]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/expmed.h
PR fortran/95090 - ICE: identifier overflow
[thirdparty/gcc.git] / gcc / expmed.h
CommitLineData
462f85ce 1/* Target-dependent costs for expmed.c.
8d9254fc 2 Copyright (C) 1987-2020 Free Software Foundation, Inc.
462f85ce
RS
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
ee7d63ab 8Software Foundation; either version 3, or (at your option) any later
462f85ce
RS
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef EXPMED_H
21#define EXPMED_H 1
22
2d52a3a1
ZC
23#include "insn-codes.h"
24
c371bb73
RS
25enum alg_code {
26 alg_unknown,
27 alg_zero,
28 alg_m, alg_shift,
29 alg_add_t_m2,
30 alg_sub_t_m2,
31 alg_add_factor,
32 alg_sub_factor,
33 alg_add_t2_m,
34 alg_sub_t2_m,
35 alg_impossible
36};
37
ec573d17
KT
38/* Indicates the type of fixup needed after a constant multiplication.
39 BASIC_VARIANT means no fixup is needed, NEGATE_VARIANT means that
40 the result should be negated, and ADD_VARIANT means that the
41 multiplicand should be added to the result. */
42enum mult_variant {basic_variant, negate_variant, add_variant};
43
44bool choose_mult_variant (machine_mode, HOST_WIDE_INT,
45 struct algorithm *, enum mult_variant *, int);
46
c371bb73
RS
47/* This structure holds the "cost" of a multiply sequence. The
48 "cost" field holds the total rtx_cost of every operator in the
49 synthetic multiplication sequence, hence cost(a op b) is defined
50 as rtx_cost(op) + cost(a) + cost(b), where cost(leaf) is zero.
51 The "latency" field holds the minimum possible latency of the
52 synthetic multiply, on a hypothetical infinitely parallel CPU.
53 This is the critical path, or the maximum height, of the expression
54 tree which is the sum of rtx_costs on the most expensive path from
55 any leaf to the root. Hence latency(a op b) is defined as zero for
56 leaves and rtx_cost(op) + max(latency(a), latency(b)) otherwise. */
57
58struct mult_cost {
59 short cost; /* Total rtx_cost of the multiplication sequence. */
60 short latency; /* The latency of the multiplication sequence. */
61};
62
63/* This macro is used to compare a pointer to a mult_cost against an
64 single integer "rtx_cost" value. This is equivalent to the macro
65 CHEAPER_MULT_COST(X,Z) where Z = {Y,Y}. */
66#define MULT_COST_LESS(X,Y) ((X)->cost < (Y) \
67 || ((X)->cost == (Y) && (X)->latency < (Y)))
68
69/* This macro is used to compare two pointers to mult_costs against
70 each other. The macro returns true if X is cheaper than Y.
71 Currently, the cheaper of two mult_costs is the one with the
72 lower "cost". If "cost"s are tied, the lower latency is cheaper. */
73#define CHEAPER_MULT_COST(X,Y) ((X)->cost < (Y)->cost \
74 || ((X)->cost == (Y)->cost \
75 && (X)->latency < (Y)->latency))
76
77/* This structure records a sequence of operations.
78 `ops' is the number of operations recorded.
79 `cost' is their total cost.
80 The operations are stored in `op' and the corresponding
81 logarithms of the integer coefficients in `log'.
82
83 These are the operations:
84 alg_zero total := 0;
85 alg_m total := multiplicand;
86 alg_shift total := total * coeff
87 alg_add_t_m2 total := total + multiplicand * coeff;
88 alg_sub_t_m2 total := total - multiplicand * coeff;
89 alg_add_factor total := total * coeff + total;
90 alg_sub_factor total := total * coeff - total;
91 alg_add_t2_m total := total * coeff + multiplicand;
92 alg_sub_t2_m total := total * coeff - multiplicand;
93
94 The first operand must be either alg_zero or alg_m. */
95
96struct algorithm
97{
98 struct mult_cost cost;
99 short ops;
100 /* The size of the OP and LOG fields are not directly related to the
101 word size, but the worst-case algorithms will be if we have few
102 consecutive ones or zeros, i.e., a multiplicand like 10101010101...
