]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/explow.c
(\email): Let to \uref instead of \code, as a second optional argument
[thirdparty/gcc.git] / gcc / explow.c
CommitLineData
18ca7dab 1/* Subroutines for manipulating rtx's in semantically interesting ways.
d7dc4377 2 Copyright (C) 1987, 91, 94, 95, 96, 1997 Free Software Foundation, Inc.
18ca7dab
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
940d9d63
RK
18the Free Software Foundation, 59 Temple Place - Suite 330,
19Boston, MA 02111-1307, USA. */
18ca7dab
RK
20
21
22#include "config.h"
23#include "rtl.h"
24#include "tree.h"
25#include "flags.h"
26#include "expr.h"
27#include "hard-reg-set.h"
28#include "insn-config.h"
29#include "recog.h"
30#include "insn-flags.h"
31#include "insn-codes.h"
32
ea534b63 33static rtx break_out_memory_refs PROTO((rtx));
edff2491 34static void emit_stack_probe PROTO((rtx));
b1ec3c92
CH
35/* Return an rtx for the sum of X and the integer C.
36
8008b228 37 This function should be used via the `plus_constant' macro. */
18ca7dab
RK
38
39rtx
b1ec3c92 40plus_constant_wide (x, c)
18ca7dab 41 register rtx x;
b1ec3c92 42 register HOST_WIDE_INT c;
18ca7dab
RK
43{
44 register RTX_CODE code;
45 register enum machine_mode mode;
46 register rtx tem;
47 int all_constant = 0;
48
49 if (c == 0)
50 return x;
51
52 restart:
53
54 code = GET_CODE (x);
55 mode = GET_MODE (x);
56 switch (code)
57 {
58 case CONST_INT:
b1ec3c92 59 return GEN_INT (INTVAL (x) + c);
18ca7dab
RK
60
61 case CONST_DOUBLE:
62 {
b1ec3c92
CH
63 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
64 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
65 HOST_WIDE_INT l2 = c;
66 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
67 HOST_WIDE_INT lv, hv;
18ca7dab
RK
68
69 add_double (l1, h1, l2, h2, &lv, &hv);
70
71 return immed_double_const (lv, hv, VOIDmode);
72 }
73
74 case MEM:
75 /* If this is a reference to the constant pool, try replacing it with
76 a reference to a new constant. If the resulting address isn't
77 valid, don't return it because we have no way to validize it. */
78 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
79 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
80 {
81 tem
82 = force_const_mem (GET_MODE (x),
83 plus_constant (get_pool_constant (XEXP (x, 0)),
84 c));
85 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
86 return tem;
87 }
88 break;
89
90 case CONST:
91 /* If adding to something entirely constant, set a flag
92 so that we can add a CONST around the result. */
93 x = XEXP (x, 0);
94 all_constant = 1;
95 goto restart;
96
97 case SYMBOL_REF:
98 case LABEL_REF:
99 all_constant = 1;
100 break;
101
102 case PLUS:
103 /* The interesting case is adding the integer to a sum.
104 Look for constant term in the sum and combine
105 with C. For an integer constant term, we make a combined
106 integer. For a constant term that is not an explicit integer,
e5671f2b
RK
107 we cannot really combine, but group them together anyway.
108
109 Use a recursive call in case the remaining operand is something
110 that we handle specially, such as a SYMBOL_REF. */
111
112 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
113 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
18ca7dab
RK
114 else if (CONSTANT_P (XEXP (x, 0)))
115 return gen_rtx (PLUS, mode,
116 plus_constant (XEXP (x, 0), c),
117 XEXP (x, 1));
118 else if (CONSTANT_P (XEXP (x, 1)))
119 return gen_rtx (PLUS, mode,
120 XEXP (x, 0),
121 plus_constant (XEXP (x, 1), c));
122 }
123
124 if (c != 0)
b1ec3c92 125 x = gen_rtx (PLUS, mode, x, GEN_INT (c));
18ca7dab
RK
126
127 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
128 return x;
129 else if (all_constant)
130 return gen_rtx (CONST, mode, x);
131 else
132 return x;
133}
134
b1ec3c92
CH
135/* This is the same as `plus_constant', except that it handles LO_SUM.
136
137 This function should be used via the `plus_constant_for_output' macro. */
18ca7dab
RK
138
139rtx
b1ec3c92 140plus_constant_for_output_wide (x, c)
18ca7dab 141 register rtx x;
b1ec3c92 142 register HOST_WIDE_INT c;
18ca7dab
RK
143{
144 register RTX_CODE code = GET_CODE (x);
145 register enum machine_mode mode = GET_MODE (x);
146 int all_constant = 0;
147
148 if (GET_CODE (x) == LO_SUM)
149 return gen_rtx (LO_SUM, mode, XEXP (x, 0),
150 plus_constant_for_output (XEXP (x, 1), c));
151
152 else
153 return plus_constant (x, c);
154}
155\f
156/* If X is a sum, return a new sum like X but lacking any constant terms.
