]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/expmed.c
x86: Remove "%!" before ret
[thirdparty/gcc.git] / gcc / expmed.c
CommitLineData
44037a66
TG
1/* Medium-level subroutines: convert bit-field store and extract
2 and shifts, multiplies and divides to rtl instructions.
99dee823 3 Copyright (C) 1987-2021 Free Software Foundation, Inc.
44037a66 4
1322177d 5This file is part of GCC.
44037a66 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9dcd6f09 9Software Foundation; either version 3, or (at your option) any later
1322177d 10version.
44037a66 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
44037a66
TG
16
17You should have received a copy of the GNU General Public License
9dcd6f09
NC
18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
44037a66 20
b63566a4
JM
21/* Work around tree-optimization/91825. */
22#pragma GCC diagnostic warning "-Wmaybe-uninitialized"
44037a66
TG
23
24#include "config.h"
670ee920 25#include "system.h"
4977bab6 26#include "coretypes.h"
c7131fb2 27#include "backend.h"
957060b5 28#include "target.h"
44037a66 29#include "rtl.h"
957060b5
AM
30#include "tree.h"
31#include "predict.h"
4d0cdd0c 32#include "memmodel.h"
957060b5 33#include "tm_p.h"
957060b5 34#include "optabs.h"
e34153b0 35#include "expmed.h"
a93072ca 36#include "regs.h"
957060b5 37#include "emit-rtl.h"
c7131fb2 38#include "diagnostic-core.h"
40e23961 39#include "fold-const.h"
d8a2d370 40#include "stor-layout.h"
36566b39
PK
41#include "dojump.h"
42#include "explow.h"
44037a66 43#include "expr.h"
b0c48229 44#include "langhooks.h"
5ebaa477 45#include "tree-vector-builder.h"
462f85ce
RS
46
47struct target_expmed default_target_expmed;
48#if SWITCHABLE_TARGET
49struct target_expmed *this_target_expmed = &default_target_expmed;
50#endif
44037a66 51
2d7b38df
RS
52static bool store_integral_bit_field (rtx, opt_scalar_int_mode,
53 unsigned HOST_WIDE_INT,
54 unsigned HOST_WIDE_INT,
8c59e5e7 55 poly_uint64, poly_uint64,
2d7b38df 56 machine_mode, rtx, bool, bool);
1a527092 57static void store_fixed_bit_field (rtx, opt_scalar_int_mode,
502b8322 58 unsigned HOST_WIDE_INT,
1169e45d 59 unsigned HOST_WIDE_INT,
8c59e5e7 60 poly_uint64, poly_uint64,
1a527092
RS
61 rtx, scalar_int_mode, bool);
62static void store_fixed_bit_field_1 (rtx, scalar_int_mode,
63 unsigned HOST_WIDE_INT,
ebb99f96 64 unsigned HOST_WIDE_INT,
1a527092
RS
65 rtx, scalar_int_mode, bool);
66static void store_split_bit_field (rtx, opt_scalar_int_mode,
1169e45d
AH
67 unsigned HOST_WIDE_INT,
68 unsigned HOST_WIDE_INT,
8c59e5e7 69 poly_uint64, poly_uint64,
1a527092 70 rtx, scalar_int_mode, bool);
fc60a416
RS
71static rtx extract_integral_bit_field (rtx, opt_scalar_int_mode,
72 unsigned HOST_WIDE_INT,
73 unsigned HOST_WIDE_INT, int, rtx,
508fa61b 74 machine_mode, machine_mode, bool, bool);
1a527092 75static rtx extract_fixed_bit_field (machine_mode, rtx, opt_scalar_int_mode,
502b8322 76 unsigned HOST_WIDE_INT,
ee45a32d 77 unsigned HOST_WIDE_INT, rtx, int, bool);
1a527092 78static rtx extract_fixed_bit_field_1 (machine_mode, rtx, scalar_int_mode,
6f4e9cf8 79 unsigned HOST_WIDE_INT,
ee45a32d 80 unsigned HOST_WIDE_INT, rtx, int, bool);
ef4bddc2 81static rtx lshift_value (machine_mode, unsigned HOST_WIDE_INT, int);
1a527092
RS
82static rtx extract_split_bit_field (rtx, opt_scalar_int_mode,
83 unsigned HOST_WIDE_INT,
ee45a32d 84 unsigned HOST_WIDE_INT, int, bool);
ef4bddc2 85static void do_cmp_and_jump (rtx, rtx, enum rtx_code, machine_mode, rtx_code_label *);
095a2d76
RS
86static rtx expand_smod_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
87static rtx expand_sdiv_pow2 (scalar_int_mode, rtx, HOST_WIDE_INT);
44037a66 88
807e902e
KZ
89/* Return a constant integer mask value of mode MODE with BITSIZE ones
90 followed by BITPOS zeros, or the complement of that if COMPLEMENT.
91 The mask is truncated if necessary to the width of mode MODE. The
92 mask is zero-extended if BITSIZE+BITPOS is too small for MODE. */
93
94static inline rtx
095a2d76 95mask_rtx (scalar_int_mode mode, int bitpos, int bitsize, bool complement)
807e902e
KZ
96{
97 return immed_wide_int_const
98 (wi::shifted_mask (bitpos, bitsize, complement,
99 GET_MODE_PRECISION (mode)), mode);
100}
101
58b42e19 102/* Test whether a value is zero of a power of two. */
be63b77d 103#define EXACT_POWER_OF_2_OR_ZERO_P(x) \
fecfbfa4 104 (((x) & ((x) - HOST_WIDE_INT_1U)) == 0)
58b42e19 105
84ddb681 106struct init_expmed_rtl
44037a66 107{
c83cf304
JJ
108 rtx reg;
109 rtx plus;
110 rtx neg;
111 rtx mult;
112 rtx sdiv;
113 rtx udiv;
114 rtx sdiv_32;
115 rtx smod_32;
116 rtx wide_mult;
117 rtx wide_lshr;
118 rtx wide_trunc;
119 rtx shift;
120 rtx shift_mult;
121 rtx shift_add;
122 rtx shift_sub0;
123 rtx shift_sub1;
124 rtx zext;
125 rtx trunc;
79b4a8dc 126
965703ed
RS
127 rtx pow2[MAX_BITS_PER_WORD];
128 rtx cint[MAX_BITS_PER_WORD];
84ddb681
RH
129};
130
91f8035e 131static void
095a2d76
RS
132init_expmed_one_conv (struct init_expmed_rtl *all, scalar_int_mode to_mode,
133 scalar_int_mode from_mode, bool speed)
91f8035e
RH
134{
135 int to_size, from_size;
136 rtx which;
137
50b6ee8b
DD
138 to_size = GET_MODE_PRECISION (to_mode);
139 from_size = GET_MODE_PRECISION (from_mode);
140
141 /* Most partial integers have a precision less than the "full"
142 integer it requires for storage. In case one doesn't, for
143 comparison purposes here, reduce the bit size by one in that
144 case. */
145 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT
146ec50f 146 && pow2p_hwi (to_size))
50b6ee8b
DD
147 to_size --;
148 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT
146ec50f 149 && pow2p_hwi (from_size))
50b6ee8b 150 from_size --;
91f8035e
RH
151
152 /* Assume cost of zero-extend and sign-extend is the same. */
c83cf304 153 which = (to_size < from_size ? all->trunc : all->zext);
91f8035e 154
c83cf304 155 PUT_MODE (all->reg, from_mode);
e548c9df
AM
156 set_convert_cost (to_mode, from_mode, speed,
157 set_src_cost (which, to_mode, speed));
71197a5d
RS
158 /* Restore all->reg's mode. */
159 PUT_MODE (all->reg, to_mode);
91f8035e
RH
160}
161
84ddb681
RH
162static void
163init_expmed_one_mode (struct init_expmed_rtl *all,
ef4bddc2 164 machine_mode mode, int speed)
84ddb681
RH
165{
166 int m, n, mode_bitsize;
ef4bddc2 167 machine_mode mode_from;
44037a66 168
84ddb681 169 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
38a448ca 170
c83cf304
JJ
171 PUT_MODE (all->reg, mode);
172 PUT_MODE (all->plus, mode);
173 PUT_MODE (all->neg, mode);
174 PUT_MODE (all->mult, mode);
175 PUT_MODE (all->sdiv, mode);
176 PUT_MODE (all->udiv, mode);
177 PUT_MODE (all->sdiv_32, mode);
178 PUT_MODE (all->smod_32, mode);
179 PUT_MODE (all->wide_trunc, mode);
180 PUT_MODE (all->shift, mode);
181 PUT_MODE (all->shift_mult, mode);
182 PUT_MODE (all->shift_add, mode);
183 PUT_MODE (all->shift_sub0, mode);
184 PUT_MODE (all->shift_sub1, mode);
185 PUT_MODE (all->zext, mode);
186 PUT_MODE (all->trunc, mode);
187
e548c9df
AM
188 set_add_cost (speed, mode, set_src_cost (all->plus, mode, speed));
189 set_neg_cost (speed, mode, set_src_cost (all->neg, mode, speed));
190 set_mul_cost (speed, mode, set_src_cost (all->mult, mode, speed));
191 set_sdiv_cost (speed, mode, set_src_cost (all->sdiv, mode, speed));
192 set_udiv_cost (speed, mode, set_src_cost (all->udiv, mode, speed));
c83cf304 193
e548c9df 194 set_sdiv_pow2_cheap (speed, mode, (set_src_cost (all->sdiv_32, mode, speed)
5322d07e 195 <= 2 * add_cost (speed, mode)));
e548c9df 196 set_smod_pow2_cheap (speed, mode, (set_src_cost (all->smod_32, mode, speed)
5322d07e
NF
197 <= 4 * add_cost (speed, mode)));
198
199 set_shift_cost (speed, mode, 0, 0);
200 {
201 int cost = add_cost (speed, mode);
202 set_shiftadd_cost (speed, mode, 0, cost);
203 set_shiftsub0_cost (speed, mode, 0, cost);
204 set_shiftsub1_cost (speed, mode, 0, cost);
205 }
84ddb681
RH
206
207 n = MIN (MAX_BITS_PER_WORD, mode_bitsize);
208 for (m = 1; m < n; m++)
209 {
c83cf304
JJ
210 XEXP (all->shift, 1) = all->cint[m];
211 XEXP (all->shift_mult, 1) = all->pow2[m];
84ddb681 212
e548c9df
AM
213 set_shift_cost (speed, mode, m, set_src_cost (all->shift, mode, speed));
214 set_shiftadd_cost (speed, mode, m, set_src_cost (all->shift_add, mode,
215 speed));
216 set_shiftsub0_cost (speed, mode, m, set_src_cost (all->shift_sub0, mode,
217 speed));
218 set_shiftsub1_cost (speed, mode, m, set_src_cost (all->shift_sub1, mode,
219 speed));
84ddb681
RH
220 }
221
b0567726
RS
222 scalar_int_mode int_mode_to;
223 if (is_a <scalar_int_mode> (mode, &int_mode_to))
965703ed 224 {
91f8035e 225 for (mode_from = MIN_MODE_INT; mode_from <= MAX_MODE_INT;
ef4bddc2 226 mode_from = (machine_mode)(mode_from + 1))
c7ad039d
RS
227 init_expmed_one_conv (all, int_mode_to,
228 as_a <scalar_int_mode> (mode_from), speed);
490d0f6c 229
b0567726
RS
230 scalar_int_mode wider_mode;
231 if (GET_MODE_CLASS (int_mode_to) == MODE_INT
232 && GET_MODE_WIDER_MODE (int_mode_to).exists (&wider_mode))
84ddb681 233 {
71197a5d 234 PUT_MODE (all->reg, mode);
c83cf304
JJ
235 PUT_MODE (all->zext, wider_mode);
236 PUT_MODE (all->wide_mult, wider_mode);
237 PUT_MODE (all->wide_lshr, wider_mode);
abd3c800
RS
238 XEXP (all->wide_lshr, 1)
239 = gen_int_shift_amount (wider_mode, mode_bitsize);
84ddb681 240
91f8035e 241 set_mul_widen_cost (speed, wider_mode,
e548c9df 242 set_src_cost (all->wide_mult, wider_mode, speed));
b0567726
RS
243 set_mul_highpart_cost (speed, int_mode_to,
244 set_src_cost (all->wide_trunc,
245 int_mode_to, speed));
84ddb681 246 }
965703ed 247 }
84ddb681
RH
248}
249
250void
251init_expmed (void)
252{
253 struct init_expmed_rtl all;
ef4bddc2 254 machine_mode mode = QImode;
84ddb681
RH
255 int m, speed;
256
79b4a8dc 257 memset (&all, 0, sizeof all);
84ddb681
RH
258 for (m = 1; m < MAX_BITS_PER_WORD; m++)
259 {
fecfbfa4 260 all.pow2[m] = GEN_INT (HOST_WIDE_INT_1 << m);
84ddb681
RH
261 all.cint[m] = GEN_INT (m);
262 }
79b4a8dc 263
1d27fed4 264 /* Avoid using hard regs in ways which may be unsupported. */
9fccb335 265 all.reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
c83cf304
JJ
266 all.plus = gen_rtx_PLUS (mode, all.reg, all.reg);
267 all.neg = gen_rtx_NEG (mode, all.reg);
268 all.mult = gen_rtx_MULT (mode, all.reg, all.reg);
269 all.sdiv = gen_rtx_DIV (mode, all.reg, all.reg);
270 all.udiv = gen_rtx_UDIV (mode, all.reg, all.reg);
271 all.sdiv_32 = gen_rtx_DIV (mode, all.reg, all.pow2[5]);
272 all.smod_32 = gen_rtx_MOD (mode, all.reg, all.pow2[5]);
273 all.zext = gen_rtx_ZERO_EXTEND (mode, all.reg);
274 all.wide_mult = gen_rtx_MULT (mode, all.zext, all.zext);
275 all.wide_lshr = gen_rtx_LSHIFTRT (mode, all.wide_mult, all.reg);
276 all.wide_trunc = gen_rtx_TRUNCATE (mode, all.wide_lshr);
277 all.shift = gen_rtx_ASHIFT (mode, all.reg, all.reg);
278 all.shift_mult = gen_rtx_MULT (mode, all.reg, all.reg);
279 all.shift_add = gen_rtx_PLUS (mode, all.shift_mult, all.reg);
280 all.shift_sub0 = gen_rtx_MINUS (mode, all.shift_mult, all.reg);
281 all.shift_sub1 = gen_rtx_MINUS (mode, all.reg, all.shift_mult);
282 all.trunc = gen_rtx_TRUNCATE (mode, all.reg);
6dd8f4bb 283
f40751dd 284 for (speed = 0; speed < 2; speed++)
71af73bb 285 {
f40751dd 286 crtl->maybe_hot_insn_p = speed;
e548c9df 287 set_zero_cost (speed, set_src_cost (const0_rtx, mode, speed));
79b4a8dc 288
91f8035e 289 for (mode = MIN_MODE_INT; mode <= MAX_MODE_INT;
ef4bddc2 290 mode = (machine_mode)(mode + 1))
84ddb681 291 init_expmed_one_mode (&all, mode, speed);
79b4a8dc 292
91f8035e
RH
293 if (MIN_MODE_PARTIAL_INT != VOIDmode)
294 for (mode = MIN_MODE_PARTIAL_INT; mode <= MAX_MODE_PARTIAL_INT;
ef4bddc2 295 mode = (machine_mode)(mode + 1))
91f8035e
RH
296 init_expmed_one_mode (&all, mode, speed);
297
298 if (MIN_MODE_VECTOR_INT != VOIDmode)
299 for (mode = MIN_MODE_VECTOR_INT; mode <= MAX_MODE_VECTOR_INT;
ef4bddc2 300 mode = (machine_mode)(mode + 1))
91f8035e 301 init_expmed_one_mode (&all, mode, speed);
79b4a8dc 302 }
84ddb681 303
5322d07e
NF
304 if (alg_hash_used_p ())
305 {
306 struct alg_hash_entry *p = alg_hash_entry_ptr (0);
307 memset (p, 0, sizeof (*p) * NUM_ALG_HASH_ENTRIES);
308 }
c371bb73 309 else
5322d07e 310 set_alg_hash_used_p (true);
f40751dd 311 default_rtl_profile ();
c83cf304
JJ
312
313 ggc_free (all.trunc);
314 ggc_free (all.shift_sub1);
315 ggc_free (all.shift_sub0);
316 ggc_free (all.shift_add);
317 ggc_free (all.shift_mult);
318 ggc_free (all.shift);
319 ggc_free (all.wide_trunc);
320 ggc_free (all.wide_lshr);
321 ggc_free (all.wide_mult);
322 ggc_free (all.zext);
323 ggc_free (all.smod_32);
324 ggc_free (all.sdiv_32);
325 ggc_free (all.udiv);
326 ggc_free (all.sdiv);
327 ggc_free (all.mult);
328 ggc_free (all.neg);
329 ggc_free (all.plus);
330 ggc_free (all.reg);
44037a66
TG
331}
332
333/* Return an rtx representing minus the value of X.
334 MODE is the intended mode of the result,
335 useful if X is a CONST_INT. */
336
337rtx
ef4bddc2 338negate_rtx (machine_mode mode, rtx x)
44037a66 339{
a39a7484
RK
340 rtx result = simplify_unary_operation (NEG, mode, x, mode);
341
fdb5537f 342 if (result == 0)
a39a7484
RK
343 result = expand_unop (mode, neg_optab, x, NULL_RTX, 0);
344
345 return result;
44037a66 346}
da920570 347
ee45a32d
EB
348/* Whether reverse storage order is supported on the target. */
349static int reverse_storage_order_supported = -1;
350
351/* Check whether reverse storage order is supported on the target. */
352
353static void
354check_reverse_storage_order_support (void)
355{
356 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
357 {
358 reverse_storage_order_supported = 0;
359 sorry ("reverse scalar storage order");
360 }
361 else
362 reverse_storage_order_supported = 1;
363}
364
365/* Whether reverse FP storage order is supported on the target. */
366static int reverse_float_storage_order_supported = -1;
367
368/* Check whether reverse FP storage order is supported on the target. */
369
370static void
371check_reverse_float_storage_order_support (void)
372{
373 if (FLOAT_WORDS_BIG_ENDIAN != WORDS_BIG_ENDIAN)
374 {
375 reverse_float_storage_order_supported = 0;
376 sorry ("reverse floating-point scalar storage order");
377 }
378 else
379 reverse_float_storage_order_supported = 1;
380}
381
382/* Return an rtx representing value of X with reverse storage order.
383 MODE is the intended mode of the result,
384 useful if X is a CONST_INT. */
385
386rtx
b8506a8a 387flip_storage_order (machine_mode mode, rtx x)
ee45a32d 388{
fffbab82 389 scalar_int_mode int_mode;
ee45a32d
EB
390 rtx result;
391
392 if (mode == QImode)
393 return x;
394
395 if (COMPLEX_MODE_P (mode))
396 {
397 rtx real = read_complex_part (x, false);
398 rtx imag = read_complex_part (x, true);
399
400 real = flip_storage_order (GET_MODE_INNER (mode), real);
401 imag = flip_storage_order (GET_MODE_INNER (mode), imag);
402
403 return gen_rtx_CONCAT (mode, real, imag);
404 }
405
406 if (__builtin_expect (reverse_storage_order_supported < 0, 0))
407 check_reverse_storage_order_support ();
408
fffbab82 409 if (!is_a <scalar_int_mode> (mode, &int_mode))
ee45a32d
EB
410 {
411 if (FLOAT_MODE_P (mode)
412 && __builtin_expect (reverse_float_storage_order_supported < 0, 0))
413 check_reverse_float_storage_order_support ();
414
277ff340
EB
415 if (!int_mode_for_size (GET_MODE_PRECISION (mode), 0).exists (&int_mode)
416 || !targetm.scalar_mode_supported_p (int_mode))
ee45a32d
EB
417 {
418 sorry ("reverse storage order for %smode", GET_MODE_NAME (mode));
419 return x;
420 }
421 x = gen_lowpart (int_mode, x);
422 }
423
424 result = simplify_unary_operation (BSWAP, int_mode, x, int_mode);
425 if (result == 0)
426 result = expand_unop (int_mode, bswap_optab, x, NULL_RTX, 1);
427
428 if (int_mode != mode)
429 result = gen_lowpart (mode, result);
430
431 return result;
432}
433
5602f58c
RS
434/* If MODE is set, adjust bitfield memory MEM so that it points to the
435 first unit of mode MODE that contains a bitfield of size BITSIZE at
436 bit position BITNUM. If MODE is not set, return a BLKmode reference
437 to every byte in the bitfield. Set *NEW_BITNUM to the bit position
438 of the field within the new memory. */
26f8b976
RS
439
440static rtx
5602f58c 441narrow_bit_field_mem (rtx mem, opt_scalar_int_mode mode,
26f8b976
RS
442 unsigned HOST_WIDE_INT bitsize,
443 unsigned HOST_WIDE_INT bitnum,
444 unsigned HOST_WIDE_INT *new_bitnum)
445{
5602f58c
RS
446 scalar_int_mode imode;
447 if (mode.exists (&imode))
448 {
449 unsigned int unit = GET_MODE_BITSIZE (imode);
450 *new_bitnum = bitnum % unit;
451 HOST_WIDE_INT offset = (bitnum - *new_bitnum) / BITS_PER_UNIT;
452 return adjust_bitfield_address (mem, imode, offset);
453 }
454 else
26f8b976
RS
455 {
456 *new_bitnum = bitnum % BITS_PER_UNIT;
457 HOST_WIDE_INT offset = bitnum / BITS_PER_UNIT;
458 HOST_WIDE_INT size = ((*new_bitnum + bitsize + BITS_PER_UNIT - 1)
459 / BITS_PER_UNIT);
5602f58c 460 return adjust_bitfield_address_size (mem, BLKmode, offset, size);
26f8b976
RS
461 }
462}
463
fcdd52b7
RS
464/* The caller wants to perform insertion or extraction PATTERN on a
465 bitfield of size BITSIZE at BITNUM bits into memory operand OP0.
466 BITREGION_START and BITREGION_END are as for store_bit_field
467 and FIELDMODE is the natural mode of the field.
468
469 Search for a mode that is compatible with the memory access
470 restrictions and (where applicable) with a register insertion or
471 extraction. Return the new memory on success, storing the adjusted
472 bit position in *NEW_BITNUM. Return null otherwise. */
473
474static rtx
475adjust_bit_field_mem_for_reg (enum extraction_pattern pattern,
476 rtx op0, HOST_WIDE_INT bitsize,
477 HOST_WIDE_INT bitnum,
8c59e5e7
RS
478 poly_uint64 bitregion_start,
479 poly_uint64 bitregion_end,
ef4bddc2 480 machine_mode fieldmode,
fcdd52b7
RS
481 unsigned HOST_WIDE_INT *new_bitnum)
482{
483 bit_field_mode_iterator iter (bitsize, bitnum, bitregion_start,
484 bitregion_end, MEM_ALIGN (op0),
485 MEM_VOLATILE_P (op0));
ae927046 486 scalar_int_mode best_mode;
fcdd52b7
RS
487 if (iter.next_mode (&best_mode))
488 {
489 /* We can use a memory in BEST_MODE. See whether this is true for
490 any wider modes. All other things being equal, we prefer to
491 use the widest mode possible because it tends to expose more
492 CSE opportunities. */
493 if (!iter.prefer_smaller_modes ())
494 {
495 /* Limit the search to the mode required by the corresponding
496 register insertion or extraction instruction, if any. */
095a2d76 497 scalar_int_mode limit_mode = word_mode;
fcdd52b7
RS
498 extraction_insn insn;
499 if (get_best_reg_extraction_insn (&insn, pattern,
500 GET_MODE_BITSIZE (best_mode),
501 fieldmode))
502 limit_mode = insn.field_mode;
503
ae927046 504 scalar_int_mode wider_mode;
fcdd52b7
RS
505 while (iter.next_mode (&wider_mode)
506 && GET_MODE_SIZE (wider_mode) <= GET_MODE_SIZE (limit_mode))
507 best_mode = wider_mode;
508 }
509 return narrow_bit_field_mem (op0, best_mode, bitsize, bitnum,
510 new_bitnum);
511 }
512 return NULL_RTX;
513}
514
bebf0797
RS
515/* Return true if a bitfield of size BITSIZE at bit number BITNUM within
516 a structure of mode STRUCT_MODE represents a lowpart subreg. The subreg
517 offset is then BITNUM / BITS_PER_UNIT. */
518
519static bool
fc60a416 520lowpart_bit_field_p (poly_uint64 bitnum, poly_uint64 bitsize,
ef4bddc2 521 machine_mode struct_mode)
bebf0797 522{
fc60a416 523 poly_uint64 regsize = REGMODE_NATURAL_SIZE (struct_mode);
bebf0797 524 if (BYTES_BIG_ENDIAN)
fc60a416
RS
525 return (multiple_p (bitnum, BITS_PER_UNIT)
526 && (known_eq (bitnum + bitsize, GET_MODE_BITSIZE (struct_mode))
527 || multiple_p (bitnum + bitsize,
528 regsize * BITS_PER_UNIT)));
bebf0797 529 else
fc60a416 530 return multiple_p (bitnum, regsize * BITS_PER_UNIT);
bebf0797 531}
00efe3ea 532
548cfdc2 533/* Return true if -fstrict-volatile-bitfields applies to an access of OP0
6f4e9cf8
BE
534 containing BITSIZE bits starting at BITNUM, with field mode FIELDMODE.
535 Return false if the access would touch memory outside the range
536 BITREGION_START to BITREGION_END for conformance to the C++ memory
537 model. */
f5d4f18c
SL
538
539static bool
540strict_volatile_bitfield_p (rtx op0, unsigned HOST_WIDE_INT bitsize,
541 unsigned HOST_WIDE_INT bitnum,
0ef40942 542 scalar_int_mode fieldmode,
8c59e5e7
RS
543 poly_uint64 bitregion_start,
544 poly_uint64 bitregion_end)
f5d4f18c
SL
545{
546 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (fieldmode);
547
548 /* -fstrict-volatile-bitfields must be enabled and we must have a
549 volatile MEM. */
550 if (!MEM_P (op0)
551 || !MEM_VOLATILE_P (op0)
552 || flag_strict_volatile_bitfields <= 0)
553 return false;
554
f5d4f18c
SL
555 /* The bit size must not be larger than the field mode, and
556 the field mode must not be larger than a word. */
557 if (bitsize > modesize || modesize > BITS_PER_WORD)
558 return false;
559
560 /* Check for cases of unaligned fields that must be split. */
b6dd42a9
BE
561 if (bitnum % modesize + bitsize > modesize)
562 return false;
563
564 /* The memory must be sufficiently aligned for a MODESIZE access.
565 This condition guarantees, that the memory access will not
566 touch anything after the end of the structure. */
567 if (MEM_ALIGN (op0) < modesize)
f5d4f18c
SL
568 return false;
569
6f4e9cf8 570 /* Check for cases where the C++ memory model applies. */
8c59e5e7
RS
571 if (maybe_ne (bitregion_end, 0U)
572 && (maybe_lt (bitnum - bitnum % modesize, bitregion_start)
573 || maybe_gt (bitnum - bitnum % modesize + modesize - 1,
574 bitregion_end)))
6f4e9cf8
BE
575 return false;
576
f5d4f18c
SL
577 return true;
578}
579
00efe3ea 580/* Return true if OP is a memory and if a bitfield of size BITSIZE at
2d7b38df
RS
581 bit number BITNUM can be treated as a simple value of mode MODE.
582 Store the byte offset in *BYTENUM if so. */
00efe3ea
RS
583
584static bool
2d7b38df
RS
585simple_mem_bitfield_p (rtx op0, poly_uint64 bitsize, poly_uint64 bitnum,
586 machine_mode mode, poly_uint64 *bytenum)
00efe3ea
RS
587{
588 return (MEM_P (op0)
2d7b38df
RS
589 && multiple_p (bitnum, BITS_PER_UNIT, bytenum)
590 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
e0bd6c9f 591 && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (op0))
2d7b38df 592 || (multiple_p (bitnum, GET_MODE_ALIGNMENT (mode))
00efe3ea
RS
593 && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode))));
594}
6d7db3c5 595\f
fcdd52b7 596/* Try to use instruction INSV to store VALUE into a field of OP0.
1a527092
RS
597 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is a
598 BLKmode MEM. VALUE_MODE is the mode of VALUE. BITSIZE and BITNUM
599 are as for store_bit_field. */
a20556e4
RS
600
601static bool
fcdd52b7 602store_bit_field_using_insv (const extraction_insn *insv, rtx op0,
1a527092 603 opt_scalar_int_mode op0_mode,
fcdd52b7 604 unsigned HOST_WIDE_INT bitsize,
548cfdc2 605 unsigned HOST_WIDE_INT bitnum,
1a527092 606 rtx value, scalar_int_mode value_mode)
a20556e4 607{
99b1c316 608 class expand_operand ops[4];
a20556e4
RS
609 rtx value1;
610 rtx xop0 = op0;
f3f6fb16 611 rtx_insn *last = get_last_insn ();
a20556e4
RS
612 bool copy_back = false;
613
1a527092 614 scalar_int_mode op_mode = insv->field_mode;
a20556e4
RS
615 unsigned int unit = GET_MODE_BITSIZE (op_mode);
616 if (bitsize == 0 || bitsize > unit)
617 return false;
618
619 if (MEM_P (xop0))
26f8b976 620 /* Get a reference to the first byte of the field. */
fcdd52b7
RS
621 xop0 = narrow_bit_field_mem (xop0, insv->struct_mode, bitsize, bitnum,
622 &bitnum);
a20556e4
RS
623 else
624 {
625 /* Convert from counting within OP0 to counting in OP_MODE. */
626 if (BYTES_BIG_ENDIAN)
1a527092 627 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
a20556e4
RS
628
629 /* If xop0 is a register, we need it in OP_MODE
630 to make it acceptable to the format of insv. */
631 if (GET_CODE (xop0) == SUBREG)
0ad6de38
JJ
632 {
633 /* If such a SUBREG can't be created, give up. */
634 if (!validate_subreg (op_mode, GET_MODE (SUBREG_REG (xop0)),
635 SUBREG_REG (xop0), SUBREG_BYTE (xop0)))
636 return false;
637 /* We can't just change the mode, because this might clobber op0,
638 and we will need the original value of op0 if insv fails. */
639 xop0 = gen_rtx_SUBREG (op_mode, SUBREG_REG (xop0),
640 SUBREG_BYTE (xop0));
641 }
a20556e4
RS
642 if (REG_P (xop0) && GET_MODE (xop0) != op_mode)
643 xop0 = gen_lowpart_SUBREG (op_mode, xop0);
644 }
645
646 /* If the destination is a paradoxical subreg such that we need a
647 truncate to the inner mode, perform the insertion on a temporary and
648 truncate the result to the original destination. Note that we can't
649 just truncate the paradoxical subreg as (truncate:N (subreg:W (reg:N
650 X) 0)) is (reg:N X). */
651 if (GET_CODE (xop0) == SUBREG
652 && REG_P (SUBREG_REG (xop0))
653 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (SUBREG_REG (xop0)),
654 op_mode))
655 {
656 rtx tem = gen_reg_rtx (op_mode);
657 emit_move_insn (tem, xop0);
658 xop0 = tem;
659 copy_back = true;
660 }
661
4ae9783e
JW
662 /* There are similar overflow check at the start of store_bit_field_1,
663 but that only check the situation where the field lies completely
664 outside the register, while there do have situation where the field
665 lies partialy in the register, we need to adjust bitsize for this
666 partial overflow situation. Without this fix, pr48335-2.c on big-endian
667 will broken on those arch support bit insert instruction, like arm, aarch64
668 etc. */
669 if (bitsize + bitnum > unit && bitnum < unit)
670 {
e623cedf
JW
671 warning (OPT_Wextra, "write of %wu-bit data outside the bound of "
672 "destination object, data truncated into %wu-bit",
673 bitsize, unit - bitnum);
4ae9783e
JW
674 bitsize = unit - bitnum;
675 }
676
a20556e4
RS
677 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
678 "backwards" from the size of the unit we are inserting into.
679 Otherwise, we count bits from the most significant on a
680 BYTES/BITS_BIG_ENDIAN machine. */
681
682 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
683 bitnum = unit - bitsize - bitnum;
684
685 /* Convert VALUE to op_mode (which insv insn wants) in VALUE1. */
686 value1 = value;
1a527092 687 if (value_mode != op_mode)
a20556e4 688 {
1a527092 689 if (GET_MODE_BITSIZE (value_mode) >= bitsize)
a20556e4 690 {
686d390a 691 rtx tmp;
a20556e4
RS
692 /* Optimization: Don't bother really extending VALUE
693 if it has all the bits we will actually use. However,
694 if we must narrow it, be sure we do it correctly. */
695
1a527092 696 if (GET_MODE_SIZE (value_mode) < GET_MODE_SIZE (op_mode))
a20556e4 697 {
1a527092 698 tmp = simplify_subreg (op_mode, value1, value_mode, 0);
a20556e4
RS
699 if (! tmp)
700 tmp = simplify_gen_subreg (op_mode,
1a527092
RS
701 force_reg (value_mode, value1),
702 value_mode, 0);
a20556e4
RS
703 }
704 else
686d390a
JJ
705 {
706 tmp = gen_lowpart_if_possible (op_mode, value1);
707 if (! tmp)
1a527092 708 tmp = gen_lowpart (op_mode, force_reg (value_mode, value1));
686d390a
JJ
709 }
710 value1 = tmp;
a20556e4
RS
711 }
712 else if (CONST_INT_P (value))
713 value1 = gen_int_mode (INTVAL (value), op_mode);
714 else
715 /* Parse phase is supposed to make VALUE's data type
716 match that of the component reference, which is a type
717 at least as wide as the field; so VALUE should have
718 a mode that corresponds to that type. */
719 gcc_assert (CONSTANT_P (value));
720 }
721
722 create_fixed_operand (&ops[0], xop0);
723 create_integer_operand (&ops[1], bitsize);
724 create_integer_operand (&ops[2], bitnum);
725 create_input_operand (&ops[3], value1, op_mode);
fcdd52b7 726 if (maybe_expand_insn (insv->icode, 4, ops))
a20556e4
RS
727 {
728 if (copy_back)
729 convert_move (op0, xop0, true);
730 return true;
731 }
732 delete_insns_since (last);
733 return false;
734}
735
6d7db3c5
RS
736/* A subroutine of store_bit_field, with the same arguments. Return true
737 if the operation could be implemented.
44037a66 738
6d7db3c5
RS
739 If FALLBACK_P is true, fall back to store_fixed_bit_field if we have
740 no other way of implementing the operation. If FALLBACK_P is false,
741 return false instead. */
742
743static bool
2d7b38df 744store_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
8c59e5e7 745 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
ef4bddc2 746 machine_mode fieldmode,
ee45a32d 747 rtx value, bool reverse, bool fallback_p)
44037a66 748{
b3694847 749 rtx op0 = str_rtx;
da920570 750
44037a66
TG
751 while (GET_CODE (op0) == SUBREG)
752 {
3d09ba95 753 bitnum += subreg_memory_offset (op0) * BITS_PER_UNIT;
44037a66
TG
754 op0 = SUBREG_REG (op0);
755 }
756
2c58f7dd
RS
757 /* No action is needed if the target is a register and if the field
758 lies completely outside that register. This can occur if the source
759 code contains an out-of-bounds access to a small array. */
2d7b38df 760 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
6d7db3c5 761 return true;
2c58f7dd 762
b42271d6 763 /* Use vec_set patterns for inserting parts of vectors whenever
997404de 764 available. */
d21cefc2
RS
765 machine_mode outermode = GET_MODE (op0);
766 scalar_mode innermode = GET_MODE_INNER (outermode);
2d7b38df 767 poly_uint64 pos;
d21cefc2 768 if (VECTOR_MODE_P (outermode)
3c0cb5de 769 && !MEM_P (op0)
d21cefc2
RS
770 && optab_handler (vec_set_optab, outermode) != CODE_FOR_nothing
771 && fieldmode == innermode
2d7b38df
RS
772 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
773 && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
997404de 774 {
99b1c316 775 class expand_operand ops[3];
a5c7d693 776 enum insn_code icode = optab_handler (vec_set_optab, outermode);
997404de 777
a5c7d693
RS
778 create_fixed_operand (&ops[0], op0);
779 create_input_operand (&ops[1], value, innermode);
780 create_integer_operand (&ops[2], pos);
781 if (maybe_expand_insn (icode, 3, ops))
782 return true;
997404de
JH
783 }
784
308ecea0 785 /* If the target is a register, overwriting the entire object, or storing
bebf0797
RS
786 a full-word or multi-word field can be done with just a SUBREG. */
787 if (!MEM_P (op0)
2d7b38df 788 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode)))
bebf0797
RS
789 {
790 /* Use the subreg machinery either to narrow OP0 to the required
d8c84975
JJ
791 words or to cope with mode punning between equal-sized modes.
