instruction BEFORE. */
23b2ce53
RS
4016
4017rtx
502b8322 4018emit_insn_before (rtx x, rtx before)
23b2ce53 4019{
2f937369 4020 rtx last = before;
b3694847 4021 rtx insn;
23b2ce53 4022
2f937369
DM
4023#ifdef ENABLE_RTL_CHECKING
4024 if (before == NULL_RTX)
4025 abort ();
4026#endif
4027
4028 if (x == NULL_RTX)
4029 return last;
4030
4031 switch (GET_CODE (x))
23b2ce53 4032 {
2f937369
DM
4033 case INSN:
4034 case JUMP_INSN:
4035 case CALL_INSN:
4036 case CODE_LABEL:
4037 case BARRIER:
4038 case NOTE:
4039 insn = x;
4040 while (insn)
4041 {
4042 rtx next = NEXT_INSN (insn);
4043 add_insn_before (insn, before);
4044 last = insn;
4045 insn = next;
4046 }
4047 break;
4048
4049#ifdef ENABLE_RTL_CHECKING
4050 case SEQUENCE:
4051 abort ();
4052 break;
4053#endif
4054
4055 default:
4056 last = make_insn_raw (x);
4057 add_insn_before (last, before);
4058 break;
23b2ce53
RS
4059 }
4060
2f937369 4061 return last;
23b2ce53
RS
4062}
4063
2f937369 4064/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4065 and output it before the instruction BEFORE. */
4066
4067rtx
502b8322 4068emit_jump_insn_before (rtx x, rtx before)
23b2ce53 4069{
d950dee3 4070 rtx insn, last = NULL_RTX;
aff507f4 4071
2f937369
DM
4072#ifdef ENABLE_RTL_CHECKING
4073 if (before == NULL_RTX)
4074 abort ();
4075#endif
4076
4077 switch (GET_CODE (x))
aff507f4 4078 {
2f937369
DM
4079 case INSN:
4080 case JUMP_INSN:
4081 case CALL_INSN:
4082 case CODE_LABEL:
4083 case BARRIER:
4084 case NOTE:
4085 insn = x;
4086 while (insn)
4087 {
4088 rtx next = NEXT_INSN (insn);
4089 add_insn_before (insn, before);
4090 last = insn;
4091 insn = next;
4092 }
4093 break;
4094
4095#ifdef ENABLE_RTL_CHECKING
4096 case SEQUENCE:
4097 abort ();
4098 break;
4099#endif
4100
4101 default:
4102 last = make_jump_insn_raw (x);
4103 add_insn_before (last, before);
4104 break;
aff507f4
RK
4105 }
4106
2f937369 4107 return last;
23b2ce53
RS
4108}
4109
2f937369 4110/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4111 and output it before the instruction BEFORE. */
4112
4113rtx
502b8322 4114emit_call_insn_before (rtx x, rtx before)
969d70ca 4115{
d950dee3 4116 rtx last = NULL_RTX, insn;
969d70ca 4117
2f937369
DM
4118#ifdef ENABLE_RTL_CHECKING
4119 if (before == NULL_RTX)
4120 abort ();
4121#endif
4122
4123 switch (GET_CODE (x))
969d70ca 4124 {
2f937369
DM
4125 case INSN:
4126 case JUMP_INSN:
4127 case CALL_INSN:
4128 case CODE_LABEL:
4129 case BARRIER:
4130 case NOTE:
4131 insn = x;
4132 while (insn)
4133 {
4134 rtx next = NEXT_INSN (insn);
4135 add_insn_before (insn, before);
4136 last = insn;
4137 insn = next;
4138 }
4139 break;
4140
4141#ifdef ENABLE_RTL_CHECKING
4142 case SEQUENCE:
4143 abort ();
4144 break;
4145#endif
4146
4147 default:
4148 last = make_call_insn_raw (x);
4149 add_insn_before (last, before);
4150 break;
969d70ca
JH
4151 }
4152
2f937369 4153 return last;
969d70ca
JH
4154}
4155
23b2ce53 4156/* Make an insn of code BARRIER
e881bb1b 4157 and output it before the insn BEFORE. */
23b2ce53
RS
4158
4159rtx
502b8322 4160emit_barrier_before (rtx before)
23b2ce53 4161{
b3694847 4162 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4163
4164 INSN_UID (insn) = cur_insn_uid++;
4165
a0ae8e8d 4166 add_insn_before (insn, before);
23b2ce53
RS
4167 return insn;
4168}
4169
e881bb1b
RH
4170/* Emit the label LABEL before the insn BEFORE. */
4171
4172rtx
502b8322 4173emit_label_before (rtx label, rtx before)
e881bb1b
RH
4174{
4175 /* This can be called twice for the same label as a result of the
4176 confusion that follows a syntax error! So make it harmless. */
4177 if (INSN_UID (label) == 0)
4178 {
4179 INSN_UID (label) = cur_insn_uid++;
4180 add_insn_before (label, before);
4181 }
4182
4183 return label;
4184}
4185
23b2ce53
RS
4186/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4187
4188rtx
502b8322 4189emit_note_before (int subtype, rtx before)
23b2ce53 4190{
b3694847 4191 rtx note = rtx_alloc (NOTE);
23b2ce53
RS
4192 INSN_UID (note) = cur_insn_uid++;
4193 NOTE_SOURCE_FILE (note) = 0;
4194 NOTE_LINE_NUMBER (note) = subtype;
ba4f7968 4195 BLOCK_FOR_INSN (note) = NULL;
23b2ce53 4196
a0ae8e8d 4197 add_insn_before (note, before);
23b2ce53
RS
4198 return note;
4199}
4200\f
2f937369
DM
4201/* Helper for emit_insn_after, handles lists of instructions
4202 efficiently. */
23b2ce53 4203
502b8322 4204static rtx emit_insn_after_1 (rtx, rtx);
2f937369
DM
4205
4206static rtx
502b8322 4207emit_insn_after_1 (rtx first, rtx after)
