]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/explow.c
(distdir-start): Make tmp/ginclude and copy its files.
[thirdparty/gcc.git] / gcc / explow.c
CommitLineData
18ca7dab 1/* Subroutines for manipulating rtx's in semantically interesting ways.
18b9ca6f 2 Copyright (C) 1987, 1991, 1994 Free Software Foundation, Inc.
18ca7dab
RK
3
4This file is part of GNU CC.
5
6GNU CC is free software; you can redistribute it and/or modify
7it under the terms of the GNU General Public License as published by
8the Free Software Foundation; either version 2, or (at your option)
9any later version.
10
11GNU CC is distributed in the hope that it will be useful,
12but WITHOUT ANY WARRANTY; without even the implied warranty of
13MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14GNU General Public License for more details.
15
16You should have received a copy of the GNU General Public License
17along with GNU CC; see the file COPYING. If not, write to
18the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20
21#include "config.h"
22#include "rtl.h"
23#include "tree.h"
24#include "flags.h"
25#include "expr.h"
26#include "hard-reg-set.h"
27#include "insn-config.h"
28#include "recog.h"
29#include "insn-flags.h"
30#include "insn-codes.h"
31
b1ec3c92
CH
32/* Return an rtx for the sum of X and the integer C.
33
8008b228 34 This function should be used via the `plus_constant' macro. */
18ca7dab
RK
35
36rtx
b1ec3c92 37plus_constant_wide (x, c)
18ca7dab 38 register rtx x;
b1ec3c92 39 register HOST_WIDE_INT c;
18ca7dab
RK
40{
41 register RTX_CODE code;
42 register enum machine_mode mode;
43 register rtx tem;
44 int all_constant = 0;
45
46 if (c == 0)
47 return x;
48
49 restart:
50
51 code = GET_CODE (x);
52 mode = GET_MODE (x);
53 switch (code)
54 {
55 case CONST_INT:
b1ec3c92 56 return GEN_INT (INTVAL (x) + c);
18ca7dab
RK
57
58 case CONST_DOUBLE:
59 {
b1ec3c92
CH
60 HOST_WIDE_INT l1 = CONST_DOUBLE_LOW (x);
61 HOST_WIDE_INT h1 = CONST_DOUBLE_HIGH (x);
62 HOST_WIDE_INT l2 = c;
63 HOST_WIDE_INT h2 = c < 0 ? ~0 : 0;
64 HOST_WIDE_INT lv, hv;
18ca7dab
RK
65
66 add_double (l1, h1, l2, h2, &lv, &hv);
67
68 return immed_double_const (lv, hv, VOIDmode);
69 }
70
71 case MEM:
72 /* If this is a reference to the constant pool, try replacing it with
73 a reference to a new constant. If the resulting address isn't
74 valid, don't return it because we have no way to validize it. */
75 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
76 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
77 {
78 tem
79 = force_const_mem (GET_MODE (x),
80 plus_constant (get_pool_constant (XEXP (x, 0)),
81 c));
82 if (memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
83 return tem;
84 }
85 break;
86
87 case CONST:
88 /* If adding to something entirely constant, set a flag
89 so that we can add a CONST around the result. */
90 x = XEXP (x, 0);
91 all_constant = 1;
92 goto restart;
93
94 case SYMBOL_REF:
95 case LABEL_REF:
96 all_constant = 1;
97 break;
98
99 case PLUS:
100 /* The interesting case is adding the integer to a sum.
101 Look for constant term in the sum and combine
102 with C. For an integer constant term, we make a combined
103 integer. For a constant term that is not an explicit integer,
e5671f2b
RK
104 we cannot really combine, but group them together anyway.
105
106 Use a recursive call in case the remaining operand is something
107 that we handle specially, such as a SYMBOL_REF. */
108
109 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
110 return plus_constant (XEXP (x, 0), c + INTVAL (XEXP (x, 1)));
18ca7dab
RK
111 else if (CONSTANT_P (XEXP (x, 0)))
112 return gen_rtx (PLUS, mode,
113 plus_constant (XEXP (x, 0), c),
114 XEXP (x, 1));
115 else if (CONSTANT_P (XEXP (x, 1)))
116 return gen_rtx (PLUS, mode,
117 XEXP (x, 0),
118 plus_constant (XEXP (x, 1), c));
119 }
120
121 if (c != 0)
b1ec3c92 122 x = gen_rtx (PLUS, mode, x, GEN_INT (c));
18ca7dab
RK
123
124 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
125 return x;
126 else if (all_constant)
127 return gen_rtx (CONST, mode, x);
128 else
129 return x;
130}
131
b1ec3c92
CH
132/* This is the same as `plus_constant', except that it handles LO_SUM.
133
134 This function should be used via the `plus_constant_for_output' macro. */
18ca7dab
RK
135
136rtx
b1ec3c92 137plus_constant_for_output_wide (x, c)
18ca7dab 138 register rtx x;
b1ec3c92 139 register HOST_WIDE_INT c;
18ca7dab
RK
140{
141 register RTX_CODE code = GET_CODE (x);
142 register enum machine_mode mode = GET_MODE (x);
143 int all_constant = 0;
144
145 if (GET_CODE (x) == LO_SUM)
146 return gen_rtx (LO_SUM, mode, XEXP (x, 0),
147 plus_constant_for_output (XEXP (x, 1), c));
148
149 else
150 return plus_constant (x, c);
151}
152\f
153/* If X is a sum, return a new sum like X but lacking any constant terms.
