]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/explow.c
Daily bump.
[thirdparty/gcc.git] / gcc / explow.c
CommitLineData
18ca7dab 1/* Subroutines for manipulating rtx's in semantically interesting ways.
5624e564 2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
18ca7dab 3
1322177d 4This file is part of GCC.
18ca7dab 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
18ca7dab 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
18ca7dab
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
18ca7dab
RK
19
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6
ZW
23#include "coretypes.h"
24#include "tm.h"
718f9c0f 25#include "diagnostic-core.h"
18ca7dab 26#include "rtl.h"
40e23961
MC
27#include "hash-set.h"
28#include "machmode.h"
29#include "vec.h"
30#include "double-int.h"
31#include "input.h"
32#include "alias.h"
33#include "symtab.h"
34#include "wide-int.h"
35#include "inchash.h"
36#include "real.h"
18ca7dab 37#include "tree.h"
d8a2d370 38#include "stor-layout.h"
6baf1cc8 39#include "tm_p.h"
18ca7dab 40#include "flags.h"
b38f3813 41#include "except.h"
83685514 42#include "hard-reg-set.h"
49ad7cfa 43#include "function.h"
36566b39
PK
44#include "hashtab.h"
45#include "statistics.h"
46#include "fixed-value.h"
47#include "insn-config.h"
48#include "expmed.h"
49#include "dojump.h"
50#include "explow.h"
51#include "calls.h"
52#include "emit-rtl.h"
53#include "varasm.h"
54#include "stmt.h"
18ca7dab 55#include "expr.h"
b0710fe1 56#include "insn-codes.h"
e78d8e51 57#include "optabs.h"
d477d1fe 58#include "libfuncs.h"
1d974ca7 59#include "ggc.h"
18ca7dab 60#include "recog.h"
a77a9a18 61#include "langhooks.h"
1d636cc6 62#include "target.h"
677f3fa8 63#include "common/common-target.h"
aacd3885 64#include "output.h"
18ca7dab 65
502b8322 66static rtx break_out_memory_refs (rtx);
7e4ce834
RH
67
68
69/* Truncate and perhaps sign-extend C as appropriate for MODE. */
70
71HOST_WIDE_INT
ef4bddc2 72trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
7e4ce834 73{
5511bc5a 74 int width = GET_MODE_PRECISION (mode);
7e4ce834 75
71012d97 76 /* You want to truncate to a _what_? */
d5e254e1
IE
77 gcc_assert (SCALAR_INT_MODE_P (mode)
78 || POINTER_BOUNDS_MODE_P (mode));
71012d97 79
1f3f36d1
RH
80 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
81 if (mode == BImode)
82 return c & 1 ? STORE_FLAG_VALUE : 0;
83
5b0d91c3
AO
84 /* Sign-extend for the requested mode. */
85
86 if (width < HOST_BITS_PER_WIDE_INT)
87 {
88 HOST_WIDE_INT sign = 1;
89 sign <<= width - 1;
90 c &= (sign << 1) - 1;
91 c ^= sign;
92 c -= sign;
93 }
7e4ce834
RH
94
95 return c;
96}
97
929e10f4 98/* Return an rtx for the sum of X and the integer C, given that X has
23b33725
RS
99 mode MODE. INPLACE is true if X can be modified inplace or false
100 if it must be treated as immutable. */
18ca7dab
RK
101
102rtx
ef4bddc2 103plus_constant (machine_mode mode, rtx x, HOST_WIDE_INT c,
23b33725 104 bool inplace)
18ca7dab 105{
b3694847 106 RTX_CODE code;
17ab7c59 107 rtx y;
b3694847 108 rtx tem;
18ca7dab
RK
109 int all_constant = 0;
110
0a81f074
RS
111 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
112
18ca7dab
RK
113 if (c == 0)
114 return x;
115
116 restart:
117
118 code = GET_CODE (x);
17ab7c59
RK
119 y = x;
120
18ca7dab
RK
121 switch (code)
122 {
807e902e
KZ
123 CASE_CONST_SCALAR_INT:
124 return immed_wide_int_const (wi::add (std::make_pair (x, mode), c),
125 mode);
18ca7dab
RK
126 case MEM:
127 /* If this is a reference to the constant pool, try replacing it with
128 a reference to a new constant. If the resulting address isn't
129 valid, don't return it because we have no way to validize it. */
130 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
131 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
132 {
0a81f074 133 tem = plus_constant (mode, get_pool_constant (XEXP (x, 0)), c);
929e10f4 134 tem = force_const_mem (GET_MODE (x), tem);
18ca7dab
RK
135 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
136 return tem;
137 }
138 break;
139
140 case CONST:
141 /* If adding to something entirely constant, set a flag
142 so that we can add a CONST around the result. */
23b33725
RS
143 if (inplace && shared_const_p (x))
144 inplace = false;
18ca7dab
RK
145 x = XEXP (x, 0);
146 all_constant = 1;
147 goto restart;
148
149 case SYMBOL_REF:
150 case LABEL_REF:
151 all_constant = 1;
152 break;
153
154 case PLUS:
929e10f4
MS
155 /* The interesting case is adding the integer to a sum. Look
156 for constant term in the sum and combine with C. For an
157 integer constant term or a constant term that is not an
158 explicit integer, we combine or group them together anyway.
03d937fc
R
159
160 We may not immediately return from the recursive call here, lest
161 all_constant gets lost. */
e5671f2b 162
929e10f4 163 if (CONSTANT_P (XEXP (x, 1)))
03d937fc 164 {
23b33725
RS
165 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
166 if (term == const0_rtx)
167 x = XEXP (x, 0);
168 else if (inplace)
169 XEXP (x, 1) = term;
170 else
171 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
03d937fc
R
172 c = 0;
173 }
23b33725 174 else if (rtx *const_loc = find_constant_term_loc (&y))
03d937fc 175 {
23b33725
RS
176 if (!inplace)
177 {
178 /* We need to be careful since X may be shared and we can't
179 modify it in place. */
180 x = copy_rtx (x);
181 const_loc = find_constant_term_loc (&x);
182 }
183 *const_loc = plus_constant (mode, *const_loc, c, true);
03d937fc
R
184 c = 0;
185 }
38a448ca 186 break;
ed8908e7 187
38a448ca
RH
188 default:
189 break;
18ca7dab
RK
190 }
191
192 if (c != 0)
4789c0ce 193 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
18ca7dab
RK
194
195 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
196 return x;
197 else if (all_constant)
38a448ca 198 return gen_rtx_CONST (mode, x);
18ca7dab
RK
199 else
200 return x;
201}
18ca7dab
RK
202\f
203/* If X is a sum, return a new sum like X but lacking any constant terms.
204 Add all the removed constant terms into *CONSTPTR.
205 X itself is not altered. The result != X if and only if
206 it is not isomorphic to X. */
207
208rtx
502b8322 209eliminate_constant_term (rtx x, rtx *constptr)
18ca7dab 210{
b3694847 211 rtx x0, x1;
18ca7dab
RK
212 rtx tem;
213
214 if (GET_CODE (x) != PLUS)
215 return x;
216
217 /* First handle constants appearing at this level explicitly. */
481683e1 218 if (CONST_INT_P (XEXP (x, 1))
18ca7dab
RK
219 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
220 XEXP (x, 1)))
481683e1 221 && CONST_INT_P (tem))
18ca7dab
RK
222 {
223 *constptr = tem;
224 return eliminate_constant_term (XEXP (x, 0), constptr);
225 }
226
227 tem = const0_rtx;
228 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
229 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
230 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
231 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
232 *constptr, tem))
481683e1 233 && CONST_INT_P (tem))
18ca7dab
RK
234 {
235 *constptr = tem;
38a448ca 236 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
18ca7dab
RK
237 }
238
239 return x;
240}
241
18ca7dab
RK
242\f
243/* Return a copy of X in which all memory references
244 and all constants that involve symbol refs
245 have been replaced with new temporary registers.
246 Also emit code to load the memory locations and constants
247 into those registers.
248
249 If X contains no such constants or memory references,
250 X itself (not a copy) is returned.
251
252 If a constant is found in the address that is not a legitimate constant
253 in an insn, it is left alone in the hope that it might be valid in the
254 address.
