]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/explow.c
PR tree-optimization/83501 - strlen(a) not folded after strcpy(a, "...")
[thirdparty/gcc.git] / gcc / explow.c
CommitLineData
18ca7dab 1/* Subroutines for manipulating rtx's in semantically interesting ways.
85ec4feb 2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
18ca7dab 3
1322177d 4This file is part of GCC.
18ca7dab 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
18ca7dab 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
18ca7dab
RK
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
18ca7dab
RK
19
20
21#include "config.h"
670ee920 22#include "system.h"
4977bab6 23#include "coretypes.h"
957060b5
AM
24#include "target.h"
25#include "function.h"
18ca7dab
RK
26#include "rtl.h"
27#include "tree.h"
4d0cdd0c 28#include "memmodel.h"
6baf1cc8 29#include "tm_p.h"
957060b5 30#include "expmed.h"
357067f2 31#include "profile-count.h"
957060b5
AM
32#include "optabs.h"
33#include "emit-rtl.h"
34#include "recog.h"
35#include "diagnostic-core.h"
957060b5 36#include "stor-layout.h"
b38f3813 37#include "except.h"
36566b39
PK
38#include "dojump.h"
39#include "explow.h"
18ca7dab 40#include "expr.h"
677f3fa8 41#include "common/common-target.h"
aacd3885 42#include "output.h"
8c1dd970 43#include "params.h"
18ca7dab 44
502b8322 45static rtx break_out_memory_refs (rtx);
8c1dd970 46static void anti_adjust_stack_and_probe_stack_clash (rtx);
7e4ce834
RH
47
48
49/* Truncate and perhaps sign-extend C as appropriate for MODE. */
50
51HOST_WIDE_INT
ef4bddc2 52trunc_int_for_mode (HOST_WIDE_INT c, machine_mode mode)
7e4ce834 53{
db61b7f9
RS
54 /* Not scalar_int_mode because we also allow pointer bound modes. */
55 scalar_mode smode = as_a <scalar_mode> (mode);
56 int width = GET_MODE_PRECISION (smode);
7e4ce834 57
71012d97 58 /* You want to truncate to a _what_? */
d5e254e1
IE
59 gcc_assert (SCALAR_INT_MODE_P (mode)
60 || POINTER_BOUNDS_MODE_P (mode));
71012d97 61
1f3f36d1 62 /* Canonicalize BImode to 0 and STORE_FLAG_VALUE. */
db61b7f9 63 if (smode == BImode)
1f3f36d1
RH
64 return c & 1 ? STORE_FLAG_VALUE : 0;
65
5b0d91c3
AO
66 /* Sign-extend for the requested mode. */
67
68 if (width < HOST_BITS_PER_WIDE_INT)
69 {
70 HOST_WIDE_INT sign = 1;
71 sign <<= width - 1;
72 c &= (sign << 1) - 1;
73 c ^= sign;
74 c -= sign;
75 }
7e4ce834
RH
76
77 return c;
78}
79
0c12fc9b
RS
80/* Likewise for polynomial values, using the sign-extended representation
81 for each individual coefficient. */
82
83poly_int64
84trunc_int_for_mode (poly_int64 x, machine_mode mode)
85{
86 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
87 x.coeffs[i] = trunc_int_for_mode (x.coeffs[i], mode);
88 return x;
89}
90
929e10f4 91/* Return an rtx for the sum of X and the integer C, given that X has
23b33725
RS
92 mode MODE. INPLACE is true if X can be modified inplace or false
93 if it must be treated as immutable. */
18ca7dab
RK
94
95rtx
0c12fc9b 96plus_constant (machine_mode mode, rtx x, poly_int64 c, bool inplace)
18ca7dab 97{
b3694847 98 RTX_CODE code;
17ab7c59 99 rtx y;
b3694847 100 rtx tem;
18ca7dab
RK
101 int all_constant = 0;
102
0a81f074
RS
103 gcc_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
104
0c12fc9b 105 if (known_eq (c, 0))
18ca7dab
RK
106 return x;
107
108 restart:
109
110 code = GET_CODE (x);
17ab7c59
RK
111 y = x;
112
18ca7dab
RK
113 switch (code)
114 {
807e902e 115 CASE_CONST_SCALAR_INT:
f079167a 116 return immed_wide_int_const (wi::add (rtx_mode_t (x, mode), c), mode);
18ca7dab
RK
117 case MEM:
118 /* If this is a reference to the constant pool, try replacing it with
119 a reference to a new constant. If the resulting address isn't
120 valid, don't return it because we have no way to validize it. */
121 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
122 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
123 {
8a27cf73
UB
124 rtx cst = get_pool_constant (XEXP (x, 0));
125
126 if (GET_CODE (cst) == CONST_VECTOR
127 && GET_MODE_INNER (GET_MODE (cst)) == mode)
128 {
129 cst = gen_lowpart (mode, cst);
130 gcc_assert (cst);
131 }
2b568899
RB
132 if (GET_MODE (cst) == VOIDmode || GET_MODE (cst) == mode)
133 {
134 tem = plus_constant (mode, cst, c);
135 tem = force_const_mem (GET_MODE (x), tem);
136 /* Targets may disallow some constants in the constant pool, thus
137 force_const_mem may return NULL_RTX. */
138 if (tem && memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
139 return tem;
140 }
18ca7dab
RK
141 }
142 break;
143
144 case CONST:
145 /* If adding to something entirely constant, set a flag
146 so that we can add a CONST around the result. */
23b33725
RS
147 if (inplace && shared_const_p (x))
148 inplace = false;
18ca7dab
RK
149 x = XEXP (x, 0);
150 all_constant = 1;
151 goto restart;
152
153 case SYMBOL_REF:
154 case LABEL_REF:
155 all_constant = 1;
156 break;
157
158 case PLUS:
929e10f4
MS
159 /* The interesting case is adding the integer to a sum. Look
160 for constant term in the sum and combine with C. For an
161 integer constant term or a constant term that is not an
162 explicit integer, we combine or group them together anyway.
03d937fc
R
163
164 We may not immediately return from the recursive call here, lest
165 all_constant gets lost. */
e5671f2b 166
929e10f4 167 if (CONSTANT_P (XEXP (x, 1)))
03d937fc 168 {
23b33725
RS
169 rtx term = plus_constant (mode, XEXP (x, 1), c, inplace);
170 if (term == const0_rtx)
171 x = XEXP (x, 0);
172 else if (inplace)
173 XEXP (x, 1) = term;
174 else
175 x = gen_rtx_PLUS (mode, XEXP (x, 0), term);
03d937fc
R
176 c = 0;
177 }
23b33725 178 else if (rtx *const_loc = find_constant_term_loc (&y))
03d937fc 179 {
23b33725
RS
180 if (!inplace)
181 {
182 /* We need to be careful since X may be shared and we can't
183 modify it in place. */
184 x = copy_rtx (x);
185 const_loc = find_constant_term_loc (&x);
186 }
187 *const_loc = plus_constant (mode, *const_loc, c, true);
03d937fc
R
188 c = 0;
189 }
38a448ca 190 break;
ed8908e7 191
38a448ca 192 default:
0c12fc9b
RS
193 if (CONST_POLY_INT_P (x))
194 return immed_wide_int_const (const_poly_int_value (x) + c, mode);
38a448ca 195 break;
18ca7dab
RK
196 }
197
0c12fc9b 198 if (maybe_ne (c, 0))
4789c0ce 199 x = gen_rtx_PLUS (mode, x, gen_int_mode (c, mode));
18ca7dab
RK
200
201 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
202 return x;
203 else if (all_constant)
38a448ca 204 return gen_rtx_CONST (mode, x);
18ca7dab
RK
205 else
206 return x;
207}
18ca7dab
RK
208\f
209/* If X is a sum, return a new sum like X but lacking any constant terms.
210 Add all the removed constant terms into *CONSTPTR.
211 X itself is not altered. The result != X if and only if
212 it is not isomorphic to X. */
213
214rtx
502b8322 215eliminate_constant_term (rtx x, rtx *constptr)
18ca7dab 216{
b3694847 217 rtx x0, x1;
18ca7dab
RK
218 rtx tem;
219
220 if (GET_CODE (x) != PLUS)
221 return x;
222
223 /* First handle constants appearing at this level explicitly. */
481683e1 224 if (CONST_INT_P (XEXP (x, 1))
01512446
JJ
225 && (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
226 XEXP (x, 1))) != 0
481683e1 227 && CONST_INT_P (tem))
18ca7dab
RK
228 {
229 *constptr = tem;
230 return eliminate_constant_term (XEXP (x, 0), constptr);
231 }
232
233 tem = const0_rtx;
234 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
235 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
236 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
01512446
JJ
237 && (tem = simplify_binary_operation (PLUS, GET_MODE (x),
238 *constptr, tem)) != 0
481683e1 239 && CONST_INT_P (tem))
18ca7dab
RK
240 {
241 *constptr = tem;
38a448ca 242 return gen_rtx_PLUS (GET_MODE (x), x0, x1);
18ca7dab
RK
243 }
244
245 return x;
246}
247
18ca7dab
RK
248\f
249/* Return a copy of X in which all memory references
250 and all constants that involve symbol refs
251 have been replaced with new temporary registers.
252 Also emit code to load the memory locations and constants
253 into those registers.
254
255 If X contains no such constants or memory references,
256 X itself (not a copy) is returned.
257
258 If a constant is found in the address that is not a legitimate constant
259 in an insn, it is left alone in the hope that it might be valid in the
260 address.
