]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/except.c
Remove reference to warn_bss_align.
[thirdparty/gcc.git] / gcc / except.c
CommitLineData
97bb6c17 1/* Implements exception handling.
997d68fe 2 Copyright (C) 1989, 92-97, 1998 Free Software Foundation, Inc.
97ecdf3e 3 Contributed by Mike Stump <mrs@cygnus.com>.
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
19the Free Software Foundation, 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22
97bb6c17 23/* An exception is an event that can be signaled from within a
24 function. This event can then be "caught" or "trapped" by the
25 callers of this function. This potentially allows program flow to
ad87de1e 26 be transferred to any arbitrary code associated with a function call
97bb6c17 27 several levels up the stack.
28
29 The intended use for this mechanism is for signaling "exceptional
30 events" in an out-of-band fashion, hence its name. The C++ language
31 (and many other OO-styled or functional languages) practically
32 requires such a mechanism, as otherwise it becomes very difficult
33 or even impossible to signal failure conditions in complex
34 situations. The traditional C++ example is when an error occurs in
35 the process of constructing an object; without such a mechanism, it
36 is impossible to signal that the error occurs without adding global
37 state variables and error checks around every object construction.
38
39 The act of causing this event to occur is referred to as "throwing
40 an exception". (Alternate terms include "raising an exception" or
41 "signaling an exception".) The term "throw" is used because control
42 is returned to the callers of the function that is signaling the
43 exception, and thus there is the concept of "throwing" the
44 exception up the call stack.
45
8591d03a 46 There are two major codegen options for exception handling. The
47 flag -fsjlj-exceptions can be used to select the setjmp/longjmp
0dbd1c74 48 approach, which is the default. -fno-sjlj-exceptions can be used to
8591d03a 49 get the PC range table approach. While this is a compile time
50 flag, an entire application must be compiled with the same codegen
51 option. The first is a PC range table approach, the second is a
52 setjmp/longjmp based scheme. We will first discuss the PC range
53 table approach, after that, we will discuss the setjmp/longjmp
54 based approach.
55
97bb6c17 56 It is appropriate to speak of the "context of a throw". This
57 context refers to the address where the exception is thrown from,
58 and is used to determine which exception region will handle the
59 exception.
60
61 Regions of code within a function can be marked such that if it
62 contains the context of a throw, control will be passed to a
63 designated "exception handler". These areas are known as "exception
64 regions". Exception regions cannot overlap, but they can be nested
65 to any arbitrary depth. Also, exception regions cannot cross
66 function boundaries.
67
69c37be3 68 Exception handlers can either be specified by the user (which we
69 will call a "user-defined handler") or generated by the compiler
70 (which we will designate as a "cleanup"). Cleanups are used to
71 perform tasks such as destruction of objects allocated on the
72 stack.
73
ad87de1e 74 In the current implementation, cleanups are handled by allocating an
69c37be3 75 exception region for the area that the cleanup is designated for,
76 and the handler for the region performs the cleanup and then
77 rethrows the exception to the outer exception region. From the
78 standpoint of the current implementation, there is little
79 distinction made between a cleanup and a user-defined handler, and
80 the phrase "exception handler" can be used to refer to either one
81 equally well. (The section "Future Directions" below discusses how
82 this will change).
83
84 Each object file that is compiled with exception handling contains
85 a static array of exception handlers named __EXCEPTION_TABLE__.
86 Each entry contains the starting and ending addresses of the
87 exception region, and the address of the handler designated for
88 that region.
97bb6c17 89
447a9eb9 90 If the target does not use the DWARF 2 frame unwind information, at
91 program startup each object file invokes a function named
97bb6c17 92 __register_exceptions with the address of its local
447a9eb9 93 __EXCEPTION_TABLE__. __register_exceptions is defined in libgcc2.c, and
94 is responsible for recording all of the exception regions into one list
95 (which is kept in a static variable named exception_table_list).
96
97 On targets that support crtstuff.c, the unwind information
98 is stored in a section named .eh_frame and the information for the
99 entire shared object or program is registered with a call to
c4fa4c4d 100 __register_frame_info. On other targets, the information for each
73eac312 101 translation unit is registered from the file generated by collect2.
c4fa4c4d 102 __register_frame_info is defined in frame.c, and is responsible for
447a9eb9 103 recording all of the unwind regions into one list (which is kept in a
104 static variable named unwind_table_list).
97bb6c17 105
8591d03a 106 The function __throw is actually responsible for doing the
447a9eb9 107 throw. On machines that have unwind info support, __throw is generated
108 by code in libgcc2.c, otherwise __throw is generated on a
97bb6c17 109 per-object-file basis for each source file compiled with
3398e91d 110 -fexceptions by the C++ frontend. Before __throw is invoked,
447a9eb9 111 the current context of the throw needs to be placed in the global
112 variable __eh_pc.
97bb6c17 113
8591d03a 114 __throw attempts to find the appropriate exception handler for the
97bb6c17 115 PC value stored in __eh_pc by calling __find_first_exception_table_match
69c37be3 116 (which is defined in libgcc2.c). If __find_first_exception_table_match
447a9eb9 117 finds a relevant handler, __throw transfers control directly to it.
118
119 If a handler for the context being thrown from can't be found, __throw
120 walks (see Walking the stack below) the stack up the dynamic call chain to
121 continue searching for an appropriate exception handler based upon the
122 caller of the function it last sought a exception handler for. It stops
123 then either an exception handler is found, or when the top of the
124 call chain is reached.
125
126 If no handler is found, an external library function named
127 __terminate is called. If a handler is found, then we restart
128 our search for a handler at the end of the call chain, and repeat
129 the search process, but instead of just walking up the call chain,
130 we unwind the call chain as we walk up it.
97bb6c17 131
132 Internal implementation details:
133
97bb6c17 134 To associate a user-defined handler with a block of statements, the
8591d03a 135 function expand_start_try_stmts is used to mark the start of the
97bb6c17 136 block of statements with which the handler is to be associated
69c37be3 137 (which is known as a "try block"). All statements that appear
138 afterwards will be associated with the try block.
139
8591d03a 140 A call to expand_start_all_catch marks the end of the try block,
69c37be3 141 and also marks the start of the "catch block" (the user-defined
142 handler) associated with the try block.
143
144 This user-defined handler will be invoked for *every* exception
145 thrown with the context of the try block. It is up to the handler
146 to decide whether or not it wishes to handle any given exception,
147 as there is currently no mechanism in this implementation for doing
148 this. (There are plans for conditionally processing an exception
149 based on its "type", which will provide a language-independent
150 mechanism).
151
152 If the handler chooses not to process the exception (perhaps by
153 looking at an "exception type" or some other additional data
154 supplied with the exception), it can fall through to the end of the
8591d03a 155 handler. expand_end_all_catch and expand_leftover_cleanups
69c37be3 156 add additional code to the end of each handler to take care of
157 rethrowing to the outer exception handler.
158
159 The handler also has the option to continue with "normal flow of
160 code", or in other words to resume executing at the statement
161 immediately after the end of the exception region. The variable
162 caught_return_label_stack contains a stack of labels, and jumping
8591d03a 163 to the topmost entry's label via expand_goto will resume normal
69c37be3 164 flow to the statement immediately after the end of the exception
165 region. If the handler falls through to the end, the exception will
166 be rethrown to the outer exception region.
167
168 The instructions for the catch block are kept as a separate
169 sequence, and will be emitted at the end of the function along with
8591d03a 170 the handlers specified via expand_eh_region_end. The end of the
171 catch block is marked with expand_end_all_catch.
97bb6c17 172
173 Any data associated with the exception must currently be handled by
174 some external mechanism maintained in the frontend. For example,
175 the C++ exception mechanism passes an arbitrary value along with
176 the exception, and this is handled in the C++ frontend by using a
69c37be3 177 global variable to hold the value. (This will be changing in the
178 future.)
179
180 The mechanism in C++ for handling data associated with the
181 exception is clearly not thread-safe. For a thread-based
182 environment, another mechanism must be used (possibly using a
183 per-thread allocation mechanism if the size of the area that needs
184 to be allocated isn't known at compile time.)
185
186 Internally-generated exception regions (cleanups) are marked by
8591d03a 187 calling expand_eh_region_start to mark the start of the region,
69c37be3 188 and expand_eh_region_end (handler) is used to both designate the
189 end of the region and to associate a specified handler/cleanup with
190 the region. The rtl code in HANDLER will be invoked whenever an
191 exception occurs in the region between the calls to
192 expand_eh_region_start and expand_eh_region_end. After HANDLER is
193 executed, additional code is emitted to handle rethrowing the
194 exception to the outer exception handler. The code for HANDLER will
195 be emitted at the end of the function.
97bb6c17 196
197 TARGET_EXPRs can also be used to designate exception regions. A
198 TARGET_EXPR gives an unwind-protect style interface commonly used
199 in functional languages such as LISP. The associated expression is
69c37be3 200 evaluated, and whether or not it (or any of the functions that it
201 calls) throws an exception, the protect expression is always
202 invoked. This implementation takes care of the details of
203 associating an exception table entry with the expression and
204 generating the necessary code (it actually emits the protect
205 expression twice, once for normal flow and once for the exception
206 case). As for the other handlers, the code for the exception case
207 will be emitted at the end of the function.
208
209 Cleanups can also be specified by using add_partial_entry (handler)
8591d03a 210 and end_protect_partials. add_partial_entry creates the start of
69c37be3 211 a new exception region; HANDLER will be invoked if an exception is
212 thrown with the context of the region between the calls to
213 add_partial_entry and end_protect_partials. end_protect_partials is
214 used to mark the end of these regions. add_partial_entry can be
215 called as many times as needed before calling end_protect_partials.
216 However, end_protect_partials should only be invoked once for each
8591d03a 217 group of calls to add_partial_entry as the entries are queued
69c37be3 218 and all of the outstanding entries are processed simultaneously
219 when end_protect_partials is invoked. Similarly to the other
220 handlers, the code for HANDLER will be emitted at the end of the
221 function.
97bb6c17 222
223 The generated RTL for an exception region includes
224 NOTE_INSN_EH_REGION_BEG and NOTE_INSN_EH_REGION_END notes that mark
225 the start and end of the exception region. A unique label is also
69c37be3 226 generated at the start of the exception region, which is available
227 by looking at the ehstack variable. The topmost entry corresponds
228 to the current region.
97bb6c17 229
230 In the current implementation, an exception can only be thrown from
231 a function call (since the mechanism used to actually throw an
232 exception involves calling __throw). If an exception region is
233 created but no function calls occur within that region, the region
69c37be3 234 can be safely optimized away (along with its exception handlers)
8591d03a 235 since no exceptions can ever be caught in that region. This
236 optimization is performed unless -fasynchronous-exceptions is
237 given. If the user wishes to throw from a signal handler, or other
238 asynchronous place, -fasynchronous-exceptions should be used when
239 compiling for maximally correct code, at the cost of additional
240 exception regions. Using -fasynchronous-exceptions only produces
241 code that is reasonably safe in such situations, but a correct
242 program cannot rely upon this working. It can be used in failsafe
243 code, where trying to continue on, and proceeding with potentially
244 incorrect results is better than halting the program.
245
97bb6c17 246
447a9eb9 247 Walking the stack:
97bb6c17 248
447a9eb9 249 The stack is walked by starting with a pointer to the current
250 frame, and finding the pointer to the callers frame. The unwind info
251 tells __throw how to find it.
97bb6c17 252
447a9eb9 253 Unwinding the stack:
97bb6c17 254
447a9eb9 255 When we use the term unwinding the stack, we mean undoing the
256 effects of the function prologue in a controlled fashion so that we
257 still have the flow of control. Otherwise, we could just return
258 (jump to the normal end of function epilogue).
259
260 This is done in __throw in libgcc2.c when we know that a handler exists
261 in a frame higher up the call stack than its immediate caller.
262
263 To unwind, we find the unwind data associated with the frame, if any.
264 If we don't find any, we call the library routine __terminate. If we do
265 find it, we use the information to copy the saved register values from
266 that frame into the register save area in the frame for __throw, return
267 into a stub which updates the stack pointer, and jump to the handler.
