]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/emit-rtl.c
i386.md (int_cond): Remove code iterator.
[thirdparty/gcc.git] / gcc / emit-rtl.c
CommitLineData
5e6908ea 1/* Emit RTL for the GCC expander.
ef58a523 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
54fb1ae0
AS
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009,
4 2010
b6f65e3c 5 Free Software Foundation, Inc.
23b2ce53 6
1322177d 7This file is part of GCC.
23b2ce53 8
1322177d
LB
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
9dcd6f09 11Software Foundation; either version 3, or (at your option) any later
1322177d 12version.
23b2ce53 13
1322177d
LB
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
23b2ce53
RS
18
19You should have received a copy of the GNU General Public License
9dcd6f09
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
23b2ce53
RS
22
23
24/* Middle-to-low level generation of rtx code and insns.
25
f822fcf7
KH
26 This file contains support functions for creating rtl expressions
27 and manipulating them in the doubly-linked chain of insns.
23b2ce53
RS
28
29 The patterns of the insns are created by machine-dependent
30 routines in insn-emit.c, which is generated automatically from
f822fcf7
KH
31 the machine description. These routines make the individual rtx's
32 of the pattern with `gen_rtx_fmt_ee' and others in genrtl.[ch],
33 which are automatically generated from rtl.def; what is machine
a2a8cc44
KH
34 dependent is the kind of rtx's they make and what arguments they
35 use. */
23b2ce53
RS
36
37#include "config.h"
670ee920 38#include "system.h"
4977bab6
ZW
39#include "coretypes.h"
40#include "tm.h"
718f9c0f 41#include "diagnostic-core.h"
01198c2f 42#include "toplev.h"
23b2ce53 43#include "rtl.h"
a25c7971 44#include "tree.h"
6baf1cc8 45#include "tm_p.h"
23b2ce53
RS
46#include "flags.h"
47#include "function.h"
48#include "expr.h"
49#include "regs.h"
aff48bca 50#include "hard-reg-set.h"
c13e8210 51#include "hashtab.h"
23b2ce53 52#include "insn-config.h"
e9a25f70 53#include "recog.h"
0dfa1860 54#include "bitmap.h"
a05924f9 55#include "basic-block.h"
87ff9c8e 56#include "ggc.h"
e1772ac0 57#include "debug.h"
d23c55c2 58#include "langhooks.h"
ef330312 59#include "tree-pass.h"
6fb5fa3c 60#include "df.h"
b5b8b0ac 61#include "params.h"
d4ebfa65 62#include "target.h"
ca695ac9 63
5fb0e246
RS
64struct target_rtl default_target_rtl;
65#if SWITCHABLE_TARGET
66struct target_rtl *this_target_rtl = &default_target_rtl;
67#endif
68
69#define initial_regno_reg_rtx (this_target_rtl->x_initial_regno_reg_rtx)
70
1d445e9e
ILT
71/* Commonly used modes. */
72
0f41302f
MS
73enum machine_mode byte_mode; /* Mode whose width is BITS_PER_UNIT. */
74enum machine_mode word_mode; /* Mode whose width is BITS_PER_WORD. */
9ec36da5 75enum machine_mode double_mode; /* Mode whose width is DOUBLE_TYPE_SIZE. */
0f41302f 76enum machine_mode ptr_mode; /* Mode whose width is POINTER_SIZE. */
1d445e9e 77
bd60bab2
JH
78/* Datastructures maintained for currently processed function in RTL form. */
79
3e029763 80struct rtl_data x_rtl;
bd60bab2
JH
81
82/* Indexed by pseudo register number, gives the rtx for that pseudo.
b8698a0f 83 Allocated in parallel with regno_pointer_align.
bd60bab2
JH
84 FIXME: We could put it into emit_status struct, but gengtype is not able to deal
85 with length attribute nested in top level structures. */
86
87rtx * regno_reg_rtx;
23b2ce53
RS
88
89/* This is *not* reset after each function. It gives each CODE_LABEL
90 in the entire compilation a unique label number. */
91
044b4de3 92static GTY(()) int label_num = 1;
23b2ce53 93
23b2ce53
RS
94/* We record floating-point CONST_DOUBLEs in each floating-point mode for
95 the values of 0, 1, and 2. For the integer entries and VOIDmode, we
96 record a copy of const[012]_rtx. */
97
98rtx const_tiny_rtx[3][(int) MAX_MACHINE_MODE];
99
68d75312
JC
100rtx const_true_rtx;
101
23b2ce53
RS
102REAL_VALUE_TYPE dconst0;
103REAL_VALUE_TYPE dconst1;
104REAL_VALUE_TYPE dconst2;
105REAL_VALUE_TYPE dconstm1;
03f2ea93 106REAL_VALUE_TYPE dconsthalf;
23b2ce53 107
325217ed
CF
108/* Record fixed-point constant 0 and 1. */
109FIXED_VALUE_TYPE fconst0[MAX_FCONST0];
110FIXED_VALUE_TYPE fconst1[MAX_FCONST1];
111
23b2ce53
RS
112/* We make one copy of (const_int C) where C is in
113 [- MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT]
114 to save space during the compilation and simplify comparisons of
115 integers. */
116
5da077de 117rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
23b2ce53 118
c13e8210
MM
119/* A hash table storing CONST_INTs whose absolute value is greater
120 than MAX_SAVED_CONST_INT. */
121
e2500fed
GK
122static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
123 htab_t const_int_htab;
c13e8210 124
173b24b9 125/* A hash table storing memory attribute structures. */
e2500fed
GK
126static GTY ((if_marked ("ggc_marked_p"), param_is (struct mem_attrs)))
127 htab_t mem_attrs_htab;
173b24b9 128
a560d4d4
JH
129/* A hash table storing register attribute structures. */
130static GTY ((if_marked ("ggc_marked_p"), param_is (struct reg_attrs)))
131 htab_t reg_attrs_htab;
132
5692c7bc 133/* A hash table storing all CONST_DOUBLEs. */
e2500fed
GK
134static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
135 htab_t const_double_htab;
5692c7bc 136
091a3ac7
CF
137/* A hash table storing all CONST_FIXEDs. */
138static GTY ((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
139 htab_t const_fixed_htab;
140
3e029763 141#define cur_insn_uid (crtl->emit.x_cur_insn_uid)
b5b8b0ac 142#define cur_debug_insn_uid (crtl->emit.x_cur_debug_insn_uid)
3e029763
JH
143#define last_location (crtl->emit.x_last_location)
144#define first_label_num (crtl->emit.x_first_label_num)
23b2ce53 145
502b8322 146static rtx make_call_insn_raw (rtx);
502b8322 147static rtx change_address_1 (rtx, enum machine_mode, rtx, int);
5eb2a9f2 148static void set_used_decls (tree);
502b8322
AJ
149static void mark_label_nuses (rtx);
150static hashval_t const_int_htab_hash (const void *);
151static int const_int_htab_eq (const void *, const void *);
152static hashval_t const_double_htab_hash (const void *);
153static int const_double_htab_eq (const void *, const void *);
154static rtx lookup_const_double (rtx);
091a3ac7
CF
155static hashval_t const_fixed_htab_hash (const void *);
156static int const_fixed_htab_eq (const void *, const void *);
157static rtx lookup_const_fixed (rtx);
502b8322
AJ
158static hashval_t mem_attrs_htab_hash (const void *);
159static int mem_attrs_htab_eq (const void *, const void *);
4862826d 160static mem_attrs *get_mem_attrs (alias_set_type, tree, rtx, rtx, unsigned int,
09e881c9 161 addr_space_t, enum machine_mode);
502b8322
AJ
162static hashval_t reg_attrs_htab_hash (const void *);
163static int reg_attrs_htab_eq (const void *, const void *);
164static reg_attrs *get_reg_attrs (tree, int);
a73b091d 165static rtx gen_const_vector (enum machine_mode, int);
32b32b16 166static void copy_rtx_if_shared_1 (rtx *orig);
c13e8210 167
6b24c259
JH
168/* Probability of the conditional branch currently proceeded by try_split.
169 Set to -1 otherwise. */
170int split_branch_probability = -1;
ca695ac9 171\f
c13e8210
MM
172/* Returns a hash code for X (which is a really a CONST_INT). */
173
174static hashval_t
502b8322 175const_int_htab_hash (const void *x)
c13e8210 176{
f7d504c2 177 return (hashval_t) INTVAL ((const_rtx) x);
c13e8210
MM
178}
179
cc2902df 180/* Returns nonzero if the value represented by X (which is really a
c13e8210
MM
181 CONST_INT) is the same as that given by Y (which is really a
182 HOST_WIDE_INT *). */
183
184static int
502b8322 185const_int_htab_eq (const void *x, const void *y)
c13e8210 186{
f7d504c2 187 return (INTVAL ((const_rtx) x) == *((const HOST_WIDE_INT *) y));
5692c7bc
ZW
188}
189
190/* Returns a hash code for X (which is really a CONST_DOUBLE). */
191static hashval_t
502b8322 192const_double_htab_hash (const void *x)
5692c7bc 193{
f7d504c2 194 const_rtx const value = (const_rtx) x;
46b33600 195 hashval_t h;
5692c7bc 196
46b33600
RH
197 if (GET_MODE (value) == VOIDmode)
198 h = CONST_DOUBLE_LOW (value) ^ CONST_DOUBLE_HIGH (value);
199 else
fe352c29 200 {
15c812e3 201 h = real_hash (CONST_DOUBLE_REAL_VALUE (value));
fe352c29
DJ
202 /* MODE is used in the comparison, so it should be in the hash. */
203 h ^= GET_MODE (value);
204 }
5692c7bc
ZW
205 return h;
206}
207
cc2902df 208/* Returns nonzero if the value represented by X (really a ...)
5692c7bc
ZW
209 is the same as that represented by Y (really a ...) */
210static int
502b8322 211const_double_htab_eq (const void *x, const void *y)
5692c7bc 212{
f7d504c2 213 const_rtx const a = (const_rtx)x, b = (const_rtx)y;
5692c7bc
ZW
214
215 if (GET_MODE (a) != GET_MODE (b))
216 return 0;
8580f7a0
RH
217 if (GET_MODE (a) == VOIDmode)
218 return (CONST_DOUBLE_LOW (a) == CONST_DOUBLE_LOW (b)
219 && CONST_DOUBLE_HIGH (a) == CONST_DOUBLE_HIGH (b));
220 else
221 return real_identical (CONST_DOUBLE_REAL_VALUE (a),
222 CONST_DOUBLE_REAL_VALUE (b));
c13e8210
MM
223}
224
091a3ac7
CF
225/* Returns a hash code for X (which is really a CONST_FIXED). */
226
227static hashval_t
228const_fixed_htab_hash (const void *x)
229{
3101faab 230 const_rtx const value = (const_rtx) x;
091a3ac7
CF
231 hashval_t h;
232
233 h = fixed_hash (CONST_FIXED_VALUE (value));
234 /* MODE is used in the comparison, so it should be in the hash. */
235 h ^= GET_MODE (value);
236 return h;
237}
238
239/* Returns nonzero if the value represented by X (really a ...)
240 is the same as that represented by Y (really a ...). */
241
242static int
243const_fixed_htab_eq (const void *x, const void *y)
244{
3101faab 245 const_rtx const a = (const_rtx) x, b = (const_rtx) y;
091a3ac7
CF
246
247 if (GET_MODE (a) != GET_MODE (b))
248 return 0;
249 return fixed_identical (CONST_FIXED_VALUE (a), CONST_FIXED_VALUE (b));
250}
251
173b24b9
RK
252/* Returns a hash code for X (which is a really a mem_attrs *). */
253
254static hashval_t
502b8322 255mem_attrs_htab_hash (const void *x)
173b24b9 256{
f7d504c2 257 const mem_attrs *const p = (const mem_attrs *) x;
173b24b9
RK
258
259 return (p->alias ^ (p->align * 1000)
09e881c9 260 ^ (p->addrspace * 4000)
173b24b9
RK
261 ^ ((p->offset ? INTVAL (p->offset) : 0) * 50000)
262 ^ ((p->size ? INTVAL (p->size) : 0) * 2500000)
78b76d08 263 ^ (size_t) iterative_hash_expr (p->expr, 0));
173b24b9
RK
264}
265
cc2902df 266/* Returns nonzero if the value represented by X (which is really a
173b24b9
RK
267 mem_attrs *) is the same as that given by Y (which is also really a
268 mem_attrs *). */
c13e8210
MM
269
270static int
502b8322 271mem_attrs_htab_eq (const void *x, const void *y)
c13e8210 272{
741ac903
KG
273 const mem_attrs *const p = (const mem_attrs *) x;
274 const mem_attrs *const q = (const mem_attrs *) y;
173b24b9 275
78b76d08
SB
276 return (p->alias == q->alias && p->offset == q->offset
277 && p->size == q->size && p->align == q->align
09e881c9 278 && p->addrspace == q->addrspace
78b76d08
SB
279 && (p->expr == q->expr
280 || (p->expr != NULL_TREE && q->expr != NULL_TREE
281 && operand_equal_p (p->expr, q->expr, 0))));
c13e8210
MM
282}
283
173b24b9 284/* Allocate a new mem_attrs structure and insert it into the hash table if
10b76d73
RK
285 one identical to it is not already in the table. We are doing this for
286 MEM of mode MODE. */
173b24b9
RK
287
288static mem_attrs *
4862826d 289get_mem_attrs (alias_set_type alias, tree expr, rtx offset, rtx size,
09e881c9 290 unsigned int align, addr_space_t addrspace, enum machine_mode mode)
173b24b9
RK
291{
292 mem_attrs attrs;
293 void **slot;
294
bb056a77
OH
295 /* If everything is the default, we can just return zero.
296 This must match what the corresponding MEM_* macros return when the
297 field is not present. */
09e881c9 298 if (alias == 0 && expr == 0 && offset == 0 && addrspace == 0
10b76d73
RK
299 && (size == 0
300 || (mode != BLKmode && GET_MODE_SIZE (mode) == INTVAL (size)))
bb056a77
OH
301 && (STRICT_ALIGNMENT && mode != BLKmode
302 ? align == GET_MODE_ALIGNMENT (mode) : align == BITS_PER_UNIT))
10b76d73
RK
303 return 0;
304
173b24b9 305 attrs.alias = alias;
998d7deb 306 attrs.expr = expr;
173b24b9
RK
307 attrs.offset = offset;
308 attrs.size = size;
309 attrs.align = align;
09e881c9 310 attrs.addrspace = addrspace;
173b24b9
RK
311
312 slot = htab_find_slot (mem_attrs_htab, &attrs, INSERT);
313 if (*slot == 0)
314 {
a9429e29 315 *slot = ggc_alloc_mem_attrs ();
173b24b9
RK
316 memcpy (*slot, &attrs, sizeof (mem_attrs));
317 }
318
1b4572a8 319 return (mem_attrs *) *slot;
c13e8210
MM
320}
321
a560d4d4
JH
322/* Returns a hash code for X (which is a really a reg_attrs *). */
323
324static hashval_t
502b8322 325reg_attrs_htab_hash (const void *x)
a560d4d4 326{
741ac903 327 const reg_attrs *const p = (const reg_attrs *) x;
a560d4d4
JH
328
329 return ((p->offset * 1000) ^ (long) p->decl);
330}
331
6356f892 332/* Returns nonzero if the value represented by X (which is really a
a560d4d4
JH
333 reg_attrs *) is the same as that given by Y (which is also really a
334 reg_attrs *). */
335
336static int
502b8322 337reg_attrs_htab_eq (const void *x, const void *y)
a560d4d4 338{
741ac903
KG
339 const reg_attrs *const p = (const reg_attrs *) x;
340 const reg_attrs *const q = (const reg_attrs *) y;
a560d4d4
JH
341
342 return (p->decl == q->decl && p->offset == q->offset);
343}
344/* Allocate a new reg_attrs structure and insert it into the hash table if
345 one identical to it is not already in the table. We are doing this for
346 MEM of mode MODE. */
347
348static reg_attrs *
502b8322 349get_reg_attrs (tree decl, int offset)
a560d4d4
JH
350{
351 reg_attrs attrs;
352 void **slot;
353
354 /* If everything is the default, we can just return zero. */
355 if (decl == 0 && offset == 0)
356 return 0;
357
358 attrs.decl = decl;
359 attrs.offset = offset;
360
361 slot = htab_find_slot (reg_attrs_htab, &attrs, INSERT);
362 if (*slot == 0)
363 {
a9429e29 364 *slot = ggc_alloc_reg_attrs ();
a560d4d4
JH
365 memcpy (*slot, &attrs, sizeof (reg_attrs));
366 }
367
1b4572a8 368 return (reg_attrs *) *slot;
a560d4d4
JH
369}
370
6fb5fa3c
DB
371
372#if !HAVE_blockage
373/* Generate an empty ASM_INPUT, which is used to block attempts to schedule
374 across this insn. */
375
376rtx
377gen_blockage (void)
378{
379 rtx x = gen_rtx_ASM_INPUT (VOIDmode, "");
380 MEM_VOLATILE_P (x) = true;
381 return x;
382}
383#endif
384
385
08394eef
BS
386/* Generate a new REG rtx. Make sure ORIGINAL_REGNO is set properly, and
387 don't attempt to share with the various global pieces of rtl (such as
388 frame_pointer_rtx). */
389
390rtx
502b8322 391gen_raw_REG (enum machine_mode mode, int regno)
08394eef
BS
392{
393 rtx x = gen_rtx_raw_REG (mode, regno);
394 ORIGINAL_REGNO (x) = regno;
395 return x;
396}
397
c5c76735
JL
398/* There are some RTL codes that require special attention; the generation
399 functions do the raw handling. If you add to this list, modify
400 special_rtx in gengenrtl.c as well. */
401
3b80f6ca 402rtx
502b8322 403gen_rtx_CONST_INT (enum machine_mode mode ATTRIBUTE_UNUSED, HOST_WIDE_INT arg)
3b80f6ca 404{
c13e8210
MM
405 void **slot;
406
3b80f6ca 407 if (arg >= - MAX_SAVED_CONST_INT && arg <= MAX_SAVED_CONST_INT)
5da077de 408 return const_int_rtx[arg + MAX_SAVED_CONST_INT];
3b80f6ca
RH
409
410#if STORE_FLAG_VALUE != 1 && STORE_FLAG_VALUE != -1
411 if (const_true_rtx && arg == STORE_FLAG_VALUE)
412 return const_true_rtx;
413#endif
414
c13e8210 415 /* Look up the CONST_INT in the hash table. */
e38992e8
RK
416 slot = htab_find_slot_with_hash (const_int_htab, &arg,
417 (hashval_t) arg, INSERT);
29105cea 418 if (*slot == 0)
1f8f4a0b 419 *slot = gen_rtx_raw_CONST_INT (VOIDmode, arg);
c13e8210
MM
420
421 return (rtx) *slot;
3b80f6ca
RH
422}
423
2496c7bd 424rtx
502b8322 425gen_int_mode (HOST_WIDE_INT c, enum machine_mode mode)
2496c7bd
LB
426{
427 return GEN_INT (trunc_int_for_mode (c, mode));
428}
429
5692c7bc
ZW
430/* CONST_DOUBLEs might be created from pairs of integers, or from
431 REAL_VALUE_TYPEs. Also, their length is known only at run time,
432 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
433
434/* Determine whether REAL, a CONST_DOUBLE, already exists in the
435 hash table. If so, return its counterpart; otherwise add it
436 to the hash table and return it. */
437static rtx
502b8322 438lookup_const_double (rtx real)
5692c7bc
ZW
439{
440 void **slot = htab_find_slot (const_double_htab, real, INSERT);
441 if (*slot == 0)
442 *slot = real;
443
444 return (rtx) *slot;
445}
29105cea 446
5692c7bc
ZW
447/* Return a CONST_DOUBLE rtx for a floating-point value specified by
448 VALUE in mode MODE. */
0133b7d9 449rtx
502b8322 450const_double_from_real_value (REAL_VALUE_TYPE value, enum machine_mode mode)
0133b7d9 451{
5692c7bc
ZW
452 rtx real = rtx_alloc (CONST_DOUBLE);
453 PUT_MODE (real, mode);
454
9e254451 455 real->u.rv = value;
5692c7bc
ZW
456
457 return lookup_const_double (real);
458}
459
091a3ac7
CF
460/* Determine whether FIXED, a CONST_FIXED, already exists in the
461 hash table. If so, return its counterpart; otherwise add it
462 to the hash table and return it. */
463
464static rtx
465lookup_const_fixed (rtx fixed)
466{
467 void **slot = htab_find_slot (const_fixed_htab, fixed, INSERT);
468 if (*slot == 0)
469 *slot = fixed;
470
471 return (rtx) *slot;
472}
473
474/* Return a CONST_FIXED rtx for a fixed-point value specified by
475 VALUE in mode MODE. */
476
477rtx
478const_fixed_from_fixed_value (FIXED_VALUE_TYPE value, enum machine_mode mode)
479{
480 rtx fixed = rtx_alloc (CONST_FIXED);
481 PUT_MODE (fixed, mode);
482
483 fixed->u.fv = value;
484
485 return lookup_const_fixed (fixed);
486}
487
3e93ff81
AS
488/* Constructs double_int from rtx CST. */
489
490double_int
491rtx_to_double_int (const_rtx cst)
492{
493 double_int r;
494
495 if (CONST_INT_P (cst))
496 r = shwi_to_double_int (INTVAL (cst));
497 else if (CONST_DOUBLE_P (cst) && GET_MODE (cst) == VOIDmode)
498 {
499 r.low = CONST_DOUBLE_LOW (cst);
500 r.high = CONST_DOUBLE_HIGH (cst);
501 }
502 else
503 gcc_unreachable ();
504
505 return r;
506}
507
508
54fb1ae0
AS
509/* Return a CONST_DOUBLE or CONST_INT for a value specified as
510 a double_int. */
511
512rtx
513immed_double_int_const (double_int i, enum machine_mode mode)
514{
515 return immed_double_const (i.low, i.high, mode);
516}
517
5692c7bc
ZW
518/* Return a CONST_DOUBLE or CONST_INT for a value specified as a pair
519 of ints: I0 is the low-order word and I1 is the high-order word.
520 Do not use this routine for non-integer modes; convert to
521 REAL_VALUE_TYPE and use CONST_DOUBLE_FROM_REAL_VALUE. */
522
523rtx
502b8322 524immed_double_const (HOST_WIDE_INT i0, HOST_WIDE_INT i1, enum machine_mode mode)
5692c7bc
ZW
525{
526 rtx value;
527 unsigned int i;
528
65acccdd
ZD
529 /* There are the following cases (note that there are no modes with
530 HOST_BITS_PER_WIDE_INT < GET_MODE_BITSIZE (mode) < 2 * HOST_BITS_PER_WIDE_INT):
531
532 1) If GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT, then we use
533 gen_int_mode.
534 2) GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT, but the value of
535 the integer fits into HOST_WIDE_INT anyway (i.e., i1 consists only
b8698a0f 536 from copies of the sign bit, and sign of i0 and i1 are the same), then
65acccdd
ZD
537 we return a CONST_INT for i0.
538 3) Otherwise, we create a CONST_DOUBLE for i0 and i1. */
5692c7bc
ZW
539 if (mode != VOIDmode)
540 {
5b0264cb
NS
541 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT
542 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT
543 /* We can get a 0 for an error mark. */
544 || GET_MODE_CLASS (mode) == MODE_VECTOR_INT
545 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT);
5692c7bc 546
65acccdd
ZD
547 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
548 return gen_int_mode (i0, mode);
549
550 gcc_assert (GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT);
5692c7bc
ZW
551 }
552
553 /* If this integer fits in one word, return a CONST_INT. */
554 if ((i1 == 0 && i0 >= 0) || (i1 == ~0 && i0 < 0))
555 return GEN_INT (i0);
556
557 /* We use VOIDmode for integers. */
558 value = rtx_alloc (CONST_DOUBLE);
559 PUT_MODE (value, VOIDmode);
560
561 CONST_DOUBLE_LOW (value) = i0;
562 CONST_DOUBLE_HIGH (value) = i1;
563
564 for (i = 2; i < (sizeof CONST_DOUBLE_FORMAT - 1); i++)
565 XWINT (value, i) = 0;
566
567 return lookup_const_double (value);
0133b7d9
RH
568}
569
3b80f6ca 570rtx
502b8322 571gen_rtx_REG (enum machine_mode mode, unsigned int regno)
3b80f6ca
RH
572{
573 /* In case the MD file explicitly references the frame pointer, have
574 all such references point to the same frame pointer. This is
575 used during frame pointer elimination to distinguish the explicit
576 references to these registers from pseudos that happened to be
577 assigned to them.
578
579 If we have eliminated the frame pointer or arg pointer, we will
580 be using it as a normal register, for example as a spill
581 register. In such cases, we might be accessing it in a mode that
582 is not Pmode and therefore cannot use the pre-allocated rtx.
583
584 Also don't do this when we are making new REGs in reload, since
585 we don't want to get confused with the real pointers. */
586
587 if (mode == Pmode && !reload_in_progress)
588 {
e10c79fe
LB
589 if (regno == FRAME_POINTER_REGNUM
590 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
591 return frame_pointer_rtx;
592#if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
e10c79fe
LB
593 if (regno == HARD_FRAME_POINTER_REGNUM
594 && (!reload_completed || frame_pointer_needed))
3b80f6ca
RH
595 return hard_frame_pointer_rtx;
596#endif
597#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM && HARD_FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
bcb33994 598 if (regno == ARG_POINTER_REGNUM)
3b80f6ca
RH
599 return arg_pointer_rtx;
600#endif
601#ifdef RETURN_ADDRESS_POINTER_REGNUM
bcb33994 602 if (regno == RETURN_ADDRESS_POINTER_REGNUM)
3b80f6ca
RH
603 return return_address_pointer_rtx;
604#endif
fc555370 605 if (regno == (unsigned) PIC_OFFSET_TABLE_REGNUM
2d67bd7b 606 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
68252e27 607 return pic_offset_table_rtx;
bcb33994 608 if (regno == STACK_POINTER_REGNUM)
3b80f6ca
RH
609 return stack_pointer_rtx;
610 }
611
006a94b0 612#if 0
6cde4876 613 /* If the per-function register table has been set up, try to re-use
006a94b0
JL
614 an existing entry in that table to avoid useless generation of RTL.
615
616 This code is disabled for now until we can fix the various backends
617 which depend on having non-shared hard registers in some cases. Long
618 term we want to re-enable this code as it can significantly cut down
e10c79fe
LB
619 on the amount of useless RTL that gets generated.
620
621 We'll also need to fix some code that runs after reload that wants to
622 set ORIGINAL_REGNO. */
623
6cde4876
JL
624 if (cfun
625 && cfun->emit
626 && regno_reg_rtx
627 && regno < FIRST_PSEUDO_REGISTER
628 && reg_raw_mode[regno] == mode)
629 return regno_reg_rtx[regno];
006a94b0 630#endif
6cde4876 631
08394eef 632 return gen_raw_REG (mode, regno);
3b80f6ca
RH
633}
634
41472af8 635rtx
502b8322 636gen_rtx_MEM (enum machine_mode mode, rtx addr)
41472af8
MM
637{
638 rtx rt = gen_rtx_raw_MEM (mode, addr);
639
640 /* This field is not cleared by the mere allocation of the rtx, so
641 we clear it here. */
173b24b9 642 MEM_ATTRS (rt) = 0;
41472af8
MM
643
644 return rt;
645}
ddef6bc7 646
542a8afa
RH
647/* Generate a memory referring to non-trapping constant memory. */
648
649rtx
650gen_const_mem (enum machine_mode mode, rtx addr)
651{
652 rtx mem = gen_rtx_MEM (mode, addr);
653 MEM_READONLY_P (mem) = 1;
654 MEM_NOTRAP_P (mem) = 1;
655 return mem;
656}
657
bf877a76
R
658/* Generate a MEM referring to fixed portions of the frame, e.g., register
659 save areas. */
660
661rtx
662gen_frame_mem (enum machine_mode mode, rtx addr)
663{
664 rtx mem = gen_rtx_MEM (mode, addr);
665 MEM_NOTRAP_P (mem) = 1;
666 set_mem_alias_set (mem, get_frame_alias_set ());
667 return mem;
668}
669
670/* Generate a MEM referring to a temporary use of the stack, not part
671 of the fixed stack frame. For example, something which is pushed
672 by a target splitter. */
673rtx
674gen_tmp_stack_mem (enum machine_mode mode, rtx addr)
675{
676 rtx mem = gen_rtx_MEM (mode, addr);
677 MEM_NOTRAP_P (mem) = 1;
e3b5732b 678 if (!cfun->calls_alloca)
bf877a76
R
679 set_mem_alias_set (mem, get_frame_alias_set ());
680 return mem;
681}
682
beb72684
RH
683/* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
684 this construct would be valid, and false otherwise. */
685
686bool
687validate_subreg (enum machine_mode omode, enum machine_mode imode,
ed7a4b4b 688 const_rtx reg, unsigned int offset)
ddef6bc7 689{
beb72684
RH
690 unsigned int isize = GET_MODE_SIZE (imode);
691 unsigned int osize = GET_MODE_SIZE (omode);
692
693 /* All subregs must be aligned. */
694 if (offset % osize != 0)
695 return false;
696
697 /* The subreg offset cannot be outside the inner object. */
698 if (offset >= isize)
699 return false;
700
701 /* ??? This should not be here. Temporarily continue to allow word_mode
702 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
703 Generally, backends are doing something sketchy but it'll take time to
704 fix them all. */
705 if (omode == word_mode)
706 ;
707 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
708 is the culprit here, and not the backends. */
709 else if (osize >= UNITS_PER_WORD && isize >= osize)
710 ;
711 /* Allow component subregs of complex and vector. Though given the below
712 extraction rules, it's not always clear what that means. */
713 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
714 && GET_MODE_INNER (imode) == omode)
715 ;
716 /* ??? x86 sse code makes heavy use of *paradoxical* vector subregs,
717 i.e. (subreg:V4SF (reg:SF) 0). This surely isn't the cleanest way to
718 represent this. It's questionable if this ought to be represented at
719 all -- why can't this all be hidden in post-reload splitters that make
720 arbitrarily mode changes to the registers themselves. */
721 else if (VECTOR_MODE_P (omode) && GET_MODE_INNER (omode) == imode)
722 ;
723 /* Subregs involving floating point modes are not allowed to
724 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
725 (subreg:SI (reg:DF) 0) isn't. */
726 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
727 {
728 if (isize != osize)
729 return false;
730 }
ddef6bc7 731
beb72684
RH
732 /* Paradoxical subregs must have offset zero. */
733 if (osize > isize)
734 return offset == 0;
735
736 /* This is a normal subreg. Verify that the offset is representable. */
737
738 /* For hard registers, we already have most of these rules collected in
739 subreg_offset_representable_p. */
740 if (reg && REG_P (reg) && HARD_REGISTER_P (reg))
741 {
742 unsigned int regno = REGNO (reg);
743
744#ifdef CANNOT_CHANGE_MODE_CLASS
745 if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
746 && GET_MODE_INNER (imode) == omode)
747 ;
748 else if (REG_CANNOT_CHANGE_MODE_P (regno, imode, omode))
749 return false;
ddef6bc7 750#endif
beb72684
RH
751
752 return subreg_offset_representable_p (regno, imode, offset, omode);
753 }
754
755 /* For pseudo registers, we want most of the same checks. Namely:
756 If the register no larger than a word, the subreg must be lowpart.
757 If the register is larger than a word, the subreg must be the lowpart
758 of a subword. A subreg does *not* perform arbitrary bit extraction.
