]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/final.c
* parse.y (maybe_yank_clinit): Don't crash if bbody is NULL.
[thirdparty/gcc.git] / gcc / final.c
CommitLineData
3cf2715d 1/* Convert RTL to assembler code and output it, for GNU compiler.
3b708058 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
17ac08e2
ILT
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
3cf2715d 5
1322177d 6This file is part of GCC.
3cf2715d 7
1322177d
LB
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
3cf2715d 12
1322177d
LB
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
3cf2715d
DE
17
18You should have received a copy of the GNU General Public License
1322177d
LB
19along with GCC; see the file COPYING. If not, write to the Free
20Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2102111-1307, USA. */
3cf2715d 22
3cf2715d
DE
23/* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
08c148a8
NB
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
3cf2715d
DE
47
48#include "config.h"
670ee920 49#include "system.h"
4977bab6
ZW
50#include "coretypes.h"
51#include "tm.h"
3cf2715d
DE
52
53#include "tree.h"
54#include "rtl.h"
6baf1cc8 55#include "tm_p.h"
3cf2715d
DE
56#include "regs.h"
57#include "insn-config.h"
3cf2715d 58#include "insn-attr.h"
3cf2715d
DE
59#include "recog.h"
60#include "conditions.h"
61#include "flags.h"
62#include "real.h"
63#include "hard-reg-set.h"
3cf2715d 64#include "output.h"
3d195391 65#include "except.h"
49ad7cfa 66#include "function.h"
10f0ad3d 67#include "toplev.h"
d6f4ec51 68#include "reload.h"
ab87f8c8 69#include "intl.h"
be1bb652 70#include "basic-block.h"
08c148a8 71#include "target.h"
a5a42b92 72#include "debug.h"
49d801d3 73#include "expr.h"
ba4f7968 74#include "cfglayout.h"
3cf2715d 75
440aabf8
NB
76#ifdef XCOFF_DEBUGGING_INFO
77#include "xcoffout.h" /* Needed for external data
78 declarations for e.g. AIX 4.x. */
79#endif
80
76ead72b
RL
81#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
82#include "dwarf2out.h"
83#endif
84
6a08f7b3
DP
85#ifdef DBX_DEBUGGING_INFO
86#include "dbxout.h"
87#endif
88
3cf2715d
DE
89/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
90 null default for it to save conditionalization later. */
91#ifndef CC_STATUS_INIT
92#define CC_STATUS_INIT
93#endif
94
95/* How to start an assembler comment. */
96#ifndef ASM_COMMENT_START
97#define ASM_COMMENT_START ";#"
98#endif
99
100/* Is the given character a logical line separator for the assembler? */
101#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
102#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
103#endif
104
75197b37
BS
105#ifndef JUMP_TABLES_IN_TEXT_SECTION
106#define JUMP_TABLES_IN_TEXT_SECTION 0
107#endif
108
d48bc59a
RH
109#if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
110#define HAVE_READONLY_DATA_SECTION 1
111#else
112#define HAVE_READONLY_DATA_SECTION 0
113#endif
114
589fe865
DJ
115/* Bitflags used by final_scan_insn. */
116#define SEEN_BB 1
117#define SEEN_NOTE 2
118#define SEEN_EMITTED 4
119
3cf2715d 120/* Last insn processed by final_scan_insn. */
b1a9f6a0
RH
121static rtx debug_insn;
122rtx current_output_insn;
3cf2715d
DE
123
124/* Line number of last NOTE. */
125static int last_linenum;
126
eac40081
RK
127/* Highest line number in current block. */
128static int high_block_linenum;
129
130/* Likewise for function. */
131static int high_function_linenum;
132
3cf2715d 133/* Filename of last NOTE. */
3cce094d 134static const char *last_filename;
3cf2715d 135
fc470718
R
136extern int length_unit_log; /* This is defined in insn-attrtab.c. */
137
3cf2715d
DE
138/* Nonzero while outputting an `asm' with operands.