255
256 X may contain no arithmetic except addition, subtraction and multiplication.
257 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
258
259static rtx
502b8322 260break_out_memory_refs (rtx x)
18ca7dab 261{
3c0cb5de 262 if (MEM_P (x)
cabeca29 263 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
18ca7dab 264 && GET_MODE (x) != VOIDmode))
2cca6e3f 265 x = force_reg (GET_MODE (x), x);
18ca7dab
RK
266 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
267 || GET_CODE (x) == MULT)
268 {
b3694847
SS
269 rtx op0 = break_out_memory_refs (XEXP (x, 0));
270 rtx op1 = break_out_memory_refs (XEXP (x, 1));
2cca6e3f 271
18ca7dab 272 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
d4ebfa65 273 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
18ca7dab 274 }
2cca6e3f 275
18ca7dab
RK
276 return x;
277}
278
d4ebfa65
BE
279/* Given X, a memory address in address space AS' pointer mode, convert it to
280 an address in the address space's address mode, or vice versa (TO_MODE says
281 which way). We take advantage of the fact that pointers are not allowed to
282 overflow by commuting arithmetic operations over conversions so that address
7745730f
AP
283 arithmetic insns can be used. IN_CONST is true if this conversion is inside
284 a CONST. */
ea534b63 285
7745730f 286static rtx
ef4bddc2 287convert_memory_address_addr_space_1 (machine_mode to_mode ATTRIBUTE_UNUSED,
7745730f 288 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
c582bb15 289 bool in_const ATTRIBUTE_UNUSED)
ea534b63 290{
5ae6cd0d 291#ifndef POINTERS_EXTEND_UNSIGNED
7c137931 292 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
5ae6cd0d
MM
293 return x;
294#else /* defined(POINTERS_EXTEND_UNSIGNED) */
ef4bddc2 295 machine_mode pointer_mode, address_mode, from_mode;
498b529f 296 rtx temp;
aa0f70e6 297 enum rtx_code code;
498b529f 298
5ae6cd0d
MM
299 /* If X already has the right mode, just return it. */
300 if (GET_MODE (x) == to_mode)
301 return x;
302
d4ebfa65
BE
303 pointer_mode = targetm.addr_space.pointer_mode (as);
304 address_mode = targetm.addr_space.address_mode (as);
305 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
5ae6cd0d 306
0b04ec8c
RK
307 /* Here we handle some special cases. If none of them apply, fall through
308 to the default case. */
ea534b63
RK
309 switch (GET_CODE (x))
310 {
d8116890 311 CASE_CONST_SCALAR_INT:
aa0f70e6
SE
312 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
313 code = TRUNCATE;
314 else if (POINTERS_EXTEND_UNSIGNED < 0)
315 break;
316 else if (POINTERS_EXTEND_UNSIGNED > 0)
317 code = ZERO_EXTEND;
318 else
319 code = SIGN_EXTEND;
320 temp = simplify_unary_operation (code, to_mode, x, from_mode);
321 if (temp)
322 return temp;
323 break;
498b529f 324
d1405722 325 case SUBREG:
5da4f548 326 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
6dd12198 327 && GET_MODE (SUBREG_REG (x)) == to_mode)
d1405722
RK
328 return SUBREG_REG (x);
329 break;
330
ea534b63 331 case LABEL_REF:
a827d9b1 332 temp = gen_rtx_LABEL_REF (to_mode, LABEL_REF_LABEL (x));
5da4f548
SE
333 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
334 return temp;
6dd12198 335 break;
498b529f 336
ea534b63 337 case SYMBOL_REF:
ce02ba25
EC
338 temp = shallow_copy_rtx (x);
339 PUT_MODE (temp, to_mode);
5da4f548 340 return temp;
6dd12198 341 break;
ea534b63 342
498b529f 343 case CONST:
5da4f548 344 return gen_rtx_CONST (to_mode,
7745730f
AP
345 convert_memory_address_addr_space_1
346 (to_mode, XEXP (x, 0), as, true));
6dd12198 347 break;
ea534b63 348
0b04ec8c
RK
349 case PLUS:
350 case MULT:
ceeb2cbc
AP
351 /* For addition we can safely permute the conversion and addition
352 operation if one operand is a constant and converting the constant
353 does not change it or if one operand is a constant and we are
354 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
17939c98 355 We can always safely permute them if we are making the address
7745730f
AP
356 narrower. Inside a CONST RTL, this is safe for both pointers
357 zero or sign extended as pointers cannot wrap. */
aa0f70e6
SE
358 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
359 || (GET_CODE (x) == PLUS
481683e1 360 && CONST_INT_P (XEXP (x, 1))
7745730f
AP
361 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
362 || XEXP (x, 1) == convert_memory_address_addr_space_1
363 (to_mode, XEXP (x, 1), as, in_const)
364 || POINTERS_EXTEND_UNSIGNED < 0)))
d9b3eb63 365 return gen_rtx_fmt_ee (GET_CODE (x), to_mode,
7745730f
AP
366 convert_memory_address_addr_space_1
367 (to_mode, XEXP (x, 0), as, in_const),
aa0f70e6 368 XEXP (x, 1));
38a448ca 369 break;
d9b3eb63 370
38a448ca
RH
371 default:
372 break;
ea534b63 373 }
0b04ec8c
RK
374
375 return convert_modes (to_mode, from_mode,
376 x, POINTERS_EXTEND_UNSIGNED);
5ae6cd0d 377#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
ea534b63 378}
7745730f
AP
379
380/* Given X, a memory address in address space AS' pointer mode, convert it to
381 an address in the address space's address mode, or vice versa (TO_MODE says
382 which way). We take advantage of the fact that pointers are not allowed to
383 overflow by commuting arithmetic operations over conversions so that address
384 arithmetic insns can be used. */
385
386rtx
ef4bddc2 387convert_memory_address_addr_space (machine_mode to_mode, rtx x, addr_space_t as)
7745730f
AP
388{
389 return convert_memory_address_addr_space_1 (to_mode, x, as, false);
390}
18ca7dab 391\f
36566b39 392
09e881c9
BE
393/* Return something equivalent to X but valid as a memory address for something
394 of mode MODE in the named address space AS. When X is not itself valid,
395 this works by copying X or subexpressions of it into registers. */
18ca7dab
RK
396
397rtx
ef4bddc2 398memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
18ca7dab 399{
b3694847 400 rtx oldx = x;
ef4bddc2 401 machine_mode address_mode = targetm.addr_space.address_mode (as);
18ca7dab 402
d4ebfa65 403 x = convert_memory_address_addr_space (address_mode, x, as);
ea534b63 404
ba228239 405 /* By passing constant addresses through registers
18ca7dab 406 we get a chance to cse them. */
cabeca29 407 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
d4ebfa65 408 x = force_reg (address_mode, x);
18ca7dab 409
18ca7dab
RK
410 /* We get better cse by rejecting indirect addressing at this stage.
411 Let the combiner create indirect addresses where appropriate.
412 For now, generate the code so that the subexpressions useful to share
413 are visible. But not if cse won't be done! */
18b9ca6f 414 else
18ca7dab 415 {
f8cfc6aa 416 if (! cse_not_expected && !REG_P (x))
18b9ca6f
RK
417 x = break_out_memory_refs (x);
418
419 /* At this point, any valid address is accepted. */
09e881c9 420 if (memory_address_addr_space_p (mode, x, as))
3de5e93a 421 goto done;
18b9ca6f
RK
422
423 /* If it was valid before but breaking out memory refs invalidated it,
424 use it the old way. */
09e881c9 425 if (memory_address_addr_space_p (mode, oldx, as))
3de5e93a
SB
426 {
427 x = oldx;
428 goto done;
429 }
18b9ca6f
RK
430
431 /* Perform machine-dependent transformations on X
432 in certain cases. This is not necessary since the code
433 below can handle all possible cases, but machine-dependent
434 transformations can make better code. */
506d7b68 435 {
09e881c9
BE
436 rtx orig_x = x;
437 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
438 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
506d7b68
PB
439 goto done;
440 }
18b9ca6f
RK
441
442 /* PLUS and MULT can appear in special ways
443 as the result of attempts to make an address usable for indexing.
444 Usually they are dealt with by calling force_operand, below.
445 But a sum containing constant terms is special
446 if removing them makes the sum a valid address:
447 then we generate that address in a register
448 and index off of it. We do this because it often makes
449 shorter code, and because the addresses thus generated
450 in registers often become common subexpressions. */
451 if (GET_CODE (x) == PLUS)
452 {
453 rtx constant_term = const0_rtx;
454 rtx y = eliminate_constant_term (x, &constant_term);
455 if (constant_term == const0_rtx
09e881c9 456 || ! memory_address_addr_space_p (mode, y, as))
18b9ca6f
RK
457 x = force_operand (x, NULL_RTX);
458 else
459 {
38a448ca 460 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
09e881c9 461 if (! memory_address_addr_space_p (mode, y, as))
18b9ca6f
RK
462 x = force_operand (x, NULL_RTX);
463 else
464 x = y;
465 }
466 }
18ca7dab 467
e475ed2a 468 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
18b9ca6f 469 x = force_operand (x, NULL_RTX);
18ca7dab 470
18b9ca6f
RK
471 /* If we have a register that's an invalid address,
472 it must be a hard reg of the wrong class. Copy it to a pseudo. */
f8cfc6aa 473 else if (REG_P (x))
18b9ca6f
RK
474 x = copy_to_reg (x);
475
476 /* Last resort: copy the value to a register, since
477 the register is a valid address. */
478 else
d4ebfa65 479 x = force_reg (address_mode, x);
18ca7dab 480 }
18b9ca6f
RK
481
482 done:
483
09e881c9 484 gcc_assert (memory_address_addr_space_p (mode, x, as));
2cca6e3f
RK
485 /* If we didn't change the address, we are done. Otherwise, mark
486 a reg as a pointer if we have REG or REG + CONST_INT. */
487 if (oldx == x)
488 return x;
f8cfc6aa 489 else if (REG_P (x))
bdb429a5 490 mark_reg_pointer (x, BITS_PER_UNIT);
2cca6e3f 491 else if (GET_CODE (x) == PLUS
f8cfc6aa 492 && REG_P (XEXP (x, 0))
481683e1 493 && CONST_INT_P (XEXP (x, 1)))
bdb429a5 494 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
2cca6e3f 495
18b9ca6f
RK
496 /* OLDX may have been the address on a temporary. Update the address
497 to indicate that X is now used. */
498 update_temp_slot_address (oldx, x);
499
18ca7dab
RK
500 return x;
501}
502
1a8cb155
RS
503/* If REF is a MEM with an invalid address, change it into a valid address.