268 The normal function epilogue for __throw handles restoring the saved
269 values into registers.
270
271 When unwinding, we use this method if we know it will
272 work (if DWARF2_UNWIND_INFO is defined). Otherwise, we know that
273 an inline unwinder will have been emitted for any function that
274 __unwind_function cannot unwind. The inline unwinder appears as a
275 normal exception handler for the entire function, for any function
276 that we know cannot be unwound by __unwind_function. We inform the
277 compiler of whether a function can be unwound with
278 __unwind_function by having DOESNT_NEED_UNWINDER evaluate to true
279 when the unwinder isn't needed. __unwind_function is used as an
280 action of last resort. If no other method can be used for
281 unwinding, __unwind_function is used. If it cannot unwind, it
ad87de1e 282 should call __terminate.
447a9eb9 283
284 By default, if the target-specific backend doesn't supply a definition
285 for __unwind_function and doesn't support DWARF2_UNWIND_INFO, inlined
286 unwinders will be used instead. The main tradeoff here is in text space
287 utilization. Obviously, if inline unwinders have to be generated
288 repeatedly, this uses much more space than if a single routine is used.
69c37be3 289
290 However, it is simply not possible on some platforms to write a
291 generalized routine for doing stack unwinding without having some
447a9eb9 292 form of additional data associated with each function. The current
293 implementation can encode this data in the form of additional
294 machine instructions or as static data in tabular form. The later
295 is called the unwind data.
97bb6c17 296
447a9eb9 297 The backend macro DOESNT_NEED_UNWINDER is used to conditionalize whether
298 or not per-function unwinders are needed. If DOESNT_NEED_UNWINDER is
299 defined and has a non-zero value, a per-function unwinder is not emitted
300 for the current function. If the static unwind data is supported, then
301 a per-function unwinder is not emitted.
97bb6c17 302
8591d03a 303 On some platforms it is possible that neither __unwind_function
97bb6c17 304 nor inlined unwinders are available. For these platforms it is not
8591d03a 305 possible to throw through a function call, and abort will be
69c37be3 306 invoked instead of performing the throw.
307
447a9eb9 308 The reason the unwind data may be needed is that on some platforms
309 the order and types of data stored on the stack can vary depending
310 on the type of function, its arguments and returned values, and the
311 compilation options used (optimization versus non-optimization,
312 -fomit-frame-pointer, processor variations, etc).
313
314 Unfortunately, this also means that throwing through functions that
315 aren't compiled with exception handling support will still not be
316 possible on some platforms. This problem is currently being
317 investigated, but no solutions have been found that do not imply
318 some unacceptable performance penalties.
319
69c37be3 320 Future directions:
321
8591d03a 322 Currently __throw makes no differentiation between cleanups and
69c37be3 323 user-defined exception regions. While this makes the implementation
324 simple, it also implies that it is impossible to determine if a
325 user-defined exception handler exists for a given exception without
326 completely unwinding the stack in the process. This is undesirable
327 from the standpoint of debugging, as ideally it would be possible
328 to trap unhandled exceptions in the debugger before the process of
329 unwinding has even started.
330
331 This problem can be solved by marking user-defined handlers in a
332 special way (probably by adding additional bits to exception_table_list).
8591d03a 333 A two-pass scheme could then be used by __throw to iterate
69c37be3 334 through the table. The first pass would search for a relevant
335 user-defined handler for the current context of the throw, and if
336 one is found, the second pass would then invoke all needed cleanups
337 before jumping to the user-defined handler.
338
339 Many languages (including C++ and Ada) make execution of a
340 user-defined handler conditional on the "type" of the exception
341 thrown. (The type of the exception is actually the type of the data
342 that is thrown with the exception.) It will thus be necessary for
8591d03a 343 __throw to be able to determine if a given user-defined
69c37be3 344 exception handler will actually be executed, given the type of
345 exception.
346
347 One scheme is to add additional information to exception_table_list
8591d03a 348 as to the types of exceptions accepted by each handler. __throw
69c37be3 349 can do the type comparisons and then determine if the handler is
350 actually going to be executed.
351
352 There is currently no significant level of debugging support
8591d03a 353 available, other than to place a breakpoint on __throw. While
69c37be3 354 this is sufficient in most cases, it would be helpful to be able to
355 know where a given exception was going to be thrown to before it is
356 actually thrown, and to be able to choose between stopping before
357 every exception region (including cleanups), or just user-defined
358 exception regions. This should be possible to do in the two-pass
8591d03a 359 scheme by adding additional labels to __throw for appropriate
69c37be3 360 breakpoints, and additional debugger commands could be added to
361 query various state variables to determine what actions are to be
362 performed next.
363
447a9eb9 364 Another major problem that is being worked on is the issue with stack
365 unwinding on various platforms. Currently the only platforms that have
366 support for the generation of a generic unwinder are the SPARC and MIPS.
367 All other ports require per-function unwinders, which produce large
368 amounts of code bloat.
8591d03a 369
370 For setjmp/longjmp based exception handling, some of the details
371 are as above, but there are some additional details. This section
372 discusses the details.
373
374 We don't use NOTE_INSN_EH_REGION_{BEG,END} pairs. We don't
375 optimize EH regions yet. We don't have to worry about machine
376 specific issues with unwinding the stack, as we rely upon longjmp
377 for all the machine specific details. There is no variable context
378 of a throw, just the one implied by the dynamic handler stack
379 pointed to by the dynamic handler chain. There is no exception
ad87de1e 380 table, and no calls to __register_exceptions. __sjthrow is used
8591d03a 381 instead of __throw, and it works by using the dynamic handler
382 chain, and longjmp. -fasynchronous-exceptions has no effect, as
383 the elimination of trivial exception regions is not yet performed.
384
385 A frontend can set protect_cleanup_actions_with_terminate when all
386 the cleanup actions should be protected with an EH region that
387 calls terminate when an unhandled exception is throw. C++ does
388 this, Ada does not. */
97ecdf3e 389
390
391#include "config.h"
447a9eb9 392#include "defaults.h"
011a7f23 393#include "eh-common.h"
405711de 394#include "system.h"
97ecdf3e 395#include "rtl.h"
396#include "tree.h"
397#include "flags.h"
398#include "except.h"
399#include "function.h"
400#include "insn-flags.h"
401#include "expr.h"
402#include "insn-codes.h"
403#include "regs.h"
404#include "hard-reg-set.h"
405#include "insn-config.h"
406#include "recog.h"
407#include "output.h"
12874aaf 408#include "toplev.h"
97ecdf3e 409
8591d03a 410/* One to use setjmp/longjmp method of generating code for exception
411 handling. */
412
73eac312 413int exceptions_via_longjmp = 2;
8591d03a 414
415/* One to enable asynchronous exception support. */
416
417int asynchronous_exceptions = 0;
418
419/* One to protect cleanup actions with a handler that calls
420 __terminate, zero otherwise. */
421
23ceb7b2 422int protect_cleanup_actions_with_terminate;
8591d03a 423
97bb6c17 424/* A list of labels used for exception handlers. Created by
97ecdf3e 425 find_exception_handler_labels for the optimization passes. */
426
427rtx exception_handler_labels;
428
732992fa 429/* The EH context. Nonzero if the function has already
430 fetched a pointer to the EH context for exception handling. */
8591d03a 431
732992fa 432rtx current_function_ehc;
8591d03a 433
ad87de1e 434/* A stack used for keeping track of the currently active exception
97bb6c17 435 handling region. As each exception region is started, an entry
97ecdf3e 436 describing the region is pushed onto this stack. The current
437 region can be found by looking at the top of the stack, and as we
97bb6c17 438 exit regions, the corresponding entries are popped.
439
8591d03a 440 Entries cannot overlap; they can be nested. So there is only one
97bb6c17 441 entry at most that corresponds to the current instruction, and that
442 is the entry on the top of the stack. */
97ecdf3e 443
8591d03a 444static struct eh_stack ehstack;
97ecdf3e 445
011a7f23 446
447/* This stack is used to represent what the current eh region is
448 for the catch blocks beings processed */
449
450static struct eh_stack catchstack;
451
97bb6c17 452/* A queue used for tracking which exception regions have closed but
453 whose handlers have not yet been expanded. Regions are emitted in
454 groups in an attempt to improve paging performance.
455
456 As we exit a region, we enqueue a new entry. The entries are then
8591d03a 457 dequeued during expand_leftover_cleanups and expand_start_all_catch,
97bb6c17 458
459 We should redo things so that we either take RTL for the handler,
460 or we expand the handler expressed as a tree immediately at region
461 end time. */
97ecdf3e 462
8591d03a 463static struct eh_queue ehqueue;
97ecdf3e 464
97bb6c17 465/* Insns for all of the exception handlers for the current function.