103 In that case we will generate shift-by-2, add, shift-by-2, add,...,
104 in total wordsize operations. */
105 enum alg_code op[MAX_BITS_PER_WORD];
106 char log[MAX_BITS_PER_WORD];
107};
108
109/* The entry for our multiplication cache/hash table. */
110struct alg_hash_entry {
111 /* The number we are multiplying by. */
112 unsigned HOST_WIDE_INT t;
113
114 /* The mode in which we are multiplying something by T. */
ef4bddc2 115 machine_mode mode;
c371bb73
RS
116
117 /* The best multiplication algorithm for t. */
118 enum alg_code alg;
119
120 /* The cost of multiplication if ALG_CODE is not alg_impossible.
121 Otherwise, the cost within which multiplication by T is
122 impossible. */
123 struct mult_cost cost;
124
125 /* Optimized for speed? */
126 bool speed;
127};
128
129/* The number of cache/hash entries. */
130#if HOST_BITS_PER_WIDE_INT == 64
131#define NUM_ALG_HASH_ENTRIES 1031
132#else
133#define NUM_ALG_HASH_ENTRIES 307
134#endif
135
91f8035e
RH
136#define NUM_MODE_INT \
137 (MAX_MODE_INT - MIN_MODE_INT + 1)
138#define NUM_MODE_PARTIAL_INT \
0d4a1197 139 (MIN_MODE_PARTIAL_INT == E_VOIDmode ? 0 \
91f8035e
RH
140 : MAX_MODE_PARTIAL_INT - MIN_MODE_PARTIAL_INT + 1)
141#define NUM_MODE_VECTOR_INT \
0d4a1197 142 (MIN_MODE_VECTOR_INT == E_VOIDmode ? 0 \
91f8035e
RH
143 : MAX_MODE_VECTOR_INT - MIN_MODE_VECTOR_INT + 1)
144
145#define NUM_MODE_IP_INT (NUM_MODE_INT + NUM_MODE_PARTIAL_INT)
146#define NUM_MODE_IPV_INT (NUM_MODE_IP_INT + NUM_MODE_VECTOR_INT)
2a261cd3
NF
147
148struct expmed_op_cheap {
91f8035e 149 bool cheap[2][NUM_MODE_IPV_INT];
2a261cd3
NF
150};
151
152struct expmed_op_costs {
91f8035e 153 int cost[2][NUM_MODE_IPV_INT];
2a261cd3 154};
6dd8f4bb 155
462f85ce
RS
156/* Target-dependent globals. */
157struct target_expmed {
c371bb73
RS
158 /* Each entry of ALG_HASH caches alg_code for some integer. This is
159 actually a hash table. If we have a collision, that the older
160 entry is kicked out. */
161 struct alg_hash_entry x_alg_hash[NUM_ALG_HASH_ENTRIES];
162
163 /* True if x_alg_hash might already have been used. */
164 bool x_alg_hash_used_p;
165
462f85ce
RS
166 /* Nonzero means divides or modulus operations are relatively cheap for
167 powers of two, so don't use branches; emit the operation instead.