504 Pass through anything else unchanged. REF must be an unshared rtx and
505 the function may modify it in-place. */
18ca7dab
RK
506
507rtx
502b8322 508validize_mem (rtx ref)
18ca7dab 509{
3c0cb5de 510 if (!MEM_P (ref))
18ca7dab 511 return ref;
aacd3885 512 ref = use_anchored_address (ref);
09e881c9
BE
513 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
514 MEM_ADDR_SPACE (ref)))
18ca7dab 515 return ref;
792760b9 516
1a8cb155 517 return replace_equiv_address (ref, XEXP (ref, 0), true);
18ca7dab 518}
aacd3885
RS
519
520/* If X is a memory reference to a member of an object block, try rewriting
521 it to use an anchor instead. Return the new memory reference on success
522 and the old one on failure. */
523
524rtx
525use_anchored_address (rtx x)
526{
527 rtx base;
528 HOST_WIDE_INT offset;
ef4bddc2 529 machine_mode mode;
aacd3885
RS
530
531 if (!flag_section_anchors)
532 return x;
533
534 if (!MEM_P (x))
535 return x;
536
537 /* Split the address into a base and offset. */
538 base = XEXP (x, 0);
539 offset = 0;
540 if (GET_CODE (base) == CONST
541 && GET_CODE (XEXP (base, 0)) == PLUS
481683e1 542 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
aacd3885
RS
543 {
544 offset += INTVAL (XEXP (XEXP (base, 0), 1));
545 base = XEXP (XEXP (base, 0), 0);
546 }
547
548 /* Check whether BASE is suitable for anchors. */
549 if (GET_CODE (base) != SYMBOL_REF
3fa9c136 550 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
aacd3885 551 || SYMBOL_REF_ANCHOR_P (base)
434aeebb 552 || SYMBOL_REF_BLOCK (base) == NULL
aacd3885
RS
553 || !targetm.use_anchors_for_symbol_p (base))
554 return x;
555
556 /* Decide where BASE is going to be. */
557 place_block_symbol (base);
558
559 /* Get the anchor we need to use. */
560 offset += SYMBOL_REF_BLOCK_OFFSET (base);
561 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
562 SYMBOL_REF_TLS_MODEL (base));
563
564 /* Work out the offset from the anchor. */
565 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
566
567 /* If we're going to run a CSE pass, force the anchor into a register.
568 We will then be able to reuse registers for several accesses, if the
569 target costs say that that's worthwhile. */
0a81f074 570 mode = GET_MODE (base);
aacd3885 571 if (!cse_not_expected)
0a81f074 572 base = force_reg (mode, base);
aacd3885 573
0a81f074 574 return replace_equiv_address (x, plus_constant (mode, base, offset));
aacd3885 575}
18ca7dab 576\f
18ca7dab
RK
577/* Copy the value or contents of X to a new temp reg and return that reg. */
578
579rtx
502b8322 580copy_to_reg (rtx x)
18ca7dab 581{
b3694847 582 rtx temp = gen_reg_rtx (GET_MODE (x));
d9b3eb63 583
18ca7dab 584 /* If not an operand, must be an address with PLUS and MULT so
d9b3eb63 585 do the computation. */
18ca7dab
RK
586 if (! general_operand (x, VOIDmode))
587 x = force_operand (x, temp);
d9b3eb63 588
18ca7dab
RK
589 if (x != temp)
590 emit_move_insn (temp, x);
591
592 return temp;
593}
594
595/* Like copy_to_reg but always give the new register mode Pmode
596 in case X is a constant. */
597
598rtx
502b8322 599copy_addr_to_reg (rtx x)
18ca7dab
RK
600{
601 return copy_to_mode_reg (Pmode, x);
602}
603
604/* Like copy_to_reg but always give the new register mode MODE
605 in case X is a constant. */
606
607rtx
ef4bddc2 608copy_to_mode_reg (machine_mode mode, rtx x)
18ca7dab 609{
b3694847 610 rtx temp = gen_reg_rtx (mode);
d9b3eb63 611
18ca7dab 612 /* If not an operand, must be an address with PLUS and MULT so
d9b3eb63 613 do the computation. */
18ca7dab
RK
614 if (! general_operand (x, VOIDmode))
615 x = force_operand (x, temp);
616
5b0264cb 617 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
18ca7dab
RK
618 if (x != temp)
619 emit_move_insn (temp, x);
620 return temp;
621}
622
623/* Load X into a register if it is not already one.
624 Use mode MODE for the register.
625 X should be valid for mode MODE, but it may be a constant which
626 is valid for all integer modes; that's why caller must specify MODE.
627
628 The caller must not alter the value in the register we return,
629 since we mark it as a "constant" register. */
630
631rtx
ef4bddc2 632force_reg (machine_mode mode, rtx x)
18ca7dab 633{
528a80c1
DM
634 rtx temp, set;
635 rtx_insn *insn;
18ca7dab 636
f8cfc6aa 637 if (REG_P (x))
18ca7dab 638 return x;
d9b3eb63 639
e3c8ea67
RH
640 if (general_operand (x, mode))
641 {
642 temp = gen_reg_rtx (mode);
643 insn = emit_move_insn (temp, x);
644 }
645 else
646 {
647 temp = force_operand (x, NULL_RTX);
f8cfc6aa 648 if (REG_P (temp))
e3c8ea67
RH
649 insn = get_last_insn ();
650 else
651 {
652 rtx temp2 = gen_reg_rtx (mode);
653 insn = emit_move_insn (temp2, temp);
654 temp = temp2;
655 }
656 }
62874575 657
18ca7dab 658 /* Let optimizers know that TEMP's value never changes
62874575
RK
659 and that X can be substituted for it. Don't get confused
660 if INSN set something else (such as a SUBREG of TEMP). */
661 if (CONSTANT_P (x)
662 && (set = single_set (insn)) != 0
fd7acc30
RS
663 && SET_DEST (set) == temp
664 && ! rtx_equal_p (x, SET_SRC (set)))
3d238248 665 set_unique_reg_note (insn, REG_EQUAL, x);
e3c8ea67 666
4a4f95d9
RH
667 /* Let optimizers know that TEMP is a pointer, and if so, the
668 known alignment of that pointer. */
669 {
670 unsigned align = 0;
671 if (GET_CODE (x) == SYMBOL_REF)
672 {
673 align = BITS_PER_UNIT;
674 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
675 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
676 }
677 else if (GET_CODE (x) == LABEL_REF)
678 align = BITS_PER_UNIT;
679 else if (GET_CODE (x) == CONST
680 && GET_CODE (XEXP (x, 0)) == PLUS
681 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
481683e1 682 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
4a4f95d9
RH
683 {
684 rtx s = XEXP (XEXP (x, 0), 0);
685 rtx c = XEXP (XEXP (x, 0), 1);
686 unsigned sa, ca;
687
688 sa = BITS_PER_UNIT;
689 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
690 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
691
bd95721f
RH
692 if (INTVAL (c) == 0)
693 align = sa;
694 else
695 {
696 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
697 align = MIN (sa, ca);
698 }
4a4f95d9
RH
699 }
700
0a317111 701 if (align || (MEM_P (x) && MEM_POINTER (x)))
4a4f95d9
RH
702 mark_reg_pointer (temp, align);
703 }
704
18ca7dab
RK
705 return temp;
706}
707
708/* If X is a memory ref, copy its contents to a new temp reg and return
709 that reg. Otherwise, return X. */
710
711rtx
502b8322 712force_not_mem (rtx x)
18ca7dab 713{
b3694847 714 rtx temp;
fe3439b0 715
3c0cb5de 716 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
18ca7dab 717 return x;
fe3439b0 718
18ca7dab 719 temp = gen_reg_rtx (GET_MODE (x));
f8ad8d7c
ZD
720
721 if (MEM_POINTER (x))
722 REG_POINTER (temp) = 1;
723
18ca7dab
RK
724 emit_move_insn (temp, x);
725 return temp;
726}
727
728/* Copy X to TARGET (if it's nonzero and a reg)
729 or to a new temp reg and return that reg.
730 MODE is the mode to use for X in case it is a constant. */
731
732rtx
ef4bddc2 733copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
18ca7dab 734{
b3694847 735 rtx temp;
18ca7dab 736
f8cfc6aa 737 if (target && REG_P (target))
18ca7dab
RK
738 temp = target;
739 else
740 temp = gen_reg_rtx (mode);
741
742 emit_move_insn (temp, x);
743 return temp;
744}
745\f
cde0f3fd 746/* Return the mode to use to pass or return a scalar of TYPE and MODE.