23b2ce53 4208{
2f937369
DM
4209 rtx last;
4210 rtx after_after;
4211 basic_block bb;
23b2ce53 4212
2f937369
DM
4213 if (GET_CODE (after) != BARRIER
4214 && (bb = BLOCK_FOR_INSN (after)))
23b2ce53 4215 {
2f937369
DM
4216 bb->flags |= BB_DIRTY;
4217 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4218 if (GET_CODE (last) != BARRIER)
4219 set_block_for_insn (last, bb);
4220 if (GET_CODE (last) != BARRIER)
4221 set_block_for_insn (last, bb);
4222 if (bb->end == after)
4223 bb->end = last;
23b2ce53
RS
4224 }
4225 else
2f937369
DM
4226 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4227 continue;
4228
4229 after_after = NEXT_INSN (after);
4230
4231 NEXT_INSN (after) = first;
4232 PREV_INSN (first) = after;
4233 NEXT_INSN (last) = after_after;
4234 if (after_after)
4235 PREV_INSN (after_after) = last;
4236
4237 if (after == last_insn)
4238 last_insn = last;
4239 return last;
4240}
4241
4242/* Make X be output after the insn AFTER. */
4243
4244rtx
502b8322 4245emit_insn_after (rtx x, rtx after)
2f937369
DM
4246{
4247 rtx last = after;
4248
4249#ifdef ENABLE_RTL_CHECKING
4250 if (after == NULL_RTX)
4251 abort ();
4252#endif
4253
4254 if (x == NULL_RTX)
4255 return last;
4256
4257 switch (GET_CODE (x))
23b2ce53 4258 {
2f937369
DM
4259 case INSN:
4260 case JUMP_INSN:
4261 case CALL_INSN:
4262 case CODE_LABEL:
4263 case BARRIER:
4264 case NOTE:
4265 last = emit_insn_after_1 (x, after);
4266 break;
4267
4268#ifdef ENABLE_RTL_CHECKING
4269 case SEQUENCE:
4270 abort ();
4271 break;
4272#endif
4273
4274 default:
4275 last = make_insn_raw (x);
4276 add_insn_after (last, after);
4277 break;
23b2ce53
RS
4278 }
4279
2f937369 4280 return last;
23b2ce53
RS
4281}
4282
255680cf
RK
4283/* Similar to emit_insn_after, except that line notes are to be inserted so
4284 as to act as if this insn were at FROM. */
4285
4286void
502b8322 4287emit_insn_after_with_line_notes (rtx x, rtx after, rtx from)
255680cf
RK
4288{
4289 rtx from_line = find_line_note (from);
4290 rtx after_line = find_line_note (after);
2f937369 4291 rtx insn = emit_insn_after (x, after);
255680cf
RK
4292
4293 if (from_line)
5f2fc772 4294 emit_note_copy_after (from_line, after);
255680cf
RK
4295
4296 if (after_line)
5f2fc772 4297 emit_note_copy_after (after_line, insn);
255680cf
RK
4298}
4299
2f937369 4300/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4301 and output it after the insn AFTER. */
4302
4303rtx
502b8322 4304emit_jump_insn_after (rtx x, rtx after)
23b2ce53 4305{
2f937369 4306 rtx last;
23b2ce53 4307
2f937369
DM
4308#ifdef ENABLE_RTL_CHECKING
4309 if (after == NULL_RTX)
4310 abort ();
4311#endif
4312
4313 switch (GET_CODE (x))
23b2ce53 4314 {
2f937369
DM
4315 case INSN:
4316 case JUMP_INSN:
4317 case CALL_INSN:
4318 case CODE_LABEL:
4319 case BARRIER:
4320 case NOTE:
4321 last = emit_insn_after_1 (x, after);
4322 break;
4323
4324#ifdef ENABLE_RTL_CHECKING
4325 case SEQUENCE:
4326 abort ();
4327 break;
4328#endif
4329
4330 default:
4331 last = make_jump_insn_raw (x);
4332 add_insn_after (last, after);
4333 break;
23b2ce53
RS
4334 }
4335
2f937369
DM
4336 return last;
4337}
4338
4339/* Make an instruction with body X and code CALL_INSN
4340 and output it after the instruction AFTER. */
4341
4342rtx
502b8322 4343emit_call_insn_after (rtx x, rtx after)
2f937369
DM
4344{
4345 rtx last;
4346
4347#ifdef ENABLE_RTL_CHECKING
4348 if (after == NULL_RTX)
4349 abort ();
4350#endif
4351
4352 switch (GET_CODE (x))
4353 {
4354 case INSN:
4355 case JUMP_INSN:
4356 case CALL_INSN:
4357 case CODE_LABEL:
4358 case BARRIER:
4359 case NOTE:
4360 last = emit_insn_after_1 (x, after);
4361 break;
4362
4363#ifdef ENABLE_RTL_CHECKING
4364 case SEQUENCE:
4365 abort ();
4366 break;
4367#endif
4368
4369 default:
4370 last = make_call_insn_raw (x);
4371 add_insn_after (last, after);
4372 break;
4373 }
4374
4375 return last;
23b2ce53
RS
4376}
4377
4378/* Make an insn of code BARRIER
4379 and output it after the insn AFTER. */
4380
4381rtx
502b8322 4382emit_barrier_after (rtx after)
23b2ce53 4383{
b3694847 4384 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4385
4386 INSN_UID (insn) = cur_insn_uid++;
4387
4388 add_insn_after (insn, after);
4389 return insn;
4390}
4391
4392/* Emit the label LABEL after the insn AFTER. */
4393
4394rtx
502b8322 4395emit_label_after (rtx label, rtx after)
23b2ce53
RS
4396{
4397 /* This can be called twice for the same label
4398 as a result of the confusion that follows a syntax error!