759 Given that we've already checked mode/offset alignment, we only have
760 to check subword subregs here. */
761 if (osize < UNITS_PER_WORD)
762 {
763 enum machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode;
764 unsigned int low_off = subreg_lowpart_offset (omode, wmode);
765 if (offset % UNITS_PER_WORD != low_off)
766 return false;
767 }
768 return true;
769}
770
771rtx
772gen_rtx_SUBREG (enum machine_mode mode, rtx reg, int offset)
773{
774 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
5692c7bc 775 return gen_rtx_raw_SUBREG (mode, reg, offset);
ddef6bc7
JJ
776}
777
173b24b9
RK
778/* Generate a SUBREG representing the least-significant part of REG if MODE
779 is smaller than mode of REG, otherwise paradoxical SUBREG. */
780
ddef6bc7 781rtx
502b8322 782gen_lowpart_SUBREG (enum machine_mode mode, rtx reg)
ddef6bc7
JJ
783{
784 enum machine_mode inmode;
ddef6bc7
JJ
785
786 inmode = GET_MODE (reg);
787 if (inmode == VOIDmode)
788 inmode = mode;
e0e08ac2
JH
789 return gen_rtx_SUBREG (mode, reg,
790 subreg_lowpart_offset (mode, inmode));
ddef6bc7 791}
c5c76735 792\f
23b2ce53 793
80379f51
PB
794/* Create an rtvec and stores within it the RTXen passed in the arguments. */
795
23b2ce53 796rtvec
e34d07f2 797gen_rtvec (int n, ...)
23b2ce53 798{
80379f51
PB
799 int i;
800 rtvec rt_val;
e34d07f2 801 va_list p;
23b2ce53 802
e34d07f2 803 va_start (p, n);
23b2ce53 804
80379f51 805 /* Don't allocate an empty rtvec... */
23b2ce53 806 if (n == 0)
80379f51 807 return NULL_RTVEC;
23b2ce53 808
80379f51 809 rt_val = rtvec_alloc (n);
4f90e4a0 810
23b2ce53 811 for (i = 0; i < n; i++)
80379f51 812 rt_val->elem[i] = va_arg (p, rtx);
6268b922 813
e34d07f2 814 va_end (p);
80379f51 815 return rt_val;
23b2ce53
RS
816}
817
818rtvec
502b8322 819gen_rtvec_v (int n, rtx *argp)
23b2ce53 820{
b3694847
SS
821 int i;
822 rtvec rt_val;
23b2ce53 823
80379f51 824 /* Don't allocate an empty rtvec... */
23b2ce53 825 if (n == 0)
80379f51 826 return NULL_RTVEC;
23b2ce53 827
80379f51 828 rt_val = rtvec_alloc (n);
23b2ce53
RS
829
830 for (i = 0; i < n; i++)
8f985ec4 831 rt_val->elem[i] = *argp++;
23b2ce53
RS
832
833 return rt_val;
834}
835\f
38ae7651
RS
836/* Return the number of bytes between the start of an OUTER_MODE
837 in-memory value and the start of an INNER_MODE in-memory value,
838 given that the former is a lowpart of the latter. It may be a
839 paradoxical lowpart, in which case the offset will be negative
840 on big-endian targets. */
841
842int
843byte_lowpart_offset (enum machine_mode outer_mode,
844 enum machine_mode inner_mode)
845{
846 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode))
847 return subreg_lowpart_offset (outer_mode, inner_mode);
848 else
849 return -subreg_lowpart_offset (inner_mode, outer_mode);
850}
851\f
23b2ce53
RS
852/* Generate a REG rtx for a new pseudo register of mode MODE.
853 This pseudo is assigned the next sequential register number. */
854
855rtx
502b8322 856gen_reg_rtx (enum machine_mode mode)
23b2ce53 857{
b3694847 858 rtx val;
2e3f842f 859 unsigned int align = GET_MODE_ALIGNMENT (mode);
23b2ce53 860
f8335a4f 861 gcc_assert (can_create_pseudo_p ());
23b2ce53 862
2e3f842f
L
863 /* If a virtual register with bigger mode alignment is generated,
864 increase stack alignment estimation because it might be spilled
865 to stack later. */
b8698a0f 866 if (SUPPORTS_STACK_ALIGNMENT
2e3f842f
L
867 && crtl->stack_alignment_estimated < align
868 && !crtl->stack_realign_processed)
ae58e548
JJ
869 {
870 unsigned int min_align = MINIMUM_ALIGNMENT (NULL, mode, align);
871 if (crtl->stack_alignment_estimated < min_align)
872 crtl->stack_alignment_estimated = min_align;
873 }
2e3f842f 874
1b3d8f8a
GK
875 if (generating_concat_p
876 && (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
877 || GET_MODE_CLASS (mode) == MODE_COMPLEX_INT))
fc84e8a8
RS
878 {
879 /* For complex modes, don't make a single pseudo.
880 Instead, make a CONCAT of two pseudos.
881 This allows noncontiguous allocation of the real and imaginary parts,
882 which makes much better code. Besides, allocating DCmode
883 pseudos overstrains reload on some machines like the 386. */
884 rtx realpart, imagpart;
27e58a70 885 enum machine_mode partmode = GET_MODE_INNER (mode);
fc84e8a8
RS
886
887 realpart = gen_reg_rtx (partmode);
888 imagpart = gen_reg_rtx (partmode);
3b80f6ca 889 return gen_rtx_CONCAT (mode, realpart, imagpart);
fc84e8a8
RS
890 }
891
a560d4d4 892 /* Make sure regno_pointer_align, and regno_reg_rtx are large
0d4903b8 893 enough to have an element for this pseudo reg number. */
23b2ce53 894
3e029763 895 if (reg_rtx_no == crtl->emit.regno_pointer_align_length)
23b2ce53 896 {
3e029763 897 int old_size = crtl->emit.regno_pointer_align_length;
60564289 898 char *tmp;
0d4903b8 899 rtx *new1;
0d4903b8 900
60564289
KG
901 tmp = XRESIZEVEC (char, crtl->emit.regno_pointer_align, old_size * 2);
902 memset (tmp + old_size, 0, old_size);
903 crtl->emit.regno_pointer_align = (unsigned char *) tmp;
49ad7cfa 904
1b4572a8 905 new1 = GGC_RESIZEVEC (rtx, regno_reg_rtx, old_size * 2);
49ad7cfa 906 memset (new1 + old_size, 0, old_size * sizeof (rtx));
23b2ce53
RS
907 regno_reg_rtx = new1;
908
3e029763 909 crtl->emit.regno_pointer_align_length = old_size * 2;
23b2ce53
RS
910 }
911
08394eef 912 val = gen_raw_REG (mode, reg_rtx_no);
23b2ce53
RS
913 regno_reg_rtx[reg_rtx_no++] = val;
914 return val;
915}
916
38ae7651
RS
917/* Update NEW with the same attributes as REG, but with OFFSET added
918 to the REG_OFFSET. */
a560d4d4 919
e53a16e7 920static void
60564289 921update_reg_offset (rtx new_rtx, rtx reg, int offset)
a560d4d4 922{
60564289 923 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
502b8322 924 REG_OFFSET (reg) + offset);
e53a16e7
ILT
925}
926
38ae7651
RS
927/* Generate a register with same attributes as REG, but with OFFSET
928 added to the REG_OFFSET. */
e53a16e7
ILT
929
930rtx
931gen_rtx_REG_offset (rtx reg, enum machine_mode mode, unsigned int regno,
932 int offset)
933{
60564289 934 rtx new_rtx = gen_rtx_REG (mode, regno);
e53a16e7 935
60564289
KG
936 update_reg_offset (new_rtx, reg, offset);
937 return new_rtx;
e53a16e7
ILT
938}
939
940/* Generate a new pseudo-register with the same attributes as REG, but
38ae7651 941 with OFFSET added to the REG_OFFSET. */
e53a16e7
ILT
942
943rtx
944gen_reg_rtx_offset (rtx reg, enum machine_mode mode, int offset)
945{
60564289 946 rtx new_rtx = gen_reg_rtx (mode);
e53a16e7 947
60564289
KG
948 update_reg_offset (new_rtx, reg, offset);
949 return new_rtx;
a560d4d4
JH
950}
951
38ae7651
RS
952/* Adjust REG in-place so that it has mode MODE. It is assumed that the
953 new register is a (possibly paradoxical) lowpart of the old one. */
a560d4d4
JH
954
955void
38ae7651 956adjust_reg_mode (rtx reg, enum machine_mode mode)
a560d4d4 957{
38ae7651
RS
958 update_reg_offset (reg, reg, byte_lowpart_offset (mode, GET_MODE (reg)));
959 PUT_MODE (reg, mode);
960}
961
962/* Copy REG's attributes from X, if X has any attributes. If REG and X
963 have different modes, REG is a (possibly paradoxical) lowpart of X. */
964
965void
966set_reg_attrs_from_value (rtx reg, rtx x)
967{
968 int offset;
969
923ba36f
JJ
970 /* Hard registers can be reused for multiple purposes within the same
971 function, so setting REG_ATTRS, REG_POINTER and REG_POINTER_ALIGN
972 on them is wrong. */
973 if (HARD_REGISTER_P (reg))
974 return;
975
38ae7651 976 offset = byte_lowpart_offset (GET_MODE (reg), GET_MODE (x));
46b71b03
PB
977 if (MEM_P (x))
978 {
481683e1 979 if (MEM_OFFSET (x) && CONST_INT_P (MEM_OFFSET (x)))
46b71b03
PB
980 REG_ATTRS (reg)
981 = get_reg_attrs (MEM_EXPR (x), INTVAL (MEM_OFFSET (x)) + offset);
982 if (MEM_POINTER (x))
0a317111 983 mark_reg_pointer (reg, 0);
46b71b03
PB
984 }
985 else if (REG_P (x))
986 {
987 if (REG_ATTRS (x))
988 update_reg_offset (reg, x, offset);
989 if (REG_POINTER (x))
990 mark_reg_pointer (reg, REGNO_POINTER_ALIGN (REGNO (x)));
991 }
992}
993
994/* Generate a REG rtx for a new pseudo register, copying the mode
995 and attributes from X. */
996
997rtx
998gen_reg_rtx_and_attrs (rtx x)
999{
1000 rtx reg = gen_reg_rtx (GET_MODE (x));
1001 set_reg_attrs_from_value (reg, x);
1002 return reg;
a560d4d4
JH
1003}
1004
9d18e06b
JZ
1005/* Set the register attributes for registers contained in PARM_RTX.
1006 Use needed values from memory attributes of MEM. */
1007
1008void
502b8322 1009set_reg_attrs_for_parm (rtx parm_rtx, rtx mem)
9d18e06b 1010{
f8cfc6aa 1011 if (REG_P (parm_rtx))
38ae7651 1012 set_reg_attrs_from_value (parm_rtx, mem);
9d18e06b
JZ
1013 else if (GET_CODE (parm_rtx) == PARALLEL)
1014 {
1015 /* Check for a NULL entry in the first slot, used to indicate that the
1016 parameter goes both on the stack and in registers. */
1017 int i = XEXP (XVECEXP (parm_rtx, 0, 0), 0) ? 0 : 1;
1018 for (; i < XVECLEN (parm_rtx, 0); i++)
1019 {
1020 rtx x = XVECEXP (parm_rtx, 0, i);
f8cfc6aa 1021 if (REG_P (XEXP (x, 0)))
9d18e06b
JZ
1022 REG_ATTRS (XEXP (x, 0))
1023 = get_reg_attrs (MEM_EXPR (mem),
1024 INTVAL (XEXP (x, 1)));
1025 }
1026 }
1027}
1028
38ae7651
RS
1029/* Set the REG_ATTRS for registers in value X, given that X represents
1030 decl T. */
a560d4d4 1031
4e3825db 1032void
38ae7651
RS
1033set_reg_attrs_for_decl_rtl (tree t, rtx x)
1034{
1035 if (GET_CODE (x) == SUBREG)
fbe6ec81 1036 {
38ae7651
RS
1037 gcc_assert (subreg_lowpart_p (x));
1038 x = SUBREG_REG (x);
fbe6ec81 1039 }
f8cfc6aa 1040 if (REG_P (x))
38ae7651
RS
1041 REG_ATTRS (x)
1042 = get_reg_attrs (t, byte_lowpart_offset (GET_MODE (x),
726612d2 1043 DECL_MODE (t)));
a560d4d4
JH
1044 if (GET_CODE (x) == CONCAT)
1045 {
1046 if (REG_P (XEXP (x, 0)))
1047 REG_ATTRS (XEXP (x, 0)) = get_reg_attrs (t, 0);
1048 if (REG_P (XEXP (x, 1)))
1049 REG_ATTRS (XEXP (x, 1))
1050 = get_reg_attrs (t, GET_MODE_UNIT_SIZE (GET_MODE (XEXP (x, 0))));
1051 }
1052 if (GET_CODE (x) == PARALLEL)
1053 {
d4afac5b
JZ
1054 int i, start;
1055
1056 /* Check for a NULL entry, used to indicate that the parameter goes
1057 both on the stack and in registers. */
1058 if (XEXP (XVECEXP (x, 0, 0), 0))
1059 start = 0;
1060 else
1061 start = 1;
1062
1063 for (i = start; i < XVECLEN (x, 0); i++)
a560d4d4
JH
1064 {
1065 rtx y = XVECEXP (x, 0, i);
1066 if (REG_P (XEXP (y, 0)))
1067 REG_ATTRS (XEXP (y, 0)) = get_reg_attrs (t, INTVAL (XEXP (y, 1)));
1068 }
1069 }
1070}
1071
38ae7651
RS
1072/* Assign the RTX X to declaration T. */
1073
1074void
1075set_decl_rtl (tree t, rtx x)
1076{
1077 DECL_WRTL_CHECK (t)->decl_with_rtl.rtl = x;
1078 if (x)
1079 set_reg_attrs_for_decl_rtl (t, x);
1080}
1081
5141868d
RS
1082/* Assign the RTX X to parameter declaration T. BY_REFERENCE_P is true
1083 if the ABI requires the parameter to be passed by reference. */
38ae7651
RS
1084
1085void
5141868d 1086set_decl_incoming_rtl (tree t, rtx x, bool by_reference_p)
38ae7651
RS
1087{
1088 DECL_INCOMING_RTL (t) = x;
5141868d 1089 if (x && !by_reference_p)
38ae7651
RS
1090 set_reg_attrs_for_decl_rtl (t, x);
1091}
1092
754fdcca
RK
1093/* Identify REG (which may be a CONCAT) as a user register. */
1094
1095void
502b8322 1096mark_user_reg (rtx reg)
754fdcca
RK
1097{
1098 if (GET_CODE (reg) == CONCAT)
1099 {
1100 REG_USERVAR_P (XEXP (reg, 0)) = 1;
1101 REG_USERVAR_P (XEXP (reg, 1)) = 1;
1102 }
754fdcca 1103 else
5b0264cb
NS
1104 {
1105 gcc_assert (REG_P (reg));
1106 REG_USERVAR_P (reg) = 1;
1107 }
754fdcca
RK
1108}
1109
86fe05e0
RK
1110/* Identify REG as a probable pointer register and show its alignment
1111 as ALIGN, if nonzero. */
23b2ce53
RS
1112
1113void
502b8322 1114mark_reg_pointer (rtx reg, int align)
23b2ce53 1115{
3502dc9c 1116 if (! REG_POINTER (reg))
00995e78 1117 {
3502dc9c 1118 REG_POINTER (reg) = 1;
86fe05e0 1119
00995e78
RE
1120 if (align)
1121 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
1122 }
1123 else if (align && align < REGNO_POINTER_ALIGN (REGNO (reg)))
6614fd40 1124 /* We can no-longer be sure just how aligned this pointer is. */
86fe05e0 1125 REGNO_POINTER_ALIGN (REGNO (reg)) = align;
23b2ce53
RS
1126}
1127
1128/* Return 1 plus largest pseudo reg number used in the current function. */
1129
1130int
502b8322 1131max_reg_num (void)
23b2ce53
RS
1132{
1133 return reg_rtx_no;
1134}
1135
1136/* Return 1 + the largest label number used so far in the current function. */
1137
1138int
502b8322 1139max_label_num (void)
23b2ce53 1140{
23b2ce53
RS
1141 return label_num;
1142}
1143
1144/* Return first label number used in this function (if any were used). */
1145
1146int
502b8322 1147get_first_label_num (void)
23b2ce53
RS
1148{
1149 return first_label_num;
1150}
6de9cd9a
DN
1151
1152/* If the rtx for label was created during the expansion of a nested
1153 function, then first_label_num won't include this label number.
fa10beec 1154 Fix this now so that array indices work later. */
6de9cd9a
DN
1155
1156void
1157maybe_set_first_label_num (rtx x)
1158{
1159 if (CODE_LABEL_NUMBER (x) < first_label_num)
1160 first_label_num = CODE_LABEL_NUMBER (x);
1161}
23b2ce53
RS
1162\f
1163/* Return a value representing some low-order bits of X, where the number
1164 of low-order bits is given by MODE. Note that no conversion is done
750c9258 1165 between floating-point and fixed-point values, rather, the bit
23b2ce53
RS
1166 representation is returned.
1167
1168 This function handles the cases in common between gen_lowpart, below,
1169 and two variants in cse.c and combine.c. These are the cases that can
1170 be safely handled at all points in the compilation.
1171
1172 If this is not a case we can handle, return 0. */
1173
1174rtx
502b8322 1175gen_lowpart_common (enum machine_mode mode, rtx x)
23b2ce53 1176{
ddef6bc7 1177 int msize = GET_MODE_SIZE (mode);
550d1387 1178 int xsize;
ddef6bc7 1179 int offset = 0;
550d1387
GK
1180 enum machine_mode innermode;
1181
1182 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1183 so we have to make one up. Yuk. */
1184 innermode = GET_MODE (x);
481683e1 1185 if (CONST_INT_P (x)
db487452 1186 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT)
550d1387
GK
1187 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1188 else if (innermode == VOIDmode)
1189 innermode = mode_for_size (HOST_BITS_PER_WIDE_INT * 2, MODE_INT, 0);
b8698a0f 1190
550d1387
GK
1191 xsize = GET_MODE_SIZE (innermode);
1192
5b0264cb 1193 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
23b2ce53 1194
550d1387 1195 if (innermode == mode)
23b2ce53
RS
1196 return x;
1197
1198 /* MODE must occupy no more words than the mode of X. */
550d1387
GK
1199 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD
1200 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
23b2ce53
RS
1201 return 0;
1202
53501a19 1203 /* Don't allow generating paradoxical FLOAT_MODE subregs. */
3d8bf70f 1204 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize)
53501a19
BS
1205 return 0;
1206
550d1387 1207 offset = subreg_lowpart_offset (mode, innermode);
23b2ce53
RS
1208
1209 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
83e9c679
RK
1210 && (GET_MODE_CLASS (mode) == MODE_INT
1211 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT))
23b2ce53
RS
1212 {
1213 /* If we are getting the low-order part of something that has been
1214 sign- or zero-extended, we can either just use the object being
1215 extended or make a narrower extension. If we want an even smaller
1216 piece than the size of the object being extended, call ourselves
1217 recursively.
1218
1219 This case is used mostly by combine and cse. */
1220
1221 if (GET_MODE (XEXP (x, 0)) == mode)
1222 return XEXP (x, 0);
550d1387 1223 else if (msize < GET_MODE_SIZE (GET_MODE (XEXP (x, 0))))
23b2ce53 1224 return gen_lowpart_common (mode, XEXP (x, 0));
550d1387 1225 else if (msize < xsize)
3b80f6ca 1226 return gen_rtx_fmt_e (GET_CODE (x), mode, XEXP (x, 0));
23b2ce53 1227 }
f8cfc6aa 1228 else if (GET_CODE (x) == SUBREG || REG_P (x)
550d1387 1229 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
481683e1 1230 || GET_CODE (x) == CONST_DOUBLE || CONST_INT_P (x))
550d1387 1231 return simplify_gen_subreg (mode, x, innermode, offset);
8aada4ad 1232
23b2ce53
RS
1233 /* Otherwise, we can't do this. */
1234 return 0;
1235}
1236\f
ccba022b 1237rtx
502b8322 1238gen_highpart (enum machine_mode mode, rtx x)
ccba022b 1239{
ddef6bc7 1240 unsigned int msize = GET_MODE_SIZE (mode);
e0e08ac2 1241 rtx result;
ddef6bc7 1242
ccba022b
RS
1243 /* This case loses if X is a subreg. To catch bugs early,
1244 complain if an invalid MODE is used even in other cases. */
5b0264cb
NS
1245 gcc_assert (msize <= UNITS_PER_WORD
1246 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x)));
ddef6bc7 1247
e0e08ac2
JH
1248 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1249 subreg_highpart_offset (mode, GET_MODE (x)));
5b0264cb 1250 gcc_assert (result);
b8698a0f 1251
09482e0d
JW
1252 /* simplify_gen_subreg is not guaranteed to return a valid operand for
1253 the target if we have a MEM. gen_highpart must return a valid operand,
1254 emitting code if necessary to do so. */
5b0264cb
NS
1255 if (MEM_P (result))
1256 {
1257 result = validize_mem (result);
1258 gcc_assert (result);
1259 }
b8698a0f 1260
e0e08ac2
JH
1261 return result;
1262}
5222e470 1263
26d249eb 1264/* Like gen_highpart, but accept mode of EXP operand in case EXP can
5222e470
JH
1265 be VOIDmode constant. */
1266rtx
502b8322 1267gen_highpart_mode (enum machine_mode outermode, enum machine_mode innermode, rtx exp)
5222e470
JH
1268{
1269 if (GET_MODE (exp) != VOIDmode)
1270 {
5b0264cb 1271 gcc_assert (GET_MODE (exp) == innermode);
5222e470
JH
1272 return gen_highpart (outermode, exp);
1273 }
1274 return simplify_gen_subreg (outermode, exp, innermode,
1275 subreg_highpart_offset (outermode, innermode));
1276}
68252e27 1277
38ae7651 1278/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
8698cce3 1279
e0e08ac2 1280unsigned int
502b8322 1281subreg_lowpart_offset (enum machine_mode outermode, enum machine_mode innermode)
e0e08ac2
JH
1282{
1283 unsigned int offset = 0;
1284 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
8698cce3 1285
e0e08ac2 1286 if (difference > 0)
ccba022b 1287 {
e0e08ac2
JH
1288 if (WORDS_BIG_ENDIAN)
1289 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
1290 if (BYTES_BIG_ENDIAN)
1291 offset += difference % UNITS_PER_WORD;
ccba022b 1292 }
ddef6bc7 1293
e0e08ac2 1294 return offset;
ccba022b 1295}
eea50aa0 1296
e0e08ac2
JH
1297/* Return offset in bytes to get OUTERMODE high part
1298 of the value in mode INNERMODE stored in memory in target format. */
1299unsigned int
502b8322 1300subreg_highpart_offset (enum machine_mode outermode, enum machine_mode innermode)
eea50aa0
JH
1301{
1302 unsigned int offset = 0;
1303 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
1304
5b0264cb 1305 gcc_assert (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode));
e0e08ac2 1306
eea50aa0
JH
1307 if (difference > 0)
1308 {
e0e08ac2 1309 if (! WORDS_BIG_ENDIAN)
eea50aa0 1310 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
e0e08ac2 1311 if (! BYTES_BIG_ENDIAN)
eea50aa0
JH
1312 offset += difference % UNITS_PER_WORD;
1313 }
1314
e0e08ac2 1315 return offset;
eea50aa0 1316}
ccba022b 1317
23b2ce53
RS
1318/* Return 1 iff X, assumed to be a SUBREG,
1319 refers to the least significant part of its containing reg.
1320 If X is not a SUBREG, always return 1 (it is its own low part!). */
1321
1322int
fa233e34 1323subreg_lowpart_p (const_rtx x)
23b2ce53
RS
1324{
1325 if (GET_CODE (x) != SUBREG)
1326 return 1;
a3a03040
RK
1327 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1328 return 0;
23b2ce53 1329
e0e08ac2
JH
1330 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)))
1331 == SUBREG_BYTE (x));
23b2ce53
RS
1332}
1333\f
ddef6bc7
JJ
1334/* Return subword OFFSET of operand OP.
1335 The word number, OFFSET, is interpreted as the word number starting
1336 at the low-order address. OFFSET 0 is the low-order word if not
1337 WORDS_BIG_ENDIAN, otherwise it is the high-order word.
1338
1339 If we cannot extract the required word, we return zero. Otherwise,
1340 an rtx corresponding to the requested word will be returned.
1341
1342 VALIDATE_ADDRESS is nonzero if the address should be validated. Before
1343 reload has completed, a valid address will always be returned. After
1344 reload, if a valid address cannot be returned, we return zero.
1345
1346 If VALIDATE_ADDRESS is zero, we simply form the required address; validating
1347 it is the responsibility of the caller.
1348
1349 MODE is the mode of OP in case it is a CONST_INT.
1350
1351 ??? This is still rather broken for some cases. The problem for the
1352 moment is that all callers of this thing provide no 'goal mode' to
1353 tell us to work with. This exists because all callers were written
0631e0bf
JH
1354 in a word based SUBREG world.
1355 Now use of this function can be deprecated by simplify_subreg in most
1356 cases.
1357 */
ddef6bc7
JJ
1358
1359rtx
502b8322 1360operand_subword (rtx op, unsigned int offset, int validate_address, enum machine_mode mode)
ddef6bc7
JJ
1361{
1362 if (mode == VOIDmode)
1363 mode = GET_MODE (op);
1364
5b0264cb 1365 gcc_assert (mode != VOIDmode);
ddef6bc7 1366
30f7a378 1367 /* If OP is narrower than a word, fail. */
ddef6bc7
JJ
1368 if (mode != BLKmode
1369 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD))
1370 return 0;
1371
30f7a378 1372 /* If we want a word outside OP, return zero. */
ddef6bc7
JJ
1373 if (mode != BLKmode
1374 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode))
1375 return const0_rtx;
1376
ddef6bc7 1377 /* Form a new MEM at the requested address. */
3c0cb5de 1378 if (MEM_P (op))
ddef6bc7 1379 {
60564289 1380 rtx new_rtx = adjust_address_nv (op, word_mode, offset * UNITS_PER_WORD);
ddef6bc7 1381
f1ec5147 1382 if (! validate_address)
60564289 1383 return new_rtx;
f1ec5147
RK
1384
1385 else if (reload_completed)
ddef6bc7 1386 {
09e881c9
BE
1387 if (! strict_memory_address_addr_space_p (word_mode,
1388 XEXP (new_rtx, 0),
1389 MEM_ADDR_SPACE (op)))
f1ec5147 1390 return 0;
ddef6bc7 1391 }
f1ec5147 1392 else
60564289 1393 return replace_equiv_address (new_rtx, XEXP (new_rtx, 0));
ddef6bc7
JJ
1394 }
1395
0631e0bf
JH
1396 /* Rest can be handled by simplify_subreg. */
1397 return simplify_gen_subreg (word_mode, op, mode, (offset * UNITS_PER_WORD));
ddef6bc7
JJ
1398}
1399
535a42b1
NS
1400/* Similar to `operand_subword', but never return 0. If we can't
1401 extract the required subword, put OP into a register and try again.
1402 The second attempt must succeed. We always validate the address in
1403 this case.
