]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/explow.c
(ALPHA_COSTS): Add missing arg to call to rtx_cost.
[thirdparty/gcc.git] / gcc / explow.c
CommitLineData
18ca7dab
RK
1/* Subroutines for manipulating rtx's in semantically interesting ways.
2 Copyright (C) 1987, 1991 Free Software Foundation, Inc.
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21#include "config.h"
22#include "rtl.h"
23#include "tree.h"
24#include "flags.h"
25#include "expr.h"
26#include "hard-reg-set.h"
27#include "insn-config.h"
28#include "recog.h"
29#include "insn-flags.h"
30#include "insn-codes.h"
31
b1ec3c92
CH
32/* Return an rtx for the sum of X and the integer C.
33
8008b228 34 This function should be used via the `plus_constant' macro. */
18ca7dab
RK
35
36rtx
b1ec3c92 37plus_constant_wide (x, c)
18ca7dab 38 register rtx x;
b1ec3c92 39 register HOST_WIDE_INT c;
18ca7dab
RK
40{
41 register RTX_CODE code;
42 register enum machine_mode mode;
43 register rtx tem;
44 int all_constant = 0;
45
46 if (c == 0)
47 return x;
48
49 restart:
50
51 code = GET_CODE (x);
52 mode = GET_MODE (x);
53 switch (code)
54 {
55 case CONST_INT:
b1ec3c92 56 return GEN_INT (INTVAL (x) + c);
18ca7dab
RK
57
58 case CONST_DOUBLE:
59 {
b1ec3c92
CH
60 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
61 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
62 HOST_WIDE_INT l2 = c;
63 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
64 HOST_WIDE_INT lv, hv;
18ca7dab
RK
65
66 add_double (l1, h1, l2, h2, &lv, &hv);
67
68 return immed_double_const (lv, hv, VOIDmode);
69 }
70
71 case MEM:
72 /* If this is a reference to the constant pool, try replacing it with
73 a reference to a new constant. If the resulting address isn't
74 valid, don't return it because we have no way to validize it. */
75 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
76 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
77 {
78 tem
79 = force_const_mem (GET_MODE (x),
80 plus_constant (get_pool_constant (XEXP (x, 0)),
81 c));
82 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
83 return tem;
84 }
85 break;
86
87 case CONST:
88 /* If adding to something entirely constant, set a flag
89 so that we can add a CONST around the result. */
90 x = XEXP (x, 0);
91 all_constant = 1;
92 goto restart;
93
94 case SYMBOL_REF:
95 case LABEL_REF:
96 all_constant = 1;
97 break;
98
99 case PLUS:
100 /* The interesting case is adding the integer to a sum.
101 Look for constant term in the sum and combine
102 with C. For an integer constant term, we make a combined
103 integer. For a constant term that is not an explicit integer,
e5671f2b
RK
104 we cannot really combine, but group them together anyway.
105
106 Use a recursive call in case the remaining operand is something
107 that we handle specially, such as a SYMBOL_REF. */
108
109 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
110 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
18ca7dab
RK
111 else if (CONSTANT_P (XEXP (x, 0)))
112 return gen_rtx (PLUS, mode,
113 plus_constant (XEXP (x, 0), c),
114 XEXP (x, 1));
115 else if (CONSTANT_P (XEXP (x, 1)))
116 return gen_rtx (PLUS, mode,
117 XEXP (x, 0),
118 plus_constant (XEXP (x, 1), c));
119 }
120
121 if (c != 0)
b1ec3c92 122 x = gen_rtx (PLUS, mode, x, GEN_INT (c));
18ca7dab
RK
123
124 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
125 return x;
126 else if (all_constant)
127 return gen_rtx (CONST, mode, x);
128 else
129 return x;
130}
131
b1ec3c92
CH
132/* This is the same as `plus_constant', except that it handles LO_SUM.