4399 So make it harmless. */
4400 if (INSN_UID (label) == 0)
4401 {
4402 INSN_UID (label) = cur_insn_uid++;
4403 add_insn_after (label, after);
4404 }
4405
4406 return label;
4407}
4408
4409/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4410
4411rtx
502b8322 4412emit_note_after (int subtype, rtx after)
23b2ce53 4413{
b3694847 4414 rtx note = rtx_alloc (NOTE);
23b2ce53
RS
4415 INSN_UID (note) = cur_insn_uid++;
4416 NOTE_SOURCE_FILE (note) = 0;
4417 NOTE_LINE_NUMBER (note) = subtype;
ba4f7968 4418 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4419 add_insn_after (note, after);
4420 return note;
4421}
4422
5f2fc772 4423/* Emit a copy of note ORIG after the insn AFTER. */
23b2ce53
RS
4424
4425rtx
5f2fc772 4426emit_note_copy_after (rtx orig, rtx after)
23b2ce53 4427{
b3694847 4428 rtx note;
23b2ce53 4429
5f2fc772 4430 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
23b2ce53
RS
4431 {
4432 cur_insn_uid++;
4433 return 0;
4434 }
4435
68252e27 4436 note = rtx_alloc (NOTE);
23b2ce53 4437 INSN_UID (note) = cur_insn_uid++;
5f2fc772
NS
4438 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4439 NOTE_DATA (note) = NOTE_DATA (orig);
ba4f7968 4440 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4441 add_insn_after (note, after);
4442 return note;
4443}
4444\f
0435312e 4445/* Like emit_insn_after, but set INSN_LOCATOR according to SCOPE. */
0d682900 4446rtx
502b8322 4447emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900
JH
4448{
4449 rtx last = emit_insn_after (pattern, after);
0d682900 4450
2f937369
DM
4451 after = NEXT_INSN (after);
4452 while (1)
4453 {
d11cea13 4454 if (active_insn_p (after))
0435312e 4455 INSN_LOCATOR (after) = loc;
2f937369
DM
4456 if (after == last)
4457 break;
4458 after = NEXT_INSN (after);
4459 }
0d682900
JH
4460 return last;
4461}
4462
0435312e 4463/* Like emit_jump_insn_after, but set INSN_LOCATOR according to SCOPE. */
0d682900 4464rtx
502b8322 4465emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900
JH
4466{
4467 rtx last = emit_jump_insn_after (pattern, after);
2f937369
DM
4468
4469 after = NEXT_INSN (after);
4470 while (1)
4471 {
d11cea13 4472 if (active_insn_p (after))
0435312e 4473 INSN_LOCATOR (after) = loc;
2f937369
DM
4474 if (after == last)
4475 break;
4476 after = NEXT_INSN (after);
4477 }
0d682900
JH
4478 return last;
4479}
4480
0435312e 4481/* Like emit_call_insn_after, but set INSN_LOCATOR according to SCOPE. */
0d682900 4482rtx
502b8322 4483emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900
JH
4484{
4485 rtx last = emit_call_insn_after (pattern, after);
2f937369
DM
4486
4487 after = NEXT_INSN (after);
4488 while (1)
4489 {
d11cea13 4490 if (active_insn_p (after))
0435312e 4491 INSN_LOCATOR (after) = loc;
2f937369
DM
4492 if (after == last)
4493 break;
4494 after = NEXT_INSN (after);
4495 }
0d682900
JH
4496 return last;
4497}
4498
0435312e 4499/* Like emit_insn_before, but set INSN_LOCATOR according to SCOPE. */
0d682900 4500rtx
502b8322 4501emit_insn_before_setloc (rtx pattern, rtx before, int loc)
0d682900
JH
4502{
4503 rtx first = PREV_INSN (before);
4504 rtx last = emit_insn_before (pattern, before);
4505
2f937369
DM
4506 first = NEXT_INSN (first);
4507 while (1)
4508 {
d11cea13 4509 if (active_insn_p (first))
0435312e 4510 INSN_LOCATOR (first) = loc;
2f937369
DM
4511 if (first == last)
4512 break;
4513 first = NEXT_INSN (first);
4514 }
0d682900
JH
4515 return last;
4516}
4517\f
2f937369
DM
4518/* Take X and emit it at the end of the doubly-linked
4519 INSN list.
23b2ce53
RS
4520
4521 Returns the last insn emitted. */
4522
4523rtx
502b8322 4524emit_insn (rtx x)
23b2ce53 4525{
2f937369
DM
4526 rtx last = last_insn;
4527 rtx insn;
23b2ce53 4528
2f937369
DM
4529 if (x == NULL_RTX)
4530 return last;
23b2ce53 4531
2f937369
DM
4532 switch (GET_CODE (x))
4533 {
4534 case INSN:
4535 case JUMP_INSN:
4536 case CALL_INSN:
4537 case CODE_LABEL:
4538 case BARRIER:
4539 case NOTE:
4540 insn = x;
4541 while (insn)
23b2ce53 4542 {
2f937369 4543 rtx next = NEXT_INSN (insn);
23b2ce53 4544 add_insn (insn);
2f937369
DM
4545 last = insn;
4546 insn = next;
23b2ce53 4547 }
2f937369 4548 break;
23b2ce53 4549
2f937369
DM
4550#ifdef ENABLE_RTL_CHECKING
4551 case SEQUENCE:
4552 abort ();
4553 break;
4554#endif
23b2ce53 4555
2f937369
DM
4556 default:
4557 last = make_insn_raw (x);
4558 add_insn (last);
4559 break;
23b2ce53
RS
4560 }
4561
4562 return last;
4563}
4564
2f937369
DM
4565/* Make an insn of code JUMP_INSN with pattern X
4566 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4567
4568rtx
502b8322 4569emit_jump_insn (rtx x)
23b2ce53 4570{
d950dee3 4571 rtx last = NULL_RTX, insn;
23b2ce53 4572
2f937369 4573 switch (GET_CODE (x))
23b2ce53 4574 {
2f937369
DM
4575 case INSN:
4576 case JUMP_INSN:
4577 case CALL_INSN:
4578 case CODE_LABEL:
4579 case BARRIER:
4580 case NOTE:
4581 insn = x;
4582 while (insn)
4583 {
4584 rtx next = NEXT_INSN (insn);
4585 add_insn (insn);
4586 last = insn;
4587 insn = next;
4588 }
4589 break;
e0a5c5eb 4590
2f937369
DM
4591#ifdef ENABLE_RTL_CHECKING
4592 case SEQUENCE:
4593 abort ();
4594 break;
4595#endif
e0a5c5eb 4596
2f937369
DM
4597 default:
4598 last = make_jump_insn_raw (x);
4599 add_insn (last);
4600 break;
3c030e88 4601 }
e0a5c5eb
RS
4602
4603 return last;
4604}
4605
2f937369 4606/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4607 and add it to the end of the doubly-linked list. */
4608
4609rtx
502b8322 4610emit_call_insn (rtx x)
23b2ce53 4611{
2f937369
DM
4612 rtx insn;
4613
4614 switch (GET_CODE (x))
23b2ce53 4615 {
2f937369
DM
4616 case INSN:
4617 case JUMP_INSN:
4618 case CALL_INSN:
4619 case CODE_LABEL:
4620 case BARRIER:
4621 case NOTE:
4622 insn = emit_insn (x);
4623 break;
23b2ce53 4624
2f937369
DM
4625#ifdef ENABLE_RTL_CHECKING
4626 case SEQUENCE:
4627 abort ();
4628 break;
4629#endif
23b2ce53 4630
2f937369
DM
4631 default:
4632 insn = make_call_insn_raw (x);
23b2ce53 4633 add_insn (insn);
2f937369 4634 break;
23b2ce53 4635 }
2f937369
DM
4636
4637 return insn;
23b2ce53
RS
4638}
4639
4640/* Add the label LABEL to the end of the doubly-linked list. */
4641
4642rtx
502b8322 4643emit_label (rtx label)
23b2ce53
RS
4644{
4645 /* This can be called twice for the same label
4646 as a result of the confusion that follows a syntax error!