154 Add all the removed constant terms into *CONSTPTR.
155 X itself is not altered. The result != X if and only if
156 it is not isomorphic to X. */
157
158rtx
159eliminate_constant_term (x, constptr)
160 rtx x;
161 rtx *constptr;
162{
163 register rtx x0, x1;
164 rtx tem;
165
166 if (GET_CODE (x) != PLUS)
167 return x;
168
169 /* First handle constants appearing at this level explicitly. */
170 if (GET_CODE (XEXP (x, 1)) == CONST_INT
171 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x), *constptr,
172 XEXP (x, 1)))
173 && GET_CODE (tem) == CONST_INT)
174 {
175 *constptr = tem;
176 return eliminate_constant_term (XEXP (x, 0), constptr);
177 }
178
179 tem = const0_rtx;
180 x0 = eliminate_constant_term (XEXP (x, 0), &tem);
181 x1 = eliminate_constant_term (XEXP (x, 1), &tem);
182 if ((x1 != XEXP (x, 1) || x0 != XEXP (x, 0))
183 && 0 != (tem = simplify_binary_operation (PLUS, GET_MODE (x),
184 *constptr, tem))
185 && GET_CODE (tem) == CONST_INT)
186 {
187 *constptr = tem;
188 return gen_rtx (PLUS, GET_MODE (x), x0, x1);
189 }
190
191 return x;
192}
193
194/* Returns the insn that next references REG after INSN, or 0
195 if REG is clobbered before next referenced or we cannot find
196 an insn that references REG in a straight-line piece of code. */
197
198rtx
199find_next_ref (reg, insn)
200 rtx reg;
201 rtx insn;
202{
203 rtx next;
204
205 for (insn = NEXT_INSN (insn); insn; insn = next)
206 {
207 next = NEXT_INSN (insn);
208 if (GET_CODE (insn) == NOTE)
209 continue;
210 if (GET_CODE (insn) == CODE_LABEL
211 || GET_CODE (insn) == BARRIER)
212 return 0;
213 if (GET_CODE (insn) == INSN
214 || GET_CODE (insn) == JUMP_INSN
215 || GET_CODE (insn) == CALL_INSN)
216 {
217 if (reg_set_p (reg, insn))
218 return 0;
219 if (reg_mentioned_p (reg, PATTERN (insn)))
220 return insn;
221 if (GET_CODE (insn) == JUMP_INSN)
222 {
223 if (simplejump_p (insn))
224 next = JUMP_LABEL (insn);
225 else
226 return 0;
227 }
228 if (GET_CODE (insn) == CALL_INSN
229 && REGNO (reg) < FIRST_PSEUDO_REGISTER
230 && call_used_regs[REGNO (reg)])
231 return 0;
232 }
233 else
234 abort ();
235 }
236 return 0;
237}
238
239/* Return an rtx for the size in bytes of the value of EXP. */
240
241rtx
242expr_size (exp)
243 tree exp;
244{
99098c66
RK
245 tree size = size_in_bytes (TREE_TYPE (exp));
246
247 if (TREE_CODE (size) != INTEGER_CST
248 && contains_placeholder_p (size))
249 size = build (WITH_RECORD_EXPR, sizetype, size, exp);
250
251 return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), 0);
18ca7dab
RK
252}
253\f
254/* Return a copy of X in which all memory references
255 and all constants that involve symbol refs
256 have been replaced with new temporary registers.
257 Also emit code to load the memory locations and constants
258 into those registers.
259
260 If X contains no such constants or memory references,
261 X itself (not a copy) is returned.
262
263 If a constant is found in the address that is not a legitimate constant
264 in an insn, it is left alone in the hope that it might be valid in the
265 address.
266
267 X may contain no arithmetic except addition, subtraction and multiplication.
268 Values returned by expand_expr with 1 for sum_ok fit this constraint. */
269
270static rtx
271break_out_memory_refs (x)
272 register rtx x;
273{
274 if (GET_CODE (x) == MEM
cabeca29 275 || (CONSTANT_P (x) && CONSTANT_ADDRESS_P (x)
18ca7dab 276 && GET_MODE (x) != VOIDmode))
2cca6e3f 277 x = force_reg (GET_MODE (x), x);
18ca7dab
RK
278 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
279 || GET_CODE (x) == MULT)
280 {
281 register rtx op0 = break_out_memory_refs (XEXP (x, 0));
282 register rtx op1 = break_out_memory_refs (XEXP (x, 1));
2cca6e3f 283
18ca7dab
RK
284 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
285 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
286 }
2cca6e3f 287
18ca7dab
RK
288 return x;
289}
290
291/* Given a memory address or facsimile X, construct a new address,
292 currently equivalent, that is stable: future stores won't change it.
293
294 X must be composed of constants, register and memory references
295 combined with addition, subtraction and multiplication:
296 in other words, just what you can get from expand_expr if sum_ok is 1.