9ff65789
RK
747 PUNSIGNEDP points to the signedness of the type and may be adjusted
748 to show what signedness to use on extension operations.
749
cde0f3fd
PB
750 FOR_RETURN is nonzero if the caller is promoting the return value
751 of FNDECL, else it is for promoting args. */
9ff65789 752
ef4bddc2
RS
753machine_mode
754promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
cde0f3fd
PB
755 const_tree funtype, int for_return)
756{
5e617be8
AK
757 /* Called without a type node for a libcall. */
758 if (type == NULL_TREE)
759 {
760 if (INTEGRAL_MODE_P (mode))
761 return targetm.calls.promote_function_mode (NULL_TREE, mode,
762 punsignedp, funtype,
763 for_return);
764 else
765 return mode;
766 }
767
cde0f3fd
PB
768 switch (TREE_CODE (type))
769 {
770 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
771 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
772 case POINTER_TYPE: case REFERENCE_TYPE:
773 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
774 for_return);
775
776 default:
777 return mode;
778 }
779}
780/* Return the mode to use to store a scalar of TYPE and MODE.
781 PUNSIGNEDP points to the signedness of the type and may be adjusted
782 to show what signedness to use on extension operations. */
d4453b7a 783
ef4bddc2
RS
784machine_mode
785promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
b1680483 786 int *punsignedp ATTRIBUTE_UNUSED)
9ff65789 787{
1e3287d0
RG
788#ifdef PROMOTE_MODE
789 enum tree_code code;
790 int unsignedp;
791#endif
792
5e617be8
AK
793 /* For libcalls this is invoked without TYPE from the backends
794 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
795 case. */
796 if (type == NULL_TREE)
797 return mode;
798
cde0f3fd
PB
799 /* FIXME: this is the same logic that was there until GCC 4.4, but we
800 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
801 is not defined. The affected targets are M32C, S390, SPARC. */
802#ifdef PROMOTE_MODE
1e3287d0
RG
803 code = TREE_CODE (type);
804 unsignedp = *punsignedp;
9ff65789 805
9ff65789
RK
806 switch (code)
807 {
9ff65789 808 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
325217ed 809 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
cde0f3fd
PB
810 PROMOTE_MODE (mode, unsignedp, type);
811 *punsignedp = unsignedp;
812 return mode;
9ff65789 813 break;
9ff65789 814
ea534b63 815#ifdef POINTERS_EXTEND_UNSIGNED
56a4c9e2 816 case REFERENCE_TYPE:
9ff65789 817 case POINTER_TYPE:
cde0f3fd 818 *punsignedp = POINTERS_EXTEND_UNSIGNED;
d4ebfa65
BE
819 return targetm.addr_space.address_mode
820 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
9ff65789 821 break;
ea534b63 822#endif
d9b3eb63 823
38a448ca 824 default:
cde0f3fd 825 return mode;
9ff65789 826 }
cde0f3fd 827#else
9ff65789 828 return mode;
cde0f3fd 829#endif
9ff65789 830}
cde0f3fd
PB
831
832
833/* Use one of promote_mode or promote_function_mode to find the promoted
834 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
835 of DECL after promotion. */
836
ef4bddc2 837machine_mode
cde0f3fd
PB
838promote_decl_mode (const_tree decl, int *punsignedp)
839{
840 tree type = TREE_TYPE (decl);
841 int unsignedp = TYPE_UNSIGNED (type);
ef4bddc2
RS
842 machine_mode mode = DECL_MODE (decl);
843 machine_mode pmode;
cde0f3fd 844
666e3ceb
PB
845 if (TREE_CODE (decl) == RESULT_DECL
846 || TREE_CODE (decl) == PARM_DECL)
cde0f3fd 847 pmode = promote_function_mode (type, mode, &unsignedp,
666e3ceb 848 TREE_TYPE (current_function_decl), 2);
cde0f3fd
PB
849 else
850 pmode = promote_mode (type, mode, &unsignedp);
851
852 if (punsignedp)
853 *punsignedp = unsignedp;
854 return pmode;
855}
856
9ff65789 857\f
9a08d230
RH
858/* Controls the behaviour of {anti_,}adjust_stack. */
859static bool suppress_reg_args_size;
860
861/* A helper for adjust_stack and anti_adjust_stack. */
862
863static void
864adjust_stack_1 (rtx adjust, bool anti_p)
865{
528a80c1
DM
866 rtx temp;
867 rtx_insn *insn;
9a08d230
RH
868
869#ifndef STACK_GROWS_DOWNWARD
870 /* Hereafter anti_p means subtract_p. */
871 anti_p = !anti_p;
872#endif
873
874 temp = expand_binop (Pmode,
875 anti_p ? sub_optab : add_optab,
876 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
877 OPTAB_LIB_WIDEN);
878
879 if (temp != stack_pointer_rtx)
880 insn = emit_move_insn (stack_pointer_rtx, temp);
881 else
882 {
883 insn = get_last_insn ();
884 temp = single_set (insn);
885 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
886 }
887
888 if (!suppress_reg_args_size)
889 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
890}
891
18ca7dab
RK
892/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
893 This pops when ADJUST is positive. ADJUST need not be constant. */
894
895void
502b8322 896adjust_stack (rtx adjust)
18ca7dab 897{
18ca7dab
RK
898 if (adjust == const0_rtx)
899 return;
900
1503a7ec
JH
901 /* We expect all variable sized adjustments to be multiple of
902 PREFERRED_STACK_BOUNDARY. */
481683e1 903 if (CONST_INT_P (adjust))
1503a7ec
JH
904 stack_pointer_delta -= INTVAL (adjust);
905
9a08d230 906 adjust_stack_1 (adjust, false);
18ca7dab
RK
907}
908
909/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
910 This pushes when ADJUST is positive. ADJUST need not be constant. */
911
912void
502b8322 913anti_adjust_stack (rtx adjust)
18ca7dab 914{
18ca7dab
RK
915 if (adjust == const0_rtx)
916 return;
917
1503a7ec
JH
918 /* We expect all variable sized adjustments to be multiple of
919 PREFERRED_STACK_BOUNDARY. */
481683e1 920 if (CONST_INT_P (adjust))
1503a7ec
JH
921 stack_pointer_delta += INTVAL (adjust);
922
9a08d230 923 adjust_stack_1 (adjust, true);
18ca7dab
RK
924}
925
926/* Round the size of a block to be pushed up to the boundary required
927 by this machine. SIZE is the desired size, which need not be constant. */
928
4dd9b044 929static rtx
502b8322 930round_push (rtx size)
18ca7dab 931{
32990d5b 932 rtx align_rtx, alignm1_rtx;
41ee3204 933
32990d5b
JJ
934 if (!SUPPORTS_STACK_ALIGNMENT
935 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
18ca7dab 936 {
32990d5b
JJ
937 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
938
939 if (align == 1)
940 return size;
941
942 if (CONST_INT_P (size))
943 {
944 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
41ee3204 945
32990d5b
JJ
946 if (INTVAL (size) != new_size)
947 size = GEN_INT (new_size);
948 return size;
949 }
950
951 align_rtx = GEN_INT (align);
952 alignm1_rtx = GEN_INT (align - 1);
18ca7dab
RK
953 }
954 else
955 {
32990d5b
JJ
956 /* If crtl->preferred_stack_boundary might still grow, use
957 virtual_preferred_stack_boundary_rtx instead. This will be
958 substituted by the right value in vregs pass and optimized
959 during combine. */
960 align_rtx = virtual_preferred_stack_boundary_rtx;
0a81f074
RS
961 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
962 NULL_RTX);
18ca7dab 963 }
41ee3204 964
32990d5b
JJ
965 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
966 but we know it can't. So add ourselves and then do
967 TRUNC_DIV_EXPR. */
968 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
969 NULL_RTX, 1, OPTAB_LIB_WIDEN);
970 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
971 NULL_RTX, 1);
972 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
973
18ca7dab
RK
974 return size;
975}
976\f
59257ff7
RK
977/* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
978 to a previously-created save area. If no save area has been allocated,
979 this function will allocate one. If a save area is specified, it
9eac0f2a 980 must be of the proper mode. */
59257ff7
RK
981
982void
9eac0f2a 983emit_stack_save (enum save_level save_level, rtx *psave)
59257ff7
RK
984{
985 rtx sa = *psave;
986 /* The default is that we use a move insn and save in a Pmode object. */
1476d1bd 987 rtx (*fcn) (rtx, rtx) = gen_move_insn_uncast;
ef4bddc2 988 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
59257ff7
RK
989
990 /* See if this machine has anything special to do for this kind of save. */
991 switch (save_level)
992 {
993#ifdef HAVE_save_stack_block
994 case SAVE_BLOCK:
995 if (HAVE_save_stack_block)
a260abc9 996 fcn = gen_save_stack_block;
59257ff7
RK
997 break;
998#endif
999#ifdef HAVE_save_stack_function
1000 case SAVE_FUNCTION:
1001 if (HAVE_save_stack_function)
a260abc9 1002 fcn = gen_save_stack_function;
59257ff7
RK
1003 break;
1004#endif
1005#ifdef HAVE_save_stack_nonlocal
1006 case SAVE_NONLOCAL:
1007 if (HAVE_save_stack_nonlocal)
a260abc9 1008 fcn = gen_save_stack_nonlocal;
59257ff7
RK
1009 break;
1010#endif
38a448ca
RH
1011 default:
1012 break;
59257ff7
RK
1013 }
1014
1015 /* If there is no save area and we have to allocate one, do so. Otherwise
1016 verify the save area is the proper mode. */
1017
1018 if (sa == 0)
1019 {
1020 if (mode != VOIDmode)
1021 {
1022 if (save_level == SAVE_NONLOCAL)
1023 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1024 else
1025 *psave = sa = gen_reg_rtx (mode);
1026 }
1027 }
59257ff7 1028
9eac0f2a
RH
1029 do_pending_stack_adjust ();
1030 if (sa != 0)
1031 sa = validize_mem (sa);
1032 emit_insn (fcn (sa, stack_pointer_rtx));
59257ff7
RK
1033}
1034
1035/* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
9eac0f2a 1036 area made by emit_stack_save. If it is zero, we have nothing to do. */
59257ff7
RK
1037
1038void
9eac0f2a 1039emit_stack_restore (enum save_level save_level, rtx sa)
59257ff7
RK
1040{
1041 /* The default is that we use a move insn. */
1476d1bd 1042 rtx (*fcn) (rtx, rtx) = gen_move_insn_uncast;
59257ff7 1043
50025f91
TV
1044 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1045 STACK_POINTER and HARD_FRAME_POINTER.