4647 So make it harmless. */
4648 if (INSN_UID (label) == 0)
4649 {
4650 INSN_UID (label) = cur_insn_uid++;
4651 add_insn (label);
4652 }
4653 return label;
4654}
4655
4656/* Make an insn of code BARRIER
4657 and add it to the end of the doubly-linked list. */
4658
4659rtx
502b8322 4660emit_barrier (void)
23b2ce53 4661{
b3694847 4662 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4663 INSN_UID (barrier) = cur_insn_uid++;
4664 add_insn (barrier);
4665 return barrier;
4666}
4667
4668/* Make an insn of code NOTE
4669 with data-fields specified by FILE and LINE
4670 and add it to the end of the doubly-linked list,
4671 but only if line-numbers are desired for debugging info. */
4672
4673rtx
502b8322 4674emit_line_note (const char *file, int line)
23b2ce53 4675{
2e040219 4676 rtx note;
502b8322 4677
fd3acbb3
NS
4678 if (line < 0)
4679 abort ();
502b8322 4680
3f1d071b 4681 set_file_and_line_for_stmt (file, line);
23b2ce53 4682
fd3acbb3
NS
4683 if (file && last_location.file && !strcmp (file, last_location.file)
4684 && line == last_location.line)
4685 return NULL_RTX;
4686 last_location.file = file;
4687 last_location.line = line;
4688
23b2ce53 4689 if (no_line_numbers)
fd3acbb3
NS
4690 {
4691 cur_insn_uid++;
4692 return NULL_RTX;
4693 }
23b2ce53 4694
2e040219
NS
4695 note = emit_note (line);
4696 NOTE_SOURCE_FILE (note) = file;
5f2fc772
NS
4697
4698 return note;
4699}
4700
4701/* Emit a copy of note ORIG. */
502b8322 4702
5f2fc772
NS
4703rtx
4704emit_note_copy (rtx orig)
4705{
4706 rtx note;
4707
4708 if (NOTE_LINE_NUMBER (orig) >= 0 && no_line_numbers)
4709 {
4710 cur_insn_uid++;
4711 return NULL_RTX;
4712 }
4713
4714 note = rtx_alloc (NOTE);
4715
4716 INSN_UID (note) = cur_insn_uid++;
4717 NOTE_DATA (note) = NOTE_DATA (orig);
4718 NOTE_LINE_NUMBER (note) = NOTE_LINE_NUMBER (orig);
4719 BLOCK_FOR_INSN (note) = NULL;
4720 add_insn (note);
4721
2e040219 4722 return note;
23b2ce53
RS
4723}
4724
2e040219
NS
4725/* Make an insn of code NOTE or type NOTE_NO
4726 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4727
4728rtx
502b8322 4729emit_note (int note_no)
23b2ce53 4730{
b3694847 4731 rtx note;
23b2ce53 4732
23b2ce53
RS
4733 note = rtx_alloc (NOTE);
4734 INSN_UID (note) = cur_insn_uid++;
2e040219 4735 NOTE_LINE_NUMBER (note) = note_no;
dd107e66 4736 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
ba4f7968 4737 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
4738 add_insn (note);
4739 return note;
4740}
4741
fe77a034 4742/* Emit a NOTE, and don't omit it even if LINE is the previous note. */
23b2ce53
RS
4743
4744rtx
502b8322 4745emit_line_note_force (const char *file, int line)
23b2ce53 4746{
fd3acbb3 4747 last_location.line = -1;
23b2ce53
RS
4748 return emit_line_note (file, line);
4749}
4750
4751/* Cause next statement to emit a line note even if the line number
4752 has not changed. This is used at the beginning of a function. */
4753
4754void
502b8322 4755force_next_line_note (void)
23b2ce53 4756{
fd3acbb3 4757 last_location.line = -1;
23b2ce53 4758}
87b47c85
AM
4759
4760/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 4761 note of this type already exists, remove it first. */
87b47c85 4762
3d238248 4763rtx
502b8322 4764set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
4765{
4766 rtx note = find_reg_note (insn, kind, NULL_RTX);
4767
52488da1
JW
4768 switch (kind)
4769 {
4770 case REG_EQUAL:
4771 case REG_EQUIV:
4772 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
4773 has multiple sets (some callers assume single_set
4774 means the insn only has one set, when in fact it
4775 means the insn only has one * useful * set). */
4776 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
4777 {
4778 if (note)
4779 abort ();
4780 return NULL_RTX;
4781 }
4782
4783 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
4784 It serves no useful purpose and breaks eliminate_regs. */
4785 if (GET_CODE (datum) == ASM_OPERANDS)
4786 return NULL_RTX;
4787 break;
4788
4789 default:
4790 break;
4791 }
3d238248 4792
750c9258 4793 if (note)
3d238248
JJ
4794 {
4795 XEXP (note, 0) = datum;
4796 return note;
4797 }
87b47c85
AM
4798
4799 REG_NOTES (insn) = gen_rtx_EXPR_LIST (kind, datum, REG_NOTES (insn));
3d238248 4800 return REG_NOTES (insn);
87b47c85 4801}
23b2ce53
RS
4802\f
4803/* Return an indication of which type of insn should have X as a body.
4804 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
4805
4806enum rtx_code
502b8322 4807classify_insn (rtx x)
23b2ce53
RS
4808{
4809 if (GET_CODE (x) == CODE_LABEL)
4810 return CODE_LABEL;
4811 if (GET_CODE (x) == CALL)
4812 return CALL_INSN;
4813 if (GET_CODE (x) == RETURN)
4814 return JUMP_INSN;
4815 if (GET_CODE (x) == SET)
4816 {
4817 if (SET_DEST (x) == pc_rtx)
4818 return JUMP_INSN;
4819 else if (GET_CODE (SET_SRC (x)) == CALL)
4820 return CALL_INSN;
4821 else
4822 return INSN;
4823 }
4824 if (GET_CODE (x) == PARALLEL)
4825 {
b3694847 4826 int j;
23b2ce53
RS
4827 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
4828 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
4829 return CALL_INSN;
4830 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4831 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
4832 return JUMP_INSN;
4833 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
4834 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
4835 return CALL_INSN;
4836 }
4837 return INSN;
4838}
4839
4840/* Emit the rtl pattern X as an appropriate kind of insn.
4841 If X is a label, it is simply added into the insn chain. */
4842
4843rtx
502b8322 4844emit (rtx x)
23b2ce53
RS
4845{
4846 enum rtx_code code = classify_insn (x);
4847
4848 if (code == CODE_LABEL)
4849 return emit_label (x);
4850 else if (code == INSN)
4851 return emit_insn (x);
4852 else if (code == JUMP_INSN)
4853 {
b3694847 4854 rtx insn = emit_jump_insn (x);
7f1c097d 4855 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
23b2ce53
RS
4856 return emit_barrier ();
4857 return insn;
4858 }
4859 else if (code == CALL_INSN)
4860 return emit_call_insn (x);
4861 else
4862 abort ();
4863}
4864\f
e2500fed
GK
4865/* Space for free sequence stack entries. */
4866static GTY ((deletable (""))) struct sequence_stack *free_sequence_stack;
4867
5c7a310f
MM
4868/* Begin emitting insns to a sequence which can be packaged in an
4869 RTL_EXPR. If this sequence will contain something that might cause
4870 the compiler to pop arguments to function calls (because those
4871 pops have previously been deferred; see INHIBIT_DEFER_POP for more
4872 details), use do_pending_stack_adjust before calling this function.
