]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/et-forest.c
frontends.texi: Update copyright.
[thirdparty/gcc.git] / gcc / et-forest.c
CommitLineData
4d6922ee 1/* ET-trees data structure implementation.
f1cfb09f 2 Contributed by Pavel Nejedly
d9221e01 3 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
f1cfb09f
JH
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9version 2 of the License, or (at your option) any later version.
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
17License along with libiberty; see the file COPYING.LIB. If
18not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
502b8322 19Boston, MA 02111-1307, USA.
f1cfb09f
JH
20
21 The ET-forest structure is described in:
22 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
23 J. G'omput. System Sci., 26(3):362 381, 1983.
24*/
25
26#include "config.h"
27#include "system.h"
4977bab6
ZW
28#include "coretypes.h"
29#include "tm.h"
f1cfb09f 30#include "et-forest.h"
f6cb56fa 31#include "alloc-pool.h"
f1cfb09f 32
d47cc544
SB
33/* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
34#undef DEBUG_ET
f1cfb09f 35
d47cc544
SB
36#ifdef DEBUG_ET
37#include "basic-block.h"
38#endif
f1cfb09f 39
d47cc544
SB
40/* The occurence of a node in the et tree. */
41struct et_occ
f1cfb09f 42{
d47cc544
SB
43 struct et_node *of; /* The node. */
44
45 struct et_occ *parent; /* Parent in the splay-tree. */
46 struct et_occ *prev; /* Left son in the splay-tree. */
47 struct et_occ *next; /* Right son in the splay-tree. */
48
49 int depth; /* The depth of the node is the sum of depth
50 fields on the path to the root. */
51 int min; /* The minimum value of the depth in the subtree
52 is obtained by adding sum of depth fields
53 on the path to the root. */
54 struct et_occ *min_occ; /* The occurence in the subtree with the minimal
55 depth. */
56};
f1cfb09f 57
d47cc544
SB
58static alloc_pool et_nodes;
59static alloc_pool et_occurences;
f1cfb09f 60
d47cc544 61/* Changes depth of OCC to D. */
f1cfb09f 62
d47cc544
SB
63static inline void
64set_depth (struct et_occ *occ, int d)
65{
66 if (!occ)
67 return;
f1cfb09f 68
d47cc544
SB
69 occ->min += d - occ->depth;
70 occ->depth = d;
71}
f1cfb09f 72
d47cc544 73/* Adds D to the depth of OCC. */
f1cfb09f 74
d47cc544
SB
75static inline void
76set_depth_add (struct et_occ *occ, int d)
f1cfb09f 77{
d47cc544
SB
78 if (!occ)
79 return;
f1cfb09f 80
d47cc544
SB
81 occ->min += d;
82 occ->depth += d;
83}
f1cfb09f 84
d47cc544 85/* Sets prev field of OCC to P. */
f1cfb09f 86
d47cc544
SB
87static inline void
88set_prev (struct et_occ *occ, struct et_occ *t)
f1cfb09f 89{
d47cc544
SB
90#ifdef DEBUG_ET
91 if (occ == t)
92 abort ();
93#endif
f1cfb09f 94
d47cc544
SB
95 occ->prev = t;
96 if (t)
97 t->parent = occ;
f1cfb09f
JH
98}
99
d47cc544
SB
100/* Sets next field of OCC to P. */
101
102static inline void
103set_next (struct et_occ *occ, struct et_occ *t)
f1cfb09f 104{
d47cc544
SB
105#ifdef DEBUG_ET
106 if (occ == t)
107 abort ();
108#endif
109
110 occ->next = t;
111 if (t)
112 t->parent = occ;
f1cfb09f
JH
113}
114
d47cc544 115/* Recompute minimum for occurence OCC. */
f1cfb09f 116
d47cc544
SB
117static inline void
118et_recomp_min (struct et_occ *occ)
f1cfb09f 119{
d47cc544 120 struct et_occ *mson = occ->prev;
f1cfb09f 121
d47cc544
SB
122 if (!mson
123 || (occ->next
124 && mson->min > occ->next->min))
125 mson = occ->next;
f1cfb09f 126
d47cc544
SB