157 Add all the removed constant terms into *CONSTPTR.
158 X itself is not altered. The result != X if and only if
159 it is not isomorphic to X. */
160
161rtx
162eliminate_constant_term (x, constptr)
163 rtx x;
164 rtx *constptr;
165{
166 register rtx x0, x1;
167 rtx tem;
168
169 if (GET_CODE (x) != PLUS)
170 return x;
171
172 /* First handle constants appearing at this level explicitly. */
173 if (GET_CODE (XEXP (x, 1)) == CONST_INT
174 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
175 XEXP (x, 1)))
176 && GET_CODE (tem) == CONST_INT)
177 {
178 *constptr = tem;
179 return eliminate_constant_term (XEXP (x, 0), constptr);
180 }
181
182 tem = const0_rtx;
183 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
184 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
185 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
186 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
187 *constptr, tem))
188 && GET_CODE (tem) == CONST_INT)
189 {
190 *constptr = tem;
191 return gen_rtx (PLUS, GET_MODE (x), x0, x1);
192 }
193
194 return x;
195}
196
197/* Returns the insn that next references REG after INSN, or 0
198 if REG is clobbered before next referenced or we cannot find
199 an insn that references REG in a straight-line piece of code. */
200
201rtx
202find_next_ref (reg, insn)
203 rtx reg;
204 rtx insn;
205{
206 rtx next;
207
208 for (insn = NEXT_INSN (insn); insn; insn = next)
209 {
210 next = NEXT_INSN (insn);
211 if (GET_CODE (insn) == NOTE)
212 continue;
213 if (GET_CODE (insn) == CODE_LABEL
214 || GET_CODE (insn) == BARRIER)
215 return 0;
216 if (GET_CODE (insn) == INSN
217 || GET_CODE (insn) == JUMP_INSN
218 || GET_CODE (insn) == CALL_INSN)
219 {
220 if (reg_set_p (reg, insn))
221 return 0;
222 if (reg_mentioned_p (reg, PATTERN (insn)))
223 return insn;
224 if (GET_CODE (insn) == JUMP_INSN)
225 {
226 if (simplejump_p (insn))
227 next = JUMP_LABEL (insn);
228 else
229 return 0;
230 }
231 if (GET_CODE (insn) == CALL_INSN
232 && REGNO (reg) < FIRST_PSEUDO_REGISTER
233 && call_used_regs[REGNO (reg)])
234 return 0;
235 }
236 else
237 abort ();
238 }
239 return 0;
240}
241
242/* Return an rtx for the size in bytes of the value of EXP. */
243
244rtx
245expr_size (exp)
246 tree exp;
247{
99098c66
RK
248 tree size = size_in_bytes (TREE_TYPE (exp));
249
250 if (TREE_CODE (size) != INTEGER_CST
251 && contains_placeholder_p (size))
252 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
253
254 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
18ca7dab
RK
255}
256\f
257/* Return a copy of X in which all memory references
258 and all constants that involve symbol refs
259 have been replaced with new temporary registers.
260 Also emit code to load the memory locations and constants
261 into those registers.
262
263 If X contains no such constants or memory references,
264 X itself (not a copy) is returned.
265
266 If a constant is found in the address that is not a legitimate constant
267 in an insn, it is left alone in the hope that it might be valid in the
268 address.
269
270 X may contain no arithmetic except addition, subtraction and multiplication.
271 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
272
273static rtx
274break_out_memory_refs (x)
275 register rtx x;
276{
277 if (GET_CODE (x) == MEM
cabeca29 278 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
18ca7dab 279 && GET_MODE (x) != VOIDmode))
2cca6e3f 280 x = force_reg (GET_MODE (x), x);
18ca7dab
RK
281 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
282 || GET_CODE (x) == MULT)
283 {
284 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
285 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
2cca6e3f 286
18ca7dab
RK
287 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
288 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
289 }
2cca6e3f 290
18ca7dab
RK
291 return x;
292}
293
ea534b63
RK
294#ifdef POINTERS_EXTEND_UNSIGNED
295
296/* Given X, a memory address in ptr_mode, convert it to an address
498b529f
RK
297 in Pmode, or vice versa (TO_MODE says which way). We take advantage of
298 the fact that pointers are not allowed to overflow by commuting arithmetic
299 operations over conversions so that address arithmetic insns can be
300 used. */
ea534b63 301
498b529f
RK
302rtx
303convert_memory_address (to_mode, x)
304 enum machine_mode to_mode;
ea534b63
RK
305 rtx x;
306{
0b04ec8c 307 enum machine_mode from_mode = to_mode == ptr_mode ? Pmode : ptr_mode;
498b529f
RK
308 rtx temp;
309
0b04ec8c
RK
310 /* Here we handle some special cases. If none of them apply, fall through
311 to the default case. */
ea534b63
RK
312 switch (GET_CODE (x))
313 {
314 case CONST_INT:
315 case CONST_DOUBLE:
498b529f
RK
316 return x;
317
ea534b63 318 case LABEL_REF:
498b529f
RK
319 return gen_rtx (LABEL_REF, to_mode, XEXP (x, 0));
320
ea534b63 321 case SYMBOL_REF:
498b529f
RK
322 temp = gen_rtx (SYMBOL_REF, to_mode, XSTR (x, 0));
323 SYMBOL_REF_FLAG (temp) = SYMBOL_REF_FLAG (x);
d7dc4377 324 CONSTANT_POOL_ADDRESS_P (temp) = CONSTANT_POOL_ADDRESS_P (x);
498b529f 325 return temp;
ea534b63 326
498b529f
RK
327 case CONST:
328 return gen_rtx (CONST, to_mode,
329 convert_memory_address (to_mode, XEXP (x, 0)));
ea534b63 330
0b04ec8c
RK
331 case PLUS:
332 case MULT:
333 /* For addition the second operand is a small constant, we can safely
334 permute the converstion and addition operation. We can always safely
60725c78
RK
335 permute them if we are making the address narrower. In addition,
336 always permute the operations if this is a constant. */
0b04ec8c
RK
337 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
338 || (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT
60725c78
RK
339 && (INTVAL (XEXP (x, 1)) + 20000 < 40000
340 || CONSTANT_P (XEXP (x, 0)))))
0b04ec8c
RK
341 return gen_rtx (GET_CODE (x), to_mode,
342 convert_memory_address (to_mode, XEXP (x, 0)),
343 convert_memory_address (to_mode, XEXP (x, 1)));
ea534b63 344 }
0b04ec8c
RK
345
346 return convert_modes (to_mode, from_mode,
347 x, POINTERS_EXTEND_UNSIGNED);
ea534b63
RK
348}
349#endif
350
18ca7dab
RK
351/* Given a memory address or facsimile X, construct a new address,
352 currently equivalent, that is stable: future stores won't change it.
