]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/et-forest.c
[AArch64] Temporarily remove aarch64_gimple_fold_builtin code for reduction operations
[thirdparty/gcc.git] / gcc / et-forest.c
CommitLineData
4d6922ee 1/* ET-trees data structure implementation.
f1cfb09f 2 Contributed by Pavel Nejedly
23a5b65a 3 Copyright (C) 2002-2014 Free Software Foundation, Inc.
f1cfb09f
JH
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9dcd6f09 9version 3 of the License, or (at your option) any later version.
f1cfb09f
JH
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
9dcd6f09
NC
17License along with libiberty; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>.
f1cfb09f
JH
19
20 The ET-forest structure is described in:
21 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
22 J. G'omput. System Sci., 26(3):362 381, 1983.
23*/
24
25#include "config.h"
26#include "system.h"
4977bab6 27#include "coretypes.h"
f1cfb09f 28#include "et-forest.h"
f6cb56fa 29#include "alloc-pool.h"
f1cfb09f 30
d47cc544
SB
31/* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
32#undef DEBUG_ET
f1cfb09f 33
d47cc544 34#ifdef DEBUG_ET
6f4185d7 35#include "basic-block.h" /* To access index in record_path_before_1. */
d47cc544 36#endif
f1cfb09f 37
1f52178b 38/* The occurrence of a node in the et tree. */
d47cc544 39struct et_occ
f1cfb09f 40{
d47cc544
SB
41 struct et_node *of; /* The node. */
42
43 struct et_occ *parent; /* Parent in the splay-tree. */
44 struct et_occ *prev; /* Left son in the splay-tree. */
45 struct et_occ *next; /* Right son in the splay-tree. */
46
47 int depth; /* The depth of the node is the sum of depth
48 fields on the path to the root. */
49 int min; /* The minimum value of the depth in the subtree
50 is obtained by adding sum of depth fields
51 on the path to the root. */
1f52178b 52 struct et_occ *min_occ; /* The occurrence in the subtree with the minimal
d47cc544
SB
53 depth. */
54};
f1cfb09f 55
d47cc544 56static alloc_pool et_nodes;
fa0ac78a 57static alloc_pool et_occurrences;
f1cfb09f 58
d47cc544 59/* Changes depth of OCC to D. */
f1cfb09f 60
d47cc544
SB
61static inline void
62set_depth (struct et_occ *occ, int d)
63{
64 if (!occ)
65 return;
f1cfb09f 66
d47cc544
SB
67 occ->min += d - occ->depth;
68 occ->depth = d;
69}
f1cfb09f 70
d47cc544 71/* Adds D to the depth of OCC. */
f1cfb09f 72
d47cc544
SB
73static inline void
74set_depth_add (struct et_occ *occ, int d)
f1cfb09f 75{
d47cc544
SB
76 if (!occ)
77 return;
f1cfb09f 78
d47cc544
SB
79 occ->min += d;
80 occ->depth += d;
81}
f1cfb09f 82
d47cc544 83/* Sets prev field of OCC to P. */
f1cfb09f 84
d47cc544
SB
85static inline void
86set_prev (struct et_occ *occ, struct et_occ *t)
f1cfb09f 87{
d47cc544 88#ifdef DEBUG_ET
5b0264cb 89 gcc_assert (occ != t);
d47cc544 90#endif
f1cfb09f 91
d47cc544
SB
92 occ->prev = t;
93 if (t)
94 t->parent = occ;
f1cfb09f
JH
95}
96
d47cc544
SB
97/* Sets next field of OCC to P. */
98
99static inline void
100set_next (struct et_occ *occ, struct et_occ *t)
f1cfb09f 101{
d47cc544 102#ifdef DEBUG_ET
5b0264cb 103 gcc_assert (occ != t);
d47cc544
SB
104#endif
105
106 occ->next = t;