133
134 This function should be used via the `plus_constant_for_output' macro. */
18ca7dab
RK
135
136rtx
b1ec3c92 137plus_constant_for_output_wide (x, c)
18ca7dab 138 register rtx x;
b1ec3c92 139 register HOST_WIDE_INT c;
18ca7dab
RK
140{
141 register RTX_CODE code = GET_CODE (x);
142 register enum machine_mode mode = GET_MODE (x);
143 int all_constant = 0;
144
145 if (GET_CODE (x) == LO_SUM)
146 return gen_rtx (LO_SUM, mode, XEXP (x, 0),
147 plus_constant_for_output (XEXP (x, 1), c));
148
149 else
150 return plus_constant (x, c);
151}
152\f
153/* If X is a sum, return a new sum like X but lacking any constant terms.
154 Add all the removed constant terms into *CONSTPTR.
155 X itself is not altered. The result != X if and only if
156 it is not isomorphic to X. */
157
158rtx
159eliminate_constant_term (x, constptr)
160 rtx x;
161 rtx *constptr;
162{
163 register rtx x0, x1;
164 rtx tem;
165
166 if (GET_CODE (x) != PLUS)
167 return x;
168
169 /* First handle constants appearing at this level explicitly. */
170 if (GET_CODE (XEXP (x, 1)) == CONST_INT
171 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
172 XEXP (x, 1)))
173 && GET_CODE (tem) == CONST_INT)
174 {
175 *constptr = tem;
176 return eliminate_constant_term (XEXP (x, 0), constptr);
177 }
178
179 tem = const0_rtx;
180 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
181 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
182 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
183 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
184 *constptr, tem))
185 && GET_CODE (tem) == CONST_INT)
186 {
187 *constptr = tem;
188 return gen_rtx (PLUS, GET_MODE (x), x0, x1);
189 }
190
191 return x;
192}
193
194/* Returns the insn that next references REG after INSN, or 0
195 if REG is clobbered before next referenced or we cannot find
196 an insn that references REG in a straight-line piece of code. */
197
198rtx
199find_next_ref (reg, insn)
200 rtx reg;
201 rtx insn;
202{
203 rtx next;
204
205 for (insn = NEXT_INSN (insn); insn; insn = next)
206 {
207 next = NEXT_INSN (insn);
208 if (GET_CODE (insn) == NOTE)
209 continue;
210 if (GET_CODE (insn) == CODE_LABEL
211 || GET_CODE (insn) == BARRIER)
212 return 0;
213 if (GET_CODE (insn) == INSN
214 || GET_CODE (insn) == JUMP_INSN
215 || GET_CODE (insn) == CALL_INSN)
216 {
217 if (reg_set_p (reg, insn))
218 return 0;
219 if (reg_mentioned_p (reg, PATTERN (insn)))
220 return insn;
221 if (GET_CODE (insn) == JUMP_INSN)
222 {
223 if (simplejump_p (insn))
224 next = JUMP_LABEL (insn);
225 else
226 return 0;
227 }
228 if (GET_CODE (insn) == CALL_INSN
229 && REGNO (reg) < FIRST_PSEUDO_REGISTER
230 && call_used_regs[REGNO (reg)])
231 return 0;
232 }
233 else
234 abort ();
235 }
236 return 0;
237}
238
239/* Return an rtx for the size in bytes of the value of EXP. */
240
241rtx
242expr_size (exp)
243 tree exp;
244{
99098c66
RK
245 tree size = size_in_bytes (TREE_TYPE (exp));
246
247 if (TREE_CODE (size) != INTEGER_CST
248 && contains_placeholder_p (size))
249 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
250
251 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
18ca7dab
RK
252}
253\f
254/* Return a copy of X in which all memory references
255 and all constants that involve symbol refs
256 have been replaced with new temporary registers.
257 Also emit code to load the memory locations and constants
258 into those registers.
259
260 If X contains no such constants or memory references,
261 X itself (not a copy) is returned.
262
263 If a constant is found in the address that is not a legitimate constant
264 in an insn, it is left alone in the hope that it might be valid in the
265 address.
266
267 X may contain no arithmetic except addition, subtraction and multiplication.
268 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
269
270static rtx
271break_out_memory_refs (x)
272 register rtx x;
273{
274 if (GET_CODE (x) == MEM
cabeca29 275 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
18ca7dab
RK
276 && GET_MODE (x) != VOIDmode))
277 {
278 register rtx temp = force_reg (GET_MODE (x), x);
279 mark_reg_pointer (temp);
280 x = temp;
281 }
282 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
283 || GET_CODE (x) == MULT)
284 {
285 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
286 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
287 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
288 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
289 }
290 return x;
291}
292
293/* Given a memory address or facsimile X, construct a new address,
294 currently equivalent, that is stable: future stores won't change it.
