]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/et-forest.c
tree-core.h: Include symtab.h.
[thirdparty/gcc.git] / gcc / et-forest.c
CommitLineData
4d6922ee 1/* ET-trees data structure implementation.
f1cfb09f 2 Contributed by Pavel Nejedly
5624e564 3 Copyright (C) 2002-2015 Free Software Foundation, Inc.
f1cfb09f
JH
4
5This file is part of the libiberty library.
6Libiberty is free software; you can redistribute it and/or
7modify it under the terms of the GNU Library General Public
8License as published by the Free Software Foundation; either
9dcd6f09 9version 3 of the License, or (at your option) any later version.
f1cfb09f
JH
10
11Libiberty is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14Library General Public License for more details.
15
16You should have received a copy of the GNU Library General Public
9dcd6f09
NC
17License along with libiberty; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>.
f1cfb09f
JH
19
20 The ET-forest structure is described in:
21 D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
22 J. G'omput. System Sci., 26(3):362 381, 1983.
23*/
24
25#include "config.h"
26#include "system.h"
4977bab6 27#include "coretypes.h"
f6cb56fa 28#include "alloc-pool.h"
64afff5b 29#include "et-forest.h"
f1cfb09f 30
d47cc544
SB
31/* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
32#undef DEBUG_ET
f1cfb09f 33
d47cc544 34#ifdef DEBUG_ET
c7131fb2 35#include "backend.h"
60393bbc 36#include "hard-reg-set.h"
d47cc544 37#endif
f1cfb09f 38
1f52178b 39/* The occurrence of a node in the et tree. */
d47cc544 40struct et_occ
f1cfb09f 41{
d47cc544
SB
42 struct et_node *of; /* The node. */
43
44 struct et_occ *parent; /* Parent in the splay-tree. */
45 struct et_occ *prev; /* Left son in the splay-tree. */
46 struct et_occ *next; /* Right son in the splay-tree. */
47
48 int depth; /* The depth of the node is the sum of depth
49 fields on the path to the root. */
50 int min; /* The minimum value of the depth in the subtree
51 is obtained by adding sum of depth fields
52 on the path to the root. */
1f52178b 53 struct et_occ *min_occ; /* The occurrence in the subtree with the minimal
d47cc544 54 depth. */
64afff5b
ML
55
56 /* Pool allocation new operator. */
57 inline void *operator new (size_t)
58 {
59 return pool.allocate ();
60 }
61
62 /* Delete operator utilizing pool allocation. */
63 inline void operator delete (void *ptr)
64 {
65 pool.remove ((et_occ *) ptr);
66 }
67
68 /* Memory allocation pool. */
69 static pool_allocator<et_occ> pool;
70
d47cc544 71};
f1cfb09f 72
64afff5b
ML
73pool_allocator<et_node> et_node::pool ("et_nodes pool", 300);
74pool_allocator<et_occ> et_occ::pool ("et_occ pool", 300);
f1cfb09f 75
d47cc544 76/* Changes depth of OCC to D. */
f1cfb09f 77
d47cc544
SB
78static inline void
79set_depth (struct et_occ *occ, int d)
80{
81 if (!occ)
82 return;
f1cfb09f 83
d47cc544
SB
84 occ->min += d - occ->depth;
85 occ->depth = d;
86}
f1cfb09f 87
d47cc544 88/* Adds D to the depth of OCC. */
f1cfb09f 89
d47cc544
SB
90static inline void
91set_depth_add (struct et_occ *occ, int d)
f1cfb09f 92{
d47cc544
SB
93 if (!occ)
94 return;
f1cfb09f 95
d47cc544
SB
96 occ->min += d;