23b2ce53
RS
1404
1405 MODE is the mode of OP, in case it is CONST_INT. */
1406
1407rtx
502b8322 1408operand_subword_force (rtx op, unsigned int offset, enum machine_mode mode)
23b2ce53 1409{
ddef6bc7 1410 rtx result = operand_subword (op, offset, 1, mode);
23b2ce53
RS
1411
1412 if (result)
1413 return result;
1414
1415 if (mode != BLKmode && mode != VOIDmode)
77e6b0eb
JC
1416 {
1417 /* If this is a register which can not be accessed by words, copy it
1418 to a pseudo register. */
f8cfc6aa 1419 if (REG_P (op))
77e6b0eb
JC
1420 op = copy_to_reg (op);
1421 else
1422 op = force_reg (mode, op);
1423 }
23b2ce53 1424
ddef6bc7 1425 result = operand_subword (op, offset, 1, mode);
5b0264cb 1426 gcc_assert (result);
23b2ce53
RS
1427
1428 return result;
1429}
1430\f
2b3493c8
AK
1431/* Returns 1 if both MEM_EXPR can be considered equal
1432 and 0 otherwise. */
1433
1434int
4f588890 1435mem_expr_equal_p (const_tree expr1, const_tree expr2)
2b3493c8
AK
1436{
1437 if (expr1 == expr2)
1438 return 1;
1439
1440 if (! expr1 || ! expr2)
1441 return 0;
1442
1443 if (TREE_CODE (expr1) != TREE_CODE (expr2))
1444 return 0;
1445
55b34b5f 1446 return operand_equal_p (expr1, expr2, 0);
2b3493c8
AK
1447}
1448
805903b5
JJ
1449/* Return OFFSET if XEXP (MEM, 0) - OFFSET is known to be ALIGN
1450 bits aligned for 0 <= OFFSET < ALIGN / BITS_PER_UNIT, or
1451 -1 if not known. */
1452
1453int
d9223014 1454get_mem_align_offset (rtx mem, unsigned int align)
805903b5
JJ
1455{
1456 tree expr;
1457 unsigned HOST_WIDE_INT offset;
1458
1459 /* This function can't use
1460 if (!MEM_EXPR (mem) || !MEM_OFFSET (mem)
1461 || !CONST_INT_P (MEM_OFFSET (mem))
1462 || (get_object_alignment (MEM_EXPR (mem), MEM_ALIGN (mem), align)
1463 < align))
1464 return -1;
1465 else
1466 return (- INTVAL (MEM_OFFSET (mem))) & (align / BITS_PER_UNIT - 1);
1467 for two reasons:
1468 - COMPONENT_REFs in MEM_EXPR can have NULL first operand,
1469 for <variable>. get_inner_reference doesn't handle it and
1470 even if it did, the alignment in that case needs to be determined
1471 from DECL_FIELD_CONTEXT's TYPE_ALIGN.
1472 - it would do suboptimal job for COMPONENT_REFs, even if MEM_EXPR
1473 isn't sufficiently aligned, the object it is in might be. */
1474 gcc_assert (MEM_P (mem));
1475 expr = MEM_EXPR (mem);
1476 if (expr == NULL_TREE
1477 || MEM_OFFSET (mem) == NULL_RTX
1478 || !CONST_INT_P (MEM_OFFSET (mem)))
1479 return -1;
1480
1481 offset = INTVAL (MEM_OFFSET (mem));
1482 if (DECL_P (expr))
1483 {
1484 if (DECL_ALIGN (expr) < align)
1485 return -1;
1486 }
1487 else if (INDIRECT_REF_P (expr))
1488 {
1489 if (TYPE_ALIGN (TREE_TYPE (expr)) < (unsigned int) align)
1490 return -1;
1491 }
1492 else if (TREE_CODE (expr) == COMPONENT_REF)
1493 {
1494 while (1)
1495 {
1496 tree inner = TREE_OPERAND (expr, 0);
1497 tree field = TREE_OPERAND (expr, 1);
1498 tree byte_offset = component_ref_field_offset (expr);
1499 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1500
1501 if (!byte_offset
1502 || !host_integerp (byte_offset, 1)
1503 || !host_integerp (bit_offset, 1))
1504 return -1;
1505
1506 offset += tree_low_cst (byte_offset, 1);
1507 offset += tree_low_cst (bit_offset, 1) / BITS_PER_UNIT;
1508
1509 if (inner == NULL_TREE)
1510 {
1511 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1512 < (unsigned int) align)
1513 return -1;
1514 break;
1515 }
1516 else if (DECL_P (inner))
1517 {
1518 if (DECL_ALIGN (inner) < align)
1519 return -1;
1520 break;
1521 }
1522 else if (TREE_CODE (inner) != COMPONENT_REF)
1523 return -1;
1524 expr = inner;
1525 }
1526 }
1527 else
1528 return -1;
1529
1530 return offset & ((align / BITS_PER_UNIT) - 1);
1531}
1532
6926c713 1533/* Given REF (a MEM) and T, either the type of X or the expression
173b24b9 1534 corresponding to REF, set the memory attributes. OBJECTP is nonzero
6f1087be
RH
1535 if we are making a new object of this type. BITPOS is nonzero if
1536 there is an offset outstanding on T that will be applied later. */
173b24b9
RK
1537
1538void
502b8322
AJ
1539set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1540 HOST_WIDE_INT bitpos)
173b24b9 1541{
4862826d 1542 alias_set_type alias = MEM_ALIAS_SET (ref);
998d7deb 1543 tree expr = MEM_EXPR (ref);
8ac61af7
RK
1544 rtx offset = MEM_OFFSET (ref);
1545 rtx size = MEM_SIZE (ref);
1546 unsigned int align = MEM_ALIGN (ref);
6f1087be 1547 HOST_WIDE_INT apply_bitpos = 0;
173b24b9
RK
1548 tree type;
1549
1550 /* It can happen that type_for_mode was given a mode for which there
1551 is no language-level type. In which case it returns NULL, which
1552 we can see here. */
1553 if (t == NULL_TREE)
1554 return;
1555
1556 type = TYPE_P (t) ? t : TREE_TYPE (t);
eeb23c11
MM
1557 if (type == error_mark_node)
1558 return;
173b24b9 1559
173b24b9
RK
1560 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1561 wrong answer, as it assumes that DECL_RTL already has the right alias
1562 info. Callers should not set DECL_RTL until after the call to
1563 set_mem_attributes. */
5b0264cb 1564 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
173b24b9 1565
738cc472 1566 /* Get the alias set from the expression or type (perhaps using a
8ac61af7
RK
1567 front-end routine) and use it. */
1568 alias = get_alias_set (t);
173b24b9 1569
a5e9c810 1570 MEM_VOLATILE_P (ref) |= TYPE_VOLATILE (type);
07cb6e8c
JM
1571 MEM_IN_STRUCT_P (ref)
1572 = AGGREGATE_TYPE_P (type) || TREE_CODE (type) == COMPLEX_TYPE;
f8ad8d7c 1573 MEM_POINTER (ref) = POINTER_TYPE_P (type);
173b24b9 1574
8ac61af7
RK
1575 /* If we are making an object of this type, or if this is a DECL, we know
1576 that it is a scalar if the type is not an aggregate. */
07cb6e8c
JM
1577 if ((objectp || DECL_P (t))
1578 && ! AGGREGATE_TYPE_P (type)
1579 && TREE_CODE (type) != COMPLEX_TYPE)
173b24b9
RK
1580 MEM_SCALAR_P (ref) = 1;
1581
c3d32120
RK
1582 /* We can set the alignment from the type if we are making an object,
1583 this is an INDIRECT_REF, or if TYPE_ALIGN_OK. */
a80903ff 1584 if (objectp || TREE_CODE (t) == INDIRECT_REF || TYPE_ALIGN_OK (type))
c3d32120 1585 align = MAX (align, TYPE_ALIGN (type));
a80903ff 1586
70f34814
RG
1587 else if (TREE_CODE (t) == MEM_REF)
1588 {
a80903ff 1589 tree op0 = TREE_OPERAND (t, 0);
e3ccfc8b 1590 unsigned HOST_WIDE_INT aoff = BITS_PER_UNIT;
70f34814
RG
1591 if (host_integerp (TREE_OPERAND (t, 1), 1))
1592 {
e3ccfc8b 1593 unsigned HOST_WIDE_INT ioff = TREE_INT_CST_LOW (TREE_OPERAND (t, 1));
70f34814
RG
1594 aoff = (ioff & -ioff) * BITS_PER_UNIT;
1595 }
a80903ff
EB
1596 if (TREE_CODE (op0) == ADDR_EXPR && DECL_P (TREE_OPERAND (op0, 0)))
1597 align = MAX (align, DECL_ALIGN (TREE_OPERAND (op0, 0)));
1598 else if (TREE_CODE (op0) == ADDR_EXPR
1599 && CONSTANT_CLASS_P (TREE_OPERAND (op0, 0)))
70f34814 1600 {
a80903ff 1601 align = TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (op0, 0)));
70f34814 1602#ifdef CONSTANT_ALIGNMENT
a80903ff 1603 align = CONSTANT_ALIGNMENT (TREE_OPERAND (op0, 0), align);
70f34814
RG
1604#endif
1605 }
1606 else
5951297a
EB
1607 /* ??? This isn't fully correct, we can't set the alignment from the
1608 type in all cases. */
1609 align = MAX (align, TYPE_ALIGN (type));
a80903ff
EB
1610
1611 if (!integer_zerop (TREE_OPERAND (t, 1)) && aoff < align)
70f34814
RG
1612 align = aoff;
1613 }
a80903ff
EB
1614
1615 else if (TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1616 {
1617 if (integer_zerop (TREE_OPERAND (t, 1)))
1618 /* We don't know anything about the alignment. */
1619 align = BITS_PER_UNIT;
1620 else
1621 align = tree_low_cst (TREE_OPERAND (t, 1), 1);
1622 }
40c0668b 1623
738cc472
RK
1624 /* If the size is known, we can set that. */
1625 if (TYPE_SIZE_UNIT (type) && host_integerp (TYPE_SIZE_UNIT (type), 1))
8ac61af7 1626 size = GEN_INT (tree_low_cst (TYPE_SIZE_UNIT (type), 1));
738cc472 1627
80965c18
RK
1628 /* If T is not a type, we may be able to deduce some more information about
1629 the expression. */
1630 if (! TYPE_P (t))
8ac61af7 1631 {
8476af98 1632 tree base;
df96b059 1633 bool align_computed = false;
389fdba0 1634
8ac61af7
RK
1635 if (TREE_THIS_VOLATILE (t))
1636 MEM_VOLATILE_P (ref) = 1;
173b24b9 1637
c56e3582
RK
1638 /* Now remove any conversions: they don't change what the underlying
1639 object is. Likewise for SAVE_EXPR. */
1043771b 1640 while (CONVERT_EXPR_P (t)
c56e3582
RK
1641 || TREE_CODE (t) == VIEW_CONVERT_EXPR
1642 || TREE_CODE (t) == SAVE_EXPR)
8ac61af7
RK
1643 t = TREE_OPERAND (t, 0);
1644
8476af98
RH
1645 /* We may look through structure-like accesses for the purposes of
1646 examining TREE_THIS_NOTRAP, but not array-like accesses. */
1647 base = t;
1648 while (TREE_CODE (base) == COMPONENT_REF
1649 || TREE_CODE (base) == REALPART_EXPR
1650 || TREE_CODE (base) == IMAGPART_EXPR
1651 || TREE_CODE (base) == BIT_FIELD_REF)
1652 base = TREE_OPERAND (base, 0);
1653
70f34814
RG
1654 if (TREE_CODE (base) == MEM_REF
1655 && TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
1656 base = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
8476af98
RH
1657 if (DECL_P (base))
1658 {
1659 if (CODE_CONTAINS_STRUCT (TREE_CODE (base), TS_DECL_WITH_VIS))
1660 MEM_NOTRAP_P (ref) = !DECL_WEAK (base);
1661 else
1662 MEM_NOTRAP_P (ref) = 1;
1663 }
1664 else
1665 MEM_NOTRAP_P (ref) = TREE_THIS_NOTRAP (base);
1666
1667 base = get_base_address (base);
1668 if (base && DECL_P (base)
1669 && TREE_READONLY (base)
1670 && (TREE_STATIC (base) || DECL_EXTERNAL (base)))
21d9971a 1671 MEM_READONLY_P (ref) = 1;
8476af98 1672
2039d7aa
RH
1673 /* If this expression uses it's parent's alias set, mark it such
1674 that we won't change it. */
1675 if (component_uses_parent_alias_set (t))
10b76d73
RK
1676 MEM_KEEP_ALIAS_SET_P (ref) = 1;
1677
8ac61af7
RK
1678 /* If this is a decl, set the attributes of the MEM from it. */
1679 if (DECL_P (t))
1680 {
998d7deb
RH
1681 expr = t;
1682 offset = const0_rtx;
6f1087be 1683 apply_bitpos = bitpos;
8ac61af7
RK
1684 size = (DECL_SIZE_UNIT (t)
1685 && host_integerp (DECL_SIZE_UNIT (t), 1)
1686 ? GEN_INT (tree_low_cst (DECL_SIZE_UNIT (t), 1)) : 0);
68252e27 1687 align = DECL_ALIGN (t);
df96b059 1688 align_computed = true;
8ac61af7
RK
1689 }
1690
40c0668b 1691 /* If this is a constant, we know the alignment. */
6615c446 1692 else if (CONSTANT_CLASS_P (t))
9ddfb1a7
RK
1693 {
1694 align = TYPE_ALIGN (type);
1695#ifdef CONSTANT_ALIGNMENT
1696 align = CONSTANT_ALIGNMENT (t, align);
1697#endif
df96b059 1698 align_computed = true;
9ddfb1a7 1699 }
998d7deb
RH
1700
1701 /* If this is a field reference and not a bit-field, record it. */
fa10beec 1702 /* ??? There is some information that can be gleaned from bit-fields,
998d7deb
RH
1703 such as the word offset in the structure that might be modified.
1704 But skip it for now. */
1705 else if (TREE_CODE (t) == COMPONENT_REF
1706 && ! DECL_BIT_FIELD (TREE_OPERAND (t, 1)))
1707 {
55b34b5f 1708 expr = t;
998d7deb 1709 offset = const0_rtx;
6f1087be 1710 apply_bitpos = bitpos;
998d7deb
RH
1711 /* ??? Any reason the field size would be different than
1712 the size we got from the type? */
1713 }
1714
1715 /* If this is an array reference, look for an outer field reference. */
1716 else if (TREE_CODE (t) == ARRAY_REF)
1717 {
1718 tree off_tree = size_zero_node;
1b1838b6
JW
1719 /* We can't modify t, because we use it at the end of the
1720 function. */
1721 tree t2 = t;
998d7deb
RH
1722
1723 do
1724 {
1b1838b6 1725 tree index = TREE_OPERAND (t2, 1);
44de5aeb
RK
1726 tree low_bound = array_ref_low_bound (t2);
1727 tree unit_size = array_ref_element_size (t2);
2567406a
JH
1728
1729 /* We assume all arrays have sizes that are a multiple of a byte.
1730 First subtract the lower bound, if any, in the type of the
44de5aeb
RK
1731 index, then convert to sizetype and multiply by the size of
1732 the array element. */
1733 if (! integer_zerop (low_bound))
4845b383
KH
1734 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
1735 index, low_bound);
2567406a 1736
44de5aeb 1737 off_tree = size_binop (PLUS_EXPR,
b6f65e3c
RS
1738 size_binop (MULT_EXPR,
1739 fold_convert (sizetype,
1740 index),
44de5aeb
RK
1741 unit_size),
1742 off_tree);
1b1838b6 1743 t2 = TREE_OPERAND (t2, 0);
998d7deb 1744 }
1b1838b6 1745 while (TREE_CODE (t2) == ARRAY_REF);
998d7deb 1746
1b1838b6 1747 if (DECL_P (t2))
c67a1cf6 1748 {
1b1838b6 1749 expr = t2;
40cb04f1 1750 offset = NULL;
c67a1cf6 1751 if (host_integerp (off_tree, 1))
40cb04f1
RH
1752 {
1753 HOST_WIDE_INT ioff = tree_low_cst (off_tree, 1);
1754 HOST_WIDE_INT aoff = (ioff & -ioff) * BITS_PER_UNIT;
1b1838b6 1755 align = DECL_ALIGN (t2);
fc555370 1756 if (aoff && (unsigned HOST_WIDE_INT) aoff < align)
40cb04f1 1757 align = aoff;
df96b059 1758 align_computed = true;
40cb04f1 1759 offset = GEN_INT (ioff);
6f1087be 1760 apply_bitpos = bitpos;
40cb04f1 1761 }
c67a1cf6 1762 }
1b1838b6 1763 else if (TREE_CODE (t2) == COMPONENT_REF)
998d7deb 1764 {
55b34b5f
RG
1765 expr = t2;
1766 offset = NULL;
998d7deb 1767 if (host_integerp (off_tree, 1))
6f1087be
RH
1768 {
1769 offset = GEN_INT (tree_low_cst (off_tree, 1));
1770 apply_bitpos = bitpos;
1771 }
998d7deb
RH
1772 /* ??? Any reason the field size would be different than
1773 the size we got from the type? */
1774 }
56c47f22 1775
56c47f22 1776 /* If this is an indirect reference, record it. */
70f34814 1777 else if (TREE_CODE (t) == MEM_REF
56c47f22
RG
1778 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1779 {
1780 expr = t;
1781 offset = const0_rtx;
1782 apply_bitpos = bitpos;
1783 }
c67a1cf6
RH
1784 }
1785
56c47f22 1786 /* If this is an indirect reference, record it. */
70f34814 1787 else if (TREE_CODE (t) == MEM_REF
56c47f22
RG
1788 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
1789 {
1790 expr = t;
1791 offset = const0_rtx;
1792 apply_bitpos = bitpos;
1793 }
1794
df96b059
JJ
1795 if (!align_computed && !INDIRECT_REF_P (t))
1796 {
1797 unsigned int obj_align
1798 = get_object_alignment (t, align, BIGGEST_ALIGNMENT);
1799 align = MAX (align, obj_align);
1800 }
8ac61af7
RK
1801 }
1802
15c812e3 1803 /* If we modified OFFSET based on T, then subtract the outstanding
8c317c5f
RH
1804 bit position offset. Similarly, increase the size of the accessed
1805 object to contain the negative offset. */
6f1087be 1806 if (apply_bitpos)
8c317c5f
RH
1807 {
1808 offset = plus_constant (offset, -(apply_bitpos / BITS_PER_UNIT));
1809 if (size)
1810 size = plus_constant (size, apply_bitpos / BITS_PER_UNIT);
1811 }
6f1087be 1812
8ac61af7 1813 /* Now set the attributes we computed above. */
10b76d73 1814 MEM_ATTRS (ref)
09e881c9
BE
1815 = get_mem_attrs (alias, expr, offset, size, align,
1816 TYPE_ADDR_SPACE (type), GET_MODE (ref));
8ac61af7
RK
1817
1818 /* If this is already known to be a scalar or aggregate, we are done. */
1819 if (MEM_IN_STRUCT_P (ref) || MEM_SCALAR_P (ref))
738cc472
RK
1820 return;
1821
8ac61af7
RK
1822 /* If it is a reference into an aggregate, this is part of an aggregate.
1823 Otherwise we don't know. */
173b24b9
RK
1824 else if (TREE_CODE (t) == COMPONENT_REF || TREE_CODE (t) == ARRAY_REF
1825 || TREE_CODE (t) == ARRAY_RANGE_REF
1826 || TREE_CODE (t) == BIT_FIELD_REF)
1827 MEM_IN_STRUCT_P (ref) = 1;
1828}
1829
6f1087be 1830void
502b8322 1831set_mem_attributes (rtx ref, tree t, int objectp)
6f1087be
RH
1832{
1833 set_mem_attributes_minus_bitpos (ref, t, objectp, 0);
1834}
1835
173b24b9
RK
1836/* Set the alias set of MEM to SET. */
1837
1838void
4862826d 1839set_mem_alias_set (rtx mem, alias_set_type set)
173b24b9 1840{
68252e27 1841#ifdef ENABLE_CHECKING
173b24b9 1842 /* If the new and old alias sets don't conflict, something is wrong. */
5b0264cb 1843 gcc_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
173b24b9
RK
1844#endif
1845
998d7deb 1846 MEM_ATTRS (mem) = get_mem_attrs (set, MEM_EXPR (mem), MEM_OFFSET (mem),
10b76d73 1847 MEM_SIZE (mem), MEM_ALIGN (mem),
09e881c9
BE
1848 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1849}
1850
1851/* Set the address space of MEM to ADDRSPACE (target-defined). */
1852
1853void
1854set_mem_addr_space (rtx mem, addr_space_t addrspace)
1855{
1856 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1857 MEM_OFFSET (mem), MEM_SIZE (mem),
1858 MEM_ALIGN (mem), addrspace, GET_MODE (mem));
173b24b9 1859}
738cc472 1860
d022d93e 1861/* Set the alignment of MEM to ALIGN bits. */
738cc472
RK
1862
1863void
502b8322 1864set_mem_align (rtx mem, unsigned int align)
738cc472 1865{
998d7deb 1866 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
10b76d73 1867 MEM_OFFSET (mem), MEM_SIZE (mem), align,
09e881c9 1868 MEM_ADDR_SPACE (mem), GET_MODE (mem));
738cc472 1869}
1285011e 1870
998d7deb 1871/* Set the expr for MEM to EXPR. */
1285011e
RK
1872
1873void
502b8322 1874set_mem_expr (rtx mem, tree expr)
1285011e
RK
1875{
1876 MEM_ATTRS (mem)
998d7deb 1877 = get_mem_attrs (MEM_ALIAS_SET (mem), expr, MEM_OFFSET (mem),
09e881c9
BE
1878 MEM_SIZE (mem), MEM_ALIGN (mem),
1879 MEM_ADDR_SPACE (mem), GET_MODE (mem));
1285011e 1880}
998d7deb
RH
1881
1882/* Set the offset of MEM to OFFSET. */
1883
1884void
502b8322 1885set_mem_offset (rtx mem, rtx offset)
998d7deb
RH
1886{
1887 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1888 offset, MEM_SIZE (mem), MEM_ALIGN (mem),
09e881c9 1889 MEM_ADDR_SPACE (mem), GET_MODE (mem));
35aff10b
AM
1890}
1891
1892/* Set the size of MEM to SIZE. */
1893
1894void
502b8322 1895set_mem_size (rtx mem, rtx size)
35aff10b
AM
1896{
1897 MEM_ATTRS (mem) = get_mem_attrs (MEM_ALIAS_SET (mem), MEM_EXPR (mem),
1898 MEM_OFFSET (mem), size, MEM_ALIGN (mem),
09e881c9 1899 MEM_ADDR_SPACE (mem), GET_MODE (mem));
998d7deb 1900}
173b24b9 1901\f
738cc472
RK
1902/* Return a memory reference like MEMREF, but with its mode changed to MODE
1903 and its address changed to ADDR. (VOIDmode means don't change the mode.
1904 NULL for ADDR means don't change the address.) VALIDATE is nonzero if the
1905 returned memory location is required to be valid. The memory
1906 attributes are not changed. */
23b2ce53 1907
738cc472 1908static rtx
502b8322 1909change_address_1 (rtx memref, enum machine_mode mode, rtx addr, int validate)
23b2ce53 1910{
09e881c9 1911 addr_space_t as;
60564289 1912 rtx new_rtx;
23b2ce53 1913
5b0264cb 1914 gcc_assert (MEM_P (memref));
09e881c9 1915 as = MEM_ADDR_SPACE (memref);
23b2ce53
RS
1916 if (mode == VOIDmode)
1917 mode = GET_MODE (memref);
1918 if (addr == 0)
1919 addr = XEXP (memref, 0);
a74ff877 1920 if (mode == GET_MODE (memref) && addr == XEXP (memref, 0)
09e881c9 1921 && (!validate || memory_address_addr_space_p (mode, addr, as)))
a74ff877 1922 return memref;
23b2ce53 1923
f1ec5147 1924 if (validate)
23b2ce53 1925 {
f1ec5147 1926 if (reload_in_progress || reload_completed)
09e881c9 1927 gcc_assert (memory_address_addr_space_p (mode, addr, as));
f1ec5147 1928 else
09e881c9 1929 addr = memory_address_addr_space (mode, addr, as);
23b2ce53 1930 }
750c9258 1931
9b04c6a8
RK
1932 if (rtx_equal_p (addr, XEXP (memref, 0)) && mode == GET_MODE (memref))
1933 return memref;
1934
60564289
KG
1935 new_rtx = gen_rtx_MEM (mode, addr);
1936 MEM_COPY_ATTRIBUTES (new_rtx, memref);
1937 return new_rtx;
23b2ce53 1938}
792760b9 1939
738cc472
RK
1940/* Like change_address_1 with VALIDATE nonzero, but we are not saying in what
1941 way we are changing MEMREF, so we only preserve the alias set. */
f4ef873c
RK
1942
1943rtx
502b8322 1944change_address (rtx memref, enum machine_mode mode, rtx addr)
f4ef873c 1945{
60564289
KG
1946 rtx new_rtx = change_address_1 (memref, mode, addr, 1), size;
1947 enum machine_mode mmode = GET_MODE (new_rtx);
4e44c1ef
JJ
1948 unsigned int align;
1949
1950 size = mmode == BLKmode ? 0 : GEN_INT (GET_MODE_SIZE (mmode));
1951 align = mmode == BLKmode ? BITS_PER_UNIT : GET_MODE_ALIGNMENT (mmode);
c2f7bcc3 1952
fdb1c7b3 1953 /* If there are no changes, just return the original memory reference. */
60564289 1954 if (new_rtx == memref)
4e44c1ef
JJ
1955 {
1956 if (MEM_ATTRS (memref) == 0
1957 || (MEM_EXPR (memref) == NULL
1958 && MEM_OFFSET (memref) == NULL
1959 && MEM_SIZE (memref) == size
1960 && MEM_ALIGN (memref) == align))
60564289 1961 return new_rtx;
4e44c1ef 1962
60564289
KG
1963 new_rtx = gen_rtx_MEM (mmode, XEXP (memref, 0));
1964 MEM_COPY_ATTRIBUTES (new_rtx, memref);
4e44c1ef 1965 }
fdb1c7b3 1966
60564289 1967 MEM_ATTRS (new_rtx)
09e881c9
BE
1968 = get_mem_attrs (MEM_ALIAS_SET (memref), 0, 0, size, align,
1969 MEM_ADDR_SPACE (memref), mmode);
823e3574 1970
60564289 1971 return new_rtx;
f4ef873c 1972}
792760b9 1973
738cc472
RK
1974/* Return a memory reference like MEMREF, but with its mode changed
1975 to MODE and its address offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
1976 nonzero, the memory address is forced to be valid.
1977 If ADJUST is zero, OFFSET is only used to update MEM_ATTRS
1978 and caller is responsible for adjusting MEMREF base register. */
f1ec5147
RK
1979
1980rtx
502b8322
AJ
1981adjust_address_1 (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset,
1982 int validate, int adjust)
f1ec5147 1983{
823e3574 1984 rtx addr = XEXP (memref, 0);
60564289 1985 rtx new_rtx;
738cc472 1986 rtx memoffset = MEM_OFFSET (memref);
10b76d73 1987 rtx size = 0;
738cc472 1988 unsigned int memalign = MEM_ALIGN (memref);
09e881c9 1989 addr_space_t as = MEM_ADDR_SPACE (memref);
d4ebfa65 1990 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
a6fe9ed4 1991 int pbits;
823e3574 1992
fdb1c7b3
JH
1993 /* If there are no changes, just return the original memory reference. */
1994 if (mode == GET_MODE (memref) && !offset
09e881c9 1995 && (!validate || memory_address_addr_space_p (mode, addr, as)))
fdb1c7b3
JH
1996 return memref;
1997
d14419e4 1998 /* ??? Prefer to create garbage instead of creating shared rtl.
cc2902df 1999 This may happen even if offset is nonzero -- consider
d14419e4
RH
2000 (plus (plus reg reg) const_int) -- so do this always. */
2001 addr = copy_rtx (addr);
2002
a6fe9ed4
JM
2003 /* Convert a possibly large offset to a signed value within the
2004 range of the target address space. */
d4ebfa65 2005 pbits = GET_MODE_BITSIZE (address_mode);
a6fe9ed4
JM
2006 if (HOST_BITS_PER_WIDE_INT > pbits)
2007 {
2008 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2009 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2010 >> shift);
2011 }
2012
4a78c787
RH
2013 if (adjust)
2014 {
2015 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2016 object, we can merge it into the LO_SUM. */
2017 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM
2018 && offset >= 0
2019 && (unsigned HOST_WIDE_INT) offset
2020 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT)
d4ebfa65 2021 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
4a78c787
RH
2022 plus_constant (XEXP (addr, 1), offset));
2023 else
2024 addr = plus_constant (addr, offset);
2025 }
823e3574 2026
60564289 2027 new_rtx = change_address_1 (memref, mode, addr, validate);
738cc472 2028
09efeca1
PB
2029 /* If the address is a REG, change_address_1 rightfully returns memref,
2030 but this would destroy memref's MEM_ATTRS. */
2031 if (new_rtx == memref && offset != 0)
2032 new_rtx = copy_rtx (new_rtx);
2033
738cc472
RK
2034 /* Compute the new values of the memory attributes due to this adjustment.