261
262 X may contain no arithmetic except addition, subtraction and multiplication.
263 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
264
265static rtx
502b8322 266break_out_memory_refs (rtx x)
18ca7dab 267{
3c0cb5de 268 if (MEM_P (x)
cabeca29 269 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
18ca7dab 270 && GET_MODE (x) != VOIDmode))
2cca6e3f 271 x = force_reg (GET_MODE (x), x);
18ca7dab
RK
272 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
273 || GET_CODE (x) == MULT)
274 {
b3694847
SS
275 rtx op0 = break_out_memory_refs (XEXP (x, 0));
276 rtx op1 = break_out_memory_refs (XEXP (x, 1));
2cca6e3f 277
18ca7dab 278 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
d4ebfa65 279 x = simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
18ca7dab 280 }
2cca6e3f 281
18ca7dab
RK
282 return x;
283}
284
d4ebfa65
BE
285/* Given X, a memory address in address space AS' pointer mode, convert it to
286 an address in the address space's address mode, or vice versa (TO_MODE says
287 which way). We take advantage of the fact that pointers are not allowed to
288 overflow by commuting arithmetic operations over conversions so that address
7745730f 289 arithmetic insns can be used. IN_CONST is true if this conversion is inside
3d3f9e7e
JJ
290 a CONST. NO_EMIT is true if no insns should be emitted, and instead
291 it should return NULL if it can't be simplified without emitting insns. */
ea534b63 292
3d3f9e7e 293rtx
095a2d76 294convert_memory_address_addr_space_1 (scalar_int_mode to_mode ATTRIBUTE_UNUSED,
7745730f 295 rtx x, addr_space_t as ATTRIBUTE_UNUSED,
3d3f9e7e
JJ
296 bool in_const ATTRIBUTE_UNUSED,
297 bool no_emit ATTRIBUTE_UNUSED)
ea534b63 298{
5ae6cd0d 299#ifndef POINTERS_EXTEND_UNSIGNED
7c137931 300 gcc_assert (GET_MODE (x) == to_mode || GET_MODE (x) == VOIDmode);
5ae6cd0d
MM
301 return x;
302#else /* defined(POINTERS_EXTEND_UNSIGNED) */
095a2d76 303 scalar_int_mode pointer_mode, address_mode, from_mode;
498b529f 304 rtx temp;
aa0f70e6 305 enum rtx_code code;
498b529f 306
5ae6cd0d
MM
307 /* If X already has the right mode, just return it. */
308 if (GET_MODE (x) == to_mode)
309 return x;
310
d4ebfa65
BE
311 pointer_mode = targetm.addr_space.pointer_mode (as);
312 address_mode = targetm.addr_space.address_mode (as);
313 from_mode = to_mode == pointer_mode ? address_mode : pointer_mode;
5ae6cd0d 314
0b04ec8c
RK
315 /* Here we handle some special cases. If none of them apply, fall through
316 to the default case. */
ea534b63
RK
317 switch (GET_CODE (x))
318 {
d8116890 319 CASE_CONST_SCALAR_INT:
aa0f70e6
SE
320 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode))
321 code = TRUNCATE;
322 else if (POINTERS_EXTEND_UNSIGNED < 0)
323 break;
324 else if (POINTERS_EXTEND_UNSIGNED > 0)
325 code = ZERO_EXTEND;
326 else
327 code = SIGN_EXTEND;
328 temp = simplify_unary_operation (code, to_mode, x, from_mode);
329 if (temp)
330 return temp;
331 break;
498b529f 332
d1405722 333 case SUBREG:
5da4f548 334 if ((SUBREG_PROMOTED_VAR_P (x) || REG_POINTER (SUBREG_REG (x)))
6dd12198 335 && GET_MODE (SUBREG_REG (x)) == to_mode)
d1405722
RK
336 return SUBREG_REG (x);
337 break;
338
ea534b63 339 case LABEL_REF:
04a121a7 340 temp = gen_rtx_LABEL_REF (to_mode, label_ref_label (x));
5da4f548
SE
341 LABEL_REF_NONLOCAL_P (temp) = LABEL_REF_NONLOCAL_P (x);
342 return temp;
498b529f 343
ea534b63 344 case SYMBOL_REF:
ce02ba25
EC
345 temp = shallow_copy_rtx (x);
346 PUT_MODE (temp, to_mode);
5da4f548 347 return temp;
ea534b63 348
498b529f 349 case CONST:
3d3f9e7e
JJ
350 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0), as,
351 true, no_emit);
352 return temp ? gen_rtx_CONST (to_mode, temp) : temp;
ea534b63 353
0b04ec8c
RK
354 case PLUS:
355 case MULT:
ceeb2cbc
AP
356 /* For addition we can safely permute the conversion and addition
357 operation if one operand is a constant and converting the constant
358 does not change it or if one operand is a constant and we are
359 using a ptr_extend instruction (POINTERS_EXTEND_UNSIGNED < 0).
17939c98 360 We can always safely permute them if we are making the address
7745730f
AP
361 narrower. Inside a CONST RTL, this is safe for both pointers
362 zero or sign extended as pointers cannot wrap. */
aa0f70e6
SE
363 if (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (from_mode)
364 || (GET_CODE (x) == PLUS
481683e1 365 && CONST_INT_P (XEXP (x, 1))
7745730f
AP
366 && ((in_const && POINTERS_EXTEND_UNSIGNED != 0)
367 || XEXP (x, 1) == convert_memory_address_addr_space_1
3d3f9e7e
JJ
368 (to_mode, XEXP (x, 1), as, in_const,
369 no_emit)
7745730f 370 || POINTERS_EXTEND_UNSIGNED < 0)))
3d3f9e7e
JJ
371 {
372 temp = convert_memory_address_addr_space_1 (to_mode, XEXP (x, 0),
373 as, in_const, no_emit);
b88990be
JJ
374 return (temp ? gen_rtx_fmt_ee (GET_CODE (x), to_mode,
375 temp, XEXP (x, 1))
376 : temp);
3d3f9e7e 377 }
38a448ca 378 break;
d9b3eb63 379
38a448ca
RH
380 default:
381 break;
ea534b63 382 }
0b04ec8c 383
3d3f9e7e
JJ
384 if (no_emit)
385 return NULL_RTX;
386
0b04ec8c
RK
387 return convert_modes (to_mode, from_mode,
388 x, POINTERS_EXTEND_UNSIGNED);
5ae6cd0d 389#endif /* defined(POINTERS_EXTEND_UNSIGNED) */
ea534b63 390}
7745730f
AP
391
392/* Given X, a memory address in address space AS' pointer mode, convert it to
393 an address in the address space's address mode, or vice versa (TO_MODE says
394 which way). We take advantage of the fact that pointers are not allowed to
395 overflow by commuting arithmetic operations over conversions so that address
396 arithmetic insns can be used. */
397
398rtx
095a2d76
RS
399convert_memory_address_addr_space (scalar_int_mode to_mode, rtx x,
400 addr_space_t as)
7745730f 401{
3d3f9e7e 402 return convert_memory_address_addr_space_1 (to_mode, x, as, false, false);
7745730f 403}
18ca7dab 404\f
36566b39 405
09e881c9
BE
406/* Return something equivalent to X but valid as a memory address for something
407 of mode MODE in the named address space AS. When X is not itself valid,
408 this works by copying X or subexpressions of it into registers. */
18ca7dab
RK
409
410rtx
ef4bddc2 411memory_address_addr_space (machine_mode mode, rtx x, addr_space_t as)
18ca7dab 412{
b3694847 413 rtx oldx = x;
095a2d76 414 scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
18ca7dab 415
d4ebfa65 416 x = convert_memory_address_addr_space (address_mode, x, as);
ea534b63 417
ba228239 418 /* By passing constant addresses through registers
18ca7dab 419 we get a chance to cse them. */
cabeca29 420 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
d4ebfa65 421 x = force_reg (address_mode, x);
18ca7dab 422
18ca7dab
RK
423 /* We get better cse by rejecting indirect addressing at this stage.
424 Let the combiner create indirect addresses where appropriate.
425 For now, generate the code so that the subexpressions useful to share
426 are visible. But not if cse won't be done! */
18b9ca6f 427 else
18ca7dab 428 {
f8cfc6aa 429 if (! cse_not_expected && !REG_P (x))
18b9ca6f
RK
430 x = break_out_memory_refs (x);
431
432 /* At this point, any valid address is accepted. */
09e881c9 433 if (memory_address_addr_space_p (mode, x, as))
3de5e93a 434 goto done;
18b9ca6f
RK
435
436 /* If it was valid before but breaking out memory refs invalidated it,
437 use it the old way. */
09e881c9 438 if (memory_address_addr_space_p (mode, oldx, as))
3de5e93a
SB
439 {
440 x = oldx;
441 goto done;
442 }
18b9ca6f
RK
443
444 /* Perform machine-dependent transformations on X
445 in certain cases. This is not necessary since the code
446 below can handle all possible cases, but machine-dependent
447 transformations can make better code. */
506d7b68 448 {
09e881c9
BE
449 rtx orig_x = x;
450 x = targetm.addr_space.legitimize_address (x, oldx, mode, as);
451 if (orig_x != x && memory_address_addr_space_p (mode, x, as))
506d7b68
PB
452 goto done;
453 }
18b9ca6f
RK
454
455 /* PLUS and MULT can appear in special ways
456 as the result of attempts to make an address usable for indexing.
457 Usually they are dealt with by calling force_operand, below.
458 But a sum containing constant terms is special
459 if removing them makes the sum a valid address:
460 then we generate that address in a register
461 and index off of it. We do this because it often makes
462 shorter code, and because the addresses thus generated
463 in registers often become common subexpressions. */
464 if (GET_CODE (x) == PLUS)
465 {
466 rtx constant_term = const0_rtx;
467 rtx y = eliminate_constant_term (x, &constant_term);
468 if (constant_term == const0_rtx
09e881c9 469 || ! memory_address_addr_space_p (mode, y, as))
18b9ca6f
RK
470 x = force_operand (x, NULL_RTX);
471 else
472 {
38a448ca 473 y = gen_rtx_PLUS (GET_MODE (x), copy_to_reg (y), constant_term);
09e881c9 474 if (! memory_address_addr_space_p (mode, y, as))
18b9ca6f
RK
475 x = force_operand (x, NULL_RTX);
476 else
477 x = y;
478 }
479 }
18ca7dab 480
e475ed2a 481 else if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
18b9ca6f 482 x = force_operand (x, NULL_RTX);
18ca7dab 483
18b9ca6f
RK
484 /* If we have a register that's an invalid address,
485 it must be a hard reg of the wrong class. Copy it to a pseudo. */
f8cfc6aa 486 else if (REG_P (x))
18b9ca6f
RK
487 x = copy_to_reg (x);
488
489 /* Last resort: copy the value to a register, since
490 the register is a valid address. */
491 else
d4ebfa65 492 x = force_reg (address_mode, x);
18ca7dab 493 }
18b9ca6f
RK
494
495 done:
496
09e881c9 497 gcc_assert (memory_address_addr_space_p (mode, x, as));
2cca6e3f
RK
498 /* If we didn't change the address, we are done. Otherwise, mark
499 a reg as a pointer if we have REG or REG + CONST_INT. */
500 if (oldx == x)
501 return x;
f8cfc6aa 502 else if (REG_P (x))
bdb429a5 503 mark_reg_pointer (x, BITS_PER_UNIT);
2cca6e3f 504 else if (GET_CODE (x) == PLUS
f8cfc6aa 505 && REG_P (XEXP (x, 0))
481683e1 506 && CONST_INT_P (XEXP (x, 1)))
bdb429a5 507 mark_reg_pointer (XEXP (x, 0), BITS_PER_UNIT);
2cca6e3f 508
18b9ca6f
RK
509 /* OLDX may have been the address on a temporary. Update the address
510 to indicate that X is now used. */
511 update_temp_slot_address (oldx, x);
512
18ca7dab
RK
513 return x;
514}
515
b8105705
EB
516/* Convert a mem ref into one with a valid memory address.
517 Pass through anything else unchanged. */
18ca7dab
RK
518
519rtx
502b8322 520validize_mem (rtx ref)
18ca7dab 521{
3c0cb5de 522 if (!MEM_P (ref))
18ca7dab 523 return ref;
aacd3885 524 ref = use_anchored_address (ref);
09e881c9
BE
525 if (memory_address_addr_space_p (GET_MODE (ref), XEXP (ref, 0),
526 MEM_ADDR_SPACE (ref)))
18ca7dab 527 return ref;
792760b9 528
b8105705
EB
529 /* Don't alter REF itself, since that is probably a stack slot. */
530 return replace_equiv_address (ref, XEXP (ref, 0));
18ca7dab 531}
aacd3885
RS
532
533/* If X is a memory reference to a member of an object block, try rewriting
534 it to use an anchor instead. Return the new memory reference on success
535 and the old one on failure. */
536
537rtx
538use_anchored_address (rtx x)
539{
540 rtx base;
541 HOST_WIDE_INT offset;
ef4bddc2 542 machine_mode mode;
aacd3885
RS
543
544 if (!flag_section_anchors)
545 return x;
546
547 if (!MEM_P (x))
548 return x;
549
550 /* Split the address into a base and offset. */
551 base = XEXP (x, 0);
552 offset = 0;
553 if (GET_CODE (base) == CONST
554 && GET_CODE (XEXP (base, 0)) == PLUS
481683e1 555 && CONST_INT_P (XEXP (XEXP (base, 0), 1)))
aacd3885
RS
556 {
557 offset += INTVAL (XEXP (XEXP (base, 0), 1));
558 base = XEXP (XEXP (base, 0), 0);
559 }
560
561 /* Check whether BASE is suitable for anchors. */
562 if (GET_CODE (base) != SYMBOL_REF
3fa9c136 563 || !SYMBOL_REF_HAS_BLOCK_INFO_P (base)
aacd3885 564 || SYMBOL_REF_ANCHOR_P (base)
434aeebb 565 || SYMBOL_REF_BLOCK (base) == NULL
aacd3885
RS
566 || !targetm.use_anchors_for_symbol_p (base))
567 return x;
568
569 /* Decide where BASE is going to be. */
570 place_block_symbol (base);
571
572 /* Get the anchor we need to use. */
573 offset += SYMBOL_REF_BLOCK_OFFSET (base);
574 base = get_section_anchor (SYMBOL_REF_BLOCK (base), offset,
575 SYMBOL_REF_TLS_MODEL (base));
576
577 /* Work out the offset from the anchor. */
578 offset -= SYMBOL_REF_BLOCK_OFFSET (base);
579
580 /* If we're going to run a CSE pass, force the anchor into a register.