97 occ->depth += d;
98}
f1cfb09f 99
d47cc544 100/* Sets prev field of OCC to P. */
f1cfb09f 101
d47cc544
SB
102static inline void
103set_prev (struct et_occ *occ, struct et_occ *t)
f1cfb09f 104{
d47cc544 105#ifdef DEBUG_ET
5b0264cb 106 gcc_assert (occ != t);
d47cc544 107#endif
f1cfb09f 108
d47cc544
SB
109 occ->prev = t;
110 if (t)
111 t->parent = occ;
f1cfb09f
JH
112}
113
d47cc544
SB
114/* Sets next field of OCC to P. */
115
116static inline void
117set_next (struct et_occ *occ, struct et_occ *t)
f1cfb09f 118{
d47cc544 119#ifdef DEBUG_ET
5b0264cb 120 gcc_assert (occ != t);
d47cc544
SB
121#endif
122
123 occ->next = t;
124 if (t)
125 t->parent = occ;
f1cfb09f
JH
126}
127
1f52178b 128/* Recompute minimum for occurrence OCC. */
f1cfb09f 129
d47cc544
SB
130static inline void
131et_recomp_min (struct et_occ *occ)
f1cfb09f 132{
d47cc544 133 struct et_occ *mson = occ->prev;
f1cfb09f 134
d47cc544
SB
135 if (!mson
136 || (occ->next
137 && mson->min > occ->next->min))
138 mson = occ->next;
f1cfb09f 139
d47cc544
SB
140 if (mson && mson->min < 0)
141 {
142 occ->min = mson->min + occ->depth;
143 occ->min_occ = mson->min_occ;
144 }
145 else
146 {
147 occ->min = occ->depth;
148 occ->min_occ = occ;
149 }
150}
f1cfb09f 151
d47cc544 152#ifdef DEBUG_ET
2a7e31df 153/* Checks whether neighborhood of OCC seems sane. */
f1cfb09f 154
d47cc544
SB
155static void
156et_check_occ_sanity (struct et_occ *occ)
157{
158 if (!occ)
159 return;
f1cfb09f 160
5b0264cb
NS
161 gcc_assert (occ->parent != occ);
162 gcc_assert (occ->prev != occ);
163 gcc_assert (occ->next != occ);
164 gcc_assert (!occ->next || occ->next != occ->prev);
f1cfb09f 165
d47cc544 166 if (occ->next)
f1cfb09f 167 {
5b0264cb
NS
168 gcc_assert (occ->next != occ->parent);
169 gcc_assert (occ->next->parent == occ);
502b8322 170 }
d47cc544
SB
171
172 if (occ->prev)
f1cfb09f 173 {
5b0264cb
NS
174 gcc_assert (occ->prev != occ->parent);
175 gcc_assert (occ->prev->parent == occ);
f1cfb09f
JH
176 }
177
5b0264cb
NS
178 gcc_assert (!occ->parent
179 || occ->parent->prev == occ
180 || occ->parent->next == occ);
f1cfb09f
JH
181}
182
d47cc544
SB
183/* Checks whether tree rooted at OCC is sane. */
184
f1cfb09f 185static void
d47cc544 186et_check_sanity (struct et_occ *occ)
f1cfb09f 187{
d47cc544
SB
188 et_check_occ_sanity (occ);
189 if (occ->prev)
190 et_check_sanity (occ->prev);
191 if (occ->next)
192 et_check_sanity (occ->next);
193}
f1cfb09f 194
d47cc544 195/* Checks whether tree containing OCC is sane. */
f1cfb09f 196
d47cc544
SB
197static void
198et_check_tree_sanity (struct et_occ *occ)
199{
200 while (occ->parent)
201 occ = occ->parent;
f1cfb09f 202
d47cc544
SB
203 et_check_sanity (occ);
204}
f1cfb09f 205
d47cc544 206/* For recording the paths. */
f1cfb09f 207
6de9cd9a
DN
208/* An ad-hoc constant; if the function has more blocks, this won't work,
209 but since it is used for debugging only, it does not matter. */
210#define MAX_NODES 100000
211
d47cc544 212static int len;
6de9cd9a
DN
213static void *datas[MAX_NODES];
214static int depths[MAX_NODES];
f1cfb09f 215
d47cc544 216/* Records the path represented by OCC, with depth incremented by DEPTH. */
f1cfb09f 217
d47cc544
SB
218static int