4873 That will ensure that the deferred pops are not accidentally
4eb00163 4874 emitted in the middle of this sequence. */
23b2ce53
RS
4875
4876void
502b8322 4877start_sequence (void)
23b2ce53
RS
4878{
4879 struct sequence_stack *tem;
4880
e2500fed
GK
4881 if (free_sequence_stack != NULL)
4882 {
4883 tem = free_sequence_stack;
4884 free_sequence_stack = tem->next;
4885 }
4886 else
4887 tem = (struct sequence_stack *) ggc_alloc (sizeof (struct sequence_stack));
23b2ce53 4888
49ad7cfa 4889 tem->next = seq_stack;
23b2ce53
RS
4890 tem->first = first_insn;
4891 tem->last = last_insn;
591ccf92 4892 tem->sequence_rtl_expr = seq_rtl_expr;
23b2ce53 4893
49ad7cfa 4894 seq_stack = tem;
23b2ce53
RS
4895
4896 first_insn = 0;
4897 last_insn = 0;
4898}
4899
591ccf92
MM
4900/* Similarly, but indicate that this sequence will be placed in T, an
4901 RTL_EXPR. See the documentation for start_sequence for more
4902 information about how to use this function. */
4903
4904void
502b8322 4905start_sequence_for_rtl_expr (tree t)
591ccf92
MM
4906{
4907 start_sequence ();
4908
4909 seq_rtl_expr = t;
4910}
4911
5c7a310f
MM
4912/* Set up the insn chain starting with FIRST as the current sequence,
4913 saving the previously current one. See the documentation for
4914 start_sequence for more information about how to use this function. */
23b2ce53
RS
4915
4916void
502b8322 4917push_to_sequence (rtx first)
23b2ce53
RS
4918{
4919 rtx last;
4920
4921 start_sequence ();
4922
4923 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
4924
4925 first_insn = first;
4926 last_insn = last;
4927}
4928
c14f7160
ML
4929/* Set up the insn chain from a chain stort in FIRST to LAST. */
4930
4931void
502b8322 4932push_to_full_sequence (rtx first, rtx last)
c14f7160
ML
4933{
4934 start_sequence ();
4935 first_insn = first;
4936 last_insn = last;
4937 /* We really should have the end of the insn chain here. */
4938 if (last && NEXT_INSN (last))
4939 abort ();
4940}
4941
f15ae3a1
TW
4942/* Set up the outer-level insn chain
4943 as the current sequence, saving the previously current one. */
4944
4945void
502b8322 4946push_topmost_sequence (void)
f15ae3a1 4947{
aefdd5ab 4948 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
4949
4950 start_sequence ();
4951
49ad7cfa 4952 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4953 top = stack;
4954
4955 first_insn = top->first;
4956 last_insn = top->last;
591ccf92 4957 seq_rtl_expr = top->sequence_rtl_expr;
f15ae3a1
TW
4958}
4959
4960/* After emitting to the outer-level insn chain, update the outer-level
4961 insn chain, and restore the previous saved state. */
4962
4963void
502b8322 4964pop_topmost_sequence (void)
f15ae3a1 4965{
aefdd5ab 4966 struct sequence_stack *stack, *top = NULL;
f15ae3a1 4967
49ad7cfa 4968 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
4969 top = stack;
4970
4971 top->first = first_insn;
4972 top->last = last_insn;
591ccf92 4973 /* ??? Why don't we save seq_rtl_expr here? */
f15ae3a1
TW
4974
4975 end_sequence ();
4976}
4977
23b2ce53
RS
4978/* After emitting to a sequence, restore previous saved state.
4979
5c7a310f 4980 To get the contents of the sequence just made, you must call
2f937369 4981 `get_insns' *before* calling here.
5c7a310f
MM
4982
4983 If the compiler might have deferred popping arguments while
4984 generating this sequence, and this sequence will not be immediately
4985 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 4986 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
4987 pops are inserted into this sequence, and not into some random
4988 location in the instruction stream. See INHIBIT_DEFER_POP for more
4989 information about deferred popping of arguments. */
23b2ce53
RS
4990
4991void
502b8322 4992end_sequence (void)
23b2ce53 4993{
49ad7cfa 4994 struct sequence_stack *tem = seq_stack;
23b2ce53
RS
4995
4996 first_insn = tem->first;
4997 last_insn = tem->last;
591ccf92 4998 seq_rtl_expr = tem->sequence_rtl_expr;
49ad7cfa 4999 seq_stack = tem->next;
23b2ce53 5000
e2500fed
GK
5001 memset (tem, 0, sizeof (*tem));
5002 tem->next = free_sequence_stack;
5003 free_sequence_stack = tem;
23b2ce53
RS
5004}
5005
c14f7160
ML
5006/* This works like end_sequence, but records the old sequence in FIRST
5007 and LAST. */
5008
5009void
502b8322 5010end_full_sequence (rtx *first, rtx *last)
c14f7160
ML
5011{
5012 *first = first_insn;
5013 *last = last_insn;
68252e27 5014 end_sequence ();
c14f7160
ML
5015}
5016
23b2ce53
RS
5017/* Return 1 if currently emitting into a sequence. */
5018
5019int
502b8322 5020in_sequence_p (void)
23b2ce53 5021{
49ad7cfa 5022 return seq_stack != 0;
23b2ce53 5023}
23b2ce53 5024\f
59ec66dc
MM
5025/* Put the various virtual registers into REGNO_REG_RTX. */
5026
5027void
502b8322 5028init_virtual_regs (struct emit_status *es)
59ec66dc 5029{
49ad7cfa
BS
5030 rtx *ptr = es->x_regno_reg_rtx;
5031 ptr[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5032 ptr[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5033 ptr[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5034 ptr[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5035 ptr[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
5036}
5037
da43a810
BS
5038\f
5039/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5040static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5041static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5042static int copy_insn_n_scratches;
5043
5044/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5045 copied an ASM_OPERANDS.
5046 In that case, it is the original input-operand vector. */
5047static rtvec orig_asm_operands_vector;
5048
5049/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5050 copied an ASM_OPERANDS.