1046 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1047 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1048 aligned variables, which is reflected in ix86_can_eliminate.
1049 We normally still have the realigned STACK_POINTER that we can use.
1050 But if there is a stack restore still present at reload, it can trigger
1051 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1052 FRAME_POINTER into a hard reg.
1053 To prevent this situation, we force need_drap if we emit a stack
1054 restore. */
1055 if (SUPPORTS_STACK_ALIGNMENT)
1056 crtl->need_drap = true;
1057
59257ff7
RK
1058 /* See if this machine has anything special to do for this kind of save. */
1059 switch (save_level)
1060 {
1061#ifdef HAVE_restore_stack_block
1062 case SAVE_BLOCK:
1063 if (HAVE_restore_stack_block)
1064 fcn = gen_restore_stack_block;
1065 break;
1066#endif
1067#ifdef HAVE_restore_stack_function
1068 case SAVE_FUNCTION:
1069 if (HAVE_restore_stack_function)
1070 fcn = gen_restore_stack_function;
1071 break;
1072#endif
1073#ifdef HAVE_restore_stack_nonlocal
59257ff7
RK
1074 case SAVE_NONLOCAL:
1075 if (HAVE_restore_stack_nonlocal)
1076 fcn = gen_restore_stack_nonlocal;
1077 break;
1078#endif
38a448ca
RH
1079 default:
1080 break;
59257ff7
RK
1081 }
1082
d072107f 1083 if (sa != 0)
260f91c2
DJ
1084 {
1085 sa = validize_mem (sa);
1086 /* These clobbers prevent the scheduler from moving
1087 references to variable arrays below the code
4b7e68e7 1088 that deletes (pops) the arrays. */
c41c1387
RS
1089 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1090 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
260f91c2 1091 }
d072107f 1092
a494ed43
EB
1093 discard_pending_stack_adjust ();
1094
9eac0f2a 1095 emit_insn (fcn (stack_pointer_rtx, sa));
59257ff7 1096}
6de9cd9a
DN
1097
1098/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
d33606c3
EB
1099 function. This should be called whenever we allocate or deallocate
1100 dynamic stack space. */
6de9cd9a
DN
1101
1102void
1103update_nonlocal_goto_save_area (void)
1104{
1105 tree t_save;
1106 rtx r_save;
1107
1108 /* The nonlocal_goto_save_area object is an array of N pointers. The
1109 first one is used for the frame pointer save; the rest are sized by
1110 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1111 of the stack save area slots. */
6bbec3e1
L
1112 t_save = build4 (ARRAY_REF,
1113 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1114 cfun->nonlocal_goto_save_area,
3244e67d 1115 integer_one_node, NULL_TREE, NULL_TREE);
6de9cd9a
DN
1116 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1117
9eac0f2a 1118 emit_stack_save (SAVE_NONLOCAL, &r_save);
6de9cd9a 1119}
d33606c3
EB
1120
1121/* Record a new stack level for the current function. This should be called
1122 whenever we allocate or deallocate dynamic stack space. */
1123
1124void
1125record_new_stack_level (void)
1126{
1127 /* Record the new stack level for nonlocal gotos. */
1128 if (cfun->nonlocal_goto_save_area)
1129 update_nonlocal_goto_save_area ();
1130
1131 /* Record the new stack level for SJLJ exceptions. */
1132 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1133 update_sjlj_context ();
1134}
59257ff7 1135\f
18ca7dab 1136/* Return an rtx representing the address of an area of memory dynamically
3a42502d 1137 pushed on the stack.
18ca7dab
RK
1138
1139 Any required stack pointer alignment is preserved.
1140
1141 SIZE is an rtx representing the size of the area.
091ad0b9 1142
3a42502d
RH
1143 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1144 parameter may be zero. If so, a proper value will be extracted
1145 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1146
1147 REQUIRED_ALIGN is the alignment (in bits) required for the region
1148 of memory.
d3c12306
EB
1149
1150 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1151 stack space allocated by the generated code cannot be added with itself
1152 in the course of the execution of the function. It is always safe to
1153 pass FALSE here and the following criterion is sufficient in order to
1154 pass TRUE: every path in the CFG that starts at the allocation point and
1155 loops to it executes the associated deallocation code. */
18ca7dab
RK
1156
1157rtx
3a42502d
RH
1158allocate_dynamic_stack_space (rtx size, unsigned size_align,
1159 unsigned required_align, bool cannot_accumulate)
18ca7dab 1160{
d3c12306 1161 HOST_WIDE_INT stack_usage_size = -1;
528a80c1
DM
1162 rtx_code_label *final_label;
1163 rtx final_target, target;
34831f3e 1164 unsigned extra_align = 0;
3a42502d 1165 bool must_align;
d3c12306 1166
15fc0026 1167 /* If we're asking for zero bytes, it doesn't matter what we point
9faa82d8 1168 to since we can't dereference it. But return a reasonable
15fc0026
RK
1169 address anyway. */
1170 if (size == const0_rtx)
1171 return virtual_stack_dynamic_rtx;
1172
1173 /* Otherwise, show we're calling alloca or equivalent. */
e3b5732b 1174 cfun->calls_alloca = 1;
15fc0026 1175
d3c12306
EB
1176 /* If stack usage info is requested, look into the size we are passed.
1177 We need to do so this early to avoid the obfuscation that may be
1178 introduced later by the various alignment operations. */
a11e0df4 1179 if (flag_stack_usage_info)
d3c12306 1180 {
32990d5b 1181 if (CONST_INT_P (size))
d3c12306 1182 stack_usage_size = INTVAL (size);
32990d5b 1183 else if (REG_P (size))
d3c12306
EB
1184 {
1185 /* Look into the last emitted insn and see if we can deduce
1186 something for the register. */
528a80c1
DM
1187 rtx_insn *insn;
1188 rtx set, note;
d3c12306
EB
1189 insn = get_last_insn ();
1190 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1191 {
32990d5b 1192 if (CONST_INT_P (SET_SRC (set)))
d3c12306
EB
1193 stack_usage_size = INTVAL (SET_SRC (set));
1194 else if ((note = find_reg_equal_equiv_note (insn))
32990d5b 1195 && CONST_INT_P (XEXP (note, 0)))
d3c12306
EB
1196 stack_usage_size = INTVAL (XEXP (note, 0));
1197 }
1198 }
1199
1200 /* If the size is not constant, we can't say anything. */
1201 if (stack_usage_size == -1)
1202 {
1203 current_function_has_unbounded_dynamic_stack_size = 1;
1204 stack_usage_size = 0;
1205 }
1206 }
1207
18ca7dab
RK
1208 /* Ensure the size is in the proper mode. */
1209 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1210 size = convert_to_mode (Pmode, size, 1);
1211
3a42502d
RH
1212 /* Adjust SIZE_ALIGN, if needed. */
1213 if (CONST_INT_P (size))
1214 {
1215 unsigned HOST_WIDE_INT lsb;
1216
1217 lsb = INTVAL (size);
1218 lsb &= -lsb;
1219
1220 /* Watch out for overflow truncating to "unsigned". */
1221 if (lsb > UINT_MAX / BITS_PER_UNIT)
1222 size_align = 1u << (HOST_BITS_PER_INT - 1);
1223 else
1224 size_align = (unsigned)lsb * BITS_PER_UNIT;
1225 }
1226 else if (size_align < BITS_PER_UNIT)
1227 size_align = BITS_PER_UNIT;
1228
34831f3e
RH
1229 /* We can't attempt to minimize alignment necessary, because we don't
1230 know the final value of preferred_stack_boundary yet while executing
1231 this code. */
1232 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1233 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1234
18ca7dab 1235 /* We will need to ensure that the address we return is aligned to
34831f3e
RH
1236 REQUIRED_ALIGN. If STACK_DYNAMIC_OFFSET is defined, we don't
1237 always know its final value at this point in the compilation (it
1238 might depend on the size of the outgoing parameter lists, for
1239 example), so we must align the value to be returned in that case.