297
298 Works by making copies of all regs and memory locations used
299 by X and combining them the same way X does.
300 You could also stabilize the reference to this address
301 by copying the address to a register with copy_to_reg;
302 but then you wouldn't get indexed addressing in the reference. */
303
304rtx
305copy_all_regs (x)
306 register rtx x;
307{
308 if (GET_CODE (x) == REG)
309 {
11c50c5e
DE
310 if (REGNO (x) != FRAME_POINTER_REGNUM
311#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
312 && REGNO (x) != HARD_FRAME_POINTER_REGNUM
313#endif
314 )
18ca7dab
RK
315 x = copy_to_reg (x);
316 }
317 else if (GET_CODE (x) == MEM)
318 x = copy_to_reg (x);
319 else if (GET_CODE (x) == PLUS || GET_CODE (x) == MINUS
320 || GET_CODE (x) == MULT)
321 {
322 register rtx op0 = copy_all_regs (XEXP (x, 0));
323 register rtx op1 = copy_all_regs (XEXP (x, 1));
324 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
325 x = gen_rtx (GET_CODE (x), Pmode, op0, op1);
326 }
327 return x;
328}
329\f
330/* Return something equivalent to X but valid as a memory address
331 for something of mode MODE. When X is not itself valid, this
332 works by copying X or subexpressions of it into registers. */
333
334rtx
335memory_address (mode, x)
336 enum machine_mode mode;
337 register rtx x;
338{
18b9ca6f 339 register rtx oldx = x;
18ca7dab
RK
340
341 /* By passing constant addresses thru registers
342 we get a chance to cse them. */
cabeca29 343 if (! cse_not_expected && CONSTANT_P (x) && CONSTANT_ADDRESS_P (x))
18b9ca6f 344 x = force_reg (Pmode, x);
18ca7dab
RK
345
346 /* Accept a QUEUED that refers to a REG
347 even though that isn't a valid address.
348 On attempting to put this in an insn we will call protect_from_queue
349 which will turn it into a REG, which is valid. */
18b9ca6f 350 else if (GET_CODE (x) == QUEUED
18ca7dab 351 && GET_CODE (QUEUED_VAR (x)) == REG)
18b9ca6f 352 ;
18ca7dab
RK
353
354 /* We get better cse by rejecting indirect addressing at this stage.
355 Let the combiner create indirect addresses where appropriate.
356 For now, generate the code so that the subexpressions useful to share
357 are visible. But not if cse won't be done! */
18b9ca6f 358 else
18ca7dab 359 {
18b9ca6f
RK
360 if (! cse_not_expected && GET_CODE (x) != REG)
361 x = break_out_memory_refs (x);
362
363 /* At this point, any valid address is accepted. */
364 GO_IF_LEGITIMATE_ADDRESS (mode, x, win);
365
366 /* If it was valid before but breaking out memory refs invalidated it,
367 use it the old way. */
368 if (memory_address_p (mode, oldx))
369 goto win2;
370
371 /* Perform machine-dependent transformations on X
372 in certain cases. This is not necessary since the code
373 below can handle all possible cases, but machine-dependent
374 transformations can make better code. */
375 LEGITIMIZE_ADDRESS (x, oldx, mode, win);
376
377 /* PLUS and MULT can appear in special ways
378 as the result of attempts to make an address usable for indexing.
379 Usually they are dealt with by calling force_operand, below.
380 But a sum containing constant terms is special
381 if removing them makes the sum a valid address:
382 then we generate that address in a register
383 and index off of it. We do this because it often makes
384 shorter code, and because the addresses thus generated
385 in registers often become common subexpressions. */
386 if (GET_CODE (x) == PLUS)
387 {
388 rtx constant_term = const0_rtx;
389 rtx y = eliminate_constant_term (x, &constant_term);
390 if (constant_term == const0_rtx
391 || ! memory_address_p (mode, y))
392 x = force_operand (x, NULL_RTX);
393 else
394 {
395 y = gen_rtx (PLUS, GET_MODE (x), copy_to_reg (y), constant_term);
396 if (! memory_address_p (mode, y))
397 x = force_operand (x, NULL_RTX);
398 else
399 x = y;
400 }
401 }
18ca7dab 402
18b9ca6f
RK
403 if (GET_CODE (x) == MULT || GET_CODE (x) == MINUS)
404 x = force_operand (x, NULL_RTX);
18ca7dab 405
18b9ca6f
RK
406 /* If we have a register that's an invalid address,
407 it must be a hard reg of the wrong class. Copy it to a pseudo. */
408 else if (GET_CODE (x) == REG)
409 x = copy_to_reg (x);
410
411 /* Last resort: copy the value to a register, since
412 the register is a valid address. */
413 else
414 x = force_reg (Pmode, x);
415
416 goto done;
18ca7dab 417
c02a7fbb
RK
418 win2:
419 x = oldx;
420 win:
421 if (flag_force_addr && ! cse_not_expected && GET_CODE (x) != REG
422 /* Don't copy an addr via a reg if it is one of our stack slots. */
423 && ! (GET_CODE (x) == PLUS
424 && (XEXP (x, 0) == virtual_stack_vars_rtx
425 || XEXP (x, 0) == virtual_incoming_args_rtx)))
426 {
427 if (general_operand (x, Pmode))
428 x = force_reg (Pmode, x);
429 else
430 x = force_operand (x, NULL_RTX);
431 }
18ca7dab 432 }
18b9ca6f
RK
433
434 done:
435
2cca6e3f
RK
436 /* If we didn't change the address, we are done. Otherwise, mark
437 a reg as a pointer if we have REG or REG + CONST_INT. */
438 if (oldx == x)
439 return x;
440 else if (GET_CODE (x) == REG)
441 mark_reg_pointer (x);
442 else if (GET_CODE (x) == PLUS
443 && GET_CODE (XEXP (x, 0)) == REG
444 && GET_CODE (XEXP (x, 1)) == CONST_INT)
445 mark_reg_pointer (XEXP (x, 0));
446
18b9ca6f
RK
447 /* OLDX may have been the address on a temporary. Update the address
448 to indicate that X is now used. */
449 update_temp_slot_address (oldx, x);
450
18ca7dab
RK
451 return x;
452}
453
454/* Like `memory_address' but pretend `flag_force_addr' is 0. */
455
456rtx
457memory_address_noforce (mode, x)
458 enum machine_mode mode;
459 rtx x;
460{
461 int ambient_force_addr = flag_force_addr;
462 rtx val;
463
464 flag_force_addr = 0;
465 val = memory_address (mode, x);
466 flag_force_addr = ambient_force_addr;
467 return val;
468}
469
470/* Convert a mem ref into one with a valid memory address.