792 In the latter case, use subreg on the rhs side, not lhs. */
793 rtx sub;
2d7b38df 794 HOST_WIDE_INT regnum;
fad2288b 795 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (op0));
2d7b38df
RS
796 if (known_eq (bitnum, 0U)
797 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
d8c84975
JJ
798 {
799 sub = simplify_gen_subreg (GET_MODE (op0), value, fieldmode, 0);
800 if (sub)
801 {
ee45a32d
EB
802 if (reverse)
803 sub = flip_storage_order (GET_MODE (op0), sub);
d8c84975
JJ
804 emit_move_insn (op0, sub);
805 return true;
806 }
807 }
2d7b38df 808 else if (constant_multiple_p (bitnum, regsize * BITS_PER_UNIT, &regnum)
147ed018
RB
809 && multiple_p (bitsize, regsize * BITS_PER_UNIT)
810 && known_ge (GET_MODE_BITSIZE (GET_MODE (op0)), bitsize))
bebf0797 811 {
d8c84975 812 sub = simplify_gen_subreg (fieldmode, op0, GET_MODE (op0),
2d7b38df 813 regnum * regsize);
d8c84975
JJ
814 if (sub)
815 {
ee45a32d
EB
816 if (reverse)
817 value = flip_storage_order (fieldmode, value);
d8c84975
JJ
818 emit_move_insn (sub, value);
819 return true;
820 }
bebf0797
RS
821 }
822 }
308ecea0 823
bebf0797 824 /* If the target is memory, storing any naturally aligned field can be
308ecea0 825 done with a simple store. For targets that support fast unaligned
0b69c29f 826 memory, any naturally sized, unit aligned field can be done directly. */
2d7b38df
RS
827 poly_uint64 bytenum;
828 if (simple_mem_bitfield_p (op0, bitsize, bitnum, fieldmode, &bytenum))
44037a66 829 {
2d7b38df 830 op0 = adjust_bitfield_address (op0, fieldmode, bytenum);
ee45a32d
EB
831 if (reverse)
832 value = flip_storage_order (fieldmode, value);
44037a66 833 emit_move_insn (op0, value);
6d7db3c5 834 return true;
44037a66
TG
835 }
836
2d7b38df
RS
837 /* It's possible we'll need to handle other cases here for
838 polynomial bitnum and bitsize. */
839
840 /* From here on we need to be looking at a fixed-size insertion. */
841 unsigned HOST_WIDE_INT ibitsize = bitsize.to_constant ();
842 unsigned HOST_WIDE_INT ibitnum = bitnum.to_constant ();
843
a8ca7756
JW
844 /* Make sure we are playing with integral modes. Pun with subregs
845 if we aren't. This must come after the entire register case above,
846 since that case is valid for any mode. The following cases are only
847 valid for integral modes. */
1a527092 848 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
304b9962 849 scalar_int_mode imode;
1a527092 850 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
304b9962
RS
851 {
852 if (MEM_P (op0))
1a527092 853 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
304b9962 854 0, MEM_SIZE (op0));
d742b0c1
JJ
855 else if (!op0_mode.exists ())
856 {
857 if (ibitnum == 0
858 && known_eq (ibitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
859 && MEM_P (value)
860 && !reverse)
861 {
862 value = adjust_address (value, GET_MODE (op0), 0);
863 emit_move_insn (op0, value);
864 return true;
865 }
866 if (!fallback_p)
867 return false;
868 rtx temp = assign_stack_temp (GET_MODE (op0),
869 GET_MODE_SIZE (GET_MODE (op0)));
870 emit_move_insn (temp, op0);
871 store_bit_field_1 (temp, bitsize, bitnum, 0, 0, fieldmode, value,
872 reverse, fallback_p);
873 emit_move_insn (op0, temp);
874 return true;
875 }
304b9962
RS
876 else
877 op0 = gen_lowpart (op0_mode.require (), op0);
878 }
a8ca7756 879
2d7b38df
RS
880 return store_integral_bit_field (op0, op0_mode, ibitsize, ibitnum,
881 bitregion_start, bitregion_end,
882 fieldmode, value, reverse, fallback_p);
883}
884
885/* Subroutine of store_bit_field_1, with the same arguments, except
886 that BITSIZE and BITNUM are constant. Handle cases specific to
887 integral modes. If OP0_MODE is defined, it is the mode of OP0,
888 otherwise OP0 is a BLKmode MEM. */
889
890static bool
891store_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
892 unsigned HOST_WIDE_INT bitsize,
893 unsigned HOST_WIDE_INT bitnum,
8c59e5e7
RS
894 poly_uint64 bitregion_start,
895 poly_uint64 bitregion_end,
2d7b38df
RS
896 machine_mode fieldmode,
897 rtx value, bool reverse, bool fallback_p)
898{
44037a66 899 /* Storing an lsb-aligned field in a register
bebf0797 900 can be done with a movstrict instruction. */
44037a66 901
3c0cb5de 902 if (!MEM_P (op0)
ee45a32d 903 && !reverse
2d7b38df 904 && lowpart_bit_field_p (bitnum, bitsize, op0_mode.require ())
73a699ae 905 && known_eq (bitsize, GET_MODE_BITSIZE (fieldmode))
947131ba 906 && optab_handler (movstrict_optab, fieldmode) != CODE_FOR_nothing)
44037a66 907 {
99b1c316 908 class expand_operand ops[2];
a5c7d693 909 enum insn_code icode = optab_handler (movstrict_optab, fieldmode);
5d560619 910 rtx arg0 = op0;
19228b93 911 unsigned HOST_WIDE_INT subreg_off;
5e4900c7 912
a5c7d693 913 if (GET_CODE (arg0) == SUBREG)
44037a66 914 {
5b0264cb
NS
915 /* Else we've got some float mode source being extracted into
916 a different float mode destination -- this combination of
917 subregs results in Severe Tire Damage. */
a5c7d693 918 gcc_assert (GET_MODE (SUBREG_REG (arg0)) == fieldmode
5b0264cb
NS
919 || GET_MODE_CLASS (fieldmode) == MODE_INT
920 || GET_MODE_CLASS (fieldmode) == MODE_PARTIAL_INT);
a5c7d693 921 arg0 = SUBREG_REG (arg0);
5e4900c7 922 }
470032d7 923
bebf0797 924 subreg_off = bitnum / BITS_PER_UNIT;
8408d345
JJ
925 if (validate_subreg (fieldmode, GET_MODE (arg0), arg0, subreg_off)
926 /* STRICT_LOW_PART must have a non-paradoxical subreg as
927 operand. */
928 && !paradoxical_subreg_p (fieldmode, GET_MODE (arg0)))
19228b93
JJ
929 {
930 arg0 = gen_rtx_SUBREG (fieldmode, arg0, subreg_off);
a5c7d693 931
19228b93
JJ
932 create_fixed_operand (&ops[0], arg0);
933 /* Shrink the source operand to FIELDMODE. */
934 create_convert_operand_to (&ops[1], value, fieldmode, false);
935 if (maybe_expand_insn (icode, 2, ops))
936 return true;
937 }
44037a66
TG
938 }
939
940 /* Handle fields bigger than a word. */
941
942 if (bitsize > BITS_PER_WORD)
943 {
944 /* Here we transfer the words of the field
945 in the order least significant first.
946 This is because the most significant word is the one which may
ad83e87b
PB
947 be less than full.
948 However, only do that if the value is not BLKmode. */
949
ee45a32d 950 const bool backwards = WORDS_BIG_ENDIAN && fieldmode != BLKmode;
82f620e2 951 const int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
f3f6fb16 952 rtx_insn *last;
44037a66
TG
953
954 /* This is the mode we must force value to, so that there will be enough
955 subwords to extract. Note that fieldmode will often (always?) be
956 VOIDmode, because that is what store_field uses to indicate that this
535a42b1 957 is a bit field, but passing VOIDmode to operand_subword_force
2d7b38df
RS
958 is not allowed.
959
960 The mode must be fixed-size, since insertions into variable-sized
961 objects are meant to be handled before calling this function. */
962 fixed_size_mode value_mode = as_a <fixed_size_mode> (GET_MODE (value));
963 if (value_mode == VOIDmode)
964 value_mode = smallest_int_mode_for_size (nwords * BITS_PER_WORD);
44037a66 965
6d7db3c5 966 last = get_last_insn ();
82f620e2 967 for (int i = 0; i < nwords; i++)
44037a66 968 {
82f620e2
EB
969 /* Number of bits to be stored in this iteration, i.e. BITS_PER_WORD
970 except maybe for the last iteration. */
971 const unsigned HOST_WIDE_INT new_bitsize
972 = MIN (BITS_PER_WORD, bitsize - i * BITS_PER_WORD);
973 /* Bit offset from the starting bit number in the target. */
974 const unsigned int bit_offset
975 = backwards ^ reverse
976 ? MAX ((int) bitsize - (i + 1) * BITS_PER_WORD, 0)
977 : i * BITS_PER_WORD;
978 /* Starting word number in the value. */
979 const unsigned int wordnum
980 = backwards
981 ? GET_MODE_SIZE (value_mode) / UNITS_PER_WORD - (i + 1)
982 : i;
983 /* The chunk of the value in word_mode. We use bit-field extraction
984 in BLKmode to handle unaligned memory references and to shift the
985 last chunk right on big-endian machines if need be. */
986 rtx value_word
987 = fieldmode == BLKmode
988 ? extract_bit_field (value, new_bitsize, wordnum * BITS_PER_WORD,
989 1, NULL_RTX, word_mode, word_mode, false,
990 NULL)
991 : operand_subword_force (value, wordnum, value_mode);
3bdb97b8
AK
992
993 if (!store_bit_field_1 (op0, new_bitsize,
1169e45d
AH
994 bitnum + bit_offset,
995 bitregion_start, bitregion_end,
996 word_mode,
ee45a32d 997 value_word, reverse, fallback_p))
6d7db3c5
RS
998 {
999 delete_insns_since (last);
1000 return false;
1001 }
44037a66 1002 }
6d7db3c5 1003 return true;
44037a66
TG
1004 }
1005
4f1da2e9
RS
1006 /* If VALUE has a floating-point or complex mode, access it as an
1007 integer of the corresponding size. This can occur on a machine
1008 with 64 bit registers that uses SFmode for float. It can also
1009 occur for unaligned float or complex fields. */
2d7b38df 1010 rtx orig_value = value;
1a527092
RS
1011 scalar_int_mode value_mode;
1012 if (GET_MODE (value) == VOIDmode)
1013 /* By this point we've dealt with values that are bigger than a word,
1014 so word_mode is a conservatively correct choice. */
1015 value_mode = word_mode;
1016 else if (!is_a <scalar_int_mode> (GET_MODE (value), &value_mode))
4f1da2e9 1017 {
1a527092
RS
1018 value_mode = int_mode_for_mode (GET_MODE (value)).require ();
1019 value = gen_reg_rtx (value_mode);
4f1da2e9
RS
1020 emit_move_insn (gen_lowpart (GET_MODE (orig_value), value), orig_value);
1021 }
2305bcad 1022
bebf0797 1023 /* If OP0 is a multi-word register, narrow it to the affected word.
7d790165
JJ
1024 If the region spans two words, defer to store_split_bit_field.
1025 Don't do this if op0 is a single hard register wider than word
1026 such as a float or vector register. */
1027 if (!MEM_P (op0)
1a527092 1028 && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD
7d790165
JJ
1029 && (!REG_P (op0)
1030 || !HARD_REGISTER_P (op0)
a93072ca 1031 || hard_regno_nregs (REGNO (op0), op0_mode.require ()) != 1))
bebf0797 1032 {
867a0126 1033 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
bebf0797
RS
1034 {
1035 if (!fallback_p)
1036 return false;
1037
1a527092
RS
1038 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1039 bitregion_start, bitregion_end,
1040 value, value_mode, reverse);
bebf0797
RS
1041 return true;
1042 }
1a527092 1043 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
867a0126
RS
1044 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1045 gcc_assert (op0);
1a527092 1046 op0_mode = word_mode;
867a0126 1047 bitnum %= BITS_PER_WORD;
bebf0797
RS
1048 }
1049
1050 /* From here on we can assume that the field to be stored in fits
1051 within a word. If the destination is a register, it too fits
1052 in a word. */
44037a66 1053
fcdd52b7
RS
1054 extraction_insn insv;
1055 if (!MEM_P (op0)
ee45a32d 1056 && !reverse
fcdd52b7 1057 && get_best_reg_extraction_insn (&insv, EP_insv,
1a527092 1058 GET_MODE_BITSIZE (op0_mode.require ()),
fcdd52b7 1059 fieldmode)
1a527092
RS
1060 && store_bit_field_using_insv (&insv, op0, op0_mode,
1061 bitsize, bitnum, value, value_mode))
a20556e4 1062 return true;
6d7db3c5
RS
1063
1064 /* If OP0 is a memory, try copying it to a register and seeing if a
1065 cheap register alternative is available. */
ee45a32d 1066 if (MEM_P (op0) && !reverse)
6d7db3c5 1067 {
f5d4f18c
SL
1068 if (get_best_mem_extraction_insn (&insv, EP_insv, bitsize, bitnum,
1069 fieldmode)
1a527092
RS
1070 && store_bit_field_using_insv (&insv, op0, op0_mode,
1071 bitsize, bitnum, value, value_mode))
17a73ba0
RS
1072 return true;
1073
f3f6fb16 1074 rtx_insn *last = get_last_insn ();
6d7db3c5 1075
fcdd52b7
RS
1076 /* Try loading part of OP0 into a register, inserting the bitfield
1077 into that, and then copying the result back to OP0. */
1078 unsigned HOST_WIDE_INT bitpos;
1079 rtx xop0 = adjust_bit_field_mem_for_reg (EP_insv, op0, bitsize, bitnum,
1080 bitregion_start, bitregion_end,
1081 fieldmode, &bitpos);
1082 if (xop0)
0fb7aeda 1083 {
fcdd52b7 1084 rtx tempreg = copy_to_reg (xop0);
bebf0797 1085 if (store_bit_field_1 (tempreg, bitsize, bitpos,
1169e45d 1086 bitregion_start, bitregion_end,
ee45a32d 1087 fieldmode, orig_value, reverse, false))
6d7db3c5
RS
1088 {
1089 emit_move_insn (xop0, tempreg);
1090 return true;
1091 }
44037a66 1092 delete_insns_since (last);
44037a66
TG
1093 }
1094 }
6d7db3c5
RS
1095
1096 if (!fallback_p)
1097 return false;
1098
1a527092
RS
1099 store_fixed_bit_field (op0, op0_mode, bitsize, bitnum, bitregion_start,
1100 bitregion_end, value, value_mode, reverse);
6d7db3c5
RS
1101 return true;
1102}
1103
1104/* Generate code to store value from rtx VALUE
1105 into a bit-field within structure STR_RTX
1106 containing BITSIZE bits starting at bit BITNUM.
1169e45d
AH
1107
1108 BITREGION_START is bitpos of the first bitfield in this region.
1109 BITREGION_END is the bitpos of the ending bitfield in this region.
1110 These two fields are 0, if the C++ memory model does not apply,
1111 or we are not interested in keeping track of bitfield regions.
1112
ee45a32d
EB
1113 FIELDMODE is the machine-mode of the FIELD_DECL node for this field.
1114
1115 If REVERSE is true, the store is to be done in reverse order. */
6d7db3c5
RS
1116
1117void
2d7b38df 1118store_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
8c59e5e7 1119 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
ef4bddc2 1120 machine_mode fieldmode,
ee45a32d 1121 rtx value, bool reverse)
6d7db3c5 1122{
f5d4f18c 1123 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
2d7b38df 1124 unsigned HOST_WIDE_INT ibitsize = 0, ibitnum = 0;
0ef40942 1125 scalar_int_mode int_mode;
2d7b38df
RS
1126 if (bitsize.is_constant (&ibitsize)
1127 && bitnum.is_constant (&ibitnum)
1128 && is_a <scalar_int_mode> (fieldmode, &int_mode)
1129 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum, int_mode,
0ef40942 1130 bitregion_start, bitregion_end))
f5d4f18c 1131 {
b6dd42a9
BE
1132 /* Storing of a full word can be done with a simple store.
1133 We know here that the field can be accessed with one single
1134 instruction. For targets that support unaligned memory,
1135 an unaligned access may be necessary. */
2d7b38df 1136 if (ibitsize == GET_MODE_BITSIZE (int_mode))
f5d4f18c 1137 {
0ef40942 1138 str_rtx = adjust_bitfield_address (str_rtx, int_mode,
2d7b38df 1139 ibitnum / BITS_PER_UNIT);
ee45a32d 1140 if (reverse)
0ef40942 1141 value = flip_storage_order (int_mode, value);
2d7b38df 1142 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
f5d4f18c
SL
1143 emit_move_insn (str_rtx, value);
1144 }
1145 else
ebb99f96 1146 {
53c615a2
BE
1147 rtx temp;
1148
2d7b38df
RS
1149 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize,
1150 ibitnum, &ibitnum);
1151 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
53c615a2 1152 temp = copy_to_reg (str_rtx);
2d7b38df 1153 if (!store_bit_field_1 (temp, ibitsize, ibitnum, 0, 0,
0ef40942 1154 int_mode, value, reverse, true))
53c615a2
BE
1155 gcc_unreachable ();
1156
1157 emit_move_insn (str_rtx, temp);
ebb99f96
BE
1158 }
1159
f5d4f18c
SL
1160 return;
1161 }
1162
1169e45d
AH
1163 /* Under the C++0x memory model, we must not touch bits outside the
1164 bit region. Adjust the address to start at the beginning of the
1165 bit region. */
8c59e5e7 1166 if (MEM_P (str_rtx) && maybe_ne (bitregion_start, 0U))
1169e45d 1167 {
ae927046
RS
1168 scalar_int_mode best_mode;
1169 machine_mode addr_mode = VOIDmode;
a59b038c 1170
8c59e5e7 1171 poly_uint64 offset = exact_div (bitregion_start, BITS_PER_UNIT);
1169e45d 1172 bitnum -= bitregion_start;
2d7b38df 1173 poly_int64 size = bits_to_bytes_round_up (bitnum + bitsize);
1169e45d
AH
1174 bitregion_end -= bitregion_start;
1175 bitregion_start = 0;
2d7b38df
RS
1176 if (bitsize.is_constant (&ibitsize)
1177 && bitnum.is_constant (&ibitnum)
1178 && get_best_mode (ibitsize, ibitnum,
1179 bitregion_start, bitregion_end,
1180 MEM_ALIGN (str_rtx), INT_MAX,
1181 MEM_VOLATILE_P (str_rtx), &best_mode))
ae927046
RS
1182 addr_mode = best_mode;
1183 str_rtx = adjust_bitfield_address_size (str_rtx, addr_mode,
1184 offset, size);
1169e45d
AH
1185 }
1186
1187 if (!store_bit_field_1 (str_rtx, bitsize, bitnum,
1188 bitregion_start, bitregion_end,
ee45a32d 1189 fieldmode, value, reverse, true))
6d7db3c5 1190 gcc_unreachable ();
44037a66
TG
1191}
1192\f
bebf0797 1193/* Use shifts and boolean operations to store VALUE into a bit field of
1a527092
RS
1194 width BITSIZE in OP0, starting at bit BITNUM. If OP0_MODE is defined,
1195 it is the mode of OP0, otherwise OP0 is a BLKmode MEM. VALUE_MODE is
1196 the mode of VALUE.
ee45a32d
EB
1197
1198 If REVERSE is true, the store is to be done in reverse order. */
44037a66
TG
1199
1200static void
1a527092
RS
1201store_fixed_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1202 unsigned HOST_WIDE_INT bitsize,
bebf0797 1203 unsigned HOST_WIDE_INT bitnum,
8c59e5e7 1204 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1a527092 1205 rtx value, scalar_int_mode value_mode, bool reverse)
44037a66 1206{
44037a66
TG
1207 /* There is a case not handled here:
1208 a structure with a known alignment of just a halfword
1209 and a field split across two aligned halfwords within the structure.
1210 Or likewise a structure with a known alignment of just a byte
1211 and a field split across two bytes.
1212 Such cases are not supposed to be able to occur. */
1213
1a527092 1214 scalar_int_mode best_mode;
bebf0797 1215 if (MEM_P (op0))
44037a66 1216 {
1a527092
RS
1217 unsigned int max_bitsize = BITS_PER_WORD;
1218 scalar_int_mode imode;
1219 if (op0_mode.exists (&imode) && GET_MODE_BITSIZE (imode) < max_bitsize)
1220 max_bitsize = GET_MODE_BITSIZE (imode);
1221
ae927046 1222 if (!get_best_mode (bitsize, bitnum, bitregion_start, bitregion_end,
1a527092
RS
1223 MEM_ALIGN (op0), max_bitsize, MEM_VOLATILE_P (op0),
1224 &best_mode))
44037a66
TG
1225 {
1226 /* The only way this should occur is if the field spans word
1227 boundaries. */
1a527092
RS
1228 store_split_bit_field (op0, op0_mode, bitsize, bitnum,
1229 bitregion_start, bitregion_end,
1230 value, value_mode, reverse);
44037a66
TG
1231 return;
1232 }
1233
ae927046 1234 op0 = narrow_bit_field_mem (op0, best_mode, bitsize, bitnum, &bitnum);
44037a66 1235 }
1a527092
RS
1236 else
1237 best_mode = op0_mode.require ();
44037a66 1238
1a527092
RS
1239 store_fixed_bit_field_1 (op0, best_mode, bitsize, bitnum,
1240 value, value_mode, reverse);
ebb99f96
BE
1241}
1242
1243/* Helper function for store_fixed_bit_field, stores
1a527092
RS
1244 the bit field always using MODE, which is the mode of OP0. The other
1245 arguments are as for store_fixed_bit_field. */
ebb99f96
BE
1246
1247static void
1a527092
RS
1248store_fixed_bit_field_1 (rtx op0, scalar_int_mode mode,
1249 unsigned HOST_WIDE_INT bitsize,
548cfdc2 1250 unsigned HOST_WIDE_INT bitnum,
1a527092 1251 rtx value, scalar_int_mode value_mode, bool reverse)
ebb99f96 1252{
ebb99f96
BE
1253 rtx temp;
1254 int all_zero = 0;
1255 int all_one = 0;
1256
bebf0797
RS
1257 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
1258 for invalid input, such as f5 from gcc.dg/pr48335-2.c. */
44037a66 1259
ee45a32d 1260 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
bebf0797
RS
1261 /* BITNUM is the distance between our msb
1262 and that of the containing datum.
1263 Convert it to the distance from the lsb. */
1264 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
44037a66 1265
bebf0797 1266 /* Now BITNUM is always the distance between our lsb
44037a66
TG
1267 and that of OP0. */
1268
bebf0797 1269 /* Shift VALUE left by BITNUM bits. If VALUE is not constant,
44037a66
TG
1270 we must first convert its mode to MODE. */
1271
481683e1 1272 if (CONST_INT_P (value))
44037a66 1273 {
e507a433 1274 unsigned HOST_WIDE_INT v = UINTVAL (value);
44037a66 1275
b1ec3c92 1276 if (bitsize < HOST_BITS_PER_WIDE_INT)
fecfbfa4 1277 v &= (HOST_WIDE_INT_1U << bitsize) - 1;
44037a66
TG
1278
1279 if (v == 0)
1280 all_zero = 1;
b1ec3c92 1281 else if ((bitsize < HOST_BITS_PER_WIDE_INT
fecfbfa4 1282 && v == (HOST_WIDE_INT_1U << bitsize) - 1)
e507a433 1283 || (bitsize == HOST_BITS_PER_WIDE_INT
fecfbfa4 1284 && v == HOST_WIDE_INT_M1U))
44037a66
TG
1285 all_one = 1;
1286
088c5368 1287 value = lshift_value (mode, v, bitnum);
44037a66
TG
1288 }
1289 else
1290 {
1a527092 1291 int must_and = (GET_MODE_BITSIZE (value_mode) != bitsize
bebf0797 1292 && bitnum + bitsize != GET_MODE_BITSIZE (mode));
44037a66 1293
1a527092 1294 if (value_mode != mode)
86cfb27a 1295 value = convert_to_mode (mode, value, 1);
44037a66
TG
1296
1297 if (must_and)
1298 value = expand_binop (mode, and_optab, value,
1299 mask_rtx (mode, 0, bitsize, 0),
b1ec3c92 1300 NULL_RTX, 1, OPTAB_LIB_WIDEN);
bebf0797 1301 if (bitnum > 0)
44037a66 1302 value = expand_shift (LSHIFT_EXPR, mode, value,
bebf0797 1303 bitnum, NULL_RTX, 1);
44037a66
TG
1304 }
1305
ee45a32d
EB
1306 if (reverse)
1307 value = flip_storage_order (mode, value);
1308
44037a66
TG
1309 /* Now clear the chosen bits in OP0,
1310 except that if VALUE is -1 we need not bother. */
c505fc06
RS
1311 /* We keep the intermediates in registers to allow CSE to combine
1312 consecutive bitfield assignments. */
44037a66 1313
c505fc06 1314 temp = force_reg (mode, op0);
44037a66
TG
1315
1316 if (! all_one)
1317 {
ee45a32d
EB
1318 rtx mask = mask_rtx (mode, bitnum, bitsize, 1);
1319 if (reverse)
1320 mask = flip_storage_order (mode, mask);
1321 temp = expand_binop (mode, and_optab, temp, mask,
c505fc06
RS
1322 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1323 temp = force_reg (mode, temp);
44037a66 1324 }
44037a66
TG
1325
1326 /* Now logical-or VALUE into OP0, unless it is zero. */
1327
1328 if (! all_zero)
c505fc06
RS
1329 {
1330 temp = expand_binop (mode, ior_optab, temp, value,
1331 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1332 temp = force_reg (mode, temp);
1333 }
1334
44037a66 1335 if (op0 != temp)
4679504c
UB
1336 {
1337 op0 = copy_rtx (op0);
1338 emit_move_insn (op0, temp);
1339 }
44037a66
TG
1340}
1341\f
06c94bce 1342/* Store a bit field that is split across multiple accessible memory objects.
44037a66 1343
06c94bce 1344 OP0 is the REG, SUBREG or MEM rtx for the first of the objects.
44037a66
TG
1345 BITSIZE is the field width; BITPOS the position of its first bit
1346 (within the word).
1a527092
RS
1347 VALUE is the value to store, which has mode VALUE_MODE.
1348 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
1349 a BLKmode MEM.
06c94bce 1350
ee45a32d
EB
1351 If REVERSE is true, the store is to be done in reverse order.
1352
06c94bce 1353 This does not yet handle fields wider than BITS_PER_WORD. */
44037a66
TG
1354
1355static void
1a527092
RS
1356store_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1357 unsigned HOST_WIDE_INT bitsize,
1169e45d 1358 unsigned HOST_WIDE_INT bitpos,
8c59e5e7 1359 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
1a527092 1360 rtx value, scalar_int_mode value_mode, bool reverse)
44037a66 1361{
ee45a32d 1362 unsigned int unit, total_bits, bitsdone = 0;
4ee16841 1363
0eb61c19
DE
1364 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
1365 much at a time. */
f8cfc6aa 1366 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
4ee16841
DE
1367 unit = BITS_PER_WORD;
1368 else
04050c69 1369 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
e54d80d0 1370
ebb99f96
BE
1371 /* If OP0 is a memory with a mode, then UNIT must not be larger than
1372 OP0's mode as well. Otherwise, store_fixed_bit_field will call us
1373 again, and we will mutually recurse forever. */
1a527092
RS
1374 if (MEM_P (op0) && op0_mode.exists ())
1375 unit = MIN (unit, GET_MODE_BITSIZE (op0_mode.require ()));
ebb99f96 1376
3d709ff0
RS
1377 /* If VALUE is a constant other than a CONST_INT, get it into a register in
1378 WORD_MODE. If we can do this using gen_lowpart_common, do so. Note
1379 that VALUE might be a floating-point constant. */
481683e1 1380 if (CONSTANT_P (value) && !CONST_INT_P (value))
3d709ff0
RS
1381 {
1382 rtx word = gen_lowpart_common (word_mode, value);
1383
bc8a0e39 1384 if (word && (value != word))
3d709ff0
RS
1385 value = word;
1386 else
1a527092
RS
1387 value = gen_lowpart_common (word_mode, force_reg (value_mode, value));
1388 value_mode = word_mode;
3d709ff0 1389 }
44037a66 1390
1a527092 1391 total_bits = GET_MODE_BITSIZE (value_mode);
ee45a32d 1392
06c94bce 1393 while (bitsdone < bitsize)
44037a66 1394 {
770ae6cc 1395 unsigned HOST_WIDE_INT thissize;
770ae6cc
RK
1396 unsigned HOST_WIDE_INT thispos;
1397 unsigned HOST_WIDE_INT offset;
1a527092 1398 rtx part;
44037a66 1399
06c94bce
RS
1400 offset = (bitpos + bitsdone) / unit;
1401 thispos = (bitpos + bitsdone) % unit;
44037a66 1402
f1cc9589 1403 /* When region of bytes we can touch is restricted, decrease
bd3647bf
JJ
1404 UNIT close to the end of the region as needed. If op0 is a REG
1405 or SUBREG of REG, don't do this, as there can't be data races
1406 on a register and we can expand shorter code in some cases. */
8c59e5e7 1407 if (maybe_ne (bitregion_end, 0U)
f1cc9589 1408 && unit > BITS_PER_UNIT
8c59e5e7 1409 && maybe_gt (bitpos + bitsdone - thispos + unit, bitregion_end + 1)
bd3647bf
JJ
1410 && !REG_P (op0)
1411 && (GET_CODE (op0) != SUBREG || !REG_P (SUBREG_REG (op0))))
f1cc9589
JJ
1412 {
1413 unit = unit / 2;
1414 continue;
1415 }
1416
0eb61c19
DE
1417 /* THISSIZE must not overrun a word boundary. Otherwise,
1418 store_fixed_bit_field will call us again, and we will mutually
1419 recurse forever. */
1420 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
1421 thissize = MIN (thissize, unit - thispos);
44037a66 1422
ee45a32d 1423 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
f76b9db2
ILT
1424 {
1425 /* Fetch successively less significant portions. */
481683e1 1426 if (CONST_INT_P (value))
f76b9db2
ILT
1427 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1428 >> (bitsize - bitsdone - thissize))
fecfbfa4 1429 & ((HOST_WIDE_INT_1 << thissize) - 1));
ee45a32d
EB
1430 /* Likewise, but the source is little-endian. */
1431 else if (reverse)
1a527092
RS
1432 part = extract_fixed_bit_field (word_mode, value, value_mode,
1433 thissize,
ee45a32d
EB
1434 bitsize - bitsdone - thissize,
1435 NULL_RTX, 1, false);
f76b9db2 1436 else
1a527092
RS
1437 /* The args are chosen so that the last part includes the
1438 lsb. Give extract_bit_field the value it needs (with
1439 endianness compensation) to fetch the piece we want. */
1440 part = extract_fixed_bit_field (word_mode, value, value_mode,
1441 thissize,
1442 total_bits - bitsize + bitsdone,
1443 NULL_RTX, 1, false);
f76b9db2 1444 }
06c94bce 1445 else
f76b9db2
ILT
1446 {
1447 /* Fetch successively more significant portions. */
481683e1 1448 if (CONST_INT_P (value))
f76b9db2
ILT
1449 part = GEN_INT (((unsigned HOST_WIDE_INT) (INTVAL (value))
1450 >> bitsdone)
fecfbfa4 1451 & ((HOST_WIDE_INT_1 << thissize) - 1));
ee45a32d
EB
1452 /* Likewise, but the source is big-endian. */
1453 else if (reverse)
1a527092
RS
1454 part = extract_fixed_bit_field (word_mode, value, value_mode,
1455 thissize,
ee45a32d
EB
1456 total_bits - bitsdone - thissize,
1457 NULL_RTX, 1, false);
f76b9db2 1458 else
1a527092
RS
1459 part = extract_fixed_bit_field (word_mode, value, value_mode,
1460 thissize, bitsdone, NULL_RTX,
1461 1, false);
f76b9db2 1462 }
44037a66 1463
867a0126 1464 /* If OP0 is a register, then handle OFFSET here. */
1a527092
RS
1465 rtx op0_piece = op0;
1466 opt_scalar_int_mode op0_piece_mode = op0_mode;
867a0126 1467 if (SUBREG_P (op0) || REG_P (op0))
06c94bce 1468 {
1a527092
RS
1469 scalar_int_mode imode;
1470 if (op0_mode.exists (&imode)
1471 && GET_MODE_SIZE (imode) < UNITS_PER_WORD)
1472 {
1473 if (offset)
1474 op0_piece = const0_rtx;
1475 }
19228b93 1476 else
1a527092
RS
1477 {
1478 op0_piece = operand_subword_force (op0,
1479 offset * unit / BITS_PER_WORD,
1480 GET_MODE (op0));
1481 op0_piece_mode = word_mode;
1482 }
bd3647bf 1483 offset &= BITS_PER_WORD / unit - 1;
06c94bce 1484 }
44037a66 1485
bebf0797 1486 /* OFFSET is in UNITs, and UNIT is in bits. If WORD is const0_rtx,
19228b93 1487 it is just an out-of-bounds access. Ignore it. */
1a527092
RS
1488 if (op0_piece != const0_rtx)
1489 store_fixed_bit_field (op0_piece, op0_piece_mode, thissize,
1490 offset * unit + thispos, bitregion_start,
1491 bitregion_end, part, word_mode, reverse);
06c94bce
RS
1492 bitsdone += thissize;
1493 }
44037a66
TG
1494}
1495\f
6d7db3c5
RS
1496/* A subroutine of extract_bit_field_1 that converts return value X
1497 to either MODE or TMODE. MODE, TMODE and UNSIGNEDP are arguments
1498 to extract_bit_field. */
44037a66 1499
6d7db3c5 1500static rtx
ef4bddc2
RS
1501convert_extracted_bit_field (rtx x, machine_mode mode,
1502 machine_mode tmode, bool unsignedp)
6d7db3c5
RS
1503{
1504 if (GET_MODE (x) == tmode || GET_MODE (x) == mode)
1505 return x;
44037a66 1506
6d7db3c5
RS
1507 /* If the x mode is not a scalar integral, first convert to the
1508 integer mode of that size and then access it as a floating-point
1509 value via a SUBREG. */
1510 if (!SCALAR_INT_MODE_P (tmode))
1511 {
304b9962 1512 scalar_int_mode int_mode = int_mode_for_mode (tmode).require ();
fffbab82
RS
1513 x = convert_to_mode (int_mode, x, unsignedp);
1514 x = force_reg (int_mode, x);
6d7db3c5
RS
1515 return gen_lowpart (tmode, x);
1516 }
44037a66 1517
6d7db3c5
RS
1518 return convert_to_mode (tmode, x, unsignedp);
1519}
1520
a20556e4
RS
1521/* Try to use an ext(z)v pattern to extract a field from OP0.
1522 Return the extracted value on success, otherwise return null.
1a527092
RS
1523 EXTV describes the extraction instruction to use. If OP0_MODE
1524 is defined, it is the mode of OP0, otherwise OP0 is a BLKmode MEM.
1525 The other arguments are as for extract_bit_field. */
a20556e4
RS
1526
1527static rtx
fcdd52b7 1528extract_bit_field_using_extv (const extraction_insn *extv, rtx op0,
1a527092 1529 opt_scalar_int_mode op0_mode,
fcdd52b7 1530 unsigned HOST_WIDE_INT bitsize,
a20556e4
RS
1531 unsigned HOST_WIDE_INT bitnum,
1532 int unsignedp, rtx target,
ef4bddc2 1533 machine_mode mode, machine_mode tmode)
a20556e4 1534{
99b1c316 1535 class expand_operand ops[4];
a20556e4
RS
1536 rtx spec_target = target;
1537 rtx spec_target_subreg = 0;
1a527092 1538 scalar_int_mode ext_mode = extv->field_mode;
a20556e4
RS
1539 unsigned unit = GET_MODE_BITSIZE (ext_mode);
1540
1541 if (bitsize == 0 || unit < bitsize)
1542 return NULL_RTX;
1543
1544 if (MEM_P (op0))
26f8b976 1545 /* Get a reference to the first byte of the field. */
fcdd52b7
RS
1546 op0 = narrow_bit_field_mem (op0, extv->struct_mode, bitsize, bitnum,
1547 &bitnum);
a20556e4
RS
1548 else
1549 {
1550 /* Convert from counting within OP0 to counting in EXT_MODE. */
1551 if (BYTES_BIG_ENDIAN)
1a527092 1552 bitnum += unit - GET_MODE_BITSIZE (op0_mode.require ());
a20556e4
RS
1553
1554 /* If op0 is a register, we need it in EXT_MODE to make it
1555 acceptable to the format of ext(z)v. */
1a527092 1556 if (GET_CODE (op0) == SUBREG && op0_mode.require () != ext_mode)
a20556e4 1557 return NULL_RTX;
1a527092 1558 if (REG_P (op0) && op0_mode.require () != ext_mode)
a20556e4
RS
1559 op0 = gen_lowpart_SUBREG (ext_mode, op0);
1560 }
1561
1562 /* If BITS_BIG_ENDIAN is zero on a BYTES_BIG_ENDIAN machine, we count
1563 "backwards" from the size of the unit we are extracting from.
1564 Otherwise, we count bits from the most significant on a
1565 BYTES/BITS_BIG_ENDIAN machine. */
1566
1567 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1568 bitnum = unit - bitsize - bitnum;
1569
1570 if (target == 0)
1571 target = spec_target = gen_reg_rtx (tmode);
1572
1573 if (GET_MODE (target) != ext_mode)
1574 {
c8e4cb8a 1575 rtx temp;
a20556e4
RS
1576 /* Don't use LHS paradoxical subreg if explicit truncation is needed
1577 between the mode of the extraction (word_mode) and the target
1578 mode. Instead, create a temporary and use convert_move to set
1579 the target. */
1580 if (REG_P (target)
c8e4cb8a 1581 && TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (target), ext_mode)
1582 && (temp = gen_lowpart_if_possible (ext_mode, target)))
a20556e4 1583 {
c8e4cb8a 1584 target = temp;
bd4288c0 1585 if (partial_subreg_p (GET_MODE (spec_target), ext_mode))
a20556e4
RS
1586 spec_target_subreg = target;
1587 }
1588 else
1589 target = gen_reg_rtx (ext_mode);
1590 }
1591
1592 create_output_operand (&ops[0], target, ext_mode);
1593 create_fixed_operand (&ops[1], op0);
1594 create_integer_operand (&ops[2], bitsize);
1595 create_integer_operand (&ops[3], bitnum);
fcdd52b7 1596 if (maybe_expand_insn (extv->icode, 4, ops))
a20556e4
RS
1597 {
1598 target = ops[0].value;
1599 if (target == spec_target)
1600 return target;
1601 if (target == spec_target_subreg)
1602 return spec_target;
1603 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
1604 }
1605 return NULL_RTX;
1606}
1607
fc60a416
RS
1608/* See whether it would be valid to extract the part of OP0 described
1609 by BITNUM and BITSIZE into a value of mode MODE using a subreg
1610 operation. Return the subreg if so, otherwise return null. */
1611
1612static rtx
1613extract_bit_field_as_subreg (machine_mode mode, rtx op0,
1614 poly_uint64 bitsize, poly_uint64 bitnum)
1615{
1616 poly_uint64 bytenum;
1617 if (multiple_p (bitnum, BITS_PER_UNIT, &bytenum)
1618 && known_eq (bitsize, GET_MODE_BITSIZE (mode))
1619 && lowpart_bit_field_p (bitnum, bitsize, GET_MODE (op0))
1620 && TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (op0)))
1621 return simplify_gen_subreg (mode, op0, GET_MODE (op0), bytenum);
1622 return NULL_RTX;
1623}
1624
6d7db3c5
RS
1625/* A subroutine of extract_bit_field, with the same arguments.