353
354 X must be composed of constants, register and memory references
355 combined with addition, subtraction and multiplication:
356 in other words, just what you can get from expand_expr if sum_ok is 1.
357
358 Works by making copies of all regs and memory locations used
359 by X and combining them the same way X does.
360 You could also stabilize the reference to this address
361 by copying the address to a register with copy_to_reg;
362 but then you wouldn't get indexed addressing in the reference. */
363
364rtx
365copy_all_regs (x)
366 register rtx x;
367{
368 if (GET_CODE (x) == REG)
369 {
11c50c5e
DE
370 if (REGNO (x) != FRAME_POINTER_REGNUM
371#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
372 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
373#endif
374 )
18ca7dab
RK
375 x = copy_to_reg (x);
376 }
377 else if (GET_CODE (x) == MEM)
378 x = copy_to_reg (x);
379 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
380 || GET_CODE (x) == MULT)
381 {
382 register rtx op0 = copy_all_regs (XEXP (x, 0));
383 register rtx op1 = copy_all_regs (XEXP (x, 1));
384 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
385 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
386 }
387 return x;
388}
389\f
390/* Return something equivalent to X but valid as a memory address
391 for something of mode MODE. When X is not itself valid, this
392 works by copying X or subexpressions of it into registers. */
393
394rtx
395memory_address (mode, x)
396 enum machine_mode mode;
397 register rtx x;
398{
18b9ca6f 399 register rtx oldx = x;
18ca7dab 400
ea534b63
RK
401#ifdef POINTERS_EXTEND_UNSIGNED
402 if (GET_MODE (x) == ptr_mode)
498b529f 403 x = convert_memory_address (Pmode, x);
ea534b63
RK
404#endif
405
18ca7dab
RK
406 /* By passing constant addresses thru registers
407 we get a chance to cse them. */
cabeca29 408 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
18b9ca6f 409 x = force_reg (Pmode, x);
18ca7dab
RK
410
411 /* Accept a QUEUED that refers to a REG
412 even though that isn't a valid address.
413 On attempting to put this in an insn we will call protect_from_queue
414 which will turn it into a REG, which is valid. */
18b9ca6f 415 else if (GET_CODE (x) == QUEUED
18ca7dab 416 && GET_CODE (QUEUED_VAR (x)) == REG)
18b9ca6f 417 ;
18ca7dab
RK
418
419 /* We get better cse by rejecting indirect addressing at this stage.
420 Let the combiner create indirect addresses where appropriate.
421 For now, generate the code so that the subexpressions useful to share
422 are visible. But not if cse won't be done! */
18b9ca6f 423 else
18ca7dab 424 {
18b9ca6f
RK
425 if (! cse_not_expected && GET_CODE (x) != REG)
426 x = break_out_memory_refs (x);
427
428 /* At this point, any valid address is accepted. */
429 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
430
431 /* If it was valid before but breaking out memory refs invalidated it,
432 use it the old way. */
433 if (memory_address_p (mode, oldx))
434 goto win2;
435
436 /* Perform machine-dependent transformations on X
437 in certain cases. This is not necessary since the code
438 below can handle all possible cases, but machine-dependent
439 transformations can make better code. */
440 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
441
442 /* PLUS and MULT can appear in special ways
443 as the result of attempts to make an address usable for indexing.
444 Usually they are dealt with by calling force_operand, below.
445 But a sum containing constant terms is special
446 if removing them makes the sum a valid address:
447 then we generate that address in a register
448 and index off of it. We do this because it often makes
449 shorter code, and because the addresses thus generated
450 in registers often become common subexpressions. */
451 if (GET_CODE (x) == PLUS)
452 {
453 rtx constant_term = const0_rtx;
454 rtx y = eliminate_constant_term (x, &constant_term);
455 if (constant_term == const0_rtx
456 || ! memory_address_p (mode, y))
457 x = force_operand (x, NULL_RTX);
458 else
459 {
460 y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
461 if (! memory_address_p (mode, y))
462 x = force_operand (x, NULL_RTX);
463 else
464 x = y;
465 }
466 }
18ca7dab 467
e475ed2a 468 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
18b9ca6f 469 x = force_operand (x, NULL_RTX);
18ca7dab 470
18b9ca6f
RK
471 /* If we have a register that's an invalid address,
472 it must be a hard reg of the wrong class. Copy it to a pseudo. */
473 else if (GET_CODE (x) == REG)
474 x = copy_to_reg (x);
475
476 /* Last resort: copy the value to a register, since
477 the register is a valid address. */
478 else
479 x = force_reg (Pmode, x);
480
481 goto done;
18ca7dab 482
c02a7fbb
RK
483 win2:
484 x = oldx;
485 win:
486 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
487 /* Don't copy an addr via a reg if it is one of our stack slots. */
488 && ! (GET_CODE (x) == PLUS
489 && (XEXP (x, 0) == virtual_stack_vars_rtx
490 || XEXP (x, 0) == virtual_incoming_args_rtx)))
491 {
492 if (general_operand (x, Pmode))
493 x = force_reg (Pmode, x);
494 else
495 x = force_operand (x, NULL_RTX);
496 }
18ca7dab 497 }
18b9ca6f
RK
498
499 done:
500
2cca6e3f
RK
501 /* If we didn't change the address, we are done. Otherwise, mark
502 a reg as a pointer if we have REG or REG + CONST_INT. */
503 if (oldx == x)
504 return x;
505 else if (GET_CODE (x) == REG)
305f22b5 506 mark_reg_pointer (x, 1);
2cca6e3f
RK
507 else if (GET_CODE (x) == PLUS
508 && GET_CODE (XEXP (x, 0)) == REG
509 && GET_CODE (XEXP (x, 1)) == CONST_INT)
305f22b5 510 mark_reg_pointer (XEXP (x, 0), 1);
2cca6e3f 511
18b9ca6f
RK
512 /* OLDX may have been the address on a temporary. Update the address
513 to indicate that X is now used. */
514 update_temp_slot_address (oldx, x);
515
18ca7dab
RK
516 return x;
517}
518
519/* Like `memory_address' but pretend `flag_force_addr' is 0. */
520
521rtx
522memory_address_noforce (mode, x)
523 enum machine_mode mode;
524 rtx x;
525{
526 int ambient_force_addr = flag_force_addr;
527 rtx val;
528
529 flag_force_addr = 0;
530 val = memory_address (mode, x);
531 flag_force_addr = ambient_force_addr;
532 return val;
533}
534
535/* Convert a mem ref into one with a valid memory address.