471 Pass through anything else unchanged. */
472
473rtx
474validize_mem (ref)
475 rtx ref;
476{
477 if (GET_CODE (ref) != MEM)
478 return ref;
479 if (memory_address_p (GET_MODE (ref), XEXP (ref, 0)))
480 return ref;
481 /* Don't alter REF itself, since that is probably a stack slot. */
482 return change_address (ref, GET_MODE (ref), XEXP (ref, 0));
483}
484\f
485/* Return a modified copy of X with its memory address copied
486 into a temporary register to protect it from side effects.
487 If X is not a MEM, it is returned unchanged (and not copied).
488 Perhaps even if it is a MEM, if there is no need to change it. */
489
490rtx
491stabilize (x)
492 rtx x;
493{
494 register rtx addr;
495 if (GET_CODE (x) != MEM)
496 return x;
497 addr = XEXP (x, 0);
498 if (rtx_unstable_p (addr))
499 {
500 rtx temp = copy_all_regs (addr);
501 rtx mem;
502 if (GET_CODE (temp) != REG)
503 temp = copy_to_reg (temp);
504 mem = gen_rtx (MEM, GET_MODE (x), temp);
505
506 /* Mark returned memref with in_struct if it's in an array or
507 structure. Copy const and volatile from original memref. */
508
509 MEM_IN_STRUCT_P (mem) = MEM_IN_STRUCT_P (x) || GET_CODE (addr) == PLUS;
510 RTX_UNCHANGING_P (mem) = RTX_UNCHANGING_P (x);
511 MEM_VOLATILE_P (mem) = MEM_VOLATILE_P (x);
512 return mem;
513 }
514 return x;
515}
516\f
517/* Copy the value or contents of X to a new temp reg and return that reg. */
518
519rtx
520copy_to_reg (x)
521 rtx x;
522{
523 register rtx temp = gen_reg_rtx (GET_MODE (x));
524
525 /* If not an operand, must be an address with PLUS and MULT so
526 do the computation. */
527 if (! general_operand (x, VOIDmode))
528 x = force_operand (x, temp);
529
530 if (x != temp)
531 emit_move_insn (temp, x);
532
533 return temp;
534}
535
536/* Like copy_to_reg but always give the new register mode Pmode
537 in case X is a constant. */
538
539rtx
540copy_addr_to_reg (x)
541 rtx x;
542{
543 return copy_to_mode_reg (Pmode, x);
544}
545
546/* Like copy_to_reg but always give the new register mode MODE
547 in case X is a constant. */
548
549rtx
550copy_to_mode_reg (mode, x)
551 enum machine_mode mode;
552 rtx x;
553{
554 register rtx temp = gen_reg_rtx (mode);
555
556 /* If not an operand, must be an address with PLUS and MULT so
557 do the computation. */
558 if (! general_operand (x, VOIDmode))
559 x = force_operand (x, temp);
560
561 if (GET_MODE (x) != mode && GET_MODE (x) != VOIDmode)
562 abort ();
563 if (x != temp)
564 emit_move_insn (temp, x);
565 return temp;
566}
567
568/* Load X into a register if it is not already one.
569 Use mode MODE for the register.
570 X should be valid for mode MODE, but it may be a constant which
571 is valid for all integer modes; that's why caller must specify MODE.