1626 If FALLBACK_P is true, fall back to extract_fixed_bit_field
1627 if we can find no other means of implementing the operation.
1628 if FALLBACK_P is false, return NULL instead. */
1629
1630static rtx
fc60a416
RS
1631extract_bit_field_1 (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
1632 int unsignedp, rtx target, machine_mode mode,
1633 machine_mode tmode, bool reverse, bool fallback_p,
1634 rtx *alt_rtl)
44037a66 1635{
b3694847 1636 rtx op0 = str_rtx;
ef4bddc2 1637 machine_mode mode1;
44037a66 1638
44037a66
TG
1639 if (tmode == VOIDmode)
1640 tmode = mode;
6ca6193b 1641
44037a66
TG
1642 while (GET_CODE (op0) == SUBREG)
1643 {
2c58f7dd 1644 bitnum += SUBREG_BYTE (op0) * BITS_PER_UNIT;
44037a66
TG
1645 op0 = SUBREG_REG (op0);
1646 }
77295dec 1647
2c58f7dd 1648 /* If we have an out-of-bounds access to a register, just return an
647eea9d 1649 uninitialized register of the required mode. This can occur if the
2c58f7dd 1650 source code contains an out-of-bounds access to a small array. */
fc60a416 1651 if (REG_P (op0) && known_ge (bitnum, GET_MODE_BITSIZE (GET_MODE (op0))))
2c58f7dd
RS
1652 return gen_reg_rtx (tmode);
1653
f8cfc6aa 1654 if (REG_P (op0)
aac280fb 1655 && mode == GET_MODE (op0)
fc60a416
RS
1656 && known_eq (bitnum, 0U)
1657 && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0))))
aac280fb 1658 {
ee45a32d
EB
1659 if (reverse)
1660 op0 = flip_storage_order (mode, op0);
0b69c29f 1661 /* We're trying to extract a full register from itself. */
aac280fb
DD
1662 return op0;
1663 }
1664
ff03930a
JJ
1665 /* First try to check for vector from vector extractions. */
1666 if (VECTOR_MODE_P (GET_MODE (op0))
1667 && !MEM_P (op0)
1668 && VECTOR_MODE_P (tmode)
e8f3b70d 1669 && known_eq (bitsize, GET_MODE_BITSIZE (tmode))
cf098191 1670 && maybe_gt (GET_MODE_SIZE (GET_MODE (op0)), GET_MODE_SIZE (tmode)))
ff03930a
JJ
1671 {
1672 machine_mode new_mode = GET_MODE (op0);
1673 if (GET_MODE_INNER (new_mode) != GET_MODE_INNER (tmode))
1674 {
9da15d40 1675 scalar_mode inner_mode = GET_MODE_INNER (tmode);
73a699ae
RS
1676 poly_uint64 nunits;
1677 if (!multiple_p (GET_MODE_BITSIZE (GET_MODE (op0)),
1678 GET_MODE_UNIT_BITSIZE (tmode), &nunits)
f0955233
RS
1679 || !related_vector_mode (tmode, inner_mode,
1680 nunits).exists (&new_mode)
cf098191 1681 || maybe_ne (GET_MODE_SIZE (new_mode),
f0955233 1682 GET_MODE_SIZE (GET_MODE (op0))))
ff03930a
JJ
1683 new_mode = VOIDmode;
1684 }
fc60a416 1685 poly_uint64 pos;
ff03930a
JJ
1686 if (new_mode != VOIDmode
1687 && (convert_optab_handler (vec_extract_optab, new_mode, tmode)
1688 != CODE_FOR_nothing)
fc60a416 1689 && multiple_p (bitnum, GET_MODE_BITSIZE (tmode), &pos))
ff03930a 1690 {
99b1c316 1691 class expand_operand ops[3];
ff03930a
JJ
1692 machine_mode outermode = new_mode;
1693 machine_mode innermode = tmode;
1694 enum insn_code icode
1695 = convert_optab_handler (vec_extract_optab, outermode, innermode);
ff03930a
JJ
1696
1697 if (new_mode != GET_MODE (op0))
1698 op0 = gen_lowpart (new_mode, op0);
1699 create_output_operand (&ops[0], target, innermode);
1700 ops[0].target = 1;
1701 create_input_operand (&ops[1], op0, outermode);
1702 create_integer_operand (&ops[2], pos);
1703 if (maybe_expand_insn (icode, 3, ops))
1704 {
1705 if (alt_rtl && ops[0].target)
1706 *alt_rtl = target;
1707 target = ops[0].value;
1708 if (GET_MODE (target) != mode)
1709 return gen_lowpart (tmode, target);
1710 return target;
1711 }
1712 }
1713 }
1714
0890b981
AP
1715 /* See if we can get a better vector mode before extracting. */
1716 if (VECTOR_MODE_P (GET_MODE (op0))
1717 && !MEM_P (op0)
1718 && GET_MODE_INNER (GET_MODE (op0)) != tmode)
1719 {
ef4bddc2 1720 machine_mode new_mode;
0890b981
AP
1721
1722 if (GET_MODE_CLASS (tmode) == MODE_FLOAT)
1723 new_mode = MIN_MODE_VECTOR_FLOAT;
325217ed
CF
1724 else if (GET_MODE_CLASS (tmode) == MODE_FRACT)
1725 new_mode = MIN_MODE_VECTOR_FRACT;
1726 else if (GET_MODE_CLASS (tmode) == MODE_UFRACT)
1727 new_mode = MIN_MODE_VECTOR_UFRACT;
1728 else if (GET_MODE_CLASS (tmode) == MODE_ACCUM)
1729 new_mode = MIN_MODE_VECTOR_ACCUM;
1730 else if (GET_MODE_CLASS (tmode) == MODE_UACCUM)
1731 new_mode = MIN_MODE_VECTOR_UACCUM;
0890b981
AP
1732 else
1733 new_mode = MIN_MODE_VECTOR_INT;
1734
c94843d2 1735 FOR_EACH_MODE_FROM (new_mode, new_mode)
cf098191
RS
1736 if (known_eq (GET_MODE_SIZE (new_mode), GET_MODE_SIZE (GET_MODE (op0)))
1737 && known_eq (GET_MODE_UNIT_SIZE (new_mode), GET_MODE_SIZE (tmode))
4e5929e4
JW
1738 && targetm.vector_mode_supported_p (new_mode)
1739 && targetm.modes_tieable_p (GET_MODE (op0), new_mode))
0890b981
AP
1740 break;
1741 if (new_mode != VOIDmode)
1742 op0 = gen_lowpart (new_mode, op0);
1743 }
1744
997404de 1745 /* Use vec_extract patterns for extracting parts of vectors whenever
b194a722
RS
1746 available. If that fails, see whether the current modes and bitregion
1747 give a natural subreg. */
d21cefc2 1748 machine_mode outermode = GET_MODE (op0);
b194a722 1749 if (VECTOR_MODE_P (outermode) && !MEM_P (op0))
997404de 1750 {
b194a722 1751 scalar_mode innermode = GET_MODE_INNER (outermode);
ff03930a
JJ
1752 enum insn_code icode
1753 = convert_optab_handler (vec_extract_optab, outermode, innermode);
b194a722
RS
1754 poly_uint64 pos;
1755 if (icode != CODE_FOR_nothing
1756 && known_eq (bitsize, GET_MODE_BITSIZE (innermode))
1757 && multiple_p (bitnum, GET_MODE_BITSIZE (innermode), &pos))
1758 {
99b1c316 1759 class expand_operand ops[3];
997404de 1760
b194a722
RS
1761 create_output_operand (&ops[0], target, innermode);
1762 ops[0].target = 1;
1763 create_input_operand (&ops[1], op0, outermode);
1764 create_integer_operand (&ops[2], pos);
1765 if (maybe_expand_insn (icode, 3, ops))
1766 {
1767 if (alt_rtl && ops[0].target)
1768 *alt_rtl = target;
1769 target = ops[0].value;
1770 if (GET_MODE (target) != mode)
1771 return gen_lowpart (tmode, target);
1772 return target;
1773 }
1774 }
9ea52d27
RS
1775 /* Using subregs is useful if we're extracting one register vector
1776 from a multi-register vector. extract_bit_field_as_subreg checks
1777 for valid bitsize and bitnum, so we don't need to do that here. */
1778 if (VECTOR_MODE_P (mode))
997404de 1779 {
b194a722
RS
1780 rtx sub = extract_bit_field_as_subreg (mode, op0, bitsize, bitnum);
1781 if (sub)
1782 return sub;
997404de
JH
1783 }
1784 }
1785
d006aa54
RH
1786 /* Make sure we are playing with integral modes. Pun with subregs
1787 if we aren't. */
1a527092 1788 opt_scalar_int_mode op0_mode = int_mode_for_mode (GET_MODE (op0));
304b9962 1789 scalar_int_mode imode;
1a527092 1790 if (!op0_mode.exists (&imode) || imode != GET_MODE (op0))
304b9962
RS
1791 {
1792 if (MEM_P (op0))
1a527092 1793 op0 = adjust_bitfield_address_size (op0, op0_mode.else_blk (),
304b9962 1794 0, MEM_SIZE (op0));
1a527092 1795 else if (op0_mode.exists (&imode))
304b9962
RS
1796 {
1797 op0 = gen_lowpart (imode, op0);
1798
1799 /* If we got a SUBREG, force it into a register since we
1800 aren't going to be able to do another SUBREG on it. */
1801 if (GET_CODE (op0) == SUBREG)
1802 op0 = force_reg (imode, op0);
1803 }
1804 else
1805 {
cf098191 1806 poly_int64 size = GET_MODE_SIZE (GET_MODE (op0));
304b9962
RS
1807 rtx mem = assign_stack_temp (GET_MODE (op0), size);
1808 emit_move_insn (mem, op0);
1809 op0 = adjust_bitfield_address_size (mem, BLKmode, 0, size);
1810 }
1811 }
d006aa54 1812
6ca6193b
JDA
1813 /* ??? We currently assume TARGET is at least as big as BITSIZE.
1814 If that's wrong, the solution is to test for it and set TARGET to 0
1815 if needed. */
e98f90d3 1816
f5d4f18c
SL
1817 /* Get the mode of the field to use for atomic access or subreg
1818 conversion. */
61b2290a
RS
1819 if (!SCALAR_INT_MODE_P (tmode)
1820 || !mode_for_size (bitsize, GET_MODE_CLASS (tmode), 0).exists (&mode1))
1821 mode1 = mode;
b8ab7fc8
RS
1822 gcc_assert (mode1 != BLKmode);
1823
1824 /* Extraction of a full MODE1 value can be done with a subreg as long
1825 as the least significant bit of the value is the least significant
1826 bit of either OP0 or a word of OP0. */
fc60a416 1827 if (!MEM_P (op0) && !reverse)
b8ab7fc8 1828 {
fc60a416 1829 rtx sub = extract_bit_field_as_subreg (mode1, op0, bitsize, bitnum);
b8ab7fc8
RS
1830 if (sub)
1831 return convert_extracted_bit_field (sub, mode, tmode, unsignedp);
1832 }
1833
1834 /* Extraction of a full MODE1 value can be done with a load as long as
1835 the field is on a byte boundary and is sufficiently aligned. */
2d7b38df
RS
1836 poly_uint64 bytenum;
1837 if (simple_mem_bitfield_p (op0, bitsize, bitnum, mode1, &bytenum))
b8ab7fc8 1838 {
2d7b38df 1839 op0 = adjust_bitfield_address (op0, mode1, bytenum);
ee45a32d
EB
1840 if (reverse)
1841 op0 = flip_storage_order (mode1, op0);
b8ab7fc8 1842 return convert_extracted_bit_field (op0, mode, tmode, unsignedp);
44037a66 1843 }
b8ab7fc8 1844
fc60a416
RS
1845 /* If we have a memory source and a non-constant bit offset, restrict
1846 the memory to the referenced bytes. This is a worst-case fallback
1847 but is useful for things like vector booleans. */
1848 if (MEM_P (op0) && !bitnum.is_constant ())
1849 {
1850 bytenum = bits_to_bytes_round_down (bitnum);
1851 bitnum = num_trailing_bits (bitnum);
1852 poly_uint64 bytesize = bits_to_bytes_round_up (bitnum + bitsize);
1853 op0 = adjust_bitfield_address_size (op0, BLKmode, bytenum, bytesize);
1854 op0_mode = opt_scalar_int_mode ();
1855 }
1856
1857 /* It's possible we'll need to handle other cases here for
1858 polynomial bitnum and bitsize. */
1859
1860 /* From here on we need to be looking at a fixed-size insertion. */
1861 return extract_integral_bit_field (op0, op0_mode, bitsize.to_constant (),
1862 bitnum.to_constant (), unsignedp,
508fa61b 1863 target, mode, tmode, reverse, fallback_p);
fc60a416
RS
1864}
1865
1866/* Subroutine of extract_bit_field_1, with the same arguments, except
1867 that BITSIZE and BITNUM are constant. Handle cases specific to
1868 integral modes. If OP0_MODE is defined, it is the mode of OP0,
1869 otherwise OP0 is a BLKmode MEM. */
1870
1871static rtx
1872extract_integral_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
1873 unsigned HOST_WIDE_INT bitsize,
1874 unsigned HOST_WIDE_INT bitnum, int unsignedp,
1875 rtx target, machine_mode mode, machine_mode tmode,
1876 bool reverse, bool fallback_p)
1877{
44037a66 1878 /* Handle fields bigger than a word. */
c410d49e 1879
44037a66
TG
1880 if (bitsize > BITS_PER_WORD)
1881 {
1882 /* Here we transfer the words of the field
1883 in the order least significant first.
1884 This is because the most significant word is the one which may
1885 be less than full. */
1886
ee45a32d 1887 const bool backwards = WORDS_BIG_ENDIAN;
770ae6cc
RK
1888 unsigned int nwords = (bitsize + (BITS_PER_WORD - 1)) / BITS_PER_WORD;
1889 unsigned int i;
f3f6fb16 1890 rtx_insn *last;
44037a66 1891
02972eaf 1892 if (target == 0 || !REG_P (target) || !valid_multiword_target_p (target))
44037a66
TG
1893 target = gen_reg_rtx (mode);
1894
7d21a61e
DD
1895 /* In case we're about to clobber a base register or something
1896 (see gcc.c-torture/execute/20040625-1.c). */
fc60a416 1897 if (reg_mentioned_p (target, op0))
7d21a61e
DD
1898 target = gen_reg_rtx (mode);
1899
34ea783b 1900 /* Indicate for flow that the entire target reg is being set. */
c41c1387 1901 emit_clobber (target);
34ea783b 1902
fc60a416
RS
1903 /* The mode must be fixed-size, since extract_bit_field_1 handles
1904 extractions from variable-sized objects before calling this
1905 function. */
cf098191
RS
1906 unsigned int target_size
1907 = GET_MODE_SIZE (GET_MODE (target)).to_constant ();
5ef0b50d 1908 last = get_last_insn ();
44037a66
TG
1909 for (i = 0; i < nwords; i++)
1910 {
1911 /* If I is 0, use the low-order word in both field and target;
1912 if I is 1, use the next to lowest word; and so on. */
77295dec 1913 /* Word number in TARGET to use. */
770ae6cc 1914 unsigned int wordnum
fc60a416 1915 = (backwards ? target_size / UNITS_PER_WORD - i - 1 : i);
77295dec 1916 /* Offset from start of field in OP0. */
ee45a32d 1917 unsigned int bit_offset = (backwards ^ reverse
0cd9e9ee
EB
1918 ? MAX ((int) bitsize - ((int) i + 1)
1919 * BITS_PER_WORD,
1920 0)
770ae6cc 1921 : (int) i * BITS_PER_WORD);
44037a66
TG
1922 rtx target_part = operand_subword (target, wordnum, 1, VOIDmode);
1923 rtx result_part
5ef0b50d
EB
1924 = extract_bit_field_1 (op0, MIN (BITS_PER_WORD,
1925 bitsize - i * BITS_PER_WORD),
c6285bd7 1926 bitnum + bit_offset, 1, target_part,
f96bf49a 1927 mode, word_mode, reverse, fallback_p, NULL);
44037a66 1928
5b0264cb 1929 gcc_assert (target_part);
5ef0b50d
EB
1930 if (!result_part)
1931 {
1932 delete_insns_since (last);
1933 return NULL;
1934 }
44037a66
TG
1935
1936 if (result_part != target_part)
1937 emit_move_insn (target_part, result_part);
1938 }
1939
5f57dff0 1940 if (unsignedp)
77295dec
DE
1941 {
1942 /* Unless we've filled TARGET, the upper regs in a multi-reg value
1943 need to be zero'd out. */
fc60a416 1944 if (target_size > nwords * UNITS_PER_WORD)
77295dec 1945 {
770ae6cc 1946 unsigned int i, total_words;
77295dec 1947
fc60a416 1948 total_words = target_size / UNITS_PER_WORD;
77295dec 1949 for (i = nwords; i < total_words; i++)
04050c69
RK
1950 emit_move_insn
1951 (operand_subword (target,
0cd9e9ee 1952 backwards ? total_words - i - 1 : i,
04050c69
RK
1953 1, VOIDmode),
1954 const0_rtx);
77295dec
DE
1955 }
1956 return target;
1957 }
1958
5f57dff0
JW
1959 /* Signed bit field: sign-extend with two arithmetic shifts. */
1960 target = expand_shift (LSHIFT_EXPR, mode, target,
eb6c3df1 1961 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
5f57dff0 1962 return expand_shift (RSHIFT_EXPR, mode, target,
eb6c3df1 1963 GET_MODE_BITSIZE (mode) - bitsize, NULL_RTX, 0);
44037a66 1964 }
c410d49e 1965
b8ab7fc8
RS
1966 /* If OP0 is a multi-word register, narrow it to the affected word.
1967 If the region spans two words, defer to extract_split_bit_field. */
1a527092 1968 if (!MEM_P (op0) && GET_MODE_SIZE (op0_mode.require ()) > UNITS_PER_WORD)
44037a66 1969 {
867a0126 1970 if (bitnum % BITS_PER_WORD + bitsize > BITS_PER_WORD)
470032d7 1971 {
b8ab7fc8
RS
1972 if (!fallback_p)
1973 return NULL_RTX;
1a527092
RS
1974 target = extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
1975 unsignedp, reverse);
b8ab7fc8 1976 return convert_extracted_bit_field (target, mode, tmode, unsignedp);
470032d7 1977 }
1a527092 1978 op0 = simplify_gen_subreg (word_mode, op0, op0_mode.require (),
867a0126 1979 bitnum / BITS_PER_WORD * UNITS_PER_WORD);
1a527092 1980 op0_mode = word_mode;
867a0126 1981 bitnum %= BITS_PER_WORD;
44037a66 1982 }
44037a66 1983
b8ab7fc8
RS
1984 /* From here on we know the desired field is smaller than a word.
1985 If OP0 is a register, it too fits within a word. */
fcdd52b7
RS
1986 enum extraction_pattern pattern = unsignedp ? EP_extzv : EP_extv;
1987 extraction_insn extv;
1988 if (!MEM_P (op0)
ee45a32d 1989 && !reverse
c0a8a3e6
RS
1990 /* ??? We could limit the structure size to the part of OP0 that
1991 contains the field, with appropriate checks for endianness
bb149ca2 1992 and TARGET_TRULY_NOOP_TRUNCATION. */
c0a8a3e6 1993 && get_best_reg_extraction_insn (&extv, pattern,
1a527092 1994 GET_MODE_BITSIZE (op0_mode.require ()),
fcdd52b7 1995 tmode))
44037a66 1996 {
1a527092
RS
1997 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
1998 bitsize, bitnum,
a20556e4 1999 unsignedp, target, mode,
fcdd52b7 2000 tmode);
a20556e4
RS
2001 if (result)
2002 return result;
44037a66 2003 }
f76b9db2 2004
6d7db3c5
RS
2005 /* If OP0 is a memory, try copying it to a register and seeing if a
2006 cheap register alternative is available. */
ee45a32d 2007 if (MEM_P (op0) & !reverse)
6d7db3c5 2008 {
f5d4f18c
SL
2009 if (get_best_mem_extraction_insn (&extv, pattern, bitsize, bitnum,
2010 tmode))
17a73ba0 2011 {
1a527092
RS
2012 rtx result = extract_bit_field_using_extv (&extv, op0, op0_mode,
2013 bitsize, bitnum,
2014 unsignedp, target, mode,
fcdd52b7 2015 tmode);
17a73ba0
RS
2016 if (result)
2017 return result;
2018 }
2019
f3f6fb16 2020 rtx_insn *last = get_last_insn ();
f76b9db2 2021
fcdd52b7
RS
2022 /* Try loading part of OP0 into a register and extracting the
2023 bitfield from that. */
2024 unsigned HOST_WIDE_INT bitpos;
2025 rtx xop0 = adjust_bit_field_mem_for_reg (pattern, op0, bitsize, bitnum,
2026 0, 0, tmode, &bitpos);
2027 if (xop0)
6d7db3c5 2028 {
fcdd52b7
RS
2029 xop0 = copy_to_reg (xop0);
2030 rtx result = extract_bit_field_1 (xop0, bitsize, bitpos,
c6285bd7 2031 unsignedp, target,
f96bf49a 2032 mode, tmode, reverse, false, NULL);
fcdd52b7
RS
2033 if (result)
2034 return result;
2035 delete_insns_since (last);
c410d49e 2036 }
44037a66 2037 }
562fc702 2038
6d7db3c5
RS
2039 if (!fallback_p)
2040 return NULL;
2041
508fa61b 2042 /* Find a correspondingly-sized integer field, so we can apply
2043 shifts and masks to it. */
2044 scalar_int_mode int_mode;
2045 if (!int_mode_for_mode (tmode).exists (&int_mode))
2046 /* If this fails, we should probably push op0 out to memory and then
2047 do a load. */
2048 int_mode = int_mode_for_mode (mode).require ();
2049
2050 target = extract_fixed_bit_field (int_mode, op0, op0_mode, bitsize,
2051 bitnum, target, unsignedp, reverse);
2052
2053 /* Complex values must be reversed piecewise, so we need to undo the global
2054 reversal, convert to the complex mode and reverse again. */
2055 if (reverse && COMPLEX_MODE_P (tmode))
2056 {
2057 target = flip_storage_order (int_mode, target);
2058 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2059 target = flip_storage_order (tmode, target);
2060 }
2061 else
2062 target = convert_extracted_bit_field (target, mode, tmode, unsignedp);
2063
2064 return target;
6d7db3c5
RS
2065}
2066
2067/* Generate code to extract a byte-field from STR_RTX
2068 containing BITSIZE bits, starting at BITNUM,
2069 and put it in TARGET if possible (if TARGET is nonzero).
2070 Regardless of TARGET, we return the rtx for where the value is placed.
2071
2072 STR_RTX is the structure containing the byte (a REG or MEM).
2073 UNSIGNEDP is nonzero if this is an unsigned bit field.
2074 MODE is the natural mode of the field value once extracted.
2075 TMODE is the mode the caller would like the value to have;
2076 but the value may be returned with type MODE instead.
2077
ee45a32d
EB
2078 If REVERSE is true, the extraction is to be done in reverse order.
2079
6d7db3c5
RS
2080 If a TARGET is specified and we can store in it at no extra cost,
2081 we do so, and return TARGET.
2082 Otherwise, we return a REG of mode TMODE or MODE, with TMODE preferred
b3baefb2
BE
2083 if they are equally easy.
2084
2085 If the result can be stored at TARGET, and ALT_RTL is non-NULL,
2086 then *ALT_RTL is set to TARGET (before legitimziation). */
6d7db3c5
RS
2087
2088rtx
fc60a416
RS
2089extract_bit_field (rtx str_rtx, poly_uint64 bitsize, poly_uint64 bitnum,
2090 int unsignedp, rtx target, machine_mode mode,
2091 machine_mode tmode, bool reverse, rtx *alt_rtl)
6d7db3c5 2092{
ef4bddc2 2093 machine_mode mode1;
f5d4f18c
SL
2094
2095 /* Handle -fstrict-volatile-bitfields in the cases where it applies. */
73a699ae 2096 if (maybe_ne (GET_MODE_BITSIZE (GET_MODE (str_rtx)), 0))
f5d4f18c 2097 mode1 = GET_MODE (str_rtx);
73a699ae 2098 else if (target && maybe_ne (GET_MODE_BITSIZE (GET_MODE (target)), 0))
f5d4f18c
SL
2099 mode1 = GET_MODE (target);
2100 else
2101 mode1 = tmode;
2102
fc60a416 2103 unsigned HOST_WIDE_INT ibitsize, ibitnum;
0ef40942 2104 scalar_int_mode int_mode;
fc60a416
RS
2105 if (bitsize.is_constant (&ibitsize)
2106 && bitnum.is_constant (&ibitnum)
2107 && is_a <scalar_int_mode> (mode1, &int_mode)
2108 && strict_volatile_bitfield_p (str_rtx, ibitsize, ibitnum,
2109 int_mode, 0, 0))
f5d4f18c 2110 {
0ef40942 2111 /* Extraction of a full INT_MODE value can be done with a simple load.
b6dd42a9
BE
2112 We know here that the field can be accessed with one single
2113 instruction. For targets that support unaligned memory,
2114 an unaligned access may be necessary. */
fc60a416 2115 if (ibitsize == GET_MODE_BITSIZE (int_mode))
6f4e9cf8 2116 {
0ef40942 2117 rtx result = adjust_bitfield_address (str_rtx, int_mode,
fc60a416 2118 ibitnum / BITS_PER_UNIT);
ee45a32d 2119 if (reverse)
0ef40942 2120 result = flip_storage_order (int_mode, result);
fc60a416 2121 gcc_assert (ibitnum % BITS_PER_UNIT == 0);
53c615a2 2122 return convert_extracted_bit_field (result, mode, tmode, unsignedp);
6f4e9cf8
BE
2123 }
2124
fc60a416
RS
2125 str_rtx = narrow_bit_field_mem (str_rtx, int_mode, ibitsize, ibitnum,
2126 &ibitnum);
2127 gcc_assert (ibitnum + ibitsize <= GET_MODE_BITSIZE (int_mode));
53c615a2 2128 str_rtx = copy_to_reg (str_rtx);
fc60a416
RS
2129 return extract_bit_field_1 (str_rtx, ibitsize, ibitnum, unsignedp,
2130 target, mode, tmode, reverse, true, alt_rtl);
f5d4f18c 2131 }
53c615a2 2132
c6285bd7 2133 return extract_bit_field_1 (str_rtx, bitsize, bitnum, unsignedp,
f96bf49a 2134 target, mode, tmode, reverse, true, alt_rtl);
44037a66
TG
2135}
2136\f
b8ab7fc8 2137/* Use shifts and boolean operations to extract a field of BITSIZE bits
1a527092
RS
2138 from bit BITNUM of OP0. If OP0_MODE is defined, it is the mode of OP0,
2139 otherwise OP0 is a BLKmode MEM.
44037a66
TG
2140
2141 UNSIGNEDP is nonzero for an unsigned bit field (don't sign-extend value).
ee45a32d
EB
2142 If REVERSE is true, the extraction is to be done in reverse order.
2143
44037a66
TG
2144 If TARGET is nonzero, attempts to store the value there
2145 and return TARGET, but this is not guaranteed.
04050c69 2146 If TARGET is not used, create a pseudo-reg of mode TMODE for the value. */
44037a66
TG
2147
2148static rtx
ef4bddc2 2149extract_fixed_bit_field (machine_mode tmode, rtx op0,
1a527092 2150 opt_scalar_int_mode op0_mode,
502b8322 2151 unsigned HOST_WIDE_INT bitsize,
b8ab7fc8 2152 unsigned HOST_WIDE_INT bitnum, rtx target,
ee45a32d 2153 int unsignedp, bool reverse)
44037a66 2154{
1a527092 2155 scalar_int_mode mode;
b8ab7fc8 2156 if (MEM_P (op0))
44037a66 2157 {
ae927046
RS
2158 if (!get_best_mode (bitsize, bitnum, 0, 0, MEM_ALIGN (op0),
2159 BITS_PER_WORD, MEM_VOLATILE_P (op0), &mode))
44037a66
TG
2160 /* The only way this should occur is if the field spans word
2161 boundaries. */
1a527092
RS
2162 return extract_split_bit_field (op0, op0_mode, bitsize, bitnum,
2163 unsignedp, reverse);
44037a66 2164
f5d4f18c 2165 op0 = narrow_bit_field_mem (op0, mode, bitsize, bitnum, &bitnum);
44037a66 2166 }
1a527092
RS
2167 else
2168 mode = op0_mode.require ();
44037a66 2169
1a527092 2170 return extract_fixed_bit_field_1 (tmode, op0, mode, bitsize, bitnum,
ee45a32d 2171 target, unsignedp, reverse);
6f4e9cf8
BE
2172}
2173
2174/* Helper function for extract_fixed_bit_field, extracts
1a527092
RS
2175 the bit field always using MODE, which is the mode of OP0.
2176 The other arguments are as for extract_fixed_bit_field. */
6f4e9cf8
BE
2177
2178static rtx
1a527092 2179extract_fixed_bit_field_1 (machine_mode tmode, rtx op0, scalar_int_mode mode,
6f4e9cf8
BE
2180 unsigned HOST_WIDE_INT bitsize,
2181 unsigned HOST_WIDE_INT bitnum, rtx target,
ee45a32d 2182 int unsignedp, bool reverse)
6f4e9cf8 2183{
b8ab7fc8
RS
2184 /* Note that bitsize + bitnum can be greater than GET_MODE_BITSIZE (mode)
2185 for invalid input, such as extract equivalent of f5 from
2186 gcc.dg/pr48335-2.c. */
37811a73 2187
ee45a32d 2188 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
b8ab7fc8 2189 /* BITNUM is the distance between our msb and that of OP0.
04050c69 2190 Convert it to the distance from the lsb. */
b8ab7fc8 2191 bitnum = GET_MODE_BITSIZE (mode) - bitsize - bitnum;
44037a66 2192
b8ab7fc8 2193 /* Now BITNUM is always the distance between the field's lsb and that of OP0.
44037a66 2194 We have reduced the big-endian case to the little-endian case. */
ee45a32d
EB
2195 if (reverse)
2196 op0 = flip_storage_order (mode, op0);
44037a66
TG
2197
2198 if (unsignedp)
2199 {
b8ab7fc8 2200 if (bitnum)
44037a66
TG
2201 {
2202 /* If the field does not already start at the lsb,
2203 shift it so it does. */
44037a66 2204 /* Maybe propagate the target for the shift. */
f8cfc6aa 2205 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
6399c0ab
SB
2206 if (tmode != mode)
2207 subtarget = 0;
b8ab7fc8 2208 op0 = expand_shift (RSHIFT_EXPR, mode, op0, bitnum, subtarget, 1);
44037a66 2209 }
1a527092
RS
2210 /* Convert the value to the desired mode. TMODE must also be a
2211 scalar integer for this conversion to make sense, since we
2212 shouldn't reinterpret the bits. */
2213 scalar_int_mode new_mode = as_a <scalar_int_mode> (tmode);
2214 if (mode != new_mode)
2215 op0 = convert_to_mode (new_mode, op0, 1);
44037a66
TG
2216
2217 /* Unless the msb of the field used to be the msb when we shifted,
2218 mask out the upper bits. */
2219
b8ab7fc8 2220 if (GET_MODE_BITSIZE (mode) != bitnum + bitsize)
1a527092
RS
2221 return expand_binop (new_mode, and_optab, op0,
2222 mask_rtx (new_mode, 0, bitsize, 0),
44037a66
TG
2223 target, 1, OPTAB_LIB_WIDEN);
2224 return op0;
2225 }
2226
2227 /* To extract a signed bit-field, first shift its msb to the msb of the word,
2228 then arithmetic-shift its lsb to the lsb of the word. */
2229 op0 = force_reg (mode, op0);
44037a66
TG
2230
2231 /* Find the narrowest integer mode that contains the field. */
2232
59b51186
RS
2233 opt_scalar_int_mode mode_iter;
2234 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2235 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize + bitnum)
2236 break;
2237
2238 mode = mode_iter.require ();
2239 op0 = convert_to_mode (mode, op0, 0);
44037a66 2240
ccb1b17b
JJ
2241 if (mode != tmode)
2242 target = 0;
2243
b8ab7fc8 2244 if (GET_MODE_BITSIZE (mode) != (bitsize + bitnum))
44037a66 2245 {
b8ab7fc8 2246 int amount = GET_MODE_BITSIZE (mode) - (bitsize + bitnum);
44037a66 2247 /* Maybe propagate the target for the shift. */
f8cfc6aa 2248 rtx subtarget = (target != 0 && REG_P (target) ? target : 0);
44037a66
TG
2249 op0 = expand_shift (LSHIFT_EXPR, mode, op0, amount, subtarget, 1);
2250 }
2251
2252 return expand_shift (RSHIFT_EXPR, mode, op0,
eb6c3df1 2253 GET_MODE_BITSIZE (mode) - bitsize, target, 0);
44037a66 2254}
44037a66
TG
2255
2256/* Return a constant integer (CONST_INT or CONST_DOUBLE) rtx with the value
088c5368 2257 VALUE << BITPOS. */
44037a66
TG
2258
2259static rtx
ef4bddc2 2260lshift_value (machine_mode mode, unsigned HOST_WIDE_INT value,
088c5368 2261 int bitpos)
44037a66 2262{
807e902e 2263 return immed_wide_int_const (wi::lshift (value, bitpos), mode);
44037a66
TG
2264}
2265\f
2266/* Extract a bit field that is split across two words
2267 and return an RTX for the result.
2268
2269 OP0 is the REG, SUBREG or MEM rtx for the first of the two words.
2270 BITSIZE is the field width; BITPOS, position of its first bit, in the word.
ee45a32d 2271 UNSIGNEDP is 1 if should zero-extend the contents; else sign-extend.
1a527092
RS
2272 If OP0_MODE is defined, it is the mode of OP0, otherwise OP0 is
2273 a BLKmode MEM.
ee45a32d
EB
2274
2275 If REVERSE is true, the extraction is to be done in reverse order. */
44037a66
TG
2276
2277static rtx
1a527092
RS
2278extract_split_bit_field (rtx op0, opt_scalar_int_mode op0_mode,
2279 unsigned HOST_WIDE_INT bitsize,
ee45a32d
EB
2280 unsigned HOST_WIDE_INT bitpos, int unsignedp,
2281 bool reverse)
44037a66 2282{
770ae6cc
RK
2283 unsigned int unit;
2284 unsigned int bitsdone = 0;
c16ddde3 2285 rtx result = NULL_RTX;
06c94bce 2286 int first = 1;
44037a66 2287
4ee16841
DE
2288 /* Make sure UNIT isn't larger than BITS_PER_WORD, we can only handle that
2289 much at a time. */
f8cfc6aa 2290 if (REG_P (op0) || GET_CODE (op0) == SUBREG)
4ee16841
DE
2291 unit = BITS_PER_WORD;
2292 else
609023ff 2293 unit = MIN (MEM_ALIGN (op0), BITS_PER_WORD);
4ee16841 2294
06c94bce
RS
2295 while (bitsdone < bitsize)
2296 {
770ae6cc 2297 unsigned HOST_WIDE_INT thissize;
1a527092 2298 rtx part;
770ae6cc
RK
2299 unsigned HOST_WIDE_INT thispos;
2300 unsigned HOST_WIDE_INT offset;
06c94bce
RS
2301
2302 offset = (bitpos + bitsdone) / unit;
2303 thispos = (bitpos + bitsdone) % unit;
2304
0eb61c19
DE
2305 /* THISSIZE must not overrun a word boundary. Otherwise,
2306 extract_fixed_bit_field will call us again, and we will mutually
2307 recurse forever. */
2308 thissize = MIN (bitsize - bitsdone, BITS_PER_WORD);
2309 thissize = MIN (thissize, unit - thispos);
06c94bce 2310
867a0126 2311 /* If OP0 is a register, then handle OFFSET here. */
1a527092
RS
2312 rtx op0_piece = op0;
2313 opt_scalar_int_mode op0_piece_mode = op0_mode;
867a0126 2314 if (SUBREG_P (op0) || REG_P (op0))
06c94bce 2315 {
1a527092
RS
2316 op0_piece = operand_subword_force (op0, offset, op0_mode.require ());
2317 op0_piece_mode = word_mode;
06c94bce
RS
2318 offset = 0;
2319 }
06c94bce 2320
06c94bce 2321 /* Extract the parts in bit-counting order,
0eb61c19 2322 whose meaning is determined by BYTES_PER_UNIT.
b8ab7fc8 2323 OFFSET is in UNITs, and UNIT is in bits. */
1a527092
RS
2324 part = extract_fixed_bit_field (word_mode, op0_piece, op0_piece_mode,
2325 thissize, offset * unit + thispos,
2326 0, 1, reverse);
06c94bce 2327 bitsdone += thissize;
44037a66 2328
06c94bce 2329 /* Shift this part into place for the result. */
ee45a32d 2330 if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
f76b9db2
ILT
2331 {
2332 if (bitsize != bitsdone)
2333 part = expand_shift (LSHIFT_EXPR, word_mode, part,
eb6c3df1 2334 bitsize - bitsdone, 0, 1);
f76b9db2
ILT
2335 }
2336 else
2337 {
2338 if (bitsdone != thissize)
2339 part = expand_shift (LSHIFT_EXPR, word_mode, part,
eb6c3df1 2340 bitsdone - thissize, 0, 1);
f76b9db2 2341 }
44037a66 2342
06c94bce
RS
2343 if (first)
2344 result = part;
2345 else
2346 /* Combine the parts with bitwise or. This works
2347 because we extracted each part as an unsigned bit field. */
2348 result = expand_binop (word_mode, ior_optab, part, result, NULL_RTX, 1,
2349 OPTAB_LIB_WIDEN);
2350
2351 first = 0;
2352 }
44037a66
TG
2353
2354 /* Unsigned bit field: we are done. */
2355 if (unsignedp)
2356 return result;
2357 /* Signed bit field: sign-extend with two arithmetic shifts. */
2358 result = expand_shift (LSHIFT_EXPR, word_mode, result,
eb6c3df1 2359 BITS_PER_WORD - bitsize, NULL_RTX, 0);
44037a66 2360 return expand_shift (RSHIFT_EXPR, word_mode, result,
eb6c3df1 2361 BITS_PER_WORD - bitsize, NULL_RTX, 0);
44037a66
TG
2362}
2363\f
18b526e8
RS
2364/* Try to read the low bits of SRC as an rvalue of mode MODE, preserving
2365 the bit pattern. SRC_MODE is the mode of SRC; if this is smaller than
2366 MODE, fill the upper bits with zeros. Fail if the layout of either
2367 mode is unknown (as for CC modes) or if the extraction would involve
2368 unprofitable mode punning. Return the value on success, otherwise
2369 return null.