c0b4a1be 466 They are currently emitted by the frontend code. */
97ecdf3e 467
468rtx catch_clauses;
469
97bb6c17 470/* A TREE_CHAINed list of handlers for regions that are not yet
471 closed. The TREE_VALUE of each entry contains the handler for the
c0b4a1be 472 corresponding entry on the ehstack. */
97ecdf3e 473
97bb6c17 474static tree protect_list;
97ecdf3e 475
476/* Stacks to keep track of various labels. */
477
97bb6c17 478/* Keeps track of the label to resume to should one want to resume
479 normal control flow out of a handler (instead of, say, returning to
2f2bc719 480 the caller of the current function or exiting the program). */
97ecdf3e 481
482struct label_node *caught_return_label_stack = NULL;
483
ad87de1e 484/* Keeps track of the label used as the context of a throw to rethrow an
485 exception to the outer exception region. */
486
487struct label_node *outer_context_label_stack = NULL;
488
97bb6c17 489/* A random data area for the front end's own use. */
97ecdf3e 490
491struct label_node *false_label_stack = NULL;
492
5c4826b3 493static void push_eh_entry PROTO((struct eh_stack *));
494static struct eh_entry * pop_eh_entry PROTO((struct eh_stack *));
495static void enqueue_eh_entry PROTO((struct eh_queue *, struct eh_entry *));
496static struct eh_entry * dequeue_eh_entry PROTO((struct eh_queue *));
497static rtx call_get_eh_context PROTO((void));
498static void start_dynamic_cleanup PROTO((tree, tree));
499static void start_dynamic_handler PROTO((void));
23ceb7b2 500static void expand_rethrow PROTO((rtx));
5c4826b3 501static void output_exception_table_entry PROTO((FILE *, int));
502static int can_throw PROTO((rtx));
503static rtx scan_region PROTO((rtx, int, int *));
504static void eh_regs PROTO((rtx *, rtx *, int));
505static void set_insn_eh_region PROTO((rtx *, int));
be582769 506#ifdef DONT_USE_BUILTIN_SETJMP
861503e2 507static void jumpif_rtx PROTO((rtx, rtx));
be582769 508#endif
861503e2 509
23ceb7b2 510
5c4826b3 511rtx expand_builtin_return_addr PROTO((enum built_in_function, int, rtx));
97ecdf3e 512\f
513/* Various support routines to manipulate the various data structures
514 used by the exception handling code. */
515
516/* Push a label entry onto the given STACK. */
517
518void
519push_label_entry (stack, rlabel, tlabel)
520 struct label_node **stack;
521 rtx rlabel;
522 tree tlabel;
523{
524 struct label_node *newnode
525 = (struct label_node *) xmalloc (sizeof (struct label_node));
526
527 if (rlabel)
528 newnode->u.rlabel = rlabel;
529 else
530 newnode->u.tlabel = tlabel;
531 newnode->chain = *stack;
532 *stack = newnode;
533}
534
535/* Pop a label entry from the given STACK. */
536
537rtx
538pop_label_entry (stack)
539 struct label_node **stack;
540{
541 rtx label;
542 struct label_node *tempnode;
543
544 if (! *stack)
545 return NULL_RTX;
546
547 tempnode = *stack;
548 label = tempnode->u.rlabel;
549 *stack = (*stack)->chain;
550 free (tempnode);
551
552 return label;
553}
554
555/* Return the top element of the given STACK. */
556
557tree
558top_label_entry (stack)
559 struct label_node **stack;
560{
561 if (! *stack)
562 return NULL_TREE;
563
564 return (*stack)->u.tlabel;
565}
566
011a7f23 567/* get an exception label. These must be on the permanent obstack */
568
569rtx
570gen_exception_label ()
571{
572 rtx lab;
573
574 push_obstacks_nochange ();
575 end_temporary_allocation ();
576 lab = gen_label_rtx ();
577 pop_obstacks ();
578 return lab;
579}
580
3ace063c 581/* Push a new eh_node entry onto STACK. */
97ecdf3e 582
3ace063c 583static void
97ecdf3e 584push_eh_entry (stack)
585 struct eh_stack *stack;
586{
587 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
588 struct eh_entry *entry = (struct eh_entry *) xmalloc (sizeof (struct eh_entry));
589
3ace063c 590 entry->outer_context = gen_label_rtx ();
97ecdf3e 591 entry->finalization = NULL_TREE;
011a7f23 592 entry->label_used = 0;
593 entry->exception_handler_label = gen_exception_label ();
594
595 node->entry = entry;
596 node->chain = stack->top;
597 stack->top = node;
598}
97ecdf3e 599
011a7f23 600/* push an existing entry onto a stack. */
601static void
602push_entry (stack, entry)
603 struct eh_stack *stack;
604 struct eh_entry *entry;
605{
606 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
97ecdf3e 607 node->entry = entry;
608 node->chain = stack->top;
609 stack->top = node;
97ecdf3e 610}
611
612/* Pop an entry from the given STACK. */
613
614static struct eh_entry *
615pop_eh_entry (stack)
616 struct eh_stack *stack;
617{
618 struct eh_node *tempnode;
619 struct eh_entry *tempentry;
620
621 tempnode = stack->top;
622 tempentry = tempnode->entry;
623 stack->top = stack->top->chain;
624 free (tempnode);
625
626 return tempentry;
627}
628
629/* Enqueue an ENTRY onto the given QUEUE. */
630
631static void
632enqueue_eh_entry (queue, entry)
633 struct eh_queue *queue;
634 struct eh_entry *entry;
635{
636 struct eh_node *node = (struct eh_node *) xmalloc (sizeof (struct eh_node));
637
638 node->entry = entry;
639 node->chain = NULL;
640
641 if (queue->head == NULL)
642 {
643 queue->head = node;
644 }
645 else
646 {
647 queue->tail->chain = node;
648 }
649 queue->tail = node;
650}
651
652/* Dequeue an entry from the given QUEUE. */
653
654static struct eh_entry *
655dequeue_eh_entry (queue)
656 struct eh_queue *queue;
657{
658 struct eh_node *tempnode;
659 struct eh_entry *tempentry;
660
661 if (queue->head == NULL)
662 return NULL;
663
664 tempnode = queue->head;
665 queue->head = queue->head->chain;
666
667 tempentry = tempnode->entry;
668 free (tempnode);
669
670 return tempentry;
671}
011a7f23 672
673static void
674receive_exception_label (handler_label)
675 rtx handler_label;
676{
677 emit_label (handler_label);
678
679#ifdef HAVE_exception_receiver
680 if (! exceptions_via_longjmp)
681 if (HAVE_exception_receiver)
682 emit_insn (gen_exception_receiver ());
683#endif
684
685#ifdef HAVE_nonlocal_goto_receiver
686 if (! exceptions_via_longjmp)
687 if (HAVE_nonlocal_goto_receiver)
688 emit_insn (gen_nonlocal_goto_receiver ());
689#endif
690}
691
692
693struct func_eh_entry
694{
695 int range_number; /* EH region number from EH NOTE insn's */
696 struct handler_info *handlers;
697};
698
699
700/* table of function eh regions */
701static struct func_eh_entry *function_eh_regions = NULL;
702static int num_func_eh_entries = 0;
703static int current_func_eh_entry = 0;
704
705#define SIZE_FUNC_EH(X) (sizeof (struct func_eh_entry) * X)
706
707/* Add a new eh_entry for this function, and base it off of the information
708 in the EH_ENTRY parameter. A NULL parameter is invalid. The number
709 returned is an number which uniquely identifies this exception range. */
710
711int
712new_eh_region_entry (note_eh_region)
713 int note_eh_region;
714{
715 if (current_func_eh_entry == num_func_eh_entries)
716 {
717 if (num_func_eh_entries == 0)
718 {
719 function_eh_regions =
720 (struct func_eh_entry *) malloc (SIZE_FUNC_EH (50));
721 num_func_eh_entries = 50;
722 }
723 else
724 {
725 num_func_eh_entries = num_func_eh_entries * 3 / 2;
726 function_eh_regions = (struct func_eh_entry *)
727 realloc (function_eh_regions, SIZE_FUNC_EH (num_func_eh_entries));
728 }
729 }
730 function_eh_regions[current_func_eh_entry].range_number = note_eh_region;
731 function_eh_regions[current_func_eh_entry].handlers = NULL;
732
733 return current_func_eh_entry++;
734}
735
736/* Add new handler information to an exception range. The first parameter
737 specifies the range number (returned from new_eh_entry()). The second
738 parameter specifies the handler. By default the handler is inserted at
739 the end of the list. A handler list may contain only ONE NULL_TREE
740 typeinfo entry. Regardless where it is positioned, a NULL_TREE entry
741 is always output as the LAST handler in the exception table for a region. */
742
743void
744add_new_handler (region, newhandler)
745 int region;
746 struct handler_info *newhandler;
747{
748 struct handler_info *last;
749
750 newhandler->next = NULL;
751 last = function_eh_regions[region].handlers;
752 if (last == NULL)
753 function_eh_regions[region].handlers = newhandler;
754 else
755 {
756 for ( ; last->next != NULL; last = last->next)
ff109a61 757 ;
758 last->next = newhandler;
011a7f23 759 }
760}
761
444be12c 762/* Remove a handler label. The handler label is being deleted, so all
763 regions which reference this handler should have it removed from their
764 list of possible handlers. Any region which has the final handler
765 removed can be deleted. */
766
767void remove_handler (removing_label)
768 rtx removing_label;
769{
770 struct handler_info *handler, *last;
771 int x;
772 for (x = 0 ; x < current_func_eh_entry; ++x)
773 {
774 last = NULL;
775 handler = function_eh_regions[x].handlers;
776 for ( ; handler; last = handler, handler = handler->next)
777 if (handler->handler_label == removing_label)
778 {
779 if (last)
780 {
781 last->next = handler->next;
782 handler = last;
783 }
784 else
785 function_eh_regions[x].handlers = handler->next;
786 }
787 }
788}
789
011a7f23 790/* Create a new handler structure initialized with the handler label and
791 typeinfo fields passed in. */
792
793struct handler_info *
794get_new_handler (handler, typeinfo)
795 rtx handler;
796 void *typeinfo;
797{
798 struct handler_info* ptr;
799 ptr = (struct handler_info *) malloc (sizeof (struct handler_info));
800 ptr->handler_label = handler;
801 ptr->type_info = typeinfo;
802 ptr->next = NULL;
803
804 return ptr;
805}
806
807
808
809/* Find the index in function_eh_regions associated with a NOTE region. If
810 the region cannot be found, a -1 is returned. This should never happen! */
811
812int
813find_func_region (insn_region)
814 int insn_region;
815{
816 int x;
817 for (x = 0; x < current_func_eh_entry; x++)
818 if (function_eh_regions[x].range_number == insn_region)
819 return x;
820
821 return -1;
822}
823
824/* Get a pointer to the first handler in an exception region's list. */
825
826struct handler_info *
827get_first_handler (region)
828 int region;
829{
830 return function_eh_regions[find_func_region (region)].handlers;
831}
832
833/* Clean out the function_eh_region table and free all memory */
834
835static void
836clear_function_eh_region ()
837{
838 int x;
839 struct handler_info *ptr, *next;
840 for (x = 0; x < current_func_eh_entry; x++)
841 for (ptr = function_eh_regions[x].handlers; ptr != NULL; ptr = next)
842 {
843 next = ptr->next;
844 free (ptr);
845 }
846 free (function_eh_regions);
847 num_func_eh_entries = 0;
848 current_func_eh_entry = 0;
849}
850
851/* Make a duplicate of an exception region by copying all the handlers
852 for an exception region. Return the new handler index. */
853
854int
855duplicate_handlers (old_note_eh_region, new_note_eh_region)
856 int old_note_eh_region, new_note_eh_region;
857{
858 struct handler_info *ptr, *new_ptr;
859 int new_region, region;
860
861 region = find_func_region (old_note_eh_region);
862 if (region == -1)
863 error ("Cannot duplicate non-existant exception region.");
864
865 if (find_func_region (new_note_eh_region) != -1)
866 error ("Cannot duplicate EH region because new note region already exists");
867
868 new_region = new_eh_region_entry (new_note_eh_region);
869 ptr = function_eh_regions[region].handlers;
870
871 for ( ; ptr; ptr = ptr->next)
872 {
873 new_ptr = get_new_handler (ptr->handler_label, ptr->type_info);
874 add_new_handler (new_region, new_ptr);
875 }
876
877 return new_region;
878}
879
97ecdf3e 880\f
3398e91d 881/* Routine to see if exception handling is turned on.
97ecdf3e 882 DO_WARN is non-zero if we want to inform the user that exception
97bb6c17 883 handling is turned off.
884
885 This is used to ensure that -fexceptions has been specified if the
c0b4a1be 886 compiler tries to use any exception-specific functions. */
97ecdf3e 887
888int
889doing_eh (do_warn)
890 int do_warn;
891{
892 if (! flag_exceptions)
893 {
894 static int warned = 0;
895 if (! warned && do_warn)
896 {
897 error ("exception handling disabled, use -fexceptions to enable");
898 warned = 1;
899 }
900 return 0;
901 }
902 return 1;
903}
904
97bb6c17 905/* Given a return address in ADDR, determine the address we should use
c0b4a1be 906 to find the corresponding EH region. */
97ecdf3e 907
908rtx
909eh_outer_context (addr)
910 rtx addr;
911{
912 /* First mask out any unwanted bits. */
913#ifdef MASK_RETURN_ADDR
447a9eb9 914 expand_and (addr, MASK_RETURN_ADDR, addr);
97ecdf3e 915#endif
916
447a9eb9 917 /* Then adjust to find the real return address. */
918#if defined (RETURN_ADDR_OFFSET)
919 addr = plus_constant (addr, RETURN_ADDR_OFFSET);
97ecdf3e 920#endif
921
922 return addr;
923}
924
8591d03a 925/* Start a new exception region for a region of code that has a
926 cleanup action and push the HANDLER for the region onto
927 protect_list. All of the regions created with add_partial_entry
928 will be ended when end_protect_partials is invoked. */
97bb6c17 929
930void
931add_partial_entry (handler)
932 tree handler;
933{
934 expand_eh_region_start ();
935
c0b4a1be 936 /* Make sure the entry is on the correct obstack. */
97bb6c17 937 push_obstacks_nochange ();
938 resume_temporary_allocation ();
8591d03a 939
940 /* Because this is a cleanup action, we may have to protect the handler
941 with __terminate. */
942 handler = protect_with_terminate (handler);
943
97bb6c17 944 protect_list = tree_cons (NULL_TREE, handler, protect_list);
945 pop_obstacks ();
946}
947
30618d5e 948/* Emit code to get EH context to current function. */
8591d03a 949
732992fa 950static rtx
1a74f959 951call_get_eh_context ()
8591d03a 952{
c96dd0ff 953 static tree fn;
954 tree expr;
955
956 if (fn == NULL_TREE)
957 {
958 tree fntype;
732992fa 959 fn = get_identifier ("__get_eh_context");
c96dd0ff 960 push_obstacks_nochange ();
961 end_temporary_allocation ();
962 fntype = build_pointer_type (build_pointer_type
963 (build_pointer_type (void_type_node)));
964 fntype = build_function_type (fntype, NULL_TREE);
965 fn = build_decl (FUNCTION_DECL, fn, fntype);
966 DECL_EXTERNAL (fn) = 1;
967 TREE_PUBLIC (fn) = 1;
968 DECL_ARTIFICIAL (fn) = 1;
969 TREE_READONLY (fn) = 1;
970 make_decl_rtl (fn, NULL_PTR, 1);
971 assemble_external (fn);
972 pop_obstacks ();
973 }
974
975 expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
976 expr = build (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
977 expr, NULL_TREE, NULL_TREE);
978 TREE_SIDE_EFFECTS (expr) = 1;
c96dd0ff 979
30618d5e 980 return copy_to_reg (expand_expr (expr, NULL_RTX, VOIDmode, 0));
732992fa 981}
982
983/* Get a reference to the EH context.