127 if (mson && mson->min < 0)
128 {
129 occ->min = mson->min + occ->depth;
130 occ->min_occ = mson->min_occ;
131 }
132 else
133 {
134 occ->min = occ->depth;
135 occ->min_occ = occ;
136 }
137}
f1cfb09f 138
d47cc544
SB
139#ifdef DEBUG_ET
140/* Checks whether neighbourhood of OCC seems sane. */
f1cfb09f 141
d47cc544
SB
142static void
143et_check_occ_sanity (struct et_occ *occ)
144{
145 if (!occ)
146 return;
f1cfb09f 147
d47cc544
SB
148 if (occ->parent == occ)
149 abort ();
f1cfb09f 150
d47cc544
SB
151 if (occ->prev == occ)
152 abort ();
502b8322 153
d47cc544
SB
154 if (occ->next == occ)
155 abort ();
f1cfb09f 156
d47cc544
SB
157 if (occ->next && occ->next == occ->prev)
158 abort ();
f1cfb09f 159
d47cc544 160 if (occ->next)
f1cfb09f 161 {
d47cc544
SB
162 if (occ->next == occ->parent)
163 abort ();
164
165 if (occ->next->parent != occ)
166 abort ();
502b8322 167 }
d47cc544
SB
168
169 if (occ->prev)
f1cfb09f 170 {
d47cc544
SB
171 if (occ->prev == occ->parent)
172 abort ();
173
174 if (occ->prev->parent != occ)
175 abort ();
f1cfb09f
JH
176 }
177
d47cc544
SB
178 if (occ->parent
179 && occ->parent->prev != occ
180 && occ->parent->next != occ)
181 abort ();
f1cfb09f
JH
182}
183
d47cc544
SB
184/* Checks whether tree rooted at OCC is sane. */
185
f1cfb09f 186static void
d47cc544 187et_check_sanity (struct et_occ *occ)
f1cfb09f 188{
d47cc544
SB
189 et_check_occ_sanity (occ);
190 if (occ->prev)
191 et_check_sanity (occ->prev);
192 if (occ->next)
193 et_check_sanity (occ->next);
194}
f1cfb09f 195
d47cc544 196/* Checks whether tree containing OCC is sane. */
f1cfb09f 197
d47cc544
SB
198static void
199et_check_tree_sanity (struct et_occ *occ)
200{
201 while (occ->parent)
202 occ = occ->parent;
f1cfb09f 203
d47cc544
SB
204 et_check_sanity (occ);
205}
f1cfb09f 206
d47cc544 207/* For recording the paths. */
f1cfb09f 208
d47cc544
SB
209static int len;
210static void *datas[100000];
211static int depths[100000];
f1cfb09f 212
d47cc544 213/* Records the path represented by OCC, with depth incremented by DEPTH. */
f1cfb09f 214
d47cc544
SB
215static int
216record_path_before_1 (struct et_occ *occ, int depth)
217{
218 int mn, m;
f1cfb09f 219
d47cc544
SB
220 depth += occ->depth;
221 mn = depth;
222
223 if (occ->prev)
224 {
225 m = record_path_before_1 (occ->prev, depth);
226 if (m < mn)
227 mn = m;
f1cfb09f
JH
228 }
229
d47cc544
SB
230 fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
231 depths[len] = depth;
232 datas[len] = occ->of;
233 len++;
234
235 if (occ->next)
f1cfb09f 236 {
d47cc544
SB
237 m = record_path_before_1 (occ->next, depth);
238 if (m < mn)
239 mn = m;
240 }
f1cfb09f 241
d47cc544
SB
242 if (mn != occ->min + depth - occ->depth)
243 abort ();
f1cfb09f 244
d47cc544
SB
245 return mn;
246}
f1cfb09f 247
d47cc544 248/* Records the path represented by a tree containing OCC. */
f1cfb09f 249
d47cc544
SB
250static void
251record_path_before (struct et_occ *occ)
252{
253 while (occ->parent)
254 occ = occ->parent;
f1cfb09f 255
d47cc544
SB
256 len = 0;
257 record_path_before_1 (occ, 0);
258 fprintf (stderr, "\n");
f1cfb09f
JH
259}
260
d47cc544
SB
261/* Checks whether the path represented by OCC, with depth incremented by DEPTH,
262 was not changed since the last recording. */
263
264static int
265check_path_after_1 (struct et_occ *occ, int depth)
f1cfb09f 266{
d47cc544
SB
267 int mn, m;
268
269 depth += occ->depth;
270 mn = depth;
f1cfb09f 271
d47cc544 272 if (occ->next)