295
296 X must be composed of constants, register and memory references
297 combined with addition, subtraction and multiplication:
298 in other words, just what you can get from expand_expr if sum_ok is 1.
299
300 Works by making copies of all regs and memory locations used
301 by X and combining them the same way X does.
302 You could also stabilize the reference to this address
303 by copying the address to a register with copy_to_reg;
304 but then you wouldn't get indexed addressing in the reference. */
305
306rtx
307copy_all_regs (x)
308 register rtx x;
309{
310 if (GET_CODE (x) == REG)
311 {
11c50c5e
DE
312 if (REGNO (x) != FRAME_POINTER_REGNUM
313#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
314 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
315#endif
316 )
18ca7dab
RK
317 x = copy_to_reg (x);
318 }
319 else if (GET_CODE (x) == MEM)
320 x = copy_to_reg (x);
321 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
322 || GET_CODE (x) == MULT)
323 {
324 register rtx op0 = copy_all_regs (XEXP (x, 0));
325 register rtx op1 = copy_all_regs (XEXP (x, 1));
326 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
327 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
328 }
329 return x;
330}
331\f
332/* Return something equivalent to X but valid as a memory address
333 for something of mode MODE. When X is not itself valid, this
334 works by copying X or subexpressions of it into registers. */
335
336rtx
337memory_address (mode, x)
338 enum machine_mode mode;
339 register rtx x;
340{
341 register rtx oldx;
342
343 /* By passing constant addresses thru registers
344 we get a chance to cse them. */
cabeca29 345 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
18ca7dab
RK
346 return force_reg (Pmode, x);
347
348 /* Accept a QUEUED that refers to a REG
349 even though that isn't a valid address.
350 On attempting to put this in an insn we will call protect_from_queue
351 which will turn it into a REG, which is valid. */
352 if (GET_CODE (x) == QUEUED
353 && GET_CODE (QUEUED_VAR (x)) == REG)
354 return x;
355
356 /* We get better cse by rejecting indirect addressing at this stage.
357 Let the combiner create indirect addresses where appropriate.
358 For now, generate the code so that the subexpressions useful to share
359 are visible. But not if cse won't be done! */
360 oldx = x;
361 if (! cse_not_expected && GET_CODE (x) != REG)
362 x = break_out_memory_refs (x);
363
364 /* At this point, any valid address is accepted. */
365 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
366
367 /* If it was valid before but breaking out memory refs invalidated it,
368 use it the old way. */
369 if (memory_address_p (mode, oldx))
370 goto win2;
371
372 /* Perform machine-dependent transformations on X
373 in certain cases. This is not necessary since the code
374 below can handle all possible cases, but machine-dependent
375 transformations can make better code. */
376 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
377
378 /* PLUS and MULT can appear in special ways
379 as the result of attempts to make an address usable for indexing.