219record_path_before_1 (struct et_occ *occ, int depth)
220{
221 int mn, m;
f1cfb09f 222
d47cc544
SB
223 depth += occ->depth;
224 mn = depth;
225
226 if (occ->prev)
227 {
b8698a0f 228 m = record_path_before_1 (occ->prev, depth);
d47cc544
SB
229 if (m < mn)
230 mn = m;
f1cfb09f
JH
231 }
232
d47cc544 233 fprintf (stderr, "%d (%d); ", ((basic_block) occ->of->data)->index, depth);
6de9cd9a 234
5b0264cb 235 gcc_assert (len < MAX_NODES);
6de9cd9a 236
d47cc544
SB
237 depths[len] = depth;
238 datas[len] = occ->of;
239 len++;
240
241 if (occ->next)
f1cfb09f 242 {
d47cc544
SB
243 m = record_path_before_1 (occ->next, depth);
244 if (m < mn)
245 mn = m;
246 }
f1cfb09f 247
5b0264cb 248 gcc_assert (mn == occ->min + depth - occ->depth);
f1cfb09f 249
d47cc544
SB
250 return mn;
251}
f1cfb09f 252
d47cc544 253/* Records the path represented by a tree containing OCC. */
f1cfb09f 254
d47cc544
SB
255static void
256record_path_before (struct et_occ *occ)
257{
258 while (occ->parent)
259 occ = occ->parent;
f1cfb09f 260
d47cc544
SB
261 len = 0;
262 record_path_before_1 (occ, 0);
263 fprintf (stderr, "\n");
f1cfb09f
JH
264}
265
d47cc544
SB
266/* Checks whether the path represented by OCC, with depth incremented by DEPTH,
267 was not changed since the last recording. */
268
269static int
270check_path_after_1 (struct et_occ *occ, int depth)
f1cfb09f 271{
d47cc544
SB
272 int mn, m;
273
274 depth += occ->depth;
275 mn = depth;
f1cfb09f 276
d47cc544 277 if (occ->next)
f1cfb09f 278 {
b8698a0f 279 m = check_path_after_1 (occ->next, depth);
d47cc544
SB
280 if (m < mn)
281 mn = m;
282 }
f1cfb09f 283
d47cc544 284 len--;
5b0264cb 285 gcc_assert (depths[len] == depth && datas[len] == occ->of);
d47cc544
SB
286
287 if (occ->prev)
288 {
289 m = check_path_after_1 (occ->prev, depth);
290 if (m < mn)
291 mn = m;
f1cfb09f
JH
292 }
293
5b0264cb 294 gcc_assert (mn == occ->min + depth - occ->depth);
d47cc544
SB
295
296 return mn;
f1cfb09f
JH
297}
298
d47cc544
SB
299/* Checks whether the path represented by a tree containing OCC was
300 not changed since the last recording. */
301
302static void
303check_path_after (struct et_occ *occ)
304{
305 while (occ->parent)
306 occ = occ->parent;
307
308 check_path_after_1 (occ, 0);
5b0264cb 309 gcc_assert (!len);
d47cc544 310}
f1cfb09f 311
d47cc544 312#endif
f1cfb09f 313
1f52178b 314/* Splay the occurrence OCC to the root of the tree. */
f1cfb09f 315
965514bd 316static void
d47cc544 317et_splay (struct et_occ *occ)
f1cfb09f 318{
d47cc544
SB
319 struct et_occ *f, *gf, *ggf;
320 int occ_depth, f_depth, gf_depth;
321
322#ifdef DEBUG_ET
323 record_path_before (occ);
324 et_check_tree_sanity (occ);
325#endif
b8698a0f 326
d47cc544
SB
327 while (occ->parent)
328 {
329 occ_depth = occ->depth;
f1cfb09f 330
d47cc544
SB
331 f = occ->parent;
332 f_depth = f->depth;
f1cfb09f 333
d47cc544 334 gf = f->parent;
f1cfb09f 335
d47cc544
SB
336 if (!gf)
337 {
338 set_depth_add (occ, f_depth);
339 occ->min_occ = f->min_occ;
340 occ->min = f->min;
f1cfb09f 341
d47cc544
SB
342 if (f->prev == occ)
343 {
344 /* zig */
345 set_prev (f, occ->next);
346 set_next (occ, f);
347 set_depth_add (f->prev, occ_depth);
348 }
349 else
350 {
351 /* zag */