984 We will only generate a register for the current function EH context here,
985 and emit a USE insn to mark that this is a EH context register.
986
987 Later, emit_eh_context will emit needed call to __get_eh_context
988 in libgcc2, and copy the value to the register we have generated. */
989
990rtx
1a74f959 991get_eh_context ()
732992fa 992{
993 if (current_function_ehc == 0)
994 {
995 rtx insn;
996
997 current_function_ehc = gen_reg_rtx (Pmode);
998
941522d6 999 insn = gen_rtx_USE (GET_MODE (current_function_ehc),
1000 current_function_ehc);
732992fa 1001 insn = emit_insn_before (insn, get_first_nonparm_insn ());
1002
1003 REG_NOTES (insn)
941522d6 1004 = gen_rtx_EXPR_LIST (REG_EH_CONTEXT, current_function_ehc,
1005 REG_NOTES (insn));
732992fa 1006 }
1007 return current_function_ehc;
1008}
1009
732992fa 1010/* Get a reference to the dynamic handler chain. It points to the
1011 pointer to the next element in the dynamic handler chain. It ends
1012 when there are no more elements in the dynamic handler chain, when
1013 the value is &top_elt from libgcc2.c. Immediately after the
1014 pointer, is an area suitable for setjmp/longjmp when
1015 DONT_USE_BUILTIN_SETJMP is defined, and an area suitable for
1016 __builtin_setjmp/__builtin_longjmp when DONT_USE_BUILTIN_SETJMP
1017 isn't defined. */
1018
1019rtx
1020get_dynamic_handler_chain ()
1021{
1022 rtx ehc, dhc, result;
1023
1a74f959 1024 ehc = get_eh_context ();
d945b22b 1025
1026 /* This is the offset of dynamic_handler_chain in the eh_context struct
1027 declared in eh-common.h. If its location is change, change this offset */
1028 dhc = plus_constant (ehc, GET_MODE_SIZE (Pmode));
732992fa 1029
1030 result = copy_to_reg (dhc);
1031
1032 /* We don't want a copy of the dcc, but rather, the single dcc. */
941522d6 1033 return gen_rtx_MEM (Pmode, result);
8591d03a 1034}
1035
1036/* Get a reference to the dynamic cleanup chain. It points to the
1037 pointer to the next element in the dynamic cleanup chain.
1038 Immediately after the pointer, are two Pmode variables, one for a
1039 pointer to a function that performs the cleanup action, and the
1040 second, the argument to pass to that function. */
1041
1042rtx
1043get_dynamic_cleanup_chain ()
1044{
732992fa 1045 rtx dhc, dcc, result;
8591d03a 1046
1047 dhc = get_dynamic_handler_chain ();
1048 dcc = plus_constant (dhc, GET_MODE_SIZE (Pmode));
1049
732992fa 1050 result = copy_to_reg (dcc);
8591d03a 1051
1052 /* We don't want a copy of the dcc, but rather, the single dcc. */
941522d6 1053 return gen_rtx_MEM (Pmode, result);
732992fa 1054}
1055
be582769 1056#ifdef DONT_USE_BUILTIN_SETJMP
8591d03a 1057/* Generate code to evaluate X and jump to LABEL if the value is nonzero.
1058 LABEL is an rtx of code CODE_LABEL, in this function. */
1059
861503e2 1060static void
8591d03a 1061jumpif_rtx (x, label)
1062 rtx x;
1063 rtx label;
1064{
1065 jumpif (make_tree (type_for_mode (GET_MODE (x), 0), x), label);
1066}
be582769 1067#endif
8591d03a 1068
1069/* Start a dynamic cleanup on the EH runtime dynamic cleanup stack.
1070 We just need to create an element for the cleanup list, and push it
1071 into the chain.
1072
1073 A dynamic cleanup is a cleanup action implied by the presence of an
1074 element on the EH runtime dynamic cleanup stack that is to be
1075 performed when an exception is thrown. The cleanup action is
1076 performed by __sjthrow when an exception is thrown. Only certain
1077 actions can be optimized into dynamic cleanup actions. For the
1078 restrictions on what actions can be performed using this routine,
1079 see expand_eh_region_start_tree. */
1080
1081static void
1082start_dynamic_cleanup (func, arg)
1083 tree func;
1084 tree arg;
1085{
0c22b90f 1086 rtx dcc;
8591d03a 1087 rtx new_func, new_arg;
1088 rtx x, buf;
1089 int size;
1090
1091 /* We allocate enough room for a pointer to the function, and
1092 one argument. */
1093 size = 2;
1094
1095 /* XXX, FIXME: The stack space allocated this way is too long lived,
1096 but there is no allocation routine that allocates at the level of
1097 the last binding contour. */
1098 buf = assign_stack_local (BLKmode,
1099 GET_MODE_SIZE (Pmode)*(size+1),
1100 0);
1101
1102 buf = change_address (buf, Pmode, NULL_RTX);
1103
1104 /* Store dcc into the first word of the newly allocated buffer. */
1105
1106 dcc = get_dynamic_cleanup_chain ();
1107 emit_move_insn (buf, dcc);
1108
1109 /* Store func and arg into the cleanup list element. */
1110
941522d6 1111 new_func = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1112 GET_MODE_SIZE (Pmode)));
1113 new_arg = gen_rtx_MEM (Pmode, plus_constant (XEXP (buf, 0),
1114 GET_MODE_SIZE (Pmode)*2));
8591d03a 1115 x = expand_expr (func, new_func, Pmode, 0);
1116 if (x != new_func)
1117 emit_move_insn (new_func, x);
1118
1119 x = expand_expr (arg, new_arg, Pmode, 0);
1120 if (x != new_arg)
1121 emit_move_insn (new_arg, x);
1122
1123 /* Update the cleanup chain. */
1124
1125 emit_move_insn (dcc, XEXP (buf, 0));
1126}
1127
1128/* Emit RTL to start a dynamic handler on the EH runtime dynamic
1129 handler stack. This should only be used by expand_eh_region_start
1130 or expand_eh_region_start_tree. */
1131
1132static void
1133start_dynamic_handler ()
1134{
1135 rtx dhc, dcc;
17785858 1136 rtx x, arg, buf;
8591d03a 1137 int size;
1138
17785858 1139#ifndef DONT_USE_BUILTIN_SETJMP
8591d03a 1140 /* The number of Pmode words for the setjmp buffer, when using the
1141 builtin setjmp/longjmp, see expand_builtin, case
1142 BUILT_IN_LONGJMP. */
1143 size = 5;
1144#else
1145#ifdef JMP_BUF_SIZE
1146 size = JMP_BUF_SIZE;
1147#else
1148 /* Should be large enough for most systems, if it is not,
1149 JMP_BUF_SIZE should be defined with the proper value. It will
1150 also tend to be larger than necessary for most systems, a more
1151 optimal port will define JMP_BUF_SIZE. */
1152 size = FIRST_PSEUDO_REGISTER+2;
1153#endif
1154#endif
1155 /* XXX, FIXME: The stack space allocated this way is too long lived,
1156 but there is no allocation routine that allocates at the level of
1157 the last binding contour. */
1158 arg = assign_stack_local (BLKmode,
1159 GET_MODE_SIZE (Pmode)*(size+1),
1160 0);
1161
1162 arg = change_address (arg, Pmode, NULL_RTX);
1163
1164 /* Store dhc into the first word of the newly allocated buffer. */
1165
1166 dhc = get_dynamic_handler_chain ();
941522d6 1167 dcc = gen_rtx_MEM (Pmode, plus_constant (XEXP (arg, 0),
1168 GET_MODE_SIZE (Pmode)));
8591d03a 1169 emit_move_insn (arg, dhc);
1170
1171 /* Zero out the start of the cleanup chain. */
1172 emit_move_insn (dcc, const0_rtx);
1173
1174 /* The jmpbuf starts two words into the area allocated. */
17785858 1175 buf = plus_constant (XEXP (arg, 0), GET_MODE_SIZE (Pmode)*2);
8591d03a 1176
17785858 1177#ifdef DONT_USE_BUILTIN_SETJMP
8591d03a 1178 x = emit_library_call_value (setjmp_libfunc, NULL_RTX, 1, SImode, 1,
17785858 1179 buf, Pmode);
0d179e03 1180 /* If we come back here for a catch, transfer control to the handler. */
1181 jumpif_rtx (x, ehstack.top->entry->exception_handler_label);
17785858 1182#else
0d179e03 1183 {
1184 /* A label to continue execution for the no exception case. */
1185 rtx noex = gen_label_rtx();
1186 x = expand_builtin_setjmp (buf, NULL_RTX, noex,
1187 ehstack.top->entry->exception_handler_label);
1188 emit_label (noex);
1189 }
17785858 1190#endif
8591d03a 1191
8591d03a 1192 /* We are committed to this, so update the handler chain. */
1193
1194 emit_move_insn (dhc, XEXP (arg, 0));
1195}
1196
1197/* Start an exception handling region for the given cleanup action.
97bb6c17 1198 All instructions emitted after this point are considered to be part
8591d03a 1199 of the region until expand_eh_region_end is invoked. CLEANUP is
1200 the cleanup action to perform. The return value is true if the
1201 exception region was optimized away. If that case,
1202 expand_eh_region_end does not need to be called for this cleanup,
1203 nor should it be.