380 Usually they are dealt with by calling force_operand, below.
381 But a sum containing constant terms is special
382 if removing them makes the sum a valid address:
383 then we generate that address in a register
384 and index off of it. We do this because it often makes
385 shorter code, and because the addresses thus generated
386 in registers often become common subexpressions. */
387 if (GET_CODE (x) == PLUS)
388 {
389 rtx constant_term = const0_rtx;
390 rtx y = eliminate_constant_term (x, &constant_term);
391 if (constant_term == const0_rtx
392 || ! memory_address_p (mode, y))
b1ec3c92 393 return force_operand (x, NULL_RTX);
18ca7dab
RK
394
395 y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
396 if (! memory_address_p (mode, y))
b1ec3c92 397 return force_operand (x, NULL_RTX);
18ca7dab
RK
398 return y;
399 }
400 if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
b1ec3c92 401 return force_operand (x, NULL_RTX);
18ca7dab
RK
402
403 /* If we have a register that's an invalid address,
404 it must be a hard reg of the wrong class. Copy it to a pseudo. */
405 if (GET_CODE (x) == REG)
406 return copy_to_reg (x);
407
408 /* Last resort: copy the value to a register, since
409 the register is a valid address. */
410 return force_reg (Pmode, x);
411
412 win2:
413 x = oldx;
414 win:
415 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
416 /* Don't copy an addr via a reg if it is one of our stack slots. */
417 && ! (GET_CODE (x) == PLUS
418 && (XEXP (x, 0) == virtual_stack_vars_rtx
419 || XEXP (x, 0) == virtual_incoming_args_rtx)))
420 {
421 if (general_operand (x, Pmode))
422 return force_reg (Pmode, x);
423 else
b1ec3c92 424 return force_operand (x, NULL_RTX);
18ca7dab
RK
425 }
426 return x;
427}
428
429/* Like `memory_address' but pretend `flag_force_addr' is 0. */
430
431rtx
432memory_address_noforce (mode, x)
433 enum machine_mode mode;
434 rtx x;
435{
436 int ambient_force_addr = flag_force_addr;
437 rtx val;
438
439 flag_force_addr = 0;
440 val = memory_address (mode, x);
441 flag_force_addr = ambient_force_addr;
442 return val;
443}
444
445/* Convert a mem ref into one with a valid memory address.
446 Pass through anything else unchanged. */
447
448rtx
449validize_mem (ref)
450 rtx ref;
451{
452 if (GET_CODE (ref) != MEM)
453 return ref;
454 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
455 return ref;
456 /* Don't alter REF itself, since that is probably a stack slot. */
457 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
458}
459\f
460/* Return a modified copy of X with its memory address copied
461 into a temporary register to protect it from side effects.
462 If X is not a MEM, it is returned unchanged (and not copied).
463 Perhaps even if it is a MEM, if there is no need to change it. */
464
465rtx
466stabilize (x)
467 rtx x;
468{
469 register rtx addr;
470 if (GET_CODE (x) != MEM)
471 return x;
472 addr = XEXP (x, 0);
473 if (rtx_unstable_p (addr))
474 {
475 rtx temp = copy_all_regs (addr);
476 rtx mem;
477 if (GET_CODE (temp) != REG)
478 temp = copy_to_reg (temp);
479 mem = gen_rtx (MEM, GET_MODE (x), temp);
480
481 /* Mark returned memref with in_struct if it's in an array or
482 structure. Copy const and volatile from original memref. */
483
484 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
485 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
486 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
487 return mem;
488 }
489 return x;
490}
491\f
492/* Copy the value or contents of X to a new temp reg and return that reg. */
493
494rtx
495copy_to_reg (x)
496 rtx x;
497{
498 register rtx temp = gen_reg_rtx (GET_MODE (x));
499
500 /* If not an operand, must be an address with PLUS and MULT so
501 do the computation. */
502 if (! general_operand (x, VOIDmode))
503 x = force_operand (x, temp);
504
505 if (x != temp)
506 emit_move_insn (temp, x);
507
508 return temp;
509}
510
511/* Like copy_to_reg but always give the new register mode Pmode
512 in case X is a constant. */
513
514rtx
515copy_addr_to_reg (x)
516 rtx x;
517{
518 return copy_to_mode_reg (Pmode, x);
519}
520
521/* Like copy_to_reg but always give the new register mode MODE
522 in case X is a constant. */
523
524rtx
525copy_to_mode_reg (mode, x)
526 enum machine_mode mode;
527 rtx x;
528{
529 register rtx temp = gen_reg_rtx (mode);
530
531 /* If not an operand, must be an address with PLUS and MULT so
532 do the computation. */
533 if (! general_operand (x, VOIDmode))
534 x = force_operand (x, temp);
535
536 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
537 abort ();
538 if (x != temp)
539 emit_move_insn (temp, x);
540 return temp;
541}
542
543/* Load X into a register if it is not already one.
544 Use mode MODE for the register.
545 X should be valid for mode MODE, but it may be a constant which
546 is valid for all integer modes; that's why caller must specify MODE.