2370
2371 This is different from gen_lowpart* in these respects:
2372
2373 - the returned value must always be considered an rvalue
2374
2375 - when MODE is wider than SRC_MODE, the extraction involves
2376 a zero extension
2377
2378 - when MODE is smaller than SRC_MODE, the extraction involves
bb149ca2 2379 a truncation (and is thus subject to TARGET_TRULY_NOOP_TRUNCATION).
18b526e8
RS
2380
2381 In other words, this routine performs a computation, whereas the
2382 gen_lowpart* routines are conceptually lvalue or rvalue subreg
2383 operations. */
2384
2385rtx
ef4bddc2 2386extract_low_bits (machine_mode mode, machine_mode src_mode, rtx src)
18b526e8 2387{
095a2d76 2388 scalar_int_mode int_mode, src_int_mode;
18b526e8
RS
2389
2390 if (mode == src_mode)
2391 return src;
2392
2393 if (CONSTANT_P (src))
d898d29b
JJ
2394 {
2395 /* simplify_gen_subreg can't be used here, as if simplify_subreg
2396 fails, it will happily create (subreg (symbol_ref)) or similar
2397 invalid SUBREGs. */
91914e56 2398 poly_uint64 byte = subreg_lowpart_offset (mode, src_mode);
d898d29b
JJ
2399 rtx ret = simplify_subreg (mode, src, src_mode, byte);
2400 if (ret)
2401 return ret;
2402
2403 if (GET_MODE (src) == VOIDmode
2404 || !validate_subreg (mode, src_mode, src, byte))
2405 return NULL_RTX;
2406
2407 src = force_reg (GET_MODE (src), src);
2408 return gen_rtx_SUBREG (mode, src, byte);
2409 }
18b526e8
RS
2410
2411 if (GET_MODE_CLASS (mode) == MODE_CC || GET_MODE_CLASS (src_mode) == MODE_CC)
2412 return NULL_RTX;
2413
73a699ae 2414 if (known_eq (GET_MODE_BITSIZE (mode), GET_MODE_BITSIZE (src_mode))
99e1629f 2415 && targetm.modes_tieable_p (mode, src_mode))
18b526e8
RS
2416 {
2417 rtx x = gen_lowpart_common (mode, src);
2418 if (x)
2419 return x;
2420 }
2421
304b9962
RS
2422 if (!int_mode_for_mode (src_mode).exists (&src_int_mode)
2423 || !int_mode_for_mode (mode).exists (&int_mode))
18b526e8
RS
2424 return NULL_RTX;
2425
99e1629f 2426 if (!targetm.modes_tieable_p (src_int_mode, src_mode))
18b526e8 2427 return NULL_RTX;
99e1629f 2428 if (!targetm.modes_tieable_p (int_mode, mode))
18b526e8
RS
2429 return NULL_RTX;
2430
2431 src = gen_lowpart (src_int_mode, src);
daa97158
TC
2432 if (!validate_subreg (int_mode, src_int_mode, src,
2433 subreg_lowpart_offset (int_mode, src_int_mode)))
2434 return NULL_RTX;
2435
18b526e8
RS
2436 src = convert_modes (int_mode, src_int_mode, src, true);
2437 src = gen_lowpart (mode, src);
2438 return src;
2439}
2440\f
44037a66
TG
2441/* Add INC into TARGET. */
2442
2443void
502b8322 2444expand_inc (rtx target, rtx inc)
44037a66
TG
2445{
2446 rtx value = expand_binop (GET_MODE (target), add_optab,
2447 target, inc,
2448 target, 0, OPTAB_LIB_WIDEN);
2449 if (value != target)
2450 emit_move_insn (target, value);
2451}
2452
2453/* Subtract DEC from TARGET. */
2454
2455void
502b8322 2456expand_dec (rtx target, rtx dec)
44037a66
TG
2457{
2458 rtx value = expand_binop (GET_MODE (target), sub_optab,
2459 target, dec,
2460 target, 0, OPTAB_LIB_WIDEN);
2461 if (value != target)
2462 emit_move_insn (target, value);
2463}
2464\f
2465/* Output a shift instruction for expression code CODE,
2466 with SHIFTED being the rtx for the value to shift,
86529a49 2467 and AMOUNT the rtx for the amount to shift by.
44037a66
TG
2468 Store the result in the rtx TARGET, if that is convenient.
2469 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
ea000c3f
EB
2470 Return the rtx for where the value is.
2471 If that cannot be done, abort the compilation unless MAY_FAIL is true,
2472 in which case 0 is returned. */
44037a66 2473
86529a49 2474static rtx
ef4bddc2 2475expand_shift_1 (enum tree_code code, machine_mode mode, rtx shifted,
ea000c3f 2476 rtx amount, rtx target, int unsignedp, bool may_fail = false)
44037a66 2477{
b3694847
SS
2478 rtx op1, temp = 0;
2479 int left = (code == LSHIFT_EXPR || code == LROTATE_EXPR);
2480 int rotate = (code == LROTATE_EXPR || code == RROTATE_EXPR);
71d46ca5
MM
2481 optab lshift_optab = ashl_optab;
2482 optab rshift_arith_optab = ashr_optab;
2483 optab rshift_uns_optab = lshr_optab;
2484 optab lrotate_optab = rotl_optab;
2485 optab rrotate_optab = rotr_optab;
ef4bddc2 2486 machine_mode op1_mode;
a85cf8e9 2487 scalar_mode scalar_mode = GET_MODE_INNER (mode);
d858f359 2488 int attempt;
f40751dd 2489 bool speed = optimize_insn_for_speed_p ();
44037a66 2490
86529a49 2491 op1 = amount;
71d46ca5
MM
2492 op1_mode = GET_MODE (op1);
2493
2494 /* Determine whether the shift/rotate amount is a vector, or scalar. If the
2495 shift amount is a vector, use the vector/vector shift patterns. */
2496 if (VECTOR_MODE_P (mode) && VECTOR_MODE_P (op1_mode))
2497 {
2498 lshift_optab = vashl_optab;
2499 rshift_arith_optab = vashr_optab;
2500 rshift_uns_optab = vlshr_optab;
2501 lrotate_optab = vrotl_optab;
2502 rrotate_optab = vrotr_optab;
2503 }
2504
44037a66
TG
2505 /* Previously detected shift-counts computed by NEGATE_EXPR
2506 and shifted in the other direction; but that does not work
2507 on all machines. */
2508
166cdf4a
RH
2509 if (SHIFT_COUNT_TRUNCATED)
2510 {
481683e1 2511 if (CONST_INT_P (op1)
0fb7aeda 2512 && ((unsigned HOST_WIDE_INT) INTVAL (op1) >=
a4ee446d 2513 (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (scalar_mode)))
abd3c800
RS
2514 op1 = gen_int_shift_amount (mode,
2515 (unsigned HOST_WIDE_INT) INTVAL (op1)
2516 % GET_MODE_BITSIZE (scalar_mode));
166cdf4a 2517 else if (GET_CODE (op1) == SUBREG
c1cb09ad 2518 && subreg_lowpart_p (op1)
7afe2801
DM
2519 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (op1)))
2520 && SCALAR_INT_MODE_P (GET_MODE (op1)))
166cdf4a
RH
2521 op1 = SUBREG_REG (op1);
2522 }
2ab0a5c4 2523
75776c6d
JJ
2524 /* Canonicalize rotates by constant amount. If op1 is bitsize / 2,
2525 prefer left rotation, if op1 is from bitsize / 2 + 1 to
2526 bitsize - 1, use other direction of rotate with 1 .. bitsize / 2 - 1
2527 amount instead. */
2528 if (rotate
2529 && CONST_INT_P (op1)
a4ee446d
JJ
2530 && IN_RANGE (INTVAL (op1), GET_MODE_BITSIZE (scalar_mode) / 2 + left,
2531 GET_MODE_BITSIZE (scalar_mode) - 1))
75776c6d 2532 {
abd3c800
RS
2533 op1 = gen_int_shift_amount (mode, (GET_MODE_BITSIZE (scalar_mode)
2534 - INTVAL (op1)));
75776c6d
JJ
2535 left = !left;
2536 code = left ? LROTATE_EXPR : RROTATE_EXPR;
2537 }
2538
a25efea0
TP
2539 /* Rotation of 16bit values by 8 bits is effectively equivalent to a bswaphi.
2540 Note that this is not the case for bigger values. For instance a rotation
2541 of 0x01020304 by 16 bits gives 0x03040102 which is different from
2542 0x04030201 (bswapsi). */
2543 if (rotate
2544 && CONST_INT_P (op1)
2545 && INTVAL (op1) == BITS_PER_UNIT
2546 && GET_MODE_SIZE (scalar_mode) == 2
d235d09b
JJ
2547 && optab_handler (bswap_optab, mode) != CODE_FOR_nothing)
2548 return expand_unop (mode, bswap_optab, shifted, NULL_RTX, unsignedp);
a25efea0 2549
44037a66
TG
2550 if (op1 == const0_rtx)
2551 return shifted;
2552
15bad393
RS
2553 /* Check whether its cheaper to implement a left shift by a constant
2554 bit count by a sequence of additions. */
2555 if (code == LSHIFT_EXPR
481683e1 2556 && CONST_INT_P (op1)
15bad393 2557 && INTVAL (op1) > 0
a4ee446d 2558 && INTVAL (op1) < GET_MODE_PRECISION (scalar_mode)
cb2eb96f 2559 && INTVAL (op1) < MAX_BITS_PER_WORD
5322d07e
NF
2560 && (shift_cost (speed, mode, INTVAL (op1))
2561 > INTVAL (op1) * add_cost (speed, mode))
2562 && shift_cost (speed, mode, INTVAL (op1)) != MAX_COST)
15bad393
RS
2563 {
2564 int i;
2565 for (i = 0; i < INTVAL (op1); i++)
2566 {
2567 temp = force_reg (mode, shifted);
2568 shifted = expand_binop (mode, add_optab, temp, temp, NULL_RTX,
2569 unsignedp, OPTAB_LIB_WIDEN);
2570 }
2571 return shifted;
2572 }
2573
d858f359 2574 for (attempt = 0; temp == 0 && attempt < 3; attempt++)
44037a66
TG
2575 {
2576 enum optab_methods methods;
2577
d858f359 2578 if (attempt == 0)
44037a66 2579 methods = OPTAB_DIRECT;
d858f359 2580 else if (attempt == 1)
44037a66
TG
2581 methods = OPTAB_WIDEN;
2582 else
2583 methods = OPTAB_LIB_WIDEN;
2584
2585 if (rotate)
2586 {
2587 /* Widening does not work for rotation. */
2588 if (methods == OPTAB_WIDEN)
2589 continue;
2590 else if (methods == OPTAB_LIB_WIDEN)
cbec710e 2591 {
39e71615 2592 /* If we have been unable to open-code this by a rotation,
cbec710e 2593 do it as the IOR of two shifts. I.e., to rotate A
ae6fa899
JJ
2594 by N bits, compute
2595 (A << N) | ((unsigned) A >> ((-N) & (C - 1)))
cbec710e
RK
2596 where C is the bitsize of A.
2597
2598 It is theoretically possible that the target machine might
2599 not be able to perform either shift and hence we would
2600 be making two libcalls rather than just the one for the
2601 shift (similarly if IOR could not be done). We will allow
2602 this extremely unlikely lossage to avoid complicating the
2603 code below. */
2604
39e71615 2605 rtx subtarget = target == shifted ? 0 : target;
86529a49 2606 rtx new_amount, other_amount;
39e71615 2607 rtx temp1;
86529a49
RG
2608
2609 new_amount = op1;
ae6fa899
JJ
2610 if (op1 == const0_rtx)
2611 return shifted;
2612 else if (CONST_INT_P (op1))
abd3c800
RS
2613 other_amount = gen_int_shift_amount
2614 (mode, GET_MODE_BITSIZE (scalar_mode) - INTVAL (op1));
5c049507 2615 else
ae6fa899
JJ
2616 {
2617 other_amount
2618 = simplify_gen_unary (NEG, GET_MODE (op1),
2619 op1, GET_MODE (op1));
a4ee446d 2620 HOST_WIDE_INT mask = GET_MODE_PRECISION (scalar_mode) - 1;
ae6fa899 2621 other_amount
69a59f0f
RS
2622 = simplify_gen_binary (AND, GET_MODE (op1), other_amount,
2623 gen_int_mode (mask, GET_MODE (op1)));
ae6fa899 2624 }
39e71615
RK
2625
2626 shifted = force_reg (mode, shifted);
2627
86529a49
RG
2628 temp = expand_shift_1 (left ? LSHIFT_EXPR : RSHIFT_EXPR,
2629 mode, shifted, new_amount, 0, 1);
2630 temp1 = expand_shift_1 (left ? RSHIFT_EXPR : LSHIFT_EXPR,
2631 mode, shifted, other_amount,
2632 subtarget, 1);
39e71615
RK
2633 return expand_binop (mode, ior_optab, temp, temp1, target,
2634 unsignedp, methods);
cbec710e 2635 }
44037a66
TG
2636
2637 temp = expand_binop (mode,
71d46ca5 2638 left ? lrotate_optab : rrotate_optab,
44037a66
TG
2639 shifted, op1, target, unsignedp, methods);
2640 }
2641 else if (unsignedp)
a34958c9 2642 temp = expand_binop (mode,
71d46ca5 2643 left ? lshift_optab : rshift_uns_optab,
a34958c9 2644 shifted, op1, target, unsignedp, methods);
44037a66
TG
2645
2646 /* Do arithmetic shifts.
2647 Also, if we are going to widen the operand, we can just as well
2648 use an arithmetic right-shift instead of a logical one. */
2649 if (temp == 0 && ! rotate
2650 && (! unsignedp || (! left && methods == OPTAB_WIDEN)))
2651 {
2652 enum optab_methods methods1 = methods;
2653
2654 /* If trying to widen a log shift to an arithmetic shift,
2655 don't accept an arithmetic shift of the same size. */
2656 if (unsignedp)
2657 methods1 = OPTAB_MUST_WIDEN;
2658
2659 /* Arithmetic shift */
2660
2661 temp = expand_binop (mode,
71d46ca5 2662 left ? lshift_optab : rshift_arith_optab,
44037a66
TG
2663 shifted, op1, target, unsignedp, methods1);
2664 }
2665
711a5e64 2666 /* We used to try extzv here for logical right shifts, but that was
c410d49e 2667 only useful for one machine, the VAX, and caused poor code
711a5e64
RK
2668 generation there for lshrdi3, so the code was deleted and a
2669 define_expand for lshrsi3 was added to vax.md. */
44037a66
TG
2670 }
2671
ea000c3f 2672 gcc_assert (temp != NULL_RTX || may_fail);
44037a66
TG
2673 return temp;
2674}
eb6c3df1
RG
2675
2676/* Output a shift instruction for expression code CODE,
2677 with SHIFTED being the rtx for the value to shift,
2678 and AMOUNT the amount to shift by.
2679 Store the result in the rtx TARGET, if that is convenient.
2680 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2681 Return the rtx for where the value is. */
2682
2683rtx
ef4bddc2 2684expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
0c12fc9b 2685 poly_int64 amount, rtx target, int unsignedp)
eb6c3df1 2686{
abd3c800
RS
2687 return expand_shift_1 (code, mode, shifted,
2688 gen_int_shift_amount (mode, amount),
2689 target, unsignedp);
86529a49
RG
2690}
2691
ea000c3f
EB
2692/* Likewise, but return 0 if that cannot be done. */
2693
2694static rtx
2695maybe_expand_shift (enum tree_code code, machine_mode mode, rtx shifted,
2696 int amount, rtx target, int unsignedp)
2697{
2698 return expand_shift_1 (code, mode,
2699 shifted, GEN_INT (amount), target, unsignedp, true);
2700}
2701
86529a49
RG
2702/* Output a shift instruction for expression code CODE,
2703 with SHIFTED being the rtx for the value to shift,
2704 and AMOUNT the tree for the amount to shift by.
2705 Store the result in the rtx TARGET, if that is convenient.
2706 If UNSIGNEDP is nonzero, do a logical shift; otherwise, arithmetic.
2707 Return the rtx for where the value is. */
2708
2709rtx
ef4bddc2 2710expand_variable_shift (enum tree_code code, machine_mode mode, rtx shifted,
86529a49
RG
2711 tree amount, rtx target, int unsignedp)
2712{
2713 return expand_shift_1 (code, mode,
2714 shifted, expand_normal (amount), target, unsignedp);
eb6c3df1 2715}
86529a49 2716
44037a66 2717\f
41c64ac0 2718static void synth_mult (struct algorithm *, unsigned HOST_WIDE_INT,
ef4bddc2 2719 const struct mult_cost *, machine_mode mode);
ef4bddc2 2720static rtx expand_mult_const (machine_mode, rtx, HOST_WIDE_INT, rtx,
8efc8980 2721 const struct algorithm *, enum mult_variant);
502b8322 2722static unsigned HOST_WIDE_INT invert_mod2n (unsigned HOST_WIDE_INT, int);
095a2d76
RS
2723static rtx extract_high_half (scalar_int_mode, rtx);
2724static rtx expmed_mult_highpart (scalar_int_mode, rtx, rtx, rtx, int, int);
2725static rtx expmed_mult_highpart_optab (scalar_int_mode, rtx, rtx, rtx,
8efc8980 2726 int, int);
44037a66 2727/* Compute and return the best algorithm for multiplying by T.
7963ac37
RK
2728 The algorithm must cost less than cost_limit
2729 If retval.cost >= COST_LIMIT, no algorithm was found and all
41c64ac0
RS
2730 other field of the returned struct are undefined.
2731 MODE is the machine mode of the multiplication. */
44037a66 2732
819126a6 2733static void
502b8322 2734synth_mult (struct algorithm *alg_out, unsigned HOST_WIDE_INT t,
ef4bddc2 2735 const struct mult_cost *cost_limit, machine_mode mode)
44037a66 2736{
b2fb324c 2737 int m;
52786026 2738 struct algorithm *alg_in, *best_alg;
26276705
RS
2739 struct mult_cost best_cost;
2740 struct mult_cost new_limit;
2741 int op_cost, op_latency;
ef268d34 2742 unsigned HOST_WIDE_INT orig_t = t;
b2fb324c 2743 unsigned HOST_WIDE_INT q;
84ddb681 2744 int maxm, hash_index;
7b13ee6b
KH
2745 bool cache_hit = false;
2746 enum alg_code cache_alg = alg_zero;
f40751dd 2747 bool speed = optimize_insn_for_speed_p ();
c7ad039d 2748 scalar_int_mode imode;
5322d07e 2749 struct alg_hash_entry *entry_ptr;
44037a66 2750
7963ac37
RK
2751 /* Indicate that no algorithm is yet found. If no algorithm
2752 is found, this value will be returned and indicate failure. */
26276705 2753 alg_out->cost.cost = cost_limit->cost + 1;
3ab0f290 2754 alg_out->cost.latency = cost_limit->latency + 1;
44037a66 2755
26276705
RS
2756 if (cost_limit->cost < 0
2757 || (cost_limit->cost == 0 && cost_limit->latency <= 0))
819126a6 2758 return;
44037a66 2759
84ddb681 2760 /* Be prepared for vector modes. */
c7ad039d 2761 imode = as_a <scalar_int_mode> (GET_MODE_INNER (mode));
84ddb681
RH
2762
2763 maxm = MIN (BITS_PER_WORD, GET_MODE_BITSIZE (imode));
2764
0792ab19 2765 /* Restrict the bits of "t" to the multiplication's mode. */
84ddb681 2766 t &= GET_MODE_MASK (imode);
0792ab19 2767
b385aeda
RK
2768 /* t == 1 can be done in zero cost. */
2769 if (t == 1)
b2fb324c 2770 {
819126a6 2771 alg_out->ops = 1;
26276705
RS
2772 alg_out->cost.cost = 0;
2773 alg_out->cost.latency = 0;
819126a6
RK
2774 alg_out->op[0] = alg_m;
2775 return;
b2fb324c
RK
2776 }
2777
b385aeda
RK
2778 /* t == 0 sometimes has a cost. If it does and it exceeds our limit,
2779 fail now. */
819126a6 2780 if (t == 0)
b385aeda 2781 {
5322d07e 2782 if (MULT_COST_LESS (cost_limit, zero_cost (speed)))
819126a6 2783 return;
b385aeda
RK
2784 else
2785 {
819126a6 2786 alg_out->ops = 1;
5322d07e
NF
2787 alg_out->cost.cost = zero_cost (speed);
2788 alg_out->cost.latency = zero_cost (speed);
819126a6
RK
2789 alg_out->op[0] = alg_zero;
2790 return;
b385aeda
RK
2791 }
2792 }
2793
52786026
RK
2794 /* We'll be needing a couple extra algorithm structures now. */
2795
1b4572a8
KG
2796 alg_in = XALLOCA (struct algorithm);
2797 best_alg = XALLOCA (struct algorithm);
26276705 2798 best_cost = *cost_limit;
52786026 2799
7b13ee6b 2800 /* Compute the hash index. */
f40751dd 2801 hash_index = (t ^ (unsigned int) mode ^ (speed * 256)) % NUM_ALG_HASH_ENTRIES;
7b13ee6b
KH
2802
2803 /* See if we already know what to do for T. */
5322d07e
NF
2804 entry_ptr = alg_hash_entry_ptr (hash_index);
2805 if (entry_ptr->t == t
5322d07e
NF
2806 && entry_ptr->mode == mode
2807 && entry_ptr->speed == speed
2808 && entry_ptr->alg != alg_unknown)
7b13ee6b 2809 {
5322d07e 2810 cache_alg = entry_ptr->alg;
0178027c
KH
2811
2812 if (cache_alg == alg_impossible)
7b13ee6b 2813 {
0178027c 2814 /* The cache tells us that it's impossible to synthesize
5322d07e
NF
2815 multiplication by T within entry_ptr->cost. */
2816 if (!CHEAPER_MULT_COST (&entry_ptr->cost, cost_limit))
0178027c
KH
2817 /* COST_LIMIT is at least as restrictive as the one
2818 recorded in the hash table, in which case we have no
2819 hope of synthesizing a multiplication. Just
2820 return. */
2821 return;
2822
2823 /* If we get here, COST_LIMIT is less restrictive than the
2824 one recorded in the hash table, so we may be able to
2825 synthesize a multiplication. Proceed as if we didn't
2826 have the cache entry. */
2827 }
2828 else
2829 {
5322d07e 2830 if (CHEAPER_MULT_COST (cost_limit, &entry_ptr->cost))
0178027c
KH
2831 /* The cached algorithm shows that this multiplication
2832 requires more cost than COST_LIMIT. Just return. This
2833 way, we don't clobber this cache entry with
2834 alg_impossible but retain useful information. */
2835 return;
7b13ee6b 2836
0178027c
KH
2837 cache_hit = true;
2838
2839 switch (cache_alg)
2840 {
2841 case alg_shift:
2842 goto do_alg_shift;
7b13ee6b 2843
0178027c
KH
2844 case alg_add_t_m2:
2845 case alg_sub_t_m2:
2846 goto do_alg_addsub_t_m2;
7b13ee6b 2847
0178027c
KH
2848 case alg_add_factor:
2849 case alg_sub_factor:
2850 goto do_alg_addsub_factor;
7b13ee6b 2851
0178027c
KH
2852 case alg_add_t2_m:
2853 goto do_alg_add_t2_m;
7b13ee6b 2854
0178027c
KH
2855 case alg_sub_t2_m:
2856 goto do_alg_sub_t2_m;
2857
2858 default:
2859 gcc_unreachable ();
2860 }
7b13ee6b
KH
2861 }
2862 }
2863
b385aeda
RK
2864 /* If we have a group of zero bits at the low-order part of T, try
2865 multiplying by the remaining bits and then doing a shift. */
2866
b2fb324c 2867 if ((t & 1) == 0)
44037a66 2868 {
7b13ee6b 2869 do_alg_shift:
146ec50f 2870 m = ctz_or_zero (t); /* m = number of low zero bits */
0792ab19 2871 if (m < maxm)
44037a66 2872 {
02a65aef 2873 q = t >> m;
15bad393
RS
2874 /* The function expand_shift will choose between a shift and
2875 a sequence of additions, so the observed cost is given as
5322d07e
NF
2876 MIN (m * add_cost(speed, mode), shift_cost(speed, mode, m)). */
2877 op_cost = m * add_cost (speed, mode);
2878 if (shift_cost (speed, mode, m) < op_cost)
2879 op_cost = shift_cost (speed, mode, m);
26276705
RS
2880 new_limit.cost = best_cost.cost - op_cost;
2881 new_limit.latency = best_cost.latency - op_cost;
2882 synth_mult (alg_in, q, &new_limit, mode);
2883
2884 alg_in->cost.cost += op_cost;
2885 alg_in->cost.latency += op_cost;
2886 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
02a65aef 2887 {
26276705 2888 best_cost = alg_in->cost;
076701b6 2889 std::swap (alg_in, best_alg);
02a65aef
R
2890 best_alg->log[best_alg->ops] = m;
2891 best_alg->op[best_alg->ops] = alg_shift;
02a65aef 2892 }
ddc2690a
KH
2893
2894 /* See if treating ORIG_T as a signed number yields a better
2895 sequence. Try this sequence only for a negative ORIG_T
2896 as it would be useless for a non-negative ORIG_T. */
2897 if ((HOST_WIDE_INT) orig_t < 0)
2898 {
2899 /* Shift ORIG_T as follows because a right shift of a
2900 negative-valued signed type is implementation
2901 defined. */
2902 q = ~(~orig_t >> m);
2903 /* The function expand_shift will choose between a shift
2904 and a sequence of additions, so the observed cost is
5322d07e
NF
2905 given as MIN (m * add_cost(speed, mode),
2906 shift_cost(speed, mode, m)). */
2907 op_cost = m * add_cost (speed, mode);
2908 if (shift_cost (speed, mode, m) < op_cost)
2909 op_cost = shift_cost (speed, mode, m);
ddc2690a
KH
2910 new_limit.cost = best_cost.cost - op_cost;
2911 new_limit.latency = best_cost.latency - op_cost;
2912 synth_mult (alg_in, q, &new_limit, mode);
2913
2914 alg_in->cost.cost += op_cost;
2915 alg_in->cost.latency += op_cost;
2916 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
2917 {
ddc2690a 2918 best_cost = alg_in->cost;
076701b6 2919 std::swap (alg_in, best_alg);
ddc2690a
KH
2920 best_alg->log[best_alg->ops] = m;
2921 best_alg->op[best_alg->ops] = alg_shift;
2922 }
2923 }
819126a6 2924 }
7b13ee6b
KH
2925 if (cache_hit)
2926 goto done;
819126a6
RK
2927 }
2928
2929 /* If we have an odd number, add or subtract one. */
2930 if ((t & 1) != 0)
2931 {
2932 unsigned HOST_WIDE_INT w;
2933
7b13ee6b 2934 do_alg_addsub_t_m2:
819126a6
RK
2935 for (w = 1; (w & t) != 0; w <<= 1)
2936 ;
31031edd 2937 /* If T was -1, then W will be zero after the loop. This is another
c410d49e 2938 case where T ends with ...111. Handling this with (T + 1) and
31031edd
JL
2939 subtract 1 produces slightly better code and results in algorithm
2940 selection much faster than treating it like the ...0111 case
2941 below. */
2942 if (w == 0
2943 || (w > 2
2944 /* Reject the case where t is 3.
2945 Thus we prefer addition in that case. */
2946 && t != 3))
819126a6 2947 {
c61928d0 2948 /* T ends with ...111. Multiply by (T + 1) and subtract T. */
819126a6 2949
5322d07e 2950 op_cost = add_cost (speed, mode);
26276705
RS
2951 new_limit.cost = best_cost.cost - op_cost;
2952 new_limit.latency = best_cost.latency - op_cost;
2953 synth_mult (alg_in, t + 1, &new_limit, mode);
b2fb324c 2954
26276705
RS
2955 alg_in->cost.cost += op_cost;
2956 alg_in->cost.latency += op_cost;
2957 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
44037a66 2958 {
26276705 2959 best_cost = alg_in->cost;
076701b6 2960 std::swap (alg_in, best_alg);
819126a6
RK
2961 best_alg->log[best_alg->ops] = 0;
2962 best_alg->op[best_alg->ops] = alg_sub_t_m2;
44037a66 2963 }
44037a66 2964 }
819126a6
RK
2965 else
2966 {
c61928d0 2967 /* T ends with ...01 or ...011. Multiply by (T - 1) and add T. */
44037a66 2968
5322d07e 2969 op_cost = add_cost (speed, mode);
26276705
RS
2970 new_limit.cost = best_cost.cost - op_cost;
2971 new_limit.latency = best_cost.latency - op_cost;
2972 synth_mult (alg_in, t - 1, &new_limit, mode);
819126a6 2973
26276705
RS
2974 alg_in->cost.cost += op_cost;
2975 alg_in->cost.latency += op_cost;
2976 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
819126a6 2977 {
26276705 2978 best_cost = alg_in->cost;
076701b6 2979 std::swap (alg_in, best_alg);
819126a6
RK
2980 best_alg->log[best_alg->ops] = 0;
2981 best_alg->op[best_alg->ops] = alg_add_t_m2;
819126a6
RK
2982 }
2983 }
ef268d34
KH
2984
2985 /* We may be able to calculate a * -7, a * -15, a * -31, etc
2986 quickly with a - a * n for some appropriate constant n. */
2987 m = exact_log2 (-orig_t + 1);
2988 if (m >= 0 && m < maxm)
2989 {
35430ca0
KT
2990 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
2991 /* If the target has a cheap shift-and-subtract insn use
2992 that in preference to a shift insn followed by a sub insn.
2993 Assume that the shift-and-sub is "atomic" with a latency
2994 equal to it's cost, otherwise assume that on superscalar
2995 hardware the shift may be executed concurrently with the
2996 earlier steps in the algorithm. */
2997 if (shiftsub1_cost (speed, mode, m) <= op_cost)
2998 {
2999 op_cost = shiftsub1_cost (speed, mode, m);
3000 op_latency = op_cost;
3001 }
3002 else
3003 op_latency = add_cost (speed, mode);
3004
ef268d34 3005 new_limit.cost = best_cost.cost - op_cost;
35430ca0 3006 new_limit.latency = best_cost.latency - op_latency;
84ddb681
RH
3007 synth_mult (alg_in, (unsigned HOST_WIDE_INT) (-orig_t + 1) >> m,
3008 &new_limit, mode);
ef268d34
KH
3009
3010 alg_in->cost.cost += op_cost;
35430ca0 3011 alg_in->cost.latency += op_latency;
ef268d34
KH
3012 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
3013 {
ef268d34 3014 best_cost = alg_in->cost;
076701b6 3015 std::swap (alg_in, best_alg);
ef268d34
KH
3016 best_alg->log[best_alg->ops] = m;
3017 best_alg->op[best_alg->ops] = alg_sub_t_m2;
3018 }
3019 }
3020
7b13ee6b
KH
3021 if (cache_hit)
3022 goto done;
819126a6 3023 }
63610db9 3024
44037a66 3025 /* Look for factors of t of the form
7963ac37 3026 t = q(2**m +- 1), 2 <= m <= floor(log2(t - 1)).
44037a66 3027 If we find such a factor, we can multiply by t using an algorithm that
7963ac37 3028 multiplies by q, shift the result by m and add/subtract it to itself.
44037a66 3029
7963ac37
RK
3030 We search for large factors first and loop down, even if large factors
3031 are less probable than small; if we find a large factor we will find a
3032 good sequence quickly, and therefore be able to prune (by decreasing
3033 COST_LIMIT) the search. */
3034
7b13ee6b 3035 do_alg_addsub_factor:
7963ac37 3036 for (m = floor_log2 (t - 1); m >= 2; m--)
44037a66 3037 {
7963ac37 3038 unsigned HOST_WIDE_INT d;
44037a66 3039
fecfbfa4 3040 d = (HOST_WIDE_INT_1U << m) + 1;
7b13ee6b
KH
3041 if (t % d == 0 && t > d && m < maxm
3042 && (!cache_hit || cache_alg == alg_add_factor))
44037a66 3043 {
5322d07e 3044 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
35430ca0
KT
3045 if (shiftadd_cost (speed, mode, m) <= op_cost)
3046 op_cost = shiftadd_cost (speed, mode, m);
3047
3048 op_latency = op_cost;
3049
26276705
RS
3050
3051 new_limit.cost = best_cost.cost - op_cost;
3052 new_limit.latency = best_cost.latency - op_latency;
3053 synth_mult (alg_in, t / d, &new_limit, mode);
44037a66 3054
26276705
RS
3055 alg_in->cost.cost += op_cost;
3056 alg_in->cost.latency += op_latency;
3057 if (alg_in->cost.latency < op_cost)
3058 alg_in->cost.latency = op_cost;
3059 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
44037a66 3060 {
26276705 3061 best_cost = alg_in->cost;
076701b6 3062 std::swap (alg_in, best_alg);
b385aeda 3063 best_alg->log[best_alg->ops] = m;
819126a6 3064 best_alg->op[best_alg->ops] = alg_add_factor;
44037a66 3065 }
c0b262c1
TG
3066 /* Other factors will have been taken care of in the recursion. */
3067 break;
44037a66
TG
3068 }
3069
fecfbfa4 3070 d = (HOST_WIDE_INT_1U << m) - 1;
7b13ee6b
KH
3071 if (t % d == 0 && t > d && m < maxm
3072 && (!cache_hit || cache_alg == alg_sub_factor))
44037a66 3073 {
5322d07e 3074 op_cost = add_cost (speed, mode) + shift_cost (speed, mode, m);
35430ca0
KT
3075 if (shiftsub0_cost (speed, mode, m) <= op_cost)
3076 op_cost = shiftsub0_cost (speed, mode, m);
3077
3078 op_latency = op_cost;
26276705
RS
3079
3080 new_limit.cost = best_cost.cost - op_cost;
417c735c 3081 new_limit.latency = best_cost.latency - op_latency;
26276705 3082 synth_mult (alg_in, t / d, &new_limit, mode);
44037a66 3083
26276705
RS
3084 alg_in->cost.cost += op_cost;
3085 alg_in->cost.latency += op_latency;
3086 if (alg_in->cost.latency < op_cost)
3087 alg_in->cost.latency = op_cost;
3088 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
44037a66 3089 {
26276705 3090 best_cost = alg_in->cost;
076701b6 3091 std::swap (alg_in, best_alg);
b385aeda 3092 best_alg->log[best_alg->ops] = m;
819126a6 3093 best_alg->op[best_alg->ops] = alg_sub_factor;
44037a66 3094 }
c0b262c1 3095 break;
44037a66
TG
3096 }
3097 }
7b13ee6b
KH
3098 if (cache_hit)
3099 goto done;
44037a66 3100
7963ac37
RK
3101 /* Try shift-and-add (load effective address) instructions,
3102 i.e. do a*3, a*5, a*9. */
3103 if ((t & 1) != 0)
3104 {
7b13ee6b 3105 do_alg_add_t2_m:
7963ac37 3106 q = t - 1;
146ec50f
JM
3107 m = ctz_hwi (q);
3108 if (q && m < maxm)
b385aeda 3109 {
5322d07e 3110 op_cost = shiftadd_cost (speed, mode, m);
26276705
RS
3111 new_limit.cost = best_cost.cost - op_cost;
3112 new_limit.latency = best_cost.latency - op_cost;
3113 synth_mult (alg_in, (t - 1) >> m, &new_limit, mode);
3114
3115 alg_in->cost.cost += op_cost;
3116 alg_in->cost.latency += op_cost;
3117 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
5eebe2eb 3118 {
26276705 3119 best_cost = alg_in->cost;
076701b6 3120 std::swap (alg_in, best_alg);
5eebe2eb 3121 best_alg->log[best_alg->ops] = m;
819126a6 3122 best_alg->op[best_alg->ops] = alg_add_t2_m;
5eebe2eb 3123 }
7963ac37 3124 }
7b13ee6b
KH
3125 if (cache_hit)
3126 goto done;
44037a66 3127
7b13ee6b 3128 do_alg_sub_t2_m:
7963ac37 3129 q = t + 1;
146ec50f
JM
3130 m = ctz_hwi (q);
3131 if (q && m < maxm)
b385aeda 3132 {
5322d07e 3133 op_cost = shiftsub0_cost (speed, mode, m);
26276705
RS
3134 new_limit.cost = best_cost.cost - op_cost;
3135 new_limit.latency = best_cost.latency - op_cost;
3136 synth_mult (alg_in, (t + 1) >> m, &new_limit, mode);
3137
3138 alg_in->cost.cost += op_cost;
3139 alg_in->cost.latency += op_cost;
3140 if (CHEAPER_MULT_COST (&alg_in->cost, &best_cost))
5eebe2eb 3141 {
26276705 3142 best_cost = alg_in->cost;
076701b6 3143 std::swap (alg_in, best_alg);
5eebe2eb 3144 best_alg->log[best_alg->ops] = m;
819126a6 3145 best_alg->op[best_alg->ops] = alg_sub_t2_m;
5eebe2eb 3146 }
7963ac37 3147 }
7b13ee6b
KH
3148 if (cache_hit)
3149 goto done;
7963ac37 3150 }
44037a66 3151
7b13ee6b 3152 done:
3ab0f290
DJ
3153 /* If best_cost has not decreased, we have not found any algorithm. */
3154 if (!CHEAPER_MULT_COST (&best_cost, cost_limit))
0178027c
KH
3155 {
3156 /* We failed to find an algorithm. Record alg_impossible for
3157 this case (that is, <T, MODE, COST_LIMIT>) so that next time
3158 we are asked to find an algorithm for T within the same or
3159 lower COST_LIMIT, we can immediately return to the
3160 caller. */
5322d07e
NF
3161 entry_ptr->t = t;
3162 entry_ptr->mode = mode;
3163 entry_ptr->speed = speed;
3164 entry_ptr->alg = alg_impossible;
3165 entry_ptr->cost = *cost_limit;
0178027c
KH
3166 return;
3167 }
3ab0f290 3168
7b13ee6b
KH
3169 /* Cache the result. */
3170 if (!cache_hit)
3171 {
5322d07e
NF
3172 entry_ptr->t = t;
3173 entry_ptr->mode = mode;
3174 entry_ptr->speed = speed;
3175 entry_ptr->alg = best_alg->op[best_alg->ops];
3176 entry_ptr->cost.cost = best_cost.cost;
3177 entry_ptr->cost.latency = best_cost.latency;
7b13ee6b
KH
3178 }
3179
52786026
RK
3180 /* If we are getting a too long sequence for `struct algorithm'
3181 to record, make this search fail. */
3182 if (best_alg->ops == MAX_BITS_PER_WORD)
3183 return;
3184
819126a6
RK
3185 /* Copy the algorithm from temporary space to the space at alg_out.