107 if (t)
108 t->parent = occ;
f1cfb09f
JH
109}
110
1f52178b 111/* Recompute minimum for occurrence OCC. */
f1cfb09f 112
d47cc544
SB
113static inline void
114et_recomp_min (struct et_occ *occ)
f1cfb09f 115{
d47cc544 116 struct et_occ *mson = occ->prev;
f1cfb09f 117
d47cc544
SB
118 if (!mson
119 || (occ->next
120 && mson->min > occ->next->min))
121 mson = occ->next;
f1cfb09f 122
d47cc544
SB
123 if (mson && mson->min < 0)
124 {
125 occ->min = mson->min + occ->depth;
126 occ->min_occ = mson->min_occ;
127 }
128 else
129 {
130 occ->min = occ->depth;
131 occ->min_occ = occ;
132 }
133}
f1cfb09f 134
d47cc544 135#ifdef DEBUG_ET
2a7e31df 136/* Checks whether neighborhood of OCC seems sane. */
f1cfb09f 137
d47cc544
SB
138static void
139et_check_occ_sanity (struct et_occ *occ)
140{
141 if (!occ)
142 return;
f1cfb09f 143
5b0264cb
NS
144 gcc_assert (occ->parent != occ);
145 gcc_assert (occ->prev != occ);
146 gcc_assert (occ->next != occ);
147 gcc_assert (!occ->next || occ->next != occ->prev);
f1cfb09f 148
d47cc544 149 if (occ->next)
f1cfb09f 150 {
5b0264cb
NS
151 gcc_assert (occ->next != occ->parent);
152 gcc_assert (occ->next->parent == occ);
502b8322 153 }
d47cc544
SB
154
155 if (occ->prev)
f1cfb09f 156 {
5b0264cb
NS
157 gcc_assert (occ->prev != occ->parent);
158 gcc_assert (occ->prev->parent == occ);
f1cfb09f
JH
159 }
160
5b0264cb
NS
161 gcc_assert (!occ->parent
162 || occ->parent->prev == occ
163 || occ->parent->next == occ);
f1cfb09f
JH
164}
165
d47cc544
SB
166/* Checks whether tree rooted at OCC is sane. */
167
f1cfb09f 168static void
d47cc544 169et_check_sanity (struct et_occ *occ)
f1cfb09f 170{
d47cc544
SB
171 et_check_occ_sanity (occ);
172 if (occ->prev)
173 et_check_sanity (occ->prev);
174 if (occ->next)
175 et_check_sanity (occ->next);
176}
f1cfb09f 177
d47cc544 178/* Checks whether tree containing OCC is sane. */
f1cfb09f 179
d47cc544
SB
180static void
181et_check_tree_sanity (struct et_occ *occ)
182{
183 while (occ->parent)
184 occ = occ->parent;
f1cfb09f 185
d47cc544
SB
186 et_check_sanity (occ);
187}
f1cfb09f 188
d47cc544 189/* For recording the paths. */
f1cfb09f 190
6de9cd9a
DN
191/* An ad-hoc constant; if the function has more blocks, this won't work,
192 but since it is used for debugging only, it does not matter. */
193#define MAX_NODES 100000
194
d47cc544 195static int len;
6de9cd9a
DN
196static void *datas[MAX_NODES];
197static int depths[MAX_NODES];
f1cfb09f 198
d47cc544 199/* Records the path represented by OCC, with depth incremented by DEPTH. */
f1cfb09f 200
d47cc544
SB
201static int
202record_path_before_1 (struct et_occ *occ, int depth)
203{
204 int mn, m;
f1cfb09f 205
d47cc544
SB
206 depth += occ->depth;
207 mn = depth;
208
209 if (occ->prev)
210 {
b8698a0f 211 m = record_path_before_1 (occ->prev, depth);
d47cc544
SB
212 if (m < mn)
213 mn = m;
f1cfb09f
JH
214 }
215
d47cc544 216 fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
6de9cd9a 217
5b0264cb 218 gcc_assert (len < MAX_NODES);
6de9cd9a 219
d47cc544
SB
220 depths[len] = depth;
221 datas[len] = occ->of;
222 len++;
223
224 if (occ->next)
f1cfb09f 225 {
d47cc544
SB