536 Pass through anything else unchanged. */
537
538rtx
539validize_mem (ref)
540 rtx ref;
541{
542 if (GET_CODE (ref) != MEM)
543 return ref;
544 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
545 return ref;
546 /* Don't alter REF itself, since that is probably a stack slot. */
547 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
548}
549\f
550/* Return a modified copy of X with its memory address copied
551 into a temporary register to protect it from side effects.
552 If X is not a MEM, it is returned unchanged (and not copied).
553 Perhaps even if it is a MEM, if there is no need to change it. */
554
555rtx
556stabilize (x)
557 rtx x;
558{
559 register rtx addr;
560 if (GET_CODE (x) != MEM)
561 return x;
562 addr = XEXP (x, 0);
563 if (rtx_unstable_p (addr))
564 {
565 rtx temp = copy_all_regs (addr);
566 rtx mem;
567 if (GET_CODE (temp) != REG)
568 temp = copy_to_reg (temp);
569 mem = gen_rtx (MEM, GET_MODE (x), temp);
570
571 /* Mark returned memref with in_struct if it's in an array or
572 structure. Copy const and volatile from original memref. */
573
574 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
575 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
576 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
577 return mem;
578 }
579 return x;
580}
581\f
582/* Copy the value or contents of X to a new temp reg and return that reg. */
583
584rtx
585copy_to_reg (x)
586 rtx x;
587{
588 register rtx temp = gen_reg_rtx (GET_MODE (x));
589
590 /* If not an operand, must be an address with PLUS and MULT so
591 do the computation. */
592 if (! general_operand (x, VOIDmode))
593 x = force_operand (x, temp);
594
595 if (x != temp)
596 emit_move_insn (temp, x);
597
598 return temp;
599}
600
601/* Like copy_to_reg but always give the new register mode Pmode
602 in case X is a constant. */
603
604rtx
605copy_addr_to_reg (x)
606 rtx x;
607{
608 return copy_to_mode_reg (Pmode, x);
609}
610
611/* Like copy_to_reg but always give the new register mode MODE
612 in case X is a constant. */
613
614rtx
615copy_to_mode_reg (mode, x)
616 enum machine_mode mode;
617 rtx x;
618{
619 register rtx temp = gen_reg_rtx (mode);
620
621 /* If not an operand, must be an address with PLUS and MULT so
622 do the computation. */
623 if (! general_operand (x, VOIDmode))
624 x = force_operand (x, temp);
625
626 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
627 abort ();
628 if (x != temp)
629 emit_move_insn (temp, x);
630 return temp;
631}
632
633/* Load X into a register if it is not already one.
634 Use mode MODE for the register.
635 X should be valid for mode MODE, but it may be a constant which
636 is valid for all integer modes; that's why caller must specify MODE.
637
638 The caller must not alter the value in the register we return,
639 since we mark it as a "constant" register. */
640
641rtx
642force_reg (mode, x)
643 enum machine_mode mode;
644 rtx x;
645{
62874575 646 register rtx temp, insn, set;
18ca7dab
RK
647
648 if (GET_CODE (x) == REG)
649 return x;
650 temp = gen_reg_rtx (mode);
651 insn = emit_move_insn (temp, x);
62874575 652
18ca7dab 653 /* Let optimizers know that TEMP's value never changes
62874575
RK
654 and that X can be substituted for it. Don't get confused
655 if INSN set something else (such as a SUBREG of TEMP). */
656 if (CONSTANT_P (x)
657 && (set = single_set (insn)) != 0
658 && SET_DEST (set) == temp)
18ca7dab 659 {
b1ec3c92 660 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
18ca7dab
RK
661
662 if (note)
663 XEXP (note, 0) = x;
664 else
665 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
666 }
667 return temp;
668}
669
670/* If X is a memory ref, copy its contents to a new temp reg and return
671 that reg. Otherwise, return X. */
672
673rtx
674force_not_mem (x)
675 rtx x;
676{
677 register rtx temp;
678 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
679 return x;
680 temp = gen_reg_rtx (GET_MODE (x));
681 emit_move_insn (temp, x);
682 return temp;
683}
684
685/* Copy X to TARGET (if it's nonzero and a reg)
686 or to a new temp reg and return that reg.
687 MODE is the mode to use for X in case it is a constant. */
688
689rtx
690copy_to_suggested_reg (x, target, mode)
691 rtx x, target;
692 enum machine_mode mode;
693{
694 register rtx temp;
695
696 if (target && GET_CODE (target) == REG)
697 temp = target;
698 else
699 temp = gen_reg_rtx (mode);
700
701 emit_move_insn (temp, x);
702 return temp;
703}
704\f
9ff65789
RK
705/* Return the mode to use to store a scalar of TYPE and MODE.
706 PUNSIGNEDP points to the signedness of the type and may be adjusted
707 to show what signedness to use on extension operations.