581 We will then be able to reuse registers for several accesses, if the
582 target costs say that that's worthwhile. */
0a81f074 583 mode = GET_MODE (base);
aacd3885 584 if (!cse_not_expected)
0a81f074 585 base = force_reg (mode, base);
aacd3885 586
0a81f074 587 return replace_equiv_address (x, plus_constant (mode, base, offset));
aacd3885 588}
18ca7dab 589\f
18ca7dab
RK
590/* Copy the value or contents of X to a new temp reg and return that reg. */
591
592rtx
502b8322 593copy_to_reg (rtx x)
18ca7dab 594{
b3694847 595 rtx temp = gen_reg_rtx (GET_MODE (x));
d9b3eb63 596
18ca7dab 597 /* If not an operand, must be an address with PLUS and MULT so
d9b3eb63 598 do the computation. */
18ca7dab
RK
599 if (! general_operand (x, VOIDmode))
600 x = force_operand (x, temp);
d9b3eb63 601
18ca7dab
RK
602 if (x != temp)
603 emit_move_insn (temp, x);
604
605 return temp;
606}
607
608/* Like copy_to_reg but always give the new register mode Pmode
609 in case X is a constant. */
610
611rtx
502b8322 612copy_addr_to_reg (rtx x)
18ca7dab
RK
613{
614 return copy_to_mode_reg (Pmode, x);
615}
616
617/* Like copy_to_reg but always give the new register mode MODE
618 in case X is a constant. */
619
620rtx
ef4bddc2 621copy_to_mode_reg (machine_mode mode, rtx x)
18ca7dab 622{
b3694847 623 rtx temp = gen_reg_rtx (mode);
d9b3eb63 624
18ca7dab 625 /* If not an operand, must be an address with PLUS and MULT so
d9b3eb63 626 do the computation. */
18ca7dab
RK
627 if (! general_operand (x, VOIDmode))
628 x = force_operand (x, temp);
629
5b0264cb 630 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
18ca7dab
RK
631 if (x != temp)
632 emit_move_insn (temp, x);
633 return temp;
634}
635
636/* Load X into a register if it is not already one.
637 Use mode MODE for the register.
638 X should be valid for mode MODE, but it may be a constant which
639 is valid for all integer modes; that's why caller must specify MODE.
640
641 The caller must not alter the value in the register we return,
642 since we mark it as a "constant" register. */
643
644rtx
ef4bddc2 645force_reg (machine_mode mode, rtx x)
18ca7dab 646{
528a80c1
DM
647 rtx temp, set;
648 rtx_insn *insn;
18ca7dab 649
f8cfc6aa 650 if (REG_P (x))
18ca7dab 651 return x;
d9b3eb63 652
e3c8ea67
RH
653 if (general_operand (x, mode))
654 {
655 temp = gen_reg_rtx (mode);
656 insn = emit_move_insn (temp, x);
657 }
658 else
659 {
660 temp = force_operand (x, NULL_RTX);
f8cfc6aa 661 if (REG_P (temp))
e3c8ea67
RH
662 insn = get_last_insn ();
663 else
664 {
665 rtx temp2 = gen_reg_rtx (mode);
666 insn = emit_move_insn (temp2, temp);
667 temp = temp2;
668 }
669 }
62874575 670
18ca7dab 671 /* Let optimizers know that TEMP's value never changes
62874575
RK
672 and that X can be substituted for it. Don't get confused
673 if INSN set something else (such as a SUBREG of TEMP). */
674 if (CONSTANT_P (x)
675 && (set = single_set (insn)) != 0
fd7acc30
RS
676 && SET_DEST (set) == temp
677 && ! rtx_equal_p (x, SET_SRC (set)))
3d238248 678 set_unique_reg_note (insn, REG_EQUAL, x);
e3c8ea67 679
4a4f95d9
RH
680 /* Let optimizers know that TEMP is a pointer, and if so, the
681 known alignment of that pointer. */
682 {
683 unsigned align = 0;
684 if (GET_CODE (x) == SYMBOL_REF)
685 {
686 align = BITS_PER_UNIT;
687 if (SYMBOL_REF_DECL (x) && DECL_P (SYMBOL_REF_DECL (x)))
688 align = DECL_ALIGN (SYMBOL_REF_DECL (x));
689 }
690 else if (GET_CODE (x) == LABEL_REF)
691 align = BITS_PER_UNIT;
692 else if (GET_CODE (x) == CONST
693 && GET_CODE (XEXP (x, 0)) == PLUS
694 && GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
481683e1 695 && CONST_INT_P (XEXP (XEXP (x, 0), 1)))
4a4f95d9
RH
696 {
697 rtx s = XEXP (XEXP (x, 0), 0);
698 rtx c = XEXP (XEXP (x, 0), 1);
699 unsigned sa, ca;
700
701 sa = BITS_PER_UNIT;
702 if (SYMBOL_REF_DECL (s) && DECL_P (SYMBOL_REF_DECL (s)))
703 sa = DECL_ALIGN (SYMBOL_REF_DECL (s));
704
bd95721f
RH
705 if (INTVAL (c) == 0)
706 align = sa;
707 else
708 {
709 ca = ctz_hwi (INTVAL (c)) * BITS_PER_UNIT;
710 align = MIN (sa, ca);
711 }
4a4f95d9
RH
712 }
713
0a317111 714 if (align || (MEM_P (x) && MEM_POINTER (x)))
4a4f95d9
RH
715 mark_reg_pointer (temp, align);
716 }
717
18ca7dab
RK
718 return temp;
719}
720
721/* If X is a memory ref, copy its contents to a new temp reg and return
722 that reg. Otherwise, return X. */
723
724rtx
502b8322 725force_not_mem (rtx x)
18ca7dab 726{
b3694847 727 rtx temp;
fe3439b0 728
3c0cb5de 729 if (!MEM_P (x) || GET_MODE (x) == BLKmode)
18ca7dab 730 return x;
fe3439b0 731
18ca7dab 732 temp = gen_reg_rtx (GET_MODE (x));
f8ad8d7c
ZD
733
734 if (MEM_POINTER (x))
735 REG_POINTER (temp) = 1;
736
18ca7dab
RK
737 emit_move_insn (temp, x);
738 return temp;
739}
740
741/* Copy X to TARGET (if it's nonzero and a reg)
742 or to a new temp reg and return that reg.
743 MODE is the mode to use for X in case it is a constant. */
744
745rtx
ef4bddc2 746copy_to_suggested_reg (rtx x, rtx target, machine_mode mode)
18ca7dab 747{
b3694847 748 rtx temp;
18ca7dab 749
f8cfc6aa 750 if (target && REG_P (target))
18ca7dab
RK
751 temp = target;
752 else
753 temp = gen_reg_rtx (mode);
754
755 emit_move_insn (temp, x);
756 return temp;
757}
758\f
cde0f3fd 759/* Return the mode to use to pass or return a scalar of TYPE and MODE.
9ff65789
RK
760 PUNSIGNEDP points to the signedness of the type and may be adjusted
761 to show what signedness to use on extension operations.
762
cde0f3fd
PB
763 FOR_RETURN is nonzero if the caller is promoting the return value
764 of FNDECL, else it is for promoting args. */
9ff65789 765
ef4bddc2
RS
766machine_mode
767promote_function_mode (const_tree type, machine_mode mode, int *punsignedp,
cde0f3fd
PB
768 const_tree funtype, int for_return)
769{
5e617be8
AK
770 /* Called without a type node for a libcall. */
771 if (type == NULL_TREE)
772 {
773 if (INTEGRAL_MODE_P (mode))
774 return targetm.calls.promote_function_mode (NULL_TREE, mode,
775 punsignedp, funtype,
776 for_return);
777 else
778 return mode;
779 }
780
cde0f3fd
PB
781 switch (TREE_CODE (type))
782 {
783 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
784 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
785 case POINTER_TYPE: case REFERENCE_TYPE:
786 return targetm.calls.promote_function_mode (type, mode, punsignedp, funtype,
787 for_return);
788
789 default:
790 return mode;
791 }
792}
793/* Return the mode to use to store a scalar of TYPE and MODE.