226 m = record_path_before_1 (occ->next, depth);
227 if (m < mn)
228 mn = m;
229 }
f1cfb09f 230
5b0264cb 231 gcc_assert (mn == occ->min + depth - occ->depth);
f1cfb09f 232
d47cc544
SB
233 return mn;
234}
f1cfb09f 235
d47cc544 236/* Records the path represented by a tree containing OCC. */
f1cfb09f 237
d47cc544
SB
238static void
239record_path_before (struct et_occ *occ)
240{
241 while (occ->parent)
242 occ = occ->parent;
f1cfb09f 243
d47cc544
SB
244 len = 0;
245 record_path_before_1 (occ, 0);
246 fprintf (stderr, "\n");
f1cfb09f
JH
247}
248
d47cc544
SB
249/* Checks whether the path represented by OCC, with depth incremented by DEPTH,
250 was not changed since the last recording. */
251
252static int
253check_path_after_1 (struct et_occ *occ, int depth)
f1cfb09f 254{
d47cc544
SB
255 int mn, m;
256
257 depth += occ->depth;
258 mn = depth;
f1cfb09f 259
d47cc544 260 if (occ->next)
f1cfb09f 261 {
b8698a0f 262 m = check_path_after_1 (occ->next, depth);
d47cc544
SB
263 if (m < mn)
264 mn = m;
265 }
f1cfb09f 266
d47cc544 267 len--;
5b0264cb 268 gcc_assert (depths[len] == depth && datas[len] == occ->of);
d47cc544
SB
269
270 if (occ->prev)
271 {
272 m = check_path_after_1 (occ->prev, depth);
273 if (m < mn)
274 mn = m;
f1cfb09f
JH
275 }
276
5b0264cb 277 gcc_assert (mn == occ->min + depth - occ->depth);
d47cc544
SB
278
279 return mn;
f1cfb09f
JH
280}
281
d47cc544
SB
282/* Checks whether the path represented by a tree containing OCC was
283 not changed since the last recording. */
284
285static void
286check_path_after (struct et_occ *occ)
287{
288 while (occ->parent)
289 occ = occ->parent;
290
291 check_path_after_1 (occ, 0);
5b0264cb 292 gcc_assert (!len);
d47cc544 293}
f1cfb09f 294
d47cc544 295#endif
f1cfb09f 296
1f52178b 297/* Splay the occurrence OCC to the root of the tree. */
f1cfb09f 298
965514bd 299static void
d47cc544 300et_splay (struct et_occ *occ)
f1cfb09f 301{
d47cc544
SB
302 struct et_occ *f, *gf, *ggf;
303 int occ_depth, f_depth, gf_depth;
304
305#ifdef DEBUG_ET
306 record_path_before (occ);
307 et_check_tree_sanity (occ);
308#endif
b8698a0f 309
d47cc544
SB
310 while (occ->parent)
311 {
312 occ_depth = occ->depth;
f1cfb09f 313
d47cc544
SB
314 f = occ->parent;
315 f_depth = f->depth;
f1cfb09f 316
d47cc544 317 gf = f->parent;
f1cfb09f 318
d47cc544
SB
319 if (!gf)
320 {
321 set_depth_add (occ, f_depth);
322 occ->min_occ = f->min_occ;
323 occ->min = f->min;
f1cfb09f 324
d47cc544
SB
325 if (f->prev == occ)
326 {
327 /* zig */
328 set_prev (f, occ->next);
329 set_next (occ, f);
330 set_depth_add (f->prev, occ_depth);
331 }
332 else
333 {
334 /* zag */
335 set_next (f, occ->prev);
336 set_prev (occ, f);
337 set_depth_add (f->next, occ_depth);
338 }
339 set_depth (f, -occ_depth);
340 occ->parent = NULL;
341
342 et_recomp_min (f);
343#ifdef DEBUG_ET
344 et_check_tree_sanity (occ);
345 check_path_after (occ);
346#endif
347 return;
348 }
349
350 gf_depth = gf->depth;
351
352 set_depth_add (occ, f_depth + gf_depth);
353 occ->min_occ = gf->min_occ;
354 occ->min = gf->min;
355
356 ggf = gf->parent;
357
358 if (gf->prev == f)
359 {
360 if (f->prev == occ)
361 {
362 /* zig zig */