708
709 FOR_CALL is non-zero if this call is promoting args for a call. */
710
711enum machine_mode
712promote_mode (type, mode, punsignedp, for_call)
713 tree type;
714 enum machine_mode mode;
715 int *punsignedp;
716 int for_call;
717{
718 enum tree_code code = TREE_CODE (type);
719 int unsignedp = *punsignedp;
720
721#ifdef PROMOTE_FOR_CALL_ONLY
722 if (! for_call)
723 return mode;
724#endif
725
726 switch (code)
727 {
728#ifdef PROMOTE_MODE
729 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
730 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
731 PROMOTE_MODE (mode, unsignedp, type);
732 break;
733#endif
734
ea534b63 735#ifdef POINTERS_EXTEND_UNSIGNED
56a4c9e2 736 case REFERENCE_TYPE:
9ff65789 737 case POINTER_TYPE:
ea534b63
RK
738 mode = Pmode;
739 unsignedp = POINTERS_EXTEND_UNSIGNED;
9ff65789 740 break;
ea534b63 741#endif
9ff65789
RK
742 }
743
744 *punsignedp = unsignedp;
745 return mode;
746}
747\f
18ca7dab
RK
748/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
749 This pops when ADJUST is positive. ADJUST need not be constant. */
750
751void
752adjust_stack (adjust)
753 rtx adjust;
754{
755 rtx temp;
756 adjust = protect_from_queue (adjust, 0);
757
758 if (adjust == const0_rtx)
759 return;
760
761 temp = expand_binop (Pmode,
762#ifdef STACK_GROWS_DOWNWARD
763 add_optab,
764#else
765 sub_optab,
766#endif
767 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
768 OPTAB_LIB_WIDEN);
769
770 if (temp != stack_pointer_rtx)
771 emit_move_insn (stack_pointer_rtx, temp);
772}
773
774/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
775 This pushes when ADJUST is positive. ADJUST need not be constant. */
776
777void
778anti_adjust_stack (adjust)
779 rtx adjust;
780{
781 rtx temp;
782 adjust = protect_from_queue (adjust, 0);
783
784 if (adjust == const0_rtx)
785 return;
786
787 temp = expand_binop (Pmode,
788#ifdef STACK_GROWS_DOWNWARD
789 sub_optab,
790#else
791 add_optab,
792#endif
793 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
794 OPTAB_LIB_WIDEN);
795
796 if (temp != stack_pointer_rtx)
797 emit_move_insn (stack_pointer_rtx, temp);
798}
799
800/* Round the size of a block to be pushed up to the boundary required
801 by this machine. SIZE is the desired size, which need not be constant. */
802
803rtx
804round_push (size)
805 rtx size;
806{
807#ifdef STACK_BOUNDARY
808 int align = STACK_BOUNDARY / BITS_PER_UNIT;
809 if (align == 1)
810 return size;
811 if (GET_CODE (size) == CONST_INT)
812 {
813 int new = (INTVAL (size) + align - 1) / align * align;
814 if (INTVAL (size) != new)
b1ec3c92 815 size = GEN_INT (new);
18ca7dab
RK
816 }
817 else
818 {
5244db05 819 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
0f41302f
MS
820 but we know it can't. So add ourselves and then do
821 TRUNC_DIV_EXPR. */
5244db05
RK
822 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
823 NULL_RTX, 1, OPTAB_LIB_WIDEN);
824 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
b1ec3c92
CH
825 NULL_RTX, 1);
826 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
18ca7dab
RK
827 }
828#endif /* STACK_BOUNDARY */
829 return size;
830}
831\f
59257ff7
RK
832/* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
833 to a previously-created save area. If no save area has been allocated,
834 this function will allocate one. If a save area is specified, it
835 must be of the proper mode.
836
837 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
838 are emitted at the current position. */
839
840void
841emit_stack_save (save_level, psave, after)
842 enum save_level save_level;
843 rtx *psave;
844 rtx after;
845{
846 rtx sa = *psave;
847 /* The default is that we use a move insn and save in a Pmode object. */
848 rtx (*fcn) () = gen_move_insn;
849 enum machine_mode mode = Pmode;
850
851 /* See if this machine has anything special to do for this kind of save. */
852 switch (save_level)
853 {
854#ifdef HAVE_save_stack_block
855 case SAVE_BLOCK:
856 if (HAVE_save_stack_block)
857 {
858 fcn = gen_save_stack_block;
859 mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
860 }
861 break;
862#endif
863#ifdef HAVE_save_stack_function
864 case SAVE_FUNCTION:
865 if (HAVE_save_stack_function)
866 {
867 fcn = gen_save_stack_function;
868 mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
869 }
870 break;
871#endif
872#ifdef HAVE_save_stack_nonlocal
873 case SAVE_NONLOCAL:
874 if (HAVE_save_stack_nonlocal)
875 {
876 fcn = gen_save_stack_nonlocal;
0d69ab6f 877 mode = insn_operand_mode[(int) CODE_FOR_save_stack_nonlocal][0];
59257ff7
RK
878 }
879 break;
880#endif
881 }
882
883 /* If there is no save area and we have to allocate one, do so. Otherwise
884 verify the save area is the proper mode. */
885
886 if (sa == 0)
887 {
888 if (mode != VOIDmode)
889 {
890 if (save_level == SAVE_NONLOCAL)
891 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
892 else
893 *psave = sa = gen_reg_rtx (mode);
894 }
895 }
896 else
897 {
898 if (mode == VOIDmode || GET_MODE (sa) != mode)
899 abort ();
900 }
901
902 if (after)
700f6f98
RK
903 {
904 rtx seq;
905
906 start_sequence ();
5460015d
JW
907 /* We must validize inside the sequence, to ensure that any instructions
908 created by the validize call also get moved to the right place. */
909 if (sa != 0)
910 sa = validize_mem (sa);
d072107f 911 emit_insn (fcn (sa, stack_pointer_rtx));
700f6f98
RK
912 seq = gen_sequence ();
913 end_sequence ();
914 emit_insn_after (seq, after);
915 }
59257ff7 916 else
5460015d
JW
917 {
918 if (sa != 0)
919 sa = validize_mem (sa);
920 emit_insn (fcn (sa, stack_pointer_rtx));
921 }
59257ff7
RK
922}
923
924/* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
925 area made by emit_stack_save. If it is zero, we have nothing to do.