168 Usually, this will mean that the MD file will emit non-branch
169 sequences. */
2a261cd3
NF
170 struct expmed_op_cheap x_sdiv_pow2_cheap;
171 struct expmed_op_cheap x_smod_pow2_cheap;
462f85ce
RS
172
173 /* Cost of various pieces of RTL. Note that some of these are indexed by
174 shift count and some by mode. */
175 int x_zero_cost[2];
2a261cd3
NF
176 struct expmed_op_costs x_add_cost;
177 struct expmed_op_costs x_neg_cost;
178 struct expmed_op_costs x_shift_cost[MAX_BITS_PER_WORD];
179 struct expmed_op_costs x_shiftadd_cost[MAX_BITS_PER_WORD];
180 struct expmed_op_costs x_shiftsub0_cost[MAX_BITS_PER_WORD];
181 struct expmed_op_costs x_shiftsub1_cost[MAX_BITS_PER_WORD];
182 struct expmed_op_costs x_mul_cost;
183 struct expmed_op_costs x_sdiv_cost;
184 struct expmed_op_costs x_udiv_cost;
185 int x_mul_widen_cost[2][NUM_MODE_INT];
186 int x_mul_highpart_cost[2][NUM_MODE_INT];
6dd8f4bb
BS
187
188 /* Conversion costs are only defined between two scalar integer modes
189 of different sizes. The first machine mode is the destination mode,
190 and the second is the source mode. */
91f8035e 191 int x_convert_cost[2][NUM_MODE_IP_INT][NUM_MODE_IP_INT];
462f85ce
RS
192};
193
194extern struct target_expmed default_target_expmed;
195#if SWITCHABLE_TARGET
196extern struct target_expmed *this_target_expmed;
197#else
198#define this_target_expmed (&default_target_expmed)
199#endif
200
5322d07e 201/* Return a pointer to the alg_hash_entry at IDX. */
462f85ce 202
5322d07e
NF
203static inline struct alg_hash_entry *
204alg_hash_entry_ptr (int idx)
205{
206 return &this_target_expmed->x_alg_hash[idx];
207}
208
209/* Return true if the x_alg_hash field might have been used. */
210
211static inline bool
212alg_hash_used_p (void)
213{
214 return this_target_expmed->x_alg_hash_used_p;
215}
216
217/* Set whether the x_alg_hash field might have been used. */
218
219static inline void
220set_alg_hash_used_p (bool usedp)
221{
222 this_target_expmed->x_alg_hash_used_p = usedp;
223}
224
91f8035e
RH
225/* Compute an index into the cost arrays by mode class. */
226
227static inline int
ef4bddc2 228expmed_mode_index (machine_mode mode)
91f8035e
RH
229{
230 switch (GET_MODE_CLASS (mode))
231 {
232 case MODE_INT:
233 return mode - MIN_MODE_INT;
234 case MODE_PARTIAL_INT:
904e5ccd
JJ
235 /* If there are no partial integer modes, help the compiler
236 to figure out this will never happen. See PR59934. */
237 if (MIN_MODE_PARTIAL_INT != VOIDmode)
238 return mode - MIN_MODE_PARTIAL_INT + NUM_MODE_INT;
239 break;
91f8035e 240 case MODE_VECTOR_INT:
904e5ccd
JJ
241 /* If there are no vector integer modes, help the compiler
242 to figure out this will never happen. See PR59934. */
243 if (MIN_MODE_VECTOR_INT != VOIDmode)
244 return mode - MIN_MODE_VECTOR_INT + NUM_MODE_IP_INT;
245 break;
91f8035e 246 default:
904e5ccd 247 break;
91f8035e 248 }
904e5ccd 249 gcc_unreachable ();
91f8035e
RH
250}
251
2a261cd3
NF
252/* Return a pointer to a boolean contained in EOC indicating whether
253 a particular operation performed in MODE is cheap when optimizing
254 for SPEED. */
255
256static inline bool *