f1cfb09f 273 {
d47cc544
SB
274 m = check_path_after_1 (occ->next, depth);
275 if (m < mn)
276 mn = m;
277 }
f1cfb09f 278
d47cc544
SB
279 len--;
280 if (depths[len] != depth
281 || datas[len] != occ->of)
282 abort ();
283
284 if (occ->prev)
285 {
286 m = check_path_after_1 (occ->prev, depth);
287 if (m < mn)
288 mn = m;
f1cfb09f
JH
289 }
290
d47cc544
SB
291 if (mn != occ->min + depth - occ->depth)
292 abort ();
293
294 return mn;
f1cfb09f
JH
295}
296
d47cc544
SB
297/* Checks whether the path represented by a tree containing OCC was
298 not changed since the last recording. */
299
300static void
301check_path_after (struct et_occ *occ)
302{
303 while (occ->parent)
304 occ = occ->parent;
305
306 check_path_after_1 (occ, 0);
307 if (len != 0)
308 abort ();
309}
f1cfb09f 310
d47cc544 311#endif
f1cfb09f 312
d47cc544 313/* Splay the occurence OCC to the root of the tree. */
f1cfb09f 314
965514bd 315static void
d47cc544 316et_splay (struct et_occ *occ)
f1cfb09f 317{
d47cc544
SB
318 struct et_occ *f, *gf, *ggf;
319 int occ_depth, f_depth, gf_depth;
320
321#ifdef DEBUG_ET
322 record_path_before (occ);
323 et_check_tree_sanity (occ);
324#endif
325
326 while (occ->parent)
327 {
328 occ_depth = occ->depth;
f1cfb09f 329
d47cc544
SB
330 f = occ->parent;
331 f_depth = f->depth;
f1cfb09f 332
d47cc544 333 gf = f->parent;
f1cfb09f 334
d47cc544
SB
335 if (!gf)
336 {
337 set_depth_add (occ, f_depth);
338 occ->min_occ = f->min_occ;
339 occ->min = f->min;
f1cfb09f 340
d47cc544
SB
341 if (f->prev == occ)
342 {
343 /* zig */
344 set_prev (f, occ->next);
345 set_next (occ, f);
346 set_depth_add (f->prev, occ_depth);
347 }
348 else
349 {
350 /* zag */
351 set_next (f, occ->prev);
352 set_prev (occ, f);
353 set_depth_add (f->next, occ_depth);
354 }
355 set_depth (f, -occ_depth);
356 occ->parent = NULL;
357
358 et_recomp_min (f);
359#ifdef DEBUG_ET
360 et_check_tree_sanity (occ);
361 check_path_after (occ);
362#endif
363 return;
364 }
365
366 gf_depth = gf->depth;
367
368 set_depth_add (occ, f_depth + gf_depth);
369 occ->min_occ = gf->min_occ;
370 occ->min = gf->min;
371
372 ggf = gf->parent;
373
374 if (gf->prev == f)
375 {
376 if (f->prev == occ)
377 {
378 /* zig zig */
379 set_prev (gf, f->next);
380 set_prev (f, occ->next);
381 set_next (occ, f);
382 set_next (f, gf);
383
384 set_depth (f, -occ_depth);
385 set_depth_add (f->prev, occ_depth);
386 set_depth (gf, -f_depth);
387 set_depth_add (gf->prev, f_depth);
388 }
389 else
390 {
391 /* zag zig */
392 set_prev (gf, occ->next);
393 set_next (f, occ->prev);
394 set_prev (occ, f);
395 set_next (occ, gf);
396
397 set_depth (f, -occ_depth);
398 set_depth_add (f->next, occ_depth);
399 set_depth (gf, -occ_depth - f_depth);
400 set_depth_add (gf->prev, occ_depth + f_depth);
401 }
402 }
403 else
404 {
405 if (f->prev == occ)
406 {
407 /* zig zag */
408 set_next (gf, occ->prev);
409 set_prev (f, occ->next);
410 set_prev (occ, gf);
411 set_next (occ, f);
412
413 set_depth (f, -occ_depth);
414 set_depth_add (f->prev, occ_depth);
415 set_depth (gf, -occ_depth - f_depth);
416 set_depth_add (gf->next, occ_depth + f_depth);
417 }
418 else
419 {
420 /* zag zag */
421 set_next (gf, f->prev);
422 set_next (f, occ->prev);
423 set_prev (occ, f);
424 set_prev (f, gf);
425
426 set_depth (f, -occ_depth);
427 set_depth_add (f->next, occ_depth);
428 set_depth (gf, -f_depth);
429 set_depth_add (gf->next, f_depth);
430 }
431 }
432
433 occ->parent = ggf;