926
927 Put any emitted insns after insn AFTER, if nonzero, otherwise at
928 current position. */
929
930void
931emit_stack_restore (save_level, sa, after)
932 enum save_level save_level;
933 rtx after;
934 rtx sa;
935{
936 /* The default is that we use a move insn. */
937 rtx (*fcn) () = gen_move_insn;
938
939 /* See if this machine has anything special to do for this kind of save. */
940 switch (save_level)
941 {
942#ifdef HAVE_restore_stack_block
943 case SAVE_BLOCK:
944 if (HAVE_restore_stack_block)
945 fcn = gen_restore_stack_block;
946 break;
947#endif
948#ifdef HAVE_restore_stack_function
949 case SAVE_FUNCTION:
950 if (HAVE_restore_stack_function)
951 fcn = gen_restore_stack_function;
952 break;
953#endif
954#ifdef HAVE_restore_stack_nonlocal
955
956 case SAVE_NONLOCAL:
957 if (HAVE_restore_stack_nonlocal)
958 fcn = gen_restore_stack_nonlocal;
959 break;
960#endif
961 }
962
d072107f
RK
963 if (sa != 0)
964 sa = validize_mem (sa);
965
59257ff7 966 if (after)
700f6f98
RK
967 {
968 rtx seq;
969
970 start_sequence ();
d072107f 971 emit_insn (fcn (stack_pointer_rtx, sa));
700f6f98
RK
972 seq = gen_sequence ();
973 end_sequence ();
974 emit_insn_after (seq, after);
975 }
59257ff7 976 else
d072107f 977 emit_insn (fcn (stack_pointer_rtx, sa));
59257ff7
RK
978}
979\f
18ca7dab
RK
980/* Return an rtx representing the address of an area of memory dynamically
981 pushed on the stack. This region of memory is always aligned to
982 a multiple of BIGGEST_ALIGNMENT.
983
984 Any required stack pointer alignment is preserved.
985
986 SIZE is an rtx representing the size of the area.
091ad0b9
RK
987 TARGET is a place in which the address can be placed.
988
989 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
18ca7dab
RK
990
991rtx
091ad0b9 992allocate_dynamic_stack_space (size, target, known_align)
18ca7dab
RK
993 rtx size;
994 rtx target;
091ad0b9 995 int known_align;
18ca7dab 996{
15fc0026 997 /* If we're asking for zero bytes, it doesn't matter what we point
9faa82d8 998 to since we can't dereference it. But return a reasonable
15fc0026
RK
999 address anyway. */
1000 if (size == const0_rtx)
1001 return virtual_stack_dynamic_rtx;
1002
1003 /* Otherwise, show we're calling alloca or equivalent. */
1004 current_function_calls_alloca = 1;
1005
18ca7dab
RK
1006 /* Ensure the size is in the proper mode. */
1007 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1008 size = convert_to_mode (Pmode, size, 1);
1009
1010 /* We will need to ensure that the address we return is aligned to
1011 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
1012 always know its final value at this point in the compilation (it
1013 might depend on the size of the outgoing parameter lists, for
1014 example), so we must align the value to be returned in that case.
1015 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
1016 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
1017 We must also do an alignment operation on the returned value if
1018 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
1019
1020 If we have to align, we must leave space in SIZE for the hole
1021 that might result from the alignment operation. */
1022
8d998e52 1023#if defined (STACK_DYNAMIC_OFFSET) || defined (STACK_POINTER_OFFSET) || ! defined (STACK_BOUNDARY)
515a7242
JW
1024#define MUST_ALIGN 1
1025#else
1026#define MUST_ALIGN (STACK_BOUNDARY < BIGGEST_ALIGNMENT)
18ca7dab
RK
1027#endif
1028
515a7242 1029 if (MUST_ALIGN)
3b998c11
RK
1030 {
1031 if (GET_CODE (size) == CONST_INT)
b1ec3c92
CH
1032 size = GEN_INT (INTVAL (size)
1033 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
3b998c11
RK
1034 else
1035 size = expand_binop (Pmode, add_optab, size,
b1ec3c92
CH
1036 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1037 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3b998c11 1038 }
1d9d04f8 1039
18ca7dab
RK
1040#ifdef SETJMP_VIA_SAVE_AREA
1041 /* If setjmp restores regs from a save area in the stack frame,
1042 avoid clobbering the reg save area. Note that the offset of
1043 virtual_incoming_args_rtx includes the preallocated stack args space.
1044 It would be no problem to clobber that, but it's on the wrong side
1045 of the old save area. */
1046 {
1047 rtx dynamic_offset
1048 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
b1ec3c92 1049 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
18ca7dab 1050 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
b1ec3c92 1051 NULL_RTX, 1, OPTAB_LIB_WIDEN);
18ca7dab
RK
1052 }
1053#endif /* SETJMP_VIA_SAVE_AREA */
1054
1055 /* Round the size to a multiple of the required stack alignment.
1056 Since the stack if presumed to be rounded before this allocation,
1057 this will maintain the required alignment.