363 set_prev (gf, f->next);
364 set_prev (f, occ->next);
365 set_next (occ, f);
366 set_next (f, gf);
367
368 set_depth (f, -occ_depth);
369 set_depth_add (f->prev, occ_depth);
370 set_depth (gf, -f_depth);
371 set_depth_add (gf->prev, f_depth);
372 }
373 else
374 {
375 /* zag zig */
376 set_prev (gf, occ->next);
377 set_next (f, occ->prev);
378 set_prev (occ, f);
379 set_next (occ, gf);
380
381 set_depth (f, -occ_depth);
382 set_depth_add (f->next, occ_depth);
383 set_depth (gf, -occ_depth - f_depth);
384 set_depth_add (gf->prev, occ_depth + f_depth);
385 }
386 }
387 else
388 {
389 if (f->prev == occ)
390 {
391 /* zig zag */
392 set_next (gf, occ->prev);
393 set_prev (f, occ->next);
394 set_prev (occ, gf);
395 set_next (occ, f);
396
397 set_depth (f, -occ_depth);
398 set_depth_add (f->prev, occ_depth);
399 set_depth (gf, -occ_depth - f_depth);
400 set_depth_add (gf->next, occ_depth + f_depth);
401 }
402 else
403 {
404 /* zag zag */
405 set_next (gf, f->prev);
406 set_next (f, occ->prev);
407 set_prev (occ, f);
408 set_prev (f, gf);
409
410 set_depth (f, -occ_depth);
411 set_depth_add (f->next, occ_depth);
412 set_depth (gf, -f_depth);
413 set_depth_add (gf->next, f_depth);
414 }
415 }
416
417 occ->parent = ggf;
418 if (ggf)
419 {
420 if (ggf->prev == gf)
421 ggf->prev = occ;
422 else
423 ggf->next = occ;
424 }
425
426 et_recomp_min (gf);
427 et_recomp_min (f);
428#ifdef DEBUG_ET
429 et_check_tree_sanity (occ);
430#endif
431 }
432
433#ifdef DEBUG_ET
434 et_check_sanity (occ);
435 check_path_after (occ);
436#endif
437}
438
1f52178b 439/* Create a new et tree occurrence of NODE. */
d47cc544
SB
440
441static struct et_occ *
442et_new_occ (struct et_node *node)
f1cfb09f 443{
d47cc544 444 struct et_occ *nw;
b8698a0f 445
fa0ac78a
KH
446 if (!et_occurrences)
447 et_occurrences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300);
1b4572a8 448 nw = (struct et_occ *) pool_alloc (et_occurrences);
d47cc544
SB
449
450 nw->of = node;
451 nw->parent = NULL;
452 nw->prev = NULL;
453 nw->next = NULL;
454
455 nw->depth = 0;
456 nw->min_occ = nw;
457 nw->min = 0;
458
459 return nw;
f1cfb09f
JH
460}
461
d47cc544
SB
462/* Create a new et tree containing DATA. */
463
464struct et_node *
465et_new_tree (void *data)
f1cfb09f 466{
d47cc544 467 struct et_node *nw;
b8698a0f 468
d47cc544
SB
469 if (!et_nodes)
470 et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300);
1b4572a8 471 nw = (struct et_node *) pool_alloc (et_nodes);
d47cc544
SB
472
473 nw->data = data;
474 nw->father = NULL;
475 nw->left = NULL;
476 nw->right = NULL;
477 nw->son = NULL;
478
479 nw->rightmost_occ = et_new_occ (nw);
480 nw->parent_occ = NULL;
481
482 return nw;
f1cfb09f
JH
483}
484
d47cc544
SB
485/* Releases et tree T. */
486
487void
488et_free_tree (struct et_node *t)
f1cfb09f 489{
d47cc544
SB
490 while (t->son)
491 et_split (t->son);
f1cfb09f 492
d47cc544
SB
493 if (t->father)
494 et_split (t);
f1cfb09f 495
fa0ac78a 496 pool_free (et_occurrences, t->rightmost_occ);
d47cc544 497 pool_free (et_nodes, t);
f1cfb09f
JH
498}
499
bef87a34
KH
500/* Releases et tree T without maintaining other nodes. */
501
502void