352 set_next (f, occ->prev);
353 set_prev (occ, f);
354 set_depth_add (f->next, occ_depth);
355 }
356 set_depth (f, -occ_depth);
357 occ->parent = NULL;
358
359 et_recomp_min (f);
360#ifdef DEBUG_ET
361 et_check_tree_sanity (occ);
362 check_path_after (occ);
363#endif
364 return;
365 }
366
367 gf_depth = gf->depth;
368
369 set_depth_add (occ, f_depth + gf_depth);
370 occ->min_occ = gf->min_occ;
371 occ->min = gf->min;
372
373 ggf = gf->parent;
374
375 if (gf->prev == f)
376 {
377 if (f->prev == occ)
378 {
379 /* zig zig */
380 set_prev (gf, f->next);
381 set_prev (f, occ->next);
382 set_next (occ, f);
383 set_next (f, gf);
384
385 set_depth (f, -occ_depth);
386 set_depth_add (f->prev, occ_depth);
387 set_depth (gf, -f_depth);
388 set_depth_add (gf->prev, f_depth);
389 }
390 else
391 {
392 /* zag zig */
393 set_prev (gf, occ->next);
394 set_next (f, occ->prev);
395 set_prev (occ, f);
396 set_next (occ, gf);
397
398 set_depth (f, -occ_depth);
399 set_depth_add (f->next, occ_depth);
400 set_depth (gf, -occ_depth - f_depth);
401 set_depth_add (gf->prev, occ_depth + f_depth);
402 }
403 }
404 else
405 {
406 if (f->prev == occ)
407 {
408 /* zig zag */
409 set_next (gf, occ->prev);
410 set_prev (f, occ->next);
411 set_prev (occ, gf);
412 set_next (occ, f);
413
414 set_depth (f, -occ_depth);
415 set_depth_add (f->prev, occ_depth);
416 set_depth (gf, -occ_depth - f_depth);
417 set_depth_add (gf->next, occ_depth + f_depth);
418 }
419 else
420 {
421 /* zag zag */
422 set_next (gf, f->prev);
423 set_next (f, occ->prev);
424 set_prev (occ, f);
425 set_prev (f, gf);
426
427 set_depth (f, -occ_depth);
428 set_depth_add (f->next, occ_depth);
429 set_depth (gf, -f_depth);
430 set_depth_add (gf->next, f_depth);
431 }
432 }
433
434 occ->parent = ggf;
435 if (ggf)
436 {
437 if (ggf->prev == gf)
438 ggf->prev = occ;
439 else
440 ggf->next = occ;
441 }
442
443 et_recomp_min (gf);
444 et_recomp_min (f);
445#ifdef DEBUG_ET
446 et_check_tree_sanity (occ);
447#endif
448 }
449
450#ifdef DEBUG_ET
451 et_check_sanity (occ);
452 check_path_after (occ);
453#endif
454}
455
1f52178b 456/* Create a new et tree occurrence of NODE. */
d47cc544
SB
457
458static struct et_occ *
459et_new_occ (struct et_node *node)
f1cfb09f 460{
64afff5b 461 et_occ *nw = new et_occ;
d47cc544
SB
462
463 nw->of = node;
464 nw->parent = NULL;
465 nw->prev = NULL;
466 nw->next = NULL;
467
468 nw->depth = 0;
469 nw->min_occ = nw;
470 nw->min = 0;
471
472 return nw;
f1cfb09f
JH
473}
474
d47cc544
SB
475/* Create a new et tree containing DATA. */
476
477struct et_node *
478et_new_tree (void *data)
f1cfb09f 479{
d47cc544 480 struct et_node *nw;
b8698a0f 481
64afff5b 482 nw = new et_node;
d47cc544
SB
483
484 nw->data = data;
485 nw->father = NULL;
486 nw->left = NULL;
487 nw->right = NULL;
488 nw->son = NULL;
489
490 nw->rightmost_occ = et_new_occ (nw);
491 nw->parent_occ = NULL;
492
493 return nw;
f1cfb09f
JH
494}
495
d47cc544
SB
496/* Releases et tree T. */
497
498void
499et_free_tree (struct et_node *t)
f1cfb09f 500{
d47cc544
SB
501 while (t->son)
502 et_split (t->son);
f1cfb09f 503
d47cc544
SB
504 if (t->father)
505 et_split (t);
f1cfb09f 506
64afff5b
ML