257expmed_op_cheap_ptr (struct expmed_op_cheap *eoc, bool speed,
ef4bddc2 258 machine_mode mode)
2a261cd3 259{
91f8035e
RH
260 int idx = expmed_mode_index (mode);
261 return &eoc->cheap[speed][idx];
2a261cd3
NF
262}
263
264/* Return a pointer to a cost contained in COSTS when a particular
265 operation is performed in MODE when optimizing for SPEED. */
266
267static inline int *
268expmed_op_cost_ptr (struct expmed_op_costs *costs, bool speed,
ef4bddc2 269 machine_mode mode)
2a261cd3 270{
91f8035e
RH
271 int idx = expmed_mode_index (mode);
272 return &costs->cost[speed][idx];
2a261cd3
NF
273}
274
5322d07e
NF
275/* Subroutine of {set_,}sdiv_pow2_cheap. Not to be used otherwise. */
276
277static inline bool *
ef4bddc2 278sdiv_pow2_cheap_ptr (bool speed, machine_mode mode)
5322d07e 279{
2a261cd3
NF
280 return expmed_op_cheap_ptr (&this_target_expmed->x_sdiv_pow2_cheap,
281 speed, mode);
5322d07e
NF
282}
283
284/* Set whether a signed division by a power of 2 is cheap in MODE
285 when optimizing for SPEED. */
286
287static inline void
ef4bddc2 288set_sdiv_pow2_cheap (bool speed, machine_mode mode, bool cheap_p)
5322d07e
NF
289{
290 *sdiv_pow2_cheap_ptr (speed, mode) = cheap_p;
291}
292
293/* Return whether a signed division by a power of 2 is cheap in MODE
294 when optimizing for SPEED. */
295
296static inline bool
ef4bddc2 297sdiv_pow2_cheap (bool speed, machine_mode mode)
5322d07e
NF
298{
299 return *sdiv_pow2_cheap_ptr (speed, mode);
300}
301
302/* Subroutine of {set_,}smod_pow2_cheap. Not to be used otherwise. */
303
304static inline bool *
ef4bddc2 305smod_pow2_cheap_ptr (bool speed, machine_mode mode)
5322d07e 306{
2a261cd3
NF
307 return expmed_op_cheap_ptr (&this_target_expmed->x_smod_pow2_cheap,
308 speed, mode);
5322d07e
NF
309}
310
311/* Set whether a signed modulo by a power of 2 is CHEAP in MODE when
312 optimizing for SPEED. */
313
314static inline void
ef4bddc2 315set_smod_pow2_cheap (bool speed, machine_mode mode, bool cheap)
5322d07e
NF
316{
317 *smod_pow2_cheap_ptr (speed, mode) = cheap;
318}
319
320/* Return whether a signed modulo by a power of 2 is cheap in MODE
321 when optimizing for SPEED. */
322
323static inline bool
ef4bddc2 324smod_pow2_cheap (bool speed, machine_mode mode)
5322d07e
NF
325{
326 return *smod_pow2_cheap_ptr (speed, mode);
327}
328
329/* Subroutine of {set_,}zero_cost. Not to be used otherwise. */
330
331static inline int *
332zero_cost_ptr (bool speed)
333{
334 return &this_target_expmed->x_zero_cost[speed];
335}
336
337/* Set the COST of loading zero when optimizing for SPEED. */
338
339static inline void
340set_zero_cost (bool speed, int cost)
341{
342 *zero_cost_ptr (speed) = cost;
343}
344
345/* Return the COST of loading zero when optimizing for SPEED. */
346
347static inline int
348zero_cost (bool speed)
349{
350 return *zero_cost_ptr (speed);
351}
352
353/* Subroutine of {set_,}add_cost. Not to be used otherwise. */
354
355static inline int *
ef4bddc2 356add_cost_ptr (bool speed, machine_mode mode)
5322d07e 357{
2a261cd3 358 return expmed_op_cost_ptr (&this_target_expmed->x_add_cost, speed, mode);
5322d07e
NF
359}
360