1240 (Note that STACK_DYNAMIC_OFFSET will have a default nonzero value if
1241 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1242 We must also do an alignment operation on the returned value if
1243 the stack pointer alignment is less strict than REQUIRED_ALIGN.
1244
1245 If we have to align, we must leave space in SIZE for the hole
1246 that might result from the alignment operation. */
1247
1248 must_align = (crtl->preferred_stack_boundary < required_align);
1249 if (must_align)
d3c12306 1250 {
34831f3e
RH
1251 if (required_align > PREFERRED_STACK_BOUNDARY)
1252 extra_align = PREFERRED_STACK_BOUNDARY;
1253 else if (required_align > STACK_BOUNDARY)
1254 extra_align = STACK_BOUNDARY;
1255 else
1256 extra_align = BITS_PER_UNIT;
1ecad98e
EB
1257 }
1258
34831f3e
RH
1259 /* ??? STACK_POINTER_OFFSET is always defined now. */
1260#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET)
1261 must_align = true;
1262 extra_align = BITS_PER_UNIT;
1263#endif
1ecad98e 1264
34831f3e
RH
1265 if (must_align)
1266 {
1267 unsigned extra = (required_align - extra_align) / BITS_PER_UNIT;
3a42502d 1268
0a81f074 1269 size = plus_constant (Pmode, size, extra);
3a42502d 1270 size = force_operand (size, NULL_RTX);
d3c12306 1271
a11e0df4 1272 if (flag_stack_usage_info)
3a42502d 1273 stack_usage_size += extra;
34831f3e 1274
3a42502d
RH
1275 if (extra && size_align > extra_align)
1276 size_align = extra_align;
d3c12306 1277 }
1d9d04f8 1278
18ca7dab 1279 /* Round the size to a multiple of the required stack alignment.
34831f3e 1280 Since the stack if presumed to be rounded before this allocation,
18ca7dab
RK
1281 this will maintain the required alignment.
1282
1283 If the stack grows downward, we could save an insn by subtracting
1284 SIZE from the stack pointer and then aligning the stack pointer.
1285 The problem with this is that the stack pointer may be unaligned
1286 between the execution of the subtraction and alignment insns and
1287 some machines do not allow this. Even on those that do, some
1288 signal handlers malfunction if a signal should occur between those
1289 insns. Since this is an extremely rare event, we have no reliable
1290 way of knowing which systems have this problem. So we avoid even
1291 momentarily mis-aligning the stack. */
3a42502d 1292 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
d3c12306
EB
1293 {
1294 size = round_push (size);
18ca7dab 1295
a11e0df4 1296 if (flag_stack_usage_info)
d3c12306 1297 {
32990d5b 1298 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
d3c12306
EB
1299 stack_usage_size = (stack_usage_size + align - 1) / align * align;
1300 }
1301 }
1302
3a42502d 1303 target = gen_reg_rtx (Pmode);
7458026b 1304
d3c12306
EB
1305 /* The size is supposed to be fully adjusted at this point so record it
1306 if stack usage info is requested. */
a11e0df4 1307 if (flag_stack_usage_info)
d3c12306
EB
1308 {
1309 current_function_dynamic_stack_size += stack_usage_size;
1310
1311 /* ??? This is gross but the only safe stance in the absence
1312 of stack usage oriented flow analysis. */
1313 if (!cannot_accumulate)
1314 current_function_has_unbounded_dynamic_stack_size = 1;
1315 }
18ca7dab 1316
528a80c1 1317 final_label = NULL;
7458026b
ILT
1318 final_target = NULL_RTX;
1319
1320 /* If we are splitting the stack, we need to ask the backend whether
1321 there is enough room on the current stack. If there isn't, or if
1322 the backend doesn't know how to tell is, then we need to call a
1323 function to allocate memory in some other way. This memory will
1324 be released when we release the current stack segment. The
1325 effect is that stack allocation becomes less efficient, but at
1326 least it doesn't cause a stack overflow. */
1327 if (flag_split_stack)
1328 {
528a80c1
DM
1329 rtx_code_label *available_label;
1330 rtx ask, space, func;
7458026b 1331
528a80c1 1332 available_label = NULL;
7458026b
ILT
1333
1334#ifdef HAVE_split_stack_space_check
1335 if (HAVE_split_stack_space_check)
1336 {
1337 available_label = gen_label_rtx ();
1338
1339 /* This instruction will branch to AVAILABLE_LABEL if there
1340 are SIZE bytes available on the stack. */
1341 emit_insn (gen_split_stack_space_check (size, available_label));
1342 }
1343#endif
1344
c3928dde 1345 /* The __morestack_allocate_stack_space function will allocate
c070a3b9
ILT
1346 memory using malloc. If the alignment of the memory returned
1347 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1348 make sure we allocate enough space. */
1349 if (MALLOC_ABI_ALIGNMENT >= required_align)
1350 ask = size;
1351 else
1352 {
1353 ask = expand_binop (Pmode, add_optab, size,
2f1cd2eb
RS
1354 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1355 Pmode),
c070a3b9
ILT
1356 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1357 must_align = true;
1358 }
c3928dde 1359
7458026b
ILT
1360 func = init_one_libfunc ("__morestack_allocate_stack_space");
1361
1362 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
c3928dde 1363 1, ask, Pmode);
7458026b
ILT
1364
1365 if (available_label == NULL_RTX)
1366 return space;
1367
1368 final_target = gen_reg_rtx (Pmode);
7458026b
ILT
1369
1370 emit_move_insn (final_target, space);
1371
1372 final_label = gen_label_rtx ();
1373 emit_jump (final_label);
1374
1375 emit_label (available_label);
1376 }
1377
18ca7dab
RK
1378 do_pending_stack_adjust ();
1379
1503a7ec 1380 /* We ought to be called always on the toplevel and stack ought to be aligned
a1f300c0 1381 properly. */
5b0264cb
NS
1382 gcc_assert (!(stack_pointer_delta
1383 % (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)));
1503a7ec 1384
d809253a
EB
1385 /* If needed, check that we have the required amount of stack. Take into
1386 account what has already been checked. */
1387 if (STACK_CHECK_MOVING_SP)
1388 ;
1389 else if (flag_stack_check == GENERIC_STACK_CHECK)
b38f3813
EB
1390 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1391 size);
1392 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
1393 probe_stack_range (STACK_CHECK_PROTECT, size);
edff2491 1394
efec771a
RH
1395 /* Don't let anti_adjust_stack emit notes. */
1396 suppress_reg_args_size = true;
1397
18ca7dab
RK
1398 /* Perform the required allocation from the stack. Some systems do
1399 this differently than simply incrementing/decrementing from the
38a448ca 1400 stack pointer, such as acquiring the space by calling malloc(). */
18ca7dab
RK
1401#ifdef HAVE_allocate_stack
1402 if (HAVE_allocate_stack)
1403 {
a5c7d693 1404 struct expand_operand ops[2];
4b6c1672
RK
1405 /* We don't have to check against the predicate for operand 0 since
1406 TARGET is known to be a pseudo of the proper mode, which must
a5c7d693
RS
1407 be valid for the operand. */
1408 create_fixed_operand (&ops[0], target);
1409 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
1410 expand_insn (CODE_FOR_allocate_stack, 2, ops);
18ca7dab
RK
1411 }
1412 else
1413#endif
ea534b63 1414 {
32990d5b
JJ
1415 int saved_stack_pointer_delta;
1416
38a448ca
RH
1417#ifndef STACK_GROWS_DOWNWARD
1418 emit_move_insn (target, virtual_stack_dynamic_rtx);
1419#endif
a157febd
GK
1420
1421 /* Check stack bounds if necessary. */
e3b5732b 1422 if (crtl->limit_stack)
a157febd
GK
1423 {
1424 rtx available;
528a80c1 1425 rtx_code_label *space_available = gen_label_rtx ();
a157febd 1426#ifdef STACK_GROWS_DOWNWARD
d9b3eb63 1427 available = expand_binop (Pmode, sub_optab,
a157febd
GK
1428 stack_pointer_rtx, stack_limit_rtx,
1429 NULL_RTX, 1, OPTAB_WIDEN);
1430#else
d9b3eb63 1431 available = expand_binop (Pmode, sub_optab,
a157febd
GK
1432 stack_limit_rtx, stack_pointer_rtx,
1433 NULL_RTX, 1, OPTAB_WIDEN);
1434#endif
1435 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
a06ef755 1436 space_available);
a157febd
GK
1437#ifdef HAVE_trap
1438 if (HAVE_trap)
1439 emit_insn (gen_trap ());
1440 else
1441#endif
1442 error ("stack limits not supported on this target");
1443 emit_barrier ();
1444 emit_label (space_available);
1445 }
1446
32990d5b 1447 saved_stack_pointer_delta = stack_pointer_delta;
9a08d230 1448
d809253a 1449 if (flag_stack_check && STACK_CHECK_MOVING_SP)
c35af30f 1450 anti_adjust_stack_and_probe (size, false);
d809253a
EB
1451 else
1452 anti_adjust_stack (size);
9a08d230 1453
32990d5b
JJ
1454 /* Even if size is constant, don't modify stack_pointer_delta.