434 if (ggf)
435 {
436 if (ggf->prev == gf)
437 ggf->prev = occ;
438 else
439 ggf->next = occ;
440 }
441
442 et_recomp_min (gf);
443 et_recomp_min (f);
444#ifdef DEBUG_ET
445 et_check_tree_sanity (occ);
446#endif
447 }
448
449#ifdef DEBUG_ET
450 et_check_sanity (occ);
451 check_path_after (occ);
452#endif
453}
454
455/* Create a new et tree occurence of NODE. */
456
457static struct et_occ *
458et_new_occ (struct et_node *node)
f1cfb09f 459{
d47cc544
SB
460 struct et_occ *nw;
461
462 if (!et_occurences)
463 et_occurences = create_alloc_pool ("et_occ pool", sizeof (struct et_occ), 300);
464 nw = pool_alloc (et_occurences);
465
466 nw->of = node;
467 nw->parent = NULL;
468 nw->prev = NULL;
469 nw->next = NULL;
470
471 nw->depth = 0;
472 nw->min_occ = nw;
473 nw->min = 0;
474
475 return nw;
f1cfb09f
JH
476}
477
d47cc544
SB
478/* Create a new et tree containing DATA. */
479
480struct et_node *
481et_new_tree (void *data)
f1cfb09f 482{
d47cc544
SB
483 struct et_node *nw;
484
485 if (!et_nodes)
486 et_nodes = create_alloc_pool ("et_node pool", sizeof (struct et_node), 300);
487 nw = pool_alloc (et_nodes);
488
489 nw->data = data;
490 nw->father = NULL;
491 nw->left = NULL;
492 nw->right = NULL;
493 nw->son = NULL;
494
495 nw->rightmost_occ = et_new_occ (nw);
496 nw->parent_occ = NULL;
497
498 return nw;
f1cfb09f
JH
499}
500
d47cc544
SB
501/* Releases et tree T. */
502
503void
504et_free_tree (struct et_node *t)
f1cfb09f 505{
d47cc544
SB
506 while (t->son)
507 et_split (t->son);
f1cfb09f 508
d47cc544
SB
509 if (t->father)
510 et_split (t);
f1cfb09f 511
d47cc544
SB
512 pool_free (et_occurences, t->rightmost_occ);
513 pool_free (et_nodes, t);
f1cfb09f
JH
514}
515
d47cc544
SB
516/* Sets father of et tree T to FATHER. */
517
f1cfb09f 518void
d47cc544 519et_set_father (struct et_node *t, struct et_node *father)
f1cfb09f 520{
d47cc544
SB
521 struct et_node *left, *right;
522 struct et_occ *rmost, *left_part, *new_f_occ, *p;
f1cfb09f 523
d47cc544
SB
524 /* Update the path represented in the splay tree. */
525 new_f_occ = et_new_occ (father);
f1cfb09f 526
d47cc544
SB
527 rmost = father->rightmost_occ;
528 et_splay (rmost);
f1cfb09f 529
d47cc544 530 left_part = rmost->prev;
f1cfb09f 531
d47cc544
SB
532 p = t->rightmost_occ;
533 et_splay (p);
f1cfb09f 534
d47cc544
SB
535 set_prev (new_f_occ, left_part);
536 set_next (new_f_occ, p);
537
538 p->depth++;
539 p->min++;
540 et_recomp_min (new_f_occ);
f1cfb09f 541
d47cc544 542 set_prev (rmost, new_f_occ);
502b8322 543
d47cc544
SB
544 if (new_f_occ->min + rmost->depth < rmost->min)
545 {
546 rmost->min = new_f_occ->min + rmost->depth;
547 rmost->min_occ = new_f_occ->min_occ;
548 }
f1cfb09f 549
d47cc544 550 t->parent_occ = new_f_occ;
f1cfb09f 551
d47cc544
SB
552 /* Update the tree. */
553 t->father = father;
554 right = father->son;
555 if (right)
556 left = right->left;
557 else
558 left = right = t;
f1cfb09f 559
d47cc544
SB
560 left->right = t;
561 right->left = t;
562 t->left = left;
563 t->right = right;
f1cfb09f 564
d47cc544 565 father->son = t;
f1cfb09f 566
d47cc544
SB
567#ifdef DEBUG_ET
568 et_check_tree_sanity (rmost);
569 record_path_before (rmost);
570#endif
f1cfb09f
JH
571}
572
d47cc544
SB
573/* Splits the edge from T to its father. */
574
575void
576et_split (struct et_node *t)
f1cfb09f 577{
d47cc544
SB
578 struct et_node *father = t->father;
579 struct et_occ *r, *l, *rmost, *p_occ;
f1cfb09f 580