547
548 The caller must not alter the value in the register we return,
549 since we mark it as a "constant" register. */
550
551rtx
552force_reg (mode, x)
553 enum machine_mode mode;
554 rtx x;
555{
556 register rtx temp, insn;
557
558 if (GET_CODE (x) == REG)
559 return x;
560 temp = gen_reg_rtx (mode);
561 insn = emit_move_insn (temp, x);
562 /* Let optimizers know that TEMP's value never changes
563 and that X can be substituted for it. */
564 if (CONSTANT_P (x))
565 {
b1ec3c92 566 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
18ca7dab
RK
567
568 if (note)
569 XEXP (note, 0) = x;
570 else
571 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
572 }
573 return temp;
574}
575
576/* If X is a memory ref, copy its contents to a new temp reg and return
577 that reg. Otherwise, return X. */
578
579rtx
580force_not_mem (x)
581 rtx x;
582{
583 register rtx temp;
584 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
585 return x;
586 temp = gen_reg_rtx (GET_MODE (x));
587 emit_move_insn (temp, x);
588 return temp;
589}
590
591/* Copy X to TARGET (if it's nonzero and a reg)
592 or to a new temp reg and return that reg.
593 MODE is the mode to use for X in case it is a constant. */
594
595rtx
596copy_to_suggested_reg (x, target, mode)
597 rtx x, target;
598 enum machine_mode mode;
599{
600 register rtx temp;
601
602 if (target && GET_CODE (target) == REG)
603 temp = target;
604 else
605 temp = gen_reg_rtx (mode);
606
607 emit_move_insn (temp, x);
608 return temp;
609}
610\f
611/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
612 This pops when ADJUST is positive. ADJUST need not be constant. */
613
614void
615adjust_stack (adjust)
616 rtx adjust;
617{
618 rtx temp;
619 adjust = protect_from_queue (adjust, 0);
620
621 if (adjust == const0_rtx)
622 return;
623
624 temp = expand_binop (Pmode,
625#ifdef STACK_GROWS_DOWNWARD
626 add_optab,
627#else
628 sub_optab,
629#endif
630 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
631 OPTAB_LIB_WIDEN);
632
633 if (temp != stack_pointer_rtx)
634 emit_move_insn (stack_pointer_rtx, temp);
635}
636
637/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
638 This pushes when ADJUST is positive. ADJUST need not be constant. */
639
640void
641anti_adjust_stack (adjust)
642 rtx adjust;
643{
644 rtx temp;
645 adjust = protect_from_queue (adjust, 0);
646
647 if (adjust == const0_rtx)
648 return;
649
650 temp = expand_binop (Pmode,
651#ifdef STACK_GROWS_DOWNWARD
652 sub_optab,
653#else
654 add_optab,
655#endif
656 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
657 OPTAB_LIB_WIDEN);
658
659 if (temp != stack_pointer_rtx)
660 emit_move_insn (stack_pointer_rtx, temp);
661}
662
663/* Round the size of a block to be pushed up to the boundary required
664 by this machine. SIZE is the desired size, which need not be constant. */
665
666rtx
667round_push (size)
668 rtx size;
669{
670#ifdef STACK_BOUNDARY
671 int align = STACK_BOUNDARY / BITS_PER_UNIT;
672 if (align == 1)
673 return size;
674 if (GET_CODE (size) == CONST_INT)
675 {
676 int new = (INTVAL (size) + align - 1) / align * align;
677 if (INTVAL (size) != new)
b1ec3c92 678 size = GEN_INT (new);
18ca7dab
RK
679 }
680 else
681 {
b1ec3c92
CH
682 size = expand_divmod (0, CEIL_DIV_EXPR, Pmode, size, GEN_INT (align),
683 NULL_RTX, 1);
684 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
18ca7dab
RK
685 }
686#endif /* STACK_BOUNDARY */
687 return size;
688}
689\f
59257ff7
RK
690/* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
691 to a previously-created save area. If no save area has been allocated,
692 this function will allocate one. If a save area is specified, it
693 must be of the proper mode.