794 PUNSIGNEDP points to the signedness of the type and may be adjusted
795 to show what signedness to use on extension operations. */
d4453b7a 796
ef4bddc2
RS
797machine_mode
798promote_mode (const_tree type ATTRIBUTE_UNUSED, machine_mode mode,
b1680483 799 int *punsignedp ATTRIBUTE_UNUSED)
9ff65789 800{
1e3287d0
RG
801#ifdef PROMOTE_MODE
802 enum tree_code code;
803 int unsignedp;
79d22165 804 scalar_mode smode;
1e3287d0
RG
805#endif
806
5e617be8
AK
807 /* For libcalls this is invoked without TYPE from the backends
808 TARGET_PROMOTE_FUNCTION_MODE hooks. Don't do anything in that
809 case. */
810 if (type == NULL_TREE)
811 return mode;
812
cde0f3fd
PB
813 /* FIXME: this is the same logic that was there until GCC 4.4, but we
814 probably want to test POINTERS_EXTEND_UNSIGNED even if PROMOTE_MODE
815 is not defined. The affected targets are M32C, S390, SPARC. */
816#ifdef PROMOTE_MODE
1e3287d0
RG
817 code = TREE_CODE (type);
818 unsignedp = *punsignedp;
9ff65789 819
9ff65789
RK
820 switch (code)
821 {
9ff65789 822 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
325217ed 823 case REAL_TYPE: case OFFSET_TYPE: case FIXED_POINT_TYPE:
79d22165
RS
824 /* Values of these types always have scalar mode. */
825 smode = as_a <scalar_mode> (mode);
826 PROMOTE_MODE (smode, unsignedp, type);
cde0f3fd 827 *punsignedp = unsignedp;
79d22165 828 return smode;
9ff65789 829
ea534b63 830#ifdef POINTERS_EXTEND_UNSIGNED
56a4c9e2 831 case REFERENCE_TYPE:
9ff65789 832 case POINTER_TYPE:
cde0f3fd 833 *punsignedp = POINTERS_EXTEND_UNSIGNED;
d4ebfa65
BE
834 return targetm.addr_space.address_mode
835 (TYPE_ADDR_SPACE (TREE_TYPE (type)));
ea534b63 836#endif
d9b3eb63 837
38a448ca 838 default:
cde0f3fd 839 return mode;
9ff65789 840 }
cde0f3fd 841#else
9ff65789 842 return mode;
cde0f3fd 843#endif
9ff65789 844}
cde0f3fd
PB
845
846
847/* Use one of promote_mode or promote_function_mode to find the promoted
848 mode of DECL. If PUNSIGNEDP is not NULL, store there the unsignedness
849 of DECL after promotion. */
850
ef4bddc2 851machine_mode
cde0f3fd
PB
852promote_decl_mode (const_tree decl, int *punsignedp)
853{
854 tree type = TREE_TYPE (decl);
855 int unsignedp = TYPE_UNSIGNED (type);
ef4bddc2
RS
856 machine_mode mode = DECL_MODE (decl);
857 machine_mode pmode;
cde0f3fd 858
f11a7b6d
AO
859 if (TREE_CODE (decl) == RESULT_DECL && !DECL_BY_REFERENCE (decl))
860 pmode = promote_function_mode (type, mode, &unsignedp,
861 TREE_TYPE (current_function_decl), 1);
862 else if (TREE_CODE (decl) == RESULT_DECL || TREE_CODE (decl) == PARM_DECL)
cde0f3fd 863 pmode = promote_function_mode (type, mode, &unsignedp,
666e3ceb 864 TREE_TYPE (current_function_decl), 2);
cde0f3fd
PB
865 else
866 pmode = promote_mode (type, mode, &unsignedp);
867
868 if (punsignedp)
869 *punsignedp = unsignedp;
870 return pmode;
871}
872
1f9ceff1
AO
873/* Return the promoted mode for name. If it is a named SSA_NAME, it
874 is the same as promote_decl_mode. Otherwise, it is the promoted
875 mode of a temp decl of same type as the SSA_NAME, if we had created
876 one. */
877
878machine_mode
879promote_ssa_mode (const_tree name, int *punsignedp)
880{
881 gcc_assert (TREE_CODE (name) == SSA_NAME);
882
883 /* Partitions holding parms and results must be promoted as expected
884 by function.c. */
885 if (SSA_NAME_VAR (name)
886 && (TREE_CODE (SSA_NAME_VAR (name)) == PARM_DECL
887 || TREE_CODE (SSA_NAME_VAR (name)) == RESULT_DECL))
f11a7b6d
AO
888 {
889 machine_mode mode = promote_decl_mode (SSA_NAME_VAR (name), punsignedp);
890 if (mode != BLKmode)
891 return mode;
892 }
1f9ceff1
AO
893
894 tree type = TREE_TYPE (name);
895 int unsignedp = TYPE_UNSIGNED (type);
896 machine_mode mode = TYPE_MODE (type);
897
f11a7b6d
AO
898 /* Bypass TYPE_MODE when it maps vector modes to BLKmode. */
899 if (mode == BLKmode)
900 {
901 gcc_assert (VECTOR_TYPE_P (type));
902 mode = type->type_common.mode;
903 }
904
1f9ceff1
AO
905 machine_mode pmode = promote_mode (type, mode, &unsignedp);
906 if (punsignedp)
907 *punsignedp = unsignedp;
908
909 return pmode;
910}
911
912
9ff65789 913\f
9c582551 914/* Controls the behavior of {anti_,}adjust_stack. */
9a08d230
RH
915static bool suppress_reg_args_size;
916
917/* A helper for adjust_stack and anti_adjust_stack. */
918
919static void
920adjust_stack_1 (rtx adjust, bool anti_p)
921{
528a80c1
DM
922 rtx temp;
923 rtx_insn *insn;
9a08d230 924
9a08d230 925 /* Hereafter anti_p means subtract_p. */
581edfa3
TS
926 if (!STACK_GROWS_DOWNWARD)
927 anti_p = !anti_p;
9a08d230
RH
928
929 temp = expand_binop (Pmode,
930 anti_p ? sub_optab : add_optab,
931 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
932 OPTAB_LIB_WIDEN);
933
934 if (temp != stack_pointer_rtx)
935 insn = emit_move_insn (stack_pointer_rtx, temp);
936 else
937 {
938 insn = get_last_insn ();
939 temp = single_set (insn);
940 gcc_assert (temp != NULL && SET_DEST (temp) == stack_pointer_rtx);
941 }
942
943 if (!suppress_reg_args_size)
68184180 944 add_args_size_note (insn, stack_pointer_delta);
9a08d230
RH
945}
946
18ca7dab
RK
947/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
948 This pops when ADJUST is positive. ADJUST need not be constant. */
949
950void
502b8322 951adjust_stack (rtx adjust)
18ca7dab 952{
18ca7dab
RK
953 if (adjust == const0_rtx)
954 return;
955
1503a7ec
JH
956 /* We expect all variable sized adjustments to be multiple of
957 PREFERRED_STACK_BOUNDARY. */
481683e1 958 if (CONST_INT_P (adjust))
1503a7ec
JH
959 stack_pointer_delta -= INTVAL (adjust);
960
9a08d230 961 adjust_stack_1 (adjust, false);
18ca7dab
RK
962}
963
964/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
965 This pushes when ADJUST is positive. ADJUST need not be constant. */
966
967void
502b8322 968anti_adjust_stack (rtx adjust)
18ca7dab 969{
18ca7dab
RK
970 if (adjust == const0_rtx)
971 return;
972
1503a7ec
JH
973 /* We expect all variable sized adjustments to be multiple of
974 PREFERRED_STACK_BOUNDARY. */
481683e1 975 if (CONST_INT_P (adjust))
1503a7ec
JH
976 stack_pointer_delta += INTVAL (adjust);
977
9a08d230 978 adjust_stack_1 (adjust, true);
18ca7dab
RK
979}
980
981/* Round the size of a block to be pushed up to the boundary required
982 by this machine. SIZE is the desired size, which need not be constant. */
983
4dd9b044 984static rtx
502b8322 985round_push (rtx size)
18ca7dab 986{
32990d5b 987 rtx align_rtx, alignm1_rtx;
41ee3204 988
32990d5b
JJ
989 if (!SUPPORTS_STACK_ALIGNMENT
990 || crtl->preferred_stack_boundary == MAX_SUPPORTED_STACK_ALIGNMENT)
18ca7dab 991 {
32990d5b
JJ
992 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
993
994 if (align == 1)
995 return size;
996
997 if (CONST_INT_P (size))
998 {
999 HOST_WIDE_INT new_size = (INTVAL (size) + align - 1) / align * align;
41ee3204 1000
32990d5b
JJ
1001 if (INTVAL (size) != new_size)
1002 size = GEN_INT (new_size);
1003 return size;
1004 }
1005
1006 align_rtx = GEN_INT (align);
1007 alignm1_rtx = GEN_INT (align - 1);
18ca7dab
RK
1008 }
1009 else
1010 {
32990d5b
JJ
1011 /* If crtl->preferred_stack_boundary might still grow, use
1012 virtual_preferred_stack_boundary_rtx instead. This will be
1013 substituted by the right value in vregs pass and optimized
1014 during combine. */
1015 align_rtx = virtual_preferred_stack_boundary_rtx;
0a81f074
RS
1016 alignm1_rtx = force_operand (plus_constant (Pmode, align_rtx, -1),
1017 NULL_RTX);
18ca7dab 1018 }
41ee3204 1019
32990d5b
JJ
1020 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1021 but we know it can't. So add ourselves and then do
1022 TRUNC_DIV_EXPR. */
1023 size = expand_binop (Pmode, add_optab, size, alignm1_rtx,
1024 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1025 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, align_rtx,
1026 NULL_RTX, 1);
1027 size = expand_mult (Pmode, size, align_rtx, NULL_RTX, 1);
1028
18ca7dab
RK
1029 return size;
1030}
1031\f
59257ff7
RK
1032/* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
1033 to a previously-created save area. If no save area has been allocated,
1034 this function will allocate one. If a save area is specified, it
9eac0f2a 1035 must be of the proper mode. */
59257ff7
RK
1036
1037void
9eac0f2a 1038emit_stack_save (enum save_level save_level, rtx *psave)
59257ff7
RK
1039{
1040 rtx sa = *psave;
1041 /* The default is that we use a move insn and save in a Pmode object. */
4476e1a0 1042 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
ef4bddc2 1043 machine_mode mode = STACK_SAVEAREA_MODE (save_level);
59257ff7
RK
1044
1045 /* See if this machine has anything special to do for this kind of save. */
1046 switch (save_level)
1047 {
59257ff7 1048 case SAVE_BLOCK:
4476e1a0
RS
1049 if (targetm.have_save_stack_block ())
1050 fcn = targetm.gen_save_stack_block;
59257ff7 1051 break;
59257ff7 1052 case SAVE_FUNCTION:
4476e1a0
RS
1053 if (targetm.have_save_stack_function ())
1054 fcn = targetm.gen_save_stack_function;
59257ff7 1055 break;
59257ff7 1056 case SAVE_NONLOCAL:
4476e1a0
RS
1057 if (targetm.have_save_stack_nonlocal ())
1058 fcn = targetm.gen_save_stack_nonlocal;
59257ff7 1059 break;
38a448ca
RH
1060 default:
1061 break;
59257ff7
RK
1062 }
1063
1064 /* If there is no save area and we have to allocate one, do so. Otherwise
1065 verify the save area is the proper mode. */
1066
1067 if (sa == 0)
1068 {
1069 if (mode != VOIDmode)
1070 {
1071 if (save_level == SAVE_NONLOCAL)
1072 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
1073 else
1074 *psave = sa = gen_reg_rtx (mode);
1075 }
1076 }
59257ff7 1077
9eac0f2a
RH
1078 do_pending_stack_adjust ();
1079 if (sa != 0)
1080 sa = validize_mem (sa);
1081 emit_insn (fcn (sa, stack_pointer_rtx));
59257ff7
RK
1082}
1083
1084/* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
9eac0f2a 1085 area made by emit_stack_save. If it is zero, we have nothing to do. */
59257ff7
RK
1086
1087void
9eac0f2a 1088emit_stack_restore (enum save_level save_level, rtx sa)
59257ff7
RK
1089{
1090 /* The default is that we use a move insn. */
4476e1a0 1091 rtx_insn *(*fcn) (rtx, rtx) = gen_move_insn;
59257ff7 1092
50025f91
TV
1093 /* If stack_realign_drap, the x86 backend emits a prologue that aligns both
1094 STACK_POINTER and HARD_FRAME_POINTER.
1095 If stack_realign_fp, the x86 backend emits a prologue that aligns only
1096 STACK_POINTER. This renders the HARD_FRAME_POINTER unusable for accessing
1097 aligned variables, which is reflected in ix86_can_eliminate.
1098 We normally still have the realigned STACK_POINTER that we can use.
1099 But if there is a stack restore still present at reload, it can trigger
1100 mark_not_eliminable for the STACK_POINTER, leaving no way to eliminate
1101 FRAME_POINTER into a hard reg.
1102 To prevent this situation, we force need_drap if we emit a stack
1103 restore. */
1104 if (SUPPORTS_STACK_ALIGNMENT)
1105 crtl->need_drap = true;
1106
59257ff7
RK
1107 /* See if this machine has anything special to do for this kind of save. */
1108 switch (save_level)
1109 {
59257ff7 1110 case SAVE_BLOCK:
4476e1a0
RS
1111 if (targetm.have_restore_stack_block ())
1112 fcn = targetm.gen_restore_stack_block;
59257ff7 1113 break;
59257ff7 1114 case SAVE_FUNCTION:
4476e1a0
RS
1115 if (targetm.have_restore_stack_function ())
1116 fcn = targetm.gen_restore_stack_function;
59257ff7 1117 break;
59257ff7 1118 case SAVE_NONLOCAL:
4476e1a0
RS
1119 if (targetm.have_restore_stack_nonlocal ())
1120 fcn = targetm.gen_restore_stack_nonlocal;
59257ff7 1121 break;
38a448ca
RH
1122 default:
1123 break;
59257ff7
RK
1124 }
1125
d072107f 1126 if (sa != 0)
260f91c2
DJ
1127 {
1128 sa = validize_mem (sa);
1129 /* These clobbers prevent the scheduler from moving
1130 references to variable arrays below the code
4b7e68e7 1131 that deletes (pops) the arrays. */
c41c1387
RS
1132 emit_clobber (gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode)));
1133 emit_clobber (gen_rtx_MEM (BLKmode, stack_pointer_rtx));
260f91c2 1134 }
d072107f 1135
a494ed43
EB
1136 discard_pending_stack_adjust ();
1137
9eac0f2a 1138 emit_insn (fcn (stack_pointer_rtx, sa));
59257ff7 1139}
6de9cd9a
DN
1140
1141/* Invoke emit_stack_save on the nonlocal_goto_save_area for the current
d33606c3
EB
1142 function. This should be called whenever we allocate or deallocate
1143 dynamic stack space. */
6de9cd9a
DN
1144
1145void
1146update_nonlocal_goto_save_area (void)
1147{
1148 tree t_save;
1149 rtx r_save;
1150
1151 /* The nonlocal_goto_save_area object is an array of N pointers. The
1152 first one is used for the frame pointer save; the rest are sized by
1153 STACK_SAVEAREA_MODE. Create a reference to array index 1, the first
1154 of the stack save area slots. */
6bbec3e1
L
1155 t_save = build4 (ARRAY_REF,
1156 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
1157 cfun->nonlocal_goto_save_area,
3244e67d 1158 integer_one_node, NULL_TREE, NULL_TREE);
6de9cd9a
DN
1159 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
1160
9eac0f2a 1161 emit_stack_save (SAVE_NONLOCAL, &r_save);
6de9cd9a 1162}
d33606c3
EB
1163
1164/* Record a new stack level for the current function. This should be called
1165 whenever we allocate or deallocate dynamic stack space. */
1166
1167void
1168record_new_stack_level (void)
1169{
1170 /* Record the new stack level for nonlocal gotos. */
1171 if (cfun->nonlocal_goto_save_area)
1172 update_nonlocal_goto_save_area ();
1173
1174 /* Record the new stack level for SJLJ exceptions. */
1175 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
1176 update_sjlj_context ();
1177}
59257ff7 1178\f
7072df0a
DV
1179/* Return an rtx doing runtime alignment to REQUIRED_ALIGN on TARGET. */
1180static rtx
1181align_dynamic_address (rtx target, unsigned required_align)
1182{
1183 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1184 but we know it can't. So add ourselves and then do
1185 TRUNC_DIV_EXPR. */
1186 target = expand_binop (Pmode, add_optab, target,
1187 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1188 Pmode),
1189 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1190 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
1191 gen_int_mode (required_align / BITS_PER_UNIT,
1192 Pmode),
1193 NULL_RTX, 1);
1194 target = expand_mult (Pmode, target,
1195 gen_int_mode (required_align / BITS_PER_UNIT,
1196 Pmode),
1197 NULL_RTX, 1);
18ca7dab 1198
7072df0a
DV
1199 return target;
1200}
18ca7dab 1201
7072df0a
DV
1202/* Return an rtx through *PSIZE, representing the size of an area of memory to
1203 be dynamically pushed on the stack.