572
573 The caller must not alter the value in the register we return,
574 since we mark it as a "constant" register. */
575
576rtx
577force_reg (mode, x)
578 enum machine_mode mode;
579 rtx x;
580{
581 register rtx temp, insn;
582
583 if (GET_CODE (x) == REG)
584 return x;
585 temp = gen_reg_rtx (mode);
586 insn = emit_move_insn (temp, x);
587 /* Let optimizers know that TEMP's value never changes
588 and that X can be substituted for it. */
589 if (CONSTANT_P (x))
590 {
b1ec3c92 591 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
18ca7dab
RK
592
593 if (note)
594 XEXP (note, 0) = x;
595 else
596 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_EQUAL, x, REG_NOTES (insn));
597 }
598 return temp;
599}
600
601/* If X is a memory ref, copy its contents to a new temp reg and return
602 that reg. Otherwise, return X. */
603
604rtx
605force_not_mem (x)
606 rtx x;
607{
608 register rtx temp;
609 if (GET_CODE (x) != MEM || GET_MODE (x) == BLKmode)
610 return x;
611 temp = gen_reg_rtx (GET_MODE (x));
612 emit_move_insn (temp, x);
613 return temp;
614}
615
616/* Copy X to TARGET (if it's nonzero and a reg)
617 or to a new temp reg and return that reg.
618 MODE is the mode to use for X in case it is a constant. */
619
620rtx
621copy_to_suggested_reg (x, target, mode)
622 rtx x, target;
623 enum machine_mode mode;
624{
625 register rtx temp;
626
627 if (target && GET_CODE (target) == REG)
628 temp = target;
629 else
630 temp = gen_reg_rtx (mode);
631
632 emit_move_insn (temp, x);
633 return temp;
634}
635\f
9ff65789
RK
636/* Return the mode to use to store a scalar of TYPE and MODE.
637 PUNSIGNEDP points to the signedness of the type and may be adjusted
638 to show what signedness to use on extension operations.
639
640 FOR_CALL is non-zero if this call is promoting args for a call. */
641
642enum machine_mode
643promote_mode (type, mode, punsignedp, for_call)
644 tree type;
645 enum machine_mode mode;
646 int *punsignedp;
647 int for_call;
648{
649 enum tree_code code = TREE_CODE (type);
650 int unsignedp = *punsignedp;
651
652#ifdef PROMOTE_FOR_CALL_ONLY
653 if (! for_call)
654 return mode;
655#endif
656
657 switch (code)
658 {
659#ifdef PROMOTE_MODE
660 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
661 case CHAR_TYPE: case REAL_TYPE: case OFFSET_TYPE:
662 PROMOTE_MODE (mode, unsignedp, type);
663 break;
664#endif
665
666 case POINTER_TYPE:
667 break;
668 }
669
670 *punsignedp = unsignedp;
671 return mode;
672}
673\f
18ca7dab
RK
674/* Adjust the stack pointer by ADJUST (an rtx for a number of bytes).
675 This pops when ADJUST is positive. ADJUST need not be constant. */
676
677void
678adjust_stack (adjust)
679 rtx adjust;
680{
681 rtx temp;
682 adjust = protect_from_queue (adjust, 0);
683
684 if (adjust == const0_rtx)
685 return;
686
687 temp = expand_binop (Pmode,
688#ifdef STACK_GROWS_DOWNWARD
689 add_optab,
690#else
691 sub_optab,
692#endif
693 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
694 OPTAB_LIB_WIDEN);
695
696 if (temp != stack_pointer_rtx)
697 emit_move_insn (stack_pointer_rtx, temp);
698}
699
700/* Adjust the stack pointer by minus ADJUST (an rtx for a number of bytes).
701 This pushes when ADJUST is positive. ADJUST need not be constant. */
702
703void
704anti_adjust_stack (adjust)
705 rtx adjust;
706{
707 rtx temp;
708 adjust = protect_from_queue (adjust, 0);
709
710 if (adjust == const0_rtx)
711 return;
712
713 temp = expand_binop (Pmode,
714#ifdef STACK_GROWS_DOWNWARD
715 sub_optab,
716#else
717 add_optab,
718#endif
719 stack_pointer_rtx, adjust, stack_pointer_rtx, 0,
720 OPTAB_LIB_WIDEN);
721
722 if (temp != stack_pointer_rtx)
723 emit_move_insn (stack_pointer_rtx, temp);
724}
725
726/* Round the size of a block to be pushed up to the boundary required
727 by this machine. SIZE is the desired size, which need not be constant. */
728
729rtx
730round_push (size)
731 rtx size;
732{
733#ifdef STACK_BOUNDARY
734 int align = STACK_BOUNDARY / BITS_PER_UNIT;
735 if (align == 1)
736 return size;
737 if (GET_CODE (size) == CONST_INT)
738 {
739 int new = (INTVAL (size) + align - 1) / align * align;
740 if (INTVAL (size) != new)
b1ec3c92 741 size = GEN_INT (new);
18ca7dab
RK
742 }
743 else
744 {
5244db05
RK
745 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
746 but we know it can't. So add ourselves and then do TRUNC_DIV_EXPR. */
747 size = expand_binop (Pmode, add_optab, size, GEN_INT (align - 1),
748 NULL_RTX, 1, OPTAB_LIB_WIDEN);
749 size = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, size, GEN_INT (align),
b1ec3c92
CH
750 NULL_RTX, 1);
751 size = expand_mult (Pmode, size, GEN_INT (align), NULL_RTX, 1);
18ca7dab
RK
752 }
753#endif /* STACK_BOUNDARY */
754 return size;
755}
756\f
59257ff7
RK
757/* Save the stack pointer for the purpose in SAVE_LEVEL. PSAVE is a pointer
758 to a previously-created save area. If no save area has been allocated,
759 this function will allocate one. If a save area is specified, it
760 must be of the proper mode.