694
695 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
696 are emitted at the current position. */
697
698void
699emit_stack_save (save_level, psave, after)
700 enum save_level save_level;
701 rtx *psave;
702 rtx after;
703{
704 rtx sa = *psave;
705 /* The default is that we use a move insn and save in a Pmode object. */
706 rtx (*fcn) () = gen_move_insn;
707 enum machine_mode mode = Pmode;
708
709 /* See if this machine has anything special to do for this kind of save. */
710 switch (save_level)
711 {
712#ifdef HAVE_save_stack_block
713 case SAVE_BLOCK:
714 if (HAVE_save_stack_block)
715 {
716 fcn = gen_save_stack_block;
717 mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
718 }
719 break;
720#endif
721#ifdef HAVE_save_stack_function
722 case SAVE_FUNCTION:
723 if (HAVE_save_stack_function)
724 {
725 fcn = gen_save_stack_function;
726 mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
727 }
728 break;
729#endif
730#ifdef HAVE_save_stack_nonlocal
731 case SAVE_NONLOCAL:
732 if (HAVE_save_stack_nonlocal)
733 {
734 fcn = gen_save_stack_nonlocal;
735 mode = insn_operand_mode[CODE_FOR_save_stack_nonlocal][0];
736 }
737 break;
738#endif
739 }
740
741 /* If there is no save area and we have to allocate one, do so. Otherwise
742 verify the save area is the proper mode. */
743
744 if (sa == 0)
745 {
746 if (mode != VOIDmode)
747 {
748 if (save_level == SAVE_NONLOCAL)
749 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
750 else
751 *psave = sa = gen_reg_rtx (mode);
752 }
753 }
754 else
755 {
756 if (mode == VOIDmode || GET_MODE (sa) != mode)
757 abort ();
758 }
759
760 if (after)
700f6f98
RK
761 {
762 rtx seq;
763
764 start_sequence ();
5460015d
JW
765 /* We must validize inside the sequence, to ensure that any instructions
766 created by the validize call also get moved to the right place. */
767 if (sa != 0)
768 sa = validize_mem (sa);
d072107f 769 emit_insn (fcn (sa, stack_pointer_rtx));
700f6f98
RK
770 seq = gen_sequence ();
771 end_sequence ();
772 emit_insn_after (seq, after);
773 }
59257ff7 774 else
5460015d
JW
775 {
776 if (sa != 0)
777 sa = validize_mem (sa);
778 emit_insn (fcn (sa, stack_pointer_rtx));
779 }
59257ff7
RK
780}
781
782/* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
783 area made by emit_stack_save. If it is zero, we have nothing to do.
784
785 Put any emitted insns after insn AFTER, if nonzero, otherwise at
786 current position. */
787
788void
789emit_stack_restore (save_level, sa, after)
790 enum save_level save_level;
791 rtx after;
792 rtx sa;
793{
794 /* The default is that we use a move insn. */
795 rtx (*fcn) () = gen_move_insn;
796
797 /* See if this machine has anything special to do for this kind of save. */
798 switch (save_level)
799 {
800#ifdef HAVE_restore_stack_block
801 case SAVE_BLOCK:
802 if (HAVE_restore_stack_block)
803 fcn = gen_restore_stack_block;
804 break;
805#endif
806#ifdef HAVE_restore_stack_function
807 case SAVE_FUNCTION:
808 if (HAVE_restore_stack_function)
809 fcn = gen_restore_stack_function;
810 break;
811#endif
812#ifdef HAVE_restore_stack_nonlocal
813
814 case SAVE_NONLOCAL:
815 if (HAVE_restore_stack_nonlocal)
816 fcn = gen_restore_stack_nonlocal;
817 break;
818#endif
819 }
820
d072107f
RK
821 if (sa != 0)
822 sa = validize_mem (sa);
823
59257ff7 824 if (after)
700f6f98
RK
825 {
826 rtx seq;
827
828 start_sequence ();
d072107f 829 emit_insn (fcn (stack_pointer_rtx, sa));
700f6f98
RK
830 seq = gen_sequence ();
831 end_sequence ();
832 emit_insn_after (seq, after);
833 }
59257ff7 834 else
d072107f 835 emit_insn (fcn (stack_pointer_rtx, sa));
59257ff7
RK
836}
837\f
18ca7dab
RK
838/* Return an rtx representing the address of an area of memory dynamically
839 pushed on the stack. This region of memory is always aligned to
840 a multiple of BIGGEST_ALIGNMENT.