1204
1205 *PSIZE is an rtx representing the size of the area.
091ad0b9 1206
3a42502d 1207 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
7072df0a 1208 parameter may be zero. If so, a proper value will be extracted
3a42502d
RH
1209 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1210
1211 REQUIRED_ALIGN is the alignment (in bits) required for the region
1212 of memory.
d3c12306 1213
7072df0a
DV
1214 If PSTACK_USAGE_SIZE is not NULL it points to a value that is increased for
1215 the additional size returned. */
1216void
1217get_dynamic_stack_size (rtx *psize, unsigned size_align,
1218 unsigned required_align,
1219 HOST_WIDE_INT *pstack_usage_size)
18ca7dab 1220{
7072df0a 1221 rtx size = *psize;
d3c12306 1222
18ca7dab
RK
1223 /* Ensure the size is in the proper mode. */
1224 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1225 size = convert_to_mode (Pmode, size, 1);
1226
3a42502d
RH
1227 if (CONST_INT_P (size))
1228 {
1229 unsigned HOST_WIDE_INT lsb;
1230
1231 lsb = INTVAL (size);
1232 lsb &= -lsb;
1233
1234 /* Watch out for overflow truncating to "unsigned". */
1235 if (lsb > UINT_MAX / BITS_PER_UNIT)
1236 size_align = 1u << (HOST_BITS_PER_INT - 1);
1237 else
1238 size_align = (unsigned)lsb * BITS_PER_UNIT;
1239 }
1240 else if (size_align < BITS_PER_UNIT)
1241 size_align = BITS_PER_UNIT;
1242
34831f3e
RH
1243 /* We can't attempt to minimize alignment necessary, because we don't
1244 know the final value of preferred_stack_boundary yet while executing
1245 this code. */
1246 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1247 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1248
18ca7dab 1249 /* We will need to ensure that the address we return is aligned to
4fc0c9c8
DV
1250 REQUIRED_ALIGN. At this point in the compilation, we don't always
1251 know the final value of the STACK_DYNAMIC_OFFSET used in function.c
1252 (it might depend on the size of the outgoing parameter lists, for
1253 example), so we must preventively align the value. We leave space
1254 in SIZE for the hole that might result from the alignment operation. */
1ecad98e 1255
b9f92c0b
EB
1256 unsigned known_align = REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM);
1257 if (known_align == 0)
1258 known_align = BITS_PER_UNIT;
1259 if (required_align > known_align)
ae85ad3a 1260 {
b9f92c0b 1261 unsigned extra = (required_align - known_align) / BITS_PER_UNIT;
ae85ad3a
WD
1262 size = plus_constant (Pmode, size, extra);
1263 size = force_operand (size, NULL_RTX);
b9f92c0b
EB
1264 if (size_align > known_align)
1265 size_align = known_align;
ae85ad3a
WD
1266
1267 if (flag_stack_usage_info && pstack_usage_size)
1268 *pstack_usage_size += extra;
1269 }
1d9d04f8 1270
18ca7dab 1271 /* Round the size to a multiple of the required stack alignment.
1135a133 1272 Since the stack is presumed to be rounded before this allocation,
18ca7dab
RK
1273 this will maintain the required alignment.
1274
1275 If the stack grows downward, we could save an insn by subtracting
1276 SIZE from the stack pointer and then aligning the stack pointer.
1277 The problem with this is that the stack pointer may be unaligned
1278 between the execution of the subtraction and alignment insns and
1279 some machines do not allow this. Even on those that do, some
1280 signal handlers malfunction if a signal should occur between those
1281 insns. Since this is an extremely rare event, we have no reliable
1282 way of knowing which systems have this problem. So we avoid even
1283 momentarily mis-aligning the stack. */
3a42502d 1284 if (size_align % MAX_SUPPORTED_STACK_ALIGNMENT != 0)
d3c12306
EB
1285 {
1286 size = round_push (size);
18ca7dab 1287
7072df0a 1288 if (flag_stack_usage_info && pstack_usage_size)
d3c12306 1289 {
32990d5b 1290 int align = crtl->preferred_stack_boundary / BITS_PER_UNIT;
7072df0a
DV
1291 *pstack_usage_size =
1292 (*pstack_usage_size + align - 1) / align * align;
d3c12306
EB
1293 }
1294 }
1295
7072df0a
DV
1296 *psize = size;
1297}
1298
8c1dd970
JL
1299/* Return the number of bytes to "protect" on the stack for -fstack-check.
1300
1301 "protect" in the context of -fstack-check means how many bytes we
1302 should always ensure are available on the stack. More importantly
1303 this is how many bytes are skipped when probing the stack.
1304
1305 On some targets we want to reuse the -fstack-check prologue support
1306 to give a degree of protection against stack clashing style attacks.
1307
1308 In that scenario we do not want to skip bytes before probing as that
1309 would render the stack clash protections useless.
1310
1311 So we never use STACK_CHECK_PROTECT directly. Instead we indirect though
1312 this helper which allows us to provide different values for
1313 -fstack-check and -fstack-clash-protection. */
1314HOST_WIDE_INT
1315get_stack_check_protect (void)
1316{
1317 if (flag_stack_clash_protection)
1318 return 0;
1319 return STACK_CHECK_PROTECT;
1320}
1321
7072df0a
DV
1322/* Return an rtx representing the address of an area of memory dynamically
1323 pushed on the stack.
1324
1325 Any required stack pointer alignment is preserved.
1326
1327 SIZE is an rtx representing the size of the area.
1328
1329 SIZE_ALIGN is the alignment (in bits) that we know SIZE has. This
1330 parameter may be zero. If so, a proper value will be extracted
1331 from SIZE if it is constant, otherwise BITS_PER_UNIT will be assumed.
1332
1333 REQUIRED_ALIGN is the alignment (in bits) required for the region
1334 of memory.
1335
9e878cf1
EB
1336 MAX_SIZE is an upper bound for SIZE, if SIZE is not constant, or -1 if
1337 no such upper bound is known.
1338
7072df0a
DV
1339 If CANNOT_ACCUMULATE is set to TRUE, the caller guarantees that the
1340 stack space allocated by the generated code cannot be added with itself
1341 in the course of the execution of the function. It is always safe to
1342 pass FALSE here and the following criterion is sufficient in order to
1343 pass TRUE: every path in the CFG that starts at the allocation point and
1344 loops to it executes the associated deallocation code. */
1345
1346rtx
1347allocate_dynamic_stack_space (rtx size, unsigned size_align,
9e878cf1
EB
1348 unsigned required_align,
1349 HOST_WIDE_INT max_size,
1350 bool cannot_accumulate)
7072df0a
DV
1351{
1352 HOST_WIDE_INT stack_usage_size = -1;
1353 rtx_code_label *final_label;
1354 rtx final_target, target;
1355
1356 /* If we're asking for zero bytes, it doesn't matter what we point
1357 to since we can't dereference it. But return a reasonable
1358 address anyway. */
1359 if (size == const0_rtx)
1360 return virtual_stack_dynamic_rtx;
1361
1362 /* Otherwise, show we're calling alloca or equivalent. */
1363 cfun->calls_alloca = 1;
1364
1365 /* If stack usage info is requested, look into the size we are passed.