1204
1205 This routine notices one particular common case in C++ code
1206 generation, and optimizes it so as to not need the exception
1207 region. It works by creating a dynamic cleanup action, instead of
3398e91d 1208 a using an exception region. */
8591d03a 1209
1210int
3ec33c57 1211expand_eh_region_start_tree (decl, cleanup)
1212 tree decl;
8591d03a 1213 tree cleanup;
1214{
8591d03a 1215 /* This is the old code. */
1216 if (! doing_eh (0))
1217 return 0;
1218
1219 /* The optimization only applies to actions protected with
1220 terminate, and only applies if we are using the setjmp/longjmp
1221 codegen method. */
1222 if (exceptions_via_longjmp
1223 && protect_cleanup_actions_with_terminate)
1224 {
1225 tree func, arg;
1226 tree args;
1227
1228 /* Ignore any UNSAVE_EXPR. */
1229 if (TREE_CODE (cleanup) == UNSAVE_EXPR)
1230 cleanup = TREE_OPERAND (cleanup, 0);
1231
1232 /* Further, it only applies if the action is a call, if there
1233 are 2 arguments, and if the second argument is 2. */
1234
1235 if (TREE_CODE (cleanup) == CALL_EXPR
1236 && (args = TREE_OPERAND (cleanup, 1))
1237 && (func = TREE_OPERAND (cleanup, 0))
1238 && (arg = TREE_VALUE (args))
1239 && (args = TREE_CHAIN (args))
1240
1241 /* is the second argument 2? */
1242 && TREE_CODE (TREE_VALUE (args)) == INTEGER_CST
1243 && TREE_INT_CST_LOW (TREE_VALUE (args)) == 2
1244 && TREE_INT_CST_HIGH (TREE_VALUE (args)) == 0
1245
1246 /* Make sure there are no other arguments. */
1247 && TREE_CHAIN (args) == NULL_TREE)
1248 {
1249 /* Arrange for returns and gotos to pop the entry we make on the
1250 dynamic cleanup stack. */
3ec33c57 1251 expand_dcc_cleanup (decl);
8591d03a 1252 start_dynamic_cleanup (func, arg);
1253 return 1;
1254 }
1255 }
1256
3ec33c57 1257 expand_eh_region_start_for_decl (decl);
506b6864 1258 ehstack.top->entry->finalization = cleanup;
8591d03a 1259
1260 return 0;
1261}
1262
3ec33c57 1263/* Just like expand_eh_region_start, except if a cleanup action is
1264 entered on the cleanup chain, the TREE_PURPOSE of the element put
1265 on the chain is DECL. DECL should be the associated VAR_DECL, if
1266 any, otherwise it should be NULL_TREE. */
97ecdf3e 1267
1268void
3ec33c57 1269expand_eh_region_start_for_decl (decl)
1270 tree decl;
97ecdf3e 1271{
1272 rtx note;
1273
1274 /* This is the old code. */
1275 if (! doing_eh (0))
1276 return;
1277
8591d03a 1278 if (exceptions_via_longjmp)
1279 {
1280 /* We need a new block to record the start and end of the
1281 dynamic handler chain. We could always do this, but we
1282 really want to permit jumping into such a block, and we want
1283 to avoid any errors or performance impact in the SJ EH code
1284 for now. */
1285 expand_start_bindings (0);
1286
1287 /* But we don't need or want a new temporary level. */
1288 pop_temp_slots ();
1289
1290 /* Mark this block as created by expand_eh_region_start. This
1291 is so that we can pop the block with expand_end_bindings
1292 automatically. */
1293 mark_block_as_eh_region ();
1294
1295 /* Arrange for returns and gotos to pop the entry we make on the
1296 dynamic handler stack. */
3ec33c57 1297 expand_dhc_cleanup (decl);
8591d03a 1298 }
97ecdf3e 1299
3ace063c 1300 push_eh_entry (&ehstack);
16992142 1301 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_BEG);
1302 NOTE_BLOCK_NUMBER (note)
1303 = CODE_LABEL_NUMBER (ehstack.top->entry->exception_handler_label);
8591d03a 1304 if (exceptions_via_longjmp)
1305 start_dynamic_handler ();
97ecdf3e 1306}
1307
3ec33c57 1308/* Start an exception handling region. All instructions emitted after
1309 this point are considered to be part of the region until
1310 expand_eh_region_end is invoked. */
1311
1312void
1313expand_eh_region_start ()
1314{
1315 expand_eh_region_start_for_decl (NULL_TREE);
1316}
1317
8591d03a 1318/* End an exception handling region. The information about the region
1319 is found on the top of ehstack.
97bb6c17 1320
1321 HANDLER is either the cleanup for the exception region, or if we're
1322 marking the end of a try block, HANDLER is integer_zero_node.
1323
8591d03a 1324 HANDLER will be transformed to rtl when expand_leftover_cleanups
c0b4a1be 1325 is invoked. */
97ecdf3e 1326
1327void
1328expand_eh_region_end (handler)
1329 tree handler;
1330{
97ecdf3e 1331 struct eh_entry *entry;
16992142 1332 rtx note;
97ecdf3e 1333
1334 if (! doing_eh (0))
1335 return;
1336
1337 entry = pop_eh_entry (&ehstack);
1338
16992142 1339 note = emit_note (NULL_PTR, NOTE_INSN_EH_REGION_END);
1340 NOTE_BLOCK_NUMBER (note)
1341 = CODE_LABEL_NUMBER (entry->exception_handler_label);
23ceb7b2 1342 if (exceptions_via_longjmp == 0
1343 /* We share outer_context between regions; only emit it once. */
1344 && INSN_UID (entry->outer_context) == 0)
8591d03a 1345 {
3ace063c 1346 rtx label;
97ecdf3e 1347
3ace063c 1348 label = gen_label_rtx ();
1349 emit_jump (label);
1350
1351 /* Emit a label marking the end of this exception region that
1352 is used for rethrowing into the outer context. */
1353 emit_label (entry->outer_context);
23ceb7b2 1354 expand_internal_throw ();
97ecdf3e 1355
3ace063c 1356 emit_label (label);
8591d03a 1357 }
97ecdf3e 1358
1359 entry->finalization = handler;
1360
011a7f23 1361 /* create region entry in final exception table */
1362 new_eh_region_entry (NOTE_BLOCK_NUMBER (note));
1363
97ecdf3e 1364 enqueue_eh_entry (&ehqueue, entry);
1365
8591d03a 1366 /* If we have already started ending the bindings, don't recurse.
1367 This only happens when exceptions_via_longjmp is true. */
1368 if (is_eh_region ())
1369 {
1370 /* Because we don't need or want a new temporary level and
1371 because we didn't create one in expand_eh_region_start,
1372 create a fake one now to avoid removing one in
1373 expand_end_bindings. */
1374 push_temp_slots ();
1375
1376 mark_block_as_not_eh_region ();
1377
1378 /* Maybe do this to prevent jumping in and so on... */
1379 expand_end_bindings (NULL_TREE, 0, 0);
1380 }
97ecdf3e 1381}
1382
506b6864 1383/* End the EH region for a goto fixup. We only need them in the region-based
1384 EH scheme. */
1385
1386void
1387expand_fixup_region_start ()
1388{
1389 if (! doing_eh (0) || exceptions_via_longjmp)
1390 return;
1391
1392 expand_eh_region_start ();
1393}
1394
1395/* End the EH region for a goto fixup. CLEANUP is the cleanup we just
1396 expanded; to avoid running it twice if it throws, we look through the
1397 ehqueue for a matching region and rethrow from its outer_context. */
1398
1399void
1400expand_fixup_region_end (cleanup)
1401 tree cleanup;
1402{
506b6864 1403 struct eh_node *node;
506b6864 1404
1405 if (! doing_eh (0) || exceptions_via_longjmp)
1406 return;
1407
1408 for (node = ehstack.top; node && node->entry->finalization != cleanup; )
1409 node = node->chain;
1410 if (node == 0)
1411 for (node = ehqueue.head; node && node->entry->finalization != cleanup; )
1412 node = node->chain;
1413 if (node == 0)
1414 abort ();
1415
23ceb7b2 1416 ehstack.top->entry->outer_context = node->entry->outer_context;
506b6864 1417
23ceb7b2 1418 /* Just rethrow. size_zero_node is just a NOP. */
1419 expand_eh_region_end (size_zero_node);
506b6864 1420}
1421
8591d03a 1422/* If we are using the setjmp/longjmp EH codegen method, we emit a
1423 call to __sjthrow.
1424
1425 Otherwise, we emit a call to __throw and note that we threw
1426 something, so we know we need to generate the necessary code for
1427 __throw.
97bb6c17 1428
1429 Before invoking throw, the __eh_pc variable must have been set up
1430 to contain the PC being thrown from. This address is used by
8591d03a 1431 __throw to determine which exception region (if any) is
c0b4a1be 1432 responsible for handling the exception. */
97ecdf3e 1433
8591d03a 1434void
97ecdf3e 1435emit_throw ()
1436{
8591d03a 1437 if (exceptions_via_longjmp)
1438 {
1439 emit_library_call (sjthrow_libfunc, 0, VOIDmode, 0);
1440 }
1441 else
1442 {
97ecdf3e 1443#ifdef JUMP_TO_THROW
8591d03a 1444 emit_indirect_jump (throw_libfunc);
97ecdf3e 1445#else
8591d03a 1446 emit_library_call (throw_libfunc, 0, VOIDmode, 0);
97ecdf3e 1447#endif
8591d03a 1448 }
97ecdf3e 1449 emit_barrier ();
1450}
1451
23ceb7b2 1452/* Throw the current exception. If appropriate, this is done by jumping
1453 to the next handler. */
97ecdf3e 1454
1455void
23ceb7b2 1456expand_internal_throw ()
97ecdf3e 1457{
23ceb7b2 1458 emit_throw ();
97ecdf3e 1459}
1460
1461/* Called from expand_exception_blocks and expand_end_catch_block to
8591d03a 1462 emit any pending handlers/cleanups queued from expand_eh_region_end. */
97ecdf3e 1463
1464void
1465expand_leftover_cleanups ()
1466{
1467 struct eh_entry *entry;
1468
1469 while ((entry = dequeue_eh_entry (&ehqueue)) != 0)
1470 {
1471 rtx prev;
1472
97bb6c17 1473 /* A leftover try block. Shouldn't be one here. */
1474 if (entry->finalization == integer_zero_node)
1475 abort ();
1476
c0b4a1be 1477 /* Output the label for the start of the exception handler. */
97ecdf3e 1478
011a7f23 1479 receive_exception_label (entry->exception_handler_label);
75a6a643 1480
011a7f23 1481 /* register a handler for this cleanup region */
1482 add_new_handler (
1483 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1484 get_new_handler (entry->exception_handler_label, NULL));
1045c815 1485
c0b4a1be 1486 /* And now generate the insns for the handler. */
97ecdf3e 1487 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1488
1489 prev = get_last_insn ();
8591d03a 1490 if (prev == NULL || GET_CODE (prev) != BARRIER)
23ceb7b2 1491 /* Emit code to throw to the outer context if we fall off
1492 the end of the handler. */
1493 expand_rethrow (entry->outer_context);
97ecdf3e 1494
edf8c644 1495 do_pending_stack_adjust ();
97ecdf3e 1496 free (entry);
1497 }
1498}
1499
c0b4a1be 1500/* Called at the start of a block of try statements. */
97bb6c17 1501void
1502expand_start_try_stmts ()
1503{
1504 if (! doing_eh (1))
1505 return;
1506
1507 expand_eh_region_start ();
1508}
1509
011a7f23 1510/* Called to begin a catch clause. The parameter is the object which
1511 will be passed to the runtime type check routine. */
1512void
c50af1d9 1513start_catch_handler (rtime)
011a7f23 1514 tree rtime;
1515{
1516 rtx handler_label = catchstack.top->entry->exception_handler_label;
1517 int insn_region_num = CODE_LABEL_NUMBER (handler_label);
1518 int eh_region_entry = find_func_region (insn_region_num);
1519
1520 /* If we've already issued this label, pick a new one */
73c455d6 1521 if (catchstack.top->entry->label_used)
011a7f23 1522 handler_label = gen_exception_label ();
1523 else
1524 catchstack.top->entry->label_used = 1;
1525
1526 receive_exception_label (handler_label);
1527
1528 add_new_handler (eh_region_entry, get_new_handler (handler_label, rtime));
1529}
1530
97bb6c17 1531/* Generate RTL for the start of a group of catch clauses.
1532
1533 It is responsible for starting a new instruction sequence for the
1534 instructions in the catch block, and expanding the handlers for the
1535 internally-generated exception regions nested within the try block
c0b4a1be 1536 corresponding to this catch block. */
97ecdf3e 1537
1538void
1539expand_start_all_catch ()
1540{
1541 struct eh_entry *entry;
1542 tree label;
23ceb7b2 1543 rtx outer_context;
97ecdf3e 1544
1545 if (! doing_eh (1))
1546 return;
1547
23ceb7b2 1548 outer_context = ehstack.top->entry->outer_context;
2f2bc719 1549
c0b4a1be 1550 /* End the try block. */
97bb6c17 1551 expand_eh_region_end (integer_zero_node);
1552
97ecdf3e 1553 emit_line_note (input_filename, lineno);
1554 label = build_decl (LABEL_DECL, NULL_TREE, NULL_TREE);
1555
97bb6c17 1556 /* The label for the exception handling block that we will save.
ad87de1e 1557 This is Lresume in the documentation. */
97ecdf3e 1558 expand_label (label);
1559
97bb6c17 1560 /* Push the label that points to where normal flow is resumed onto
c0b4a1be 1561 the top of the label stack. */
97ecdf3e 1562 push_label_entry (&caught_return_label_stack, NULL_RTX, label);
1563
1564 /* Start a new sequence for all the catch blocks. We will add this
97bb6c17 1565 to the global sequence catch_clauses when we have completed all
97ecdf3e 1566 the handlers in this handler-seq. */
1567 start_sequence ();
1568
011a7f23 1569 entry = dequeue_eh_entry (&ehqueue);
1570 for ( ; entry->finalization != integer_zero_node;
1571 entry = dequeue_eh_entry (&ehqueue))
97ecdf3e 1572 {
1573 rtx prev;
1574
011a7f23 1575 /* Emit the label for the cleanup handler for this region, and
97bb6c17 1576 expand the code for the handler.