761
762 The insns are emitted after insn AFTER, if nonzero, otherwise the insns
763 are emitted at the current position. */
764
765void
766emit_stack_save (save_level, psave, after)
767 enum save_level save_level;
768 rtx *psave;
769 rtx after;
770{
771 rtx sa = *psave;
772 /* The default is that we use a move insn and save in a Pmode object. */
773 rtx (*fcn) () = gen_move_insn;
774 enum machine_mode mode = Pmode;
775
776 /* See if this machine has anything special to do for this kind of save. */
777 switch (save_level)
778 {
779#ifdef HAVE_save_stack_block
780 case SAVE_BLOCK:
781 if (HAVE_save_stack_block)
782 {
783 fcn = gen_save_stack_block;
784 mode = insn_operand_mode[CODE_FOR_save_stack_block][0];
785 }
786 break;
787#endif
788#ifdef HAVE_save_stack_function
789 case SAVE_FUNCTION:
790 if (HAVE_save_stack_function)
791 {
792 fcn = gen_save_stack_function;
793 mode = insn_operand_mode[CODE_FOR_save_stack_function][0];
794 }
795 break;
796#endif
797#ifdef HAVE_save_stack_nonlocal
798 case SAVE_NONLOCAL:
799 if (HAVE_save_stack_nonlocal)
800 {
801 fcn = gen_save_stack_nonlocal;
0d69ab6f 802 mode = insn_operand_mode[(int) CODE_FOR_save_stack_nonlocal][0];
59257ff7
RK
803 }
804 break;
805#endif
806 }
807
808 /* If there is no save area and we have to allocate one, do so. Otherwise
809 verify the save area is the proper mode. */
810
811 if (sa == 0)
812 {
813 if (mode != VOIDmode)
814 {
815 if (save_level == SAVE_NONLOCAL)
816 *psave = sa = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
817 else
818 *psave = sa = gen_reg_rtx (mode);
819 }
820 }
821 else
822 {
823 if (mode == VOIDmode || GET_MODE (sa) != mode)
824 abort ();
825 }
826
827 if (after)
700f6f98
RK
828 {
829 rtx seq;
830
831 start_sequence ();
5460015d
JW
832 /* We must validize inside the sequence, to ensure that any instructions
833 created by the validize call also get moved to the right place. */
834 if (sa != 0)
835 sa = validize_mem (sa);
d072107f 836 emit_insn (fcn (sa, stack_pointer_rtx));
700f6f98
RK
837 seq = gen_sequence ();
838 end_sequence ();
839 emit_insn_after (seq, after);
840 }
59257ff7 841 else
5460015d
JW
842 {
843 if (sa != 0)
844 sa = validize_mem (sa);
845 emit_insn (fcn (sa, stack_pointer_rtx));
846 }
59257ff7
RK
847}
848
849/* Restore the stack pointer for the purpose in SAVE_LEVEL. SA is the save
850 area made by emit_stack_save. If it is zero, we have nothing to do.
851
852 Put any emitted insns after insn AFTER, if nonzero, otherwise at
853 current position. */
854
855void
856emit_stack_restore (save_level, sa, after)
857 enum save_level save_level;
858 rtx after;
859 rtx sa;
860{
861 /* The default is that we use a move insn. */
862 rtx (*fcn) () = gen_move_insn;
863
864 /* See if this machine has anything special to do for this kind of save. */
865 switch (save_level)
866 {
867#ifdef HAVE_restore_stack_block
868 case SAVE_BLOCK:
869 if (HAVE_restore_stack_block)
870 fcn = gen_restore_stack_block;
871 break;
872#endif
873#ifdef HAVE_restore_stack_function
874 case SAVE_FUNCTION:
875 if (HAVE_restore_stack_function)
876 fcn = gen_restore_stack_function;
877 break;
878#endif
879#ifdef HAVE_restore_stack_nonlocal
880
881 case SAVE_NONLOCAL:
882 if (HAVE_restore_stack_nonlocal)
883 fcn = gen_restore_stack_nonlocal;
884 break;
885#endif
886 }
887
d072107f
RK
888 if (sa != 0)
889 sa = validize_mem (sa);
890
59257ff7 891 if (after)
700f6f98
RK
892 {
893 rtx seq;
894
895 start_sequence ();
d072107f 896 emit_insn (fcn (stack_pointer_rtx, sa));
700f6f98
RK
897 seq = gen_sequence ();
898 end_sequence ();
899 emit_insn_after (seq, after);
900 }
59257ff7 901 else
d072107f 902 emit_insn (fcn (stack_pointer_rtx, sa));
59257ff7
RK
903}
904\f
18ca7dab
RK
905/* Return an rtx representing the address of an area of memory dynamically
906 pushed on the stack. This region of memory is always aligned to
907 a multiple of BIGGEST_ALIGNMENT.