1366 We need to do so this early to avoid the obfuscation that may be
1367 introduced later by the various alignment operations. */
1368 if (flag_stack_usage_info)
1369 {
1370 if (CONST_INT_P (size))
1371 stack_usage_size = INTVAL (size);
1372 else if (REG_P (size))
1373 {
1374 /* Look into the last emitted insn and see if we can deduce
1375 something for the register. */
1376 rtx_insn *insn;
1377 rtx set, note;
1378 insn = get_last_insn ();
1379 if ((set = single_set (insn)) && rtx_equal_p (SET_DEST (set), size))
1380 {
1381 if (CONST_INT_P (SET_SRC (set)))
1382 stack_usage_size = INTVAL (SET_SRC (set));
1383 else if ((note = find_reg_equal_equiv_note (insn))
1384 && CONST_INT_P (XEXP (note, 0)))
1385 stack_usage_size = INTVAL (XEXP (note, 0));
1386 }
1387 }
1388
9e878cf1
EB
1389 /* If the size is not constant, try the maximum size. */
1390 if (stack_usage_size < 0)
1391 stack_usage_size = max_size;
1392
1393 /* If the size is still not constant, we can't say anything. */
1394 if (stack_usage_size < 0)
7072df0a
DV
1395 {
1396 current_function_has_unbounded_dynamic_stack_size = 1;
1397 stack_usage_size = 0;
1398 }
1399 }
1400
1401 get_dynamic_stack_size (&size, size_align, required_align, &stack_usage_size);
1402
3a42502d 1403 target = gen_reg_rtx (Pmode);
7458026b 1404
d3c12306
EB
1405 /* The size is supposed to be fully adjusted at this point so record it
1406 if stack usage info is requested. */
a11e0df4 1407 if (flag_stack_usage_info)
d3c12306
EB
1408 {
1409 current_function_dynamic_stack_size += stack_usage_size;
1410
1411 /* ??? This is gross but the only safe stance in the absence
1412 of stack usage oriented flow analysis. */
1413 if (!cannot_accumulate)
1414 current_function_has_unbounded_dynamic_stack_size = 1;
1415 }
18ca7dab 1416
1c84b798
ILT
1417 do_pending_stack_adjust ();
1418
528a80c1 1419 final_label = NULL;
7458026b
ILT
1420 final_target = NULL_RTX;
1421
1422 /* If we are splitting the stack, we need to ask the backend whether
1423 there is enough room on the current stack. If there isn't, or if
1424 the backend doesn't know how to tell is, then we need to call a
1425 function to allocate memory in some other way. This memory will
1426 be released when we release the current stack segment. The
1427 effect is that stack allocation becomes less efficient, but at
1428 least it doesn't cause a stack overflow. */
1429 if (flag_split_stack)
1430 {
528a80c1
DM
1431 rtx_code_label *available_label;
1432 rtx ask, space, func;
7458026b 1433
528a80c1 1434 available_label = NULL;
7458026b 1435
10169a8b 1436 if (targetm.have_split_stack_space_check ())
7458026b
ILT
1437 {
1438 available_label = gen_label_rtx ();
1439
1440 /* This instruction will branch to AVAILABLE_LABEL if there
1441 are SIZE bytes available on the stack. */
10169a8b
RS
1442 emit_insn (targetm.gen_split_stack_space_check
1443 (size, available_label));
7458026b 1444 }
7458026b 1445
c3928dde 1446 /* The __morestack_allocate_stack_space function will allocate
c070a3b9
ILT
1447 memory using malloc. If the alignment of the memory returned
1448 by malloc does not meet REQUIRED_ALIGN, we increase SIZE to
1449 make sure we allocate enough space. */
1450 if (MALLOC_ABI_ALIGNMENT >= required_align)
1451 ask = size;
1452 else
4fc0c9c8
DV
1453 ask = expand_binop (Pmode, add_optab, size,
1454 gen_int_mode (required_align / BITS_PER_UNIT - 1,
1455 Pmode),
1456 NULL_RTX, 1, OPTAB_LIB_WIDEN);
c3928dde 1457
7458026b
ILT
1458 func = init_one_libfunc ("__morestack_allocate_stack_space");
1459
1460 space = emit_library_call_value (func, target, LCT_NORMAL, Pmode,
db69559b 1461 ask, Pmode);
7458026b
ILT
1462
1463 if (available_label == NULL_RTX)
1464 return space;
1465
1466 final_target = gen_reg_rtx (Pmode);
7458026b
ILT
1467
1468 emit_move_insn (final_target, space);
1469
1470 final_label = gen_label_rtx ();
1471 emit_jump (final_label);
1472
1473 emit_label (available_label);
1474 }
1475
1503a7ec 1476 /* We ought to be called always on the toplevel and stack ought to be aligned
a1f300c0 1477 properly. */
a20c5714
RS
1478 gcc_assert (multiple_p (stack_pointer_delta,
1479 PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT));
1503a7ec 1480
d809253a
EB
1481 /* If needed, check that we have the required amount of stack. Take into
1482 account what has already been checked. */
1483 if (STACK_CHECK_MOVING_SP)
1484 ;
1485 else if (flag_stack_check == GENERIC_STACK_CHECK)
b38f3813
EB
1486 probe_stack_range (STACK_OLD_CHECK_PROTECT + STACK_CHECK_MAX_FRAME_SIZE,
1487 size);
1488 else if (flag_stack_check == STATIC_BUILTIN_STACK_CHECK)
8c1dd970 1489 probe_stack_range (get_stack_check_protect (), size);
edff2491 1490
efec771a
RH
1491 /* Don't let anti_adjust_stack emit notes. */
1492 suppress_reg_args_size = true;
1493
18ca7dab
RK
1494 /* Perform the required allocation from the stack. Some systems do
1495 this differently than simply incrementing/decrementing from the
38a448ca 1496 stack pointer, such as acquiring the space by calling malloc(). */
10169a8b 1497 if (targetm.have_allocate_stack ())
18ca7dab 1498 {
a5c7d693 1499 struct expand_operand ops[2];
4b6c1672
RK
1500 /* We don't have to check against the predicate for operand 0 since
1501 TARGET is known to be a pseudo of the proper mode, which must
a5c7d693
RS
1502 be valid for the operand. */
1503 create_fixed_operand (&ops[0], target);
1504 create_convert_operand_to (&ops[1], size, STACK_SIZE_MODE, true);
10169a8b 1505 expand_insn (targetm.code_for_allocate_stack, 2, ops);
18ca7dab
RK
1506 }
1507 else
ea534b63 1508 {
a20c5714 1509 poly_int64 saved_stack_pointer_delta;
32990d5b 1510
581edfa3
TS
1511 if (!STACK_GROWS_DOWNWARD)
1512 emit_move_insn (target, virtual_stack_dynamic_rtx);
a157febd
GK
1513
1514 /* Check stack bounds if necessary. */
e3b5732b 1515 if (crtl->limit_stack)
a157febd
GK
1516 {
1517 rtx available;
528a80c1 1518 rtx_code_label *space_available = gen_label_rtx ();
581edfa3
TS
1519 if (STACK_GROWS_DOWNWARD)
1520 available = expand_binop (Pmode, sub_optab,
1521 stack_pointer_rtx, stack_limit_rtx,
1522 NULL_RTX, 1, OPTAB_WIDEN);
1523 else
1524 available = expand_binop (Pmode, sub_optab,
1525 stack_limit_rtx, stack_pointer_rtx,
1526 NULL_RTX, 1, OPTAB_WIDEN);
1527
a157febd 1528 emit_cmp_and_jump_insns (available, size, GEU, NULL_RTX, Pmode, 1,
a06ef755 1529 space_available);
eb6f47fb
RS
1530 if (targetm.have_trap ())
1531 emit_insn (targetm.gen_trap ());
a157febd 1532 else
a157febd
GK
1533 error ("stack limits not supported on this target");
1534 emit_barrier ();
1535 emit_label (space_available);
1536 }
1537
32990d5b 1538 saved_stack_pointer_delta = stack_pointer_delta;
9a08d230 1539
d809253a 1540 if (flag_stack_check && STACK_CHECK_MOVING_SP)
c35af30f 1541 anti_adjust_stack_and_probe (size, false);
8c1dd970
JL
1542 else if (flag_stack_clash_protection)
1543 anti_adjust_stack_and_probe_stack_clash (size);
d809253a
EB
1544 else
1545 anti_adjust_stack (size);
9a08d230 1546
32990d5b
JJ
1547 /* Even if size is constant, don't modify stack_pointer_delta.
1548 The constant size alloca should preserve
1549 crtl->preferred_stack_boundary alignment. */
1550 stack_pointer_delta = saved_stack_pointer_delta;
d5457140 1551
581edfa3
TS
1552 if (STACK_GROWS_DOWNWARD)
1553 emit_move_insn (target, virtual_stack_dynamic_rtx);
38a448ca 1554 }
18ca7dab 1555
efec771a
RH
1556 suppress_reg_args_size = false;
1557
3a42502d
RH
1558 /* Finish up the split stack handling. */
1559 if (final_label != NULL_RTX)
1560 {
1561 gcc_assert (flag_split_stack);
1562 emit_move_insn (final_target, target);
1563 emit_label (final_label);
1564 target = final_target;
1565 }
1566
7072df0a 1567 target = align_dynamic_address (target, required_align);
d9b3eb63 1568
3a42502d
RH
1569 /* Now that we've committed to a return value, mark its alignment. */
1570 mark_reg_pointer (target, required_align);
1571
d33606c3
EB
1572 /* Record the new stack level. */
1573 record_new_stack_level ();
15fc0026 1574
18ca7dab
RK
1575 return target;
1576}
7072df0a
DV
1577
1578/* Return an rtx representing the address of an area of memory already
1579 statically pushed onto the stack in the virtual stack vars area. (It is
1580 assumed that the area is allocated in the function prologue.)
1581
1582 Any required stack pointer alignment is preserved.
1583
1584 OFFSET is the offset of the area into the virtual stack vars area.
1585
1586 REQUIRED_ALIGN is the alignment (in bits) required for the region
1587 of memory. */
1588
1589rtx
f075bd95 1590get_dynamic_stack_base (poly_int64 offset, unsigned required_align)
7072df0a
DV
1591{
1592 rtx target;
1593
1594 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
1595 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
1596
1597 target = gen_reg_rtx (Pmode);
1598 emit_move_insn (target, virtual_stack_vars_rtx);
1599 target = expand_binop (Pmode, add_optab, target,
1600 gen_int_mode (offset, Pmode),
1601 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1602 target = align_dynamic_address (target, required_align);
1603
1604 /* Now that we've committed to a return value, mark its alignment. */
1605 mark_reg_pointer (target, required_align);
1606
1607 return target;
1608}
18ca7dab 1609\f
d9b3eb63 1610/* A front end may want to override GCC's stack checking by providing a
14a774a9
RK
1611 run-time routine to call to check the stack, so provide a mechanism for
1612 calling that routine. */
1613
e2500fed 1614static GTY(()) rtx stack_check_libfunc;
14a774a9
RK
1615
1616void
d477d1fe 1617set_stack_check_libfunc (const char *libfunc_name)
14a774a9 1618{
d477d1fe
SB
1619 gcc_assert (stack_check_libfunc == NULL_RTX);
1620 stack_check_libfunc = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
14a774a9
RK
1621}
1622\f
edff2491
RK
1623/* Emit one stack probe at ADDRESS, an address within the stack. */
1624
260c8ba3 1625void
502b8322 1626emit_stack_probe (rtx address)
edff2491 1627{
10169a8b
RS
1628 if (targetm.have_probe_stack_address ())
1629 emit_insn (targetm.gen_probe_stack_address (address));
7b84aac0 1630 else
7b84aac0
EB
1631 {
1632 rtx memref = gen_rtx_MEM (word_mode, address);
edff2491 1633
7b84aac0 1634 MEM_VOLATILE_P (memref) = 1;
edff2491 1635
7b84aac0 1636 /* See if we have an insn to probe the stack. */
10169a8b
RS
1637 if (targetm.have_probe_stack ())
1638 emit_insn (targetm.gen_probe_stack (memref));
7b84aac0 1639 else
7b84aac0
EB
1640 emit_move_insn (memref, const0_rtx);
1641 }
edff2491
RK
1642}
1643
d9b3eb63 1644/* Probe a range of stack addresses from FIRST to FIRST+SIZE, inclusive.