2035 We add the offsets and update the alignment. */
2036 if (memoffset)
2037 memoffset = GEN_INT (offset + INTVAL (memoffset));
2038
03bf2c23
RK
2039 /* Compute the new alignment by taking the MIN of the alignment and the
2040 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2041 if zero. */
2042 if (offset != 0)
3bf1e984
RK
2043 memalign
2044 = MIN (memalign,
2045 (unsigned HOST_WIDE_INT) (offset & -offset) * BITS_PER_UNIT);
738cc472 2046
10b76d73 2047 /* We can compute the size in a number of ways. */
60564289
KG
2048 if (GET_MODE (new_rtx) != BLKmode)
2049 size = GEN_INT (GET_MODE_SIZE (GET_MODE (new_rtx)));
10b76d73
RK
2050 else if (MEM_SIZE (memref))
2051 size = plus_constant (MEM_SIZE (memref), -offset);
2052
60564289 2053 MEM_ATTRS (new_rtx) = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref),
09e881c9
BE
2054 memoffset, size, memalign, as,
2055 GET_MODE (new_rtx));
738cc472
RK
2056
2057 /* At some point, we should validate that this offset is within the object,
2058 if all the appropriate values are known. */
60564289 2059 return new_rtx;
f1ec5147
RK
2060}
2061
630036c6
JJ
2062/* Return a memory reference like MEMREF, but with its mode changed
2063 to MODE and its address changed to ADDR, which is assumed to be
fa10beec 2064 MEMREF offset by OFFSET bytes. If VALIDATE is
630036c6
JJ
2065 nonzero, the memory address is forced to be valid. */
2066
2067rtx
502b8322
AJ
2068adjust_automodify_address_1 (rtx memref, enum machine_mode mode, rtx addr,
2069 HOST_WIDE_INT offset, int validate)
630036c6
JJ
2070{
2071 memref = change_address_1 (memref, VOIDmode, addr, validate);
2072 return adjust_address_1 (memref, mode, offset, validate, 0);
2073}
2074
8ac61af7
RK
2075/* Return a memory reference like MEMREF, but whose address is changed by
2076 adding OFFSET, an RTX, to it. POW2 is the highest power of two factor
2077 known to be in OFFSET (possibly 1). */
0d4903b8
RK
2078
2079rtx
502b8322 2080offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
0d4903b8 2081{
60564289 2082 rtx new_rtx, addr = XEXP (memref, 0);
09e881c9 2083 addr_space_t as = MEM_ADDR_SPACE (memref);
d4ebfa65 2084 enum machine_mode address_mode = targetm.addr_space.address_mode (as);
e3c8ea67 2085
d4ebfa65 2086 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67 2087
68252e27 2088 /* At this point we don't know _why_ the address is invalid. It
4d6922ee 2089 could have secondary memory references, multiplies or anything.
e3c8ea67
RH
2090
2091 However, if we did go and rearrange things, we can wind up not
2092 being able to recognize the magic around pic_offset_table_rtx.
2093 This stuff is fragile, and is yet another example of why it is
2094 bad to expose PIC machinery too early. */
09e881c9 2095 if (! memory_address_addr_space_p (GET_MODE (memref), new_rtx, as)
e3c8ea67
RH
2096 && GET_CODE (addr) == PLUS
2097 && XEXP (addr, 0) == pic_offset_table_rtx)
2098 {
2099 addr = force_reg (GET_MODE (addr), addr);
d4ebfa65 2100 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
e3c8ea67
RH
2101 }
2102
60564289
KG
2103 update_temp_slot_address (XEXP (memref, 0), new_rtx);
2104 new_rtx = change_address_1 (memref, VOIDmode, new_rtx, 1);
0d4903b8 2105
fdb1c7b3 2106 /* If there are no changes, just return the original memory reference. */
60564289
KG
2107 if (new_rtx == memref)
2108 return new_rtx;
fdb1c7b3 2109
0d4903b8
RK
2110 /* Update the alignment to reflect the offset. Reset the offset, which
2111 we don't know. */
60564289 2112 MEM_ATTRS (new_rtx)
2cc2d4bb 2113 = get_mem_attrs (MEM_ALIAS_SET (memref), MEM_EXPR (memref), 0, 0,
9ceca302 2114 MIN (MEM_ALIGN (memref), pow2 * BITS_PER_UNIT),
09e881c9 2115 as, GET_MODE (new_rtx));
60564289 2116 return new_rtx;
0d4903b8 2117}
68252e27 2118
792760b9
RK
2119/* Return a memory reference like MEMREF, but with its address changed to
2120 ADDR. The caller is asserting that the actual piece of memory pointed
2121 to is the same, just the form of the address is being changed, such as
2122 by putting something into a register. */
2123
2124rtx
502b8322 2125replace_equiv_address (rtx memref, rtx addr)
792760b9 2126{
738cc472
RK
2127 /* change_address_1 copies the memory attribute structure without change
2128 and that's exactly what we want here. */
40c0668b 2129 update_temp_slot_address (XEXP (memref, 0), addr);
738cc472 2130 return change_address_1 (memref, VOIDmode, addr, 1);
792760b9 2131}
738cc472 2132
f1ec5147
RK
2133/* Likewise, but the reference is not required to be valid. */
2134
2135rtx
502b8322 2136replace_equiv_address_nv (rtx memref, rtx addr)
f1ec5147 2137{
f1ec5147
RK
2138 return change_address_1 (memref, VOIDmode, addr, 0);
2139}
e7dfe4bb
RH
2140
2141/* Return a memory reference like MEMREF, but with its mode widened to
2142 MODE and offset by OFFSET. This would be used by targets that e.g.
2143 cannot issue QImode memory operations and have to use SImode memory
2144 operations plus masking logic. */
2145
2146rtx
502b8322 2147widen_memory_access (rtx memref, enum machine_mode mode, HOST_WIDE_INT offset)
e7dfe4bb 2148{
60564289
KG
2149 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1);
2150 tree expr = MEM_EXPR (new_rtx);
2151 rtx memoffset = MEM_OFFSET (new_rtx);
e7dfe4bb
RH
2152 unsigned int size = GET_MODE_SIZE (mode);
2153
fdb1c7b3 2154 /* If there are no changes, just return the original memory reference. */
60564289
KG
2155 if (new_rtx == memref)
2156 return new_rtx;
fdb1c7b3 2157
e7dfe4bb
RH
2158 /* If we don't know what offset we were at within the expression, then
2159 we can't know if we've overstepped the bounds. */
fa1591cb 2160 if (! memoffset)
e7dfe4bb
RH
2161 expr = NULL_TREE;
2162
2163 while (expr)
2164 {
2165 if (TREE_CODE (expr) == COMPONENT_REF)
2166 {
2167 tree field = TREE_OPERAND (expr, 1);
44de5aeb 2168 tree offset = component_ref_field_offset (expr);
e7dfe4bb
RH
2169
2170 if (! DECL_SIZE_UNIT (field))
2171 {
2172 expr = NULL_TREE;
2173 break;
2174 }
2175
2176 /* Is the field at least as large as the access? If so, ok,
2177 otherwise strip back to the containing structure. */
03667700
RK
2178 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST
2179 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0
e7dfe4bb
RH
2180 && INTVAL (memoffset) >= 0)
2181 break;
2182
44de5aeb 2183 if (! host_integerp (offset, 1))
e7dfe4bb
RH
2184 {
2185 expr = NULL_TREE;
2186 break;
2187 }
2188
2189 expr = TREE_OPERAND (expr, 0);
44de5aeb
RK
2190 memoffset
2191 = (GEN_INT (INTVAL (memoffset)
2192 + tree_low_cst (offset, 1)
2193 + (tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 1)
2194 / BITS_PER_UNIT)));
e7dfe4bb
RH
2195 }
2196 /* Similarly for the decl. */
2197 else if (DECL_P (expr)
2198 && DECL_SIZE_UNIT (expr)
45f79783 2199 && TREE_CODE (DECL_SIZE_UNIT (expr)) == INTEGER_CST
e7dfe4bb
RH
2200 && compare_tree_int (DECL_SIZE_UNIT (expr), size) >= 0
2201 && (! memoffset || INTVAL (memoffset) >= 0))
2202 break;
2203 else
2204 {
2205 /* The widened memory access overflows the expression, which means
2206 that it could alias another expression. Zap it. */
2207 expr = NULL_TREE;
2208 break;
2209 }
2210 }
2211
2212 if (! expr)
2213 memoffset = NULL_RTX;
2214
2215 /* The widened memory may alias other stuff, so zap the alias set. */
2216 /* ??? Maybe use get_alias_set on any remaining expression. */
2217
60564289 2218 MEM_ATTRS (new_rtx) = get_mem_attrs (0, expr, memoffset, GEN_INT (size),
09e881c9
BE
2219 MEM_ALIGN (new_rtx),
2220 MEM_ADDR_SPACE (new_rtx), mode);
e7dfe4bb 2221
60564289 2222 return new_rtx;
e7dfe4bb 2223}
23b2ce53 2224\f
f6129d66
RH
2225/* A fake decl that is used as the MEM_EXPR of spill slots. */
2226static GTY(()) tree spill_slot_decl;
2227
3d7e23f6
RH
2228tree
2229get_spill_slot_decl (bool force_build_p)
f6129d66
RH
2230{
2231 tree d = spill_slot_decl;
2232 rtx rd;
2233
3d7e23f6 2234 if (d || !force_build_p)
f6129d66
RH
2235 return d;
2236
c2255bc4
AH
2237 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2238 VAR_DECL, get_identifier ("%sfp"), void_type_node);
f6129d66
RH
2239 DECL_ARTIFICIAL (d) = 1;
2240 DECL_IGNORED_P (d) = 1;
2241 TREE_USED (d) = 1;
2242 TREE_THIS_NOTRAP (d) = 1;
2243 spill_slot_decl = d;
2244
2245 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2246 MEM_NOTRAP_P (rd) = 1;
2247 MEM_ATTRS (rd) = get_mem_attrs (new_alias_set (), d, const0_rtx,
09e881c9 2248 NULL_RTX, 0, ADDR_SPACE_GENERIC, BLKmode);
f6129d66
RH
2249 SET_DECL_RTL (d, rd);
2250
2251 return d;
2252}
2253
2254/* Given MEM, a result from assign_stack_local, fill in the memory
2255 attributes as appropriate for a register allocator spill slot.
2256 These slots are not aliasable by other memory. We arrange for
2257 them all to use a single MEM_EXPR, so that the aliasing code can
2258 work properly in the case of shared spill slots. */
2259
2260void
2261set_mem_attrs_for_spill (rtx mem)
2262{
2263 alias_set_type alias;
2264 rtx addr, offset;
2265 tree expr;
2266
3d7e23f6 2267 expr = get_spill_slot_decl (true);
f6129d66
RH
2268 alias = MEM_ALIAS_SET (DECL_RTL (expr));
2269
2270 /* We expect the incoming memory to be of the form:
2271 (mem:MODE (plus (reg sfp) (const_int offset)))
2272 with perhaps the plus missing for offset = 0. */
2273 addr = XEXP (mem, 0);
2274 offset = const0_rtx;
2275 if (GET_CODE (addr) == PLUS
481683e1 2276 && CONST_INT_P (XEXP (addr, 1)))
f6129d66
RH
2277 offset = XEXP (addr, 1);
2278
2279 MEM_ATTRS (mem) = get_mem_attrs (alias, expr, offset,
2280 MEM_SIZE (mem), MEM_ALIGN (mem),
09e881c9 2281 ADDR_SPACE_GENERIC, GET_MODE (mem));
f6129d66
RH
2282 MEM_NOTRAP_P (mem) = 1;
2283}
2284\f
23b2ce53
RS
2285/* Return a newly created CODE_LABEL rtx with a unique label number. */
2286
2287rtx
502b8322 2288gen_label_rtx (void)
23b2ce53 2289{
0dc36574 2290 return gen_rtx_CODE_LABEL (VOIDmode, 0, NULL_RTX, NULL_RTX,
502b8322 2291 NULL, label_num++, NULL);
23b2ce53
RS
2292}
2293\f
2294/* For procedure integration. */
2295
23b2ce53 2296/* Install new pointers to the first and last insns in the chain.
86fe05e0 2297 Also, set cur_insn_uid to one higher than the last in use.
23b2ce53
RS
2298 Used for an inline-procedure after copying the insn chain. */
2299
2300void
502b8322 2301set_new_first_and_last_insn (rtx first, rtx last)
23b2ce53 2302{
86fe05e0
RK
2303 rtx insn;
2304
5936d944
JH
2305 set_first_insn (first);
2306 set_last_insn (last);
86fe05e0
RK
2307 cur_insn_uid = 0;
2308
b5b8b0ac
AO
2309 if (MIN_NONDEBUG_INSN_UID || MAY_HAVE_DEBUG_INSNS)
2310 {
2311 int debug_count = 0;
2312
2313 cur_insn_uid = MIN_NONDEBUG_INSN_UID - 1;
2314 cur_debug_insn_uid = 0;
2315
2316 for (insn = first; insn; insn = NEXT_INSN (insn))
2317 if (INSN_UID (insn) < MIN_NONDEBUG_INSN_UID)
2318 cur_debug_insn_uid = MAX (cur_debug_insn_uid, INSN_UID (insn));
2319 else
2320 {
2321 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
2322 if (DEBUG_INSN_P (insn))
2323 debug_count++;
2324 }
2325
2326 if (debug_count)
2327 cur_debug_insn_uid = MIN_NONDEBUG_INSN_UID + debug_count;
2328 else
2329 cur_debug_insn_uid++;
2330 }
2331 else
2332 for (insn = first; insn; insn = NEXT_INSN (insn))
2333 cur_insn_uid = MAX (cur_insn_uid, INSN_UID (insn));
86fe05e0
RK
2334
2335 cur_insn_uid++;
23b2ce53 2336}
23b2ce53 2337\f
750c9258 2338/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779 2339 structure. This routine should only be called once. */
23b2ce53 2340
fd743bc1 2341static void
b4aaa77b 2342unshare_all_rtl_1 (rtx insn)
23b2ce53 2343{
d1b81779 2344 /* Unshare just about everything else. */
2c07f13b 2345 unshare_all_rtl_in_chain (insn);
750c9258 2346
23b2ce53
RS
2347 /* Make sure the addresses of stack slots found outside the insn chain
2348 (such as, in DECL_RTL of a variable) are not shared
2349 with the insn chain.
2350
2351 This special care is necessary when the stack slot MEM does not
2352 actually appear in the insn chain. If it does appear, its address
2353 is unshared from all else at that point. */
242b0ce6 2354 stack_slot_list = copy_rtx_if_shared (stack_slot_list);
23b2ce53
RS
2355}
2356
750c9258 2357/* Go through all the RTL insn bodies and copy any invalid shared
d1b81779
GK
2358 structure, again. This is a fairly expensive thing to do so it
2359 should be done sparingly. */
2360
2361void
502b8322 2362unshare_all_rtl_again (rtx insn)
d1b81779
GK
2363{
2364 rtx p;
624c87aa
RE
2365 tree decl;
2366
d1b81779 2367 for (p = insn; p; p = NEXT_INSN (p))
2c3c49de 2368 if (INSN_P (p))
d1b81779
GK
2369 {
2370 reset_used_flags (PATTERN (p));
2371 reset_used_flags (REG_NOTES (p));
d1b81779 2372 }
624c87aa 2373
2d4aecb3 2374 /* Make sure that virtual stack slots are not shared. */
5eb2a9f2 2375 set_used_decls (DECL_INITIAL (cfun->decl));
2d4aecb3 2376
624c87aa 2377 /* Make sure that virtual parameters are not shared. */
910ad8de 2378 for (decl = DECL_ARGUMENTS (cfun->decl); decl; decl = DECL_CHAIN (decl))
5eb2a9f2 2379 set_used_flags (DECL_RTL (decl));
624c87aa
RE
2380
2381 reset_used_flags (stack_slot_list);
2382
b4aaa77b 2383 unshare_all_rtl_1 (insn);
fd743bc1
PB
2384}
2385
c2924966 2386unsigned int
fd743bc1
PB
2387unshare_all_rtl (void)
2388{
b4aaa77b 2389 unshare_all_rtl_1 (get_insns ());
c2924966 2390 return 0;
d1b81779
GK
2391}
2392
8ddbbcae 2393struct rtl_opt_pass pass_unshare_all_rtl =
ef330312 2394{
8ddbbcae
JH
2395 {
2396 RTL_PASS,
defb77dc 2397 "unshare", /* name */
ef330312
PB
2398 NULL, /* gate */
2399 unshare_all_rtl, /* execute */
2400 NULL, /* sub */
2401 NULL, /* next */
2402 0, /* static_pass_number */
7072a650 2403 TV_NONE, /* tv_id */
ef330312
PB
2404 0, /* properties_required */
2405 0, /* properties_provided */
2406 0, /* properties_destroyed */
2407 0, /* todo_flags_start */
8ddbbcae
JH
2408 TODO_dump_func | TODO_verify_rtl_sharing /* todo_flags_finish */
2409 }
ef330312
PB
2410};
2411
2412
2c07f13b
JH
2413/* Check that ORIG is not marked when it should not be and mark ORIG as in use,
2414 Recursively does the same for subexpressions. */
2415
2416static void
2417verify_rtx_sharing (rtx orig, rtx insn)
2418{
2419 rtx x = orig;
2420 int i;
2421 enum rtx_code code;
2422 const char *format_ptr;
2423
2424 if (x == 0)
2425 return;
2426
2427 code = GET_CODE (x);
2428
2429 /* These types may be freely shared. */
2430
2431 switch (code)
2432 {
2433 case REG:
0ca5af51
AO
2434 case DEBUG_EXPR:
2435 case VALUE:
2c07f13b
JH
2436 case CONST_INT:
2437 case CONST_DOUBLE:
091a3ac7 2438 case CONST_FIXED:
2c07f13b
JH
2439 case CONST_VECTOR:
2440 case SYMBOL_REF:
2441 case LABEL_REF:
2442 case CODE_LABEL:
2443 case PC:
2444 case CC0:
2445 case SCRATCH:
2c07f13b 2446 return;
3e89ed8d
JH
2447 /* SCRATCH must be shared because they represent distinct values. */
2448 case CLOBBER:
2449 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2450 return;
2451 break;
2c07f13b
JH
2452
2453 case CONST:
6fb5fa3c 2454 if (shared_const_p (orig))
2c07f13b
JH
2455 return;
2456 break;
2457
2458 case MEM:
2459 /* A MEM is allowed to be shared if its address is constant. */
2460 if (CONSTANT_ADDRESS_P (XEXP (x, 0))
2461 || reload_completed || reload_in_progress)
2462 return;
2463
2464 break;
2465
2466 default:
2467 break;
2468 }
2469
2470 /* This rtx may not be shared. If it has already been seen,
2471 replace it with a copy of itself. */
1a2caa7a 2472#ifdef ENABLE_CHECKING
2c07f13b
JH
2473 if (RTX_FLAG (x, used))
2474 {
ab532386 2475 error ("invalid rtl sharing found in the insn");
2c07f13b 2476 debug_rtx (insn);
ab532386 2477 error ("shared rtx");
2c07f13b 2478 debug_rtx (x);
ab532386 2479 internal_error ("internal consistency failure");
2c07f13b 2480 }
1a2caa7a
NS
2481#endif
2482 gcc_assert (!RTX_FLAG (x, used));
b8698a0f 2483
2c07f13b
JH
2484 RTX_FLAG (x, used) = 1;
2485
6614fd40 2486 /* Now scan the subexpressions recursively. */
2c07f13b
JH
2487
2488 format_ptr = GET_RTX_FORMAT (code);
2489
2490 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2491 {
2492 switch (*format_ptr++)
2493 {
2494 case 'e':
2495 verify_rtx_sharing (XEXP (x, i), insn);
2496 break;
2497
2498 case 'E':
2499 if (XVEC (x, i) != NULL)
2500 {
2501 int j;
2502 int len = XVECLEN (x, i);
2503
2504 for (j = 0; j < len; j++)
2505 {
1a2caa7a
NS
2506 /* We allow sharing of ASM_OPERANDS inside single
2507 instruction. */
2c07f13b 2508 if (j && GET_CODE (XVECEXP (x, i, j)) == SET
1a2caa7a
NS
2509 && (GET_CODE (SET_SRC (XVECEXP (x, i, j)))
2510 == ASM_OPERANDS))
2c07f13b
JH
2511 verify_rtx_sharing (SET_DEST (XVECEXP (x, i, j)), insn);
2512 else
2513 verify_rtx_sharing (XVECEXP (x, i, j), insn);
2514 }
2515 }
2516 break;
2517 }
2518 }
2519 return;
2520}
2521
ba228239 2522/* Go through all the RTL insn bodies and check that there is no unexpected
2c07f13b
JH
2523 sharing in between the subexpressions. */
2524
24e47c76 2525DEBUG_FUNCTION void
2c07f13b
JH
2526verify_rtl_sharing (void)
2527{
2528 rtx p;
2529
2530 for (p = get_insns (); p; p = NEXT_INSN (p))
2531 if (INSN_P (p))
2532 {
2533 reset_used_flags (PATTERN (p));
2534 reset_used_flags (REG_NOTES (p));
2954a813
KK
2535 if (GET_CODE (PATTERN (p)) == SEQUENCE)
2536 {
2537 int i;
2538 rtx q, sequence = PATTERN (p);
2539
2540 for (i = 0; i < XVECLEN (sequence, 0); i++)
2541 {
2542 q = XVECEXP (sequence, 0, i);
2543 gcc_assert (INSN_P (q));
2544 reset_used_flags (PATTERN (q));
2545 reset_used_flags (REG_NOTES (q));
2954a813
KK
2546 }
2547 }
2c07f13b
JH
2548 }
2549
2550 for (p = get_insns (); p; p = NEXT_INSN (p))
2551 if (INSN_P (p))
2552 {
2553 verify_rtx_sharing (PATTERN (p), p);
2554 verify_rtx_sharing (REG_NOTES (p), p);
2c07f13b
JH
2555 }
2556}
2557
d1b81779
GK
2558/* Go through all the RTL insn bodies and copy any invalid shared structure.
2559 Assumes the mark bits are cleared at entry. */
2560
2c07f13b
JH
2561void
2562unshare_all_rtl_in_chain (rtx insn)
d1b81779
GK
2563{
2564 for (; insn; insn = NEXT_INSN (insn))
2c3c49de 2565 if (INSN_P (insn))
d1b81779
GK
2566 {
2567 PATTERN (insn) = copy_rtx_if_shared (PATTERN (insn));
2568 REG_NOTES (insn) = copy_rtx_if_shared (REG_NOTES (insn));
d1b81779
GK
2569 }
2570}
2571
2d4aecb3 2572/* Go through all virtual stack slots of a function and mark them as
5eb2a9f2
RS
2573 shared. We never replace the DECL_RTLs themselves with a copy,
2574 but expressions mentioned into a DECL_RTL cannot be shared with
2575 expressions in the instruction stream.
2576
2577 Note that reload may convert pseudo registers into memories in-place.
2578 Pseudo registers are always shared, but MEMs never are. Thus if we
2579 reset the used flags on MEMs in the instruction stream, we must set
2580 them again on MEMs that appear in DECL_RTLs. */
2581
2d4aecb3 2582static void
5eb2a9f2 2583set_used_decls (tree blk)
2d4aecb3
AO
2584{
2585 tree t;
2586
2587 /* Mark decls. */
910ad8de 2588 for (t = BLOCK_VARS (blk); t; t = DECL_CHAIN (t))
19e7881c 2589 if (DECL_RTL_SET_P (t))
5eb2a9f2 2590 set_used_flags (DECL_RTL (t));
2d4aecb3
AO
2591
2592 /* Now process sub-blocks. */
87caf699 2593 for (t = BLOCK_SUBBLOCKS (blk); t; t = BLOCK_CHAIN (t))
5eb2a9f2 2594 set_used_decls (t);
2d4aecb3
AO
2595}
2596
23b2ce53 2597/* Mark ORIG as in use, and return a copy of it if it was already in use.
ff954f39
AP
2598 Recursively does the same for subexpressions. Uses
2599 copy_rtx_if_shared_1 to reduce stack space. */
23b2ce53
RS
2600
2601rtx
502b8322 2602copy_rtx_if_shared (rtx orig)
23b2ce53 2603{
32b32b16
AP
2604 copy_rtx_if_shared_1 (&orig);
2605 return orig;
2606}
2607
ff954f39
AP
2608/* Mark *ORIG1 as in use, and set it to a copy of it if it was already in
2609 use. Recursively does the same for subexpressions. */
2610
32b32b16
AP
2611static void
2612copy_rtx_if_shared_1 (rtx *orig1)
2613{
2614 rtx x;
b3694847
SS
2615 int i;
2616 enum rtx_code code;
32b32b16 2617 rtx *last_ptr;
b3694847 2618 const char *format_ptr;
23b2ce53 2619 int copied = 0;
32b32b16
AP
2620 int length;
2621
2622 /* Repeat is used to turn tail-recursion into iteration. */
2623repeat:
2624 x = *orig1;
23b2ce53
RS
2625
2626 if (x == 0)
32b32b16 2627 return;
23b2ce53
RS
2628
2629 code = GET_CODE (x);
2630
2631 /* These types may be freely shared. */
2632
2633 switch (code)
2634 {
2635 case REG:
0ca5af51
AO
2636 case DEBUG_EXPR:
2637 case VALUE:
23b2ce53
RS
2638 case CONST_INT:
2639 case CONST_DOUBLE:
091a3ac7 2640 case CONST_FIXED:
69ef87e2 2641 case CONST_VECTOR:
23b2ce53 2642 case SYMBOL_REF:
2c07f13b 2643 case LABEL_REF:
23b2ce53
RS
2644 case CODE_LABEL:
2645 case PC:
2646 case CC0:
2647 case SCRATCH:
0f41302f 2648 /* SCRATCH must be shared because they represent distinct values. */
32b32b16 2649 return;
3e89ed8d
JH
2650 case CLOBBER:
2651 if (REG_P (XEXP (x, 0)) && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
2652 return;
2653 break;
23b2ce53 2654
b851ea09 2655 case CONST:
6fb5fa3c 2656 if (shared_const_p (x))
32b32b16 2657 return;
b851ea09
RK
2658 break;
2659
b5b8b0ac 2660 case DEBUG_INSN:
23b2ce53
RS
2661 case INSN:
2662 case JUMP_INSN:
2663 case CALL_INSN:
2664 case NOTE:
23b2ce53
RS
2665 case BARRIER:
2666 /* The chain of insns is not being copied. */
32b32b16 2667 return;
23b2ce53 2668
e9a25f70
JL
2669 default:
2670 break;
23b2ce53
RS
2671 }
2672
2673 /* This rtx may not be shared. If it has already been seen,
2674 replace it with a copy of itself. */
2675
2adc7f12 2676 if (RTX_FLAG (x, used))
23b2ce53 2677 {
aacd3885 2678 x = shallow_copy_rtx (x);
23b2ce53
RS
2679 copied = 1;
2680 }
2adc7f12 2681 RTX_FLAG (x, used) = 1;
23b2ce53
RS
2682
2683 /* Now scan the subexpressions recursively.
2684 We can store any replaced subexpressions directly into X
2685 since we know X is not shared! Any vectors in X
2686 must be copied if X was copied. */
2687
2688 format_ptr = GET_RTX_FORMAT (code);
32b32b16
AP
2689 length = GET_RTX_LENGTH (code);
2690 last_ptr = NULL;
b8698a0f 2691
32b32b16 2692 for (i = 0; i < length; i++)
23b2ce53
RS
2693 {
2694 switch (*format_ptr++)
2695 {
2696 case 'e':
32b32b16
AP
2697 if (last_ptr)
2698 copy_rtx_if_shared_1 (last_ptr);
2699 last_ptr = &XEXP (x, i);
23b2ce53
RS
2700 break;
2701
2702 case 'E':
2703 if (XVEC (x, i) != NULL)
2704 {
b3694847 2705 int j;
f0722107 2706 int len = XVECLEN (x, i);
b8698a0f 2707
6614fd40
KH
2708 /* Copy the vector iff I copied the rtx and the length
2709 is nonzero. */
f0722107 2710 if (copied && len > 0)
8f985ec4 2711 XVEC (x, i) = gen_rtvec_v (len, XVEC (x, i)->elem);
b8698a0f 2712
5d3cc252 2713 /* Call recursively on all inside the vector. */
f0722107 2714 for (j = 0; j < len; j++)
32b32b16
AP
2715 {
2716 if (last_ptr)
2717 copy_rtx_if_shared_1 (last_ptr);
2718 last_ptr = &XVECEXP (x, i, j);
2719 }
23b2ce53
RS
2720 }
2721 break;
2722 }
2723 }
32b32b16
AP
2724 *orig1 = x;
2725 if (last_ptr)
2726 {
2727 orig1 = last_ptr;
2728 goto repeat;
2729 }
2730 return;
23b2ce53
RS
2731}
2732
2733/* Clear all the USED bits in X to allow copy_rtx_if_shared to be used
2734 to look for shared sub-parts. */
2735
2736void
502b8322 2737reset_used_flags (rtx x)
23b2ce53 2738{
b3694847
SS
2739 int i, j;
2740 enum rtx_code code;
2741 const char *format_ptr;
32b32b16 2742 int length;
23b2ce53 2743
32b32b16
AP
2744 /* Repeat is used to turn tail-recursion into iteration. */
2745repeat:
23b2ce53
RS
2746 if (x == 0)
2747 return;
2748
2749 code = GET_CODE (x);
2750
9faa82d8 2751 /* These types may be freely shared so we needn't do any resetting
23b2ce53
RS
2752 for them. */
2753
2754 switch (code)
2755 {
2756 case REG:
0ca5af51
AO
2757 case DEBUG_EXPR:
2758 case VALUE:
23b2ce53
RS
2759 case CONST_INT:
2760 case CONST_DOUBLE:
091a3ac7 2761 case CONST_FIXED:
69ef87e2 2762 case CONST_VECTOR:
23b2ce53
RS
2763 case SYMBOL_REF:
2764 case CODE_LABEL:
2765 case PC:
2766 case CC0:
2767 return;
2768
b5b8b0ac 2769 case DEBUG_INSN:
23b2ce53
RS
2770 case INSN:
2771 case JUMP_INSN:
2772 case CALL_INSN:
2773 case NOTE:
2774 case LABEL_REF:
2775 case BARRIER:
2776 /* The chain of insns is not being copied. */
2777 return;
750c9258 2778
e9a25f70
JL
2779 default:
2780 break;
23b2ce53
RS
2781 }
2782
2adc7f12 2783 RTX_FLAG (x, used) = 0;
23b2ce53
RS
2784
2785 format_ptr = GET_RTX_FORMAT (code);
32b32b16 2786 length = GET_RTX_LENGTH (code);
b8698a0f 2787
32b32b16 2788 for (i = 0; i < length; i++)
23b2ce53
RS
2789 {
2790 switch (*format_ptr++)
2791 {
2792 case 'e':
32b32b16
AP
2793 if (i == length-1)
2794 {
2795 x = XEXP (x, i);
2796 goto repeat;
2797 }
23b2ce53
RS
2798 reset_used_flags (XEXP (x, i));
2799 break;
2800
2801 case 'E':
2802 for (j = 0; j < XVECLEN (x, i); j++)
2803 reset_used_flags (XVECEXP (x, i, j));
2804 break;
2805 }
2806 }
2807}
2c07f13b
JH
2808
2809/* Set all the USED bits in X to allow copy_rtx_if_shared to be used
2810 to look for shared sub-parts. */
2811
2812void
2813set_used_flags (rtx x)
2814{
2815 int i, j;
2816 enum rtx_code code;
2817 const char *format_ptr;
2818
2819 if (x == 0)
2820 return;
2821
2822 code = GET_CODE (x);
2823
2824 /* These types may be freely shared so we needn't do any resetting
2825 for them. */
2826
2827 switch (code)
2828 {
2829 case REG:
0ca5af51
AO
2830 case DEBUG_EXPR:
2831 case VALUE:
2c07f13b
JH
2832 case CONST_INT:
2833 case CONST_DOUBLE:
091a3ac7 2834 case CONST_FIXED:
2c07f13b
JH
2835 case CONST_VECTOR:
2836 case SYMBOL_REF:
2837 case CODE_LABEL:
2838 case PC:
2839 case CC0:
2840 return;
2841
b5b8b0ac 2842 case DEBUG_INSN:
2c07f13b
JH
2843 case INSN:
2844 case JUMP_INSN:
2845 case CALL_INSN:
2846 case NOTE:
2847 case LABEL_REF:
2848 case BARRIER:
2849 /* The chain of insns is not being copied. */
2850 return;
2851
2852 default:
2853 break;
2854 }
2855
2856 RTX_FLAG (x, used) = 1;
2857
2858 format_ptr = GET_RTX_FORMAT (code);
2859 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2860 {
2861 switch (*format_ptr++)
2862 {
2863 case 'e':
2864 set_used_flags (XEXP (x, i));
2865 break;
2866
2867 case 'E':
2868 for (j = 0; j < XVECLEN (x, i); j++)
2869 set_used_flags (XVECEXP (x, i, j));
2870 break;
2871 }
2872 }
2873}
23b2ce53
RS
2874\f
2875/* Copy X if necessary so that it won't be altered by changes in OTHER.