503et_free_tree_force (struct et_node *t)
504{
505 pool_free (et_occurrences, t->rightmost_occ);
5a6ccafd
RG
506 if (t->parent_occ)
507 pool_free (et_occurrences, t->parent_occ);
bef87a34
KH
508 pool_free (et_nodes, t);
509}
510
5a6ccafd
RG
511/* Release the alloc pools, if they are empty. */
512
513void
514et_free_pools (void)
515{
516 free_alloc_pool_if_empty (&et_occurrences);
517 free_alloc_pool_if_empty (&et_nodes);
518}
519
d47cc544
SB
520/* Sets father of et tree T to FATHER. */
521
f1cfb09f 522void
d47cc544 523et_set_father (struct et_node *t, struct et_node *father)
f1cfb09f 524{
d47cc544
SB
525 struct et_node *left, *right;
526 struct et_occ *rmost, *left_part, *new_f_occ, *p;
f1cfb09f 527
d47cc544
SB
528 /* Update the path represented in the splay tree. */
529 new_f_occ = et_new_occ (father);
f1cfb09f 530
d47cc544
SB
531 rmost = father->rightmost_occ;
532 et_splay (rmost);
f1cfb09f 533
d47cc544 534 left_part = rmost->prev;
f1cfb09f 535
d47cc544
SB
536 p = t->rightmost_occ;
537 et_splay (p);
f1cfb09f 538
d47cc544
SB
539 set_prev (new_f_occ, left_part);
540 set_next (new_f_occ, p);
541
542 p->depth++;
543 p->min++;
544 et_recomp_min (new_f_occ);
f1cfb09f 545
d47cc544 546 set_prev (rmost, new_f_occ);
502b8322 547
d47cc544
SB
548 if (new_f_occ->min + rmost->depth < rmost->min)
549 {
550 rmost->min = new_f_occ->min + rmost->depth;
551 rmost->min_occ = new_f_occ->min_occ;
552 }
f1cfb09f 553
d47cc544 554 t->parent_occ = new_f_occ;
f1cfb09f 555
d47cc544
SB
556 /* Update the tree. */
557 t->father = father;
558 right = father->son;
559 if (right)
560 left = right->left;
561 else
562 left = right = t;
f1cfb09f 563
d47cc544
SB
564 left->right = t;
565 right->left = t;
566 t->left = left;
567 t->right = right;
f1cfb09f 568
d47cc544 569 father->son = t;
f1cfb09f 570
d47cc544
SB
571#ifdef DEBUG_ET
572 et_check_tree_sanity (rmost);
573 record_path_before (rmost);
574#endif
f1cfb09f
JH
575}
576
d47cc544
SB
577/* Splits the edge from T to its father. */
578
579void
580et_split (struct et_node *t)
f1cfb09f 581{
d47cc544
SB
582 struct et_node *father = t->father;
583 struct et_occ *r, *l, *rmost, *p_occ;
f1cfb09f 584
d47cc544
SB
585 /* Update the path represented by the splay tree. */
586 rmost = t->rightmost_occ;
587 et_splay (rmost);
f1cfb09f 588
d47cc544
SB
589 for (r = rmost->next; r->prev; r = r->prev)
590 continue;
b8698a0f 591 et_splay (r);
f1cfb09f 592
d47cc544
SB
593 r->prev->parent = NULL;
594 p_occ = t->parent_occ;
595 et_splay (p_occ);
596 t->parent_occ = NULL;
f1cfb09f 597
d47cc544
SB
598 l = p_occ->prev;
599 p_occ->next->parent = NULL;
502b8322 600
d47cc544 601 set_prev (r, l);
f1cfb09f 602
d47cc544 603 et_recomp_min (r);
f1cfb09f 604
d47cc544
SB
605 et_splay (rmost);
606 rmost->depth = 0;
607 rmost->min = 0;
f1cfb09f 608
fa0ac78a 609 pool_free (et_occurrences, p_occ);
f1cfb09f 610
d47cc544
SB
611 /* Update the tree. */
612 if (father->son == t)
613 father->son = t->right;
614 if (father->son == t)
615 father->son = NULL;
616 else
f1cfb09f 617 {
d47cc544
SB
618 t->left->right = t->right;
619 t->right->left = t->left;
620 }
621 t->left = t->right = NULL;