841
842 Any required stack pointer alignment is preserved.
843
844 SIZE is an rtx representing the size of the area.
091ad0b9
RK
845 TARGET is a place in which the address can be placed.
846
847 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
18ca7dab
RK
848
849rtx
091ad0b9 850allocate_dynamic_stack_space (size, target, known_align)
18ca7dab
RK
851 rtx size;
852 rtx target;
091ad0b9 853 int known_align;
18ca7dab
RK
854{
855 /* Ensure the size is in the proper mode. */
856 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
857 size = convert_to_mode (Pmode, size, 1);
858
859 /* We will need to ensure that the address we return is aligned to
860 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
861 always know its final value at this point in the compilation (it
862 might depend on the size of the outgoing parameter lists, for
863 example), so we must align the value to be returned in that case.
864 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
865 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
866 We must also do an alignment operation on the returned value if
867 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
868
869 If we have to align, we must leave space in SIZE for the hole
870 that might result from the alignment operation. */
871
872#if defined (STACK_DYNAMIC_OFFSET) || defined(STACK_POINTER_OFFSET) || defined (ALLOCATE_OUTGOING_ARGS)
873#define MUST_ALIGN
874#endif
875
876#if ! defined (MUST_ALIGN) && (!defined(STACK_BOUNDARY) || STACK_BOUNDARY < BIGGEST_ALIGNMENT)
877#define MUST_ALIGN
878#endif
879
880#ifdef MUST_ALIGN
881
86b25e81
RS
882#if 0 /* It turns out we must always make extra space, if MUST_ALIGN
883 because we must always round the address up at the end,
884 because we don't know whether the dynamic offset
885 will mess up the desired alignment. */
1d9d04f8
RS
886 /* If we have to round the address up regardless of known_align,
887 make extra space regardless, also. */
3b998c11 888 if (known_align % BIGGEST_ALIGNMENT != 0)
1d9d04f8 889#endif
3b998c11
RK
890 {
891 if (GET_CODE (size) == CONST_INT)
b1ec3c92
CH
892 size = GEN_INT (INTVAL (size)
893 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
3b998c11
RK
894 else
895 size = expand_binop (Pmode, add_optab, size,
b1ec3c92
CH
896 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
897 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3b998c11 898 }
1d9d04f8 899
18ca7dab
RK
900#endif
901
902#ifdef SETJMP_VIA_SAVE_AREA
903 /* If setjmp restores regs from a save area in the stack frame,
904 avoid clobbering the reg save area. Note that the offset of
905 virtual_incoming_args_rtx includes the preallocated stack args space.
906 It would be no problem to clobber that, but it's on the wrong side
907 of the old save area. */
908 {
909 rtx dynamic_offset
910 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
b1ec3c92 911 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
18ca7dab 912 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
b1ec3c92 913 NULL_RTX, 1, OPTAB_LIB_WIDEN);
18ca7dab
RK
914 }
915#endif /* SETJMP_VIA_SAVE_AREA */
916
917 /* Round the size to a multiple of the required stack alignment.
918 Since the stack if presumed to be rounded before this allocation,
919 this will maintain the required alignment.