1577
1578 Note that a catch region is handled as a side-effect here;
1579 for a try block, entry->finalization will contain
1580 integer_zero_node, so no code will be generated in the
1581 expand_expr call below. But, the label for the handler will
1582 still be emitted, so any code emitted after this point will
c0b4a1be 1583 end up being the handler. */
011a7f23 1584
1585 receive_exception_label (entry->exception_handler_label);
1045c815 1586
011a7f23 1587 /* register a handler for this cleanup region */
1588 add_new_handler (
1589 find_func_region (CODE_LABEL_NUMBER (entry->exception_handler_label)),
1590 get_new_handler (entry->exception_handler_label, NULL));
97ecdf3e 1591
011a7f23 1592 /* And now generate the insns for the cleanup handler. */
8591d03a 1593 expand_expr (entry->finalization, const0_rtx, VOIDmode, 0);
1594
97ecdf3e 1595 prev = get_last_insn ();
97bb6c17 1596 if (prev == NULL || GET_CODE (prev) != BARRIER)
23ceb7b2 1597 /* Code to throw out to outer context when we fall off end
1598 of the handler. We can't do this here for catch blocks,
1599 so it's done in expand_end_all_catch instead. */
1600 expand_rethrow (entry->outer_context);
97bb6c17 1601
934b828a 1602 do_pending_stack_adjust ();
97ecdf3e 1603 free (entry);
1604 }
23ceb7b2 1605
011a7f23 1606 /* At this point, all the cleanups are done, and the ehqueue now has
1607 the current exception region at its head. We dequeue it, and put it
1608 on the catch stack. */
1609
1610 push_entry (&catchstack, entry);
1611
23ceb7b2 1612 /* If we are not doing setjmp/longjmp EH, because we are reordered
1613 out of line, we arrange to rethrow in the outer context. We need to
1614 do this because we are not physically within the region, if any, that
1615 logically contains this catch block. */
1616 if (! exceptions_via_longjmp)
1617 {
1618 expand_eh_region_start ();
1619 ehstack.top->entry->outer_context = outer_context;
1620 }
97ecdf3e 1621}
1622
97bb6c17 1623/* Finish up the catch block. At this point all the insns for the
1624 catch clauses have already been generated, so we only have to add
1625 them to the catch_clauses list. We also want to make sure that if
1626 we fall off the end of the catch clauses that we rethrow to the
c0b4a1be 1627 outer EH region. */
97ecdf3e 1628
1629void
1630expand_end_all_catch ()
1631{
c401b398 1632 rtx new_catch_clause, outer_context = NULL_RTX;
c50af1d9 1633 struct eh_entry *entry;
97ecdf3e 1634
1635 if (! doing_eh (1))
1636 return;
1637
c50af1d9 1638 /* Dequeue the current catch clause region. */
1639 entry = pop_eh_entry (&catchstack);
1640 free (entry);
1641
23ceb7b2 1642 if (! exceptions_via_longjmp)
c401b398 1643 {
1644 outer_context = ehstack.top->entry->outer_context;
1645
1646 /* Finish the rethrow region. size_zero_node is just a NOP. */
1647 expand_eh_region_end (size_zero_node);
1648 }
1649
23ceb7b2 1650 /* Code to throw out to outer context, if we fall off end of catch
1651 handlers. This is rethrow (Lresume, same id, same obj) in the
1652 documentation. We use Lresume because we know that it will throw
1653 to the correct context.
97bb6c17 1654
23ceb7b2 1655 In other words, if the catch handler doesn't exit or return, we
1656 do a "throw" (using the address of Lresume as the point being
1657 thrown from) so that the outer EH region can then try to process
1658 the exception. */
1659 expand_rethrow (outer_context);
97ecdf3e 1660
1661 /* Now we have the complete catch sequence. */
1662 new_catch_clause = get_insns ();
1663 end_sequence ();
1664
1665 /* This level of catch blocks is done, so set up the successful
1666 catch jump label for the next layer of catch blocks. */
1667 pop_label_entry (&caught_return_label_stack);
ad87de1e 1668 pop_label_entry (&outer_context_label_stack);
97ecdf3e 1669
1670 /* Add the new sequence of catches to the main one for this function. */
1671 push_to_sequence (catch_clauses);
1672 emit_insns (new_catch_clause);
1673 catch_clauses = get_insns ();
1674 end_sequence ();
1675
1676 /* Here we fall through into the continuation code. */
1677}
1678
23ceb7b2 1679/* Rethrow from the outer context LABEL. */
1680
1681static void
1682expand_rethrow (label)
1683 rtx label;
1684{
1685 if (exceptions_via_longjmp)
1686 emit_throw ();
1687 else
1688 emit_jump (label);
1689}
1690
97bb6c17 1691/* End all the pending exception regions on protect_list. The handlers
8591d03a 1692 will be emitted when expand_leftover_cleanups is invoked. */
97ecdf3e 1693
1694void
1695end_protect_partials ()
1696{
1697 while (protect_list)
1698 {
1699 expand_eh_region_end (TREE_VALUE (protect_list));
1700 protect_list = TREE_CHAIN (protect_list);
1701 }
1702}
8591d03a 1703
1704/* Arrange for __terminate to be called if there is an unhandled throw
1705 from within E. */
1706
1707tree
1708protect_with_terminate (e)
1709 tree e;
1710{
1711 /* We only need to do this when using setjmp/longjmp EH and the
1712 language requires it, as otherwise we protect all of the handlers
1713 at once, if we need to. */
1714 if (exceptions_via_longjmp && protect_cleanup_actions_with_terminate)
1715 {
1716 tree handler, result;
1717
1718 /* All cleanups must be on the function_obstack. */
1719 push_obstacks_nochange ();
1720 resume_temporary_allocation ();
1721
1722 handler = make_node (RTL_EXPR);
1723 TREE_TYPE (handler) = void_type_node;
1724 RTL_EXPR_RTL (handler) = const0_rtx;
1725 TREE_SIDE_EFFECTS (handler) = 1;
1726 start_sequence_for_rtl_expr (handler);
1727
1728 emit_library_call (terminate_libfunc, 0, VOIDmode, 0);
1729 emit_barrier ();
1730
1731 RTL_EXPR_SEQUENCE (handler) = get_insns ();
1732 end_sequence ();
1733
1734 result = build (TRY_CATCH_EXPR, TREE_TYPE (e), e, handler);
1735 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
1736 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
1737 TREE_READONLY (result) = TREE_READONLY (e);
1738
1739 pop_obstacks ();
1740
1741 e = result;
1742 }
1743
1744 return e;
1745}
97ecdf3e 1746\f
1747/* The exception table that we build that is used for looking up and
97bb6c17 1748 dispatching exceptions, the current number of entries, and its
1749 maximum size before we have to extend it.
1750
1751 The number in eh_table is the code label number of the exception
8591d03a 1752 handler for the region. This is added by add_eh_table_entry and
1753 used by output_exception_table_entry. */
97bb6c17 1754
011a7f23 1755static int *eh_table = NULL;
1756static int eh_table_size = 0;
1757static int eh_table_max_size = 0;
97ecdf3e 1758
1759/* Note the need for an exception table entry for region N. If we
97bb6c17 1760 don't need to output an explicit exception table, avoid all of the
1761 extra work.
1762
1763 Called from final_scan_insn when a NOTE_INSN_EH_REGION_BEG is seen.
011a7f23 1764 (Or NOTE_INSN_EH_REGION_END sometimes)
97bb6c17 1765 N is the NOTE_BLOCK_NUMBER of the note, which comes from the code
c0b4a1be 1766 label number of the exception handler for the region. */
97ecdf3e 1767
1768void
1769add_eh_table_entry (n)
1770 int n;
1771{
1772#ifndef OMIT_EH_TABLE
1773 if (eh_table_size >= eh_table_max_size)
1774 {
1775 if (eh_table)
1776 {
1777 eh_table_max_size += eh_table_max_size>>1;
1778
1779 if (eh_table_max_size < 0)
1780 abort ();
1781
447a9eb9 1782 eh_table = (int *) xrealloc (eh_table,
1783 eh_table_max_size * sizeof (int));
97ecdf3e 1784 }
1785 else
1786 {
1787 eh_table_max_size = 252;
1788 eh_table = (int *) xmalloc (eh_table_max_size * sizeof (int));
1789 }
1790 }
1791 eh_table[eh_table_size++] = n;
1792#endif
1793}
1794
97bb6c17 1795/* Return a non-zero value if we need to output an exception table.
1796
1797 On some platforms, we don't have to output a table explicitly.
1798 This routine doesn't mean we don't have one. */
97ecdf3e 1799
1800int
1801exception_table_p ()
1802{
1803 if (eh_table)
1804 return 1;
1805
1806 return 0;
1807}
1808
3398e91d 1809/* Output the entry of the exception table corresponding to the
97bb6c17 1810 exception region numbered N to file FILE.
1811
1812 N is the code label number corresponding to the handler of the
c0b4a1be 1813 region. */
97ecdf3e 1814
1815static void
1816output_exception_table_entry (file, n)
1817 FILE *file;
1818 int n;
1819{
1820 char buf[256];
1821 rtx sym;
011a7f23 1822 struct handler_info *handler;
1823
1824 handler = get_first_handler (n);
97ecdf3e 1825
011a7f23 1826 for ( ; handler != NULL; handler = handler->next)
1827 {
1828 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHB", n);
1829 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
1830 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
97ecdf3e 1831
011a7f23 1832 ASM_GENERATE_INTERNAL_LABEL (buf, "LEHE", n);
1833 sym = gen_rtx_SYMBOL_REF (Pmode, buf);
1834 assemble_integer (sym, POINTER_SIZE / BITS_PER_UNIT, 1);
1835
1836 assemble_integer (handler->handler_label,
1837 POINTER_SIZE / BITS_PER_UNIT, 1);
97ecdf3e 1838
173f0bec 1839 if (flag_new_exceptions)
1840 {
1841 if (handler->type_info == NULL)
1842 assemble_integer (const0_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
1843 else
1844 output_constant ((tree)(handler->type_info),
011a7f23 1845 POINTER_SIZE / BITS_PER_UNIT);
173f0bec 1846 }
011a7f23 1847 putc ('\n', file); /* blank line */
1848 }
97ecdf3e 1849}
1850
c0b4a1be 1851/* Output the exception table if we have and need one. */
97ecdf3e 1852
011a7f23 1853static short language_code = 0;
1854static short version_code = 0;
1855
1856/* This routine will set the language code for exceptions. */
1857void set_exception_lang_code (code)
1858 short code;
1859{
1860 language_code = code;
1861}
1862
1863/* This routine will set the language version code for exceptions. */
1864void set_exception_version_code (code)
1865 short code;
1866{
1867 version_code = code;
1868}
1869
011a7f23 1870
97ecdf3e 1871void
1872output_exception_table ()
1873{
1874 int i;
1875 extern FILE *asm_out_file;
1876
447a9eb9 1877 if (! doing_eh (0) || ! eh_table)
97ecdf3e 1878 return;
1879
1880 exception_section ();
1881
1882 /* Beginning marker for table. */
1883 assemble_align (GET_MODE_ALIGNMENT (ptr_mode));
1884 assemble_label ("__EXCEPTION_TABLE__");
1885
173f0bec 1886 if (flag_new_exceptions)
1887 {
1888 assemble_integer (GEN_INT (NEW_EH_RUNTIME),
1889 POINTER_SIZE / BITS_PER_UNIT, 1);
1890 assemble_integer (GEN_INT (language_code), 2 , 1);
1891 assemble_integer (GEN_INT (version_code), 2 , 1);
1892
1893 /* Add enough padding to make sure table aligns on a pointer boundry. */
1894 i = GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT - 4;
1895 for ( ; i < 0; i = i + GET_MODE_ALIGNMENT (ptr_mode) / BITS_PER_UNIT)
1896 ;
1897 if (i != 0)
1898 assemble_integer (const0_rtx, i , 1);
1899 }
011a7f23 1900
97ecdf3e 1901 for (i = 0; i < eh_table_size; ++i)
1902 output_exception_table_entry (asm_out_file, eh_table[i]);
1903
1904 free (eh_table);
011a7f23 1905 clear_function_eh_region ();
97ecdf3e 1906
1907 /* Ending marker for table. */
97ecdf3e 1908 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
173f0bec 1909
011a7f23 1910 /* for binary compatability, the old __throw checked the second
1911 position for a -1, so we should output at least 2 -1's */
173f0bec 1912 if (! flag_new_exceptions)
1913 assemble_integer (constm1_rtx, POINTER_SIZE / BITS_PER_UNIT, 1);
1914
97ecdf3e 1915 putc ('\n', asm_out_file); /* blank line */
1916}
97ecdf3e 1917\f
732992fa 1918/* Emit code to get EH context.