d809253a
EB
1645 FIRST is a constant and size is a Pmode RTX. These are offsets from
1646 the current stack pointer. STACK_GROWS_DOWNWARD says whether to add
1647 or subtract them from the stack pointer. */
1648
1649#define PROBE_INTERVAL (1 << STACK_CHECK_PROBE_INTERVAL_EXP)
edff2491 1650
62f9f30b 1651#if STACK_GROWS_DOWNWARD
edff2491 1652#define STACK_GROW_OP MINUS
d809253a
EB
1653#define STACK_GROW_OPTAB sub_optab
1654#define STACK_GROW_OFF(off) -(off)
edff2491
RK
1655#else
1656#define STACK_GROW_OP PLUS
d809253a
EB
1657#define STACK_GROW_OPTAB add_optab
1658#define STACK_GROW_OFF(off) (off)
edff2491
RK
1659#endif
1660
1661void
502b8322 1662probe_stack_range (HOST_WIDE_INT first, rtx size)
edff2491 1663{
4b6c1672
RK
1664 /* First ensure SIZE is Pmode. */
1665 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1666 size = convert_to_mode (Pmode, size, 1);
1667
d809253a
EB
1668 /* Next see if we have a function to check the stack. */
1669 if (stack_check_libfunc)
f5f5363f 1670 {
d809253a 1671 rtx addr = memory_address (Pmode,
2b3aadfc
RH
1672 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1673 stack_pointer_rtx,
0a81f074
RS
1674 plus_constant (Pmode,
1675 size, first)));
db69559b
RS
1676 emit_library_call (stack_check_libfunc, LCT_THROW, VOIDmode,
1677 addr, Pmode);
f5f5363f 1678 }
14a774a9 1679
d809253a 1680 /* Next see if we have an insn to check the stack. */
10169a8b 1681 else if (targetm.have_check_stack ())
edff2491 1682 {
a5c7d693 1683 struct expand_operand ops[1];
d809253a
EB
1684 rtx addr = memory_address (Pmode,
1685 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1686 stack_pointer_rtx,
0a81f074
RS
1687 plus_constant (Pmode,
1688 size, first)));
d6a6a07a 1689 bool success;
a5c7d693 1690 create_input_operand (&ops[0], addr, Pmode);
10169a8b 1691 success = maybe_expand_insn (targetm.code_for_check_stack, 1, ops);
d6a6a07a 1692 gcc_assert (success);
edff2491 1693 }
edff2491 1694
d809253a
EB
1695 /* Otherwise we have to generate explicit probes. If we have a constant
1696 small number of them to generate, that's the easy case. */
1697 else if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
edff2491 1698 {
d809253a
EB
1699 HOST_WIDE_INT isize = INTVAL (size), i;
1700 rtx addr;
1701
1702 /* Probe at FIRST + N * PROBE_INTERVAL for values of N from 1 until
1703 it exceeds SIZE. If only one probe is needed, this will not
1704 generate any code. Then probe at FIRST + SIZE. */
1705 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
1706 {
1707 addr = memory_address (Pmode,
0a81f074 1708 plus_constant (Pmode, stack_pointer_rtx,
d809253a
EB
1709 STACK_GROW_OFF (first + i)));
1710 emit_stack_probe (addr);
1711 }
1712
1713 addr = memory_address (Pmode,
0a81f074 1714 plus_constant (Pmode, stack_pointer_rtx,
d809253a
EB
1715 STACK_GROW_OFF (first + isize)));
1716 emit_stack_probe (addr);
edff2491
RK
1717 }
1718
d809253a
EB
1719 /* In the variable case, do the same as above, but in a loop. Note that we
1720 must be extra careful with variables wrapping around because we might be
1721 at the very top (or the very bottom) of the address space and we have to
1722 be able to handle this case properly; in particular, we use an equality
1723 test for the loop condition. */
edff2491
RK
1724 else
1725 {
d809253a 1726 rtx rounded_size, rounded_size_op, test_addr, last_addr, temp;
528a80c1
DM
1727 rtx_code_label *loop_lab = gen_label_rtx ();
1728 rtx_code_label *end_lab = gen_label_rtx ();
edff2491 1729
d809253a
EB
1730 /* Step 1: round SIZE to the previous multiple of the interval. */
1731
1732 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
1733 rounded_size
69a59f0f
RS
1734 = simplify_gen_binary (AND, Pmode, size,
1735 gen_int_mode (-PROBE_INTERVAL, Pmode));
d809253a
EB
1736 rounded_size_op = force_operand (rounded_size, NULL_RTX);
1737
1738
1739 /* Step 2: compute initial and final value of the loop counter. */
1740
1741 /* TEST_ADDR = SP + FIRST. */
1742 test_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1743 stack_pointer_rtx,
4789c0ce
RS
1744 gen_int_mode (first, Pmode)),
1745 NULL_RTX);
d809253a
EB
1746
1747 /* LAST_ADDR = SP + FIRST + ROUNDED_SIZE. */
1748 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1749 test_addr,
1750 rounded_size_op), NULL_RTX);
1751
1752
1753 /* Step 3: the loop
1754
1755 while (TEST_ADDR != LAST_ADDR)
1756 {
1757 TEST_ADDR = TEST_ADDR + PROBE_INTERVAL
1758 probe at TEST_ADDR
1759 }
1760
1761 probes at FIRST + N * PROBE_INTERVAL for values of N from 1
1762 until it is equal to ROUNDED_SIZE. */
edff2491
RK
1763
1764 emit_label (loop_lab);
edff2491 1765
d809253a
EB
1766 /* Jump to END_LAB if TEST_ADDR == LAST_ADDR. */
1767 emit_cmp_and_jump_insns (test_addr, last_addr, EQ, NULL_RTX, Pmode, 1,
1768 end_lab);
1769
1770 /* TEST_ADDR = TEST_ADDR + PROBE_INTERVAL. */
1771 temp = expand_binop (Pmode, STACK_GROW_OPTAB, test_addr,
2f1cd2eb 1772 gen_int_mode (PROBE_INTERVAL, Pmode), test_addr,
edff2491 1773 1, OPTAB_WIDEN);
edff2491 1774
5b0264cb 1775 gcc_assert (temp == test_addr);
edff2491 1776
d809253a
EB
1777 /* Probe at TEST_ADDR. */
1778 emit_stack_probe (test_addr);
1779
1780 emit_jump (loop_lab);
1781
edff2491
RK
1782 emit_label (end_lab);
1783
d809253a
EB
1784
1785 /* Step 4: probe at FIRST + SIZE if we cannot assert at compile-time
1786 that SIZE is equal to ROUNDED_SIZE. */
1787
1788 /* TEMP = SIZE - ROUNDED_SIZE. */
1789 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
1790 if (temp != const0_rtx)
1791 {
1792 rtx addr;
1793
32990d5b 1794 if (CONST_INT_P (temp))
d809253a
EB
1795 {
1796 /* Use [base + disp} addressing mode if supported. */
1797 HOST_WIDE_INT offset = INTVAL (temp);
1798 addr = memory_address (Pmode,
0a81f074 1799 plus_constant (Pmode, last_addr,
d809253a
EB
1800 STACK_GROW_OFF (offset)));
1801 }
1802 else
1803 {
1804 /* Manual CSE if the difference is not known at compile-time. */
1805 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
1806 addr = memory_address (Pmode,
1807 gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1808 last_addr, temp));
1809 }
1810
1811 emit_stack_probe (addr);
1812 }
edff2491 1813 }
eabcc725
EB
1814
1815 /* Make sure nothing is scheduled before we are done. */
1816 emit_insn (gen_blockage ());
edff2491 1817}
d809253a 1818
8c1dd970
JL
1819/* Compute parameters for stack clash probing a dynamic stack
1820 allocation of SIZE bytes.
1821
1822 We compute ROUNDED_SIZE, LAST_ADDR, RESIDUAL and PROBE_INTERVAL.
1823
1824 Additionally we conditionally dump the type of probing that will
1825 be needed given the values computed. */
1826
1827void
1828compute_stack_clash_protection_loop_data (rtx *rounded_size, rtx *last_addr,
1829 rtx *residual,
1830 HOST_WIDE_INT *probe_interval,
1831 rtx size)
1832{
1833 /* Round SIZE down to STACK_CLASH_PROTECTION_PROBE_INTERVAL */
1834 *probe_interval
1835 = 1 << PARAM_VALUE (PARAM_STACK_CLASH_PROTECTION_PROBE_INTERVAL);
1836 *rounded_size = simplify_gen_binary (AND, Pmode, size,
1837 GEN_INT (-*probe_interval));
1838
1839 /* Compute the value of the stack pointer for the last iteration.
1840 It's just SP + ROUNDED_SIZE. */
1841 rtx rounded_size_op = force_operand (*rounded_size, NULL_RTX);
1842 *last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
1843 stack_pointer_rtx,
1844 rounded_size_op),
1845 NULL_RTX);
1846
1847 /* Compute any residuals not allocated by the loop above. Residuals
1848 are just the ROUNDED_SIZE - SIZE. */
1849 *residual = simplify_gen_binary (MINUS, Pmode, size, *rounded_size);
1850
1851 /* Dump key information to make writing tests easy. */
1852 if (dump_file)
1853 {
1854 if (*rounded_size == CONST0_RTX (Pmode))
1855 fprintf (dump_file,
1856 "Stack clash skipped dynamic allocation and probing loop.\n");
94c23e39 1857 else if (CONST_INT_P (*rounded_size)
8c1dd970
JL
1858 && INTVAL (*rounded_size) <= 4 * *probe_interval)
1859 fprintf (dump_file,
1860 "Stack clash dynamic allocation and probing inline.\n");
94c23e39 1861 else if (CONST_INT_P (*rounded_size))
8c1dd970
JL
1862 fprintf (dump_file,
1863 "Stack clash dynamic allocation and probing in "
1864 "rotated loop.\n");
1865 else
1866 fprintf (dump_file,
1867 "Stack clash dynamic allocation and probing in loop.\n");
1868
1869 if (*residual != CONST0_RTX (Pmode))
1870 fprintf (dump_file,
1871 "Stack clash dynamic allocation and probing residuals.\n");
1872 else
1873 fprintf (dump_file,
1874 "Stack clash skipped dynamic allocation and "
1875 "probing residuals.\n");
1876 }
1877}
1878
1879/* Emit the start of an allocate/probe loop for stack
1880 clash protection.
1881
1882 LOOP_LAB and END_LAB are returned for use when we emit the
1883 end of the loop.
1884
1885 LAST addr is the value for SP which stops the loop. */
1886void
1887emit_stack_clash_protection_probe_loop_start (rtx *loop_lab,
1888 rtx *end_lab,
1889 rtx last_addr,
1890 bool rotated)
1891{
1892 /* Essentially we want to emit any setup code, the top of loop
1893 label and the comparison at the top of the loop. */
1894 *loop_lab = gen_label_rtx ();
1895 *end_lab = gen_label_rtx ();
1896
1897 emit_label (*loop_lab);
1898 if (!rotated)
1899 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
1900 Pmode, 1, *end_lab);
1901}
1902
1903/* Emit the end of a stack clash probing loop.
1904
1905 This consists of just the jump back to LOOP_LAB and
1906 emitting END_LOOP after the loop. */
1907
1908void
1909emit_stack_clash_protection_probe_loop_end (rtx loop_lab, rtx end_loop,
1910 rtx last_addr, bool rotated)
1911{
1912 if (rotated)
1913 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, NE, NULL_RTX,
1914 Pmode, 1, loop_lab);
1915 else
1916 emit_jump (loop_lab);
1917
1918 emit_label (end_loop);
1919
1920}
1921
1922/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
1923 while probing it. This pushes when SIZE is positive. SIZE need not
1924 be constant.
1925
1926 This is subtly different than anti_adjust_stack_and_probe to try and
1927 prevent stack-clash attacks
1928
1929 1. It must assume no knowledge of the probing state, any allocation
1930 must probe.
1931
1932 Consider the case of a 1 byte alloca in a loop. If the sum of the
1933 allocations is large, then this could be used to jump the guard if
1934 probes were not emitted.
1935
1936 2. It never skips probes, whereas anti_adjust_stack_and_probe will
1937 skip probes on the first couple PROBE_INTERVALs on the assumption
1938 they're done elsewhere.
1939
1940 3. It only allocates and probes SIZE bytes, it does not need to
1941 allocate/probe beyond that because this probing style does not
1942 guarantee signal handling capability if the guard is hit. */
1943
1944static void
1945anti_adjust_stack_and_probe_stack_clash (rtx size)
1946{
1947 /* First ensure SIZE is Pmode. */
1948 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
1949 size = convert_to_mode (Pmode, size, 1);
1950
1951 /* We can get here with a constant size on some targets. */
1952 rtx rounded_size, last_addr, residual;
1953 HOST_WIDE_INT probe_interval;
1954 compute_stack_clash_protection_loop_data (&rounded_size, &last_addr,
1955 &residual, &probe_interval, size);
1956
1957 if (rounded_size != CONST0_RTX (Pmode))
1958 {
94c23e39
JL
1959 if (CONST_INT_P (rounded_size)
1960 && INTVAL (rounded_size) <= 4 * probe_interval)
8c1dd970
JL
1961 {
1962 for (HOST_WIDE_INT i = 0;
1963 i < INTVAL (rounded_size);
1964 i += probe_interval)
1965 {
1966 anti_adjust_stack (GEN_INT (probe_interval));
1967
1968 /* The prologue does not probe residuals. Thus the offset
1969 here to probe just beyond what the prologue had already
1970 allocated. */
1971 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1972 (probe_interval
1973 - GET_MODE_SIZE (word_mode))));
1974 emit_insn (gen_blockage ());
1975 }
1976 }
1977 else
1978 {
1979 rtx loop_lab, end_loop;
94c23e39 1980 bool rotate_loop = CONST_INT_P (rounded_size);
8c1dd970
JL
1981 emit_stack_clash_protection_probe_loop_start (&loop_lab, &end_loop,
1982 last_addr, rotate_loop);
1983
1984 anti_adjust_stack (GEN_INT (probe_interval));
1985
1986 /* The prologue does not probe residuals. Thus the offset here
1987 to probe just beyond what the prologue had already allocated. */
1988 emit_stack_probe (plus_constant (Pmode, stack_pointer_rtx,
1989 (probe_interval
1990 - GET_MODE_SIZE (word_mode))));
1991
1992 emit_stack_clash_protection_probe_loop_end (loop_lab, end_loop,
1993 last_addr, rotate_loop);
1994 emit_insn (gen_blockage ());
1995 }
1996 }
1997
1998 if (residual != CONST0_RTX (Pmode))
1999 {
2000 rtx x = force_reg (Pmode, plus_constant (Pmode, residual,
2001 -GET_MODE_SIZE (word_mode)));
2002 anti_adjust_stack (residual);
2003 emit_stack_probe (gen_rtx_PLUS (Pmode, stack_pointer_rtx, x));
2004 emit_insn (gen_blockage ());
2005 }
2006
2007 /* Some targets make optimistic assumptions in their prologues about
2008 how the caller may have probed the stack. Make sure we honor
2009 those assumptions when needed. */
2010 if (size != CONST0_RTX (Pmode)
2011 && targetm.stack_clash_protection_final_dynamic_probe (residual))
2012 {
2a6fc987
JL
2013 /* SIZE could be zero at runtime and in that case *sp could hold
2014 live data. Furthermore, we don't want to probe into the red
2015 zone.