507 delete t->rightmost_occ;
508 delete t;
f1cfb09f
JH
509}
510
bef87a34
KH
511/* Releases et tree T without maintaining other nodes. */
512
513void
514et_free_tree_force (struct et_node *t)
515{
64afff5b 516 delete t->rightmost_occ;
5a6ccafd 517 if (t->parent_occ)
64afff5b
ML
518 delete t->parent_occ;
519 delete t;
bef87a34
KH
520}
521
5a6ccafd
RG
522/* Release the alloc pools, if they are empty. */
523
524void
525et_free_pools (void)
526{
64afff5b
ML
527 et_occ::pool.release_if_empty ();
528 et_node::pool.release_if_empty ();
5a6ccafd
RG
529}
530
d47cc544
SB
531/* Sets father of et tree T to FATHER. */
532
f1cfb09f 533void
d47cc544 534et_set_father (struct et_node *t, struct et_node *father)
f1cfb09f 535{
d47cc544
SB
536 struct et_node *left, *right;
537 struct et_occ *rmost, *left_part, *new_f_occ, *p;
f1cfb09f 538
d47cc544
SB
539 /* Update the path represented in the splay tree. */
540 new_f_occ = et_new_occ (father);
f1cfb09f 541
d47cc544
SB
542 rmost = father->rightmost_occ;
543 et_splay (rmost);
f1cfb09f 544
d47cc544 545 left_part = rmost->prev;
f1cfb09f 546
d47cc544
SB
547 p = t->rightmost_occ;
548 et_splay (p);
f1cfb09f 549
d47cc544
SB
550 set_prev (new_f_occ, left_part);
551 set_next (new_f_occ, p);
552
553 p->depth++;
554 p->min++;
555 et_recomp_min (new_f_occ);
f1cfb09f 556
d47cc544 557 set_prev (rmost, new_f_occ);
502b8322 558
d47cc544
SB
559 if (new_f_occ->min + rmost->depth < rmost->min)
560 {
561 rmost->min = new_f_occ->min + rmost->depth;
562 rmost->min_occ = new_f_occ->min_occ;
563 }
f1cfb09f 564
d47cc544 565 t->parent_occ = new_f_occ;
f1cfb09f 566
d47cc544
SB
567 /* Update the tree. */
568 t->father = father;
569 right = father->son;
570 if (right)
571 left = right->left;
572 else
573 left = right = t;
f1cfb09f 574
d47cc544
SB
575 left->right = t;
576 right->left = t;
577 t->left = left;
578 t->right = right;
f1cfb09f 579
d47cc544 580 father->son = t;
f1cfb09f 581
d47cc544
SB
582#ifdef DEBUG_ET
583 et_check_tree_sanity (rmost);
584 record_path_before (rmost);
585#endif
f1cfb09f
JH
586}
587
d47cc544
SB
588/* Splits the edge from T to its father. */
589
590void
591et_split (struct et_node *t)
f1cfb09f 592{
d47cc544
SB
593 struct et_node *father = t->father;
594 struct et_occ *r, *l, *rmost, *p_occ;
f1cfb09f 595
d47cc544
SB
596 /* Update the path represented by the splay tree. */
597 rmost = t->rightmost_occ;
598 et_splay (rmost);
f1cfb09f 599
d47cc544
SB
600 for (r = rmost->next; r->prev; r = r->prev)
601 continue;
b8698a0f 602 et_splay (r);
f1cfb09f 603
d47cc544
SB
604 r->prev->parent = NULL;
605 p_occ = t->parent_occ;
606 et_splay (p_occ);
607 t->parent_occ = NULL;
f1cfb09f 608
d47cc544
SB
609 l = p_occ->prev;
610 p_occ->next->parent = NULL;
502b8322 611
d47cc544 612 set_prev (r, l);
f1cfb09f 613
d47cc544 614 et_recomp_min (r);
f1cfb09f 615
d47cc544
SB
616 et_splay (rmost);
617 rmost->depth = 0;
618 rmost->min = 0;
f1cfb09f 619
64afff5b 620 delete p_occ;
f1cfb09f 621
d47cc544
SB
622 /* Update the tree. */
623 if (father->son == t)
624 father->son = t->right;
625 if (father->son == t)
626 father->son = NULL;
627 else
f1cfb09f 628 {
d47cc544
SB
629 t->left->right = t->right;
630 t->right->left = t->left;