908
909 Any required stack pointer alignment is preserved.
910
911 SIZE is an rtx representing the size of the area.
091ad0b9
RK
912 TARGET is a place in which the address can be placed.
913
914 KNOWN_ALIGN is the alignment (in bits) that we know SIZE has. */
18ca7dab
RK
915
916rtx
091ad0b9 917allocate_dynamic_stack_space (size, target, known_align)
18ca7dab
RK
918 rtx size;
919 rtx target;
091ad0b9 920 int known_align;
18ca7dab 921{
15fc0026
RK
922 /* If we're asking for zero bytes, it doesn't matter what we point
923 to since we can't derefference it. But return a reasonable
924 address anyway. */
925 if (size == const0_rtx)
926 return virtual_stack_dynamic_rtx;
927
928 /* Otherwise, show we're calling alloca or equivalent. */
929 current_function_calls_alloca = 1;
930
18ca7dab
RK
931 /* Ensure the size is in the proper mode. */
932 if (GET_MODE (size) != VOIDmode && GET_MODE (size) != Pmode)
933 size = convert_to_mode (Pmode, size, 1);
934
935 /* We will need to ensure that the address we return is aligned to
936 BIGGEST_ALIGNMENT. If STACK_DYNAMIC_OFFSET is defined, we don't
937 always know its final value at this point in the compilation (it
938 might depend on the size of the outgoing parameter lists, for
939 example), so we must align the value to be returned in that case.
940 (Note that STACK_DYNAMIC_OFFSET will have a default non-zero value if
941 STACK_POINTER_OFFSET or ACCUMULATE_OUTGOING_ARGS are defined).
942 We must also do an alignment operation on the returned value if
943 the stack pointer alignment is less strict that BIGGEST_ALIGNMENT.
944
945 If we have to align, we must leave space in SIZE for the hole
946 that might result from the alignment operation. */
947
948#if defined (STACK_DYNAMIC_OFFSET) || defined(STACK_POINTER_OFFSET) || defined (ALLOCATE_OUTGOING_ARGS)
949#define MUST_ALIGN
950#endif
951
952#if ! defined (MUST_ALIGN) && (!defined(STACK_BOUNDARY) || STACK_BOUNDARY < BIGGEST_ALIGNMENT)
953#define MUST_ALIGN
954#endif
955
956#ifdef MUST_ALIGN
957
86b25e81
RS
958#if 0 /* It turns out we must always make extra space, if MUST_ALIGN
959 because we must always round the address up at the end,
960 because we don't know whether the dynamic offset
961 will mess up the desired alignment. */
1d9d04f8
RS
962 /* If we have to round the address up regardless of known_align,
963 make extra space regardless, also. */
3b998c11 964 if (known_align % BIGGEST_ALIGNMENT != 0)
1d9d04f8 965#endif
3b998c11
RK
966 {
967 if (GET_CODE (size) == CONST_INT)
b1ec3c92
CH
968 size = GEN_INT (INTVAL (size)
969 + (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1));
3b998c11
RK
970 else
971 size = expand_binop (Pmode, add_optab, size,
b1ec3c92
CH
972 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
973 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3b998c11 974 }
1d9d04f8 975
18ca7dab
RK
976#endif
977
978#ifdef SETJMP_VIA_SAVE_AREA
979 /* If setjmp restores regs from a save area in the stack frame,
980 avoid clobbering the reg save area. Note that the offset of
981 virtual_incoming_args_rtx includes the preallocated stack args space.
982 It would be no problem to clobber that, but it's on the wrong side
983 of the old save area. */
984 {
985 rtx dynamic_offset
986 = expand_binop (Pmode, sub_optab, virtual_stack_dynamic_rtx,
b1ec3c92 987 stack_pointer_rtx, NULL_RTX, 1, OPTAB_LIB_WIDEN);
18ca7dab 988 size = expand_binop (Pmode, add_optab, size, dynamic_offset,
b1ec3c92 989 NULL_RTX, 1, OPTAB_LIB_WIDEN);
18ca7dab
RK
990 }
991#endif /* SETJMP_VIA_SAVE_AREA */
992
993 /* Round the size to a multiple of the required stack alignment.
994 Since the stack if presumed to be rounded before this allocation,
995 this will maintain the required alignment.