d47cc544
SB
581 /* Update the path represented by the splay tree. */
582 rmost = t->rightmost_occ;
583 et_splay (rmost);
f1cfb09f 584
d47cc544
SB
585 for (r = rmost->next; r->prev; r = r->prev)
586 continue;
587 et_splay (r);
f1cfb09f 588
d47cc544
SB
589 r->prev->parent = NULL;
590 p_occ = t->parent_occ;
591 et_splay (p_occ);
592 t->parent_occ = NULL;
f1cfb09f 593
d47cc544
SB
594 l = p_occ->prev;
595 p_occ->next->parent = NULL;
502b8322 596
d47cc544 597 set_prev (r, l);
f1cfb09f 598
d47cc544 599 et_recomp_min (r);
f1cfb09f 600
d47cc544
SB
601 et_splay (rmost);
602 rmost->depth = 0;
603 rmost->min = 0;
f1cfb09f 604
d47cc544 605 pool_free (et_occurences, p_occ);
f1cfb09f 606
d47cc544
SB
607 /* Update the tree. */
608 if (father->son == t)
609 father->son = t->right;
610 if (father->son == t)
611 father->son = NULL;
612 else
f1cfb09f 613 {
d47cc544
SB
614 t->left->right = t->right;
615 t->right->left = t->left;
616 }
617 t->left = t->right = NULL;
618 t->father = NULL;
619
620#ifdef DEBUG_ET
621 et_check_tree_sanity (rmost);
622 record_path_before (rmost);
623
624 et_check_tree_sanity (r);
625 record_path_before (r);
626#endif
627}
628
629/* Finds the nearest common ancestor of the nodes N1 and N2. */
630
631struct et_node *
632et_nca (struct et_node *n1, struct et_node *n2)
633{
634 struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
635 struct et_occ *l, *r, *ret;
636 int mn;
637
638 if (n1 == n2)
639 return n1;
640
641 et_splay (o1);
642 l = o1->prev;
643 r = o1->next;
644 if (l)
645 l->parent = NULL;
646 if (r)
647 r->parent = NULL;
648 et_splay (o2);
649
650 if (l == o2 || (l && l->parent != NULL))
651 {
652 ret = o2->next;
653
654 set_prev (o1, o2);
655 if (r)
656 r->parent = o1;
f1cfb09f
JH
657 }
658 else
659 {
d47cc544
SB
660 ret = o2->prev;
661
662 set_next (o1, o2);
663 if (l)
664 l->parent = o1;
f1cfb09f 665 }
502b8322 666
d47cc544 667 if (0 < o2->depth)
f1cfb09f 668 {
d47cc544
SB
669 om = o1;
670 mn = o1->depth;
671 }
672 else
673 {
674 om = o2;
675 mn = o2->depth + o1->depth;
f1cfb09f
JH
676 }
677
d47cc544
SB
678#ifdef DEBUG_ET
679 et_check_tree_sanity (o2);
680#endif
f1cfb09f 681
d47cc544
SB
682 if (ret && ret->min + o1->depth + o2->depth < mn)
683 return ret->min_occ->of;
684 else
685 return om->of;
f1cfb09f
JH
686}
687
d47cc544
SB
688/* Checks whether the node UP is an ancestor of the node DOWN. */
689
690bool
691et_below (struct et_node *down, struct et_node *up)
f1cfb09f 692{
d47cc544
SB
693 struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
694 struct et_occ *l, *r;
695
696 if (up == down)
697 return true;
698
699 et_splay (u);
700 l = u->prev;
701 r = u->next;
702
703 if (!l)
704 return false;
705
706 l->parent = NULL;
707
708 if (r)
709 r->parent = NULL;
f1cfb09f 710
d47cc544
SB
711 et_splay (d);
712
713 if (l == d || l->parent != NULL)
f1cfb09f 714 {
d47cc544
SB
715 if (r)
716 r->parent = u;
717 set_prev (u, d);
718#ifdef DEBUG_ET
719 et_check_tree_sanity (u);
720#endif
f1cfb09f 721 }
d47cc544
SB
722 else
723 {
724 l->parent = u;
725
726 /* In case O1 and O2 are in two different trees, we must just restore the
727 original state. */
728 if (r && r->parent != NULL)
729 set_next (u, d);
730 else
731 set_next (u, r);
732
733#ifdef DEBUG_ET
734 et_check_tree_sanity (u);
735#endif
736 return false;
737 }
738
739 if (0 >= d->depth)
740 return false;
741
742 return !d->next || d->next->min + d->depth >= 0;
f1cfb09f 743}