2876 Return X or the rtx for the pseudo reg the value of X was copied into.
2877 OTHER must be valid as a SET_DEST. */
2878
2879rtx
502b8322 2880make_safe_from (rtx x, rtx other)
23b2ce53
RS
2881{
2882 while (1)
2883 switch (GET_CODE (other))
2884 {
2885 case SUBREG:
2886 other = SUBREG_REG (other);
2887 break;
2888 case STRICT_LOW_PART:
2889 case SIGN_EXTEND:
2890 case ZERO_EXTEND:
2891 other = XEXP (other, 0);
2892 break;
2893 default:
2894 goto done;
2895 }
2896 done:
3c0cb5de 2897 if ((MEM_P (other)
23b2ce53 2898 && ! CONSTANT_P (x)
f8cfc6aa 2899 && !REG_P (x)
23b2ce53 2900 && GET_CODE (x) != SUBREG)
f8cfc6aa 2901 || (REG_P (other)
23b2ce53
RS
2902 && (REGNO (other) < FIRST_PSEUDO_REGISTER
2903 || reg_mentioned_p (other, x))))
2904 {
2905 rtx temp = gen_reg_rtx (GET_MODE (x));
2906 emit_move_insn (temp, x);
2907 return temp;
2908 }
2909 return x;
2910}
2911\f
2912/* Emission of insns (adding them to the doubly-linked list). */
2913
23b2ce53
RS
2914/* Return the last insn emitted, even if it is in a sequence now pushed. */
2915
2916rtx
502b8322 2917get_last_insn_anywhere (void)
23b2ce53
RS
2918{
2919 struct sequence_stack *stack;
5936d944
JH
2920 if (get_last_insn ())
2921 return get_last_insn ();
49ad7cfa 2922 for (stack = seq_stack; stack; stack = stack->next)
23b2ce53
RS
2923 if (stack->last != 0)
2924 return stack->last;
2925 return 0;
2926}
2927
2a496e8b
JDA
2928/* Return the first nonnote insn emitted in current sequence or current
2929 function. This routine looks inside SEQUENCEs. */
2930
2931rtx
502b8322 2932get_first_nonnote_insn (void)
2a496e8b 2933{
5936d944 2934 rtx insn = get_insns ();
91373fe8
JDA
2935
2936 if (insn)
2937 {
2938 if (NOTE_P (insn))
2939 for (insn = next_insn (insn);
2940 insn && NOTE_P (insn);
2941 insn = next_insn (insn))
2942 continue;
2943 else
2944 {
2ca202e7 2945 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2946 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2947 insn = XVECEXP (PATTERN (insn), 0, 0);
2948 }
2949 }
2a496e8b
JDA
2950
2951 return insn;
2952}
2953
2954/* Return the last nonnote insn emitted in current sequence or current
2955 function. This routine looks inside SEQUENCEs. */
2956
2957rtx
502b8322 2958get_last_nonnote_insn (void)
2a496e8b 2959{
5936d944 2960 rtx insn = get_last_insn ();
91373fe8
JDA
2961
2962 if (insn)
2963 {
2964 if (NOTE_P (insn))
2965 for (insn = previous_insn (insn);
2966 insn && NOTE_P (insn);
2967 insn = previous_insn (insn))
2968 continue;
2969 else
2970 {
2ca202e7 2971 if (NONJUMP_INSN_P (insn)
91373fe8
JDA
2972 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2973 insn = XVECEXP (PATTERN (insn), 0,
2974 XVECLEN (PATTERN (insn), 0) - 1);
2975 }
2976 }
2a496e8b
JDA
2977
2978 return insn;
2979}
2980
b5b8b0ac
AO
2981/* Return the number of actual (non-debug) insns emitted in this
2982 function. */
2983
2984int
2985get_max_insn_count (void)
2986{
2987 int n = cur_insn_uid;
2988
2989 /* The table size must be stable across -g, to avoid codegen
2990 differences due to debug insns, and not be affected by
2991 -fmin-insn-uid, to avoid excessive table size and to simplify
2992 debugging of -fcompare-debug failures. */
2993 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
2994 n -= cur_debug_insn_uid;
2995 else
2996 n -= MIN_NONDEBUG_INSN_UID;
2997
2998 return n;
2999}
3000
23b2ce53
RS
3001\f
3002/* Return the next insn. If it is a SEQUENCE, return the first insn
3003 of the sequence. */
3004
3005rtx
502b8322 3006next_insn (rtx insn)
23b2ce53 3007{
75547801
KG
3008 if (insn)
3009 {
3010 insn = NEXT_INSN (insn);
3011 if (insn && NONJUMP_INSN_P (insn)
3012 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3013 insn = XVECEXP (PATTERN (insn), 0, 0);
3014 }
23b2ce53 3015
75547801 3016 return insn;
23b2ce53
RS
3017}
3018
3019/* Return the previous insn. If it is a SEQUENCE, return the last insn
3020 of the sequence. */
3021
3022rtx
502b8322 3023previous_insn (rtx insn)
23b2ce53 3024{
75547801
KG
3025 if (insn)
3026 {
3027 insn = PREV_INSN (insn);
3028 if (insn && NONJUMP_INSN_P (insn)
3029 && GET_CODE (PATTERN (insn)) == SEQUENCE)
3030 insn = XVECEXP (PATTERN (insn), 0, XVECLEN (PATTERN (insn), 0) - 1);
3031 }
23b2ce53 3032
75547801 3033 return insn;
23b2ce53
RS
3034}
3035
3036/* Return the next insn after INSN that is not a NOTE. This routine does not
3037 look inside SEQUENCEs. */
3038
3039rtx
502b8322 3040next_nonnote_insn (rtx insn)
23b2ce53 3041{
75547801
KG
3042 while (insn)
3043 {
3044 insn = NEXT_INSN (insn);
3045 if (insn == 0 || !NOTE_P (insn))
3046 break;
3047 }
23b2ce53 3048
75547801 3049 return insn;
23b2ce53
RS
3050}
3051
1e211590
DD
3052/* Return the next insn after INSN that is not a NOTE, but stop the
3053 search before we enter another basic block. This routine does not
3054 look inside SEQUENCEs. */
3055
3056rtx
3057next_nonnote_insn_bb (rtx insn)
3058{
3059 while (insn)
3060 {
3061 insn = NEXT_INSN (insn);
3062 if (insn == 0 || !NOTE_P (insn))
3063 break;
3064 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3065 return NULL_RTX;
3066 }
3067
3068 return insn;
3069}
3070
23b2ce53
RS
3071/* Return the previous insn before INSN that is not a NOTE. This routine does
3072 not look inside SEQUENCEs. */
3073
3074rtx
502b8322 3075prev_nonnote_insn (rtx insn)
23b2ce53 3076{
75547801
KG
3077 while (insn)
3078 {
3079 insn = PREV_INSN (insn);
3080 if (insn == 0 || !NOTE_P (insn))
3081 break;
3082 }
23b2ce53 3083
75547801 3084 return insn;
23b2ce53
RS
3085}
3086
896aa4ea
DD
3087/* Return the previous insn before INSN that is not a NOTE, but stop
3088 the search before we enter another basic block. This routine does
3089 not look inside SEQUENCEs. */
3090
3091rtx
3092prev_nonnote_insn_bb (rtx insn)
3093{
3094 while (insn)
3095 {
3096 insn = PREV_INSN (insn);
3097 if (insn == 0 || !NOTE_P (insn))
3098 break;
3099 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3100 return NULL_RTX;
3101 }
3102
3103 return insn;
3104}
3105
b5b8b0ac
AO
3106/* Return the next insn after INSN that is not a DEBUG_INSN. This
3107 routine does not look inside SEQUENCEs. */
3108
3109rtx
3110next_nondebug_insn (rtx insn)
3111{
3112 while (insn)
3113 {
3114 insn = NEXT_INSN (insn);
3115 if (insn == 0 || !DEBUG_INSN_P (insn))
3116 break;
3117 }
3118
3119 return insn;
3120}
3121
3122/* Return the previous insn before INSN that is not a DEBUG_INSN.
3123 This routine does not look inside SEQUENCEs. */
3124
3125rtx
3126prev_nondebug_insn (rtx insn)
3127{
3128 while (insn)
3129 {
3130 insn = PREV_INSN (insn);
3131 if (insn == 0 || !DEBUG_INSN_P (insn))
3132 break;
3133 }
3134
3135 return insn;
3136}
3137
23b2ce53
RS
3138/* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3139 or 0, if there is none. This routine does not look inside
0f41302f 3140 SEQUENCEs. */
23b2ce53
RS
3141
3142rtx
502b8322 3143next_real_insn (rtx insn)
23b2ce53 3144{
75547801
KG
3145 while (insn)
3146 {
3147 insn = NEXT_INSN (insn);
3148 if (insn == 0 || INSN_P (insn))
3149 break;
3150 }
23b2ce53 3151
75547801 3152 return insn;
23b2ce53
RS
3153}
3154
3155/* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3156 or 0, if there is none. This routine does not look inside
3157 SEQUENCEs. */
3158
3159rtx
502b8322 3160prev_real_insn (rtx insn)
23b2ce53 3161{
75547801
KG
3162 while (insn)
3163 {
3164 insn = PREV_INSN (insn);
3165 if (insn == 0 || INSN_P (insn))
3166 break;
3167 }
23b2ce53 3168
75547801 3169 return insn;
23b2ce53
RS
3170}
3171
ee960939
OH
3172/* Return the last CALL_INSN in the current list, or 0 if there is none.
3173 This routine does not look inside SEQUENCEs. */
3174
3175rtx
502b8322 3176last_call_insn (void)
ee960939
OH
3177{
3178 rtx insn;
3179
3180 for (insn = get_last_insn ();
4b4bf941 3181 insn && !CALL_P (insn);
ee960939
OH
3182 insn = PREV_INSN (insn))
3183 ;
3184
3185 return insn;
3186}
3187
23b2ce53 3188/* Find the next insn after INSN that really does something. This routine
9c517bf3
AK
3189 does not look inside SEQUENCEs. After reload this also skips over
3190 standalone USE and CLOBBER insn. */
23b2ce53 3191
69732dcb 3192int
4f588890 3193active_insn_p (const_rtx insn)
69732dcb 3194{
4b4bf941
JQ
3195 return (CALL_P (insn) || JUMP_P (insn)
3196 || (NONJUMP_INSN_P (insn)
23b8ba81
RH
3197 && (! reload_completed
3198 || (GET_CODE (PATTERN (insn)) != USE
3199 && GET_CODE (PATTERN (insn)) != CLOBBER))));
69732dcb
RH
3200}
3201
23b2ce53 3202rtx
502b8322 3203next_active_insn (rtx insn)
23b2ce53 3204{
75547801
KG
3205 while (insn)
3206 {
3207 insn = NEXT_INSN (insn);
3208 if (insn == 0 || active_insn_p (insn))
3209 break;
3210 }
23b2ce53 3211
75547801 3212 return insn;
23b2ce53
RS
3213}
3214
3215/* Find the last insn before INSN that really does something. This routine
9c517bf3
AK
3216 does not look inside SEQUENCEs. After reload this also skips over
3217 standalone USE and CLOBBER insn. */
23b2ce53
RS
3218
3219rtx
502b8322 3220prev_active_insn (rtx insn)
23b2ce53 3221{
75547801
KG
3222 while (insn)
3223 {
3224 insn = PREV_INSN (insn);
3225 if (insn == 0 || active_insn_p (insn))
3226 break;
3227 }
23b2ce53 3228
75547801 3229 return insn;
23b2ce53
RS
3230}
3231
3232/* Return the next CODE_LABEL after the insn INSN, or 0 if there is none. */
3233
3234rtx
502b8322 3235next_label (rtx insn)
23b2ce53 3236{
75547801
KG
3237 while (insn)
3238 {
3239 insn = NEXT_INSN (insn);
3240 if (insn == 0 || LABEL_P (insn))
3241 break;
3242 }
23b2ce53 3243
75547801 3244 return insn;
23b2ce53
RS
3245}
3246
3247/* Return the last CODE_LABEL before the insn INSN, or 0 if there is none. */
3248
3249rtx
502b8322 3250prev_label (rtx insn)
23b2ce53 3251{
75547801
KG
3252 while (insn)
3253 {
3254 insn = PREV_INSN (insn);
3255 if (insn == 0 || LABEL_P (insn))
3256 break;
3257 }
23b2ce53 3258
75547801 3259 return insn;
23b2ce53 3260}
6c2511d3
RS
3261
3262/* Return the last label to mark the same position as LABEL. Return null
3263 if LABEL itself is null. */
3264
3265rtx
3266skip_consecutive_labels (rtx label)
3267{
3268 rtx insn;
3269
3270 for (insn = label; insn != 0 && !INSN_P (insn); insn = NEXT_INSN (insn))
3271 if (LABEL_P (insn))
3272 label = insn;
3273
3274 return label;
3275}
23b2ce53
RS
3276\f
3277#ifdef HAVE_cc0
c572e5ba
JVA
3278/* INSN uses CC0 and is being moved into a delay slot. Set up REG_CC_SETTER
3279 and REG_CC_USER notes so we can find it. */
3280
3281void
502b8322 3282link_cc0_insns (rtx insn)
c572e5ba
JVA
3283{
3284 rtx user = next_nonnote_insn (insn);
3285
4b4bf941 3286 if (NONJUMP_INSN_P (user) && GET_CODE (PATTERN (user)) == SEQUENCE)
c572e5ba
JVA
3287 user = XVECEXP (PATTERN (user), 0, 0);
3288
65c5f2a6
ILT
3289 add_reg_note (user, REG_CC_SETTER, insn);
3290 add_reg_note (insn, REG_CC_USER, user);
c572e5ba
JVA
3291}
3292
23b2ce53
RS
3293/* Return the next insn that uses CC0 after INSN, which is assumed to
3294 set it. This is the inverse of prev_cc0_setter (i.e., prev_cc0_setter
3295 applied to the result of this function should yield INSN).
3296
3297 Normally, this is simply the next insn. However, if a REG_CC_USER note
3298 is present, it contains the insn that uses CC0.
3299
3300 Return 0 if we can't find the insn. */
3301
3302rtx
502b8322 3303next_cc0_user (rtx insn)
23b2ce53 3304{
906c4e36 3305 rtx note = find_reg_note (insn, REG_CC_USER, NULL_RTX);
23b2ce53
RS
3306
3307 if (note)
3308 return XEXP (note, 0);
3309
3310 insn = next_nonnote_insn (insn);
4b4bf941 3311 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
23b2ce53
RS
3312 insn = XVECEXP (PATTERN (insn), 0, 0);
3313
2c3c49de 3314 if (insn && INSN_P (insn) && reg_mentioned_p (cc0_rtx, PATTERN (insn)))
23b2ce53
RS
3315 return insn;
3316
3317 return 0;
3318}
3319
3320/* Find the insn that set CC0 for INSN. Unless INSN has a REG_CC_SETTER
3321 note, it is the previous insn. */
3322
3323rtx
502b8322 3324prev_cc0_setter (rtx insn)
23b2ce53 3325{
906c4e36 3326 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
23b2ce53
RS
3327
3328 if (note)
3329 return XEXP (note, 0);
3330
3331 insn = prev_nonnote_insn (insn);
5b0264cb 3332 gcc_assert (sets_cc0_p (PATTERN (insn)));
23b2ce53
RS
3333
3334 return insn;
3335}
3336#endif
e5bef2e4 3337
594f8779
RZ
3338#ifdef AUTO_INC_DEC
3339/* Find a RTX_AUTOINC class rtx which matches DATA. */
3340
3341static int
3342find_auto_inc (rtx *xp, void *data)
3343{
3344 rtx x = *xp;
5ead67f6 3345 rtx reg = (rtx) data;
594f8779
RZ
3346
3347 if (GET_RTX_CLASS (GET_CODE (x)) != RTX_AUTOINC)
3348 return 0;
3349
3350 switch (GET_CODE (x))
3351 {
3352 case PRE_DEC:
3353 case PRE_INC:
3354 case POST_DEC:
3355 case POST_INC:
3356 case PRE_MODIFY:
3357 case POST_MODIFY:
3358 if (rtx_equal_p (reg, XEXP (x, 0)))
3359 return 1;
3360 break;
3361
3362 default:
3363 gcc_unreachable ();
3364 }
3365 return -1;
3366}
3367#endif
3368
e5bef2e4
HB
3369/* Increment the label uses for all labels present in rtx. */
3370
3371static void
502b8322 3372mark_label_nuses (rtx x)
e5bef2e4 3373{
b3694847
SS
3374 enum rtx_code code;
3375 int i, j;
3376 const char *fmt;
e5bef2e4
HB
3377
3378 code = GET_CODE (x);
7537fc90 3379 if (code == LABEL_REF && LABEL_P (XEXP (x, 0)))
e5bef2e4
HB
3380 LABEL_NUSES (XEXP (x, 0))++;
3381
3382 fmt = GET_RTX_FORMAT (code);
3383 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3384 {
3385 if (fmt[i] == 'e')
0fb7aeda 3386 mark_label_nuses (XEXP (x, i));
e5bef2e4 3387 else if (fmt[i] == 'E')
0fb7aeda 3388 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
e5bef2e4
HB
3389 mark_label_nuses (XVECEXP (x, i, j));
3390 }
3391}
3392
23b2ce53
RS
3393\f
3394/* Try splitting insns that can be split for better scheduling.
3395 PAT is the pattern which might split.
3396 TRIAL is the insn providing PAT.
cc2902df 3397 LAST is nonzero if we should return the last insn of the sequence produced.
23b2ce53
RS
3398
3399 If this routine succeeds in splitting, it returns the first or last
11147ebe 3400 replacement insn depending on the value of LAST. Otherwise, it
23b2ce53
RS
3401 returns TRIAL. If the insn to be returned can be split, it will be. */
3402
3403rtx
502b8322 3404try_split (rtx pat, rtx trial, int last)
23b2ce53
RS
3405{
3406 rtx before = PREV_INSN (trial);
3407 rtx after = NEXT_INSN (trial);
23b2ce53 3408 int has_barrier = 0;
4a8cae83 3409 rtx note, seq, tem;
6b24c259 3410 int probability;
599aedd9
RH
3411 rtx insn_last, insn;
3412 int njumps = 0;
6b24c259 3413
cd9c1ca8
RH
3414 /* We're not good at redistributing frame information. */
3415 if (RTX_FRAME_RELATED_P (trial))
3416 return trial;
3417
6b24c259
JH
3418 if (any_condjump_p (trial)
3419 && (note = find_reg_note (trial, REG_BR_PROB, 0)))
3420 split_branch_probability = INTVAL (XEXP (note, 0));
3421 probability = split_branch_probability;
3422
3423 seq = split_insns (pat, trial);
3424
3425 split_branch_probability = -1;
23b2ce53
RS
3426
3427 /* If we are splitting a JUMP_INSN, it might be followed by a BARRIER.
3428 We may need to handle this specially. */
4b4bf941 3429 if (after && BARRIER_P (after))
23b2ce53
RS
3430 {
3431 has_barrier = 1;
3432 after = NEXT_INSN (after);
3433 }
3434
599aedd9
RH
3435 if (!seq)
3436 return trial;
3437
3438 /* Avoid infinite loop if any insn of the result matches
3439 the original pattern. */
3440 insn_last = seq;
3441 while (1)
23b2ce53 3442 {
599aedd9
RH
3443 if (INSN_P (insn_last)
3444 && rtx_equal_p (PATTERN (insn_last), pat))
3445 return trial;
3446 if (!NEXT_INSN (insn_last))
3447 break;
3448 insn_last = NEXT_INSN (insn_last);
3449 }
750c9258 3450
6fb5fa3c
DB
3451 /* We will be adding the new sequence to the function. The splitters
3452 may have introduced invalid RTL sharing, so unshare the sequence now. */
3453 unshare_all_rtl_in_chain (seq);
3454
599aedd9
RH
3455 /* Mark labels. */
3456 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3457 {
4b4bf941 3458 if (JUMP_P (insn))
599aedd9
RH
3459 {
3460 mark_jump_label (PATTERN (insn), insn, 0);
3461 njumps++;
3462 if (probability != -1
3463 && any_condjump_p (insn)
3464 && !find_reg_note (insn, REG_BR_PROB, 0))
2f937369 3465 {
599aedd9
RH
3466 /* We can preserve the REG_BR_PROB notes only if exactly
3467 one jump is created, otherwise the machine description
3468 is responsible for this step using
3469 split_branch_probability variable. */
5b0264cb 3470 gcc_assert (njumps == 1);
65c5f2a6 3471 add_reg_note (insn, REG_BR_PROB, GEN_INT (probability));
2f937369 3472 }
599aedd9
RH
3473 }
3474 }
3475
3476 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3477 in SEQ and copy our CALL_INSN_FUNCTION_USAGE to it. */
4b4bf941 3478 if (CALL_P (trial))
599aedd9
RH
3479 {
3480 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
4b4bf941 3481 if (CALL_P (insn))
599aedd9 3482 {
f6a1f3f6
RH
3483 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3484 while (*p)
3485 p = &XEXP (*p, 1);
3486 *p = CALL_INSN_FUNCTION_USAGE (trial);
599aedd9 3487 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
d0539838
CC
3488
3489 /* Update the debug information for the CALL_INSN. */
3490 if (flag_enable_icf_debug)
3491 (*debug_hooks->copy_call_info) (trial, insn);
599aedd9
RH
3492 }
3493 }
4b5e8abe 3494
599aedd9
RH
3495 /* Copy notes, particularly those related to the CFG. */
3496 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3497 {
3498 switch (REG_NOTE_KIND (note))
3499 {
3500 case REG_EH_REGION:
1d65f45c 3501 copy_reg_eh_region_note_backward (note, insn_last, NULL);
599aedd9 3502 break;
216183ce 3503
599aedd9
RH
3504 case REG_NORETURN:
3505 case REG_SETJMP:
594f8779 3506 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
216183ce 3507 {
4b4bf941 3508 if (CALL_P (insn))
65c5f2a6 3509 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
216183ce 3510 }
599aedd9 3511 break;
d6e95df8 3512
599aedd9 3513 case REG_NON_LOCAL_GOTO:
594f8779 3514 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
2f937369 3515 {
4b4bf941 3516 if (JUMP_P (insn))
65c5f2a6 3517 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2f937369 3518 }
599aedd9 3519 break;
e5bef2e4 3520
594f8779
RZ
3521#ifdef AUTO_INC_DEC
3522 case REG_INC:
3523 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3524 {
3525 rtx reg = XEXP (note, 0);
3526 if (!FIND_REG_INC_NOTE (insn, reg)
3527 && for_each_rtx (&PATTERN (insn), find_auto_inc, reg) > 0)
65c5f2a6 3528 add_reg_note (insn, REG_INC, reg);
594f8779
RZ
3529 }
3530 break;
3531#endif
3532
599aedd9
RH
3533 default:
3534 break;
23b2ce53 3535 }
599aedd9
RH
3536 }
3537
3538 /* If there are LABELS inside the split insns increment the
3539 usage count so we don't delete the label. */
cf7c4aa6 3540 if (INSN_P (trial))
599aedd9
RH
3541 {
3542 insn = insn_last;
3543 while (insn != NULL_RTX)
23b2ce53 3544 {
cf7c4aa6 3545 /* JUMP_P insns have already been "marked" above. */
4b4bf941 3546 if (NONJUMP_INSN_P (insn))
599aedd9 3547 mark_label_nuses (PATTERN (insn));
23b2ce53 3548
599aedd9
RH
3549 insn = PREV_INSN (insn);
3550 }
23b2ce53
RS
3551 }
3552
0435312e 3553 tem = emit_insn_after_setloc (seq, trial, INSN_LOCATOR (trial));
599aedd9
RH
3554
3555 delete_insn (trial);
3556 if (has_barrier)
3557 emit_barrier_after (tem);
3558
3559 /* Recursively call try_split for each new insn created; by the
3560 time control returns here that insn will be fully split, so
3561 set LAST and continue from the insn after the one returned.
3562 We can't use next_active_insn here since AFTER may be a note.
3563 Ignore deleted insns, which can be occur if not optimizing. */
3564 for (tem = NEXT_INSN (before); tem != after; tem = NEXT_INSN (tem))
3565 if (! INSN_DELETED_P (tem) && INSN_P (tem))
3566 tem = try_split (PATTERN (tem), tem, 1);
3567
3568 /* Return either the first or the last insn, depending on which was
3569 requested. */
3570 return last
5936d944 3571 ? (after ? PREV_INSN (after) : get_last_insn ())
599aedd9 3572 : NEXT_INSN (before);
23b2ce53
RS
3573}
3574\f
3575/* Make and return an INSN rtx, initializing all its slots.
4b1f5e8c 3576 Store PATTERN in the pattern slots. */
23b2ce53
RS
3577
3578rtx
502b8322 3579make_insn_raw (rtx pattern)
23b2ce53 3580{
b3694847 3581 rtx insn;
23b2ce53 3582
1f8f4a0b 3583 insn = rtx_alloc (INSN);
23b2ce53 3584
43127294 3585 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3586 PATTERN (insn) = pattern;
3587 INSN_CODE (insn) = -1;
1632afca 3588 REG_NOTES (insn) = NULL;
55e092c4 3589 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3590 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53 3591
47984720
NC
3592#ifdef ENABLE_RTL_CHECKING
3593 if (insn
2c3c49de 3594 && INSN_P (insn)
47984720
NC
3595 && (returnjump_p (insn)
3596 || (GET_CODE (insn) == SET
3597 && SET_DEST (insn) == pc_rtx)))
3598 {
d4ee4d25 3599 warning (0, "ICE: emit_insn used where emit_jump_insn needed:\n");
47984720
NC
3600 debug_rtx (insn);
3601 }
3602#endif
750c9258 3603
23b2ce53
RS
3604 return insn;
3605}
3606
b5b8b0ac
AO
3607/* Like `make_insn_raw' but make a DEBUG_INSN instead of an insn. */
3608
3609rtx
3610make_debug_insn_raw (rtx pattern)
3611{
3612 rtx insn;
3613
3614 insn = rtx_alloc (DEBUG_INSN);
3615 INSN_UID (insn) = cur_debug_insn_uid++;
3616 if (cur_debug_insn_uid > MIN_NONDEBUG_INSN_UID)
3617 INSN_UID (insn) = cur_insn_uid++;
3618
3619 PATTERN (insn) = pattern;
3620 INSN_CODE (insn) = -1;
3621 REG_NOTES (insn) = NULL;
3622 INSN_LOCATOR (insn) = curr_insn_locator ();
3623 BLOCK_FOR_INSN (insn) = NULL;
3624
3625 return insn;
3626}
3627
2f937369 3628/* Like `make_insn_raw' but make a JUMP_INSN instead of an insn. */
23b2ce53 3629
38109dab 3630rtx
502b8322 3631make_jump_insn_raw (rtx pattern)
23b2ce53 3632{
b3694847 3633 rtx insn;
23b2ce53 3634
4b1f5e8c 3635 insn = rtx_alloc (JUMP_INSN);
1632afca 3636 INSN_UID (insn) = cur_insn_uid++;
23b2ce53
RS
3637
3638 PATTERN (insn) = pattern;
3639 INSN_CODE (insn) = -1;
1632afca
RS
3640 REG_NOTES (insn) = NULL;
3641 JUMP_LABEL (insn) = NULL;
55e092c4 3642 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3643 BLOCK_FOR_INSN (insn) = NULL;
23b2ce53
RS
3644
3645 return insn;
3646}
aff507f4 3647
2f937369 3648/* Like `make_insn_raw' but make a CALL_INSN instead of an insn. */
aff507f4
RK
3649
3650static rtx
502b8322 3651make_call_insn_raw (rtx pattern)
aff507f4 3652{
b3694847 3653 rtx insn;
aff507f4
RK
3654
3655 insn = rtx_alloc (CALL_INSN);
3656 INSN_UID (insn) = cur_insn_uid++;
3657
3658 PATTERN (insn) = pattern;
3659 INSN_CODE (insn) = -1;
aff507f4
RK
3660 REG_NOTES (insn) = NULL;
3661 CALL_INSN_FUNCTION_USAGE (insn) = NULL;
55e092c4 3662 INSN_LOCATOR (insn) = curr_insn_locator ();
ba4f7968 3663 BLOCK_FOR_INSN (insn) = NULL;
aff507f4
RK
3664
3665 return insn;
3666}
23b2ce53
RS
3667\f
3668/* Add INSN to the end of the doubly-linked list.