5051 In that case, it is the copied input-operand vector. */
5052static rtvec copy_asm_operands_vector;
5053
5054/* Likewise for the constraints vector. */
5055static rtvec orig_asm_constraints_vector;
5056static rtvec copy_asm_constraints_vector;
5057
5058/* Recursively create a new copy of an rtx for copy_insn.
5059 This function differs from copy_rtx in that it handles SCRATCHes and
5060 ASM_OPERANDs properly.
5061 Normally, this function is not used directly; use copy_insn as front end.
5062 However, you could first copy an insn pattern with copy_insn and then use
5063 this function afterwards to properly copy any REG_NOTEs containing
5064 SCRATCHes. */
5065
5066rtx
502b8322 5067copy_insn_1 (rtx orig)
da43a810 5068{
b3694847
SS
5069 rtx copy;
5070 int i, j;
5071 RTX_CODE code;
5072 const char *format_ptr;
da43a810
BS
5073
5074 code = GET_CODE (orig);
5075
5076 switch (code)
5077 {
5078 case REG:
5079 case QUEUED:
5080 case CONST_INT:
5081 case CONST_DOUBLE:
69ef87e2 5082 case CONST_VECTOR:
da43a810
BS
5083 case SYMBOL_REF:
5084 case CODE_LABEL:
5085 case PC:
5086 case CC0:
5087 case ADDRESSOF:
5088 return orig;
5089
5090 case SCRATCH:
5091 for (i = 0; i < copy_insn_n_scratches; i++)
5092 if (copy_insn_scratch_in[i] == orig)
5093 return copy_insn_scratch_out[i];
5094 break;
5095
5096 case CONST:
5097 /* CONST can be shared if it contains a SYMBOL_REF. If it contains
5098 a LABEL_REF, it isn't sharable. */
5099 if (GET_CODE (XEXP (orig, 0)) == PLUS
5100 && GET_CODE (XEXP (XEXP (orig, 0), 0)) == SYMBOL_REF
5101 && GET_CODE (XEXP (XEXP (orig, 0), 1)) == CONST_INT)
5102 return orig;
5103 break;
750c9258 5104
da43a810
BS
5105 /* A MEM with a constant address is not sharable. The problem is that
5106 the constant address may need to be reloaded. If the mem is shared,
5107 then reloading one copy of this mem will cause all copies to appear
5108 to have been reloaded. */
5109
5110 default:
5111 break;
5112 }
5113
5114 copy = rtx_alloc (code);
5115
5116 /* Copy the various flags, and other information. We assume that
5117 all fields need copying, and then clear the fields that should
5118 not be copied. That is the sensible default behavior, and forces
5119 us to explicitly document why we are *not* copying a flag. */
5120 memcpy (copy, orig, sizeof (struct rtx_def) - sizeof (rtunion));
5121
5122 /* We do not copy the USED flag, which is used as a mark bit during
5123 walks over the RTL. */
2adc7f12 5124 RTX_FLAG (copy, used) = 0;
da43a810
BS
5125
5126 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
5127 if (GET_RTX_CLASS (code) == 'i')
5128 {
2adc7f12
JJ
5129 RTX_FLAG (copy, jump) = 0;
5130 RTX_FLAG (copy, call) = 0;
5131 RTX_FLAG (copy, frame_related) = 0;
da43a810 5132 }
750c9258 5133
da43a810
BS
5134 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5135
5136 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
5137 {
e63db8f6 5138 copy->fld[i] = orig->fld[i];
da43a810
BS
5139 switch (*format_ptr++)
5140 {
5141 case 'e':
da43a810
BS
5142 if (XEXP (orig, i) != NULL)
5143 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5144 break;
5145
da43a810
BS
5146 case 'E':
5147 case 'V':
da43a810
BS
5148 if (XVEC (orig, i) == orig_asm_constraints_vector)
5149 XVEC (copy, i) = copy_asm_constraints_vector;
5150 else if (XVEC (orig, i) == orig_asm_operands_vector)
5151 XVEC (copy, i) = copy_asm_operands_vector;
5152 else if (XVEC (orig, i) != NULL)
5153 {
5154 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5155 for (j = 0; j < XVECLEN (copy, i); j++)
5156 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5157 }
5158 break;
5159
da43a810 5160 case 't':
da43a810 5161 case 'w':
da43a810 5162 case 'i':
da43a810
BS
5163 case 's':
5164 case 'S':
e63db8f6
BS
5165 case 'u':
5166 case '0':
5167 /* These are left unchanged. */
da43a810
BS
5168 break;
5169
5170 default:
5171 abort ();
5172 }
5173 }
5174
5175 if (code == SCRATCH)
5176 {
5177 i = copy_insn_n_scratches++;
5178 if (i >= MAX_RECOG_OPERANDS)
5179 abort ();
5180 copy_insn_scratch_in[i] = orig;
5181 copy_insn_scratch_out[i] = copy;
5182 }
5183 else if (code == ASM_OPERANDS)
5184 {
6462bb43
AO
5185 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5186 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5187 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5188 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5189 }
5190
5191 return copy;
5192}
5193
5194/* Create a new copy of an rtx.