1455 The constant size alloca should preserve
1456 crtl->preferred_stack_boundary alignment. */
1457 stack_pointer_delta = saved_stack_pointer_delta;
d5457140 1458
18ca7dab 1459#ifdef STACK_GROWS_DOWNWARD
ca56cd30 1460 emit_move_insn (target, virtual_stack_dynamic_rtx);
18ca7dab 1461#endif
38a448ca 1462 }
18ca7dab 1463
efec771a
RH
1464 suppress_reg_args_size = false;
1465
3a42502d
RH
1466 /* Finish up the split stack handling. */
1467 if (final_label != NULL_RTX)
1468 {
1469 gcc_assert (flag_split_stack);
1470 emit_move_insn (final_target, target);
1471 emit_label (final_label);
1472 target = final_target;
1473 }
1474
1475 if (must_align)
091ad0b9 1476 {
5244db05 1477 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
0f41302f
MS
1478 but we know it can't. So add ourselves and then do
1479 TRUNC_DIV_EXPR. */
0f56a403 1480 target = expand_binop (Pmode, add_optab, target,
2f1cd2eb
RS
1481 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1482 Pmode),
5244db05
RK
1483 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1484 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
2f1cd2eb
RS
1485 gen_int_mode (required_align / BITS_PER_UNIT,
1486 Pmode),
b1ec3c92 1487 NULL_RTX, 1);
091ad0b9 1488 target = expand_mult (Pmode, target,
2f1cd2eb
RS
1489 gen_int_mode (required_align / BITS_PER_UNIT,
1490 Pmode),
b1ec3c92 1491 NULL_RTX, 1);
091ad0b9 1492 }
d9b3eb63 1493
3a42502d
RH
1494 /* Now that we've committed to a return value, mark its alignment. */
1495 mark_reg_pointer (target, required_align);
1496
d33606c3
EB
1497 /* Record the new stack level. */
1498 record_new_stack_level ();
15fc0026 1499
18ca7dab
RK
1500 return target;
1501}
1502\f
d9b3eb63 1503/* A front end may want to override GCC's stack checking by providing a
14a774a9
RK
1504 run-time routine to call to check the stack, so provide a mechanism for
1505 calling that routine. */
1506
e2500fed 1507static GTY(()) rtx stack_check_libfunc;
14a774a9
RK
1508
1509void
d477d1fe 1510set_stack_check_libfunc (const char *libfunc_name)
14a774a9 1511{
d477d1fe
SB
1512 gcc_assert (stack_check_libfunc == NULL_RTX);
1513 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
14a774a9
RK
1514}
1515\f
edff2491
RK
1516/* Emit one stack probe at ADDRESS, an address within the stack. */
1517
260c8ba3 1518void
502b8322 1519emit_stack_probe (rtx address)
edff2491 1520{
7b84aac0
EB
1521#ifdef HAVE_probe_stack_address
1522 if (HAVE_probe_stack_address)
1523 emit_insn (gen_probe_stack_address (address));
1524 else
1525#endif
1526 {
1527 rtx memref = gen_rtx_MEM (word_mode, address);
edff2491 1528
7b84aac0 1529 MEM_VOLATILE_P (memref) = 1;
edff2491 1530
7b84aac0 1531 /* See if we have an insn to probe the stack. */
d809253a 1532#ifdef HAVE_probe_stack
7b84aac0
EB
1533 if (HAVE_probe_stack)
1534 emit_insn (gen_probe_stack (memref));
1535 else
d809253a 1536#endif
7b84aac0
EB
1537 emit_move_insn (memref, const0_rtx);
1538 }
edff2491
RK
1539}
1540
d9b3eb63 1541/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
d809253a
EB
1542 FIRST is a constant and size is a Pmode RTX. These are offsets from
1543 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1544 or subtract them from the stack pointer. */
1545
1546#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
edff2491
RK
1547
1548#ifdef STACK_GROWS_DOWNWARD
1549#define STACK_GROW_OP MINUS
d809253a
EB
1550#define STACK_GROW_OPTAB sub_optab
1551#define STACK_GROW_OFF(off) -(off)
edff2491
RK
1552#else
1553#define STACK_GROW_OP PLUS
d809253a
EB
1554#define STACK_GROW_OPTAB add_optab
1555#define STACK_GROW_OFF(off) (off)
edff2491
RK
1556#endif
1557
1558void
502b8322 1559probe_stack_range (HOST_WIDE_INT first, rtx size)
edff2491 1560{
4b6c1672
RK
1561 /* First ensure SIZE is Pmode. */
1562 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1563 size = convert_to_mode (Pmode, size, 1);
1564
d809253a
EB
1565 /* Next see if we have a function to check the stack. */
1566 if (stack_check_libfunc)
f5f5363f 1567 {
d809253a 1568 rtx addr = memory_address (Pmode,
2b3aadfc
RH
1569 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1570 stack_pointer_rtx,
0a81f074
RS
1571 plus_constant (Pmode,
1572 size, first)));
949fa04c
EB
1573 emit_library_call (stack_check_libfunc, LCT_NORMAL, VOIDmode, 1, addr,
1574 Pmode);
f5f5363f 1575 }
14a774a9 1576
d809253a 1577 /* Next see if we have an insn to check the stack. */
edff2491 1578#ifdef HAVE_check_stack
d6a6a07a 1579 else if (HAVE_check_stack)
edff2491 1580 {
a5c7d693 1581 struct expand_operand ops[1];
d809253a
EB
1582 rtx addr = memory_address (Pmode,
1583 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1584 stack_pointer_rtx,
0a81f074
RS
1585 plus_constant (Pmode,
1586 size, first)));
d6a6a07a 1587 bool success;
a5c7d693 1588 create_input_operand (&ops[0], addr, Pmode);
d6a6a07a
EB
1589 success = maybe_expand_insn (CODE_FOR_check_stack, 1, ops);
1590 gcc_assert (success);
edff2491
RK
1591 }
1592#endif
1593
d809253a
EB
1594 /* Otherwise we have to generate explicit probes. If we have a constant
1595 small number of them to generate, that's the easy case. */
1596 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
edff2491 1597 {
d809253a
EB
1598 HOST_WIDE_INT isize = INTVAL (size), i;
1599 rtx addr;
1600
1601 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1602 it exceeds SIZE. If only one probe is needed, this will not
1603 generate any code. Then probe at FIRST + SIZE. */
1604 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1605 {
1606 addr = memory_address (Pmode,
0a81f074 1607 plus_constant (Pmode, stack_pointer_rtx,
d809253a
EB
1608 STACK_GROW_OFF (first + i)));
1609 emit_stack_probe (addr);
1610 }
1611
1612 addr = memory_address (Pmode,
0a81f074 1613 plus_constant (Pmode, stack_pointer_rtx,
d809253a
EB
1614 STACK_GROW_OFF (first + isize)));
1615 emit_stack_probe (addr);
edff2491
RK
1616 }
1617
d809253a
EB
1618 /* In the variable case, do the same as above, but in a loop. Note that we
1619 must be extra careful with variables wrapping around because we might be
1620 at the very top (or the very bottom) of the address space and we have to
1621 be able to handle this case properly; in particular, we use an equality
1622 test for the loop condition. */
edff2491
RK
1623 else
1624 {
d809253a 1625 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
528a80c1
DM
1626 rtx_code_label *loop_lab = gen_label_rtx ();
1627 rtx_code_label *end_lab = gen_label_rtx ();
edff2491 1628
d809253a
EB
1629 /* Step 1: round SIZE to the previous multiple of the interval. */
1630
1631 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1632 rounded_size
69a59f0f
RS
1633 = simplify_gen_binary (AND, Pmode, size,
1634 gen_int_mode (-PROBE_INTERVAL, Pmode));
d809253a
EB
1635 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1636
1637
1638 /* Step 2: compute initial and final value of the loop counter. */
1639
1640 /* TEST_ADDR = SP + FIRST. */
1641 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1642 stack_pointer_rtx,
4789c0ce
RS
1643 gen_int_mode (first, Pmode)),
1644 NULL_RTX);
d809253a
EB
1645
1646 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1647 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1648 test_addr,
1649 rounded_size_op), NULL_RTX);
1650
1651
1652 /* Step 3: the loop
1653
1654 while (TEST_ADDR != LAST_ADDR)
1655 {
1656 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1657 probe at TEST_ADDR
1658 }
1659
1660 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1661 until it is equal to ROUNDED_SIZE. */
edff2491
RK
1662
1663 emit_label (loop_lab);
edff2491 1664
d809253a
EB
1665 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1666 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1667 end_lab);
1668
1669 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1670 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
2f1cd2eb 1671 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
edff2491 1672 1, OPTAB_WIDEN);
edff2491 1673
5b0264cb 1674 gcc_assert (temp == test_addr);
edff2491 1675
d809253a
EB
1676 /* Probe at TEST_ADDR. */
1677 emit_stack_probe (test_addr);
1678
1679 emit_jump (loop_lab);
1680
edff2491
RK
1681 emit_label (end_lab);
1682
d809253a
EB
1683
1684 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1685 that SIZE is equal to ROUNDED_SIZE. */
1686