3669 INSN may be an INSN, JUMP_INSN, CALL_INSN, CODE_LABEL, BARRIER or NOTE. */
3670
3671void
502b8322 3672add_insn (rtx insn)
23b2ce53 3673{
5936d944 3674 PREV_INSN (insn) = get_last_insn();
23b2ce53
RS
3675 NEXT_INSN (insn) = 0;
3676
5936d944
JH
3677 if (NULL != get_last_insn())
3678 NEXT_INSN (get_last_insn ()) = insn;
23b2ce53 3679
5936d944
JH
3680 if (NULL == get_insns ())
3681 set_first_insn (insn);
23b2ce53 3682
5936d944 3683 set_last_insn (insn);
23b2ce53
RS
3684}
3685
a0ae8e8d
RK
3686/* Add INSN into the doubly-linked list after insn AFTER. This and
3687 the next should be the only functions called to insert an insn once
ba213285 3688 delay slots have been filled since only they know how to update a
a0ae8e8d 3689 SEQUENCE. */
23b2ce53
RS
3690
3691void
6fb5fa3c 3692add_insn_after (rtx insn, rtx after, basic_block bb)
23b2ce53
RS
3693{
3694 rtx next = NEXT_INSN (after);
3695
5b0264cb 3696 gcc_assert (!optimize || !INSN_DELETED_P (after));
ba213285 3697
23b2ce53
RS
3698 NEXT_INSN (insn) = next;
3699 PREV_INSN (insn) = after;
3700
3701 if (next)
3702 {
3703 PREV_INSN (next) = insn;
4b4bf941 3704 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
23b2ce53
RS
3705 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = insn;
3706 }
5936d944
JH
3707 else if (get_last_insn () == after)
3708 set_last_insn (insn);
23b2ce53
RS
3709 else
3710 {
49ad7cfa 3711 struct sequence_stack *stack = seq_stack;
23b2ce53
RS
3712 /* Scan all pending sequences too. */
3713 for (; stack; stack = stack->next)
3714 if (after == stack->last)
fef0509b
RK
3715 {
3716 stack->last = insn;
3717 break;
3718 }
a0ae8e8d 3719
5b0264cb 3720 gcc_assert (stack);
23b2ce53
RS
3721 }
3722
4b4bf941
JQ
3723 if (!BARRIER_P (after)
3724 && !BARRIER_P (insn)
3c030e88
JH
3725 && (bb = BLOCK_FOR_INSN (after)))
3726 {
3727 set_block_for_insn (insn, bb);
38c1593d 3728 if (INSN_P (insn))
6fb5fa3c 3729 df_insn_rescan (insn);
3c030e88 3730 /* Should not happen as first in the BB is always
a1f300c0 3731 either NOTE or LABEL. */
a813c111 3732 if (BB_END (bb) == after
3c030e88 3733 /* Avoid clobbering of structure when creating new BB. */
4b4bf941 3734 && !BARRIER_P (insn)
a38e7aa5 3735 && !NOTE_INSN_BASIC_BLOCK_P (insn))
a813c111 3736 BB_END (bb) = insn;
3c030e88
JH
3737 }
3738
23b2ce53 3739 NEXT_INSN (after) = insn;
4b4bf941 3740 if (NONJUMP_INSN_P (after) && GET_CODE (PATTERN (after)) == SEQUENCE)
23b2ce53
RS
3741 {
3742 rtx sequence = PATTERN (after);
3743 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3744 }
3745}
3746
a0ae8e8d 3747/* Add INSN into the doubly-linked list before insn BEFORE. This and
6fb5fa3c
DB
3748 the previous should be the only functions called to insert an insn
3749 once delay slots have been filled since only they know how to
3750 update a SEQUENCE. If BB is NULL, an attempt is made to infer the
3751 bb from before. */
a0ae8e8d
RK
3752
3753void
6fb5fa3c 3754add_insn_before (rtx insn, rtx before, basic_block bb)
a0ae8e8d
RK
3755{
3756 rtx prev = PREV_INSN (before);
3757
5b0264cb 3758 gcc_assert (!optimize || !INSN_DELETED_P (before));
ba213285 3759
a0ae8e8d
RK
3760 PREV_INSN (insn) = prev;
3761 NEXT_INSN (insn) = before;
3762
3763 if (prev)
3764 {
3765 NEXT_INSN (prev) = insn;
4b4bf941 3766 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
a0ae8e8d
RK
3767 {
3768 rtx sequence = PATTERN (prev);
3769 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = insn;
3770 }
3771 }
5936d944
JH
3772 else if (get_insns () == before)
3773 set_first_insn (insn);
a0ae8e8d
RK
3774 else
3775 {
49ad7cfa 3776 struct sequence_stack *stack = seq_stack;
a0ae8e8d
RK
3777 /* Scan all pending sequences too. */
3778 for (; stack; stack = stack->next)
3779 if (before == stack->first)
fef0509b
RK
3780 {
3781 stack->first = insn;
3782 break;
3783 }
a0ae8e8d 3784
5b0264cb 3785 gcc_assert (stack);
a0ae8e8d
RK
3786 }
3787
b8698a0f 3788 if (!bb
6fb5fa3c
DB
3789 && !BARRIER_P (before)
3790 && !BARRIER_P (insn))
3791 bb = BLOCK_FOR_INSN (before);
3792
3793 if (bb)
3c030e88
JH
3794 {
3795 set_block_for_insn (insn, bb);
38c1593d 3796 if (INSN_P (insn))
6fb5fa3c 3797 df_insn_rescan (insn);
5b0264cb 3798 /* Should not happen as first in the BB is always either NOTE or
43e05e45 3799 LABEL. */
5b0264cb
NS
3800 gcc_assert (BB_HEAD (bb) != insn
3801 /* Avoid clobbering of structure when creating new BB. */
3802 || BARRIER_P (insn)
a38e7aa5 3803 || NOTE_INSN_BASIC_BLOCK_P (insn));
3c030e88
JH
3804 }
3805
a0ae8e8d 3806 PREV_INSN (before) = insn;
4b4bf941 3807 if (NONJUMP_INSN_P (before) && GET_CODE (PATTERN (before)) == SEQUENCE)
a0ae8e8d
RK
3808 PREV_INSN (XVECEXP (PATTERN (before), 0, 0)) = insn;
3809}
3810
6fb5fa3c
DB
3811
3812/* Replace insn with an deleted instruction note. */
3813
0ce2b299
EB
3814void
3815set_insn_deleted (rtx insn)
6fb5fa3c
DB
3816{
3817 df_insn_delete (BLOCK_FOR_INSN (insn), INSN_UID (insn));
3818 PUT_CODE (insn, NOTE);
3819 NOTE_KIND (insn) = NOTE_INSN_DELETED;
3820}
3821
3822
89e99eea
DB
3823/* Remove an insn from its doubly-linked list. This function knows how
3824 to handle sequences. */
3825void
502b8322 3826remove_insn (rtx insn)
89e99eea
DB
3827{
3828 rtx next = NEXT_INSN (insn);
3829 rtx prev = PREV_INSN (insn);
53c17031
JH
3830 basic_block bb;
3831
6fb5fa3c
DB
3832 /* Later in the code, the block will be marked dirty. */
3833 df_insn_delete (NULL, INSN_UID (insn));
3834
89e99eea
DB
3835 if (prev)
3836 {
3837 NEXT_INSN (prev) = next;
4b4bf941 3838 if (NONJUMP_INSN_P (prev) && GET_CODE (PATTERN (prev)) == SEQUENCE)
89e99eea
DB
3839 {
3840 rtx sequence = PATTERN (prev);
3841 NEXT_INSN (XVECEXP (sequence, 0, XVECLEN (sequence, 0) - 1)) = next;
3842 }
3843 }
5936d944
JH
3844 else if (get_insns () == insn)
3845 {
fb9ef4c1
JH
3846 if (next)
3847 PREV_INSN (next) = NULL;
5936d944
JH
3848 set_first_insn (next);
3849 }
89e99eea
DB
3850 else
3851 {
49ad7cfa 3852 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3853 /* Scan all pending sequences too. */
3854 for (; stack; stack = stack->next)
3855 if (insn == stack->first)
3856 {
3857 stack->first = next;
3858 break;
3859 }
3860
5b0264cb 3861 gcc_assert (stack);
89e99eea
DB
3862 }
3863
3864 if (next)
3865 {
3866 PREV_INSN (next) = prev;
4b4bf941 3867 if (NONJUMP_INSN_P (next) && GET_CODE (PATTERN (next)) == SEQUENCE)
89e99eea
DB
3868 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
3869 }
5936d944
JH
3870 else if (get_last_insn () == insn)
3871 set_last_insn (prev);
89e99eea
DB
3872 else
3873 {
49ad7cfa 3874 struct sequence_stack *stack = seq_stack;
89e99eea
DB
3875 /* Scan all pending sequences too. */
3876 for (; stack; stack = stack->next)
3877 if (insn == stack->last)
3878 {
3879 stack->last = prev;
3880 break;
3881 }
3882
5b0264cb 3883 gcc_assert (stack);
89e99eea 3884 }
4b4bf941 3885 if (!BARRIER_P (insn)
53c17031
JH
3886 && (bb = BLOCK_FOR_INSN (insn)))
3887 {
38c1593d 3888 if (INSN_P (insn))
6fb5fa3c 3889 df_set_bb_dirty (bb);
a813c111 3890 if (BB_HEAD (bb) == insn)
53c17031 3891 {
3bf1e984
RK
3892 /* Never ever delete the basic block note without deleting whole
3893 basic block. */
5b0264cb 3894 gcc_assert (!NOTE_P (insn));
a813c111 3895 BB_HEAD (bb) = next;
53c17031 3896 }
a813c111
SB
3897 if (BB_END (bb) == insn)
3898 BB_END (bb) = prev;
53c17031 3899 }
89e99eea
DB
3900}
3901
ee960939
OH
3902/* Append CALL_FUSAGE to the CALL_INSN_FUNCTION_USAGE for CALL_INSN. */
3903
3904void
502b8322 3905add_function_usage_to (rtx call_insn, rtx call_fusage)
ee960939 3906{
5b0264cb 3907 gcc_assert (call_insn && CALL_P (call_insn));
ee960939
OH
3908
3909 /* Put the register usage information on the CALL. If there is already
3910 some usage information, put ours at the end. */
3911 if (CALL_INSN_FUNCTION_USAGE (call_insn))
3912 {
3913 rtx link;
3914
3915 for (link = CALL_INSN_FUNCTION_USAGE (call_insn); XEXP (link, 1) != 0;
3916 link = XEXP (link, 1))
3917 ;
3918
3919 XEXP (link, 1) = call_fusage;
3920 }
3921 else
3922 CALL_INSN_FUNCTION_USAGE (call_insn) = call_fusage;
3923}
3924
23b2ce53
RS
3925/* Delete all insns made since FROM.
3926 FROM becomes the new last instruction. */
3927
3928void
502b8322 3929delete_insns_since (rtx from)
23b2ce53
RS
3930{
3931 if (from == 0)
5936d944 3932 set_first_insn (0);
23b2ce53
RS
3933 else
3934 NEXT_INSN (from) = 0;
5936d944 3935 set_last_insn (from);
23b2ce53
RS
3936}
3937
5dab5552
MS
3938/* This function is deprecated, please use sequences instead.
3939
3940 Move a consecutive bunch of insns to a different place in the chain.
23b2ce53
RS
3941 The insns to be moved are those between FROM and TO.
3942 They are moved to a new position after the insn AFTER.
3943 AFTER must not be FROM or TO or any insn in between.
3944
3945 This function does not know about SEQUENCEs and hence should not be
3946 called after delay-slot filling has been done. */
3947
3948void
502b8322 3949reorder_insns_nobb (rtx from, rtx to, rtx after)
23b2ce53
RS
3950{
3951 /* Splice this bunch out of where it is now. */
3952 if (PREV_INSN (from))
3953 NEXT_INSN (PREV_INSN (from)) = NEXT_INSN (to);
3954 if (NEXT_INSN (to))
3955 PREV_INSN (NEXT_INSN (to)) = PREV_INSN (from);
5936d944
JH
3956 if (get_last_insn () == to)
3957 set_last_insn (PREV_INSN (from));
3958 if (get_insns () == from)
3959 set_first_insn (NEXT_INSN (to));
23b2ce53
RS
3960
3961 /* Make the new neighbors point to it and it to them. */
3962 if (NEXT_INSN (after))
3963 PREV_INSN (NEXT_INSN (after)) = to;
3964
3965 NEXT_INSN (to) = NEXT_INSN (after);
3966 PREV_INSN (from) = after;
3967 NEXT_INSN (after) = from;
5936d944
JH
3968 if (after == get_last_insn())
3969 set_last_insn (to);
23b2ce53
RS
3970}
3971
3c030e88
JH
3972/* Same as function above, but take care to update BB boundaries. */
3973void
502b8322 3974reorder_insns (rtx from, rtx to, rtx after)
3c030e88
JH
3975{
3976 rtx prev = PREV_INSN (from);
3977 basic_block bb, bb2;
3978
3979 reorder_insns_nobb (from, to, after);
3980
4b4bf941 3981 if (!BARRIER_P (after)
3c030e88
JH
3982 && (bb = BLOCK_FOR_INSN (after)))
3983 {
3984 rtx x;
6fb5fa3c 3985 df_set_bb_dirty (bb);
68252e27 3986
4b4bf941 3987 if (!BARRIER_P (from)
3c030e88
JH
3988 && (bb2 = BLOCK_FOR_INSN (from)))
3989 {
a813c111
SB
3990 if (BB_END (bb2) == to)
3991 BB_END (bb2) = prev;
6fb5fa3c 3992 df_set_bb_dirty (bb2);
3c030e88
JH
3993 }
3994
a813c111
SB
3995 if (BB_END (bb) == after)
3996 BB_END (bb) = to;
3c030e88
JH
3997
3998 for (x = from; x != NEXT_INSN (to); x = NEXT_INSN (x))
7bd5ed5c 3999 if (!BARRIER_P (x))
63642d5a 4000 df_insn_change_bb (x, bb);
3c030e88
JH
4001 }
4002}
4003
23b2ce53 4004\f
2f937369
DM
4005/* Emit insn(s) of given code and pattern
4006 at a specified place within the doubly-linked list.
23b2ce53 4007
2f937369
DM
4008 All of the emit_foo global entry points accept an object
4009 X which is either an insn list or a PATTERN of a single
4010 instruction.
23b2ce53 4011
2f937369
DM
4012 There are thus a few canonical ways to generate code and
4013 emit it at a specific place in the instruction stream. For
4014 example, consider the instruction named SPOT and the fact that
4015 we would like to emit some instructions before SPOT. We might
4016 do it like this:
23b2ce53 4017
2f937369
DM
4018 start_sequence ();
4019 ... emit the new instructions ...
4020 insns_head = get_insns ();
4021 end_sequence ();
23b2ce53 4022
2f937369 4023 emit_insn_before (insns_head, SPOT);
23b2ce53 4024
2f937369
DM
4025 It used to be common to generate SEQUENCE rtl instead, but that
4026 is a relic of the past which no longer occurs. The reason is that
4027 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4028 generated would almost certainly die right after it was created. */
23b2ce53 4029
2f937369 4030/* Make X be output before the instruction BEFORE. */
23b2ce53
RS
4031
4032rtx
6fb5fa3c 4033emit_insn_before_noloc (rtx x, rtx before, basic_block bb)
23b2ce53 4034{
2f937369 4035 rtx last = before;
b3694847 4036 rtx insn;
23b2ce53 4037
5b0264cb 4038 gcc_assert (before);
2f937369
DM
4039
4040 if (x == NULL_RTX)
4041 return last;
4042
4043 switch (GET_CODE (x))
23b2ce53 4044 {
b5b8b0ac 4045 case DEBUG_INSN:
2f937369
DM
4046 case INSN:
4047 case JUMP_INSN:
4048 case CALL_INSN:
4049 case CODE_LABEL:
4050 case BARRIER:
4051 case NOTE:
4052 insn = x;
4053 while (insn)
4054 {
4055 rtx next = NEXT_INSN (insn);
6fb5fa3c 4056 add_insn_before (insn, before, bb);
2f937369
DM
4057 last = insn;
4058 insn = next;
4059 }
4060 break;
4061
4062#ifdef ENABLE_RTL_CHECKING
4063 case SEQUENCE:
5b0264cb 4064 gcc_unreachable ();
2f937369
DM
4065 break;
4066#endif
4067
4068 default:
4069 last = make_insn_raw (x);
6fb5fa3c 4070 add_insn_before (last, before, bb);
2f937369 4071 break;
23b2ce53
RS
4072 }
4073
2f937369 4074 return last;
23b2ce53
RS
4075}
4076
2f937369 4077/* Make an instruction with body X and code JUMP_INSN
23b2ce53
RS
4078 and output it before the instruction BEFORE. */
4079
4080rtx
a7102479 4081emit_jump_insn_before_noloc (rtx x, rtx before)
23b2ce53 4082{
d950dee3 4083 rtx insn, last = NULL_RTX;
aff507f4 4084
5b0264cb 4085 gcc_assert (before);
2f937369
DM
4086
4087 switch (GET_CODE (x))
aff507f4 4088 {
b5b8b0ac 4089 case DEBUG_INSN:
2f937369
DM
4090 case INSN:
4091 case JUMP_INSN:
4092 case CALL_INSN:
4093 case CODE_LABEL:
4094 case BARRIER:
4095 case NOTE:
4096 insn = x;
4097 while (insn)
4098 {
4099 rtx next = NEXT_INSN (insn);
6fb5fa3c 4100 add_insn_before (insn, before, NULL);
2f937369
DM
4101 last = insn;
4102 insn = next;
4103 }
4104 break;
4105
4106#ifdef ENABLE_RTL_CHECKING
4107 case SEQUENCE:
5b0264cb 4108 gcc_unreachable ();
2f937369
DM
4109 break;
4110#endif
4111
4112 default:
4113 last = make_jump_insn_raw (x);
6fb5fa3c 4114 add_insn_before (last, before, NULL);
2f937369 4115 break;
aff507f4
RK
4116 }
4117
2f937369 4118 return last;
23b2ce53
RS
4119}
4120
2f937369 4121/* Make an instruction with body X and code CALL_INSN
969d70ca
JH
4122 and output it before the instruction BEFORE. */
4123
4124rtx
a7102479 4125emit_call_insn_before_noloc (rtx x, rtx before)
969d70ca 4126{
d950dee3 4127 rtx last = NULL_RTX, insn;
969d70ca 4128
5b0264cb 4129 gcc_assert (before);
2f937369
DM
4130
4131 switch (GET_CODE (x))
969d70ca 4132 {
b5b8b0ac 4133 case DEBUG_INSN:
2f937369
DM
4134 case INSN:
4135 case JUMP_INSN:
4136 case CALL_INSN:
4137 case CODE_LABEL:
4138 case BARRIER:
4139 case NOTE:
4140 insn = x;
4141 while (insn)
4142 {
4143 rtx next = NEXT_INSN (insn);
6fb5fa3c 4144 add_insn_before (insn, before, NULL);
2f937369
DM
4145 last = insn;
4146 insn = next;
4147 }
4148 break;
4149
4150#ifdef ENABLE_RTL_CHECKING
4151 case SEQUENCE:
5b0264cb 4152 gcc_unreachable ();
2f937369
DM
4153 break;
4154#endif
4155
4156 default:
4157 last = make_call_insn_raw (x);
6fb5fa3c 4158 add_insn_before (last, before, NULL);
2f937369 4159 break;
969d70ca
JH
4160 }
4161
2f937369 4162 return last;
969d70ca
JH
4163}
4164
b5b8b0ac
AO
4165/* Make an instruction with body X and code DEBUG_INSN
4166 and output it before the instruction BEFORE. */
4167
4168rtx
4169emit_debug_insn_before_noloc (rtx x, rtx before)
4170{
4171 rtx last = NULL_RTX, insn;
4172
4173 gcc_assert (before);
4174
4175 switch (GET_CODE (x))
4176 {
4177 case DEBUG_INSN:
4178 case INSN:
4179 case JUMP_INSN:
4180 case CALL_INSN:
4181 case CODE_LABEL:
4182 case BARRIER:
4183 case NOTE:
4184 insn = x;
4185 while (insn)
4186 {
4187 rtx next = NEXT_INSN (insn);
4188 add_insn_before (insn, before, NULL);
4189 last = insn;
4190 insn = next;
4191 }
4192 break;
4193
4194#ifdef ENABLE_RTL_CHECKING
4195 case SEQUENCE:
4196 gcc_unreachable ();
4197 break;
4198#endif
4199
4200 default:
4201 last = make_debug_insn_raw (x);
4202 add_insn_before (last, before, NULL);
4203 break;
4204 }
4205
4206 return last;
4207}
4208
23b2ce53 4209/* Make an insn of code BARRIER
e881bb1b 4210 and output it before the insn BEFORE. */
23b2ce53
RS
4211
4212rtx
502b8322 4213emit_barrier_before (rtx before)
23b2ce53 4214{
b3694847 4215 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4216
4217 INSN_UID (insn) = cur_insn_uid++;
4218
6fb5fa3c 4219 add_insn_before (insn, before, NULL);
23b2ce53
RS
4220 return insn;
4221}
4222
e881bb1b
RH
4223/* Emit the label LABEL before the insn BEFORE. */
4224
4225rtx
502b8322 4226emit_label_before (rtx label, rtx before)
e881bb1b
RH
4227{
4228 /* This can be called twice for the same label as a result of the
4229 confusion that follows a syntax error! So make it harmless. */
4230 if (INSN_UID (label) == 0)
4231 {
4232 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 4233 add_insn_before (label, before, NULL);
e881bb1b
RH
4234 }
4235
4236 return label;
4237}
4238
23b2ce53
RS
4239/* Emit a note of subtype SUBTYPE before the insn BEFORE. */
4240
4241rtx
a38e7aa5 4242emit_note_before (enum insn_note subtype, rtx before)
23b2ce53 4243{
b3694847 4244 rtx note = rtx_alloc (NOTE);
23b2ce53 4245 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4246 NOTE_KIND (note) = subtype;
ba4f7968 4247 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4248 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
23b2ce53 4249
6fb5fa3c 4250 add_insn_before (note, before, NULL);
23b2ce53
RS
4251 return note;
4252}
4253\f
2f937369
DM
4254/* Helper for emit_insn_after, handles lists of instructions
4255 efficiently. */
23b2ce53 4256
2f937369 4257static rtx
6fb5fa3c 4258emit_insn_after_1 (rtx first, rtx after, basic_block bb)
23b2ce53 4259{
2f937369
DM
4260 rtx last;
4261 rtx after_after;
6fb5fa3c
DB
4262 if (!bb && !BARRIER_P (after))
4263 bb = BLOCK_FOR_INSN (after);
23b2ce53 4264
6fb5fa3c 4265 if (bb)
23b2ce53 4266 {
6fb5fa3c 4267 df_set_bb_dirty (bb);
2f937369 4268 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4b4bf941 4269 if (!BARRIER_P (last))
6fb5fa3c
DB
4270 {
4271 set_block_for_insn (last, bb);
4272 df_insn_rescan (last);
4273 }
4b4bf941 4274 if (!BARRIER_P (last))
6fb5fa3c
DB
4275 {
4276 set_block_for_insn (last, bb);
4277 df_insn_rescan (last);
4278 }
a813c111
SB
4279 if (BB_END (bb) == after)
4280 BB_END (bb) = last;
23b2ce53
RS
4281 }
4282 else
2f937369
DM
4283 for (last = first; NEXT_INSN (last); last = NEXT_INSN (last))
4284 continue;
4285
4286 after_after = NEXT_INSN (after);
4287
4288 NEXT_INSN (after) = first;
4289 PREV_INSN (first) = after;
4290 NEXT_INSN (last) = after_after;
4291 if (after_after)
4292 PREV_INSN (after_after) = last;
4293
5936d944
JH
4294 if (after == get_last_insn())
4295 set_last_insn (last);
e855c69d 4296
2f937369
DM
4297 return last;
4298}
4299
6fb5fa3c
DB
4300/* Make X be output after the insn AFTER and set the BB of insn. If
4301 BB is NULL, an attempt is made to infer the BB from AFTER. */
2f937369
DM
4302
4303rtx
6fb5fa3c 4304emit_insn_after_noloc (rtx x, rtx after, basic_block bb)
2f937369
DM
4305{
4306 rtx last = after;
4307
5b0264cb 4308 gcc_assert (after);
2f937369
DM
4309
4310 if (x == NULL_RTX)
4311 return last;
4312
4313 switch (GET_CODE (x))
23b2ce53 4314 {
b5b8b0ac 4315 case DEBUG_INSN:
2f937369
DM
4316 case INSN:
4317 case JUMP_INSN:
4318 case CALL_INSN:
4319 case CODE_LABEL:
4320 case BARRIER:
4321 case NOTE:
6fb5fa3c 4322 last = emit_insn_after_1 (x, after, bb);
2f937369
DM
4323 break;
4324
4325#ifdef ENABLE_RTL_CHECKING
4326 case SEQUENCE:
5b0264cb 4327 gcc_unreachable ();
2f937369
DM
4328 break;
4329#endif
4330
4331 default:
4332 last = make_insn_raw (x);
6fb5fa3c 4333 add_insn_after (last, after, bb);
2f937369 4334 break;
23b2ce53
RS
4335 }
4336
2f937369 4337 return last;
23b2ce53
RS
4338}
4339
255680cf 4340
2f937369 4341/* Make an insn of code JUMP_INSN with body X
23b2ce53
RS
4342 and output it after the insn AFTER. */
4343
4344rtx
a7102479 4345emit_jump_insn_after_noloc (rtx x, rtx after)
23b2ce53 4346{
2f937369 4347 rtx last;
23b2ce53 4348
5b0264cb 4349 gcc_assert (after);
2f937369
DM
4350
4351 switch (GET_CODE (x))
23b2ce53 4352 {
b5b8b0ac 4353 case DEBUG_INSN:
2f937369
DM
4354 case INSN:
4355 case JUMP_INSN:
4356 case CALL_INSN:
4357 case CODE_LABEL:
4358 case BARRIER:
4359 case NOTE:
6fb5fa3c 4360 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4361 break;
4362
4363#ifdef ENABLE_RTL_CHECKING
4364 case SEQUENCE:
5b0264cb 4365 gcc_unreachable ();
2f937369
DM
4366 break;
4367#endif
4368
4369 default:
4370 last = make_jump_insn_raw (x);
6fb5fa3c 4371 add_insn_after (last, after, NULL);
2f937369 4372 break;
23b2ce53
RS
4373 }
4374
2f937369
DM
4375 return last;
4376}
4377
4378/* Make an instruction with body X and code CALL_INSN
4379 and output it after the instruction AFTER. */
4380
4381rtx
a7102479 4382emit_call_insn_after_noloc (rtx x, rtx after)
2f937369
DM
4383{
4384 rtx last;
4385
5b0264cb 4386 gcc_assert (after);
2f937369
DM
4387
4388 switch (GET_CODE (x))
4389 {
b5b8b0ac 4390 case DEBUG_INSN:
2f937369
DM
4391 case INSN:
4392 case JUMP_INSN:
4393 case CALL_INSN:
4394 case CODE_LABEL:
4395 case BARRIER:
4396 case NOTE:
6fb5fa3c 4397 last = emit_insn_after_1 (x, after, NULL);
2f937369
DM
4398 break;
4399
4400#ifdef ENABLE_RTL_CHECKING
4401 case SEQUENCE:
5b0264cb 4402 gcc_unreachable ();
2f937369
DM
4403 break;
4404#endif
4405
4406 default:
4407 last = make_call_insn_raw (x);
6fb5fa3c 4408 add_insn_after (last, after, NULL);
2f937369
DM
4409 break;
4410 }
4411
4412 return last;
23b2ce53
RS
4413}
4414
b5b8b0ac
AO
4415/* Make an instruction with body X and code CALL_INSN
4416 and output it after the instruction AFTER. */
4417
4418rtx
4419emit_debug_insn_after_noloc (rtx x, rtx after)
4420{
4421 rtx last;
4422
4423 gcc_assert (after);
4424
4425 switch (GET_CODE (x))
4426 {
4427 case DEBUG_INSN:
4428 case INSN:
4429 case JUMP_INSN:
4430 case CALL_INSN:
4431 case CODE_LABEL:
4432 case BARRIER:
4433 case NOTE:
4434 last = emit_insn_after_1 (x, after, NULL);
4435 break;
4436
4437#ifdef ENABLE_RTL_CHECKING
4438 case SEQUENCE:
4439 gcc_unreachable ();
4440 break;
4441#endif
4442
4443 default:
4444 last = make_debug_insn_raw (x);
4445 add_insn_after (last, after, NULL);
4446 break;
4447 }
4448
4449 return last;
4450}
4451
23b2ce53
RS
4452/* Make an insn of code BARRIER
4453 and output it after the insn AFTER. */
4454
4455rtx
502b8322 4456emit_barrier_after (rtx after)
23b2ce53 4457{
b3694847 4458 rtx insn = rtx_alloc (BARRIER);
23b2ce53
RS
4459
4460 INSN_UID (insn) = cur_insn_uid++;
4461
6fb5fa3c 4462 add_insn_after (insn, after, NULL);
23b2ce53
RS
4463 return insn;
4464}
4465
4466/* Emit the label LABEL after the insn AFTER. */
4467
4468rtx
502b8322 4469emit_label_after (rtx label, rtx after)
23b2ce53
RS
4470{
4471 /* This can be called twice for the same label
4472 as a result of the confusion that follows a syntax error!