361/* Set the COST of computing an add in MODE when optimizing for SPEED. */
362
363static inline void
ef4bddc2 364set_add_cost (bool speed, machine_mode mode, int cost)
5322d07e
NF
365{
366 *add_cost_ptr (speed, mode) = cost;
367}
368
369/* Return the cost of computing an add in MODE when optimizing for SPEED. */
370
371static inline int
ef4bddc2 372add_cost (bool speed, machine_mode mode)
5322d07e
NF
373{
374 return *add_cost_ptr (speed, mode);
375}
376
377/* Subroutine of {set_,}neg_cost. Not to be used otherwise. */
378
379static inline int *
ef4bddc2 380neg_cost_ptr (bool speed, machine_mode mode)
5322d07e 381{
2a261cd3 382 return expmed_op_cost_ptr (&this_target_expmed->x_neg_cost, speed, mode);
5322d07e
NF
383}
384
385/* Set the COST of computing a negation in MODE when optimizing for SPEED. */
386
387static inline void
ef4bddc2 388set_neg_cost (bool speed, machine_mode mode, int cost)
5322d07e
NF
389{
390 *neg_cost_ptr (speed, mode) = cost;
391}
392
393/* Return the cost of computing a negation in MODE when optimizing for
394 SPEED. */
395
396static inline int
ef4bddc2 397neg_cost (bool speed, machine_mode mode)
5322d07e
NF
398{
399 return *neg_cost_ptr (speed, mode);
400}
401
402/* Subroutine of {set_,}shift_cost. Not to be used otherwise. */
403
404static inline int *
ef4bddc2 405shift_cost_ptr (bool speed, machine_mode mode, int bits)
5322d07e 406{
2a261cd3
NF
407 return expmed_op_cost_ptr (&this_target_expmed->x_shift_cost[bits],
408 speed, mode);
5322d07e
NF
409}
410
411/* Set the COST of doing a shift in MODE by BITS when optimizing for SPEED. */
412
413static inline void
ef4bddc2 414set_shift_cost (bool speed, machine_mode mode, int bits, int cost)
5322d07e
NF
415{
416 *shift_cost_ptr (speed, mode, bits) = cost;
417}
418
419/* Return the cost of doing a shift in MODE by BITS when optimizing for
420 SPEED. */
421
422static inline int
ef4bddc2 423shift_cost (bool speed, machine_mode mode, int bits)
5322d07e
NF
424{
425 return *shift_cost_ptr (speed, mode, bits);
426}
427
428/* Subroutine of {set_,}shiftadd_cost. Not to be used otherwise. */
429
430static inline int *
ef4bddc2 431shiftadd_cost_ptr (bool speed, machine_mode mode, int bits)
5322d07e 432{
2a261cd3
NF
433 return expmed_op_cost_ptr (&this_target_expmed->x_shiftadd_cost[bits],
434 speed, mode);
5322d07e
NF
435}
436
437/* Set the COST of doing a shift in MODE by BITS followed by an add when
438 optimizing for SPEED. */
439
440static inline void
ef4bddc2 441set_shiftadd_cost (bool speed, machine_mode mode, int bits, int cost)
5322d07e
NF
442{
443 *shiftadd_cost_ptr (speed, mode, bits) = cost;
444}
445
446/* Return the cost of doing a shift in MODE by BITS followed by an add
447 when optimizing for SPEED. */
448
449static inline int
ef4bddc2 450shiftadd_cost (bool speed, machine_mode mode, int bits)
5322d07e
NF
451{
452 return *shiftadd_cost_ptr (speed, mode, bits);
453}
454
455/* Subroutine of {set_,}shiftsub0_cost. Not to be used otherwise. */
456
457static inline int *
ef4bddc2 458shiftsub0_cost_ptr (bool speed, machine_mode mode, int bits)
5322d07e 459{
2a261cd3
NF
460 return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub0_cost[bits],