3186 We avoid using structure assignment because the majority of
3187 best_alg is normally undefined, and this is a critical function. */
3188 alg_out->ops = best_alg->ops + 1;
26276705 3189 alg_out->cost = best_cost;
4e135bdd
KG
3190 memcpy (alg_out->op, best_alg->op,
3191 alg_out->ops * sizeof *alg_out->op);
3192 memcpy (alg_out->log, best_alg->log,
3193 alg_out->ops * sizeof *alg_out->log);
44037a66
TG
3194}
3195\f
d1a6adeb 3196/* Find the cheapest way of multiplying a value of mode MODE by VAL.
8efc8980
RS
3197 Try three variations:
3198
3199 - a shift/add sequence based on VAL itself
3200 - a shift/add sequence based on -VAL, followed by a negation
3201 - a shift/add sequence based on VAL - 1, followed by an addition.
3202
f258e38b
UW
3203 Return true if the cheapest of these cost less than MULT_COST,
3204 describing the algorithm in *ALG and final fixup in *VARIANT. */
8efc8980 3205
ec573d17 3206bool
ef4bddc2 3207choose_mult_variant (machine_mode mode, HOST_WIDE_INT val,
f258e38b
UW
3208 struct algorithm *alg, enum mult_variant *variant,
3209 int mult_cost)
8efc8980 3210{
8efc8980 3211 struct algorithm alg2;
26276705
RS
3212 struct mult_cost limit;
3213 int op_cost;
f40751dd 3214 bool speed = optimize_insn_for_speed_p ();
8efc8980 3215
18eaea7f
RS
3216 /* Fail quickly for impossible bounds. */
3217 if (mult_cost < 0)
3218 return false;
3219
3220 /* Ensure that mult_cost provides a reasonable upper bound.
3221 Any constant multiplication can be performed with less
3222 than 2 * bits additions. */
5322d07e 3223 op_cost = 2 * GET_MODE_UNIT_BITSIZE (mode) * add_cost (speed, mode);
18eaea7f
RS
3224 if (mult_cost > op_cost)
3225 mult_cost = op_cost;
3226
8efc8980 3227 *variant = basic_variant;
26276705
RS
3228 limit.cost = mult_cost;
3229 limit.latency = mult_cost;
3230 synth_mult (alg, val, &limit, mode);
8efc8980
RS
3231
3232 /* This works only if the inverted value actually fits in an
3233 `unsigned int' */
84ddb681 3234 if (HOST_BITS_PER_INT >= GET_MODE_UNIT_BITSIZE (mode))
8efc8980 3235 {
c3284718 3236 op_cost = neg_cost (speed, mode);
26276705
RS
3237 if (MULT_COST_LESS (&alg->cost, mult_cost))
3238 {
3239 limit.cost = alg->cost.cost - op_cost;
3240 limit.latency = alg->cost.latency - op_cost;
3241 }
3242 else
3243 {
3244 limit.cost = mult_cost - op_cost;
3245 limit.latency = mult_cost - op_cost;
3246 }
3247
3248 synth_mult (&alg2, -val, &limit, mode);
3249 alg2.cost.cost += op_cost;
3250 alg2.cost.latency += op_cost;
3251 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
8efc8980
RS
3252 *alg = alg2, *variant = negate_variant;
3253 }
3254
3255 /* This proves very useful for division-by-constant. */
5322d07e 3256 op_cost = add_cost (speed, mode);
26276705
RS
3257 if (MULT_COST_LESS (&alg->cost, mult_cost))
3258 {
3259 limit.cost = alg->cost.cost - op_cost;
3260 limit.latency = alg->cost.latency - op_cost;
3261 }
3262 else
3263 {
3264 limit.cost = mult_cost - op_cost;
3265 limit.latency = mult_cost - op_cost;
3266 }
3267
3268 synth_mult (&alg2, val - 1, &limit, mode);
3269 alg2.cost.cost += op_cost;
3270 alg2.cost.latency += op_cost;
3271 if (CHEAPER_MULT_COST (&alg2.cost, &alg->cost))
8efc8980
RS
3272 *alg = alg2, *variant = add_variant;
3273
26276705 3274 return MULT_COST_LESS (&alg->cost, mult_cost);
8efc8980
RS
3275}
3276
3277/* A subroutine of expand_mult, used for constant multiplications.
3278 Multiply OP0 by VAL in mode MODE, storing the result in TARGET if
3279 convenient. Use the shift/add sequence described by ALG and apply
3280 the final fixup specified by VARIANT. */
3281
3282static rtx
ef4bddc2 3283expand_mult_const (machine_mode mode, rtx op0, HOST_WIDE_INT val,
8efc8980
RS
3284 rtx target, const struct algorithm *alg,
3285 enum mult_variant variant)
3286{
1b13411a 3287 unsigned HOST_WIDE_INT val_so_far;
f3f6fb16
DM
3288 rtx_insn *insn;
3289 rtx accum, tem;
8efc8980 3290 int opno;
ef4bddc2 3291 machine_mode nmode;
8efc8980 3292
d448860e
JH
3293 /* Avoid referencing memory over and over and invalid sharing
3294 on SUBREGs. */
3295 op0 = force_reg (mode, op0);
8efc8980
RS
3296
3297 /* ACCUM starts out either as OP0 or as a zero, depending on
3298 the first operation. */
3299
3300 if (alg->op[0] == alg_zero)
3301 {
84ddb681 3302 accum = copy_to_mode_reg (mode, CONST0_RTX (mode));
8efc8980
RS
3303 val_so_far = 0;
3304 }
3305 else if (alg->op[0] == alg_m)
3306 {
3307 accum = copy_to_mode_reg (mode, op0);
3308 val_so_far = 1;
3309 }
3310 else
5b0264cb 3311 gcc_unreachable ();
8efc8980
RS
3312
3313 for (opno = 1; opno < alg->ops; opno++)
3314 {
3315 int log = alg->log[opno];
7c27e184 3316 rtx shift_subtarget = optimize ? 0 : accum;
8efc8980
RS
3317 rtx add_target
3318 = (opno == alg->ops - 1 && target != 0 && variant != add_variant
7c27e184 3319 && !optimize)
8efc8980 3320 ? target : 0;
7c27e184 3321 rtx accum_target = optimize ? 0 : accum;
7543f918 3322 rtx accum_inner;
8efc8980
RS
3323
3324 switch (alg->op[opno])
3325 {
3326 case alg_shift:
eb6c3df1 3327 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
4caa21a1
UB
3328 /* REG_EQUAL note will be attached to the following insn. */
3329 emit_move_insn (accum, tem);
8efc8980
RS
3330 val_so_far <<= log;
3331 break;
3332
3333 case alg_add_t_m2:
eb6c3df1 3334 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
8efc8980
RS
3335 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3336 add_target ? add_target : accum_target);
1b13411a 3337 val_so_far += HOST_WIDE_INT_1U << log;
8efc8980
RS
3338 break;
3339
3340 case alg_sub_t_m2:
eb6c3df1 3341 tem = expand_shift (LSHIFT_EXPR, mode, op0, log, NULL_RTX, 0);
8efc8980
RS
3342 accum = force_operand (gen_rtx_MINUS (mode, accum, tem),
3343 add_target ? add_target : accum_target);
1b13411a 3344 val_so_far -= HOST_WIDE_INT_1U << log;
8efc8980
RS
3345 break;
3346
3347 case alg_add_t2_m:
3348 accum = expand_shift (LSHIFT_EXPR, mode, accum,
eb6c3df1 3349 log, shift_subtarget, 0);
8efc8980
RS
3350 accum = force_operand (gen_rtx_PLUS (mode, accum, op0),
3351 add_target ? add_target : accum_target);
3352 val_so_far = (val_so_far << log) + 1;
3353 break;
3354
3355 case alg_sub_t2_m:
3356 accum = expand_shift (LSHIFT_EXPR, mode, accum,
eb6c3df1 3357 log, shift_subtarget, 0);
8efc8980
RS
3358 accum = force_operand (gen_rtx_MINUS (mode, accum, op0),
3359 add_target ? add_target : accum_target);
3360 val_so_far = (val_so_far << log) - 1;
3361 break;
3362
3363 case alg_add_factor:
eb6c3df1 3364 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
8efc8980
RS
3365 accum = force_operand (gen_rtx_PLUS (mode, accum, tem),
3366 add_target ? add_target : accum_target);
3367 val_so_far += val_so_far << log;
3368 break;
3369
3370 case alg_sub_factor:
eb6c3df1 3371 tem = expand_shift (LSHIFT_EXPR, mode, accum, log, NULL_RTX, 0);
8efc8980 3372 accum = force_operand (gen_rtx_MINUS (mode, tem, accum),
7c27e184
PB
3373 (add_target
3374 ? add_target : (optimize ? 0 : tem)));
8efc8980
RS
3375 val_so_far = (val_so_far << log) - val_so_far;
3376 break;
3377
3378 default:
5b0264cb 3379 gcc_unreachable ();
8efc8980
RS
3380 }
3381
84ddb681 3382 if (SCALAR_INT_MODE_P (mode))
8efc8980 3383 {
84ddb681
RH
3384 /* Write a REG_EQUAL note on the last insn so that we can cse
3385 multiplication sequences. Note that if ACCUM is a SUBREG,
3386 we've set the inner register and must properly indicate that. */
8e7dfe71
JJ
3387 tem = op0, nmode = mode;
3388 accum_inner = accum;
3389 if (GET_CODE (accum) == SUBREG)
84ddb681
RH
3390 {
3391 accum_inner = SUBREG_REG (accum);
3392 nmode = GET_MODE (accum_inner);
3393 tem = gen_lowpart (nmode, op0);
3394 }
8efc8980 3395
87654f18
JJ
3396 /* Don't add a REG_EQUAL note if tem is a paradoxical SUBREG.
3397 In that case, only the low bits of accum would be guaranteed to
3398 be equal to the content of the REG_EQUAL note, the upper bits
3399 can be anything. */
3400 if (!paradoxical_subreg_p (tem))
3401 {
3402 insn = get_last_insn ();
3403 wide_int wval_so_far
3404 = wi::uhwi (val_so_far,
3405 GET_MODE_PRECISION (as_a <scalar_mode> (nmode)));
3406 rtx c = immed_wide_int_const (wval_so_far, nmode);
3407 set_dst_reg_note (insn, REG_EQUAL, gen_rtx_MULT (nmode, tem, c),
3408 accum_inner);
3409 }
84ddb681 3410 }
8efc8980
RS
3411 }
3412
3413 if (variant == negate_variant)
3414 {
3415 val_so_far = -val_so_far;
3416 accum = expand_unop (mode, neg_optab, accum, target, 0);
3417 }
3418 else if (variant == add_variant)
3419 {
3420 val_so_far = val_so_far + 1;
3421 accum = force_operand (gen_rtx_PLUS (mode, accum, op0), target);
3422 }
3423
42eb30b5
ZW
3424 /* Compare only the bits of val and val_so_far that are significant
3425 in the result mode, to avoid sign-/zero-extension confusion. */
84ddb681 3426 nmode = GET_MODE_INNER (mode);
84ddb681
RH
3427 val &= GET_MODE_MASK (nmode);
3428 val_so_far &= GET_MODE_MASK (nmode);
1b13411a 3429 gcc_assert (val == (HOST_WIDE_INT) val_so_far);
8efc8980
RS
3430
3431 return accum;
3432}
3433
44037a66
TG
3434/* Perform a multiplication and return an rtx for the result.
3435 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3436 TARGET is a suggestion for where to store the result (an rtx).
3437
3438 We check specially for a constant integer as OP1.
3439 If you want this check for OP0 as well, then before calling
3440 you should swap the two operands if OP0 would be constant. */
3441
3442rtx
ef4bddc2 3443expand_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
0b99f253 3444 int unsignedp, bool no_libcall)
44037a66 3445{
8efc8980
RS
3446 enum mult_variant variant;
3447 struct algorithm algorithm;
84ddb681 3448 rtx scalar_op1;
65dc9350 3449 int max_cost;
f40751dd 3450 bool speed = optimize_insn_for_speed_p ();
84ddb681 3451 bool do_trapv = flag_trapv && SCALAR_INT_MODE_P (mode) && !unsignedp;
44037a66 3452
84ddb681 3453 if (CONSTANT_P (op0))
4c278134 3454 std::swap (op0, op1);
84ddb681
RH
3455
3456 /* For vectors, there are several simplifications that can be made if
3457 all elements of the vector constant are identical. */
92695fbb 3458 scalar_op1 = unwrap_const_vec_duplicate (op1);
84ddb681
RH
3459
3460 if (INTEGRAL_MODE_P (mode))
3461 {
3462 rtx fake_reg;
caf62455
JDA
3463 HOST_WIDE_INT coeff;
3464 bool is_neg;
84ddb681
RH
3465 int mode_bitsize;
3466
3467 if (op1 == CONST0_RTX (mode))
3468 return op1;
3469 if (op1 == CONST1_RTX (mode))
3470 return op0;
3471 if (op1 == CONSTM1_RTX (mode))
3472 return expand_unop (mode, do_trapv ? negv_optab : neg_optab,
3473 op0, target, 0);
3474
3475 if (do_trapv)
3476 goto skip_synth;
3477
66b3ed5f
JJ
3478 /* If mode is integer vector mode, check if the backend supports
3479 vector lshift (by scalar or vector) at all. If not, we can't use
3480 synthetized multiply. */
3481 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
3482 && optab_handler (vashl_optab, mode) == CODE_FOR_nothing
3483 && optab_handler (ashl_optab, mode) == CODE_FOR_nothing)
3484 goto skip_synth;
3485
84ddb681
RH
3486 /* These are the operations that are potentially turned into
3487 a sequence of shifts and additions. */
3488 mode_bitsize = GET_MODE_UNIT_BITSIZE (mode);
65dc9350
RS
3489
3490 /* synth_mult does an `unsigned int' multiply. As long as the mode is
3491 less than or equal in size to `unsigned int' this doesn't matter.
3492 If the mode is larger than `unsigned int', then synth_mult works
3493 only if the constant value exactly fits in an `unsigned int' without
3494 any truncation. This means that multiplying by negative values does
3495 not work; results are off by 2^32 on a 32 bit machine. */
84ddb681 3496 if (CONST_INT_P (scalar_op1))
58b42e19 3497 {
84ddb681
RH
3498 coeff = INTVAL (scalar_op1);
3499 is_neg = coeff < 0;
65dc9350 3500 }
807e902e
KZ
3501#if TARGET_SUPPORTS_WIDE_INT
3502 else if (CONST_WIDE_INT_P (scalar_op1))
3503#else
48175537 3504 else if (CONST_DOUBLE_AS_INT_P (scalar_op1))
807e902e 3505#endif
65dc9350 3506 {
f079167a 3507 int shift = wi::exact_log2 (rtx_mode_t (scalar_op1, mode));
807e902e
KZ
3508 /* Perfect power of 2 (other than 1, which is handled above). */
3509 if (shift > 0)
3510 return expand_shift (LSHIFT_EXPR, mode, op0,
3511 shift, target, unsignedp);
caf62455
JDA
3512 else
3513 goto skip_synth;
65dc9350 3514 }
84ddb681
RH
3515 else
3516 goto skip_synth;
b8698a0f 3517
65dc9350
RS
3518 /* We used to test optimize here, on the grounds that it's better to
3519 produce a smaller program when -O is not used. But this causes
3520 such a terrible slowdown sometimes that it seems better to always
3521 use synth_mult. */
65dc9350 3522
84ddb681 3523 /* Special case powers of two. */
be63b77d
JJ
3524 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff)
3525 && !(is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT))
84ddb681
RH
3526 return expand_shift (LSHIFT_EXPR, mode, op0,
3527 floor_log2 (coeff), target, unsignedp);
3528
3529 fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
3530
3531 /* Attempt to handle multiplication of DImode values by negative
3532 coefficients, by performing the multiplication by a positive
3533 multiplier and then inverting the result. */
84ddb681
RH
3534 if (is_neg && mode_bitsize > HOST_BITS_PER_WIDE_INT)
3535 {
3536 /* Its safe to use -coeff even for INT_MIN, as the
3537 result is interpreted as an unsigned coefficient.
3538 Exclude cost of op0 from max_cost to match the cost
5e839bc8 3539 calculation of the synth_mult. */
be63b77d 3540 coeff = -(unsigned HOST_WIDE_INT) coeff;
e548c9df
AM
3541 max_cost = (set_src_cost (gen_rtx_MULT (mode, fake_reg, op1),
3542 mode, speed)
c3284718 3543 - neg_cost (speed, mode));
be63b77d
JJ
3544 if (max_cost <= 0)
3545 goto skip_synth;
3546
3547 /* Special case powers of two. */
3548 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3549 {
3550 rtx temp = expand_shift (LSHIFT_EXPR, mode, op0,
3551 floor_log2 (coeff), target, unsignedp);
3552 return expand_unop (mode, neg_optab, temp, target, 0);
3553 }
3554
3555 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3556 max_cost))
84ddb681 3557 {
be63b77d 3558 rtx temp = expand_mult_const (mode, op0, coeff, NULL_RTX,
84ddb681
RH
3559 &algorithm, variant);
3560 return expand_unop (mode, neg_optab, temp, target, 0);
3561 }
b216b86b 3562 goto skip_synth;
58b42e19 3563 }
44037a66 3564
84ddb681
RH
3565 /* Exclude cost of op0 from max_cost to match the cost
3566 calculation of the synth_mult. */
e548c9df 3567 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, op1), mode, speed);
84ddb681
RH
3568 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3569 return expand_mult_const (mode, op0, coeff, target,
3570 &algorithm, variant);
f2593a66 3571 }
84ddb681 3572 skip_synth:
f2593a66
RS
3573
3574 /* Expand x*2.0 as x+x. */
34a72c33
RS
3575 if (CONST_DOUBLE_AS_FLOAT_P (scalar_op1)
3576 && real_equal (CONST_DOUBLE_REAL_VALUE (scalar_op1), &dconst2))
f2593a66 3577 {
34a72c33
RS
3578 op0 = force_reg (GET_MODE (op0), op0);
3579 return expand_binop (mode, add_optab, op0, op0,
0b99f253
JJ
3580 target, unsignedp,
3581 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
f2593a66
RS
3582 }
3583
819126a6
RK
3584 /* This used to use umul_optab if unsigned, but for non-widening multiply
3585 there is no difference between signed and unsigned. */
84ddb681 3586 op0 = expand_binop (mode, do_trapv ? smulv_optab : smul_optab,
0b99f253
JJ
3587 op0, op1, target, unsignedp,
3588 no_libcall ? OPTAB_WIDEN : OPTAB_LIB_WIDEN);
3589 gcc_assert (op0 || no_libcall);
44037a66
TG
3590 return op0;
3591}
5b58b39b 3592
6dd8f4bb
BS
3593/* Return a cost estimate for multiplying a register by the given
3594 COEFFicient in the given MODE and SPEED. */
3595
3596int
ef4bddc2 3597mult_by_coeff_cost (HOST_WIDE_INT coeff, machine_mode mode, bool speed)
6dd8f4bb
BS
3598{
3599 int max_cost;
3600 struct algorithm algorithm;
3601 enum mult_variant variant;
3602
3603 rtx fake_reg = gen_raw_REG (mode, LAST_VIRTUAL_REGISTER + 1);
e548c9df
AM
3604 max_cost = set_src_cost (gen_rtx_MULT (mode, fake_reg, fake_reg),
3605 mode, speed);
6dd8f4bb
BS
3606 if (choose_mult_variant (mode, coeff, &algorithm, &variant, max_cost))
3607 return algorithm.cost.cost;
3608 else
3609 return max_cost;
3610}
3611
5b58b39b
BS
3612/* Perform a widening multiplication and return an rtx for the result.
3613 MODE is mode of value; OP0 and OP1 are what to multiply (rtx's);
3614 TARGET is a suggestion for where to store the result (an rtx).
3615 THIS_OPTAB is the optab we should use, it must be either umul_widen_optab
3616 or smul_widen_optab.
3617
3618 We check specially for a constant integer as OP1, comparing the
3619 cost of a widening multiply against the cost of a sequence of shifts
3620 and adds. */
3621
3622rtx
ef4bddc2 3623expand_widening_mult (machine_mode mode, rtx op0, rtx op1, rtx target,
5b58b39b
BS
3624 int unsignedp, optab this_optab)
3625{
3626 bool speed = optimize_insn_for_speed_p ();
e7ef91dc 3627 rtx cop1;
5b58b39b
BS
3628
3629 if (CONST_INT_P (op1)
e7ef91dc
JJ
3630 && GET_MODE (op0) != VOIDmode
3631 && (cop1 = convert_modes (mode, GET_MODE (op0), op1,
3632 this_optab == umul_widen_optab))
3633 && CONST_INT_P (cop1)
3634 && (INTVAL (cop1) >= 0
46c9550f 3635 || HWI_COMPUTABLE_MODE_P (mode)))
5b58b39b 3636 {
e7ef91dc 3637 HOST_WIDE_INT coeff = INTVAL (cop1);
5b58b39b
BS
3638 int max_cost;
3639 enum mult_variant variant;
3640 struct algorithm algorithm;
3641
e9082138
JJ
3642 if (coeff == 0)
3643 return CONST0_RTX (mode);
3644
5b58b39b
BS
3645 /* Special case powers of two. */
3646 if (EXACT_POWER_OF_2_OR_ZERO_P (coeff))
3647 {
3648 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3649 return expand_shift (LSHIFT_EXPR, mode, op0,
eb6c3df1 3650 floor_log2 (coeff), target, unsignedp);
5b58b39b
BS
3651 }
3652
3653 /* Exclude cost of op0 from max_cost to match the cost
3654 calculation of the synth_mult. */
5322d07e 3655 max_cost = mul_widen_cost (speed, mode);
5b58b39b
BS
3656 if (choose_mult_variant (mode, coeff, &algorithm, &variant,
3657 max_cost))
3658 {
3659 op0 = convert_to_mode (mode, op0, this_optab == umul_widen_optab);
3660 return expand_mult_const (mode, op0, coeff, target,
3661 &algorithm, variant);
3662 }
3663 }
3664 return expand_binop (mode, this_optab, op0, op1, target,
3665 unsignedp, OPTAB_LIB_WIDEN);
3666}
44037a66 3667\f
55c2d311
TG
3668/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
3669 replace division by D, and put the least significant N bits of the result
3670 in *MULTIPLIER_PTR and return the most significant bit.
3671
3672 The width of operations is N (should be <= HOST_BITS_PER_WIDE_INT), the
3673 needed precision is in PRECISION (should be <= N).
3674
3675 PRECISION should be as small as possible so this function can choose
3676 multiplier more freely.
3677
3678 The rounded-up logarithm of D is placed in *lgup_ptr. A shift count that
3679 is to be used for a final right shift is placed in *POST_SHIFT_PTR.
3680
3681 Using this function, x/D will be equal to (x * m) >> (*POST_SHIFT_PTR),
3682 where m is the full HOST_BITS_PER_WIDE_INT + 1 bit multiplier. */
3683
55c2d311 3684unsigned HOST_WIDE_INT
502b8322 3685choose_multiplier (unsigned HOST_WIDE_INT d, int n, int precision,
079c527f
JJ
3686 unsigned HOST_WIDE_INT *multiplier_ptr,
3687 int *post_shift_ptr, int *lgup_ptr)
55c2d311 3688{
55c2d311
TG
3689 int lgup, post_shift;
3690 int pow, pow2;
55c2d311
TG
3691
3692 /* lgup = ceil(log2(divisor)); */
3693 lgup = ceil_log2 (d);
3694
5b0264cb 3695 gcc_assert (lgup <= n);
55c2d311
TG
3696
3697 pow = n + lgup;
3698 pow2 = n + lgup - precision;
3699
55c2d311 3700 /* mlow = 2^(N + lgup)/d */
807e902e
KZ
3701 wide_int val = wi::set_bit_in_zero (pow, HOST_BITS_PER_DOUBLE_INT);
3702 wide_int mlow = wi::udiv_trunc (val, d);
55c2d311 3703
9be0ac8c 3704 /* mhigh = (2^(N + lgup) + 2^(N + lgup - precision))/d */
807e902e
KZ
3705 val |= wi::set_bit_in_zero (pow2, HOST_BITS_PER_DOUBLE_INT);
3706 wide_int mhigh = wi::udiv_trunc (val, d);
55c2d311
TG
3707
3708 /* If precision == N, then mlow, mhigh exceed 2^N
3709 (but they do not exceed 2^(N+1)). */
3710
f9da5064 3711 /* Reduce to lowest terms. */
55c2d311
TG
3712 for (post_shift = lgup; post_shift > 0; post_shift--)
3713 {
807e902e
KZ
3714 unsigned HOST_WIDE_INT ml_lo = wi::extract_uhwi (mlow, 1,
3715 HOST_BITS_PER_WIDE_INT);
3716 unsigned HOST_WIDE_INT mh_lo = wi::extract_uhwi (mhigh, 1,
3717 HOST_BITS_PER_WIDE_INT);
55c2d311
TG
3718 if (ml_lo >= mh_lo)
3719 break;
3720
807e902e
KZ
3721 mlow = wi::uhwi (ml_lo, HOST_BITS_PER_DOUBLE_INT);
3722 mhigh = wi::uhwi (mh_lo, HOST_BITS_PER_DOUBLE_INT);
55c2d311
TG
3723 }
3724
3725 *post_shift_ptr = post_shift;
3726 *lgup_ptr = lgup;
3727 if (n < HOST_BITS_PER_WIDE_INT)
3728 {
fecfbfa4 3729 unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << n) - 1;
807e902e 3730 *multiplier_ptr = mhigh.to_uhwi () & mask;
04f8c98c 3731 return mhigh.to_uhwi () > mask;
55c2d311
TG
3732 }
3733 else
3734 {
807e902e
KZ
3735 *multiplier_ptr = mhigh.to_uhwi ();
3736 return wi::extract_uhwi (mhigh, HOST_BITS_PER_WIDE_INT, 1);
55c2d311
TG
3737 }
3738}
3739
3740/* Compute the inverse of X mod 2**n, i.e., find Y such that X * Y is
3741 congruent to 1 (mod 2**N). */
3742
3743static unsigned HOST_WIDE_INT
502b8322 3744invert_mod2n (unsigned HOST_WIDE_INT x, int n)
55c2d311 3745{
0f41302f 3746 /* Solve x*y == 1 (mod 2^n), where x is odd. Return y. */
55c2d311
TG
3747
3748 /* The algorithm notes that the choice y = x satisfies
3749 x*y == 1 mod 2^3, since x is assumed odd.
3750 Each iteration doubles the number of bits of significance in y. */
3751
3752 unsigned HOST_WIDE_INT mask;
3753 unsigned HOST_WIDE_INT y = x;
3754 int nbit = 3;
3755
3756 mask = (n == HOST_BITS_PER_WIDE_INT
dd4786fe 3757 ? HOST_WIDE_INT_M1U
fecfbfa4 3758 : (HOST_WIDE_INT_1U << n) - 1);
55c2d311
TG
3759
3760 while (nbit < n)
3761 {
3762 y = y * (2 - x*y) & mask; /* Modulo 2^N */
3763 nbit *= 2;
3764 }
3765 return y;
3766}
3767
3768/* Emit code to adjust ADJ_OPERAND after multiplication of wrong signedness
3769 flavor of OP0 and OP1. ADJ_OPERAND is already the high half of the
3770 product OP0 x OP1. If UNSIGNEDP is nonzero, adjust the signed product
3771 to become unsigned, if UNSIGNEDP is zero, adjust the unsigned product to
3772 become signed.
3773
3774 The result is put in TARGET if that is convenient.
3775
3776 MODE is the mode of operation. */
3777
3778rtx
095a2d76 3779expand_mult_highpart_adjust (scalar_int_mode mode, rtx adj_operand, rtx op0,
502b8322 3780 rtx op1, rtx target, int unsignedp)
55c2d311
TG
3781{
3782 rtx tem;
3783 enum rtx_code adj_code = unsignedp ? PLUS : MINUS;
3784
3785 tem = expand_shift (RSHIFT_EXPR, mode, op0,
eb6c3df1 3786 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
22273300 3787 tem = expand_and (mode, tem, op1, NULL_RTX);
38a448ca
RH
3788 adj_operand
3789 = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3790 adj_operand);
55c2d311
TG
3791
3792 tem = expand_shift (RSHIFT_EXPR, mode, op1,
eb6c3df1 3793 GET_MODE_BITSIZE (mode) - 1, NULL_RTX, 0);
22273300 3794 tem = expand_and (mode, tem, op0, NULL_RTX);
38a448ca
RH
3795 target = force_operand (gen_rtx_fmt_ee (adj_code, mode, adj_operand, tem),
3796 target);
55c2d311
TG
3797
3798 return target;
3799}
3800
00f07b86 3801/* Subroutine of expmed_mult_highpart. Return the MODE high part of OP. */
55c2d311 3802
8efc8980 3803static rtx
095a2d76 3804extract_high_half (scalar_int_mode mode, rtx op)
8efc8980 3805{
8efc8980
RS
3806 if (mode == word_mode)
3807 return gen_highpart (mode, op);
71af73bb 3808
90970acd 3809 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
15ed7b52 3810
8efc8980 3811 op = expand_shift (RSHIFT_EXPR, wider_mode, op,
eb6c3df1 3812 GET_MODE_BITSIZE (mode), 0, 1);
8efc8980
RS
3813 return convert_modes (mode, wider_mode, op, 0);
3814}
55c2d311 3815
00f07b86 3816/* Like expmed_mult_highpart, but only consider using a multiplication
8efc8980
RS
3817 optab. OP1 is an rtx for the constant operand. */
3818
3819static rtx
095a2d76 3820expmed_mult_highpart_optab (scalar_int_mode mode, rtx op0, rtx op1,
8efc8980 3821 rtx target, int unsignedp, int max_cost)
55c2d311 3822{
665acd1e 3823 rtx narrow_op1 = gen_int_mode (INTVAL (op1), mode);
55c2d311
TG
3824 optab moptab;
3825 rtx tem;
8efc8980 3826 int size;
f40751dd 3827 bool speed = optimize_insn_for_speed_p ();
55c2d311 3828
90970acd 3829 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
15ed7b52 3830
8efc8980 3831 size = GET_MODE_BITSIZE (mode);
55c2d311
TG
3832
3833 /* Firstly, try using a multiplication insn that only generates the needed
3834 high part of the product, and in the sign flavor of unsignedp. */
5322d07e 3835 if (mul_highpart_cost (speed, mode) < max_cost)
71af73bb 3836 {
8efc8980 3837 moptab = unsignedp ? umul_highpart_optab : smul_highpart_optab;
665acd1e 3838 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
8efc8980
RS
3839 unsignedp, OPTAB_DIRECT);
3840 if (tem)
3841 return tem;
71af73bb 3842 }
55c2d311
TG
3843
3844 /* Secondly, same as above, but use sign flavor opposite of unsignedp.
3845 Need to adjust the result after the multiplication. */
02a65aef 3846 if (size - 1 < BITS_PER_WORD
5322d07e
NF
3847 && (mul_highpart_cost (speed, mode)
3848 + 2 * shift_cost (speed, mode, size-1)
3849 + 4 * add_cost (speed, mode) < max_cost))
71af73bb 3850 {
8efc8980 3851 moptab = unsignedp ? smul_highpart_optab : umul_highpart_optab;
665acd1e 3852 tem = expand_binop (mode, moptab, op0, narrow_op1, target,
8efc8980
RS
3853 unsignedp, OPTAB_DIRECT);
3854 if (tem)
71af73bb 3855 /* We used the wrong signedness. Adjust the result. */
77278891 3856 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
8efc8980 3857 tem, unsignedp);
71af73bb 3858 }
55c2d311 3859
71af73bb 3860 /* Try widening multiplication. */
55c2d311 3861 moptab = unsignedp ? umul_widen_optab : smul_widen_optab;
4b926fea 3862 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
5322d07e 3863 && mul_widen_cost (speed, wider_mode) < max_cost)
a295d331 3864 {
665acd1e 3865 tem = expand_binop (wider_mode, moptab, op0, narrow_op1, 0,
8efc8980
RS
3866 unsignedp, OPTAB_WIDEN);
3867 if (tem)
3868 return extract_high_half (mode, tem);
c410d49e 3869 }
71af73bb
TG
3870
3871 /* Try widening the mode and perform a non-widening multiplication. */
947131ba 3872 if (optab_handler (smul_optab, wider_mode) != CODE_FOR_nothing
02a65aef 3873 && size - 1 < BITS_PER_WORD
5322d07e
NF
3874 && (mul_cost (speed, wider_mode) + shift_cost (speed, mode, size-1)
3875 < max_cost))
a295d331 3876 {
f3f6fb16
DM
3877 rtx_insn *insns;
3878 rtx wop0, wop1;
82dfb9a5
RS
3879
3880 /* We need to widen the operands, for example to ensure the
3881 constant multiplier is correctly sign or zero extended.
3882 Use a sequence to clean-up any instructions emitted by
3883 the conversions if things don't work out. */
3884 start_sequence ();
3885 wop0 = convert_modes (wider_mode, mode, op0, unsignedp);
3886 wop1 = convert_modes (wider_mode, mode, op1, unsignedp);
3887 tem = expand_binop (wider_mode, smul_optab, wop0, wop1, 0,
8efc8980 3888 unsignedp, OPTAB_WIDEN);
82dfb9a5
RS
3889 insns = get_insns ();
3890 end_sequence ();
3891
8efc8980 3892 if (tem)
82dfb9a5
RS
3893 {
3894 emit_insn (insns);
3895 return extract_high_half (mode, tem);
3896 }
a295d331 3897 }
71af73bb
TG
3898
3899 /* Try widening multiplication of opposite signedness, and adjust. */
3900 moptab = unsignedp ? smul_widen_optab : umul_widen_optab;
4b926fea 3901 if (convert_optab_handler (moptab, wider_mode, mode) != CODE_FOR_nothing
02a65aef 3902 && size - 1 < BITS_PER_WORD
5322d07e
NF
3903 && (mul_widen_cost (speed, wider_mode)
3904 + 2 * shift_cost (speed, mode, size-1)
3905 + 4 * add_cost (speed, mode) < max_cost))
55c2d311 3906 {
665acd1e 3907 tem = expand_binop (wider_mode, moptab, op0, narrow_op1,
71af73bb
TG
3908 NULL_RTX, ! unsignedp, OPTAB_WIDEN);
3909 if (tem != 0)
55c2d311 3910 {
8efc8980 3911 tem = extract_high_half (mode, tem);
71af73bb 3912 /* We used the wrong signedness. Adjust the result. */
77278891 3913 return expand_mult_highpart_adjust (mode, tem, op0, narrow_op1,
71af73bb 3914 target, unsignedp);
55c2d311 3915 }
55c2d311
TG
3916 }
3917
71af73bb 3918 return 0;
8efc8980 3919}
71af73bb 3920
0d282692
RS
3921/* Emit code to multiply OP0 and OP1 (where OP1 is an integer constant),
3922 putting the high half of the result in TARGET if that is convenient,
67914693 3923 and return where the result is. If the operation cannot be performed,
0d282692 3924 0 is returned.