4473 So make it harmless. */
4474 if (INSN_UID (label) == 0)
4475 {
4476 INSN_UID (label) = cur_insn_uid++;
6fb5fa3c 4477 add_insn_after (label, after, NULL);
23b2ce53
RS
4478 }
4479
4480 return label;
4481}
4482
4483/* Emit a note of subtype SUBTYPE after the insn AFTER. */
4484
4485rtx
a38e7aa5 4486emit_note_after (enum insn_note subtype, rtx after)
23b2ce53 4487{
b3694847 4488 rtx note = rtx_alloc (NOTE);
23b2ce53 4489 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 4490 NOTE_KIND (note) = subtype;
ba4f7968 4491 BLOCK_FOR_INSN (note) = NULL;
9dbe7947 4492 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
6fb5fa3c 4493 add_insn_after (note, after, NULL);
23b2ce53
RS
4494 return note;
4495}
23b2ce53 4496\f
a7102479 4497/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4498rtx
502b8322 4499emit_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4500{
6fb5fa3c 4501 rtx last = emit_insn_after_noloc (pattern, after, NULL);
0d682900 4502
a7102479 4503 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4504 return last;
4505
2f937369
DM
4506 after = NEXT_INSN (after);
4507 while (1)
4508 {
a7102479 4509 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4510 INSN_LOCATOR (after) = loc;
2f937369
DM
4511 if (after == last)
4512 break;
4513 after = NEXT_INSN (after);
4514 }
0d682900
JH
4515 return last;
4516}
4517
a7102479
JH
4518/* Like emit_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4519rtx
4520emit_insn_after (rtx pattern, rtx after)
4521{
b5b8b0ac
AO
4522 rtx prev = after;
4523
4524 while (DEBUG_INSN_P (prev))
4525 prev = PREV_INSN (prev);
4526
4527 if (INSN_P (prev))
4528 return emit_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
a7102479 4529 else
6fb5fa3c 4530 return emit_insn_after_noloc (pattern, after, NULL);
a7102479
JH
4531}
4532
4533/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4534rtx
502b8322 4535emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4536{
a7102479 4537 rtx last = emit_jump_insn_after_noloc (pattern, after);
2f937369 4538
a7102479 4539 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4540 return last;
4541
2f937369
DM
4542 after = NEXT_INSN (after);
4543 while (1)
4544 {
a7102479 4545 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4546 INSN_LOCATOR (after) = loc;
2f937369
DM
4547 if (after == last)
4548 break;
4549 after = NEXT_INSN (after);
4550 }
0d682900
JH
4551 return last;
4552}
4553
a7102479
JH
4554/* Like emit_jump_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4555rtx
4556emit_jump_insn_after (rtx pattern, rtx after)
4557{
b5b8b0ac
AO
4558 rtx prev = after;
4559
4560 while (DEBUG_INSN_P (prev))
4561 prev = PREV_INSN (prev);
4562
4563 if (INSN_P (prev))
4564 return emit_jump_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
a7102479
JH
4565 else
4566 return emit_jump_insn_after_noloc (pattern, after);
4567}
4568
4569/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4570rtx
502b8322 4571emit_call_insn_after_setloc (rtx pattern, rtx after, int loc)
0d682900 4572{
a7102479 4573 rtx last = emit_call_insn_after_noloc (pattern, after);
2f937369 4574
a7102479 4575 if (pattern == NULL_RTX || !loc)
dd3adcf8
DJ
4576 return last;
4577
2f937369
DM
4578 after = NEXT_INSN (after);
4579 while (1)
4580 {
a7102479 4581 if (active_insn_p (after) && !INSN_LOCATOR (after))
0435312e 4582 INSN_LOCATOR (after) = loc;
2f937369
DM
4583 if (after == last)
4584 break;
4585 after = NEXT_INSN (after);
4586 }
0d682900
JH
4587 return last;
4588}
4589
a7102479
JH
4590/* Like emit_call_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4591rtx
4592emit_call_insn_after (rtx pattern, rtx after)
4593{
b5b8b0ac
AO
4594 rtx prev = after;
4595
4596 while (DEBUG_INSN_P (prev))
4597 prev = PREV_INSN (prev);
4598
4599 if (INSN_P (prev))
4600 return emit_call_insn_after_setloc (pattern, after, INSN_LOCATOR (prev));
a7102479
JH
4601 else
4602 return emit_call_insn_after_noloc (pattern, after);
4603}
4604
b5b8b0ac
AO
4605/* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to SCOPE. */
4606rtx
4607emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc)
4608{
4609 rtx last = emit_debug_insn_after_noloc (pattern, after);
4610
4611 if (pattern == NULL_RTX || !loc)
4612 return last;
4613
4614 after = NEXT_INSN (after);
4615 while (1)
4616 {
4617 if (active_insn_p (after) && !INSN_LOCATOR (after))
4618 INSN_LOCATOR (after) = loc;
4619 if (after == last)
4620 break;
4621 after = NEXT_INSN (after);
4622 }
4623 return last;
4624}
4625
4626/* Like emit_debug_insn_after_noloc, but set INSN_LOCATOR according to AFTER. */
4627rtx
4628emit_debug_insn_after (rtx pattern, rtx after)
4629{
4630 if (INSN_P (after))
4631 return emit_debug_insn_after_setloc (pattern, after, INSN_LOCATOR (after));
4632 else
4633 return emit_debug_insn_after_noloc (pattern, after);
4634}
4635
a7102479 4636/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to SCOPE. */
0d682900 4637rtx
502b8322 4638emit_insn_before_setloc (rtx pattern, rtx before, int loc)
0d682900
JH
4639{
4640 rtx first = PREV_INSN (before);
6fb5fa3c 4641 rtx last = emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4642
4643 if (pattern == NULL_RTX || !loc)
4644 return last;
4645
26cb3993
JH
4646 if (!first)
4647 first = get_insns ();
4648 else
4649 first = NEXT_INSN (first);
a7102479
JH
4650 while (1)
4651 {
4652 if (active_insn_p (first) && !INSN_LOCATOR (first))
4653 INSN_LOCATOR (first) = loc;
4654 if (first == last)
4655 break;
4656 first = NEXT_INSN (first);
4657 }
4658 return last;
4659}
4660
4661/* Like emit_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4662rtx
4663emit_insn_before (rtx pattern, rtx before)
4664{
b5b8b0ac
AO
4665 rtx next = before;
4666
4667 while (DEBUG_INSN_P (next))
4668 next = PREV_INSN (next);
4669
4670 if (INSN_P (next))
4671 return emit_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
a7102479 4672 else
6fb5fa3c 4673 return emit_insn_before_noloc (pattern, before, NULL);
a7102479
JH
4674}
4675
4676/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4677rtx
4678emit_jump_insn_before_setloc (rtx pattern, rtx before, int loc)
4679{
4680 rtx first = PREV_INSN (before);
4681 rtx last = emit_jump_insn_before_noloc (pattern, before);
4682
4683 if (pattern == NULL_RTX)
4684 return last;
4685
4686 first = NEXT_INSN (first);
4687 while (1)
4688 {
4689 if (active_insn_p (first) && !INSN_LOCATOR (first))
4690 INSN_LOCATOR (first) = loc;
4691 if (first == last)
4692 break;
4693 first = NEXT_INSN (first);
4694 }
4695 return last;
4696}
4697
4698/* Like emit_jump_insn_before_noloc, but set INSN_LOCATOR according to BEFORE. */
4699rtx
4700emit_jump_insn_before (rtx pattern, rtx before)
4701{
b5b8b0ac
AO
4702 rtx next = before;
4703
4704 while (DEBUG_INSN_P (next))
4705 next = PREV_INSN (next);
4706
4707 if (INSN_P (next))
4708 return emit_jump_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
a7102479
JH
4709 else
4710 return emit_jump_insn_before_noloc (pattern, before);
4711}
4712
4713/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4714rtx
4715emit_call_insn_before_setloc (rtx pattern, rtx before, int loc)
4716{
4717 rtx first = PREV_INSN (before);
4718 rtx last = emit_call_insn_before_noloc (pattern, before);
0d682900 4719
dd3adcf8
DJ
4720 if (pattern == NULL_RTX)
4721 return last;
4722
2f937369
DM
4723 first = NEXT_INSN (first);
4724 while (1)
4725 {
a7102479 4726 if (active_insn_p (first) && !INSN_LOCATOR (first))
0435312e 4727 INSN_LOCATOR (first) = loc;
2f937369
DM
4728 if (first == last)
4729 break;
4730 first = NEXT_INSN (first);
4731 }
0d682900
JH
4732 return last;
4733}
a7102479
JH
4734
4735/* like emit_call_insn_before_noloc,
4736 but set insn_locator according to before. */
4737rtx
4738emit_call_insn_before (rtx pattern, rtx before)
4739{
b5b8b0ac
AO
4740 rtx next = before;
4741
4742 while (DEBUG_INSN_P (next))
4743 next = PREV_INSN (next);
4744
4745 if (INSN_P (next))
4746 return emit_call_insn_before_setloc (pattern, before, INSN_LOCATOR (next));
a7102479
JH
4747 else
4748 return emit_call_insn_before_noloc (pattern, before);
4749}
b5b8b0ac
AO
4750
4751/* like emit_insn_before_noloc, but set insn_locator according to scope. */
4752rtx
4753emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc)
4754{
4755 rtx first = PREV_INSN (before);
4756 rtx last = emit_debug_insn_before_noloc (pattern, before);
4757
4758 if (pattern == NULL_RTX)
4759 return last;
4760
4761 first = NEXT_INSN (first);
4762 while (1)
4763 {
4764 if (active_insn_p (first) && !INSN_LOCATOR (first))
4765 INSN_LOCATOR (first) = loc;
4766 if (first == last)
4767 break;
4768 first = NEXT_INSN (first);
4769 }
4770 return last;
4771}
4772
4773/* like emit_debug_insn_before_noloc,
4774 but set insn_locator according to before. */
4775rtx
4776emit_debug_insn_before (rtx pattern, rtx before)
4777{
4778 if (INSN_P (before))
4779 return emit_debug_insn_before_setloc (pattern, before, INSN_LOCATOR (before));
4780 else
4781 return emit_debug_insn_before_noloc (pattern, before);
4782}
0d682900 4783\f
2f937369
DM
4784/* Take X and emit it at the end of the doubly-linked
4785 INSN list.
23b2ce53
RS
4786
4787 Returns the last insn emitted. */
4788
4789rtx
502b8322 4790emit_insn (rtx x)
23b2ce53 4791{
5936d944 4792 rtx last = get_last_insn();
2f937369 4793 rtx insn;
23b2ce53 4794
2f937369
DM
4795 if (x == NULL_RTX)
4796 return last;
23b2ce53 4797
2f937369
DM
4798 switch (GET_CODE (x))
4799 {
b5b8b0ac 4800 case DEBUG_INSN:
2f937369
DM
4801 case INSN:
4802 case JUMP_INSN:
4803 case CALL_INSN:
4804 case CODE_LABEL:
4805 case BARRIER:
4806 case NOTE:
4807 insn = x;
4808 while (insn)
23b2ce53 4809 {
2f937369 4810 rtx next = NEXT_INSN (insn);
23b2ce53 4811 add_insn (insn);
2f937369
DM
4812 last = insn;
4813 insn = next;
23b2ce53 4814 }
2f937369 4815 break;
23b2ce53 4816
2f937369
DM
4817#ifdef ENABLE_RTL_CHECKING
4818 case SEQUENCE:
5b0264cb 4819 gcc_unreachable ();
2f937369
DM
4820 break;
4821#endif
23b2ce53 4822
2f937369
DM
4823 default:
4824 last = make_insn_raw (x);
4825 add_insn (last);
4826 break;
23b2ce53
RS
4827 }
4828
4829 return last;
4830}
4831
b5b8b0ac
AO
4832/* Make an insn of code DEBUG_INSN with pattern X
4833 and add it to the end of the doubly-linked list. */
4834
4835rtx
4836emit_debug_insn (rtx x)
4837{
5936d944 4838 rtx last = get_last_insn();
b5b8b0ac
AO
4839 rtx insn;
4840
4841 if (x == NULL_RTX)
4842 return last;
4843
4844 switch (GET_CODE (x))
4845 {
4846 case DEBUG_INSN:
4847 case INSN:
4848 case JUMP_INSN:
4849 case CALL_INSN:
4850 case CODE_LABEL:
4851 case BARRIER:
4852 case NOTE:
4853 insn = x;
4854 while (insn)
4855 {
4856 rtx next = NEXT_INSN (insn);
4857 add_insn (insn);
4858 last = insn;
4859 insn = next;
4860 }
4861 break;
4862
4863#ifdef ENABLE_RTL_CHECKING
4864 case SEQUENCE:
4865 gcc_unreachable ();
4866 break;
4867#endif
4868
4869 default:
4870 last = make_debug_insn_raw (x);
4871 add_insn (last);
4872 break;
4873 }
4874
4875 return last;
4876}
4877
2f937369
DM
4878/* Make an insn of code JUMP_INSN with pattern X
4879 and add it to the end of the doubly-linked list. */
23b2ce53
RS
4880
4881rtx
502b8322 4882emit_jump_insn (rtx x)
23b2ce53 4883{
d950dee3 4884 rtx last = NULL_RTX, insn;
23b2ce53 4885
2f937369 4886 switch (GET_CODE (x))
23b2ce53 4887 {
b5b8b0ac 4888 case DEBUG_INSN:
2f937369
DM
4889 case INSN:
4890 case JUMP_INSN:
4891 case CALL_INSN:
4892 case CODE_LABEL:
4893 case BARRIER:
4894 case NOTE:
4895 insn = x;
4896 while (insn)
4897 {
4898 rtx next = NEXT_INSN (insn);
4899 add_insn (insn);
4900 last = insn;
4901 insn = next;
4902 }
4903 break;
e0a5c5eb 4904
2f937369
DM
4905#ifdef ENABLE_RTL_CHECKING
4906 case SEQUENCE:
5b0264cb 4907 gcc_unreachable ();
2f937369
DM
4908 break;
4909#endif
e0a5c5eb 4910
2f937369
DM
4911 default:
4912 last = make_jump_insn_raw (x);
4913 add_insn (last);
4914 break;
3c030e88 4915 }
e0a5c5eb
RS
4916
4917 return last;
4918}
4919
2f937369 4920/* Make an insn of code CALL_INSN with pattern X
23b2ce53
RS
4921 and add it to the end of the doubly-linked list. */
4922
4923rtx
502b8322 4924emit_call_insn (rtx x)
23b2ce53 4925{
2f937369
DM
4926 rtx insn;
4927
4928 switch (GET_CODE (x))
23b2ce53 4929 {
b5b8b0ac 4930 case DEBUG_INSN:
2f937369
DM
4931 case INSN:
4932 case JUMP_INSN:
4933 case CALL_INSN:
4934 case CODE_LABEL:
4935 case BARRIER:
4936 case NOTE:
4937 insn = emit_insn (x);
4938 break;
23b2ce53 4939
2f937369
DM
4940#ifdef ENABLE_RTL_CHECKING
4941 case SEQUENCE:
5b0264cb 4942 gcc_unreachable ();
2f937369
DM
4943 break;
4944#endif
23b2ce53 4945
2f937369
DM
4946 default:
4947 insn = make_call_insn_raw (x);
23b2ce53 4948 add_insn (insn);
2f937369 4949 break;
23b2ce53 4950 }
2f937369
DM
4951
4952 return insn;
23b2ce53
RS
4953}
4954
4955/* Add the label LABEL to the end of the doubly-linked list. */
4956
4957rtx
502b8322 4958emit_label (rtx label)
23b2ce53
RS
4959{
4960 /* This can be called twice for the same label
4961 as a result of the confusion that follows a syntax error!
4962 So make it harmless. */
4963 if (INSN_UID (label) == 0)
4964 {
4965 INSN_UID (label) = cur_insn_uid++;
4966 add_insn (label);
4967 }
4968 return label;
4969}
4970
4971/* Make an insn of code BARRIER
4972 and add it to the end of the doubly-linked list. */
4973
4974rtx
502b8322 4975emit_barrier (void)
23b2ce53 4976{
b3694847 4977 rtx barrier = rtx_alloc (BARRIER);
23b2ce53
RS
4978 INSN_UID (barrier) = cur_insn_uid++;
4979 add_insn (barrier);
4980 return barrier;
4981}
4982
5f2fc772 4983/* Emit a copy of note ORIG. */
502b8322 4984
5f2fc772
NS
4985rtx
4986emit_note_copy (rtx orig)
4987{
4988 rtx note;
b8698a0f 4989
5f2fc772 4990 note = rtx_alloc (NOTE);
b8698a0f 4991
5f2fc772
NS
4992 INSN_UID (note) = cur_insn_uid++;
4993 NOTE_DATA (note) = NOTE_DATA (orig);
a38e7aa5 4994 NOTE_KIND (note) = NOTE_KIND (orig);
5f2fc772
NS
4995 BLOCK_FOR_INSN (note) = NULL;
4996 add_insn (note);
b8698a0f 4997
2e040219 4998 return note;
23b2ce53
RS
4999}
5000
2e040219
NS
5001/* Make an insn of code NOTE or type NOTE_NO
5002 and add it to the end of the doubly-linked list. */
23b2ce53
RS
5003
5004rtx
a38e7aa5 5005emit_note (enum insn_note kind)
23b2ce53 5006{
b3694847 5007 rtx note;
23b2ce53 5008
23b2ce53
RS
5009 note = rtx_alloc (NOTE);
5010 INSN_UID (note) = cur_insn_uid++;
a38e7aa5 5011 NOTE_KIND (note) = kind;
dd107e66 5012 memset (&NOTE_DATA (note), 0, sizeof (NOTE_DATA (note)));
ba4f7968 5013 BLOCK_FOR_INSN (note) = NULL;
23b2ce53
RS
5014 add_insn (note);
5015 return note;
5016}
5017
c41c1387
RS
5018/* Emit a clobber of lvalue X. */
5019
5020rtx
5021emit_clobber (rtx x)
5022{
5023 /* CONCATs should not appear in the insn stream. */
5024 if (GET_CODE (x) == CONCAT)
5025 {
5026 emit_clobber (XEXP (x, 0));
5027 return emit_clobber (XEXP (x, 1));
5028 }
5029 return emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
5030}
5031
5032/* Return a sequence of insns to clobber lvalue X. */
5033
5034rtx
5035gen_clobber (rtx x)
5036{
5037 rtx seq;
5038
5039 start_sequence ();
5040 emit_clobber (x);
5041 seq = get_insns ();
5042 end_sequence ();
5043 return seq;
5044}
5045
5046/* Emit a use of rvalue X. */
5047
5048rtx
5049emit_use (rtx x)
5050{
5051 /* CONCATs should not appear in the insn stream. */
5052 if (GET_CODE (x) == CONCAT)
5053 {
5054 emit_use (XEXP (x, 0));
5055 return emit_use (XEXP (x, 1));
5056 }
5057 return emit_insn (gen_rtx_USE (VOIDmode, x));
5058}
5059
5060/* Return a sequence of insns to use rvalue X. */
5061
5062rtx
5063gen_use (rtx x)
5064{
5065 rtx seq;
5066
5067 start_sequence ();
5068 emit_use (x);
5069 seq = get_insns ();
5070 end_sequence ();
5071 return seq;
5072}
5073
23b2ce53 5074/* Cause next statement to emit a line note even if the line number
0cea056b 5075 has not changed. */
23b2ce53
RS
5076
5077void
502b8322 5078force_next_line_note (void)
23b2ce53 5079{
6773e15f 5080 last_location = -1;
23b2ce53 5081}
87b47c85
AM
5082
5083/* Place a note of KIND on insn INSN with DATUM as the datum. If a
30f7a378 5084 note of this type already exists, remove it first. */
87b47c85 5085
3d238248 5086rtx
502b8322 5087set_unique_reg_note (rtx insn, enum reg_note kind, rtx datum)
87b47c85
AM
5088{
5089 rtx note = find_reg_note (insn, kind, NULL_RTX);
5090
52488da1
JW
5091 switch (kind)
5092 {
5093 case REG_EQUAL:
5094 case REG_EQUIV:
5095 /* Don't add REG_EQUAL/REG_EQUIV notes if the insn
5096 has multiple sets (some callers assume single_set
5097 means the insn only has one set, when in fact it
5098 means the insn only has one * useful * set). */
5099 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
5100 {
5b0264cb 5101 gcc_assert (!note);
52488da1
JW
5102 return NULL_RTX;
5103 }
5104
5105 /* Don't add ASM_OPERAND REG_EQUAL/REG_EQUIV notes.
5106 It serves no useful purpose and breaks eliminate_regs. */
5107 if (GET_CODE (datum) == ASM_OPERANDS)
5108 return NULL_RTX;
6fb5fa3c
DB
5109
5110 if (note)
5111 {
5112 XEXP (note, 0) = datum;
5113 df_notes_rescan (insn);
5114 return note;
5115 }
52488da1
JW
5116 break;
5117
5118 default:
6fb5fa3c
DB
5119 if (note)
5120 {
5121 XEXP (note, 0) = datum;
5122 return note;
5123 }
52488da1
JW
5124 break;
5125 }
3d238248 5126
65c5f2a6 5127 add_reg_note (insn, kind, datum);
6fb5fa3c
DB
5128
5129 switch (kind)
3d238248 5130 {
6fb5fa3c
DB
5131 case REG_EQUAL:
5132 case REG_EQUIV:
5133 df_notes_rescan (insn);
5134 break;
5135 default:
5136 break;
3d238248 5137 }
87b47c85 5138
3d238248 5139 return REG_NOTES (insn);
87b47c85 5140}
23b2ce53
RS
5141\f
5142/* Return an indication of which type of insn should have X as a body.
5143 The value is CODE_LABEL, INSN, CALL_INSN or JUMP_INSN. */
5144
d78db459 5145static enum rtx_code
502b8322 5146classify_insn (rtx x)
23b2ce53 5147{
4b4bf941 5148 if (LABEL_P (x))
23b2ce53
RS
5149 return CODE_LABEL;
5150 if (GET_CODE (x) == CALL)
5151 return CALL_INSN;
5152 if (GET_CODE (x) == RETURN)
5153 return JUMP_INSN;
5154 if (GET_CODE (x) == SET)
5155 {
5156 if (SET_DEST (x) == pc_rtx)
5157 return JUMP_INSN;
5158 else if (GET_CODE (SET_SRC (x)) == CALL)
5159 return CALL_INSN;
5160 else
5161 return INSN;
5162 }
5163 if (GET_CODE (x) == PARALLEL)
5164 {
b3694847 5165 int j;
23b2ce53
RS
5166 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
5167 if (GET_CODE (XVECEXP (x, 0, j)) == CALL)
5168 return CALL_INSN;
5169 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5170 && SET_DEST (XVECEXP (x, 0, j)) == pc_rtx)
5171 return JUMP_INSN;
5172 else if (GET_CODE (XVECEXP (x, 0, j)) == SET
5173 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == CALL)
5174 return CALL_INSN;
5175 }
5176 return INSN;
5177}
5178
5179/* Emit the rtl pattern X as an appropriate kind of insn.
5180 If X is a label, it is simply added into the insn chain. */
5181
5182rtx
502b8322 5183emit (rtx x)
23b2ce53
RS
5184{
5185 enum rtx_code code = classify_insn (x);
5186
5b0264cb 5187 switch (code)
23b2ce53 5188 {
5b0264cb
NS
5189 case CODE_LABEL:
5190 return emit_label (x);
5191 case INSN:
5192 return emit_insn (x);
5193 case JUMP_INSN:
5194 {
5195 rtx insn = emit_jump_insn (x);
5196 if (any_uncondjump_p (insn) || GET_CODE (x) == RETURN)
5197 return emit_barrier ();
5198 return insn;
5199 }
5200 case CALL_INSN:
5201 return emit_call_insn (x);
b5b8b0ac
AO
5202 case DEBUG_INSN:
5203 return emit_debug_insn (x);
5b0264cb
NS
5204 default:
5205 gcc_unreachable ();
23b2ce53 5206 }
23b2ce53
RS
5207}
5208\f
e2500fed 5209/* Space for free sequence stack entries. */
1431042e 5210static GTY ((deletable)) struct sequence_stack *free_sequence_stack;
e2500fed 5211
4dfa0342
RH
5212/* Begin emitting insns to a sequence. If this sequence will contain
5213 something that might cause the compiler to pop arguments to function
5214 calls (because those pops have previously been deferred; see
5215 INHIBIT_DEFER_POP for more details), use do_pending_stack_adjust
5216 before calling this function. That will ensure that the deferred
5217 pops are not accidentally emitted in the middle of this sequence. */
23b2ce53
RS
5218
5219void
502b8322 5220start_sequence (void)
23b2ce53
RS
5221{
5222 struct sequence_stack *tem;
5223
e2500fed
GK
5224 if (free_sequence_stack != NULL)
5225 {
5226 tem = free_sequence_stack;
5227 free_sequence_stack = tem->next;
5228 }
5229 else
a9429e29 5230 tem = ggc_alloc_sequence_stack ();
23b2ce53 5231
49ad7cfa 5232 tem->next = seq_stack;
5936d944
JH
5233 tem->first = get_insns ();
5234 tem->last = get_last_insn ();
23b2ce53 5235
49ad7cfa 5236 seq_stack = tem;
23b2ce53 5237
5936d944
JH
5238 set_first_insn (0);
5239 set_last_insn (0);
23b2ce53
RS
5240}
5241
5c7a310f
MM
5242/* Set up the insn chain starting with FIRST as the current sequence,
5243 saving the previously current one. See the documentation for
5244 start_sequence for more information about how to use this function. */
23b2ce53
RS
5245
5246void
502b8322 5247push_to_sequence (rtx first)
23b2ce53
RS
5248{
5249 rtx last;
5250
5251 start_sequence ();
5252
5253 for (last = first; last && NEXT_INSN (last); last = NEXT_INSN (last));
5254
5936d944
JH
5255 set_first_insn (first);
5256 set_last_insn (last);
23b2ce53
RS
5257}
5258
bb27eeda
SE
5259/* Like push_to_sequence, but take the last insn as an argument to avoid
5260 looping through the list. */
5261
5262void
5263push_to_sequence2 (rtx first, rtx last)
5264{
5265 start_sequence ();
5266
5936d944
JH
5267 set_first_insn (first);
5268 set_last_insn (last);
bb27eeda
SE
5269}
5270
f15ae3a1
TW
5271/* Set up the outer-level insn chain
5272 as the current sequence, saving the previously current one. */
5273
5274void
502b8322 5275push_topmost_sequence (void)
f15ae3a1 5276{
aefdd5ab 5277 struct sequence_stack *stack, *top = NULL;
f15ae3a1
TW
5278
5279 start_sequence ();
5280
49ad7cfa 5281 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
5282 top = stack;
5283
5936d944
JH
5284 set_first_insn (top->first);
5285 set_last_insn (top->last);
f15ae3a1
TW
5286}
5287
5288/* After emitting to the outer-level insn chain, update the outer-level
5289 insn chain, and restore the previous saved state. */
5290
5291void
502b8322 5292pop_topmost_sequence (void)
f15ae3a1 5293{
aefdd5ab 5294 struct sequence_stack *stack, *top = NULL;
f15ae3a1 5295
49ad7cfa 5296 for (stack = seq_stack; stack; stack = stack->next)
f15ae3a1
TW
5297 top = stack;
5298
5936d944
JH
5299 top->first = get_insns ();
5300 top->last = get_last_insn ();
f15ae3a1
TW
5301
5302 end_sequence ();
5303}
5304
23b2ce53
RS
5305/* After emitting to a sequence, restore previous saved state.
5306
5c7a310f 5307 To get the contents of the sequence just made, you must call
2f937369 5308 `get_insns' *before* calling here.
5c7a310f
MM
5309
5310 If the compiler might have deferred popping arguments while
5311 generating this sequence, and this sequence will not be immediately
5312 inserted into the instruction stream, use do_pending_stack_adjust
2f937369 5313 before calling get_insns. That will ensure that the deferred
5c7a310f
MM
5314 pops are inserted into this sequence, and not into some random
5315 location in the instruction stream. See INHIBIT_DEFER_POP for more
5316 information about deferred popping of arguments. */
23b2ce53
RS
5317
5318void
502b8322 5319end_sequence (void)
23b2ce53 5320{
49ad7cfa 5321 struct sequence_stack *tem = seq_stack;
23b2ce53 5322
5936d944
JH
5323 set_first_insn (tem->first);
5324 set_last_insn (tem->last);
49ad7cfa 5325 seq_stack = tem->next;
23b2ce53 5326
e2500fed
GK
5327 memset (tem, 0, sizeof (*tem));
5328 tem->next = free_sequence_stack;
5329 free_sequence_stack = tem;
23b2ce53
RS
5330}
5331
5332/* Return 1 if currently emitting into a sequence. */
5333
5334int
502b8322 5335in_sequence_p (void)
23b2ce53 5336{
49ad7cfa 5337 return seq_stack != 0;
23b2ce53 5338}
23b2ce53 5339\f
59ec66dc
MM
5340/* Put the various virtual registers into REGNO_REG_RTX. */
5341
2bbdec73 5342static void
bd60bab2 5343init_virtual_regs (void)
59ec66dc 5344{
bd60bab2
JH
5345 regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM] = virtual_incoming_args_rtx;
5346 regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM] = virtual_stack_vars_rtx;
5347 regno_reg_rtx[VIRTUAL_STACK_DYNAMIC_REGNUM] = virtual_stack_dynamic_rtx;
5348 regno_reg_rtx[VIRTUAL_OUTGOING_ARGS_REGNUM] = virtual_outgoing_args_rtx;
5349 regno_reg_rtx[VIRTUAL_CFA_REGNUM] = virtual_cfa_rtx;
49ad7cfa
BS
5350}
5351
da43a810
BS
5352\f
5353/* Used by copy_insn_1 to avoid copying SCRATCHes more than once. */
5354static rtx copy_insn_scratch_in[MAX_RECOG_OPERANDS];
5355static rtx copy_insn_scratch_out[MAX_RECOG_OPERANDS];
5356static int copy_insn_n_scratches;
5357
5358/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5359 copied an ASM_OPERANDS.