996
997 If the stack grows downward, we could save an insn by subtracting
998 SIZE from the stack pointer and then aligning the stack pointer.
999 The problem with this is that the stack pointer may be unaligned
1000 between the execution of the subtraction and alignment insns and
1001 some machines do not allow this. Even on those that do, some
1002 signal handlers malfunction if a signal should occur between those
1003 insns. Since this is an extremely rare event, we have no reliable
1004 way of knowing which systems have this problem. So we avoid even
1005 momentarily mis-aligning the stack. */
1006
89d825c9 1007#ifdef STACK_BOUNDARY
86b25e81
RS
1008 /* If we added a variable amount to SIZE,
1009 we can no longer assume it is aligned. */
1010#if !defined (SETJMP_VIA_SAVE_AREA) && !defined (MUST_ALIGN)
091ad0b9 1011 if (known_align % STACK_BOUNDARY != 0)
34c9156a 1012#endif
091ad0b9 1013 size = round_push (size);
89d825c9 1014#endif
18ca7dab
RK
1015
1016 do_pending_stack_adjust ();
1017
091ad0b9
RK
1018 /* Don't use a TARGET that isn't a pseudo. */
1019 if (target == 0 || GET_CODE (target) != REG
1020 || REGNO (target) < FIRST_PSEUDO_REGISTER)
18ca7dab
RK
1021 target = gen_reg_rtx (Pmode);
1022
3ad69266
RS
1023 mark_reg_pointer (target);
1024
18ca7dab
RK
1025#ifndef STACK_GROWS_DOWNWARD
1026 emit_move_insn (target, virtual_stack_dynamic_rtx);
1027#endif
1028
1029 /* Perform the required allocation from the stack. Some systems do
1030 this differently than simply incrementing/decrementing from the
1031 stack pointer. */
1032#ifdef HAVE_allocate_stack
1033 if (HAVE_allocate_stack)
1034 {
1035 enum machine_mode mode
1036 = insn_operand_mode[(int) CODE_FOR_allocate_stack][0];
1037
1038 if (insn_operand_predicate[(int) CODE_FOR_allocate_stack][0]
1039 && ! ((*insn_operand_predicate[(int) CODE_FOR_allocate_stack][0])
1040 (size, mode)))
1041 size = copy_to_mode_reg (mode, size);
1042
1043 emit_insn (gen_allocate_stack (size));
1044 }
1045 else
1046#endif
1047 anti_adjust_stack (size);
1048
1049#ifdef STACK_GROWS_DOWNWARD
1050 emit_move_insn (target, virtual_stack_dynamic_rtx);
1051#endif
1052
1053#ifdef MUST_ALIGN
86b25e81
RS
1054#if 0 /* Even if we know the stack pointer has enough alignment,
1055 there's no way to tell whether virtual_stack_dynamic_rtx shares that
1056 alignment, so we still need to round the address up. */
091ad0b9 1057 if (known_align % BIGGEST_ALIGNMENT != 0)
1d9d04f8 1058#endif
091ad0b9 1059 {
5244db05
RK
1060 /* CEIL_DIV_EXPR needs to worry about the addition overflowing,
1061 but we know it can't. So add ourselves and then do TRUNC_DIV_EXPR. */
0f56a403 1062 target = expand_binop (Pmode, add_optab, target,
5244db05
RK
1063 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT - 1),
1064 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1065 target = expand_divmod (0, TRUNC_DIV_EXPR, Pmode, target,
b1ec3c92
CH
1066 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1067 NULL_RTX, 1);
091ad0b9 1068 target = expand_mult (Pmode, target,
b1ec3c92
CH
1069 GEN_INT (BIGGEST_ALIGNMENT / BITS_PER_UNIT),
1070 NULL_RTX, 1);
091ad0b9 1071 }
18ca7dab
RK
1072#endif
1073
1074 /* Some systems require a particular insn to refer to the stack
1075 to make the pages exist. */
1076#ifdef HAVE_probe
1077 if (HAVE_probe)
1078 emit_insn (gen_probe ());
1079#endif
1080
15fc0026
RK
1081 /* Record the new stack level for nonlocal gotos. */
1082 if (nonlocal_goto_handler_slot != 0)
1083 emit_stack_save (SAVE_NONLOCAL, &nonlocal_goto_stack_level, NULL_RTX);
1084
18ca7dab
RK
1085 return target;
1086}
1087\f
1088/* Return an rtx representing the register or memory location
1089 in which a scalar value of data type VALTYPE
1090 was returned by a function call to function FUNC.
1091 FUNC is a FUNCTION_DECL node if the precise function is known,
1092 otherwise 0. */
1093
1094rtx
1095hard_function_value (valtype, func)
1096 tree valtype;
1097 tree func;
1098{
1099 return FUNCTION_VALUE (valtype, func);
1100}
1101
1102/* Return an rtx representing the register or memory location
1103 in which a scalar value of mode MODE was returned by a library call. */
1104
1105rtx
1106hard_libcall_value (mode)
1107 enum machine_mode mode;
1108{
1109 return LIBCALL_VALUE (mode);
1110}
0c5e217d
RS
1111
1112/* Look up the tree code for a given rtx code
1113 to provide the arithmetic operation for REAL_ARITHMETIC.
1114 The function returns an int because the caller may not know
1115 what `enum tree_code' means. */
1116
1117int
1118rtx_to_tree_code (code)
1119 enum rtx_code code;
1120{
1121 enum tree_code tcode;
1122
1123 switch (code)
1124 {
1125 case PLUS:
1126 tcode = PLUS_EXPR;
1127 break;
1128 case MINUS:
1129 tcode = MINUS_EXPR;
1130 break;
1131 case MULT:
1132 tcode = MULT_EXPR;
1133 break;
1134 case DIV:
1135 tcode = RDIV_EXPR;
1136 break;
1137 case SMIN:
1138 tcode = MIN_EXPR;
1139 break;
1140 case SMAX:
1141 tcode = MAX_EXPR;
1142 break;
1143 default:
1144 tcode = LAST_AND_UNUSED_TREE_CODE;
1145 break;
1146 }
1147 return ((int) tcode);
1148}