55c2d311 3925
8efc8980
RS
3926 MODE is the mode of operation and result.
3927
3928 UNSIGNEDP nonzero means unsigned multiply.
3929
3930 MAX_COST is the total allowed cost for the expanded RTL. */
3931
0d282692 3932static rtx
095a2d76 3933expmed_mult_highpart (scalar_int_mode mode, rtx op0, rtx op1,
0d282692 3934 rtx target, int unsignedp, int max_cost)
8efc8980 3935{
0d282692 3936 unsigned HOST_WIDE_INT cnst1;
f258e38b
UW
3937 int extra_cost;
3938 bool sign_adjust = false;
8efc8980
RS
3939 enum mult_variant variant;
3940 struct algorithm alg;
0d282692 3941 rtx tem;
f40751dd 3942 bool speed = optimize_insn_for_speed_p ();
8efc8980
RS
3943
3944 /* We can't support modes wider than HOST_BITS_PER_INT. */
46c9550f 3945 gcc_assert (HWI_COMPUTABLE_MODE_P (mode));
8efc8980 3946
0d282692 3947 cnst1 = INTVAL (op1) & GET_MODE_MASK (mode);
f258e38b 3948
b8698a0f
L
3949 /* We can't optimize modes wider than BITS_PER_WORD.
3950 ??? We might be able to perform double-word arithmetic if
f258e38b
UW
3951 mode == word_mode, however all the cost calculations in
3952 synth_mult etc. assume single-word operations. */
90970acd 3953 scalar_int_mode wider_mode = GET_MODE_WIDER_MODE (mode).require ();
f258e38b 3954 if (GET_MODE_BITSIZE (wider_mode) > BITS_PER_WORD)
00f07b86 3955 return expmed_mult_highpart_optab (mode, op0, op1, target,
f258e38b
UW
3956 unsignedp, max_cost);
3957
5322d07e 3958 extra_cost = shift_cost (speed, mode, GET_MODE_BITSIZE (mode) - 1);
f258e38b
UW
3959
3960 /* Check whether we try to multiply by a negative constant. */
3961 if (!unsignedp && ((cnst1 >> (GET_MODE_BITSIZE (mode) - 1)) & 1))
3962 {
3963 sign_adjust = true;
5322d07e 3964 extra_cost += add_cost (speed, mode);
f258e38b 3965 }
8efc8980
RS
3966
3967 /* See whether shift/add multiplication is cheap enough. */
f258e38b
UW
3968 if (choose_mult_variant (wider_mode, cnst1, &alg, &variant,
3969 max_cost - extra_cost))
a295d331 3970 {
8efc8980
RS
3971 /* See whether the specialized multiplication optabs are
3972 cheaper than the shift/add version. */
00f07b86 3973 tem = expmed_mult_highpart_optab (mode, op0, op1, target, unsignedp,
26276705 3974 alg.cost.cost + extra_cost);
8efc8980
RS
3975 if (tem)
3976 return tem;
3977
f258e38b
UW
3978 tem = convert_to_mode (wider_mode, op0, unsignedp);
3979 tem = expand_mult_const (wider_mode, tem, cnst1, 0, &alg, variant);
3980 tem = extract_high_half (mode, tem);
3981
9cf737f8 3982 /* Adjust result for signedness. */
f258e38b
UW
3983 if (sign_adjust)
3984 tem = force_operand (gen_rtx_MINUS (mode, tem, op0), tem);
3985
3986 return tem;
a295d331 3987 }
00f07b86 3988 return expmed_mult_highpart_optab (mode, op0, op1, target,
8efc8980 3989 unsignedp, max_cost);
55c2d311 3990}
0b55e932
RS
3991
3992
3993/* Expand signed modulus of OP0 by a power of two D in mode MODE. */
3994
3995static rtx
095a2d76 3996expand_smod_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
0b55e932 3997{
f3f6fb16
DM
3998 rtx result, temp, shift;
3999 rtx_code_label *label;
0b55e932 4000 int logd;
807e902e 4001 int prec = GET_MODE_PRECISION (mode);
0b55e932
RS
4002
4003 logd = floor_log2 (d);
4004 result = gen_reg_rtx (mode);
4005
4006 /* Avoid conditional branches when they're expensive. */
3a4fd356 4007 if (BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2
22660666 4008 && optimize_insn_for_speed_p ())
0b55e932
RS
4009 {
4010 rtx signmask = emit_store_flag (result, LT, op0, const0_rtx,
4011 mode, 0, -1);
4012 if (signmask)
4013 {
fecfbfa4 4014 HOST_WIDE_INT masklow = (HOST_WIDE_INT_1 << logd) - 1;
0b55e932 4015 signmask = force_reg (mode, signmask);
abd3c800 4016 shift = gen_int_shift_amount (mode, GET_MODE_BITSIZE (mode) - logd);
1c234fcb
RS
4017
4018 /* Use the rtx_cost of a LSHIFTRT instruction to determine
4019 which instruction sequence to use. If logical right shifts
4020 are expensive the use 2 XORs, 2 SUBs and an AND, otherwise
4021 use a LSHIFTRT, 1 ADD, 1 SUB and an AND. */
6e7a355c 4022
1c234fcb 4023 temp = gen_rtx_LSHIFTRT (mode, result, shift);
947131ba 4024 if (optab_handler (lshr_optab, mode) == CODE_FOR_nothing
e548c9df 4025 || (set_src_cost (temp, mode, optimize_insn_for_speed_p ())
5e8f01f4 4026 > COSTS_N_INSNS (2)))
1c234fcb
RS
4027 {
4028 temp = expand_binop (mode, xor_optab, op0, signmask,
4029 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4030 temp = expand_binop (mode, sub_optab, temp, signmask,
4031 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2f1cd2eb
RS
4032 temp = expand_binop (mode, and_optab, temp,
4033 gen_int_mode (masklow, mode),
1c234fcb
RS
4034 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4035 temp = expand_binop (mode, xor_optab, temp, signmask,
4036 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4037 temp = expand_binop (mode, sub_optab, temp, signmask,
4038 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4039 }
4040 else
4041 {
4042 signmask = expand_binop (mode, lshr_optab, signmask, shift,
4043 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4044 signmask = force_reg (mode, signmask);
4045
4046 temp = expand_binop (mode, add_optab, op0, signmask,
4047 NULL_RTX, 1, OPTAB_LIB_WIDEN);
2f1cd2eb
RS
4048 temp = expand_binop (mode, and_optab, temp,
4049 gen_int_mode (masklow, mode),
1c234fcb
RS
4050 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4051 temp = expand_binop (mode, sub_optab, temp, signmask,
4052 NULL_RTX, 1, OPTAB_LIB_WIDEN);
4053 }
0b55e932
RS
4054 return temp;
4055 }
4056 }
4057
4058 /* Mask contains the mode's signbit and the significant bits of the
4059 modulus. By including the signbit in the operation, many targets
4060 can avoid an explicit compare operation in the following comparison
4061 against zero. */
807e902e
KZ
4062 wide_int mask = wi::mask (logd, false, prec);
4063 mask = wi::set_bit (mask, prec - 1);
0b55e932 4064
6e7a355c 4065 temp = expand_binop (mode, and_optab, op0,
807e902e 4066 immed_wide_int_const (mask, mode),
6e7a355c 4067 result, 1, OPTAB_LIB_WIDEN);
0b55e932
RS
4068 if (temp != result)
4069 emit_move_insn (result, temp);
4070
4071 label = gen_label_rtx ();
4072 do_cmp_and_jump (result, const0_rtx, GE, mode, label);
4073
4074 temp = expand_binop (mode, sub_optab, result, const1_rtx, result,
4075 0, OPTAB_LIB_WIDEN);
807e902e
KZ
4076
4077 mask = wi::mask (logd, true, prec);
6e7a355c 4078 temp = expand_binop (mode, ior_optab, temp,
807e902e 4079 immed_wide_int_const (mask, mode),
6e7a355c 4080 result, 1, OPTAB_LIB_WIDEN);
0b55e932
RS
4081 temp = expand_binop (mode, add_optab, temp, const1_rtx, result,
4082 0, OPTAB_LIB_WIDEN);
4083 if (temp != result)
4084 emit_move_insn (result, temp);
4085 emit_label (label);
4086 return result;
4087}
39cab019
RS
4088
4089/* Expand signed division of OP0 by a power of two D in mode MODE.
4090 This routine is only called for positive values of D. */
4091
4092static rtx
095a2d76 4093expand_sdiv_pow2 (scalar_int_mode mode, rtx op0, HOST_WIDE_INT d)
39cab019 4094{
f3f6fb16
DM
4095 rtx temp;
4096 rtx_code_label *label;
39cab019
RS
4097 int logd;
4098
4099 logd = floor_log2 (d);
39cab019 4100
3a4fd356
JH
4101 if (d == 2
4102 && BRANCH_COST (optimize_insn_for_speed_p (),
4103 false) >= 1)
39cab019
RS
4104 {
4105 temp = gen_reg_rtx (mode);
4106 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, 1);
259c3965
JL
4107 if (temp != NULL_RTX)
4108 {
4109 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4110 0, OPTAB_LIB_WIDEN);
4111 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4112 }
39cab019
RS
4113 }
4114
692e0312
TS
4115 if (HAVE_conditional_move
4116 && BRANCH_COST (optimize_insn_for_speed_p (), false) >= 2)
fdded401
RS
4117 {
4118 rtx temp2;
4119
4120 start_sequence ();
4121 temp2 = copy_to_mode_reg (mode, op0);
2f1cd2eb 4122 temp = expand_binop (mode, add_optab, temp2, gen_int_mode (d - 1, mode),
fdded401
RS
4123 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4124 temp = force_reg (mode, temp);
4125
4126 /* Construct "temp2 = (temp2 < 0) ? temp : temp2". */
4127 temp2 = emit_conditional_move (temp2, LT, temp2, const0_rtx,
4128 mode, temp, temp2, mode, 0);
4129 if (temp2)
4130 {
f3f6fb16 4131 rtx_insn *seq = get_insns ();
fdded401
RS
4132 end_sequence ();
4133 emit_insn (seq);
eb6c3df1 4134 return expand_shift (RSHIFT_EXPR, mode, temp2, logd, NULL_RTX, 0);
fdded401
RS
4135 }
4136 end_sequence ();
4137 }
fdded401 4138
3a4fd356
JH
4139 if (BRANCH_COST (optimize_insn_for_speed_p (),
4140 false) >= 2)
39cab019
RS
4141 {
4142 int ushift = GET_MODE_BITSIZE (mode) - logd;
4143
4144 temp = gen_reg_rtx (mode);
4145 temp = emit_store_flag (temp, LT, op0, const0_rtx, mode, 0, -1);
259c3965
JL
4146 if (temp != NULL_RTX)
4147 {
4148 if (GET_MODE_BITSIZE (mode) >= BITS_PER_WORD
4149 || shift_cost (optimize_insn_for_speed_p (), mode, ushift)
4150 > COSTS_N_INSNS (1))
4151 temp = expand_binop (mode, and_optab, temp,
4152 gen_int_mode (d - 1, mode),
4153 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4154 else
4155 temp = expand_shift (RSHIFT_EXPR, mode, temp,
4156 ushift, NULL_RTX, 1);
4157 temp = expand_binop (mode, add_optab, temp, op0, NULL_RTX,
4158 0, OPTAB_LIB_WIDEN);
4159 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
4160 }
39cab019
RS
4161 }
4162
4163 label = gen_label_rtx ();
4164 temp = copy_to_mode_reg (mode, op0);
4165 do_cmp_and_jump (temp, const0_rtx, GE, mode, label);
2f1cd2eb 4166 expand_inc (temp, gen_int_mode (d - 1, mode));
39cab019 4167 emit_label (label);
eb6c3df1 4168 return expand_shift (RSHIFT_EXPR, mode, temp, logd, NULL_RTX, 0);
39cab019 4169}
55c2d311 4170\f
44037a66
TG
4171/* Emit the code to divide OP0 by OP1, putting the result in TARGET
4172 if that is convenient, and returning where the result is.
4173 You may request either the quotient or the remainder as the result;
4174 specify REM_FLAG nonzero to get the remainder.
4175
4176 CODE is the expression code for which kind of division this is;
4177 it controls how rounding is done. MODE is the machine mode to use.
4178 UNSIGNEDP nonzero means do unsigned division. */
4179
4180/* ??? For CEIL_MOD_EXPR, can compute incorrect remainder with ANDI
4181 and then correct it by or'ing in missing high bits
4182 if result of ANDI is nonzero.
4183 For ROUND_MOD_EXPR, can use ANDI and then sign-extend the result.
4184 This could optimize to a bfexts instruction.
4185 But C doesn't use these operations, so their optimizations are
4186 left for later. */
5353610b
R
4187/* ??? For modulo, we don't actually need the highpart of the first product,
4188 the low part will do nicely. And for small divisors, the second multiply
4189 can also be a low-part only multiply or even be completely left out.
4190 E.g. to calculate the remainder of a division by 3 with a 32 bit
4191 multiply, multiply with 0x55555556 and extract the upper two bits;
4192 the result is exact for inputs up to 0x1fffffff.
4193 The input range can be reduced by using cross-sum rules.
4194 For odd divisors >= 3, the following table gives right shift counts
09da1532 4195 so that if a number is shifted by an integer multiple of the given
5353610b
R
4196 amount, the remainder stays the same:
4197 2, 4, 3, 6, 10, 12, 4, 8, 18, 6, 11, 20, 18, 0, 5, 10, 12, 0, 12, 20,
4198 14, 12, 23, 21, 8, 0, 20, 18, 0, 0, 6, 12, 0, 22, 0, 18, 20, 30, 0, 0,
4199 0, 8, 0, 11, 12, 10, 36, 0, 30, 0, 0, 12, 0, 0, 0, 0, 44, 12, 24, 0,
4200 20, 0, 7, 14, 0, 18, 36, 0, 0, 46, 60, 0, 42, 0, 15, 24, 20, 0, 0, 33,
4201 0, 20, 0, 0, 18, 0, 60, 0, 0, 0, 0, 0, 40, 18, 0, 0, 12
4202
4203 Cross-sum rules for even numbers can be derived by leaving as many bits
4204 to the right alone as the divisor has zeros to the right.
4205 E.g. if x is an unsigned 32 bit number:
4206 (x mod 12) == (((x & 1023) + ((x >> 8) & ~3)) * 0x15555558 >> 2 * 3) >> 28
4207 */
44037a66
TG
4208
4209rtx
ef4bddc2 4210expand_divmod (int rem_flag, enum tree_code code, machine_mode mode,
e34153b0
JJ
4211 rtx op0, rtx op1, rtx target, int unsignedp,
4212 enum optab_methods methods)
44037a66 4213{
ef4bddc2 4214 machine_mode compute_mode;
b3694847 4215 rtx tquotient;
55c2d311 4216 rtx quotient = 0, remainder = 0;
f3f6fb16 4217 rtx_insn *last;
f3f6fb16 4218 rtx_insn *insn;
44037a66 4219 optab optab1, optab2;
1c4a429a 4220 int op1_is_constant, op1_is_pow2 = 0;
71af73bb 4221 int max_cost, extra_cost;
9ec36da5 4222 static HOST_WIDE_INT last_div_const = 0;
f40751dd 4223 bool speed = optimize_insn_for_speed_p ();
55c2d311 4224
481683e1 4225 op1_is_constant = CONST_INT_P (op1);
1c4a429a
JH
4226 if (op1_is_constant)
4227 {
76a7314d
JJ
4228 wide_int ext_op1 = rtx_mode_t (op1, mode);
4229 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4230 || (! unsignedp
4231 && wi::popcount (wi::neg (ext_op1)) == 1));
1c4a429a 4232 }
55c2d311
TG
4233
4234 /*
4235 This is the structure of expand_divmod:
4236
4237 First comes code to fix up the operands so we can perform the operations
4238 correctly and efficiently.
4239
4240 Second comes a switch statement with code specific for each rounding mode.
4241 For some special operands this code emits all RTL for the desired
69f61901 4242 operation, for other cases, it generates only a quotient and stores it in
55c2d311
TG
4243 QUOTIENT. The case for trunc division/remainder might leave quotient = 0,
4244 to indicate that it has not done anything.
4245
69f61901
RK
4246 Last comes code that finishes the operation. If QUOTIENT is set and
4247 REM_FLAG is set, the remainder is computed as OP0 - QUOTIENT * OP1. If
4248 QUOTIENT is not set, it is computed using trunc rounding.
44037a66 4249
55c2d311
TG
4250 We try to generate special code for division and remainder when OP1 is a
4251 constant. If |OP1| = 2**n we can use shifts and some other fast
4252 operations. For other values of OP1, we compute a carefully selected
4253 fixed-point approximation m = 1/OP1, and generate code that multiplies OP0
4254 by m.
4255
4256 In all cases but EXACT_DIV_EXPR, this multiplication requires the upper
4257 half of the product. Different strategies for generating the product are
00f07b86 4258 implemented in expmed_mult_highpart.
55c2d311
TG
4259
4260 If what we actually want is the remainder, we generate that by another
4261 by-constant multiplication and a subtraction. */
4262
4263 /* We shouldn't be called with OP1 == const1_rtx, but some of the
3d32ffd1
TW
4264 code below will malfunction if we are, so check here and handle
4265 the special case if so. */
4266 if (op1 == const1_rtx)
4267 return rem_flag ? const0_rtx : op0;
4268
91ce572a
CC
4269 /* When dividing by -1, we could get an overflow.
4270 negv_optab can handle overflows. */
4271 if (! unsignedp && op1 == constm1_rtx)
4272 {
4273 if (rem_flag)
0fb7aeda 4274 return const0_rtx;
c3284718 4275 return expand_unop (mode, flag_trapv && GET_MODE_CLASS (mode) == MODE_INT
0fb7aeda 4276 ? negv_optab : neg_optab, op0, target, 0);
91ce572a
CC
4277 }
4278
bc1c7e93
RK
4279 if (target
4280 /* Don't use the function value register as a target
4281 since we have to read it as well as write it,
4282 and function-inlining gets confused by this. */
4283 && ((REG_P (target) && REG_FUNCTION_VALUE_P (target))
4284 /* Don't clobber an operand while doing a multi-step calculation. */
515dfc7a 4285 || ((rem_flag || op1_is_constant)
bc1c7e93 4286 && (reg_mentioned_p (target, op0)
3c0cb5de 4287 || (MEM_P (op0) && MEM_P (target))))
bc1c7e93 4288 || reg_mentioned_p (target, op1)
3c0cb5de 4289 || (MEM_P (op1) && MEM_P (target))))
44037a66
TG
4290 target = 0;
4291
44037a66
TG
4292 /* Get the mode in which to perform this computation. Normally it will
4293 be MODE, but sometimes we can't do the desired operation in MODE.
4294 If so, pick a wider mode in which we can do the operation. Convert
4295 to that mode at the start to avoid repeated conversions.
4296
4297 First see what operations we need. These depend on the expression
4298 we are evaluating. (We assume that divxx3 insns exist under the
4299 same conditions that modxx3 insns and that these insns don't normally
4300 fail. If these assumptions are not correct, we may generate less
4301 efficient code in some cases.)
4302
4303 Then see if we find a mode in which we can open-code that operation
4304 (either a division, modulus, or shift). Finally, check for the smallest
4305 mode for which we can do the operation with a library call. */
4306
55c2d311 4307 /* We might want to refine this now that we have division-by-constant
00f07b86 4308 optimization. Since expmed_mult_highpart tries so many variants, it is
55c2d311
TG
4309 not straightforward to generalize this. Maybe we should make an array
4310 of possible modes in init_expmed? Save this for GCC 2.7. */
4311
76a7314d 4312 optab1 = (op1_is_pow2
556a56ac 4313 ? (unsignedp ? lshr_optab : ashr_optab)
44037a66 4314 : (unsignedp ? udiv_optab : sdiv_optab));
76a7314d 4315 optab2 = (op1_is_pow2 ? optab1
556a56ac 4316 : (unsignedp ? udivmod_optab : sdivmod_optab));
44037a66 4317
e34153b0
JJ
4318 if (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN)
4319 {
4320 FOR_EACH_MODE_FROM (compute_mode, mode)
4321 if (optab_handler (optab1, compute_mode) != CODE_FOR_nothing
4322 || optab_handler (optab2, compute_mode) != CODE_FOR_nothing)
44037a66
TG
4323 break;
4324
e34153b0
JJ
4325 if (compute_mode == VOIDmode && methods == OPTAB_LIB_WIDEN)
4326 FOR_EACH_MODE_FROM (compute_mode, mode)
4327 if (optab_libfunc (optab1, compute_mode)
4328 || optab_libfunc (optab2, compute_mode))
4329 break;
4330 }
4331 else
4332 compute_mode = mode;
4333
535a42b1
NS
4334 /* If we still couldn't find a mode, use MODE, but expand_binop will
4335 probably die. */
44037a66
TG
4336 if (compute_mode == VOIDmode)
4337 compute_mode = mode;
4338
55c2d311
TG
4339 if (target && GET_MODE (target) == compute_mode)
4340 tquotient = target;
4341 else
4342 tquotient = gen_reg_rtx (compute_mode);
2c414fba 4343
55c2d311
TG
4344#if 0
4345 /* It should be possible to restrict the precision to GET_MODE_BITSIZE
71af73bb
TG
4346 (mode), and thereby get better code when OP1 is a constant. Do that
4347 later. It will require going over all usages of SIZE below. */
55c2d311
TG
4348 size = GET_MODE_BITSIZE (mode);
4349#endif
bc1c7e93 4350
9ec36da5
JL
4351 /* Only deduct something for a REM if the last divide done was
4352 for a different constant. Then set the constant of the last
4353 divide. */
5322d07e
NF
4354 max_cost = (unsignedp
4355 ? udiv_cost (speed, compute_mode)
4356 : sdiv_cost (speed, compute_mode));
a28b2ac6
RS
4357 if (rem_flag && ! (last_div_const != 0 && op1_is_constant
4358 && INTVAL (op1) == last_div_const))
5322d07e
NF
4359 max_cost -= (mul_cost (speed, compute_mode)
4360 + add_cost (speed, compute_mode));
9ec36da5
JL
4361
4362 last_div_const = ! rem_flag && op1_is_constant ? INTVAL (op1) : 0;
71af73bb 4363
55c2d311 4364 /* Now convert to the best mode to use. */
44037a66
TG
4365 if (compute_mode != mode)
4366 {
55c2d311 4367 op0 = convert_modes (compute_mode, mode, op0, unsignedp);
81722fa9 4368 op1 = convert_modes (compute_mode, mode, op1, unsignedp);
e13a25d5 4369
e9a25f70
JL
4370 /* convert_modes may have placed op1 into a register, so we
4371 must recompute the following. */
481683e1 4372 op1_is_constant = CONST_INT_P (op1);
76a7314d
JJ
4373 if (op1_is_constant)
4374 {
4375 wide_int ext_op1 = rtx_mode_t (op1, compute_mode);
4376 op1_is_pow2 = (wi::popcount (ext_op1) == 1
4377 || (! unsignedp
4378 && wi::popcount (wi::neg (ext_op1)) == 1));
4379 }
4380 else
4381 op1_is_pow2 = 0;
44037a66
TG
4382 }
4383
55c2d311 4384 /* If one of the operands is a volatile MEM, copy it into a register. */
c2a47e48 4385
3c0cb5de 4386 if (MEM_P (op0) && MEM_VOLATILE_P (op0))
55c2d311 4387 op0 = force_reg (compute_mode, op0);
3c0cb5de 4388 if (MEM_P (op1) && MEM_VOLATILE_P (op1))
c2a47e48
RK
4389 op1 = force_reg (compute_mode, op1);
4390
ab0b6581
TG
4391 /* If we need the remainder or if OP1 is constant, we need to
4392 put OP0 in a register in case it has any queued subexpressions. */
4393 if (rem_flag || op1_is_constant)
4394 op0 = force_reg (compute_mode, op0);
bc1c7e93 4395
55c2d311 4396 last = get_last_insn ();
44037a66 4397
9faa82d8 4398 /* Promote floor rounding to trunc rounding for unsigned operations. */
55c2d311 4399 if (unsignedp)
44037a66 4400 {
55c2d311
TG
4401 if (code == FLOOR_DIV_EXPR)
4402 code = TRUNC_DIV_EXPR;
4403 if (code == FLOOR_MOD_EXPR)
4404 code = TRUNC_MOD_EXPR;
db7cafb0
JL
4405 if (code == EXACT_DIV_EXPR && op1_is_pow2)
4406 code = TRUNC_DIV_EXPR;
55c2d311 4407 }
bc1c7e93 4408
55c2d311
TG
4409 if (op1 != const0_rtx)
4410 switch (code)
4411 {
4412 case TRUNC_MOD_EXPR:
4413 case TRUNC_DIV_EXPR:
34f016ed 4414 if (op1_is_constant)
55c2d311 4415 {
c7ad039d
RS
4416 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4417 int size = GET_MODE_BITSIZE (int_mode);
d8f1376c 4418 if (unsignedp)
55c2d311 4419 {
079c527f 4420 unsigned HOST_WIDE_INT mh, ml;
55c2d311
TG
4421 int pre_shift, post_shift;
4422 int dummy;
c7ad039d 4423 wide_int wd = rtx_mode_t (op1, int_mode);
76a7314d 4424 unsigned HOST_WIDE_INT d = wd.to_uhwi ();
55c2d311 4425
76a7314d 4426 if (wi::popcount (wd) == 1)
55c2d311
TG
4427 {
4428 pre_shift = floor_log2 (d);
4429 if (rem_flag)
4430 {
2f1cd2eb 4431 unsigned HOST_WIDE_INT mask
fecfbfa4 4432 = (HOST_WIDE_INT_1U << pre_shift) - 1;
db3cf6fb 4433 remainder
c7ad039d
RS
4434 = expand_binop (int_mode, and_optab, op0,
4435 gen_int_mode (mask, int_mode),
e34153b0 4436 remainder, 1, methods);
55c2d311 4437 if (remainder)
c8dbc8ca 4438 return gen_lowpart (mode, remainder);
55c2d311 4439 }
c7ad039d 4440 quotient = expand_shift (RSHIFT_EXPR, int_mode, op0,
eb6c3df1 4441 pre_shift, tquotient, 1);
55c2d311 4442 }
34f016ed 4443 else if (size <= HOST_BITS_PER_WIDE_INT)
55c2d311 4444 {
fecfbfa4 4445 if (d >= (HOST_WIDE_INT_1U << (size - 1)))
55c2d311 4446 {
dc1d6150
TG
4447 /* Most significant bit of divisor is set; emit an scc
4448 insn. */
b45f0e58 4449 quotient = emit_store_flag_force (tquotient, GEU, op0, op1,
c7ad039d 4450 int_mode, 1, 1);
55c2d311
TG
4451 }
4452 else
4453 {
dc1d6150
TG
4454 /* Find a suitable multiplier and right shift count
4455 instead of multiplying with D. */
4456
4457 mh = choose_multiplier (d, size, size,
4458 &ml, &post_shift, &dummy);
4459
4460 /* If the suggested multiplier is more than SIZE bits,
4461 we can do better for even divisors, using an
4462 initial right shift. */
4463 if (mh != 0 && (d & 1) == 0)
4464 {
146ec50f 4465 pre_shift = ctz_or_zero (d);
dc1d6150
TG
4466 mh = choose_multiplier (d >> pre_shift, size,
4467 size - pre_shift,
4468 &ml, &post_shift, &dummy);
5b0264cb 4469 gcc_assert (!mh);
dc1d6150
TG
4470 }
4471 else
4472 pre_shift = 0;
4473
4474 if (mh != 0)
4475 {
4476 rtx t1, t2, t3, t4;
4477
02a65aef
R
4478 if (post_shift - 1 >= BITS_PER_WORD)
4479 goto fail1;
4480
965703ed 4481 extra_cost
c7ad039d
RS
4482 = (shift_cost (speed, int_mode, post_shift - 1)
4483 + shift_cost (speed, int_mode, 1)
4484 + 2 * add_cost (speed, int_mode));
2f1cd2eb 4485 t1 = expmed_mult_highpart
c7ad039d 4486 (int_mode, op0, gen_int_mode (ml, int_mode),
2f1cd2eb 4487 NULL_RTX, 1, max_cost - extra_cost);
dc1d6150
TG
4488 if (t1 == 0)
4489 goto fail1;
c7ad039d 4490 t2 = force_operand (gen_rtx_MINUS (int_mode,
38a448ca 4491 op0, t1),
dc1d6150 4492 NULL_RTX);
c7ad039d 4493 t3 = expand_shift (RSHIFT_EXPR, int_mode,
eb6c3df1 4494 t2, 1, NULL_RTX, 1);
c7ad039d 4495 t4 = force_operand (gen_rtx_PLUS (int_mode,
38a448ca 4496 t1, t3),
dc1d6150 4497 NULL_RTX);
4a90aeeb 4498 quotient = expand_shift
c7ad039d 4499 (RSHIFT_EXPR, int_mode, t4,
eb6c3df1 4500 post_shift - 1, tquotient, 1);
dc1d6150
TG
4501 }
4502 else
4503 {
4504 rtx t1, t2;
4505
02a65aef
R
4506 if (pre_shift >= BITS_PER_WORD
4507 || post_shift >= BITS_PER_WORD)
4508 goto fail1;
4509
4a90aeeb 4510 t1 = expand_shift
c7ad039d 4511 (RSHIFT_EXPR, int_mode, op0,
eb6c3df1 4512 pre_shift, NULL_RTX, 1);
965703ed 4513 extra_cost
c7ad039d
RS
4514 = (shift_cost (speed, int_mode, pre_shift)
4515 + shift_cost (speed, int_mode, post_shift));
2f1cd2eb 4516 t2 = expmed_mult_highpart
c7ad039d
RS
4517 (int_mode, t1,
4518 gen_int_mode (ml, int_mode),
2f1cd2eb 4519 NULL_RTX, 1, max_cost - extra_cost);
dc1d6150
TG
4520 if (t2 == 0)
4521 goto fail1;
4a90aeeb 4522 quotient = expand_shift
c7ad039d 4523 (RSHIFT_EXPR, int_mode, t2,
eb6c3df1 4524 post_shift, tquotient, 1);
dc1d6150 4525 }
55c2d311
TG
4526 }
4527 }
34f016ed
TG
4528 else /* Too wide mode to use tricky code */
4529 break;
55c2d311
TG
4530
4531 insn = get_last_insn ();
7543f918
JR
4532 if (insn != last)
4533 set_dst_reg_note (insn, REG_EQUAL,
c7ad039d 4534 gen_rtx_UDIV (int_mode, op0, op1),
7543f918 4535 quotient);
55c2d311
TG
4536 }
4537 else /* TRUNC_DIV, signed */
4538 {
4539 unsigned HOST_WIDE_INT ml;
4540 int lgup, post_shift;
e71c0aa7 4541 rtx mlr;
55c2d311 4542 HOST_WIDE_INT d = INTVAL (op1);
e4c9f3c2
ILT
4543 unsigned HOST_WIDE_INT abs_d;
4544
ebac3c02
JJ
4545 /* Not prepared to handle division/remainder by
4546 0xffffffffffffffff8000000000000000 etc. */
4547 if (d == HOST_WIDE_INT_MIN && size > HOST_BITS_PER_WIDE_INT)
4548 break;
4549
093253be
ILT
4550 /* Since d might be INT_MIN, we have to cast to
4551 unsigned HOST_WIDE_INT before negating to avoid
4552 undefined signed overflow. */
6d9c91e9
ILT
4553 abs_d = (d >= 0
4554 ? (unsigned HOST_WIDE_INT) d
4555 : - (unsigned HOST_WIDE_INT) d);
55c2d311
TG
4556
4557 /* n rem d = n rem -d */
4558 if (rem_flag && d < 0)
4559 {
4560 d = abs_d;
c7ad039d 4561 op1 = gen_int_mode (abs_d, int_mode);
55c2d311
TG
4562 }
4563
4564 if (d == 1)
4565 quotient = op0;
4566 else if (d == -1)
c7ad039d 4567 quotient = expand_unop (int_mode, neg_optab, op0,
55c2d311 4568 tquotient, 0);
76a7314d 4569 else if (size <= HOST_BITS_PER_WIDE_INT
fecfbfa4 4570 && abs_d == HOST_WIDE_INT_1U << (size - 1))
f737b132
RK
4571 {
4572 /* This case is not handled correctly below. */
4573 quotient = emit_store_flag (tquotient, EQ, op0, op1,
c7ad039d 4574 int_mode, 1, 1);
f737b132
RK
4575 if (quotient == 0)
4576 goto fail1;
4577 }
55c2d311 4578 else if (EXACT_POWER_OF_2_OR_ZERO_P (d)
76a7314d 4579 && (size <= HOST_BITS_PER_WIDE_INT || d >= 0)
5322d07e 4580 && (rem_flag
c7ad039d
RS
4581 ? smod_pow2_cheap (speed, int_mode)
4582 : sdiv_pow2_cheap (speed, int_mode))
0b55e932
RS
4583 /* We assume that cheap metric is true if the
4584 optab has an expander for this mode. */
166cdb08
JH
4585 && ((optab_handler ((rem_flag ? smod_optab
4586 : sdiv_optab),
c7ad039d 4587 int_mode)
a8c7e72d 4588 != CODE_FOR_nothing)
c7ad039d 4589 || (optab_handler (sdivmod_optab, int_mode)
947131ba 4590 != CODE_FOR_nothing)))
55c2d311 4591 ;
ebac3c02 4592 else if (EXACT_POWER_OF_2_OR_ZERO_P (abs_d))
55c2d311 4593 {
0b55e932
RS
4594 if (rem_flag)
4595 {
c7ad039d 4596 remainder = expand_smod_pow2 (int_mode, op0, d);
0b55e932
RS
4597 if (remainder)
4598 return gen_lowpart (mode, remainder);
4599 }
3d520aaf 4600
c7ad039d
RS
4601 if (sdiv_pow2_cheap (speed, int_mode)
4602 && ((optab_handler (sdiv_optab, int_mode)
3d520aaf 4603 != CODE_FOR_nothing)
c7ad039d 4604 || (optab_handler (sdivmod_optab, int_mode)
3d520aaf
DE
4605 != CODE_FOR_nothing)))
4606 quotient = expand_divmod (0, TRUNC_DIV_EXPR,
c7ad039d 4607 int_mode, op0,
3d520aaf 4608 gen_int_mode (abs_d,
c7ad039d 4609 int_mode),
3d520aaf
DE
4610 NULL_RTX, 0);
4611 else
c7ad039d 4612 quotient = expand_sdiv_pow2 (int_mode, op0, abs_d);
55c2d311 4613
0b55e932
RS
4614 /* We have computed OP0 / abs(OP1). If OP1 is negative,
4615 negate the quotient. */
55c2d311
TG
4616 if (d < 0)
4617 {
4618 insn = get_last_insn ();
4e430df8 4619 if (insn != last
fecfbfa4 4620 && abs_d < (HOST_WIDE_INT_1U
c8e7fe58 4621 << (HOST_BITS_PER_WIDE_INT - 1)))
7543f918 4622 set_dst_reg_note (insn, REG_EQUAL,
c7ad039d 4623 gen_rtx_DIV (int_mode, op0,
6d26322f
JR
4624 gen_int_mode
4625 (abs_d,
c7ad039d 4626 int_mode)),
7543f918 4627 quotient);
55c2d311 4628
c7ad039d 4629 quotient = expand_unop (int_mode, neg_optab,
55c2d311
TG
4630 quotient, quotient, 0);
4631 }
4632 }
34f016ed 4633 else if (size <= HOST_BITS_PER_WIDE_INT)
55c2d311
TG
4634 {
4635 choose_multiplier (abs_d, size, size - 1,
079c527f 4636 &ml, &post_shift, &lgup);
fecfbfa4 4637 if (ml < HOST_WIDE_INT_1U << (size - 1))
55c2d311
TG
4638 {
4639 rtx t1, t2, t3;
4640
02a65aef
R
4641 if (post_shift >= BITS_PER_WORD
4642 || size - 1 >= BITS_PER_WORD)
4643 goto fail1;
4644
c7ad039d
RS
4645 extra_cost = (shift_cost (speed, int_mode, post_shift)
4646 + shift_cost (speed, int_mode, size - 1)
4647 + add_cost (speed, int_mode));
2f1cd2eb 4648 t1 = expmed_mult_highpart
c7ad039d 4649 (int_mode, op0, gen_int_mode (ml, int_mode),
2f1cd2eb 4650 NULL_RTX, 0, max_cost - extra_cost);
55c2d311
TG
4651 if (t1 == 0)
4652 goto fail1;
4a90aeeb 4653 t2 = expand_shift
c7ad039d 4654 (RSHIFT_EXPR, int_mode, t1,
eb6c3df1 4655 post_shift, NULL_RTX, 0);
4a90aeeb 4656 t3 = expand_shift
c7ad039d 4657 (RSHIFT_EXPR, int_mode, op0,
eb6c3df1 4658 size - 1, NULL_RTX, 0);
55c2d311 4659 if (d < 0)
c5c76735 4660 quotient
c7ad039d 4661 = force_operand (gen_rtx_MINUS (int_mode, t3, t2),
c5c76735 4662 tquotient);
55c2d311 4663 else
c5c76735 4664 quotient
c7ad039d 4665 = force_operand (gen_rtx_MINUS (int_mode, t2, t3),
c5c76735 4666 tquotient);
55c2d311
TG
4667 }
4668 else
4669 {
4670 rtx t1, t2, t3, t4;
4671
02a65aef
R
4672 if (post_shift >= BITS_PER_WORD
4673 || size - 1 >= BITS_PER_WORD)
4674 goto fail1;
4675
dd4786fe 4676 ml |= HOST_WIDE_INT_M1U << (size - 1);
c7ad039d
RS
4677 mlr = gen_int_mode (ml, int_mode);
4678 extra_cost = (shift_cost (speed, int_mode, post_shift)
4679 + shift_cost (speed, int_mode, size - 1)
4680 + 2 * add_cost (speed, int_mode));
4681 t1 = expmed_mult_highpart (int_mode, op0, mlr,
71af73bb
TG
4682 NULL_RTX, 0,
4683 max_cost - extra_cost);
55c2d311
TG
4684 if (t1 == 0)
4685 goto fail1;
c7ad039d 4686 t2 = force_operand (gen_rtx_PLUS (int_mode, t1, op0),
55c2d311 4687 NULL_RTX);
4a90aeeb 4688 t3 = expand_shift
c7ad039d 4689 (RSHIFT_EXPR, int_mode, t2,
eb6c3df1 4690 post_shift, NULL_RTX, 0);
4a90aeeb 4691 t4 = expand_shift
c7ad039d 4692 (RSHIFT_EXPR, int_mode, op0,
eb6c3df1 4693 size - 1, NULL_RTX, 0);
55c2d311 4694 if (d < 0)
c5c76735 4695 quotient
c7ad039d 4696 = force_operand (gen_rtx_MINUS (int_mode, t4, t3),
c5c76735 4697 tquotient);
55c2d311 4698 else
c5c76735 4699 quotient
c7ad039d 4700 = force_operand (gen_rtx_MINUS (int_mode, t3, t4),
c5c76735 4701 tquotient);
55c2d311
TG
4702 }
4703 }
34f016ed
TG
4704 else /* Too wide mode to use tricky code */
4705 break;
55c2d311 4706
4e430df8 4707 insn = get_last_insn ();
7543f918
JR
4708 if (insn != last)
4709 set_dst_reg_note (insn, REG_EQUAL,
c7ad039d 4710 gen_rtx_DIV (int_mode, op0, op1),
7543f918 4711 quotient);
55c2d311
TG
4712 }
4713 break;
4714 }
4715 fail1:
4716 delete_insns_since (last);
4717 break;
44037a66 4718
55c2d311
TG
4719 case FLOOR_DIV_EXPR:
4720 case FLOOR_MOD_EXPR:
4721 /* We will come here only for signed operations. */
c7ad039d 4722 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
55c2d311 4723 {
c7ad039d
RS
4724 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
4725 int size = GET_MODE_BITSIZE (int_mode);
079c527f 4726 unsigned HOST_WIDE_INT mh, ml;
55c2d311
TG
4727 int pre_shift, lgup, post_shift;
4728 HOST_WIDE_INT d = INTVAL (op1);
4729
4730 if (d > 0)
4731 {
4732 /* We could just as easily deal with negative constants here,
4733 but it does not seem worth the trouble for GCC 2.6. */
4734 if (EXACT_POWER_OF_2_OR_ZERO_P (d))
4735 {
4736 pre_shift = floor_log2 (d);
4737 if (rem_flag)
4738 {
2f1cd2eb 4739 unsigned HOST_WIDE_INT mask
fecfbfa4 4740 = (HOST_WIDE_INT_1U << pre_shift) - 1;
2f1cd2eb 4741 remainder = expand_binop
c7ad039d
RS
4742 (int_mode, and_optab, op0,
4743 gen_int_mode (mask, int_mode),
e34153b0 4744 remainder, 0, methods);
55c2d311 4745 if (remainder)
c8dbc8ca 4746 return gen_lowpart (mode, remainder);
55c2d311 4747 }
4a90aeeb 4748 quotient = expand_shift
c7ad039d 4749 (RSHIFT_EXPR, int_mode, op0,
eb6c3df1 4750 pre_shift, tquotient, 0);
55c2d311
TG
4751 }
4752 else
4753 {
4754 rtx t1, t2, t3, t4;
4755
4756 mh = choose_multiplier (d, size, size - 1,
4757 &ml, &post_shift, &lgup);
5b0264cb 4758 gcc_assert (!mh);
55c2d311 4759
02a65aef
R
4760 if (post_shift < BITS_PER_WORD
4761 && size - 1 < BITS_PER_WORD)
55c2d311 4762 {
4a90aeeb 4763 t1 = expand_shift
c7ad039d 4764 (RSHIFT_EXPR, int_mode, op0,
eb6c3df1 4765 size - 1, NULL_RTX, 0);
c7ad039d 4766 t2 = expand_binop (int_mode, xor_optab, op0, t1,
02a65aef 4767 NULL_RTX, 0, OPTAB_WIDEN);
c7ad039d
RS
4768 extra_cost = (shift_cost (speed, int_mode, post_shift)
4769 + shift_cost (speed, int_mode, size - 1)
4770 + 2 * add_cost (speed, int_mode));
2f1cd2eb 4771 t3 = expmed_mult_highpart
c7ad039d 4772 (int_mode, t2, gen_int_mode (ml, int_mode),
2f1cd2eb 4773 NULL_RTX, 1, max_cost - extra_cost);
02a65aef
R
4774 if (t3 != 0)
4775 {
4a90aeeb 4776 t4 = expand_shift
c7ad039d 4777 (RSHIFT_EXPR, int_mode, t3,
eb6c3df1 4778 post_shift, NULL_RTX, 1);
c7ad039d 4779 quotient = expand_binop (int_mode, xor_optab,
02a65aef
R
4780 t4, t1, tquotient, 0,
4781 OPTAB_WIDEN);
4782 }
55c2d311
TG
4783 }
4784 }
4785 }
4786 else
4787 {
4788 rtx nsign, t1, t2, t3, t4;
c7ad039d 4789 t1 = force_operand (gen_rtx_PLUS (int_mode,
38a448ca 4790 op0, constm1_rtx), NULL_RTX);
c7ad039d 4791 t2 = expand_binop (int_mode, ior_optab, op0, t1, NULL_RTX,
55c2d311 4792 0, OPTAB_WIDEN);
c7ad039d 4793 nsign = expand_shift (RSHIFT_EXPR, int_mode, t2,
76a7314d 4794 size - 1, NULL_RTX, 0);
c7ad039d 4795 t3 = force_operand (gen_rtx_MINUS (int_mode, t1, nsign),
55c2d311 4796 NULL_RTX);
c7ad039d 4797 t4 = expand_divmod (0, TRUNC_DIV_EXPR, int_mode, t3, op1,
55c2d311
TG
4798 NULL_RTX, 0);
4799 if (t4)
4800 {
4801 rtx t5;
c7ad039d 4802 t5 = expand_unop (int_mode, one_cmpl_optab, nsign,
55c2d311 4803 NULL_RTX, 0);
c7ad039d 4804 quotient = force_operand (gen_rtx_PLUS (int_mode, t4, t5),
55c2d311
TG
4805 tquotient);
4806 }
4807 }
4808 }
4809
4810 if (quotient != 0)
4811 break;
4812 delete_insns_since (last);
4813
4814 /* Try using an instruction that produces both the quotient and
4815 remainder, using truncation. We can easily compensate the quotient
4816 or remainder to get floor rounding, once we have the remainder.