1919
1920 We have to scan thru the code to find possible EH context registers.
1921 Inlined functions may use it too, and thus we'll have to be able
1922 to change them too.
1923
1924 This is done only if using exceptions_via_longjmp. */
1925
1926void
1927emit_eh_context ()
1928{
1929 rtx insn;
1930 rtx ehc = 0;
1931
1932 if (! doing_eh (0))
1933 return;
1934
1935 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1936 if (GET_CODE (insn) == INSN
1937 && GET_CODE (PATTERN (insn)) == USE)
1938 {
1939 rtx reg = find_reg_note (insn, REG_EH_CONTEXT, 0);
1940 if (reg)
1941 {
1942 rtx insns;
1943
30618d5e 1944 start_sequence ();
1945
048673ae 1946 /* If this is the first use insn, emit the call here. This
1947 will always be at the top of our function, because if
1948 expand_inline_function notices a REG_EH_CONTEXT note, it
1949 adds a use insn to this function as well. */
732992fa 1950 if (ehc == 0)
1a74f959 1951 ehc = call_get_eh_context ();
732992fa 1952
732992fa 1953 emit_move_insn (XEXP (reg, 0), ehc);
1954 insns = get_insns ();
1955 end_sequence ();
1956
1957 emit_insns_before (insns, insn);
1958 }
1959 }
1960}
1961
97bb6c17 1962/* Scan the current insns and build a list of handler labels. The
1963 resulting list is placed in the global variable exception_handler_labels.
1964
1965 It is called after the last exception handling region is added to
1966 the current function (when the rtl is almost all built for the
1967 current function) and before the jump optimization pass. */
97ecdf3e 1968
1969void
1970find_exception_handler_labels ()
1971{
1972 rtx insn;
97ecdf3e 1973
1974 exception_handler_labels = NULL_RTX;
1975
1976 /* If we aren't doing exception handling, there isn't much to check. */
1977 if (! doing_eh (0))
1978 return;
1979
97bb6c17 1980 /* For each start of a region, add its label to the list. */
1981
97ecdf3e 1982 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1983 {
011a7f23 1984 struct handler_info* ptr;
97ecdf3e 1985 if (GET_CODE (insn) == NOTE
1986 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
1987 {
011a7f23 1988 ptr = get_first_handler (NOTE_BLOCK_NUMBER (insn));
1989 for ( ; ptr; ptr = ptr->next)
1990 {
1991 /* make sure label isn't in the list already */
1992 rtx x;
1993 for (x = exception_handler_labels; x; x = XEXP (x, 1))
1994 if (XEXP (x, 0) == ptr->handler_label)
1995 break;
1996 if (! x)
1997 exception_handler_labels = gen_rtx_EXPR_LIST (VOIDmode,
1998 ptr->handler_label, exception_handler_labels);
1999 }
97ecdf3e 2000 }
2001 }
011a7f23 2002}
2003
2004/* Return a value of 1 if the parameter label number is an exception handler
2005 label. Return 0 otherwise. */
acfc13c6 2006
011a7f23 2007int
2008is_exception_handler_label (lab)
2009 int lab;
2010{
2011 rtx x;
2012 for (x = exception_handler_labels ; x ; x = XEXP (x, 1))
2013 if (lab == CODE_LABEL_NUMBER (XEXP (x, 0)))
2014 return 1;
2015 return 0;
97ecdf3e 2016}
2017
97bb6c17 2018/* Perform sanity checking on the exception_handler_labels list.
2019
2020 Can be called after find_exception_handler_labels is called to
2021 build the list of exception handlers for the current function and
2022 before we finish processing the current function. */
97ecdf3e 2023
2024void
2025check_exception_handler_labels ()
2026{
011a7f23 2027 rtx insn, insn2;
97ecdf3e 2028
2029 /* If we aren't doing exception handling, there isn't much to check. */
2030 if (! doing_eh (0))
2031 return;
2032
011a7f23 2033 /* Make sure there is no more than 1 copy of a label */
2034 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
97ecdf3e 2035 {
011a7f23 2036 int count = 0;
2037 for (insn2 = exception_handler_labels; insn2; insn2 = XEXP (insn2, 1))
2038 if (XEXP (insn, 0) == XEXP (insn2, 0))
2039 count++;
2040 if (count != 1)
2041 warning ("Counted %d copies of EH region %d in list.\n", count,
2042 CODE_LABEL_NUMBER (insn));
97ecdf3e 2043 }
2044
97ecdf3e 2045}
2046\f
2047/* This group of functions initializes the exception handling data
2048 structures at the start of the compilation, initializes the data
97bb6c17 2049 structures at the start of a function, and saves and restores the
97ecdf3e 2050 exception handling data structures for the start/end of a nested
2051 function. */
2052
2053/* Toplevel initialization for EH things. */
2054
2055void
2056init_eh ()
2057{
97ecdf3e 2058}
2059
c0b4a1be 2060/* Initialize the per-function EH information. */
97ecdf3e 2061
2062void
2063init_eh_for_function ()
2064{
2065 ehstack.top = 0;
011a7f23 2066 catchstack.top = 0;
97ecdf3e 2067 ehqueue.head = ehqueue.tail = 0;
2068 catch_clauses = NULL_RTX;
2069 false_label_stack = 0;
2070 caught_return_label_stack = 0;
2071 protect_list = NULL_TREE;
732992fa 2072 current_function_ehc = NULL_RTX;
97ecdf3e 2073}
2074
97bb6c17 2075/* Save some of the per-function EH info into the save area denoted by
2076 P.
2077
8591d03a 2078 This is currently called from save_stmt_status. */
97ecdf3e 2079
2080void
2081save_eh_status (p)
2082 struct function *p;
2083{
7e2bfe1e 2084 if (p == NULL)
2085 abort ();
97bb6c17 2086
97ecdf3e 2087 p->ehstack = ehstack;
011a7f23 2088 p->catchstack = catchstack;
97ecdf3e 2089 p->ehqueue = ehqueue;
2090 p->catch_clauses = catch_clauses;
2091 p->false_label_stack = false_label_stack;
2092 p->caught_return_label_stack = caught_return_label_stack;
2093 p->protect_list = protect_list;
732992fa 2094 p->ehc = current_function_ehc;
97ecdf3e 2095
514acc40 2096 init_eh_for_function ();
97ecdf3e 2097}
2098
97bb6c17 2099/* Restore the per-function EH info saved into the area denoted by P.
2100
c0b4a1be 2101 This is currently called from restore_stmt_status. */
97ecdf3e 2102
2103void
2104restore_eh_status (p)
2105 struct function *p;
2106{
7e2bfe1e 2107 if (p == NULL)
2108 abort ();
97bb6c17 2109
97ecdf3e 2110 protect_list = p->protect_list;
2111 caught_return_label_stack = p->caught_return_label_stack;
2112 false_label_stack = p->false_label_stack;
2113 catch_clauses = p->catch_clauses;
2114 ehqueue = p->ehqueue;
2115 ehstack = p->ehstack;
011a7f23 2116 catchstack = p->catchstack;
732992fa 2117 current_function_ehc = p->ehc;
97ecdf3e 2118}
2119\f
2120/* This section is for the exception handling specific optimization
2121 pass. First are the internal routines, and then the main
2122 optimization pass. */
2123
2124/* Determine if the given INSN can throw an exception. */
2125
2126static int
2127can_throw (insn)
2128 rtx insn;
2129{
c0b4a1be 2130 /* Calls can always potentially throw exceptions. */
97ecdf3e 2131 if (GET_CODE (insn) == CALL_INSN)
2132 return 1;
2133
8591d03a 2134 if (asynchronous_exceptions)
2135 {
2136 /* If we wanted asynchronous exceptions, then everything but NOTEs
2137 and CODE_LABELs could throw. */
2138 if (GET_CODE (insn) != NOTE && GET_CODE (insn) != CODE_LABEL)
2139 return 1;
2140 }
97ecdf3e 2141
2142 return 0;
2143}
2144
97bb6c17 2145/* Scan a exception region looking for the matching end and then
2146 remove it if possible. INSN is the start of the region, N is the
2147 region number, and DELETE_OUTER is to note if anything in this
2148 region can throw.
2149
2150 Regions are removed if they cannot possibly catch an exception.
8591d03a 2151 This is determined by invoking can_throw on each insn within the
97bb6c17 2152 region; if can_throw returns true for any of the instructions, the
2153 region can catch an exception, since there is an insn within the
2154 region that is capable of throwing an exception.
2155
2156 Returns the NOTE_INSN_EH_REGION_END corresponding to this region, or
8591d03a 2157 calls abort if it can't find one.
97bb6c17 2158
2159 Can abort if INSN is not a NOTE_INSN_EH_REGION_BEGIN, or if N doesn't
c0b4a1be 2160 correspond to the region number, or if DELETE_OUTER is NULL. */
97ecdf3e 2161
2162static rtx
2163scan_region (insn, n, delete_outer)
2164 rtx insn;
2165 int n;
2166 int *delete_outer;
2167{
2168 rtx start = insn;
2169
2170 /* Assume we can delete the region. */
2171 int delete = 1;
2172
7e2bfe1e 2173 if (insn == NULL_RTX
2174 || GET_CODE (insn) != NOTE
2175 || NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
2176 || NOTE_BLOCK_NUMBER (insn) != n
2177 || delete_outer == NULL)
2178 abort ();
97bb6c17 2179
97ecdf3e 2180 insn = NEXT_INSN (insn);
2181
2182 /* Look for the matching end. */
2183 while (! (GET_CODE (insn) == NOTE
2184 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2185 {
2186 /* If anything can throw, we can't remove the region. */
2187 if (delete && can_throw (insn))
2188 {
2189 delete = 0;
2190 }
2191
2192 /* Watch out for and handle nested regions. */
2193 if (GET_CODE (insn) == NOTE
2194 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2195 {
2196 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &delete);
2197 }
2198
2199 insn = NEXT_INSN (insn);
2200 }
2201
2202 /* The _BEG/_END NOTEs must match and nest. */
2203 if (NOTE_BLOCK_NUMBER (insn) != n)
2204 abort ();
2205
97bb6c17 2206 /* If anything in this exception region can throw, we can throw. */
97ecdf3e 2207 if (! delete)
2208 *delete_outer = 0;
2209 else
2210 {
2211 /* Delete the start and end of the region. */
2212 delete_insn (start);
2213 delete_insn (insn);
2214
011a7f23 2215/* We no longer removed labels here, since flow will now remove any
2216 handler which cannot be called any more. */
2217
2218#if 0
97ecdf3e 2219 /* Only do this part if we have built the exception handler
2220 labels. */
2221 if (exception_handler_labels)
2222 {
2223 rtx x, *prev = &exception_handler_labels;
2224
2225 /* Find it in the list of handlers. */
2226 for (x = exception_handler_labels; x; x = XEXP (x, 1))
2227 {
2228 rtx label = XEXP (x, 0);
2229 if (CODE_LABEL_NUMBER (label) == n)
2230 {
2231 /* If we are the last reference to the handler,
2232 delete it. */
2233 if (--LABEL_NUSES (label) == 0)
2234 delete_insn (label);
2235
2236 if (optimize)
2237 {
2238 /* Remove it from the list of exception handler
2239 labels, if we are optimizing. If we are not, then
2240 leave it in the list, as we are not really going to
2241 remove the region. */
2242 *prev = XEXP (x, 1);
2243 XEXP (x, 1) = 0;
2244 XEXP (x, 0) = 0;
2245 }
2246
2247 break;
2248 }
2249 prev = &XEXP (x, 1);
2250 }
2251 }
011a7f23 2252#endif
97ecdf3e 2253 }
2254 return insn;
2255}
2256
2257/* Perform various interesting optimizations for exception handling
2258 code.