5195 This function differs from copy_rtx in that it handles SCRATCHes and
5196 ASM_OPERANDs properly.
5197 INSN doesn't really have to be a full INSN; it could be just the
5198 pattern. */
5199rtx
502b8322 5200copy_insn (rtx insn)
da43a810
BS
5201{
5202 copy_insn_n_scratches = 0;
5203 orig_asm_operands_vector = 0;
5204 orig_asm_constraints_vector = 0;
5205 copy_asm_operands_vector = 0;
5206 copy_asm_constraints_vector = 0;
5207 return copy_insn_1 (insn);
5208}
59ec66dc 5209
23b2ce53
RS
5210/* Initialize data structures and variables in this file
5211 before generating rtl for each function. */
5212
5213void
502b8322 5214init_emit (void)
23b2ce53 5215{
01d939e8 5216 struct function *f = cfun;
23b2ce53 5217
e2500fed 5218 f->emit = (struct emit_status *) ggc_alloc (sizeof (struct emit_status));
23b2ce53
RS
5219 first_insn = NULL;
5220 last_insn = NULL;
591ccf92 5221 seq_rtl_expr = NULL;
23b2ce53
RS
5222 cur_insn_uid = 1;
5223 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
fd3acbb3
NS
5224 last_location.line = 0;
5225 last_location.file = 0;
23b2ce53
RS
5226 first_label_num = label_num;
5227 last_label_num = 0;
49ad7cfa 5228 seq_stack = NULL;
23b2ce53 5229
23b2ce53
RS
5230 /* Init the tables that describe all the pseudo regs. */
5231
3502dc9c 5232 f->emit->regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5233
49ad7cfa 5234 f->emit->regno_pointer_align
e2500fed
GK
5235 = (unsigned char *) ggc_alloc_cleared (f->emit->regno_pointer_align_length
5236 * sizeof (unsigned char));
86fe05e0 5237
750c9258 5238 regno_reg_rtx
ddb0ae00 5239 = (rtx *) ggc_alloc (f->emit->regno_pointer_align_length * sizeof (rtx));
0d4903b8 5240
e50126e8 5241 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876
JL
5242 memcpy (regno_reg_rtx,
5243 static_regno_reg_rtx,
5244 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5245
23b2ce53 5246 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
49ad7cfa 5247 init_virtual_regs (f->emit);
740ab4a2
RK
5248
5249 /* Indicate that the virtual registers and stack locations are
5250 all pointers. */
3502dc9c
JDA
5251 REG_POINTER (stack_pointer_rtx) = 1;
5252 REG_POINTER (frame_pointer_rtx) = 1;
5253 REG_POINTER (hard_frame_pointer_rtx) = 1;
5254 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5255
3502dc9c
JDA
5256 REG_POINTER (virtual_incoming_args_rtx) = 1;
5257 REG_POINTER (virtual_stack_vars_rtx) = 1;
5258 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5259 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5260 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5261
86fe05e0 5262#ifdef STACK_BOUNDARY
bdb429a5
RK
5263 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5264 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5265 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5266 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5267
5268 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5269 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5270 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5271 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5272 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5273#endif
5274
5e82e7bd
JVA
5275#ifdef INIT_EXPANDERS
5276 INIT_EXPANDERS;
5277#endif
23b2ce53
RS
5278}
5279
ff88fe10 5280/* Generate the constant 0. */
69ef87e2
AH
5281
5282static rtx
502b8322 5283gen_const_vector_0 (enum machine_mode mode)
69ef87e2
AH
5284{
5285 rtx tem;
5286 rtvec v;
5287 int units, i;
5288 enum machine_mode inner;
5289
5290 units = GET_MODE_NUNITS (mode);
5291 inner = GET_MODE_INNER (mode);
5292
5293 v = rtvec_alloc (units);
5294
5295 /* We need to call this function after we to set CONST0_RTX first. */
5296 if (!CONST0_RTX (inner))
5297 abort ();
5298
5299 for (i = 0; i < units; ++i)
5300 RTVEC_ELT (v, i) = CONST0_RTX (inner);
5301
a06e3c40 5302 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5303 return tem;
5304}
5305
a06e3c40
R
5306/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5307 all elements are zero. */
5308rtx
502b8322 5309gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
a06e3c40
R
5310{
5311 rtx inner_zero = CONST0_RTX (GET_MODE_INNER (mode));
5312 int i;
5313
5314 for (i = GET_MODE_NUNITS (mode) - 1; i >= 0; i--)
5315 if (RTVEC_ELT (v, i) != inner_zero)
5316 return gen_rtx_raw_CONST_VECTOR (mode, v);
5317 return CONST0_RTX (mode);
5318}
5319
23b2ce53
RS
5320/* Create some permanent unique rtl objects shared between all functions.
5321 LINE_NUMBERS is nonzero if line numbers are to be generated. */
5322
5323void
502b8322 5324init_emit_once (int line_numbers)
23b2ce53
RS
5325{
5326 int i;
5327 enum machine_mode mode;
9ec36da5 5328 enum machine_mode double_mode;
23b2ce53 5329
5692c7bc
ZW
5330 /* Initialize the CONST_INT, CONST_DOUBLE, and memory attribute hash
5331 tables. */
17211ab5
GK
5332 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5333 const_int_htab_eq, NULL);
173b24b9 5334
17211ab5
GK
5335 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5336 const_double_htab_eq, NULL);
5692c7bc 5337
17211ab5
GK
5338 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5339 mem_attrs_htab_eq, NULL);
a560d4d4
JH
5340 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5341 reg_attrs_htab_eq, NULL);
67673f5c 5342
23b2ce53
RS
5343 no_line_numbers = ! line_numbers;
5344
43fa6302
AS
5345 /* Compute the word and byte modes. */
5346
5347 byte_mode = VOIDmode;
5348 word_mode = VOIDmode;
5349 double_mode = VOIDmode;
5350
5351 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5352 mode = GET_MODE_WIDER_MODE (mode))
5353 {
5354 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5355 && byte_mode == VOIDmode)
5356 byte_mode = mode;
5357
5358 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5359 && word_mode == VOIDmode)
5360 word_mode = mode;
5361 }
5362
43fa6302
AS
5363 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5364 mode = GET_MODE_WIDER_MODE (mode))
5365 {
5366 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5367 && double_mode == VOIDmode)
5368 double_mode = mode;
5369 }
5370
5371 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5372
5da077de
AS
5373 /* Assign register numbers to the globally defined register rtx.