4817 Notice that we compute also the final remainder value here,
4818 and return the result right away. */
a45cf58c 4819 if (target == 0 || GET_MODE (target) != compute_mode)
55c2d311 4820 target = gen_reg_rtx (compute_mode);
668443c9 4821
55c2d311
TG
4822 if (rem_flag)
4823 {
668443c9 4824 remainder
f8cfc6aa 4825 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
55c2d311
TG
4826 quotient = gen_reg_rtx (compute_mode);
4827 }
4828 else
4829 {
668443c9 4830 quotient
f8cfc6aa 4831 = REG_P (target) ? target : gen_reg_rtx (compute_mode);
55c2d311
TG
4832 remainder = gen_reg_rtx (compute_mode);
4833 }
4834
4835 if (expand_twoval_binop (sdivmod_optab, op0, op1,
4836 quotient, remainder, 0))
4837 {
4838 /* This could be computed with a branch-less sequence.
4839 Save that for later. */
4840 rtx tem;
f3f6fb16 4841 rtx_code_label *label = gen_label_rtx ();
f5963e61 4842 do_cmp_and_jump (remainder, const0_rtx, EQ, compute_mode, label);
55c2d311
TG
4843 tem = expand_binop (compute_mode, xor_optab, op0, op1,
4844 NULL_RTX, 0, OPTAB_WIDEN);
f5963e61 4845 do_cmp_and_jump (tem, const0_rtx, GE, compute_mode, label);
55c2d311
TG
4846 expand_dec (quotient, const1_rtx);
4847 expand_inc (remainder, op1);
4848 emit_label (label);
c8dbc8ca 4849 return gen_lowpart (mode, rem_flag ? remainder : quotient);
55c2d311
TG
4850 }
4851
4852 /* No luck with division elimination or divmod. Have to do it
4853 by conditionally adjusting op0 *and* the result. */
44037a66 4854 {
f3f6fb16 4855 rtx_code_label *label1, *label2, *label3, *label4, *label5;
55c2d311
TG
4856 rtx adjusted_op0;
4857 rtx tem;
4858
4859 quotient = gen_reg_rtx (compute_mode);
4860 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4861 label1 = gen_label_rtx ();
4862 label2 = gen_label_rtx ();
4863 label3 = gen_label_rtx ();
4864 label4 = gen_label_rtx ();
4865 label5 = gen_label_rtx ();
f5963e61
JL
4866 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
4867 do_cmp_and_jump (adjusted_op0, const0_rtx, LT, compute_mode, label1);
55c2d311 4868 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
e34153b0 4869 quotient, 0, methods);
55c2d311
TG
4870 if (tem != quotient)
4871 emit_move_insn (quotient, tem);
ec4a505f 4872 emit_jump_insn (targetm.gen_jump (label5));
55c2d311
TG
4873 emit_barrier ();
4874 emit_label (label1);
44037a66 4875 expand_inc (adjusted_op0, const1_rtx);
ec4a505f 4876 emit_jump_insn (targetm.gen_jump (label4));
55c2d311
TG
4877 emit_barrier ();
4878 emit_label (label2);
f5963e61 4879 do_cmp_and_jump (adjusted_op0, const0_rtx, GT, compute_mode, label3);
55c2d311 4880 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
e34153b0 4881 quotient, 0, methods);
55c2d311
TG
4882 if (tem != quotient)
4883 emit_move_insn (quotient, tem);
ec4a505f 4884 emit_jump_insn (targetm.gen_jump (label5));
55c2d311
TG
4885 emit_barrier ();
4886 emit_label (label3);
4887 expand_dec (adjusted_op0, const1_rtx);
4888 emit_label (label4);
4889 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
e34153b0 4890 quotient, 0, methods);
55c2d311
TG
4891 if (tem != quotient)
4892 emit_move_insn (quotient, tem);
4893 expand_dec (quotient, const1_rtx);
4894 emit_label (label5);
44037a66 4895 }
55c2d311 4896 break;
44037a66 4897
55c2d311
TG
4898 case CEIL_DIV_EXPR:
4899 case CEIL_MOD_EXPR:
4900 if (unsignedp)
4901 {
76a7314d
JJ
4902 if (op1_is_constant
4903 && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
c7ad039d 4904 && (HWI_COMPUTABLE_MODE_P (compute_mode)
76a7314d 4905 || INTVAL (op1) >= 0))
9176af2f 4906 {
c7ad039d
RS
4907 scalar_int_mode int_mode
4908 = as_a <scalar_int_mode> (compute_mode);
9176af2f
TG
4909 rtx t1, t2, t3;
4910 unsigned HOST_WIDE_INT d = INTVAL (op1);
c7ad039d 4911 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
eb6c3df1 4912 floor_log2 (d), tquotient, 1);
c7ad039d
RS
4913 t2 = expand_binop (int_mode, and_optab, op0,
4914 gen_int_mode (d - 1, int_mode),
e34153b0 4915 NULL_RTX, 1, methods);
c7ad039d
RS
4916 t3 = gen_reg_rtx (int_mode);
4917 t3 = emit_store_flag (t3, NE, t2, const0_rtx, int_mode, 1, 1);
412381d9
TG
4918 if (t3 == 0)
4919 {
f3f6fb16 4920 rtx_code_label *lab;
412381d9 4921 lab = gen_label_rtx ();
c7ad039d 4922 do_cmp_and_jump (t2, const0_rtx, EQ, int_mode, lab);
412381d9
TG
4923 expand_inc (t1, const1_rtx);
4924 emit_label (lab);
4925 quotient = t1;
4926 }
4927 else
c7ad039d 4928 quotient = force_operand (gen_rtx_PLUS (int_mode, t1, t3),
412381d9 4929 tquotient);
9176af2f
TG
4930 break;
4931 }
55c2d311
TG
4932
4933 /* Try using an instruction that produces both the quotient and
4934 remainder, using truncation. We can easily compensate the
4935 quotient or remainder to get ceiling rounding, once we have the
4936 remainder. Notice that we compute also the final remainder
4937 value here, and return the result right away. */
a45cf58c 4938 if (target == 0 || GET_MODE (target) != compute_mode)
55c2d311 4939 target = gen_reg_rtx (compute_mode);
668443c9 4940
55c2d311
TG
4941 if (rem_flag)
4942 {
f8cfc6aa 4943 remainder = (REG_P (target)
668443c9 4944 ? target : gen_reg_rtx (compute_mode));
55c2d311
TG
4945 quotient = gen_reg_rtx (compute_mode);
4946 }
4947 else
4948 {
f8cfc6aa 4949 quotient = (REG_P (target)
668443c9 4950 ? target : gen_reg_rtx (compute_mode));
55c2d311
TG
4951 remainder = gen_reg_rtx (compute_mode);
4952 }
4953
4954 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient,
4955 remainder, 1))
4956 {
4957 /* This could be computed with a branch-less sequence.
4958 Save that for later. */
f3f6fb16 4959 rtx_code_label *label = gen_label_rtx ();
f5963e61
JL
4960 do_cmp_and_jump (remainder, const0_rtx, EQ,
4961 compute_mode, label);
55c2d311
TG
4962 expand_inc (quotient, const1_rtx);
4963 expand_dec (remainder, op1);
4964 emit_label (label);
c8dbc8ca 4965 return gen_lowpart (mode, rem_flag ? remainder : quotient);
55c2d311
TG
4966 }
4967
4968 /* No luck with division elimination or divmod. Have to do it
4969 by conditionally adjusting op0 *and* the result. */
44037a66 4970 {
f3f6fb16 4971 rtx_code_label *label1, *label2;
55c2d311
TG
4972 rtx adjusted_op0, tem;
4973
4974 quotient = gen_reg_rtx (compute_mode);
4975 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
4976 label1 = gen_label_rtx ();
4977 label2 = gen_label_rtx ();
f5963e61
JL
4978 do_cmp_and_jump (adjusted_op0, const0_rtx, NE,
4979 compute_mode, label1);
55c2d311 4980 emit_move_insn (quotient, const0_rtx);
ec4a505f 4981 emit_jump_insn (targetm.gen_jump (label2));
55c2d311
TG
4982 emit_barrier ();
4983 emit_label (label1);
4984 expand_dec (adjusted_op0, const1_rtx);
4985 tem = expand_binop (compute_mode, udiv_optab, adjusted_op0, op1,
e34153b0 4986 quotient, 1, methods);
55c2d311
TG
4987 if (tem != quotient)
4988 emit_move_insn (quotient, tem);
4989 expand_inc (quotient, const1_rtx);
4990 emit_label (label2);
44037a66 4991 }
55c2d311
TG
4992 }
4993 else /* signed */
4994 {
73f27728
RK
4995 if (op1_is_constant && EXACT_POWER_OF_2_OR_ZERO_P (INTVAL (op1))
4996 && INTVAL (op1) >= 0)
4997 {
4998 /* This is extremely similar to the code for the unsigned case
4999 above. For 2.7 we should merge these variants, but for
5000 2.6.1 I don't want to touch the code for unsigned since that
5001 get used in C. The signed case will only be used by other
5002 languages (Ada). */
5003
5004 rtx t1, t2, t3;
5005 unsigned HOST_WIDE_INT d = INTVAL (op1);
5006 t1 = expand_shift (RSHIFT_EXPR, compute_mode, op0,
eb6c3df1 5007 floor_log2 (d), tquotient, 0);
73f27728 5008 t2 = expand_binop (compute_mode, and_optab, op0,
2f1cd2eb 5009 gen_int_mode (d - 1, compute_mode),
e34153b0 5010 NULL_RTX, 1, methods);
73f27728
RK
5011 t3 = gen_reg_rtx (compute_mode);
5012 t3 = emit_store_flag (t3, NE, t2, const0_rtx,
5013 compute_mode, 1, 1);
5014 if (t3 == 0)
5015 {
f3f6fb16 5016 rtx_code_label *lab;
73f27728 5017 lab = gen_label_rtx ();
f5963e61 5018 do_cmp_and_jump (t2, const0_rtx, EQ, compute_mode, lab);
73f27728
RK
5019 expand_inc (t1, const1_rtx);
5020 emit_label (lab);
5021 quotient = t1;
5022 }
5023 else
38a448ca
RH
5024 quotient = force_operand (gen_rtx_PLUS (compute_mode,
5025 t1, t3),
73f27728
RK
5026 tquotient);
5027 break;
5028 }
5029
55c2d311
TG
5030 /* Try using an instruction that produces both the quotient and
5031 remainder, using truncation. We can easily compensate the
5032 quotient or remainder to get ceiling rounding, once we have the
5033 remainder. Notice that we compute also the final remainder
5034 value here, and return the result right away. */
a45cf58c 5035 if (target == 0 || GET_MODE (target) != compute_mode)
55c2d311
TG
5036 target = gen_reg_rtx (compute_mode);
5037 if (rem_flag)
5038 {
f8cfc6aa 5039 remainder= (REG_P (target)
668443c9 5040 ? target : gen_reg_rtx (compute_mode));
55c2d311
TG
5041 quotient = gen_reg_rtx (compute_mode);
5042 }
5043 else
5044 {
f8cfc6aa 5045 quotient = (REG_P (target)
668443c9 5046 ? target : gen_reg_rtx (compute_mode));
55c2d311
TG
5047 remainder = gen_reg_rtx (compute_mode);
5048 }
5049
5050 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient,
5051 remainder, 0))
5052 {
5053 /* This could be computed with a branch-less sequence.
5054 Save that for later. */
5055 rtx tem;
f3f6fb16 5056 rtx_code_label *label = gen_label_rtx ();
f5963e61
JL
5057 do_cmp_and_jump (remainder, const0_rtx, EQ,
5058 compute_mode, label);
55c2d311
TG
5059 tem = expand_binop (compute_mode, xor_optab, op0, op1,
5060 NULL_RTX, 0, OPTAB_WIDEN);
f5963e61 5061 do_cmp_and_jump (tem, const0_rtx, LT, compute_mode, label);
55c2d311
TG
5062 expand_inc (quotient, const1_rtx);
5063 expand_dec (remainder, op1);
5064 emit_label (label);
c8dbc8ca 5065 return gen_lowpart (mode, rem_flag ? remainder : quotient);
55c2d311
TG
5066 }
5067
5068 /* No luck with division elimination or divmod. Have to do it
5069 by conditionally adjusting op0 *and* the result. */
44037a66 5070 {
f3f6fb16 5071 rtx_code_label *label1, *label2, *label3, *label4, *label5;
55c2d311
TG
5072 rtx adjusted_op0;
5073 rtx tem;
5074
5075 quotient = gen_reg_rtx (compute_mode);
5076 adjusted_op0 = copy_to_mode_reg (compute_mode, op0);
5077 label1 = gen_label_rtx ();
5078 label2 = gen_label_rtx ();
5079 label3 = gen_label_rtx ();
5080 label4 = gen_label_rtx ();
5081 label5 = gen_label_rtx ();
f5963e61
JL
5082 do_cmp_and_jump (op1, const0_rtx, LT, compute_mode, label2);
5083 do_cmp_and_jump (adjusted_op0, const0_rtx, GT,
5084 compute_mode, label1);
55c2d311 5085 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
e34153b0 5086 quotient, 0, methods);
55c2d311
TG
5087 if (tem != quotient)
5088 emit_move_insn (quotient, tem);
ec4a505f 5089 emit_jump_insn (targetm.gen_jump (label5));
55c2d311
TG
5090 emit_barrier ();
5091 emit_label (label1);
5092 expand_dec (adjusted_op0, const1_rtx);
ec4a505f 5093 emit_jump_insn (targetm.gen_jump (label4));
55c2d311
TG
5094 emit_barrier ();
5095 emit_label (label2);
f5963e61
JL
5096 do_cmp_and_jump (adjusted_op0, const0_rtx, LT,
5097 compute_mode, label3);
55c2d311 5098 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
e34153b0 5099 quotient, 0, methods);
55c2d311
TG
5100 if (tem != quotient)
5101 emit_move_insn (quotient, tem);
ec4a505f 5102 emit_jump_insn (targetm.gen_jump (label5));
55c2d311
TG
5103 emit_barrier ();
5104 emit_label (label3);
5105 expand_inc (adjusted_op0, const1_rtx);
5106 emit_label (label4);
5107 tem = expand_binop (compute_mode, sdiv_optab, adjusted_op0, op1,
e34153b0 5108 quotient, 0, methods);
55c2d311
TG
5109 if (tem != quotient)
5110 emit_move_insn (quotient, tem);
5111 expand_inc (quotient, const1_rtx);
5112 emit_label (label5);
44037a66 5113 }
55c2d311
TG
5114 }
5115 break;
bc1c7e93 5116
55c2d311 5117 case EXACT_DIV_EXPR:
c7ad039d 5118 if (op1_is_constant && HWI_COMPUTABLE_MODE_P (compute_mode))
55c2d311 5119 {
c7ad039d
RS
5120 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5121 int size = GET_MODE_BITSIZE (int_mode);
55c2d311
TG
5122 HOST_WIDE_INT d = INTVAL (op1);
5123 unsigned HOST_WIDE_INT ml;
91ce572a 5124 int pre_shift;
55c2d311
TG
5125 rtx t1;
5126
146ec50f 5127 pre_shift = ctz_or_zero (d);
91ce572a 5128 ml = invert_mod2n (d >> pre_shift, size);
c7ad039d 5129 t1 = expand_shift (RSHIFT_EXPR, int_mode, op0,
eb6c3df1 5130 pre_shift, NULL_RTX, unsignedp);
c7ad039d 5131 quotient = expand_mult (int_mode, t1, gen_int_mode (ml, int_mode),
31ff3e0b 5132 NULL_RTX, 1);
55c2d311
TG
5133
5134 insn = get_last_insn ();
7543f918
JR
5135 set_dst_reg_note (insn, REG_EQUAL,
5136 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
c7ad039d 5137 int_mode, op0, op1),
7543f918 5138 quotient);
55c2d311
TG
5139 }
5140 break;
5141
5142 case ROUND_DIV_EXPR:
5143 case ROUND_MOD_EXPR:
69f61901
RK
5144 if (unsignedp)
5145 {
c7ad039d 5146 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
69f61901 5147 rtx tem;
f3f6fb16 5148 rtx_code_label *label;
69f61901 5149 label = gen_label_rtx ();
c7ad039d
RS
5150 quotient = gen_reg_rtx (int_mode);
5151 remainder = gen_reg_rtx (int_mode);
69f61901
RK
5152 if (expand_twoval_binop (udivmod_optab, op0, op1, quotient, remainder, 1) == 0)
5153 {
5154 rtx tem;
c7ad039d 5155 quotient = expand_binop (int_mode, udiv_optab, op0, op1,
e34153b0 5156 quotient, 1, methods);
c7ad039d
RS
5157 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 1);
5158 remainder = expand_binop (int_mode, sub_optab, op0, tem,
e34153b0 5159 remainder, 1, methods);
69f61901 5160 }
c7ad039d
RS
5161 tem = plus_constant (int_mode, op1, -1);
5162 tem = expand_shift (RSHIFT_EXPR, int_mode, tem, 1, NULL_RTX, 1);
5163 do_cmp_and_jump (remainder, tem, LEU, int_mode, label);
69f61901
RK
5164 expand_inc (quotient, const1_rtx);
5165 expand_dec (remainder, op1);
5166 emit_label (label);
5167 }
5168 else
5169 {
c7ad039d
RS
5170 scalar_int_mode int_mode = as_a <scalar_int_mode> (compute_mode);
5171 int size = GET_MODE_BITSIZE (int_mode);
69f61901 5172 rtx abs_rem, abs_op1, tem, mask;
f3f6fb16 5173 rtx_code_label *label;
69f61901 5174 label = gen_label_rtx ();
c7ad039d
RS
5175 quotient = gen_reg_rtx (int_mode);
5176 remainder = gen_reg_rtx (int_mode);
69f61901
RK
5177 if (expand_twoval_binop (sdivmod_optab, op0, op1, quotient, remainder, 0) == 0)
5178 {
5179 rtx tem;
c7ad039d 5180 quotient = expand_binop (int_mode, sdiv_optab, op0, op1,
e34153b0 5181 quotient, 0, methods);
c7ad039d
RS
5182 tem = expand_mult (int_mode, quotient, op1, NULL_RTX, 0);
5183 remainder = expand_binop (int_mode, sub_optab, op0, tem,
e34153b0 5184 remainder, 0, methods);
69f61901 5185 }
c7ad039d
RS
5186 abs_rem = expand_abs (int_mode, remainder, NULL_RTX, 1, 0);
5187 abs_op1 = expand_abs (int_mode, op1, NULL_RTX, 1, 0);
5188 tem = expand_shift (LSHIFT_EXPR, int_mode, abs_rem,
eb6c3df1 5189 1, NULL_RTX, 1);
c7ad039d
RS
5190 do_cmp_and_jump (tem, abs_op1, LTU, int_mode, label);
5191 tem = expand_binop (int_mode, xor_optab, op0, op1,
69f61901 5192 NULL_RTX, 0, OPTAB_WIDEN);
c7ad039d 5193 mask = expand_shift (RSHIFT_EXPR, int_mode, tem,
eb6c3df1 5194 size - 1, NULL_RTX, 0);
c7ad039d 5195 tem = expand_binop (int_mode, xor_optab, mask, const1_rtx,
69f61901 5196 NULL_RTX, 0, OPTAB_WIDEN);
c7ad039d 5197 tem = expand_binop (int_mode, sub_optab, tem, mask,
69f61901
RK
5198 NULL_RTX, 0, OPTAB_WIDEN);
5199 expand_inc (quotient, tem);
c7ad039d 5200 tem = expand_binop (int_mode, xor_optab, mask, op1,
69f61901 5201 NULL_RTX, 0, OPTAB_WIDEN);
c7ad039d 5202 tem = expand_binop (int_mode, sub_optab, tem, mask,
69f61901
RK
5203 NULL_RTX, 0, OPTAB_WIDEN);
5204 expand_dec (remainder, tem);
5205 emit_label (label);
5206 }
5207 return gen_lowpart (mode, rem_flag ? remainder : quotient);
c410d49e 5208
e9a25f70 5209 default:
5b0264cb 5210 gcc_unreachable ();
55c2d311 5211 }
44037a66 5212
55c2d311 5213 if (quotient == 0)
44037a66 5214 {
a45cf58c
RK
5215 if (target && GET_MODE (target) != compute_mode)
5216 target = 0;
5217
55c2d311 5218 if (rem_flag)
44037a66 5219 {
32fdf36b 5220 /* Try to produce the remainder without producing the quotient.
d6a7951f 5221 If we seem to have a divmod pattern that does not require widening,
b20b352b 5222 don't try widening here. We should really have a WIDEN argument
32fdf36b
TG
5223 to expand_twoval_binop, since what we'd really like to do here is
5224 1) try a mod insn in compute_mode
5225 2) try a divmod insn in compute_mode
5226 3) try a div insn in compute_mode and multiply-subtract to get
5227 remainder
5228 4) try the same things with widening allowed. */
5229 remainder
5230 = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5231 op0, op1, target,
5232 unsignedp,
947131ba 5233 ((optab_handler (optab2, compute_mode)
32fdf36b
TG
5234 != CODE_FOR_nothing)
5235 ? OPTAB_DIRECT : OPTAB_WIDEN));
55c2d311 5236 if (remainder == 0)
44037a66
TG
5237 {
5238 /* No luck there. Can we do remainder and divide at once
5239 without a library call? */
55c2d311
TG
5240 remainder = gen_reg_rtx (compute_mode);
5241 if (! expand_twoval_binop ((unsignedp
5242 ? udivmod_optab
5243 : sdivmod_optab),
5244 op0, op1,
5245 NULL_RTX, remainder, unsignedp))
5246 remainder = 0;
44037a66 5247 }
55c2d311
TG
5248
5249 if (remainder)
5250 return gen_lowpart (mode, remainder);
44037a66 5251 }
44037a66 5252
dc38b292
RK
5253 /* Produce the quotient. Try a quotient insn, but not a library call.
5254 If we have a divmod in this mode, use it in preference to widening
5255 the div (for this test we assume it will not fail). Note that optab2
5256 is set to the one of the two optabs that the call below will use. */
5257 quotient
5258 = sign_expand_binop (compute_mode, udiv_optab, sdiv_optab,
5259 op0, op1, rem_flag ? NULL_RTX : target,
5260 unsignedp,
947131ba 5261 ((optab_handler (optab2, compute_mode)
dc38b292
RK
5262 != CODE_FOR_nothing)
5263 ? OPTAB_DIRECT : OPTAB_WIDEN));
5264
55c2d311 5265 if (quotient == 0)
44037a66
TG
5266 {
5267 /* No luck there. Try a quotient-and-remainder insn,
5268 keeping the quotient alone. */
55c2d311 5269 quotient = gen_reg_rtx (compute_mode);
44037a66 5270 if (! expand_twoval_binop (unsignedp ? udivmod_optab : sdivmod_optab,
55c2d311
TG
5271 op0, op1,
5272 quotient, NULL_RTX, unsignedp))
5273 {
5274 quotient = 0;
5275 if (! rem_flag)
5276 /* Still no luck. If we are not computing the remainder,
5277 use a library call for the quotient. */
5278 quotient = sign_expand_binop (compute_mode,
5279 udiv_optab, sdiv_optab,
5280 op0, op1, target,
e34153b0 5281 unsignedp, methods);
55c2d311 5282 }
44037a66 5283 }
44037a66
TG
5284 }
5285
44037a66
TG
5286 if (rem_flag)
5287 {
a45cf58c
RK
5288 if (target && GET_MODE (target) != compute_mode)
5289 target = 0;
5290
55c2d311 5291 if (quotient == 0)
b3f8d95d
MM
5292 {
5293 /* No divide instruction either. Use library for remainder. */
5294 remainder = sign_expand_binop (compute_mode, umod_optab, smod_optab,
5295 op0, op1, target,
e34153b0 5296 unsignedp, methods);
b3f8d95d
MM
5297 /* No remainder function. Try a quotient-and-remainder
5298 function, keeping the remainder. */
e34153b0
JJ
5299 if (!remainder
5300 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
b3f8d95d
MM
5301 {
5302 remainder = gen_reg_rtx (compute_mode);
b8698a0f 5303 if (!expand_twoval_binop_libfunc
b3f8d95d
MM
5304 (unsignedp ? udivmod_optab : sdivmod_optab,
5305 op0, op1,
5306 NULL_RTX, remainder,
5307 unsignedp ? UMOD : MOD))
5308 remainder = NULL_RTX;
5309 }
5310 }
44037a66
TG
5311 else
5312 {
5313 /* We divided. Now finish doing X - Y * (X / Y). */
55c2d311
TG
5314 remainder = expand_mult (compute_mode, quotient, op1,
5315 NULL_RTX, unsignedp);
5316 remainder = expand_binop (compute_mode, sub_optab, op0,
5317 remainder, target, unsignedp,
e34153b0 5318 methods);
44037a66
TG
5319 }
5320 }
5321
e34153b0
JJ
5322 if (methods != OPTAB_LIB_WIDEN
5323 && (rem_flag ? remainder : quotient) == NULL_RTX)
5324 return NULL_RTX;
5325
55c2d311 5326 return gen_lowpart (mode, rem_flag ? remainder : quotient);
44037a66
TG
5327}
5328\f
5329/* Return a tree node with data type TYPE, describing the value of X.
4dfa0342 5330 Usually this is an VAR_DECL, if there is no obvious better choice.
44037a66 5331 X may be an expression, however we only support those expressions
6d2f8887 5332 generated by loop.c. */
44037a66
TG
5333
5334tree
502b8322 5335make_tree (tree type, rtx x)
44037a66
TG
5336{
5337 tree t;
5338
5339 switch (GET_CODE (x))
5340 {
5341 case CONST_INT:
807e902e 5342 case CONST_WIDE_INT:
f079167a 5343 t = wide_int_to_tree (type, rtx_mode_t (x, TYPE_MODE (type)));
807e902e 5344 return t;
b8698a0f 5345
44037a66 5346 case CONST_DOUBLE:
807e902e
KZ
5347 STATIC_ASSERT (HOST_BITS_PER_WIDE_INT * 2 <= MAX_BITSIZE_MODE_ANY_INT);
5348 if (TARGET_SUPPORTS_WIDE_INT == 0 && GET_MODE (x) == VOIDmode)
5349 t = wide_int_to_tree (type,
5350 wide_int::from_array (&CONST_DOUBLE_LOW (x), 2,
5351 HOST_BITS_PER_WIDE_INT * 2));
44037a66 5352 else
34a72c33 5353 t = build_real (type, *CONST_DOUBLE_REAL_VALUE (x));
44037a66
TG
5354
5355 return t;
69ef87e2
AH
5356
5357 case CONST_VECTOR:
5358 {
16c78b66
RS
5359 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5360 unsigned int nelts_per_pattern = CONST_VECTOR_NELTS_PER_PATTERN (x);
b8b7f162 5361 tree itype = TREE_TYPE (type);
69ef87e2 5362
69ef87e2 5363 /* Build a tree with vector elements. */
16c78b66
RS
5364 tree_vector_builder elts (type, npatterns, nelts_per_pattern);
5365 unsigned int count = elts.encoded_nelts ();
5366 for (unsigned int i = 0; i < count; ++i)
69ef87e2 5367 {
b8b7f162 5368 rtx elt = CONST_VECTOR_ELT (x, i);
794e3180 5369 elts.quick_push (make_tree (itype, elt));
69ef87e2 5370 }
c410d49e 5371
5ebaa477 5372 return elts.build ();
69ef87e2
AH
5373 }
5374
44037a66 5375 case PLUS:
4845b383
KH
5376 return fold_build2 (PLUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5377 make_tree (type, XEXP (x, 1)));
c410d49e 5378
44037a66 5379 case MINUS:
4845b383
KH
5380 return fold_build2 (MINUS_EXPR, type, make_tree (type, XEXP (x, 0)),
5381 make_tree (type, XEXP (x, 1)));
c410d49e 5382
44037a66 5383 case NEG:
4845b383 5384 return fold_build1 (NEGATE_EXPR, type, make_tree (type, XEXP (x, 0)));
44037a66
TG
5385
5386 case MULT:
4845b383
KH
5387 return fold_build2 (MULT_EXPR, type, make_tree (type, XEXP (x, 0)),
5388 make_tree (type, XEXP (x, 1)));
c410d49e 5389
44037a66 5390 case ASHIFT:
4845b383
KH
5391 return fold_build2 (LSHIFT_EXPR, type, make_tree (type, XEXP (x, 0)),
5392 make_tree (type, XEXP (x, 1)));
c410d49e 5393
44037a66 5394 case LSHIFTRT:
ca5ba2a3 5395 t = unsigned_type_for (type);
aeba6c28
JM
5396 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5397 make_tree (t, XEXP (x, 0)),
5398 make_tree (type, XEXP (x, 1))));
c410d49e 5399
44037a66 5400 case ASHIFTRT:
12753674 5401 t = signed_type_for (type);
aeba6c28
JM
5402 return fold_convert (type, build2 (RSHIFT_EXPR, t,
5403 make_tree (t, XEXP (x, 0)),
5404 make_tree (type, XEXP (x, 1))));
c410d49e 5405
44037a66
TG
5406 case DIV:
5407 if (TREE_CODE (type) != REAL_TYPE)
12753674 5408 t = signed_type_for (type);
44037a66
TG
5409 else
5410 t = type;
5411
aeba6c28
JM
5412 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5413 make_tree (t, XEXP (x, 0)),
5414 make_tree (t, XEXP (x, 1))));
44037a66 5415 case UDIV:
ca5ba2a3 5416 t = unsigned_type_for (type);
aeba6c28
JM
5417 return fold_convert (type, build2 (TRUNC_DIV_EXPR, t,
5418 make_tree (t, XEXP (x, 0)),
5419 make_tree (t, XEXP (x, 1))));
5c45425b
RH
5420
5421 case SIGN_EXTEND:
5422 case ZERO_EXTEND:
ae2bcd98
RS
5423 t = lang_hooks.types.type_for_mode (GET_MODE (XEXP (x, 0)),
5424 GET_CODE (x) == ZERO_EXTEND);
aeba6c28 5425 return fold_convert (type, make_tree (t, XEXP (x, 0)));
5c45425b 5426
84816907 5427 case CONST:
2072a319 5428 return make_tree (type, XEXP (x, 0));
84816907
JM
5429
5430 case SYMBOL_REF:
5431 t = SYMBOL_REF_DECL (x);
5432 if (t)
5433 return fold_convert (type, build_fold_addr_expr (t));
191816a3 5434 /* fall through. */
84816907 5435
4dfa0342 5436 default:
36fd6408
RS
5437 if (CONST_POLY_INT_P (x))
5438 return wide_int_to_tree (t, const_poly_int_value (x));
5439
c2255bc4 5440 t = build_decl (RTL_LOCATION (x), VAR_DECL, NULL_TREE, type);
d1608933 5441
d4ebfa65
BE
5442 /* If TYPE is a POINTER_TYPE, we might need to convert X from
5443 address mode to pointer mode. */
5ae6cd0d 5444 if (POINTER_TYPE_P (type))
d4ebfa65 5445 x = convert_memory_address_addr_space
7a504f33 5446 (SCALAR_INT_TYPE_MODE (type), x, TYPE_ADDR_SPACE (TREE_TYPE (type)));
d1608933 5447
8a0aa06e
RH
5448 /* Note that we do *not* use SET_DECL_RTL here, because we do not
5449 want set_decl_rtl to go adjusting REG_ATTRS for this temporary. */
820cc88f 5450 t->decl_with_rtl.rtl = x;
4dfa0342 5451
44037a66
TG
5452 return t;
5453 }
5454}
44037a66
TG
5455\f
5456/* Compute the logical-and of OP0 and OP1, storing it in TARGET
5457 and returning TARGET.