1687 /* TEMP = SIZE - ROUNDED_SIZE. */
1688 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1689 if (temp != const0_rtx)
1690 {
1691 rtx addr;
1692
32990d5b 1693 if (CONST_INT_P (temp))
d809253a
EB
1694 {
1695 /* Use [base + disp} addressing mode if supported. */
1696 HOST_WIDE_INT offset = INTVAL (temp);
1697 addr = memory_address (Pmode,
0a81f074 1698 plus_constant (Pmode, last_addr,
d809253a
EB
1699 STACK_GROW_OFF (offset)));
1700 }
1701 else
1702 {
1703 /* Manual CSE if the difference is not known at compile-time. */
1704 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1705 addr = memory_address (Pmode,
1706 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1707 last_addr, temp));
1708 }
1709
1710 emit_stack_probe (addr);
1711 }
edff2491 1712 }
eabcc725
EB
1713
1714 /* Make sure nothing is scheduled before we are done. */
1715 emit_insn (gen_blockage ());
edff2491 1716}
d809253a 1717
c35af30f
EB
1718/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1719 while probing it. This pushes when SIZE is positive. SIZE need not
1720 be constant. If ADJUST_BACK is true, adjust back the stack pointer
1721 by plus SIZE at the end. */
d809253a 1722
c35af30f
EB
1723void
1724anti_adjust_stack_and_probe (rtx size, bool adjust_back)
d809253a 1725{
c35af30f
EB
1726 /* We skip the probe for the first interval + a small dope of 4 words and
1727 probe that many bytes past the specified size to maintain a protection
1728 area at the botton of the stack. */
d809253a
EB
1729 const int dope = 4 * UNITS_PER_WORD;
1730
1731 /* First ensure SIZE is Pmode. */
1732 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1733 size = convert_to_mode (Pmode, size, 1);
1734
1735 /* If we have a constant small number of probes to generate, that's the
1736 easy case. */
32990d5b 1737 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
d809253a
EB
1738 {
1739 HOST_WIDE_INT isize = INTVAL (size), i;
1740 bool first_probe = true;
1741
260c8ba3 1742 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
d809253a
EB
1743 values of N from 1 until it exceeds SIZE. If only one probe is
1744 needed, this will not generate any code. Then adjust and probe
1745 to PROBE_INTERVAL + SIZE. */
1746 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1747 {
1748 if (first_probe)
1749 {
1750 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
1751 first_probe = false;
1752 }
1753 else
1754 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1755 emit_stack_probe (stack_pointer_rtx);
1756 }
1757
1758 if (first_probe)
0a81f074 1759 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
d809253a 1760 else
0a81f074 1761 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
d809253a
EB
1762 emit_stack_probe (stack_pointer_rtx);
1763 }
1764
1765 /* In the variable case, do the same as above, but in a loop. Note that we
1766 must be extra careful with variables wrapping around because we might be
1767 at the very top (or the very bottom) of the address space and we have to
1768 be able to handle this case properly; in particular, we use an equality
1769 test for the loop condition. */
1770 else
1771 {
1772 rtx rounded_size, rounded_size_op, last_addr, temp;
528a80c1
DM
1773 rtx_code_label *loop_lab = gen_label_rtx ();
1774 rtx_code_label *end_lab = gen_label_rtx ();
d809253a
EB
1775
1776
1777 /* Step 1: round SIZE to the previous multiple of the interval. */
1778
1779 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1780 rounded_size
69a59f0f
RS
1781 = simplify_gen_binary (AND, Pmode, size,
1782 gen_int_mode (-PROBE_INTERVAL, Pmode));
d809253a
EB
1783 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1784
1785
1786 /* Step 2: compute initial and final value of the loop counter. */
1787
1788 /* SP = SP_0 + PROBE_INTERVAL. */
1789 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
1790
1791 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
1792 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1793 stack_pointer_rtx,
1794 rounded_size_op), NULL_RTX);
1795
1796
1797 /* Step 3: the loop
1798
260c8ba3
EB
1799 while (SP != LAST_ADDR)
1800 {
1801 SP = SP + PROBE_INTERVAL
1802 probe at SP
1803 }
d809253a 1804
260c8ba3 1805 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
d809253a
EB
1806 values of N from 1 until it is equal to ROUNDED_SIZE. */
1807
1808 emit_label (loop_lab);
1809
1810 /* Jump to END_LAB if SP == LAST_ADDR. */
1811 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1812 Pmode, 1, end_lab);
1813
1814 /* SP = SP + PROBE_INTERVAL and probe at SP. */
1815 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
1816 emit_stack_probe (stack_pointer_rtx);
1817
1818 emit_jump (loop_lab);
1819
1820 emit_label (end_lab);
1821
1822
260c8ba3 1823 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
d809253a
EB
1824 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
1825
1826 /* TEMP = SIZE - ROUNDED_SIZE. */
1827 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1828 if (temp != const0_rtx)
1829 {
1830 /* Manual CSE if the difference is not known at compile-time. */
1831 if (GET_CODE (temp) != CONST_INT)
1832 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1833 anti_adjust_stack (temp);
1834 emit_stack_probe (stack_pointer_rtx);
1835 }
1836 }
1837
c35af30f
EB
1838 /* Adjust back and account for the additional first interval. */
1839 if (adjust_back)
0a81f074 1840 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
c35af30f
EB
1841 else
1842 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
d809253a
EB
1843}
1844
18ca7dab
RK
1845/* Return an rtx representing the register or memory location
1846 in which a scalar value of data type VALTYPE
1847 was returned by a function call to function FUNC.
1d636cc6
RG
1848 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
1849 function is known, otherwise 0.
4dc07bd7
JJ
1850 OUTGOING is 1 if on a machine with register windows this function
1851 should return the register in which the function will put its result
30f7a378 1852 and 0 otherwise. */
18ca7dab
RK
1853
1854rtx
586de218 1855hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
502b8322 1856 int outgoing ATTRIBUTE_UNUSED)
18ca7dab 1857{
4dc07bd7 1858 rtx val;
770ae6cc 1859
1d636cc6 1860 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
770ae6cc 1861
f8cfc6aa 1862 if (REG_P (val)
e1a4071f
JL
1863 && GET_MODE (val) == BLKmode)
1864 {
770ae6cc 1865 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (valtype);
ef4bddc2 1866 machine_mode tmpmode;
770ae6cc 1867
d9b3eb63 1868 /* int_size_in_bytes can return -1. We don't need a check here
535a42b1
NS
1869 since the value of bytes will then be large enough that no
1870 mode will match anyway. */
d9b3eb63 1871
e1a4071f 1872 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
0fb7aeda
KH
1873 tmpmode != VOIDmode;
1874 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1875 {
1876 /* Have we found a large enough mode? */
1877 if (GET_MODE_SIZE (tmpmode) >= bytes)
1878 break;
1879 }
e1a4071f
JL
1880
1881 /* No suitable mode found. */
5b0264cb 1882 gcc_assert (tmpmode != VOIDmode);
e1a4071f
JL
1883
1884 PUT_MODE (val, tmpmode);
d9b3eb63 1885 }
e1a4071f 1886 return val;
18ca7dab
RK
1887}
1888
1889/* Return an rtx representing the register or memory location
1890 in which a scalar value of mode MODE was returned by a library call. */
1891
1892rtx
ef4bddc2 1893hard_libcall_value (machine_mode mode, rtx fun)
18ca7dab 1894{
390b17c2 1895 return targetm.calls.libcall_value (mode, fun);
18ca7dab 1896}
0c5e217d
RS
1897
1898/* Look up the tree code for a given rtx code
1899 to provide the arithmetic operation for REAL_ARITHMETIC.
1900 The function returns an int because the caller may not know
1901 what `enum tree_code' means. */
1902
1903int
502b8322 1904rtx_to_tree_code (enum rtx_code code)
0c5e217d
RS
1905{
1906 enum tree_code tcode;
1907
1908 switch (code)
1909 {
1910 case PLUS:
1911 tcode = PLUS_EXPR;
1912 break;
1913 case MINUS:
1914 tcode = MINUS_EXPR;
1915 break;
1916 case MULT:
1917 tcode = MULT_EXPR;
1918 break;
1919 case DIV:
1920 tcode = RDIV_EXPR;
1921 break;
1922 case SMIN:
1923 tcode = MIN_EXPR;
1924 break;
1925 case SMAX:
1926 tcode = MAX_EXPR;
1927 break;
1928 default:
1929 tcode = LAST_AND_UNUSED_TREE_CODE;
1930 break;
1931 }
1932 return ((int) tcode);
1933}
e2500fed
GK
1934
1935#include "gt-explow.h"