5374 This must be done at runtime because the register number field
5375 is in a union and some compilers can't initialize unions. */
5376
5377 pc_rtx = gen_rtx (PC, VOIDmode);
5378 cc0_rtx = gen_rtx (CC0, VOIDmode);
08394eef
BS
5379 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5380 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5da077de 5381 if (hard_frame_pointer_rtx == 0)
750c9258 5382 hard_frame_pointer_rtx = gen_raw_REG (Pmode,
08394eef 5383 HARD_FRAME_POINTER_REGNUM);
5da077de 5384 if (arg_pointer_rtx == 0)
08394eef 5385 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
750c9258 5386 virtual_incoming_args_rtx =
08394eef 5387 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
750c9258 5388 virtual_stack_vars_rtx =
08394eef 5389 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
750c9258 5390 virtual_stack_dynamic_rtx =
08394eef 5391 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
750c9258
AJ
5392 virtual_outgoing_args_rtx =
5393 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
08394eef 5394 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5da077de 5395
6cde4876
JL
5396 /* Initialize RTL for commonly used hard registers. These are
5397 copied into regno_reg_rtx as we begin to compile each function. */
5398 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5399 static_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
5400
5da077de 5401#ifdef INIT_EXPANDERS
414c4dc4
NC
5402 /* This is to initialize {init|mark|free}_machine_status before the first
5403 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5404 end which calls push_function_context_to before the first call to
5da077de
AS
5405 init_function_start. */
5406 INIT_EXPANDERS;
5407#endif
5408
23b2ce53
RS
5409 /* Create the unique rtx's for certain rtx codes and operand values. */
5410
c5c76735
JL
5411 /* Don't use gen_rtx here since gen_rtx in this case
5412 tries to use these variables. */
23b2ce53 5413 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5414 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5415 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5416
68d75312
JC
5417 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5418 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5419 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5420 else
3b80f6ca 5421 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5422
5692c7bc
ZW
5423 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5424 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5425 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
5426 REAL_VALUE_FROM_INT (dconstm1, -1, -1, double_mode);
03f2ea93
RS
5427 REAL_VALUE_FROM_INT (dconstm2, -2, -1, double_mode);
5428
5429 dconsthalf = dconst1;
5430 dconsthalf.exp--;
23b2ce53
RS
5431
5432 for (i = 0; i <= 2; i++)
5433 {
b216cd4a
ZW
5434 REAL_VALUE_TYPE *r =
5435 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5436
23b2ce53
RS
5437 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
5438 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5439 const_tiny_rtx[i][(int) mode] =
5440 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5441
906c4e36 5442 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53
RS
5443
5444 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
5445 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5446 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
5447
5448 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5449 mode != VOIDmode;
5450 mode = GET_MODE_WIDER_MODE (mode))
5451 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5452 }
5453
69ef87e2
AH
5454 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5455 mode != VOIDmode;
5456 mode = GET_MODE_WIDER_MODE (mode))
ff88fe10 5457 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
69ef87e2
AH
5458
5459 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5460 mode != VOIDmode;
5461 mode = GET_MODE_WIDER_MODE (mode))
ff88fe10 5462 const_tiny_rtx[0][(int) mode] = gen_const_vector_0 (mode);
69ef87e2 5463
dbbbbf3b
JDA
5464 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5465 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5466 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5467
f0417c82
RH
5468 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5469 if (STORE_FLAG_VALUE == 1)
5470 const_tiny_rtx[1][(int) BImode] = const1_rtx;
5471
a7e1e2ac
AO
5472#ifdef RETURN_ADDRESS_POINTER_REGNUM
5473 return_address_pointer_rtx
08394eef 5474 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
a7e1e2ac
AO
5475#endif
5476
5477#ifdef STRUCT_VALUE
5478 struct_value_rtx = STRUCT_VALUE;
5479#else
5480 struct_value_rtx = gen_rtx_REG (Pmode, STRUCT_VALUE_REGNUM);
5481#endif
5482
5483#ifdef STRUCT_VALUE_INCOMING
5484 struct_value_incoming_rtx = STRUCT_VALUE_INCOMING;
5485#else
5486#ifdef STRUCT_VALUE_INCOMING_REGNUM
5487 struct_value_incoming_rtx
5488 = gen_rtx_REG (Pmode, STRUCT_VALUE_INCOMING_REGNUM);
5489#else
5490 struct_value_incoming_rtx = struct_value_rtx;
5491#endif
5492#endif
5493
5494#ifdef STATIC_CHAIN_REGNUM
5495 static_chain_rtx = gen_rtx_REG (Pmode, STATIC_CHAIN_REGNUM);
5496
5497#ifdef STATIC_CHAIN_INCOMING_REGNUM
5498 if (STATIC_CHAIN_INCOMING_REGNUM != STATIC_CHAIN_REGNUM)
5499 static_chain_incoming_rtx
5500 = gen_rtx_REG (Pmode, STATIC_CHAIN_INCOMING_REGNUM);
5501 else
5502#endif
5503 static_chain_incoming_rtx = static_chain_rtx;
5504#endif
5505
5506#ifdef STATIC_CHAIN
5507 static_chain_rtx = STATIC_CHAIN;
5508
5509#ifdef STATIC_CHAIN_INCOMING
5510 static_chain_incoming_rtx = STATIC_CHAIN_INCOMING;
5511#else
5512 static_chain_incoming_rtx = static_chain_rtx;
5513#endif
5514#endif
5515
fc555370 5516 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
751551d5 5517 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
23b2ce53 5518}
a11759a3
JR
5519\f
5520/* Query and clear/ restore no_line_numbers. This is used by the
5521 switch / case handling in stmt.c to give proper line numbers in
5522 warnings about unreachable code. */
5523
5524int
502b8322 5525force_line_numbers (void)
a11759a3
JR
5526{
5527 int old = no_line_numbers;
5528
5529 no_line_numbers = 0;
5530 if (old)
5531 force_next_line_note ();
5532 return old;
5533}
5534
5535void
502b8322 5536restore_line_number_status (int old_value)
a11759a3
JR
5537{
5538 no_line_numbers = old_value;
5539}
969d70ca
JH
5540
5541/* Produce exact duplicate of insn INSN after AFTER.
5542 Care updating of libcall regions if present. */
5543
5544rtx
502b8322 5545emit_copy_of_insn_after (rtx insn, rtx after)
969d70ca
JH
5546{
5547 rtx new;
5548 rtx note1, note2, link;
5549
5550 switch (GET_CODE (insn))
5551 {
5552 case INSN:
5553 new = emit_insn_after (copy_insn (PATTERN (insn)), after);
5554 break;
5555
5556 case JUMP_INSN:
5557 new = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
5558 break;
5559
5560 case CALL_INSN:
5561 new = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
5562 if (CALL_INSN_FUNCTION_USAGE (insn))
5563 CALL_INSN_FUNCTION_USAGE (new)
5564 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
5565 SIBLING_CALL_P (new) = SIBLING_CALL_P (insn);
5566 CONST_OR_PURE_CALL_P (new) = CONST_OR_PURE_CALL_P (insn);
5567 break;
5568
5569 default:
5570 abort ();
5571 }
5572
5573 /* Update LABEL_NUSES. */
5574 mark_jump_label (PATTERN (new), new, 0);
5575
0435312e 5576 INSN_LOCATOR (new) = INSN_LOCATOR (insn);
ba4f7968 5577
969d70ca
JH
5578 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
5579 make them. */
5580 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5581 if (REG_NOTE_KIND (link) != REG_LABEL)
5582 {
5583 if (GET_CODE (link) == EXPR_LIST)
5584 REG_NOTES (new)
5585 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
5586 XEXP (link, 0),
5587 REG_NOTES (new)));
5588 else
5589 REG_NOTES (new)
5590 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
5591 XEXP (link, 0),
5592 REG_NOTES (new)));
5593 }
5594
5595 /* Fix the libcall sequences. */
5596 if ((note1 = find_reg_note (new, REG_RETVAL, NULL_RTX)) != NULL)
5597 {
5598 rtx p = new;
5599 while ((note2 = find_reg_note (p, REG_LIBCALL, NULL_RTX)) == NULL)
5600 p = PREV_INSN (p);
5601 XEXP (note1, 0) = p;
5602 XEXP (note2, 0) = new;
5603 }
6f0d3566 5604 INSN_CODE (new) = INSN_CODE (insn);
969d70ca
JH
5605 return new;
5606}
e2500fed
GK
5607
5608#include "gt-emit-rtl.h"