5458
5459 If TARGET is 0, a pseudo-register or constant is returned. */
5460
5461rtx
ef4bddc2 5462expand_and (machine_mode mode, rtx op0, rtx op1, rtx target)
44037a66 5463{
22273300 5464 rtx tem = 0;
44037a66 5465
22273300
JJ
5466 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
5467 tem = simplify_binary_operation (AND, mode, op0, op1);
5468 if (tem == 0)
44037a66 5469 tem = expand_binop (mode, and_optab, op0, op1, target, 0, OPTAB_LIB_WIDEN);
44037a66
TG
5470
5471 if (target == 0)
5472 target = tem;
5473 else if (tem != target)
5474 emit_move_insn (target, tem);
5475 return target;
5476}
495499da 5477
a41a56b6 5478/* Helper function for emit_store_flag. */
2d52a3a1 5479rtx
ef12ae45 5480emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
ef4bddc2 5481 machine_mode mode, machine_mode compare_mode,
92355a9c 5482 int unsignedp, rtx x, rtx y, int normalizep,
ef4bddc2 5483 machine_mode target_mode)
a41a56b6 5484{
99b1c316 5485 class expand_operand ops[4];
f3f6fb16
DM
5486 rtx op0, comparison, subtarget;
5487 rtx_insn *last;
7cc237a6
RS
5488 scalar_int_mode result_mode = targetm.cstore_mode (icode);
5489 scalar_int_mode int_target_mode;
45475a3f
PB
5490
5491 last = get_last_insn ();
5492 x = prepare_operand (icode, x, 2, mode, compare_mode, unsignedp);
5493 y = prepare_operand (icode, y, 3, mode, compare_mode, unsignedp);
a5c7d693 5494 if (!x || !y)
45475a3f
PB
5495 {
5496 delete_insns_since (last);
5497 return NULL_RTX;
5498 }
5499
92355a9c 5500 if (target_mode == VOIDmode)
7cc237a6
RS
5501 int_target_mode = result_mode;
5502 else
5503 int_target_mode = as_a <scalar_int_mode> (target_mode);
92355a9c 5504 if (!target)
7cc237a6 5505 target = gen_reg_rtx (int_target_mode);
b8698a0f 5506
a5c7d693 5507 comparison = gen_rtx_fmt_ee (code, result_mode, x, y);
45475a3f 5508
a5c7d693
RS
5509 create_output_operand (&ops[0], optimize ? NULL_RTX : target, result_mode);
5510 create_fixed_operand (&ops[1], comparison);
5511 create_fixed_operand (&ops[2], x);
5512 create_fixed_operand (&ops[3], y);
5513 if (!maybe_expand_insn (icode, 4, ops))
5514 {
5515 delete_insns_since (last);
5516 return NULL_RTX;
5517 }
5518 subtarget = ops[0].value;
495499da 5519
a41a56b6 5520 /* If we are converting to a wider mode, first convert to
7cc237a6 5521 INT_TARGET_MODE, then normalize. This produces better combining
a41a56b6
RE
5522 opportunities on machines that have a SIGN_EXTRACT when we are
5523 testing a single bit. This mostly benefits the 68k.
5524
5525 If STORE_FLAG_VALUE does not have the sign bit set when
5526 interpreted in MODE, we can do this conversion as unsigned, which
5527 is usually more efficient. */
19ef5a8f 5528 if (GET_MODE_PRECISION (int_target_mode) > GET_MODE_PRECISION (result_mode))
a41a56b6 5529 {
19ef5a8f
AS
5530 gcc_assert (GET_MODE_PRECISION (result_mode) != 1
5531 || STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1);
5532
5533 bool unsignedp = (STORE_FLAG_VALUE >= 0);
5534 convert_move (target, subtarget, unsignedp);
5535
a41a56b6 5536 op0 = target;
7cc237a6 5537 result_mode = int_target_mode;
a41a56b6
RE
5538 }
5539 else
5540 op0 = subtarget;
5541
5542 /* If we want to keep subexpressions around, don't reuse our last
5543 target. */
5544 if (optimize)
5545 subtarget = 0;
5546
5547 /* Now normalize to the proper value in MODE. Sometimes we don't
5548 have to do anything. */
5549 if (normalizep == 0 || normalizep == STORE_FLAG_VALUE)
5550 ;
5551 /* STORE_FLAG_VALUE might be the most negative number, so write
5552 the comparison this way to avoid a compiler-time warning. */
5553 else if (- normalizep == STORE_FLAG_VALUE)
45475a3f 5554 op0 = expand_unop (result_mode, neg_optab, op0, subtarget, 0);
a41a56b6
RE
5555
5556 /* We don't want to use STORE_FLAG_VALUE < 0 below since this makes
5557 it hard to use a value of just the sign bit due to ANSI integer
5558 constant typing rules. */
2d0c270f 5559 else if (val_signbit_known_set_p (result_mode, STORE_FLAG_VALUE))
45475a3f 5560 op0 = expand_shift (RSHIFT_EXPR, result_mode, op0,
eb6c3df1 5561 GET_MODE_BITSIZE (result_mode) - 1, subtarget,
a41a56b6
RE
5562 normalizep == 1);
5563 else
5564 {
5565 gcc_assert (STORE_FLAG_VALUE & 1);
5566
45475a3f 5567 op0 = expand_and (result_mode, op0, const1_rtx, subtarget);
a41a56b6 5568 if (normalizep == -1)
45475a3f 5569 op0 = expand_unop (result_mode, neg_optab, op0, op0, 0);
a41a56b6
RE
5570 }
5571
5572 /* If we were converting to a smaller mode, do the conversion now. */
7cc237a6 5573 if (int_target_mode != result_mode)
a41a56b6
RE
5574 {
5575 convert_move (target, op0, 0);
5576 return target;
5577 }
5578 else
5579 return op0;
5580}
5581
44037a66 5582
ef12ae45
PB
5583/* A subroutine of emit_store_flag only including "tricks" that do not
5584 need a recursive call. These are kept separate to avoid infinite
5585 loops. */
44037a66 5586
ef12ae45
PB
5587static rtx
5588emit_store_flag_1 (rtx target, enum rtx_code code, rtx op0, rtx op1,
ef4bddc2
RS
5589 machine_mode mode, int unsignedp, int normalizep,
5590 machine_mode target_mode)
44037a66
TG
5591{
5592 rtx subtarget;
5593 enum insn_code icode;
ef4bddc2 5594 machine_mode compare_mode;
f90b7a5a 5595 enum mode_class mclass;
45475a3f 5596 enum rtx_code scode;
44037a66 5597
b30f05db
BS
5598 if (unsignedp)
5599 code = unsigned_condition (code);
45475a3f 5600 scode = swap_condition (code);
b30f05db 5601
c2615a67
RK
5602 /* If one operand is constant, make it the second one. Only do this
5603 if the other operand is not constant as well. */
5604
8c9864f3 5605 if (swap_commutative_operands_p (op0, op1))
c2615a67 5606 {
fab27f52 5607 std::swap (op0, op1);
c2615a67
RK
5608 code = swap_condition (code);
5609 }
5610
6405e07b
DE
5611 if (mode == VOIDmode)
5612 mode = GET_MODE (op0);
5613
ec18e48e
VL
5614 if (CONST_SCALAR_INT_P (op1))
5615 canonicalize_comparison (mode, &code, &op1);
5616
c410d49e 5617 /* For some comparisons with 1 and -1, we can convert this to
44037a66 5618 comparisons with zero. This will often produce more opportunities for
0f41302f 5619 store-flag insns. */
44037a66
TG
5620
5621 switch (code)
5622 {
5623 case LT:
5624 if (op1 == const1_rtx)
5625 op1 = const0_rtx, code = LE;
5626 break;
5627 case LE:
5628 if (op1 == constm1_rtx)
5629 op1 = const0_rtx, code = LT;
5630 break;
5631 case GE:
5632 if (op1 == const1_rtx)
5633 op1 = const0_rtx, code = GT;
5634 break;
5635 case GT:
5636 if (op1 == constm1_rtx)
5637 op1 = const0_rtx, code = GE;
5638 break;
5639 case GEU:
5640 if (op1 == const1_rtx)
5641 op1 = const0_rtx, code = NE;
5642 break;
5643 case LTU:
5644 if (op1 == const1_rtx)
5645 op1 = const0_rtx, code = EQ;
5646 break;
e9a25f70
JL
5647 default:
5648 break;
44037a66
TG
5649 }
5650
884815aa
JB
5651 /* If we are comparing a double-word integer with zero or -1, we can
5652 convert the comparison into one involving a single word. */
b4206259
RS
5653 scalar_int_mode int_mode;
5654 if (is_int_mode (mode, &int_mode)
5655 && GET_MODE_BITSIZE (int_mode) == BITS_PER_WORD * 2
3c0cb5de 5656 && (!MEM_P (op0) || ! MEM_VOLATILE_P (op0)))
6912b84b 5657 {
fab27f52 5658 rtx tem;
884815aa
JB
5659 if ((code == EQ || code == NE)
5660 && (op1 == const0_rtx || op1 == constm1_rtx))
6912b84b 5661 {
1ed20a40 5662 rtx op00, op01;
8433f113 5663
a41a56b6
RE
5664 /* Do a logical OR or AND of the two words and compare the
5665 result. */
b4206259
RS
5666 op00 = simplify_gen_subreg (word_mode, op0, int_mode, 0);
5667 op01 = simplify_gen_subreg (word_mode, op0, int_mode, UNITS_PER_WORD);
1ed20a40
PB
5668 tem = expand_binop (word_mode,
5669 op1 == const0_rtx ? ior_optab : and_optab,
5670 op00, op01, NULL_RTX, unsignedp,
5671 OPTAB_DIRECT);
884815aa 5672
1ed20a40
PB
5673 if (tem != 0)
5674 tem = emit_store_flag (NULL_RTX, code, tem, op1, word_mode,
92355a9c 5675 unsignedp, normalizep);
6912b84b 5676 }
884815aa 5677 else if ((code == LT || code == GE) && op1 == const0_rtx)
8433f113
RH
5678 {
5679 rtx op0h;
5680
5681 /* If testing the sign bit, can just test on high word. */
b4206259 5682 op0h = simplify_gen_subreg (word_mode, op0, int_mode,
a41a56b6 5683 subreg_highpart_offset (word_mode,
b4206259 5684 int_mode));
1ed20a40
PB
5685 tem = emit_store_flag (NULL_RTX, code, op0h, op1, word_mode,
5686 unsignedp, normalizep);
5687 }
5688 else
5689 tem = NULL_RTX;
5690
5691 if (tem)
5692 {
92355a9c 5693 if (target_mode == VOIDmode || GET_MODE (tem) == target_mode)
1ed20a40 5694 return tem;
92355a9c
PB
5695 if (!target)
5696 target = gen_reg_rtx (target_mode);
1ed20a40
PB
5697
5698 convert_move (target, tem,
2d0c270f
BS
5699 !val_signbit_known_set_p (word_mode,
5700 (normalizep ? normalizep
5701 : STORE_FLAG_VALUE)));
1ed20a40 5702 return target;
8433f113 5703 }
6912b84b
RK
5704 }
5705
44037a66
TG
5706 /* If this is A < 0 or A >= 0, we can do this by taking the ones
5707 complement of A (for GE) and shifting the sign bit to the low bit. */
5708 if (op1 == const0_rtx && (code == LT || code == GE)
b4206259 5709 && is_int_mode (mode, &int_mode)
44037a66 5710 && (normalizep || STORE_FLAG_VALUE == 1
b4206259 5711 || val_signbit_p (int_mode, STORE_FLAG_VALUE)))
44037a66 5712 {
c7ad039d 5713 scalar_int_mode int_target_mode;
8deb7047 5714 subtarget = target;
44037a66 5715
495499da 5716 if (!target)
c7ad039d
RS
5717 int_target_mode = int_mode;
5718 else
44037a66 5719 {
c7ad039d
RS
5720 /* If the result is to be wider than OP0, it is best to convert it
5721 first. If it is to be narrower, it is *incorrect* to convert it
5722 first. */
5723 int_target_mode = as_a <scalar_int_mode> (target_mode);
5724 if (GET_MODE_SIZE (int_target_mode) > GET_MODE_SIZE (int_mode))
5725 {
5726 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
5727 int_mode = int_target_mode;
5728 }
44037a66
TG
5729 }
5730
c7ad039d 5731 if (int_target_mode != int_mode)
44037a66
TG
5732 subtarget = 0;
5733
5734 if (code == GE)
c7ad039d 5735 op0 = expand_unop (int_mode, one_cmpl_optab, op0,
1d6eaf3d
RK
5736 ((STORE_FLAG_VALUE == 1 || normalizep)
5737 ? 0 : subtarget), 0);
44037a66 5738
1d6eaf3d 5739 if (STORE_FLAG_VALUE == 1 || normalizep)
44037a66
TG
5740 /* If we are supposed to produce a 0/1 value, we want to do
5741 a logical shift from the sign bit to the low-order bit; for
5742 a -1/0 value, we do an arithmetic shift. */
c7ad039d
RS
5743 op0 = expand_shift (RSHIFT_EXPR, int_mode, op0,
5744 GET_MODE_BITSIZE (int_mode) - 1,
44037a66
TG
5745 subtarget, normalizep != -1);
5746
c7ad039d
RS
5747 if (int_mode != int_target_mode)
5748 op0 = convert_modes (int_target_mode, int_mode, op0, 0);
44037a66
TG
5749
5750 return op0;
5751 }
5752
f90b7a5a 5753 mclass = GET_MODE_CLASS (mode);
c94843d2 5754 FOR_EACH_MODE_FROM (compare_mode, mode)
a41a56b6 5755 {
ef4bddc2 5756 machine_mode optab_mode = mclass == MODE_CC ? CCmode : compare_mode;
947131ba 5757 icode = optab_handler (cstore_optab, optab_mode);
f90b7a5a 5758 if (icode != CODE_FOR_nothing)
a41a56b6 5759 {
a41a56b6 5760 do_pending_stack_adjust ();
fab27f52
MM
5761 rtx tem = emit_cstore (target, icode, code, mode, compare_mode,
5762 unsignedp, op0, op1, normalizep, target_mode);
45475a3f
PB
5763 if (tem)
5764 return tem;
44037a66 5765
45475a3f 5766 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
44037a66 5767 {
ef12ae45 5768 tem = emit_cstore (target, icode, scode, mode, compare_mode,
92355a9c 5769 unsignedp, op1, op0, normalizep, target_mode);
45475a3f
PB
5770 if (tem)
5771 return tem;
44037a66 5772 }
f90b7a5a 5773 break;
44037a66
TG
5774 }
5775 }
5776
ef12ae45
PB
5777 return 0;
5778}
5779
8afacf2c
RS
5780/* Subroutine of emit_store_flag that handles cases in which the operands
5781 are scalar integers. SUBTARGET is the target to use for temporary
5782 operations and TRUEVAL is the value to store when the condition is
5783 true. All other arguments are as for emit_store_flag. */
ef12ae45
PB
5784
5785rtx
8afacf2c 5786emit_store_flag_int (rtx target, rtx subtarget, enum rtx_code code, rtx op0,
095a2d76 5787 rtx op1, scalar_int_mode mode, int unsignedp,
8afacf2c 5788 int normalizep, rtx trueval)
ef12ae45 5789{
ef4bddc2 5790 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
8afacf2c 5791 rtx_insn *last = get_last_insn ();
495499da
PB
5792
5793 /* If this is an equality comparison of integers, we can try to exclusive-or
44037a66
TG
5794 (or subtract) the two operands and use a recursive call to try the
5795 comparison with zero. Don't do any of these cases if branches are
5796 very cheap. */
5797
495499da 5798 if ((code == EQ || code == NE) && op1 != const0_rtx)
44037a66 5799 {
41defab3
RS
5800 rtx tem = expand_binop (mode, xor_optab, op0, op1, subtarget, 1,
5801 OPTAB_WIDEN);
44037a66
TG
5802
5803 if (tem == 0)
5804 tem = expand_binop (mode, sub_optab, op0, op1, subtarget, 1,
5805 OPTAB_WIDEN);
5806 if (tem != 0)
a22fb74c
AK
5807 tem = emit_store_flag (target, code, tem, const0_rtx,
5808 mode, unsignedp, normalizep);
495499da
PB
5809 if (tem != 0)
5810 return tem;
5811
5812 delete_insns_since (last);
5813 }
5814
5815 /* For integer comparisons, try the reverse comparison. However, for
5816 small X and if we'd have anyway to extend, implementing "X != 0"
5817 as "-(int)X >> 31" is still cheaper than inverting "(int)X == 0". */
8afacf2c 5818 rtx_code rcode = reverse_condition (code);
495499da 5819 if (can_compare_p (rcode, mode, ccp_store_flag)
947131ba 5820 && ! (optab_handler (cstore_optab, mode) == CODE_FOR_nothing
495499da
PB
5821 && code == NE
5822 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
5823 && op1 == const0_rtx))
5824 {
533d4b99
PB
5825 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
5826 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
5827
495499da 5828 /* Again, for the reverse comparison, use either an addition or a XOR. */
533d4b99 5829 if (want_add
e548c9df 5830 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
533d4b99 5831 optimize_insn_for_speed_p ()) == 0)
495499da 5832 {
41defab3
RS
5833 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5834 STORE_FLAG_VALUE, target_mode);
495499da 5835 if (tem != 0)
8afacf2c 5836 tem = expand_binop (target_mode, add_optab, tem,
2f1cd2eb
RS
5837 gen_int_mode (normalizep, target_mode),
5838 target, 0, OPTAB_WIDEN);
41defab3
RS
5839 if (tem != 0)
5840 return tem;
495499da 5841 }
533d4b99 5842 else if (!want_add
e548c9df 5843 && rtx_cost (trueval, mode, XOR, 1,
533d4b99 5844 optimize_insn_for_speed_p ()) == 0)
495499da 5845 {
41defab3
RS
5846 rtx tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
5847 normalizep, target_mode);
495499da 5848 if (tem != 0)
8afacf2c 5849 tem = expand_binop (target_mode, xor_optab, tem, trueval, target,
495499da 5850 INTVAL (trueval) >= 0, OPTAB_WIDEN);
41defab3
RS
5851 if (tem != 0)
5852 return tem;
495499da
PB
5853 }
5854
495499da 5855 delete_insns_since (last);
44037a66
TG
5856 }
5857
c410d49e 5858 /* Some other cases we can do are EQ, NE, LE, and GT comparisons with
44037a66
TG
5859 the constant zero. Reject all other comparisons at this point. Only
5860 do LE and GT if branches are expensive since they are expensive on
5861 2-operand machines. */
5862
495499da 5863 if (op1 != const0_rtx
44037a66 5864 || (code != EQ && code != NE
3a4fd356
JH
5865 && (BRANCH_COST (optimize_insn_for_speed_p (),
5866 false) <= 1 || (code != LE && code != GT))))
44037a66
TG
5867 return 0;
5868
44037a66
TG
5869 /* Try to put the result of the comparison in the sign bit. Assume we can't
5870 do the necessary operation below. */
5871
41defab3 5872 rtx tem = 0;
44037a66
TG
5873
5874 /* To see if A <= 0, compute (A | (A - 1)). A <= 0 iff that result has
5875 the sign bit set. */
5876
5877 if (code == LE)
5878 {
5879 /* This is destructive, so SUBTARGET can't be OP0. */
5880 if (rtx_equal_p (subtarget, op0))
5881 subtarget = 0;
5882
5883 tem = expand_binop (mode, sub_optab, op0, const1_rtx, subtarget, 0,
5884 OPTAB_WIDEN);
5885 if (tem)
5886 tem = expand_binop (mode, ior_optab, op0, tem, subtarget, 0,
5887 OPTAB_WIDEN);
5888 }
5889
5890 /* To see if A > 0, compute (((signed) A) << BITS) - A, where BITS is the
5891 number of bits in the mode of OP0, minus one. */
5892
5893 if (code == GT)
5894 {
5895 if (rtx_equal_p (subtarget, op0))
5896 subtarget = 0;
5897
ea000c3f
EB
5898 tem = maybe_expand_shift (RSHIFT_EXPR, mode, op0,
5899 GET_MODE_BITSIZE (mode) - 1,
5900 subtarget, 0);
5901 if (tem)
5902 tem = expand_binop (mode, sub_optab, tem, op0, subtarget, 0,
5903 OPTAB_WIDEN);
44037a66 5904 }
c410d49e 5905
44037a66
TG
5906 if (code == EQ || code == NE)
5907 {
5908 /* For EQ or NE, one way to do the comparison is to apply an operation
cc2902df 5909 that converts the operand into a positive number if it is nonzero
44037a66
TG
5910 or zero if it was originally zero. Then, for EQ, we subtract 1 and
5911 for NE we negate. This puts the result in the sign bit. Then we
c410d49e 5912 normalize with a shift, if needed.
44037a66
TG
5913
5914 Two operations that can do the above actions are ABS and FFS, so try
5915 them. If that doesn't work, and MODE is smaller than a full word,
36d747f6 5916 we can use zero-extension to the wider mode (an unsigned conversion)
44037a66
TG
5917 as the operation. */
5918
c410d49e
EC
5919 /* Note that ABS doesn't yield a positive number for INT_MIN, but
5920 that is compensated by the subsequent overflow when subtracting
30f7a378 5921 one / negating. */
91ce572a 5922
947131ba 5923 if (optab_handler (abs_optab, mode) != CODE_FOR_nothing)
44037a66 5924 tem = expand_unop (mode, abs_optab, op0, subtarget, 1);
947131ba 5925 else if (optab_handler (ffs_optab, mode) != CODE_FOR_nothing)
44037a66
TG
5926 tem = expand_unop (mode, ffs_optab, op0, subtarget, 1);
5927 else if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5928 {
c2ec26b8 5929 tem = convert_modes (word_mode, mode, op0, 1);
81722fa9 5930 mode = word_mode;
44037a66
TG
5931 }
5932
5933 if (tem != 0)
5934 {
5935 if (code == EQ)
5936 tem = expand_binop (mode, sub_optab, tem, const1_rtx, subtarget,
5937 0, OPTAB_WIDEN);
5938 else
5939 tem = expand_unop (mode, neg_optab, tem, subtarget, 0);
5940 }
5941
5942 /* If we couldn't do it that way, for NE we can "or" the two's complement
5943 of the value with itself. For EQ, we take the one's complement of
5944 that "or", which is an extra insn, so we only handle EQ if branches
5945 are expensive. */
5946
3a4fd356
JH
5947 if (tem == 0
5948 && (code == NE
5949 || BRANCH_COST (optimize_insn_for_speed_p (),
8afacf2c 5950 false) > 1))
44037a66 5951 {
36d747f6
RS
5952 if (rtx_equal_p (subtarget, op0))
5953 subtarget = 0;
5954
44037a66
TG
5955 tem = expand_unop (mode, neg_optab, op0, subtarget, 0);
5956 tem = expand_binop (mode, ior_optab, tem, op0, subtarget, 0,
5957 OPTAB_WIDEN);
5958
5959 if (tem && code == EQ)
5960 tem = expand_unop (mode, one_cmpl_optab, tem, subtarget, 0);
5961 }
5962 }
5963
5964 if (tem && normalizep)
ea000c3f
EB
5965 tem = maybe_expand_shift (RSHIFT_EXPR, mode, tem,
5966 GET_MODE_BITSIZE (mode) - 1,
5967 subtarget, normalizep == 1);
44037a66 5968
91e66235 5969 if (tem)
44037a66 5970 {
495499da 5971 if (!target)
8afacf2c 5972 ;
495499da 5973 else if (GET_MODE (tem) != target_mode)
91e66235
MM
5974 {
5975 convert_move (target, tem, 0);
5976 tem = target;
5977 }
5978 else if (!subtarget)
5979 {
5980 emit_move_insn (target, tem);
5981 tem = target;
5982 }
44037a66 5983 }
91e66235 5984 else
44037a66
TG
5985 delete_insns_since (last);
5986
5987 return tem;
5988}
04a8ee2f 5989
8afacf2c
RS
5990/* Emit a store-flags instruction for comparison CODE on OP0 and OP1
5991 and storing in TARGET. Normally return TARGET.
5992 Return 0 if that cannot be done.
5993
5994 MODE is the mode to use for OP0 and OP1 should they be CONST_INTs. If
5995 it is VOIDmode, they cannot both be CONST_INT.
5996
5997 UNSIGNEDP is for the case where we have to widen the operands
5998 to perform the operation. It says to use zero-extension.
5999
6000 NORMALIZEP is 1 if we should convert the result to be either zero
6001 or one. Normalize is -1 if we should convert the result to be
6002 either zero or -1. If NORMALIZEP is zero, the result will be left
6003 "raw" out of the scc insn. */
6004
6005rtx
6006emit_store_flag (rtx target, enum rtx_code code, rtx op0, rtx op1,
6007 machine_mode mode, int unsignedp, int normalizep)
6008{
6009 machine_mode target_mode = target ? GET_MODE (target) : VOIDmode;
6010 enum rtx_code rcode;
6011 rtx subtarget;
6012 rtx tem, trueval;
6013 rtx_insn *last;
6014
6015 /* If we compare constants, we shouldn't use a store-flag operation,
6016 but a constant load. We can get there via the vanilla route that
6017 usually generates a compare-branch sequence, but will in this case
6018 fold the comparison to a constant, and thus elide the branch. */
6019 if (CONSTANT_P (op0) && CONSTANT_P (op1))
6020 return NULL_RTX;
6021
6022 tem = emit_store_flag_1 (target, code, op0, op1, mode, unsignedp, normalizep,
6023 target_mode);
6024 if (tem)
6025 return tem;
6026
6027 /* If we reached here, we can't do this with a scc insn, however there
6028 are some comparisons that can be done in other ways. Don't do any
6029 of these cases if branches are very cheap. */
6030 if (BRANCH_COST (optimize_insn_for_speed_p (), false) == 0)
6031 return 0;
6032
6033 /* See what we need to return. We can only return a 1, -1, or the
6034 sign bit. */
6035
6036 if (normalizep == 0)
6037 {
6038 if (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6039 normalizep = STORE_FLAG_VALUE;
6040
6041 else if (val_signbit_p (mode, STORE_FLAG_VALUE))
6042 ;
6043 else
6044 return 0;
6045 }
6046
6047 last = get_last_insn ();
6048
6049 /* If optimizing, use different pseudo registers for each insn, instead
6050 of reusing the same pseudo. This leads to better CSE, but slows
6051 down the compiler, since there are more pseudos. */
6052 subtarget = (!optimize
6053 && (target_mode == mode)) ? target : NULL_RTX;
6054 trueval = GEN_INT (normalizep ? normalizep : STORE_FLAG_VALUE);
6055
6056 /* For floating-point comparisons, try the reverse comparison or try
6057 changing the "orderedness" of the comparison. */
6058 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
6059 {
6060 enum rtx_code first_code;
6061 bool and_them;
6062
6063 rcode = reverse_condition_maybe_unordered (code);
6064 if (can_compare_p (rcode, mode, ccp_store_flag)
6065 && (code == ORDERED || code == UNORDERED
6066 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6067 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6068 {
6069 int want_add = ((STORE_FLAG_VALUE == 1 && normalizep == -1)
6070 || (STORE_FLAG_VALUE == -1 && normalizep == 1));
6071
6072 /* For the reverse comparison, use either an addition or a XOR. */
6073 if (want_add
6074 && rtx_cost (GEN_INT (normalizep), mode, PLUS, 1,
6075 optimize_insn_for_speed_p ()) == 0)
6076 {
6077 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6078 STORE_FLAG_VALUE, target_mode);
6079 if (tem)
6080 return expand_binop (target_mode, add_optab, tem,
6081 gen_int_mode (normalizep, target_mode),
6082 target, 0, OPTAB_WIDEN);
6083 }
6084 else if (!want_add
6085 && rtx_cost (trueval, mode, XOR, 1,
6086 optimize_insn_for_speed_p ()) == 0)
6087 {
6088 tem = emit_store_flag_1 (subtarget, rcode, op0, op1, mode, 0,
6089 normalizep, target_mode);
6090 if (tem)
6091 return expand_binop (target_mode, xor_optab, tem, trueval,
6092 target, INTVAL (trueval) >= 0,
6093 OPTAB_WIDEN);
6094 }
6095 }
6096
6097 delete_insns_since (last);
6098
6099 /* Cannot split ORDERED and UNORDERED, only try the above trick. */
6100 if (code == ORDERED || code == UNORDERED)
6101 return 0;
6102
6103 and_them = split_comparison (code, mode, &first_code, &code);
6104
6105 /* If there are no NaNs, the first comparison should always fall through.
6106 Effectively change the comparison to the other one. */
6107 if (!HONOR_NANS (mode))
6108 {
6109 gcc_assert (first_code == (and_them ? ORDERED : UNORDERED));
6110 return emit_store_flag_1 (target, code, op0, op1, mode, 0, normalizep,
6111 target_mode);
6112 }
6113
6114 if (!HAVE_conditional_move)
6115 return 0;
6116
f4eafec9
UB
6117 /* Do not turn a trapping comparison into a non-trapping one. */
6118 if ((code != EQ && code != NE && code != UNEQ && code != LTGT)
6119 && flag_trapping_math)
6120 return 0;
6121
8afacf2c
RS
6122 /* Try using a setcc instruction for ORDERED/UNORDERED, followed by a
6123 conditional move. */
6124 tem = emit_store_flag_1 (subtarget, first_code, op0, op1, mode, 0,
6125 normalizep, target_mode);
6126 if (tem == 0)
6127 return 0;
6128
6129 if (and_them)
6130 tem = emit_conditional_move (target, code, op0, op1, mode,
6131 tem, const0_rtx, GET_MODE (tem), 0);
6132 else
6133 tem = emit_conditional_move (target, code, op0, op1, mode,
6134 trueval, tem, GET_MODE (tem), 0);
6135
6136 if (tem == 0)
6137 delete_insns_since (last);
6138 return tem;
6139 }
6140
6141 /* The remaining tricks only apply to integer comparisons. */
6142
b4206259
RS
6143 scalar_int_mode int_mode;
6144 if (is_int_mode (mode, &int_mode))
6145 return emit_store_flag_int (target, subtarget, code, op0, op1, int_mode,
8afacf2c
RS
6146 unsignedp, normalizep, trueval);
6147
6148 return 0;
6149}
6150
04a8ee2f
TG
6151/* Like emit_store_flag, but always succeeds. */
6152
6153rtx
502b8322 6154emit_store_flag_force (rtx target, enum rtx_code code, rtx op0, rtx op1,
ef4bddc2 6155 machine_mode mode, int unsignedp, int normalizep)
04a8ee2f 6156{
f3f6fb16
DM
6157 rtx tem;
6158 rtx_code_label *label;
495499da 6159 rtx trueval, falseval;
04a8ee2f
TG
6160
6161 /* First see if emit_store_flag can do the job. */
6162 tem = emit_store_flag (target, code, op0, op1, mode, unsignedp, normalizep);
6163 if (tem != 0)
6164 return tem;
6165
f8f77d4d
SD
6166 /* If one operand is constant, make it the second one. Only do this
6167 if the other operand is not constant as well. */
6168 if (swap_commutative_operands_p (op0, op1))
6169 {
6170 std::swap (op0, op1);
6171 code = swap_condition (code);
6172 }
6173
6174 if (mode == VOIDmode)
6175 mode = GET_MODE (op0);
6176
495499da
PB
6177 if (!target)
6178 target = gen_reg_rtx (word_mode);
04a8ee2f 6179
495499da
PB
6180 /* If this failed, we have to do this with set/compare/jump/set code.
6181 For foo != 0, if foo is in OP0, just replace it with 1 if nonzero. */
6182 trueval = normalizep ? GEN_INT (normalizep) : const1_rtx;
b8698a0f 6183 if (code == NE
495499da
PB
6184 && GET_MODE_CLASS (mode) == MODE_INT
6185 && REG_P (target)
6186 && op0 == target
6187 && op1 == const0_rtx)
6188 {
6189 label = gen_label_rtx ();
1476d1bd 6190 do_compare_rtx_and_jump (target, const0_rtx, EQ, unsignedp, mode,
357067f2
JH
6191 NULL_RTX, NULL, label,
6192 profile_probability::uninitialized ());
495499da
PB
6193 emit_move_insn (target, trueval);
6194 emit_label (label);
6195 return target;
6196 }
04a8ee2f 6197
f8cfc6aa 6198 if (!REG_P (target)
04a8ee2f
TG
6199 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
6200 target = gen_reg_rtx (GET_MODE (target));
6201
495499da
PB
6202 /* Jump in the right direction if the target cannot implement CODE
6203 but can jump on its reverse condition. */
6204 falseval = const0_rtx;
6205 if (! can_compare_p (code, mode, ccp_jump)
6206 && (! FLOAT_MODE_P (mode)
6207 || code == ORDERED || code == UNORDERED
6208 || (! HONOR_NANS (mode) && (code == LTGT || code == UNEQ))
6209 || (! HONOR_SNANS (mode) && (code == EQ || code == NE))))
6210 {
6211 enum rtx_code rcode;
6212 if (FLOAT_MODE_P (mode))
6213 rcode = reverse_condition_maybe_unordered (code);
6214 else
6215 rcode = reverse_condition (code);
6216
6217 /* Canonicalize to UNORDERED for the libcall. */
6218 if (can_compare_p (rcode, mode, ccp_jump)
6219 || (code == ORDERED && ! can_compare_p (ORDERED, mode, ccp_jump)))
6220 {
6221 falseval = trueval;
6222 trueval = const0_rtx;
6223 code = rcode;
6224 }
6225 }
6226
6227 emit_move_insn (target, trueval);
04a8ee2f 6228 label = gen_label_rtx ();
1476d1bd 6229 do_compare_rtx_and_jump (op0, op1, code, unsignedp, mode, NULL_RTX, NULL,
357067f2 6230 label, profile_probability::uninitialized ());
04a8ee2f 6231
495499da 6232 emit_move_insn (target, falseval);
44037a66
TG
6233 emit_label (label);
6234
6235 return target;
6236}
ec18e48e
VL
6237
6238/* Helper function for canonicalize_cmp_for_target. Swap between inclusive
6239 and exclusive ranges in order to create an equivalent comparison. See
6240 canonicalize_cmp_for_target for the possible cases. */
6241
6242static enum rtx_code
6243equivalent_cmp_code (enum rtx_code code)
6244{
6245 switch (code)
6246 {
6247 case GT:
6248 return GE;
6249 case GE:
6250 return GT;
6251 case LT:
6252 return LE;
6253 case LE:
6254 return LT;
6255 case GTU:
6256 return GEU;
6257 case GEU:
6258 return GTU;
6259 case LTU:
6260 return LEU;
6261 case LEU:
6262 return LTU;
6263
6264 default:
6265 return code;
6266 }
6267}
6268
6269/* Choose the more appropiate immediate in scalar integer comparisons. The
6270 purpose of this is to end up with an immediate which can be loaded into a
6271 register in fewer moves, if possible.
6272
6273 For each integer comparison there exists an equivalent choice:
6274 i) a > b or a >= b + 1
6275 ii) a <= b or a < b + 1
6276 iii) a >= b or a > b - 1
6277 iv) a < b or a <= b - 1
6278
6279 MODE is the mode of the first operand.
6280 CODE points to the comparison code.
6281 IMM points to the rtx containing the immediate. *IMM must satisfy
6282 CONST_SCALAR_INT_P on entry and continues to satisfy CONST_SCALAR_INT_P
6283 on exit. */
6284
6285void
6286canonicalize_comparison (machine_mode mode, enum rtx_code *code, rtx *imm)
6287{
6288 if (!SCALAR_INT_MODE_P (mode))
6289 return;
6290
6291 int to_add = 0;
6292 enum signop sgn = unsigned_condition_p (*code) ? UNSIGNED : SIGNED;
6293
6294 /* Extract the immediate value from the rtx. */
6295 wide_int imm_val = rtx_mode_t (*imm, mode);
6296
6297 if (*code == GT || *code == GTU || *code == LE || *code == LEU)
6298 to_add = 1;
6299 else if (*code == GE || *code == GEU || *code == LT || *code == LTU)
6300 to_add = -1;
6301 else
6302 return;
6303
6304 /* Check for overflow/underflow in the case of signed values and
6305 wrapping around in the case of unsigned values. If any occur
6306 cancel the optimization. */
6307 wi::overflow_type overflow = wi::OVF_NONE;
c729951e
VL
6308 wide_int imm_modif;
6309
6310 if (to_add == 1)
6311 imm_modif = wi::add (imm_val, 1, sgn, &overflow);
6312 else
6313 imm_modif = wi::sub (imm_val, 1, sgn, &overflow);
6314
ec18e48e
VL
6315 if (overflow)
6316 return;
6317
84ea73e1
SB
6318 /* The following creates a pseudo; if we cannot do that, bail out. */
6319 if (!can_create_pseudo_p ())
6320 return;
6321
ec18e48e
VL
6322 rtx reg = gen_rtx_REG (mode, LAST_VIRTUAL_REGISTER + 1);
6323 rtx new_imm = immed_wide_int_const (imm_modif, mode);
6324
6325 rtx_insn *old_rtx = gen_move_insn (reg, *imm);
6326 rtx_insn *new_rtx = gen_move_insn (reg, new_imm);
6327
6328 /* Update the immediate and the code. */
6329 if (insn_cost (old_rtx, true) > insn_cost (new_rtx, true))
6330 {
6331 *code = equivalent_cmp_code (*code);
6332 *imm = new_imm;
6333 }
6334}
6335
6336
f5963e61
JL
6337\f
6338/* Perform possibly multi-word comparison and conditional jump to LABEL
feb04780
RS
6339 if ARG1 OP ARG2 true where ARG1 and ARG2 are of mode MODE. This is
6340 now a thin wrapper around do_compare_rtx_and_jump. */
f5963e61
JL
6341
6342static void
ef4bddc2 6343do_cmp_and_jump (rtx arg1, rtx arg2, enum rtx_code op, machine_mode mode,
f3f6fb16 6344 rtx_code_label *label)
f5963e61 6345{
feb04780 6346 int unsignedp = (op == LTU || op == LEU || op == GTU || op == GEU);
1476d1bd 6347 do_compare_rtx_and_jump (arg1, arg2, op, unsignedp, mode, NULL_RTX,
357067f2 6348 NULL, label, profile_probability::uninitialized ());
f5963e61 6349}