5360 In that case, it is the original input-operand vector. */
5361static rtvec orig_asm_operands_vector;
5362
5363/* When an insn is being copied by copy_insn_1, this is nonzero if we have
5364 copied an ASM_OPERANDS.
5365 In that case, it is the copied input-operand vector. */
5366static rtvec copy_asm_operands_vector;
5367
5368/* Likewise for the constraints vector. */
5369static rtvec orig_asm_constraints_vector;
5370static rtvec copy_asm_constraints_vector;
5371
5372/* Recursively create a new copy of an rtx for copy_insn.
5373 This function differs from copy_rtx in that it handles SCRATCHes and
5374 ASM_OPERANDs properly.
5375 Normally, this function is not used directly; use copy_insn as front end.
5376 However, you could first copy an insn pattern with copy_insn and then use
5377 this function afterwards to properly copy any REG_NOTEs containing
5378 SCRATCHes. */
5379
5380rtx
502b8322 5381copy_insn_1 (rtx orig)
da43a810 5382{
b3694847
SS
5383 rtx copy;
5384 int i, j;
5385 RTX_CODE code;
5386 const char *format_ptr;
da43a810 5387
cd9c1ca8
RH
5388 if (orig == NULL)
5389 return NULL;
5390
da43a810
BS
5391 code = GET_CODE (orig);
5392
5393 switch (code)
5394 {
5395 case REG:
da43a810
BS
5396 case CONST_INT:
5397 case CONST_DOUBLE:
091a3ac7 5398 case CONST_FIXED:
69ef87e2 5399 case CONST_VECTOR:
da43a810
BS
5400 case SYMBOL_REF:
5401 case CODE_LABEL:
5402 case PC:
5403 case CC0:
da43a810 5404 return orig;
3e89ed8d
JH
5405 case CLOBBER:
5406 if (REG_P (XEXP (orig, 0)) && REGNO (XEXP (orig, 0)) < FIRST_PSEUDO_REGISTER)
5407 return orig;
5408 break;
da43a810
BS
5409
5410 case SCRATCH:
5411 for (i = 0; i < copy_insn_n_scratches; i++)
5412 if (copy_insn_scratch_in[i] == orig)
5413 return copy_insn_scratch_out[i];
5414 break;
5415
5416 case CONST:
6fb5fa3c 5417 if (shared_const_p (orig))
da43a810
BS
5418 return orig;
5419 break;
750c9258 5420
da43a810
BS
5421 /* A MEM with a constant address is not sharable. The problem is that
5422 the constant address may need to be reloaded. If the mem is shared,
5423 then reloading one copy of this mem will cause all copies to appear
5424 to have been reloaded. */
5425
5426 default:
5427 break;
5428 }
5429
aacd3885
RS
5430 /* Copy the various flags, fields, and other information. We assume
5431 that all fields need copying, and then clear the fields that should
da43a810
BS
5432 not be copied. That is the sensible default behavior, and forces
5433 us to explicitly document why we are *not* copying a flag. */
aacd3885 5434 copy = shallow_copy_rtx (orig);
da43a810
BS
5435
5436 /* We do not copy the USED flag, which is used as a mark bit during
5437 walks over the RTL. */
2adc7f12 5438 RTX_FLAG (copy, used) = 0;
da43a810
BS
5439
5440 /* We do not copy JUMP, CALL, or FRAME_RELATED for INSNs. */
ec8e098d 5441 if (INSN_P (orig))
da43a810 5442 {
2adc7f12
JJ
5443 RTX_FLAG (copy, jump) = 0;
5444 RTX_FLAG (copy, call) = 0;
5445 RTX_FLAG (copy, frame_related) = 0;
da43a810 5446 }
750c9258 5447
da43a810
BS
5448 format_ptr = GET_RTX_FORMAT (GET_CODE (copy));
5449
5450 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (copy)); i++)
aacd3885
RS
5451 switch (*format_ptr++)
5452 {
5453 case 'e':
5454 if (XEXP (orig, i) != NULL)
5455 XEXP (copy, i) = copy_insn_1 (XEXP (orig, i));
5456 break;
da43a810 5457
aacd3885
RS
5458 case 'E':
5459 case 'V':
5460 if (XVEC (orig, i) == orig_asm_constraints_vector)
5461 XVEC (copy, i) = copy_asm_constraints_vector;
5462 else if (XVEC (orig, i) == orig_asm_operands_vector)
5463 XVEC (copy, i) = copy_asm_operands_vector;
5464 else if (XVEC (orig, i) != NULL)
5465 {
5466 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
5467 for (j = 0; j < XVECLEN (copy, i); j++)
5468 XVECEXP (copy, i, j) = copy_insn_1 (XVECEXP (orig, i, j));
5469 }
5470 break;
da43a810 5471
aacd3885
RS
5472 case 't':
5473 case 'w':
5474 case 'i':
5475 case 's':
5476 case 'S':
5477 case 'u':
5478 case '0':
5479 /* These are left unchanged. */
5480 break;
da43a810 5481
aacd3885
RS
5482 default:
5483 gcc_unreachable ();
5484 }
da43a810
BS
5485
5486 if (code == SCRATCH)
5487 {
5488 i = copy_insn_n_scratches++;
5b0264cb 5489 gcc_assert (i < MAX_RECOG_OPERANDS);
da43a810
BS
5490 copy_insn_scratch_in[i] = orig;
5491 copy_insn_scratch_out[i] = copy;
5492 }
5493 else if (code == ASM_OPERANDS)
5494 {
6462bb43
AO
5495 orig_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (orig);
5496 copy_asm_operands_vector = ASM_OPERANDS_INPUT_VEC (copy);
5497 orig_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (orig);
5498 copy_asm_constraints_vector = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (copy);
da43a810
BS
5499 }
5500
5501 return copy;
5502}
5503
5504/* Create a new copy of an rtx.
5505 This function differs from copy_rtx in that it handles SCRATCHes and
5506 ASM_OPERANDs properly.
5507 INSN doesn't really have to be a full INSN; it could be just the
5508 pattern. */
5509rtx
502b8322 5510copy_insn (rtx insn)
da43a810
BS
5511{
5512 copy_insn_n_scratches = 0;
5513 orig_asm_operands_vector = 0;
5514 orig_asm_constraints_vector = 0;
5515 copy_asm_operands_vector = 0;
5516 copy_asm_constraints_vector = 0;
5517 return copy_insn_1 (insn);
5518}
59ec66dc 5519
23b2ce53
RS
5520/* Initialize data structures and variables in this file
5521 before generating rtl for each function. */
5522
5523void
502b8322 5524init_emit (void)
23b2ce53 5525{
5936d944
JH
5526 set_first_insn (NULL);
5527 set_last_insn (NULL);
b5b8b0ac
AO
5528 if (MIN_NONDEBUG_INSN_UID)
5529 cur_insn_uid = MIN_NONDEBUG_INSN_UID;
5530 else
5531 cur_insn_uid = 1;
5532 cur_debug_insn_uid = 1;
23b2ce53 5533 reg_rtx_no = LAST_VIRTUAL_REGISTER + 1;
6773e15f 5534 last_location = UNKNOWN_LOCATION;
23b2ce53 5535 first_label_num = label_num;
49ad7cfa 5536 seq_stack = NULL;
23b2ce53 5537
23b2ce53
RS
5538 /* Init the tables that describe all the pseudo regs. */
5539
3e029763 5540 crtl->emit.regno_pointer_align_length = LAST_VIRTUAL_REGISTER + 101;
23b2ce53 5541
3e029763 5542 crtl->emit.regno_pointer_align
1b4572a8 5543 = XCNEWVEC (unsigned char, crtl->emit.regno_pointer_align_length);
86fe05e0 5544
a9429e29 5545 regno_reg_rtx = ggc_alloc_vec_rtx (crtl->emit.regno_pointer_align_length);
0d4903b8 5546
e50126e8 5547 /* Put copies of all the hard registers into regno_reg_rtx. */
6cde4876 5548 memcpy (regno_reg_rtx,
5fb0e246 5549 initial_regno_reg_rtx,
6cde4876 5550 FIRST_PSEUDO_REGISTER * sizeof (rtx));
e50126e8 5551
23b2ce53 5552 /* Put copies of all the virtual register rtx into regno_reg_rtx. */
bd60bab2 5553 init_virtual_regs ();
740ab4a2
RK
5554
5555 /* Indicate that the virtual registers and stack locations are
5556 all pointers. */
3502dc9c
JDA
5557 REG_POINTER (stack_pointer_rtx) = 1;
5558 REG_POINTER (frame_pointer_rtx) = 1;
5559 REG_POINTER (hard_frame_pointer_rtx) = 1;
5560 REG_POINTER (arg_pointer_rtx) = 1;
740ab4a2 5561
3502dc9c
JDA
5562 REG_POINTER (virtual_incoming_args_rtx) = 1;
5563 REG_POINTER (virtual_stack_vars_rtx) = 1;
5564 REG_POINTER (virtual_stack_dynamic_rtx) = 1;
5565 REG_POINTER (virtual_outgoing_args_rtx) = 1;
5566 REG_POINTER (virtual_cfa_rtx) = 1;
5e82e7bd 5567
86fe05e0 5568#ifdef STACK_BOUNDARY
bdb429a5
RK
5569 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5570 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5571 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5572 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5573
5574 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5575 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5576 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5577 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5578 REGNO_POINTER_ALIGN (VIRTUAL_CFA_REGNUM) = BITS_PER_WORD;
86fe05e0
RK
5579#endif
5580
5e82e7bd
JVA
5581#ifdef INIT_EXPANDERS
5582 INIT_EXPANDERS;
5583#endif
23b2ce53
RS
5584}
5585
a73b091d 5586/* Generate a vector constant for mode MODE and constant value CONSTANT. */
69ef87e2
AH
5587
5588static rtx
a73b091d 5589gen_const_vector (enum machine_mode mode, int constant)
69ef87e2
AH
5590{
5591 rtx tem;
5592 rtvec v;
5593 int units, i;
5594 enum machine_mode inner;
5595
5596 units = GET_MODE_NUNITS (mode);
5597 inner = GET_MODE_INNER (mode);
5598
15ed7b52
JG
5599 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5600
69ef87e2
AH
5601 v = rtvec_alloc (units);
5602
a73b091d
JW
5603 /* We need to call this function after we set the scalar const_tiny_rtx
5604 entries. */
5605 gcc_assert (const_tiny_rtx[constant][(int) inner]);
69ef87e2
AH
5606
5607 for (i = 0; i < units; ++i)
a73b091d 5608 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
69ef87e2 5609
a06e3c40 5610 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
69ef87e2
AH
5611 return tem;
5612}
5613
a06e3c40 5614/* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
a73b091d 5615 all elements are zero, and the one vector when all elements are one. */
a06e3c40 5616rtx
502b8322 5617gen_rtx_CONST_VECTOR (enum machine_mode mode, rtvec v)
a06e3c40 5618{
a73b091d
JW
5619 enum machine_mode inner = GET_MODE_INNER (mode);
5620 int nunits = GET_MODE_NUNITS (mode);
5621 rtx x;
a06e3c40
R
5622 int i;
5623
a73b091d
JW
5624 /* Check to see if all of the elements have the same value. */
5625 x = RTVEC_ELT (v, nunits - 1);
5626 for (i = nunits - 2; i >= 0; i--)
5627 if (RTVEC_ELT (v, i) != x)
5628 break;
5629
5630 /* If the values are all the same, check to see if we can use one of the
5631 standard constant vectors. */
5632 if (i == -1)
5633 {
5634 if (x == CONST0_RTX (inner))
5635 return CONST0_RTX (mode);
5636 else if (x == CONST1_RTX (inner))
5637 return CONST1_RTX (mode);
5638 }
5639
5640 return gen_rtx_raw_CONST_VECTOR (mode, v);
a06e3c40
R
5641}
5642
b5deb7b6
SL
5643/* Initialise global register information required by all functions. */
5644
5645void
5646init_emit_regs (void)
5647{
5648 int i;
5649
5650 /* Reset register attributes */
5651 htab_empty (reg_attrs_htab);
5652
5653 /* We need reg_raw_mode, so initialize the modes now. */
5654 init_reg_modes_target ();
5655
5656 /* Assign register numbers to the globally defined register rtx. */
5657 pc_rtx = gen_rtx_PC (VOIDmode);
5658 cc0_rtx = gen_rtx_CC0 (VOIDmode);
5659 stack_pointer_rtx = gen_raw_REG (Pmode, STACK_POINTER_REGNUM);
5660 frame_pointer_rtx = gen_raw_REG (Pmode, FRAME_POINTER_REGNUM);
5661 hard_frame_pointer_rtx = gen_raw_REG (Pmode, HARD_FRAME_POINTER_REGNUM);
5662 arg_pointer_rtx = gen_raw_REG (Pmode, ARG_POINTER_REGNUM);
5663 virtual_incoming_args_rtx =
5664 gen_raw_REG (Pmode, VIRTUAL_INCOMING_ARGS_REGNUM);
5665 virtual_stack_vars_rtx =
5666 gen_raw_REG (Pmode, VIRTUAL_STACK_VARS_REGNUM);
5667 virtual_stack_dynamic_rtx =
5668 gen_raw_REG (Pmode, VIRTUAL_STACK_DYNAMIC_REGNUM);
5669 virtual_outgoing_args_rtx =
5670 gen_raw_REG (Pmode, VIRTUAL_OUTGOING_ARGS_REGNUM);
5671 virtual_cfa_rtx = gen_raw_REG (Pmode, VIRTUAL_CFA_REGNUM);
5672
5673 /* Initialize RTL for commonly used hard registers. These are
5674 copied into regno_reg_rtx as we begin to compile each function. */
5675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5fb0e246 5676 initial_regno_reg_rtx[i] = gen_raw_REG (reg_raw_mode[i], i);
b5deb7b6
SL
5677
5678#ifdef RETURN_ADDRESS_POINTER_REGNUM
5679 return_address_pointer_rtx
5680 = gen_raw_REG (Pmode, RETURN_ADDRESS_POINTER_REGNUM);
5681#endif
5682
b5deb7b6
SL
5683 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
5684 pic_offset_table_rtx = gen_raw_REG (Pmode, PIC_OFFSET_TABLE_REGNUM);
5685 else
5686 pic_offset_table_rtx = NULL_RTX;
5687}
5688
2d888286 5689/* Create some permanent unique rtl objects shared between all functions. */
23b2ce53
RS
5690
5691void
2d888286 5692init_emit_once (void)
23b2ce53
RS
5693{
5694 int i;
5695 enum machine_mode mode;
9ec36da5 5696 enum machine_mode double_mode;
23b2ce53 5697
091a3ac7
CF
5698 /* Initialize the CONST_INT, CONST_DOUBLE, CONST_FIXED, and memory attribute
5699 hash tables. */
17211ab5
GK
5700 const_int_htab = htab_create_ggc (37, const_int_htab_hash,
5701 const_int_htab_eq, NULL);
173b24b9 5702
17211ab5
GK
5703 const_double_htab = htab_create_ggc (37, const_double_htab_hash,
5704 const_double_htab_eq, NULL);
5692c7bc 5705
091a3ac7
CF
5706 const_fixed_htab = htab_create_ggc (37, const_fixed_htab_hash,
5707 const_fixed_htab_eq, NULL);
5708
17211ab5
GK
5709 mem_attrs_htab = htab_create_ggc (37, mem_attrs_htab_hash,
5710 mem_attrs_htab_eq, NULL);
a560d4d4
JH
5711 reg_attrs_htab = htab_create_ggc (37, reg_attrs_htab_hash,
5712 reg_attrs_htab_eq, NULL);
67673f5c 5713
43fa6302
AS
5714 /* Compute the word and byte modes. */
5715
5716 byte_mode = VOIDmode;
5717 word_mode = VOIDmode;
5718 double_mode = VOIDmode;
5719
15ed7b52
JG
5720 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5721 mode != VOIDmode;
43fa6302
AS
5722 mode = GET_MODE_WIDER_MODE (mode))
5723 {
5724 if (GET_MODE_BITSIZE (mode) == BITS_PER_UNIT
5725 && byte_mode == VOIDmode)
5726 byte_mode = mode;
5727
5728 if (GET_MODE_BITSIZE (mode) == BITS_PER_WORD
5729 && word_mode == VOIDmode)
5730 word_mode = mode;
5731 }
5732
15ed7b52
JG
5733 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5734 mode != VOIDmode;
43fa6302
AS
5735 mode = GET_MODE_WIDER_MODE (mode))
5736 {
5737 if (GET_MODE_BITSIZE (mode) == DOUBLE_TYPE_SIZE
5738 && double_mode == VOIDmode)
5739 double_mode = mode;
5740 }
5741
5742 ptr_mode = mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0);
5743
5da077de 5744#ifdef INIT_EXPANDERS
414c4dc4
NC
5745 /* This is to initialize {init|mark|free}_machine_status before the first
5746 call to push_function_context_to. This is needed by the Chill front
a1f300c0 5747 end which calls push_function_context_to before the first call to
5da077de
AS
5748 init_function_start. */
5749 INIT_EXPANDERS;
5750#endif
5751
23b2ce53
RS
5752 /* Create the unique rtx's for certain rtx codes and operand values. */
5753
a2a8cc44 5754 /* Don't use gen_rtx_CONST_INT here since gen_rtx_CONST_INT in this case
c5c76735 5755 tries to use these variables. */
23b2ce53 5756 for (i = - MAX_SAVED_CONST_INT; i <= MAX_SAVED_CONST_INT; i++)
750c9258 5757 const_int_rtx[i + MAX_SAVED_CONST_INT] =
f1b690f1 5758 gen_rtx_raw_CONST_INT (VOIDmode, (HOST_WIDE_INT) i);
23b2ce53 5759
68d75312
JC
5760 if (STORE_FLAG_VALUE >= - MAX_SAVED_CONST_INT
5761 && STORE_FLAG_VALUE <= MAX_SAVED_CONST_INT)
5da077de 5762 const_true_rtx = const_int_rtx[STORE_FLAG_VALUE + MAX_SAVED_CONST_INT];
68d75312 5763 else
3b80f6ca 5764 const_true_rtx = gen_rtx_CONST_INT (VOIDmode, STORE_FLAG_VALUE);
23b2ce53 5765
5692c7bc
ZW
5766 REAL_VALUE_FROM_INT (dconst0, 0, 0, double_mode);
5767 REAL_VALUE_FROM_INT (dconst1, 1, 0, double_mode);
5768 REAL_VALUE_FROM_INT (dconst2, 2, 0, double_mode);
aefa9d43
KG
5769
5770 dconstm1 = dconst1;
5771 dconstm1.sign = 1;
03f2ea93
RS
5772
5773 dconsthalf = dconst1;
1e92bbb9 5774 SET_REAL_EXP (&dconsthalf, REAL_EXP (&dconsthalf) - 1);
23b2ce53 5775
f7657db9 5776 for (i = 0; i < (int) ARRAY_SIZE (const_tiny_rtx); i++)
23b2ce53 5777 {
aefa9d43 5778 const REAL_VALUE_TYPE *const r =
b216cd4a
ZW
5779 (i == 0 ? &dconst0 : i == 1 ? &dconst1 : &dconst2);
5780
15ed7b52
JG
5781 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
5782 mode != VOIDmode;
5783 mode = GET_MODE_WIDER_MODE (mode))
5784 const_tiny_rtx[i][(int) mode] =
5785 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
5786
5787 for (mode = GET_CLASS_NARROWEST_MODE (MODE_DECIMAL_FLOAT);
5788 mode != VOIDmode;
23b2ce53 5789 mode = GET_MODE_WIDER_MODE (mode))
5692c7bc
ZW
5790 const_tiny_rtx[i][(int) mode] =
5791 CONST_DOUBLE_FROM_REAL_VALUE (*r, mode);
23b2ce53 5792
906c4e36 5793 const_tiny_rtx[i][(int) VOIDmode] = GEN_INT (i);
23b2ce53 5794
15ed7b52
JG
5795 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
5796 mode != VOIDmode;
23b2ce53 5797 mode = GET_MODE_WIDER_MODE (mode))
906c4e36 5798 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
33d3e559
RS
5799
5800 for (mode = GET_CLASS_NARROWEST_MODE (MODE_PARTIAL_INT);
5801 mode != VOIDmode;
5802 mode = GET_MODE_WIDER_MODE (mode))
5803 const_tiny_rtx[i][(int) mode] = GEN_INT (i);
23b2ce53
RS
5804 }
5805
e90721b1
AP
5806 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_INT);
5807 mode != VOIDmode;
5808 mode = GET_MODE_WIDER_MODE (mode))
5809 {
5810 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5811 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5812 }
5813
5814 for (mode = GET_CLASS_NARROWEST_MODE (MODE_COMPLEX_FLOAT);
5815 mode != VOIDmode;
5816 mode = GET_MODE_WIDER_MODE (mode))
5817 {
5818 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
5819 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
5820 }
5821
69ef87e2
AH
5822 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_INT);
5823 mode != VOIDmode;
5824 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5825 {
5826 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5827 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5828 }
69ef87e2
AH
5829
5830 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FLOAT);
5831 mode != VOIDmode;
5832 mode = GET_MODE_WIDER_MODE (mode))
a73b091d
JW
5833 {
5834 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5835 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5836 }
69ef87e2 5837
325217ed
CF
5838 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FRACT);
5839 mode != VOIDmode;
5840 mode = GET_MODE_WIDER_MODE (mode))
5841 {
5842 FCONST0(mode).data.high = 0;
5843 FCONST0(mode).data.low = 0;
5844 FCONST0(mode).mode = mode;
091a3ac7
CF
5845 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5846 FCONST0 (mode), mode);
325217ed
CF
5847 }
5848
5849 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UFRACT);
5850 mode != VOIDmode;
5851 mode = GET_MODE_WIDER_MODE (mode))
5852 {
5853 FCONST0(mode).data.high = 0;
5854 FCONST0(mode).data.low = 0;
5855 FCONST0(mode).mode = mode;
091a3ac7
CF
5856 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5857 FCONST0 (mode), mode);
325217ed
CF
5858 }
5859
5860 for (mode = GET_CLASS_NARROWEST_MODE (MODE_ACCUM);
5861 mode != VOIDmode;
5862 mode = GET_MODE_WIDER_MODE (mode))
5863 {
5864 FCONST0(mode).data.high = 0;
5865 FCONST0(mode).data.low = 0;
5866 FCONST0(mode).mode = mode;
091a3ac7
CF
5867 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5868 FCONST0 (mode), mode);
325217ed
CF
5869
5870 /* We store the value 1. */
5871 FCONST1(mode).data.high = 0;
5872 FCONST1(mode).data.low = 0;
5873 FCONST1(mode).mode = mode;
5874 lshift_double (1, 0, GET_MODE_FBIT (mode),
5875 2 * HOST_BITS_PER_WIDE_INT,
5876 &FCONST1(mode).data.low,
5877 &FCONST1(mode).data.high,
5878 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5879 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5880 FCONST1 (mode), mode);
325217ed
CF
5881 }
5882
5883 for (mode = GET_CLASS_NARROWEST_MODE (MODE_UACCUM);
5884 mode != VOIDmode;
5885 mode = GET_MODE_WIDER_MODE (mode))
5886 {
5887 FCONST0(mode).data.high = 0;
5888 FCONST0(mode).data.low = 0;
5889 FCONST0(mode).mode = mode;
091a3ac7
CF
5890 const_tiny_rtx[0][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5891 FCONST0 (mode), mode);
325217ed
CF
5892
5893 /* We store the value 1. */
5894 FCONST1(mode).data.high = 0;
5895 FCONST1(mode).data.low = 0;
5896 FCONST1(mode).mode = mode;
5897 lshift_double (1, 0, GET_MODE_FBIT (mode),
5898 2 * HOST_BITS_PER_WIDE_INT,
5899 &FCONST1(mode).data.low,
5900 &FCONST1(mode).data.high,
5901 SIGNED_FIXED_POINT_MODE_P (mode));
091a3ac7
CF
5902 const_tiny_rtx[1][(int) mode] = CONST_FIXED_FROM_FIXED_VALUE (
5903 FCONST1 (mode), mode);
5904 }
5905
5906 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_FRACT);
5907 mode != VOIDmode;
5908 mode = GET_MODE_WIDER_MODE (mode))
5909 {
5910 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5911 }
5912
5913 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UFRACT);
5914 mode != VOIDmode;
5915 mode = GET_MODE_WIDER_MODE (mode))
5916 {
5917 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5918 }
5919
5920 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_ACCUM);
5921 mode != VOIDmode;
5922 mode = GET_MODE_WIDER_MODE (mode))
5923 {
5924 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5925 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
5926 }
5927
5928 for (mode = GET_CLASS_NARROWEST_MODE (MODE_VECTOR_UACCUM);
5929 mode != VOIDmode;
5930 mode = GET_MODE_WIDER_MODE (mode))
5931 {
5932 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
5933 const_tiny_rtx[1][(int) mode] = gen_const_vector (mode, 1);
325217ed
CF
5934 }
5935
dbbbbf3b
JDA
5936 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
5937 if (GET_MODE_CLASS ((enum machine_mode) i) == MODE_CC)
5938 const_tiny_rtx[0][i] = const0_rtx;
23b2ce53 5939
f0417c82
RH
5940 const_tiny_rtx[0][(int) BImode] = const0_rtx;
5941 if (STORE_FLAG_VALUE == 1)
5942 const_tiny_rtx[1][(int) BImode] = const1_rtx;
23b2ce53 5943}
a11759a3 5944\f
969d70ca
JH
5945/* Produce exact duplicate of insn INSN after AFTER.
5946 Care updating of libcall regions if present. */
5947
5948rtx
502b8322 5949emit_copy_of_insn_after (rtx insn, rtx after)
969d70ca 5950{
60564289 5951 rtx new_rtx, link;
969d70ca
JH
5952
5953 switch (GET_CODE (insn))
5954 {
5955 case INSN:
60564289 5956 new_rtx = emit_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
5957 break;
5958
5959 case JUMP_INSN:
60564289 5960 new_rtx = emit_jump_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca
JH
5961 break;
5962
b5b8b0ac
AO
5963 case DEBUG_INSN:
5964 new_rtx = emit_debug_insn_after (copy_insn (PATTERN (insn)), after);
5965 break;
5966
969d70ca 5967 case CALL_INSN:
60564289 5968 new_rtx = emit_call_insn_after (copy_insn (PATTERN (insn)), after);
969d70ca 5969 if (CALL_INSN_FUNCTION_USAGE (insn))
60564289 5970 CALL_INSN_FUNCTION_USAGE (new_rtx)
969d70ca 5971 = copy_insn (CALL_INSN_FUNCTION_USAGE (insn));
60564289
KG
5972 SIBLING_CALL_P (new_rtx) = SIBLING_CALL_P (insn);
5973 RTL_CONST_CALL_P (new_rtx) = RTL_CONST_CALL_P (insn);
5974 RTL_PURE_CALL_P (new_rtx) = RTL_PURE_CALL_P (insn);
b8698a0f 5975 RTL_LOOPING_CONST_OR_PURE_CALL_P (new_rtx)
becfd6e5 5976 = RTL_LOOPING_CONST_OR_PURE_CALL_P (insn);
969d70ca
JH
5977 break;
5978
5979 default:
5b0264cb 5980 gcc_unreachable ();
969d70ca
JH
5981 }
5982
5983 /* Update LABEL_NUSES. */
60564289 5984 mark_jump_label (PATTERN (new_rtx), new_rtx, 0);
969d70ca 5985
60564289 5986 INSN_LOCATOR (new_rtx) = INSN_LOCATOR (insn);
ba4f7968 5987
0a3d71f5
JW
5988 /* If the old insn is frame related, then so is the new one. This is
5989 primarily needed for IA-64 unwind info which marks epilogue insns,
5990 which may be duplicated by the basic block reordering code. */
60564289 5991 RTX_FRAME_RELATED_P (new_rtx) = RTX_FRAME_RELATED_P (insn);
0a3d71f5 5992
cf7c4aa6
HPN
5993 /* Copy all REG_NOTES except REG_LABEL_OPERAND since mark_jump_label
5994 will make them. REG_LABEL_TARGETs are created there too, but are
5995 supposed to be sticky, so we copy them. */
969d70ca 5996 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
cf7c4aa6 5997 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND)
969d70ca
JH
5998 {
5999 if (GET_CODE (link) == EXPR_LIST)
60564289 6000 add_reg_note (new_rtx, REG_NOTE_KIND (link),
65c5f2a6 6001 copy_insn_1 (XEXP (link, 0)));
969d70ca 6002 else
60564289 6003 add_reg_note (new_rtx, REG_NOTE_KIND (link), XEXP (link, 0));
969d70ca
JH
6004 }
6005
60564289
KG
6006 INSN_CODE (new_rtx) = INSN_CODE (insn);
6007 return new_rtx;
969d70ca 6008}
e2500fed 6009
1431042e 6010static GTY((deletable)) rtx hard_reg_clobbers [NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
3e89ed8d
JH
6011rtx
6012gen_hard_reg_clobber (enum machine_mode mode, unsigned int regno)
6013{
6014 if (hard_reg_clobbers[mode][regno])
6015 return hard_reg_clobbers[mode][regno];
6016 else
6017 return (hard_reg_clobbers[mode][regno] =
6018 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6019}
6020
e2500fed 6021#include "gt-emit-rtl.h"