622 t->father = NULL;
623
624#ifdef DEBUG_ET
625 et_check_tree_sanity (rmost);
626 record_path_before (rmost);
627
628 et_check_tree_sanity (r);
629 record_path_before (r);
630#endif
631}
632
633/* Finds the nearest common ancestor of the nodes N1 and N2. */
634
635struct et_node *
636et_nca (struct et_node *n1, struct et_node *n2)
637{
638 struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
639 struct et_occ *l, *r, *ret;
640 int mn;
641
642 if (n1 == n2)
643 return n1;
644
645 et_splay (o1);
646 l = o1->prev;
647 r = o1->next;
648 if (l)
649 l->parent = NULL;
650 if (r)
651 r->parent = NULL;
652 et_splay (o2);
653
654 if (l == o2 || (l && l->parent != NULL))
655 {
656 ret = o2->next;
657
658 set_prev (o1, o2);
659 if (r)
660 r->parent = o1;
f1cfb09f 661 }
d2e60b7b 662 else if (r == o2 || (r && r->parent != NULL))
f1cfb09f 663 {
d47cc544
SB
664 ret = o2->prev;
665
666 set_next (o1, o2);
667 if (l)
668 l->parent = o1;
f1cfb09f 669 }
d2e60b7b
ZD
670 else
671 {
672 /* O1 and O2 are in different components of the forest. */
673 if (l)
674 l->parent = o1;
675 if (r)
676 r->parent = o1;
677 return NULL;
678 }
502b8322 679
d47cc544 680 if (0 < o2->depth)
f1cfb09f 681 {
d47cc544
SB
682 om = o1;
683 mn = o1->depth;
684 }
685 else
686 {
687 om = o2;
688 mn = o2->depth + o1->depth;
f1cfb09f
JH
689 }
690
d47cc544
SB
691#ifdef DEBUG_ET
692 et_check_tree_sanity (o2);
693#endif
f1cfb09f 694
d47cc544
SB
695 if (ret && ret->min + o1->depth + o2->depth < mn)
696 return ret->min_occ->of;
697 else
698 return om->of;
f1cfb09f
JH
699}
700
d47cc544
SB
701/* Checks whether the node UP is an ancestor of the node DOWN. */
702
703bool
704et_below (struct et_node *down, struct et_node *up)
f1cfb09f 705{
d47cc544
SB
706 struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
707 struct et_occ *l, *r;
708
709 if (up == down)
710 return true;
711
712 et_splay (u);
713 l = u->prev;
714 r = u->next;
715
716 if (!l)
717 return false;
718
719 l->parent = NULL;
720
721 if (r)
722 r->parent = NULL;
f1cfb09f 723
d47cc544
SB
724 et_splay (d);
725
726 if (l == d || l->parent != NULL)
f1cfb09f 727 {
d47cc544
SB
728 if (r)
729 r->parent = u;
730 set_prev (u, d);
731#ifdef DEBUG_ET
732 et_check_tree_sanity (u);
733#endif
f1cfb09f 734 }
d47cc544
SB
735 else
736 {
737 l->parent = u;
738
739 /* In case O1 and O2 are in two different trees, we must just restore the
740 original state. */
741 if (r && r->parent != NULL)
742 set_next (u, d);
743 else
744 set_next (u, r);
745
746#ifdef DEBUG_ET
747 et_check_tree_sanity (u);
748#endif
749 return false;
750 }
751
752 if (0 >= d->depth)
753 return false;
754
755 return !d->next || d->next->min + d->depth >= 0;
f1cfb09f 756}
66f97d31
ZD
757
758/* Returns the root of the tree that contains NODE. */
759
760struct et_node *
761et_root (struct et_node *node)
762{
763 struct et_occ *occ = node->rightmost_occ, *r;
764
fa10beec 765 /* The root of the tree corresponds to the rightmost occurrence in the
66f97d31
ZD
766 represented path. */
767 et_splay (occ);
768 for (r = occ; r->next; r = r->next)
769 continue;
770 et_splay (r);
771
772 return r->of;
773}