2016
2017 Go ahead and just guard a probe at *sp on SIZE != 0 at runtime
2018 if SIZE is not a compile time constant. */
2019
8c1dd970
JL
2020 /* Ideally we would just probe at *sp. However, if SIZE is not
2021 a compile-time constant, but is zero at runtime, then *sp
2022 might hold live data. So probe at *sp if we know that
2023 an allocation was made, otherwise probe into the red zone
2024 which is obviously undesirable. */
94c23e39 2025 if (CONST_INT_P (size))
8c1dd970
JL
2026 {
2027 emit_stack_probe (stack_pointer_rtx);
2028 emit_insn (gen_blockage ());
2029 }
2030 else
2031 {
2a6fc987
JL
2032 rtx label = gen_label_rtx ();
2033 emit_cmp_and_jump_insns (size, CONST0_RTX (GET_MODE (size)),
2034 EQ, NULL_RTX, Pmode, 1, label);
2035 emit_stack_probe (stack_pointer_rtx);
8c1dd970 2036 emit_insn (gen_blockage ());
2a6fc987 2037 emit_label (label);
8c1dd970
JL
2038 }
2039 }
2040}
2041
2042
c35af30f
EB
2043/* Adjust the stack pointer by minus SIZE (an rtx for a number of bytes)
2044 while probing it. This pushes when SIZE is positive. SIZE need not
2045 be constant. If ADJUST_BACK is true, adjust back the stack pointer
2046 by plus SIZE at the end. */
d809253a 2047
c35af30f
EB
2048void
2049anti_adjust_stack_and_probe (rtx size, bool adjust_back)
d809253a 2050{
c35af30f
EB
2051 /* We skip the probe for the first interval + a small dope of 4 words and
2052 probe that many bytes past the specified size to maintain a protection
2053 area at the botton of the stack. */
d809253a
EB
2054 const int dope = 4 * UNITS_PER_WORD;
2055
2056 /* First ensure SIZE is Pmode. */
2057 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
2058 size = convert_to_mode (Pmode, size, 1);
2059
2060 /* If we have a constant small number of probes to generate, that's the
2061 easy case. */
32990d5b 2062 if (CONST_INT_P (size) && INTVAL (size) < 7 * PROBE_INTERVAL)
d809253a
EB
2063 {
2064 HOST_WIDE_INT isize = INTVAL (size), i;
2065 bool first_probe = true;
2066
260c8ba3 2067 /* Adjust SP and probe at PROBE_INTERVAL + N * PROBE_INTERVAL for
d809253a
EB
2068 values of N from 1 until it exceeds SIZE. If only one probe is
2069 needed, this will not generate any code. Then adjust and probe
2070 to PROBE_INTERVAL + SIZE. */
2071 for (i = PROBE_INTERVAL; i < isize; i += PROBE_INTERVAL)
2072 {
2073 if (first_probe)
2074 {
2075 anti_adjust_stack (GEN_INT (2 * PROBE_INTERVAL + dope));
2076 first_probe = false;
2077 }
2078 else
2079 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2080 emit_stack_probe (stack_pointer_rtx);
2081 }
2082
2083 if (first_probe)
0a81f074 2084 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
d809253a 2085 else
0a81f074 2086 anti_adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL - i));
d809253a
EB
2087 emit_stack_probe (stack_pointer_rtx);
2088 }
2089
2090 /* In the variable case, do the same as above, but in a loop. Note that we
2091 must be extra careful with variables wrapping around because we might be
2092 at the very top (or the very bottom) of the address space and we have to
2093 be able to handle this case properly; in particular, we use an equality
2094 test for the loop condition. */
2095 else
2096 {
2097 rtx rounded_size, rounded_size_op, last_addr, temp;
528a80c1
DM
2098 rtx_code_label *loop_lab = gen_label_rtx ();
2099 rtx_code_label *end_lab = gen_label_rtx ();
d809253a
EB
2100
2101
2102 /* Step 1: round SIZE to the previous multiple of the interval. */
2103
2104 /* ROUNDED_SIZE = SIZE & -PROBE_INTERVAL */
2105 rounded_size
69a59f0f
RS
2106 = simplify_gen_binary (AND, Pmode, size,
2107 gen_int_mode (-PROBE_INTERVAL, Pmode));
d809253a
EB
2108 rounded_size_op = force_operand (rounded_size, NULL_RTX);
2109
2110
2111 /* Step 2: compute initial and final value of the loop counter. */
2112
2113 /* SP = SP_0 + PROBE_INTERVAL. */
2114 anti_adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
2115
2116 /* LAST_ADDR = SP_0 + PROBE_INTERVAL + ROUNDED_SIZE. */
2117 last_addr = force_operand (gen_rtx_fmt_ee (STACK_GROW_OP, Pmode,
2118 stack_pointer_rtx,
2119 rounded_size_op), NULL_RTX);
2120
2121
2122 /* Step 3: the loop
2123
260c8ba3
EB
2124 while (SP != LAST_ADDR)
2125 {
2126 SP = SP + PROBE_INTERVAL
2127 probe at SP
2128 }
d809253a 2129
260c8ba3 2130 adjusts SP and probes at PROBE_INTERVAL + N * PROBE_INTERVAL for
d809253a
EB
2131 values of N from 1 until it is equal to ROUNDED_SIZE. */
2132
2133 emit_label (loop_lab);
2134
2135 /* Jump to END_LAB if SP == LAST_ADDR. */
2136 emit_cmp_and_jump_insns (stack_pointer_rtx, last_addr, EQ, NULL_RTX,
2137 Pmode, 1, end_lab);
2138
2139 /* SP = SP + PROBE_INTERVAL and probe at SP. */
2140 anti_adjust_stack (GEN_INT (PROBE_INTERVAL));
2141 emit_stack_probe (stack_pointer_rtx);
2142
2143 emit_jump (loop_lab);
2144
2145 emit_label (end_lab);
2146
2147
260c8ba3 2148 /* Step 4: adjust SP and probe at PROBE_INTERVAL + SIZE if we cannot
d809253a
EB
2149 assert at compile-time that SIZE is equal to ROUNDED_SIZE. */
2150
2151 /* TEMP = SIZE - ROUNDED_SIZE. */
2152 temp = simplify_gen_binary (MINUS, Pmode, size, rounded_size);
2153 if (temp != const0_rtx)
2154 {
2155 /* Manual CSE if the difference is not known at compile-time. */
2156 if (GET_CODE (temp) != CONST_INT)
2157 temp = gen_rtx_MINUS (Pmode, size, rounded_size_op);
2158 anti_adjust_stack (temp);
2159 emit_stack_probe (stack_pointer_rtx);
2160 }
2161 }
2162
c35af30f
EB
2163 /* Adjust back and account for the additional first interval. */
2164 if (adjust_back)
0a81f074 2165 adjust_stack (plus_constant (Pmode, size, PROBE_INTERVAL + dope));
c35af30f
EB
2166 else
2167 adjust_stack (GEN_INT (PROBE_INTERVAL + dope));
d809253a
EB
2168}
2169
18ca7dab
RK
2170/* Return an rtx representing the register or memory location
2171 in which a scalar value of data type VALTYPE
2172 was returned by a function call to function FUNC.
1d636cc6
RG
2173 FUNC is a FUNCTION_DECL, FNTYPE a FUNCTION_TYPE node if the precise
2174 function is known, otherwise 0.
4dc07bd7
JJ
2175 OUTGOING is 1 if on a machine with register windows this function
2176 should return the register in which the function will put its result
30f7a378 2177 and 0 otherwise. */
18ca7dab
RK
2178
2179rtx
586de218 2180hard_function_value (const_tree valtype, const_tree func, const_tree fntype,
502b8322 2181 int outgoing ATTRIBUTE_UNUSED)
18ca7dab 2182{
4dc07bd7 2183 rtx val;
770ae6cc 2184
1d636cc6 2185 val = targetm.calls.function_value (valtype, func ? func : fntype, outgoing);
770ae6cc 2186
f8cfc6aa 2187 if (REG_P (val)
e1a4071f
JL
2188 && GET_MODE (val) == BLKmode)
2189 {
974aedcc 2190 unsigned HOST_WIDE_INT bytes = arg_int_size_in_bytes (valtype);
59b51186 2191 opt_scalar_int_mode tmpmode;
770ae6cc 2192
d9b3eb63 2193 /* int_size_in_bytes can return -1. We don't need a check here
535a42b1
NS
2194 since the value of bytes will then be large enough that no
2195 mode will match anyway. */
d9b3eb63 2196
c94843d2 2197 FOR_EACH_MODE_IN_CLASS (tmpmode, MODE_INT)
0fb7aeda
KH
2198 {
2199 /* Have we found a large enough mode? */
59b51186 2200 if (GET_MODE_SIZE (tmpmode.require ()) >= bytes)
0fb7aeda
KH
2201 break;
2202 }
e1a4071f 2203
59b51186 2204 PUT_MODE (val, tmpmode.require ());
d9b3eb63 2205 }
e1a4071f 2206 return val;
18ca7dab
RK
2207}
2208
2209/* Return an rtx representing the register or memory location
2210 in which a scalar value of mode MODE was returned by a library call. */
2211
2212rtx
ef4bddc2 2213hard_libcall_value (machine_mode mode, rtx fun)
18ca7dab 2214{
390b17c2 2215 return targetm.calls.libcall_value (mode, fun);
18ca7dab 2216}
0c5e217d
RS
2217
2218/* Look up the tree code for a given rtx code
5c88ea94 2219 to provide the arithmetic operation for real_arithmetic.
0c5e217d
RS
2220 The function returns an int because the caller may not know
2221 what `enum tree_code' means. */
2222
2223int
502b8322 2224rtx_to_tree_code (enum rtx_code code)
0c5e217d
RS
2225{
2226 enum tree_code tcode;
2227
2228 switch (code)
2229 {
2230 case PLUS:
2231 tcode = PLUS_EXPR;
2232 break;
2233 case MINUS:
2234 tcode = MINUS_EXPR;
2235 break;
2236 case MULT:
2237 tcode = MULT_EXPR;
2238 break;
2239 case DIV:
2240 tcode = RDIV_EXPR;
2241 break;
2242 case SMIN:
2243 tcode = MIN_EXPR;
2244 break;
2245 case SMAX:
2246 tcode = MAX_EXPR;
2247 break;
2248 default:
2249 tcode = LAST_AND_UNUSED_TREE_CODE;
2250 break;
2251 }
2252 return ((int) tcode);
2253}
e2500fed
GK
2254
2255#include "gt-explow.h"