1058
1059 If the stack grows downward, we could save an insn by subtracting
1060 SIZE from the stack pointer and then aligning the stack pointer.
1061 The problem with this is that the stack pointer may be unaligned
1062 between the execution of the subtraction and alignment insns and
1063 some machines do not allow this. Even on those that do, some
1064 signal handlers malfunction if a signal should occur between those
1065 insns. Since this is an extremely rare event, we have no reliable
1066 way of knowing which systems have this problem. So we avoid even
1067 momentarily mis-aligning the stack. */
1068
89d825c9 1069#ifdef STACK_BOUNDARY
86b25e81
RS
1070 /* If we added a variable amount to SIZE,
1071 we can no longer assume it is aligned. */
515a7242 1072#if !defined (SETJMP_VIA_SAVE_AREA)
96ec484f 1073 if (MUST_ALIGN || known_align % STACK_BOUNDARY != 0)
34c9156a 1074#endif
091ad0b9 1075 size = round_push (size);
89d825c9 1076#endif
18ca7dab
RK
1077
1078 do_pending_stack_adjust ();
1079
edff2491
RK
1080 /* If needed, check that we have the required amount of stack. Take into
1081 account what has already been checked. */
1082 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
1083 probe_stack_range (STACK_CHECK_MAX_FRAME_SIZE + STACK_CHECK_PROTECT, size);
1084
091ad0b9
RK
1085 /* Don't use a TARGET that isn't a pseudo. */
1086 if (target == 0 || GET_CODE (target) != REG
1087 || REGNO (target) < FIRST_PSEUDO_REGISTER)
18ca7dab
RK
1088 target = gen_reg_rtx (Pmode);
1089
305f22b5 1090 mark_reg_pointer (target, known_align / BITS_PER_UNIT);
3ad69266 1091
18ca7dab
RK
1092#ifndef STACK_GROWS_DOWNWARD
1093 emit_move_insn (target, virtual_stack_dynamic_rtx);
1094#endif
1095
1096 /* Perform the required allocation from the stack. Some systems do
1097 this differently than simply incrementing/decrementing from the
1098 stack pointer. */
1099#ifdef HAVE_allocate_stack
1100 if (HAVE_allocate_stack)
1101 {
1102 enum machine_mode mode
1103 = insn_operand_mode[(int) CODE_FOR_allocate_stack][0];
1104
ea534b63
RK
1105 size = convert_modes (mode, ptr_mode, size, 1);
1106
18ca7dab
RK
1107 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1108 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1109 (size, mode)))
1110 size = copy_to_mode_reg (mode, size);
1111
1112 emit_insn (gen_allocate_stack (size));
1113 }
1114 else
1115#endif
ea534b63
RK
1116 {
1117 size = convert_modes (Pmode, ptr_mode, size, 1);
1118 anti_adjust_stack (size);
1119 }
18ca7dab
RK
1120
1121#ifdef STACK_GROWS_DOWNWARD
1122 emit_move_insn (target, virtual_stack_dynamic_rtx);
1123#endif
1124
515a7242 1125 if (MUST_ALIGN)
091ad0b9 1126 {
5244db05 1127 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
0f41302f
MS
1128 but we know it can't. So add ourselves and then do
1129 TRUNC_DIV_EXPR. */
0f56a403 1130 target = expand_binop (Pmode, add_optab, target,
5244db05
RK
1131 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1132 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1133 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
b1ec3c92
CH
1134 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1135 NULL_RTX, 1);
091ad0b9 1136 target = expand_mult (Pmode, target,
b1ec3c92
CH
1137 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1138 NULL_RTX, 1);
091ad0b9 1139 }
18ca7dab
RK
1140
1141 /* Some systems require a particular insn to refer to the stack
1142 to make the pages exist. */
1143#ifdef HAVE_probe
1144 if (HAVE_probe)
1145 emit_insn (gen_probe ());
1146#endif
1147
15fc0026
RK
1148 /* Record the new stack level for nonlocal gotos. */
1149 if (nonlocal_goto_handler_slot != 0)
1150 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1151
18ca7dab
RK
1152 return target;
1153}
1154\f
edff2491
RK
1155/* Emit one stack probe at ADDRESS, an address within the stack. */
1156
1157static void
1158emit_stack_probe (address)
1159 rtx address;
1160{
1161 rtx memref = gen_rtx (MEM, word_mode, address);
1162
1163 MEM_VOLATILE_P (memref) = 1;
1164
1165 if (STACK_CHECK_PROBE_LOAD)
1166 emit_move_insn (gen_reg_rtx (word_mode), memref);
1167 else
1168 emit_move_insn (memref, const0_rtx);
1169}
1170
1171/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
1172 FIRST is a constant and size is a Pmode RTX. These are offsets from the
1173 current stack pointer. STACK_GROWS_DOWNWARD says whether to add or
1174 subtract from the stack. If SIZE is constant, this is done
1175 with a fixed number of probes. Otherwise, we must make a loop. */
1176
1177#ifdef STACK_GROWS_DOWNWARD
1178#define STACK_GROW_OP MINUS
1179#else
1180#define STACK_GROW_OP PLUS
1181#endif
1182
1183void
1184probe_stack_range (first, size)
1185 HOST_WIDE_INT first;
1186 rtx size;
1187{
1188 /* First see if we have an insn to check the stack. Use it if so. */
1189#ifdef HAVE_check_stack
1190 if (HAVE_check_stack)
1191 {
1192 rtx last_addr = force_operand (gen_rtx (STACK_GROW_OP, Pmode,