461 speed, mode);
5322d07e
NF
462}
463
464/* Set the COST of doing a shift in MODE by BITS and then subtracting a
465 value when optimizing for SPEED. */
466
467static inline void
ef4bddc2 468set_shiftsub0_cost (bool speed, machine_mode mode, int bits, int cost)
5322d07e
NF
469{
470 *shiftsub0_cost_ptr (speed, mode, bits) = cost;
471}
472
473/* Return the cost of doing a shift in MODE by BITS and then subtracting
474 a value when optimizing for SPEED. */
475
476static inline int
ef4bddc2 477shiftsub0_cost (bool speed, machine_mode mode, int bits)
5322d07e
NF
478{
479 return *shiftsub0_cost_ptr (speed, mode, bits);
480}
481
482/* Subroutine of {set_,}shiftsub1_cost. Not to be used otherwise. */
483
484static inline int *
ef4bddc2 485shiftsub1_cost_ptr (bool speed, machine_mode mode, int bits)
5322d07e 486{
2a261cd3
NF
487 return expmed_op_cost_ptr (&this_target_expmed->x_shiftsub1_cost[bits],
488 speed, mode);
5322d07e
NF
489}
490
491/* Set the COST of subtracting a shift in MODE by BITS from a value when
492 optimizing for SPEED. */
493
494static inline void
ef4bddc2 495set_shiftsub1_cost (bool speed, machine_mode mode, int bits, int cost)
5322d07e
NF
496{
497 *shiftsub1_cost_ptr (speed, mode, bits) = cost;
498}
499
500/* Return the cost of subtracting a shift in MODE by BITS from a value
501 when optimizing for SPEED. */
502
503static inline int
ef4bddc2 504shiftsub1_cost (bool speed, machine_mode mode, int bits)
5322d07e
NF
505{
506 return *shiftsub1_cost_ptr (speed, mode, bits);
507}
508
509/* Subroutine of {set_,}mul_cost. Not to be used otherwise. */
510
511static inline int *
ef4bddc2 512mul_cost_ptr (bool speed, machine_mode mode)
5322d07e 513{
2a261cd3 514 return expmed_op_cost_ptr (&this_target_expmed->x_mul_cost, speed, mode);
5322d07e
NF
515}
516
517/* Set the COST of doing a multiplication in MODE when optimizing for
518 SPEED. */
519
520static inline void
ef4bddc2 521set_mul_cost (bool speed, machine_mode mode, int cost)
5322d07e
NF
522{
523 *mul_cost_ptr (speed, mode) = cost;
524}
525
526/* Return the cost of doing a multiplication in MODE when optimizing
527 for SPEED. */
528
529static inline int
ef4bddc2 530mul_cost (bool speed, machine_mode mode)
5322d07e
NF
531{
532 return *mul_cost_ptr (speed, mode);
533}
534
535/* Subroutine of {set_,}sdiv_cost. Not to be used otherwise. */
536
537static inline int *
ef4bddc2 538sdiv_cost_ptr (bool speed, machine_mode mode)
5322d07e 539{
2a261cd3 540 return expmed_op_cost_ptr (&this_target_expmed->x_sdiv_cost, speed, mode);
5322d07e
NF
541}
542
543/* Set the COST of doing a signed division in MODE when optimizing
6dd8f4bb
BS
544 for SPEED. */
545
546static inline void
ef4bddc2 547set_sdiv_cost (bool speed, machine_mode mode, int cost)
5322d07e
NF
548{
549 *sdiv_cost_ptr (speed, mode) = cost;
550}
551
552/* Return the cost of doing a signed division in MODE when optimizing
553 for SPEED. */
554
555static inline int
ef4bddc2 556sdiv_cost (bool speed, machine_mode mode)
5322d07e
NF
557{
558 return *sdiv_cost_ptr (speed, mode);
559}
560
561/* Subroutine of {set_,}udiv_cost. Not to be used otherwise. */