920
921 If the stack grows downward, we could save an insn by subtracting
922 SIZE from the stack pointer and then aligning the stack pointer.
923 The problem with this is that the stack pointer may be unaligned
924 between the execution of the subtraction and alignment insns and
925 some machines do not allow this. Even on those that do, some
926 signal handlers malfunction if a signal should occur between those
927 insns. Since this is an extremely rare event, we have no reliable
928 way of knowing which systems have this problem. So we avoid even
929 momentarily mis-aligning the stack. */
930
89d825c9 931#ifdef STACK_BOUNDARY
86b25e81
RS
932 /* If we added a variable amount to SIZE,
933 we can no longer assume it is aligned. */
934#if !defined (SETJMP_VIA_SAVE_AREA) && !defined (MUST_ALIGN)
091ad0b9 935 if (known_align % STACK_BOUNDARY != 0)
34c9156a 936#endif
091ad0b9 937 size = round_push (size);
89d825c9 938#endif
18ca7dab
RK
939
940 do_pending_stack_adjust ();
941
091ad0b9
RK
942 /* Don't use a TARGET that isn't a pseudo. */
943 if (target == 0 || GET_CODE (target) != REG
944 || REGNO (target) < FIRST_PSEUDO_REGISTER)
18ca7dab
RK
945 target = gen_reg_rtx (Pmode);
946
3ad69266
RS
947 mark_reg_pointer (target);
948
18ca7dab
RK
949#ifndef STACK_GROWS_DOWNWARD
950 emit_move_insn (target, virtual_stack_dynamic_rtx);
951#endif
952
953 /* Perform the required allocation from the stack. Some systems do
954 this differently than simply incrementing/decrementing from the
955 stack pointer. */
956#ifdef HAVE_allocate_stack
957 if (HAVE_allocate_stack)
958 {
959 enum machine_mode mode
960 = insn_operand_mode[(int) CODE_FOR_allocate_stack][0];
961
962 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
963 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
964 (size, mode)))
965 size = copy_to_mode_reg (mode, size);
966
967 emit_insn (gen_allocate_stack (size));
968 }
969 else
970#endif
971 anti_adjust_stack (size);
972
973#ifdef STACK_GROWS_DOWNWARD
974 emit_move_insn (target, virtual_stack_dynamic_rtx);
975#endif
976
977#ifdef MUST_ALIGN
86b25e81
RS
978#if 0 /* Even if we know the stack pointer has enough alignment,
979 there's no way to tell whether virtual_stack_dynamic_rtx shares that
980 alignment, so we still need to round the address up. */
091ad0b9 981 if (known_align % BIGGEST_ALIGNMENT != 0)
1d9d04f8 982#endif
091ad0b9
RK
983 {
984 target = expand_divmod (0, CEIL_DIV_EXPR, Pmode, target,
b1ec3c92
CH
985 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
986 NULL_RTX, 1);
091ad0b9
RK
987
988 target = expand_mult (Pmode, target,
b1ec3c92
CH
989 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
990 NULL_RTX, 1);
091ad0b9 991 }
18ca7dab
RK
992#endif
993
994 /* Some systems require a particular insn to refer to the stack
995 to make the pages exist. */
996#ifdef HAVE_probe
997 if (HAVE_probe)
998 emit_insn (gen_probe ());
999#endif
1000
1001 return target;
1002}
1003\f
1004/* Return an rtx representing the register or memory location
1005 in which a scalar value of data type VALTYPE
1006 was returned by a function call to function FUNC.
1007 FUNC is a FUNCTION_DECL node if the precise function is known,
1008 otherwise 0. */
1009
1010rtx
1011hard_function_value (valtype, func)
1012 tree valtype;
1013 tree func;
1014{
1015 return FUNCTION_VALUE (valtype, func);
1016}
1017
1018/* Return an rtx representing the register or memory location
1019 in which a scalar value of mode MODE was returned by a library call. */
1020
1021rtx
1022hard_libcall_value (mode)
1023 enum machine_mode mode;
1024{
1025 return LIBCALL_VALUE (mode);
1026}
0c5e217d
RS
1027
1028/* Look up the tree code for a given rtx code
1029 to provide the arithmetic operation for REAL_ARITHMETIC.
1030 The function returns an int because the caller may not know
1031 what `enum tree_code' means. */
1032
1033int
1034rtx_to_tree_code (code)
1035 enum rtx_code code;
1036{
1037 enum tree_code tcode;
1038
1039 switch (code)
1040 {
1041 case PLUS:
1042 tcode = PLUS_EXPR;
1043 break;
1044 case MINUS:
1045 tcode = MINUS_EXPR;
1046 break;
1047 case MULT:
1048 tcode = MULT_EXPR;
1049 break;
1050 case DIV:
1051 tcode = RDIV_EXPR;
1052 break;
1053 case SMIN:
1054 tcode = MIN_EXPR;
1055 break;
1056 case SMAX:
1057 tcode = MAX_EXPR;
1058 break;
1059 default:
1060 tcode = LAST_AND_UNUSED_TREE_CODE;
1061 break;
1062 }
1063 return ((int) tcode);
1064}