1193 stack_pointer_rtx,
1194 plus_constant (size, first)),
1195 NULL_RTX);
1196
1197 if (insn_operand_predicate[(int) CODE_FOR_check_stack][0]
1198 && ! ((*insn_operand_predicate[(int) CODE_FOR_check_stack][0])
1199 (last_address, Pmode)))
1200 last_address = copy_to_mode_reg (Pmode, last_address);
1201
1202 emit_insn (gen_check_stack (last_address));
1203 return;
1204 }
1205#endif
1206
1207 /* If we have to generate explicit probes, see if we have a constant
1208 number of them to generate. If so, that's the easy case. */
1209 if (GET_CODE (size) == CONST_INT)
1210 {
1211 HOST_WIDE_INT offset;
1212
1213 /* Start probing at FIRST + N * STACK_CHECK_PROBE_INTERVAL
1214 for values of N from 1 until it exceeds LAST. If only one
1215 probe is needed, this will not generate any code. Then probe
1216 at LAST. */
1217 for (offset = first + STACK_CHECK_PROBE_INTERVAL;
1218 offset < INTVAL (size);
1219 offset = offset + STACK_CHECK_PROBE_INTERVAL)
1220 emit_stack_probe (gen_rtx (STACK_GROW_OP, Pmode,
1221 stack_pointer_rtx, GEN_INT (offset)));
1222
1223 emit_stack_probe (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1224 plus_constant (size, first)));
1225 }
1226
1227 /* In the variable case, do the same as above, but in a loop. We emit loop
1228 notes so that loop optimization can be done. */
1229 else
1230 {
1231 rtx test_addr
1232 = force_operand (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1233 GEN_INT (first
1234 + STACK_CHECK_PROBE_INTERVAL)),
1235 NULL_RTX);
1236 rtx last_addr
1237 = force_operand (gen_rtx (STACK_GROW_OP, Pmode, stack_pointer_rtx,
1238 plus_constant (size, first)),
1239 NULL_RTX);
1240 rtx incr = GEN_INT (STACK_CHECK_PROBE_INTERVAL);
1241 rtx loop_lab = gen_label_rtx ();
1242 rtx test_lab = gen_label_rtx ();
1243 rtx end_lab = gen_label_rtx ();
1244 rtx temp;
1245
1246 if (GET_CODE (test_addr) != REG
1247 || REGNO (test_addr) < FIRST_PSEUDO_REGISTER)
1248 test_addr = force_reg (Pmode, test_addr);
1249
1250 emit_note (NULL_PTR, NOTE_INSN_LOOP_BEG);
1251 emit_jump (test_lab);
1252
1253 emit_label (loop_lab);
1254 emit_stack_probe (test_addr);
1255
1256 emit_note (NULL_PTR, NOTE_INSN_LOOP_CONT);
1257
1258#ifdef STACK_GROWS_DOWNWARD
1259#define CMP_OPCODE GTU
1260 temp = expand_binop (Pmode, sub_optab, test_addr, incr, test_addr,
1261 1, OPTAB_WIDEN);
1262#else
1263#define CMP_OPCODE LTU
1264 temp = expand_binop (Pmode, add_optab, test_addr, incr, test_addr,
1265 1, OPTAB_WIDEN);
1266#endif
1267
1268 if (temp != test_addr)
1269 abort ();
1270
1271 emit_label (test_lab);
1272 emit_cmp_insn (test_addr, last_addr, CMP_OPCODE, NULL_RTX, Pmode, 1, 0);
1273 emit_jump_insn ((*bcc_gen_fctn[(int) CMP_OPCODE]) (loop_lab));
1274 emit_jump (end_lab);
1275 emit_note (NULL_PTR, NOTE_INSN_LOOP_END);
1276 emit_label (end_lab);
1277
1278 emit_stack_probe (last_addr);
1279 }
1280}
1281\f
18ca7dab
RK
1282/* Return an rtx representing the register or memory location
1283 in which a scalar value of data type VALTYPE
1284 was returned by a function call to function FUNC.
1285 FUNC is a FUNCTION_DECL node if the precise function is known,
1286 otherwise 0. */
1287
1288rtx
1289hard_function_value (valtype, func)
1290 tree valtype;
1291 tree func;
1292{
e1a4071f
JL
1293 rtx val = FUNCTION_VALUE (valtype, func);
1294 if (GET_CODE (val) == REG
1295 && GET_MODE (val) == BLKmode)
1296 {
1297 int bytes = int_size_in_bytes (valtype);
1298 enum machine_mode tmpmode;
1299 for (tmpmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1300 tmpmode != MAX_MACHINE_MODE;
1301 tmpmode = GET_MODE_WIDER_MODE (tmpmode))
1302 {
1303 /* Have we found a large enough mode? */
1304 if (GET_MODE_SIZE (tmpmode) >= bytes)
1305 break;
1306 }
1307
1308 /* No suitable mode found. */
1309 if (tmpmode == MAX_MACHINE_MODE)
1310 abort ();
1311
1312 PUT_MODE (val, tmpmode);
1313 }
1314 return val;
18ca7dab
RK
1315}
1316
1317/* Return an rtx representing the register or memory location
1318 in which a scalar value of mode MODE was returned by a library call. */
1319
1320rtx
1321hard_libcall_value (mode)
1322 enum machine_mode mode;
1323{
1324 return LIBCALL_VALUE (mode);
1325}
0c5e217d
RS
1326
1327/* Look up the tree code for a given rtx code
1328 to provide the arithmetic operation for REAL_ARITHMETIC.
1329 The function returns an int because the caller may not know
1330 what `enum tree_code' means. */
1331
1332int
1333rtx_to_tree_code (code)
1334 enum rtx_code code;
1335{
1336 enum tree_code tcode;
1337
1338 switch (code)
1339 {
1340 case PLUS:
1341 tcode = PLUS_EXPR;
1342 break;
1343 case MINUS:
1344 tcode = MINUS_EXPR;
1345 break;
1346 case MULT:
1347 tcode = MULT_EXPR;
1348 break;
1349 case DIV:
1350 tcode = RDIV_EXPR;
1351 break;
1352 case SMIN:
1353 tcode = MIN_EXPR;
1354 break;
1355 case SMAX:
1356 tcode = MAX_EXPR;
1357 break;
1358 default:
1359 tcode = LAST_AND_UNUSED_TREE_CODE;
1360 break;
1361 }
1362 return ((int) tcode);
1363}