562
563static inline int *
ef4bddc2 564udiv_cost_ptr (bool speed, machine_mode mode)
5322d07e 565{
2a261cd3 566 return expmed_op_cost_ptr (&this_target_expmed->x_udiv_cost, speed, mode);
5322d07e
NF
567}
568
569/* Set the COST of doing an unsigned division in MODE when optimizing
570 for SPEED. */
571
572static inline void
ef4bddc2 573set_udiv_cost (bool speed, machine_mode mode, int cost)
5322d07e
NF
574{
575 *udiv_cost_ptr (speed, mode) = cost;
576}
577
578/* Return the cost of doing an unsigned division in MODE when
579 optimizing for SPEED. */
580
581static inline int
ef4bddc2 582udiv_cost (bool speed, machine_mode mode)
5322d07e
NF
583{
584 return *udiv_cost_ptr (speed, mode);
585}
586
587/* Subroutine of {set_,}mul_widen_cost. Not to be used otherwise. */
588
589static inline int *
ef4bddc2 590mul_widen_cost_ptr (bool speed, machine_mode mode)
5322d07e 591{
2a261cd3
NF
592 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
593
594 return &this_target_expmed->x_mul_widen_cost[speed][mode - MIN_MODE_INT];
5322d07e
NF
595}
596
597/* Set the COST for computing a widening multiplication in MODE when
598 optimizing for SPEED. */
599
600static inline void
ef4bddc2 601set_mul_widen_cost (bool speed, machine_mode mode, int cost)
5322d07e
NF
602{
603 *mul_widen_cost_ptr (speed, mode) = cost;
604}
605
606/* Return the cost for computing a widening multiplication in MODE when
607 optimizing for SPEED. */
608
609static inline int
ef4bddc2 610mul_widen_cost (bool speed, machine_mode mode)
5322d07e
NF
611{
612 return *mul_widen_cost_ptr (speed, mode);
613}
614
615/* Subroutine of {set_,}mul_highpart_cost. Not to be used otherwise. */
616
617static inline int *
ef4bddc2 618mul_highpart_cost_ptr (bool speed, machine_mode mode)
5322d07e 619{
2a261cd3 620 gcc_assert (GET_MODE_CLASS (mode) == MODE_INT);
ac2a97db
ML
621 int m = mode - MIN_MODE_INT;
622 gcc_assert (m < NUM_MODE_INT);
2a261cd3 623
ac2a97db 624 return &this_target_expmed->x_mul_highpart_cost[speed][m];
5322d07e
NF
625}
626
627/* Set the COST for computing the high part of a multiplication in MODE
628 when optimizing for SPEED. */
629
630static inline void
ef4bddc2 631set_mul_highpart_cost (bool speed, machine_mode mode, int cost)
5322d07e
NF
632{
633 *mul_highpart_cost_ptr (speed, mode) = cost;
634}
635
636/* Return the cost for computing the high part of a multiplication in MODE
637 when optimizing for SPEED. */
638
639static inline int
ef4bddc2 640mul_highpart_cost (bool speed, machine_mode mode)
5322d07e
NF
641{
642 return *mul_highpart_cost_ptr (speed, mode);
643}
644
645/* Subroutine of {set_,}convert_cost. Not to be used otherwise. */
646
647static inline int *
ef4bddc2 648convert_cost_ptr (machine_mode to_mode, machine_mode from_mode,
5322d07e 649 bool speed)
6dd8f4bb 650{
91f8035e
RH
651 int to_idx = expmed_mode_index (to_mode);
652 int from_idx = expmed_mode_index (from_mode);
6dd8f4bb 653
91f8035e
RH
654 gcc_assert (IN_RANGE (to_idx, 0, NUM_MODE_IP_INT - 1));
655 gcc_assert (IN_RANGE (from_idx, 0, NUM_MODE_IP_INT - 1));
6dd8f4bb 656
5322d07e
NF
657 return &this_target_expmed->x_convert_cost[speed][to_idx][from_idx];