2259
97bb6c17 2260 We look for empty exception regions and make them go (away). The
2261 jump optimization code will remove the handler if nothing else uses
c0b4a1be 2262 it. */
97ecdf3e 2263
2264void
2265exception_optimize ()
2266{
0c22b90f 2267 rtx insn;
97ecdf3e 2268 int n;
2269
97bb6c17 2270 /* Remove empty regions. */
97ecdf3e 2271 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2272 {
2273 if (GET_CODE (insn) == NOTE
2274 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG)
2275 {
8591d03a 2276 /* Since scan_region will return the NOTE_INSN_EH_REGION_END
97bb6c17 2277 insn, we will indirectly skip through all the insns
2278 inbetween. We are also guaranteed that the value of insn
8591d03a 2279 returned will be valid, as otherwise scan_region won't
c0b4a1be 2280 return. */
97ecdf3e 2281 insn = scan_region (insn, NOTE_BLOCK_NUMBER (insn), &n);
2282 }
2283 }
2284}
447a9eb9 2285\f
2286/* Various hooks for the DWARF 2 __throw routine. */
2287
2288/* Do any necessary initialization to access arbitrary stack frames.
2289 On the SPARC, this means flushing the register windows. */
2290
2291void
2292expand_builtin_unwind_init ()
2293{
2294 /* Set this so all the registers get saved in our frame; we need to be
2295 able to copy the saved values for any registers from frames we unwind. */
2296 current_function_has_nonlocal_label = 1;
2297
2298#ifdef SETUP_FRAME_ADDRESSES
2299 SETUP_FRAME_ADDRESSES ();
2300#endif
2301}
2302
2303/* Given a value extracted from the return address register or stack slot,
2304 return the actual address encoded in that value. */
2305
2306rtx
2307expand_builtin_extract_return_addr (addr_tree)
2308 tree addr_tree;
2309{
2310 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2311 return eh_outer_context (addr);
2312}
2313
2314/* Given an actual address in addr_tree, do any necessary encoding
2315 and return the value to be stored in the return address register or
2316 stack slot so the epilogue will return to that address. */
2317
2318rtx
2319expand_builtin_frob_return_addr (addr_tree)
2320 tree addr_tree;
2321{
2322 rtx addr = expand_expr (addr_tree, NULL_RTX, Pmode, 0);
2323#ifdef RETURN_ADDR_OFFSET
2324 addr = plus_constant (addr, -RETURN_ADDR_OFFSET);
2325#endif
2326 return addr;
2327}
2328
2329/* Given an actual address in addr_tree, set the return address register up
2330 so the epilogue will return to that address. If the return address is
2331 not in a register, do nothing. */
2332
2333void
2334expand_builtin_set_return_addr_reg (addr_tree)
2335 tree addr_tree;
2336{
72dd70cc 2337 rtx tmp;
447a9eb9 2338 rtx ra = expand_builtin_return_addr (BUILT_IN_RETURN_ADDRESS,
2339 0, hard_frame_pointer_rtx);
2340
2341 if (GET_CODE (ra) != REG || REGNO (ra) >= FIRST_PSEUDO_REGISTER)
2342 return;
2343
72dd70cc 2344 tmp = force_operand (expand_builtin_frob_return_addr (addr_tree), ra);
2345 if (tmp != ra)
2346 emit_move_insn (ra, tmp);
447a9eb9 2347}
2348
2349/* Choose two registers for communication between the main body of
2350 __throw and the stub for adjusting the stack pointer. The first register
2351 is used to pass the address of the exception handler; the second register
2352 is used to pass the stack pointer offset.
2353
2354 For register 1 we use the return value register for a void *.
2355 For register 2 we use the static chain register if it exists and is
2356 different from register 1, otherwise some arbitrary call-clobbered
2357 register. */
2358
2359static void
2360eh_regs (r1, r2, outgoing)
2361 rtx *r1, *r2;
2362 int outgoing;
2363{
2364 rtx reg1, reg2;
2365
2366#ifdef FUNCTION_OUTGOING_VALUE
2367 if (outgoing)
2368 reg1 = FUNCTION_OUTGOING_VALUE (build_pointer_type (void_type_node),
2369 current_function_decl);
2370 else
2371#endif
2372 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2373 current_function_decl);
2374
2375#ifdef STATIC_CHAIN_REGNUM
2376 if (outgoing)
2377 reg2 = static_chain_incoming_rtx;
2378 else
2379 reg2 = static_chain_rtx;
2380 if (REGNO (reg2) == REGNO (reg1))
2381#endif /* STATIC_CHAIN_REGNUM */
2382 reg2 = NULL_RTX;
2383
2384 if (reg2 == NULL_RTX)
2385 {
2386 int i;
2387 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
2388 if (call_used_regs[i] && ! fixed_regs[i] && i != REGNO (reg1))
2389 {
941522d6 2390 reg2 = gen_rtx_REG (Pmode, i);
447a9eb9 2391 break;
2392 }
2393
2394 if (reg2 == NULL_RTX)
2395 abort ();
2396 }
2397
2398 *r1 = reg1;
2399 *r2 = reg2;
2400}
2401
011a7f23 2402
2403/* Retrieve the register which contains the pointer to the eh_context
2404 structure set the __throw. */
2405
2406rtx
2407get_reg_for_handler ()
2408{
2409 rtx reg1;
2410 reg1 = FUNCTION_VALUE (build_pointer_type (void_type_node),
2411 current_function_decl);
2412 return reg1;
2413}
2414
2415
447a9eb9 2416/* Emit inside of __throw a stub which adjusts the stack pointer and jumps
2417 to the exception handler. __throw will set up the necessary values
2418 and then return to the stub. */
2419
173f0bec 2420rtx
2421expand_builtin_eh_stub_old ()
2422{
2423 rtx stub_start = gen_label_rtx ();
2424 rtx after_stub = gen_label_rtx ();
2425 rtx handler, offset;
2426
2427 emit_jump (after_stub);
2428 emit_label (stub_start);
2429
2430 eh_regs (&handler, &offset, 0);
2431
2432 adjust_stack (offset);
2433 emit_indirect_jump (handler);
2434 emit_label (after_stub);
2435 return gen_rtx_LABEL_REF (Pmode, stub_start);
2436}
2437
447a9eb9 2438rtx
2439expand_builtin_eh_stub ()
2440{
2441 rtx stub_start = gen_label_rtx ();
2442 rtx after_stub = gen_label_rtx ();
0c22b90f 2443 rtx handler, offset;
a986b5e0 2444 rtx temp;
447a9eb9 2445
2446 emit_jump (after_stub);
2447 emit_label (stub_start);
2448
2449 eh_regs (&handler, &offset, 0);
2450
2451 adjust_stack (offset);
011a7f23 2452
2453 /* Handler is in fact a pointer to the _eh_context structure, we need
2454 to pick out the handler field (first element), and jump to there,
2455 leaving the pointer to _eh_conext in the same hardware register. */
011a7f23 2456
461896e5 2457 temp = gen_rtx_MEM (Pmode, handler);
173f0bec 2458 MEM_IN_STRUCT_P (temp) = 1;
2459 RTX_UNCHANGING_P (temp) = 1;
461896e5 2460 emit_move_insn (offset, temp);
173f0bec 2461 emit_insn (gen_rtx_USE (Pmode, handler));
011a7f23 2462
173f0bec 2463 emit_indirect_jump (offset);
011a7f23 2464
447a9eb9 2465 emit_label (after_stub);
941522d6 2466 return gen_rtx_LABEL_REF (Pmode, stub_start);
447a9eb9 2467}
2468
2469/* Set up the registers for passing the handler address and stack offset
2470 to the stub above. */
2471
2472void
2473expand_builtin_set_eh_regs (handler, offset)
2474 tree handler, offset;
2475{
2476 rtx reg1, reg2;
2477
2478 eh_regs (&reg1, &reg2, 1);
2479
2480 store_expr (offset, reg2, 0);
2481 store_expr (handler, reg1, 0);
2482
2483 /* These will be used by the stub. */
941522d6 2484 emit_insn (gen_rtx_USE (VOIDmode, reg1));
2485 emit_insn (gen_rtx_USE (VOIDmode, reg2));
447a9eb9 2486}
cac66fd5 2487
2488\f
2489
2490/* This contains the code required to verify whether arbitrary instructions
2491 are in the same exception region. */
2492
2493static int *insn_eh_region = (int *)0;
2494static int maximum_uid;
2495
5c4826b3 2496static void
2497set_insn_eh_region (first, region_num)
cac66fd5 2498 rtx *first;
2499 int region_num;
2500{
2501 rtx insn;
2502 int rnum;
2503
2504 for (insn = *first; insn; insn = NEXT_INSN (insn))
2505 {
2506 if ((GET_CODE (insn) == NOTE) &&
2507 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_BEG))
2508 {
2509 rnum = NOTE_BLOCK_NUMBER (insn);
2510 insn_eh_region[INSN_UID (insn)] = rnum;
2511 insn = NEXT_INSN (insn);
2512 set_insn_eh_region (&insn, rnum);
2513 /* Upon return, insn points to the EH_REGION_END of nested region */
2514 continue;
2515 }
2516 insn_eh_region[INSN_UID (insn)] = region_num;
2517 if ((GET_CODE (insn) == NOTE) &&
2518 (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EH_REGION_END))
2519 break;
2520 }
2521 *first = insn;
2522}
2523
2524/* Free the insn table, an make sure it cannot be used again. */
2525
011a7f23 2526void
2527free_insn_eh_region ()
cac66fd5 2528{
2529 if (!doing_eh (0))
2530 return;
2531
2532 if (insn_eh_region)
2533 {
2534 free (insn_eh_region);
2535 insn_eh_region = (int *)0;
2536 }
2537}
2538
2539/* Initialize the table. max_uid must be calculated and handed into
2540 this routine. If it is unavailable, passing a value of 0 will
2541 cause this routine to calculate it as well. */
2542
011a7f23 2543void
2544init_insn_eh_region (first, max_uid)
cac66fd5 2545 rtx first;
2546 int max_uid;
2547{
2548 rtx insn;
2549
2550 if (!doing_eh (0))
2551 return;
2552
2553 if (insn_eh_region)
2554 free_insn_eh_region();
2555
2556 if (max_uid == 0)
2557 for (insn = first; insn; insn = NEXT_INSN (insn))
2558 if (INSN_UID (insn) > max_uid) /* find largest UID */
2559 max_uid = INSN_UID (insn);
2560
2561 maximum_uid = max_uid;
2562 insn_eh_region = (int *) malloc ((max_uid + 1) * sizeof (int));
2563 insn = first;
2564 set_insn_eh_region (&insn, 0);
2565}
2566
2567
2568/* Check whether 2 instructions are within the same region. */
2569
011a7f23 2570int
2571in_same_eh_region (insn1, insn2)
2572 rtx insn1, insn2;
cac66fd5 2573{
2574 int ret, uid1, uid2;
2575
2576 /* If no exceptions, instructions are always in same region. */
2577 if (!doing_eh (0))
2578 return 1;
2579
2580 /* If the table isn't allocated, assume the worst. */
2581 if (!insn_eh_region)
2582 return 0;
2583
2584 uid1 = INSN_UID (insn1);
2585 uid2 = INSN_UID (insn2);
2586
2587 /* if instructions have been allocated beyond the end, either
2588 the table is out of date, or this is a late addition, or
2589 something... Assume the worst. */
2590 if (uid1 > maximum_uid || uid2 > maximum_uid)
2591 return 0;
2592
2593 ret = (insn_eh_region[uid1] == insn_eh_region[uid2]);
2594 return ret;
2595}
2596