631 }
632 t->left = t->right = NULL;
633 t->father = NULL;
634
635#ifdef DEBUG_ET
636 et_check_tree_sanity (rmost);
637 record_path_before (rmost);
638
639 et_check_tree_sanity (r);
640 record_path_before (r);
641#endif
642}
643
644/* Finds the nearest common ancestor of the nodes N1 and N2. */
645
646struct et_node *
647et_nca (struct et_node *n1, struct et_node *n2)
648{
649 struct et_occ *o1 = n1->rightmost_occ, *o2 = n2->rightmost_occ, *om;
650 struct et_occ *l, *r, *ret;
651 int mn;
652
653 if (n1 == n2)
654 return n1;
655
656 et_splay (o1);
657 l = o1->prev;
658 r = o1->next;
659 if (l)
660 l->parent = NULL;
661 if (r)
662 r->parent = NULL;
663 et_splay (o2);
664
665 if (l == o2 || (l && l->parent != NULL))
666 {
667 ret = o2->next;
668
669 set_prev (o1, o2);
670 if (r)
671 r->parent = o1;
f1cfb09f 672 }
d2e60b7b 673 else if (r == o2 || (r && r->parent != NULL))
f1cfb09f 674 {
d47cc544
SB
675 ret = o2->prev;
676
677 set_next (o1, o2);
678 if (l)
679 l->parent = o1;
f1cfb09f 680 }
d2e60b7b
ZD
681 else
682 {
683 /* O1 and O2 are in different components of the forest. */
684 if (l)
685 l->parent = o1;
686 if (r)
687 r->parent = o1;
688 return NULL;
689 }
502b8322 690
d47cc544 691 if (0 < o2->depth)
f1cfb09f 692 {
d47cc544
SB
693 om = o1;
694 mn = o1->depth;
695 }
696 else
697 {
698 om = o2;
699 mn = o2->depth + o1->depth;
f1cfb09f
JH
700 }
701
d47cc544
SB
702#ifdef DEBUG_ET
703 et_check_tree_sanity (o2);
704#endif
f1cfb09f 705
d47cc544
SB
706 if (ret && ret->min + o1->depth + o2->depth < mn)
707 return ret->min_occ->of;
708 else
709 return om->of;
f1cfb09f
JH
710}
711
d47cc544
SB
712/* Checks whether the node UP is an ancestor of the node DOWN. */
713
714bool
715et_below (struct et_node *down, struct et_node *up)
f1cfb09f 716{
d47cc544
SB
717 struct et_occ *u = up->rightmost_occ, *d = down->rightmost_occ;
718 struct et_occ *l, *r;
719
720 if (up == down)
721 return true;
722
723 et_splay (u);
724 l = u->prev;
725 r = u->next;
726
727 if (!l)
728 return false;
729
730 l->parent = NULL;
731
732 if (r)
733 r->parent = NULL;
f1cfb09f 734
d47cc544
SB
735 et_splay (d);
736
737 if (l == d || l->parent != NULL)
f1cfb09f 738 {
d47cc544
SB
739 if (r)
740 r->parent = u;
741 set_prev (u, d);
742#ifdef DEBUG_ET
743 et_check_tree_sanity (u);
744#endif
f1cfb09f 745 }
d47cc544
SB
746 else
747 {
748 l->parent = u;
749
750 /* In case O1 and O2 are in two different trees, we must just restore the
751 original state. */
752 if (r && r->parent != NULL)
753 set_next (u, d);
754 else
755 set_next (u, r);
756
757#ifdef DEBUG_ET
758 et_check_tree_sanity (u);
759#endif
760 return false;
761 }
762
763 if (0 >= d->depth)
764 return false;
765
766 return !d->next || d->next->min + d->depth >= 0;
f1cfb09f 767}
66f97d31
ZD
768
769/* Returns the root of the tree that contains NODE. */
770
771struct et_node *
772et_root (struct et_node *node)
773{
774 struct et_occ *occ = node->rightmost_occ, *r;
775
fa10beec 776 /* The root of the tree corresponds to the rightmost occurrence in the
66f97d31
ZD
777 represented path. */
778 et_splay (occ);
779 for (r = occ; r->next; r = r->next)
780 continue;
781 et_splay (r);
782
783 return r->of;
784}