658}
659
660/* Set the COST for converting from FROM_MODE to TO_MODE when optimizing
661 for SPEED. */
662
663static inline void
ef4bddc2 664set_convert_cost (machine_mode to_mode, machine_mode from_mode,
5322d07e
NF
665 bool speed, int cost)
666{
667 *convert_cost_ptr (to_mode, from_mode, speed) = cost;
6dd8f4bb
BS
668}
669
670/* Return the cost for converting from FROM_MODE to TO_MODE when optimizing
671 for SPEED. */
672
673static inline int
ef4bddc2 674convert_cost (machine_mode to_mode, machine_mode from_mode,
6dd8f4bb
BS
675 bool speed)
676{
5322d07e 677 return *convert_cost_ptr (to_mode, from_mode, speed);
6dd8f4bb
BS
678}
679
ef4bddc2 680extern int mult_by_coeff_cost (HOST_WIDE_INT, machine_mode, bool);
2d52a3a1 681extern rtx emit_cstore (rtx target, enum insn_code icode, enum rtx_code code,
b8506a8a 682 machine_mode mode, machine_mode compare_mode,
2d52a3a1 683 int unsignedp, rtx x, rtx y, int normalizep,
b8506a8a 684 machine_mode target_mode);
36566b39
PK
685
686/* Arguments MODE, RTX: return an rtx for the negation of that value.
687 May emit insns. */
688extern rtx negate_rtx (machine_mode, rtx);
689
ee45a32d
EB
690/* Arguments MODE, RTX: return an rtx for the flipping of that value.
691 May emit insns. */
b8506a8a 692extern rtx flip_storage_order (machine_mode, rtx);
ee45a32d 693
36566b39
PK
694/* Expand a logical AND operation. */
695extern rtx expand_and (machine_mode, rtx, rtx, rtx);
696
697/* Emit a store-flag operation. */
698extern rtx emit_store_flag (rtx, enum rtx_code, rtx, rtx, machine_mode,
699 int, int);
700
701/* Like emit_store_flag, but always succeeds. */
702extern rtx emit_store_flag_force (rtx, enum rtx_code, rtx, rtx,
703 machine_mode, int, int);
704
ec18e48e
VL
705extern void canonicalize_comparison (machine_mode, enum rtx_code *, rtx *);
706
36566b39
PK
707/* Choose a minimal N + 1 bit approximation to 1/D that can be used to
708 replace division by D, and put the least significant N bits of the result
709 in *MULTIPLIER_PTR and return the most significant bit. */
710extern unsigned HOST_WIDE_INT choose_multiplier (unsigned HOST_WIDE_INT, int,
711 int, unsigned HOST_WIDE_INT *,
712 int *, int *);
713
714#ifdef TREE_CODE
715extern rtx expand_variable_shift (enum tree_code, machine_mode,
716 rtx, tree, rtx, int);
0c12fc9b
RS
717extern rtx expand_shift (enum tree_code, machine_mode, rtx, poly_int64, rtx,
718 int);
36566b39
PK
719extern rtx expand_divmod (int, enum tree_code, machine_mode, rtx, rtx,
720 rtx, int);
462f85ce 721#endif
36566b39 722
2d7b38df 723extern void store_bit_field (rtx, poly_uint64, poly_uint64,
8c59e5e7 724 poly_uint64, poly_uint64,
ee45a32d 725 machine_mode, rtx, bool);
fc60a416 726extern rtx extract_bit_field (rtx, poly_uint64, poly_uint64, int, rtx,
f96bf49a 727 machine_mode, machine_mode, bool, rtx *);
5b4f3384 728extern rtx extract_low_bits (machine_mode, machine_mode, rtx);
0b99f253 729extern rtx expand_mult (machine_mode, rtx, rtx, rtx, int, bool = false);
095a2d76
RS
730extern rtx expand_mult_highpart_adjust (scalar_int_mode, rtx, rtx, rtx,
731 rtx, int);
5b4f3384 732
36566b39 733#endif // EXPMED_H