139 This means that inconsistencies are the user's fault, so don't abort.
140 The precise value is the insn being output, to pass to error_for_asm. */
c8b94768 141rtx this_is_asm_operands;
3cf2715d
DE
142
143/* Number of operands of this insn, for an `asm' with operands. */
22bf4422 144static unsigned int insn_noperands;
3cf2715d
DE
145
146/* Compare optimization flag. */
147
148static rtx last_ignored_compare = 0;
149
3cf2715d
DE
150/* Assign a unique number to each insn that is output.
151 This can be used to generate unique local labels. */
152
153static int insn_counter = 0;
154
155#ifdef HAVE_cc0
156/* This variable contains machine-dependent flags (defined in tm.h)
157 set and examined by output routines
158 that describe how to interpret the condition codes properly. */
159
160CC_STATUS cc_status;
161
162/* During output of an insn, this contains a copy of cc_status
163 from before the insn. */
164
165CC_STATUS cc_prev_status;
166#endif
167
168/* Indexed by hardware reg number, is 1 if that register is ever
169 used in the current function.
170
171 In life_analysis, or in stupid_life_analysis, this is set
172 up to record the hard regs used explicitly. Reload adds
173 in the hard regs used for holding pseudo regs. Final uses
174 it to generate the code in the function prologue and epilogue
175 to save and restore registers as needed. */
176
177char regs_ever_live[FIRST_PSEUDO_REGISTER];
178
df2ef49b
AM
179/* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
180 Unlike regs_ever_live, elements of this array corresponding to
181 eliminable regs like the frame pointer are set if an asm sets them. */
182
183char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
184
3cf2715d 185/* Nonzero means current function must be given a frame pointer.
b483cfb7
EB
186 Initialized in function.c to 0. Set only in reload1.c as per
187 the needs of the function. */
3cf2715d
DE
188
189int frame_pointer_needed;
190
18c038b9 191/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
3cf2715d
DE
192
193static int block_depth;
194
195/* Nonzero if have enabled APP processing of our assembler output. */
196
197static int app_on;
198
199/* If we are outputting an insn sequence, this contains the sequence rtx.
200 Zero otherwise. */
201
202rtx final_sequence;
203
204#ifdef ASSEMBLER_DIALECT
205
206/* Number of the assembler dialect to use, starting at 0. */
207static int dialect_number;
208#endif
209
afe48e06
RH
210#ifdef HAVE_conditional_execution
211/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
212rtx current_insn_predicate;
213#endif
214
1d300e19 215#ifdef HAVE_ATTR_length
6cf9ac28
AJ
216static int asm_insn_count (rtx);
217#endif
218static void profile_function (FILE *);
219static void profile_after_prologue (FILE *);
220static bool notice_source_line (rtx);
221static rtx walk_alter_subreg (rtx *);
222static void output_asm_name (void);
223static void output_alternate_entry_point (FILE *, rtx);
224static tree get_mem_expr_from_op (rtx, int *);
225static void output_asm_operand_names (rtx *, int *, int);
226static void output_operand (rtx, int);
e9a25f70 227#ifdef LEAF_REGISTERS
6cf9ac28 228static void leaf_renumber_regs (rtx);
e9a25f70
JL
229#endif
230#ifdef HAVE_cc0
6cf9ac28 231static int alter_cond (rtx);
e9a25f70 232#endif
ca3075bd 233#ifndef ADDR_VEC_ALIGN
6cf9ac28 234static int final_addr_vec_align (rtx);
ca3075bd 235#endif
7bdb32b9 236#ifdef HAVE_ATTR_length
6cf9ac28 237static int align_fuzz (rtx, rtx, int, unsigned);
7bdb32b9 238#endif
3cf2715d
DE
239\f
240/* Initialize data in final at the beginning of a compilation. */
241
242void
6cf9ac28 243init_final (const char *filename ATTRIBUTE_UNUSED)
3cf2715d 244{
3cf2715d 245 app_on = 0;
3cf2715d
DE
246 final_sequence = 0;
247
248#ifdef ASSEMBLER_DIALECT
249 dialect_number = ASSEMBLER_DIALECT;
250#endif
251}
252
08c148a8 253/* Default target function prologue and epilogue assembler output.
b9f22704 254
08c148a8
NB
255 If not overridden for epilogue code, then the function body itself
256 contains return instructions wherever needed. */
257void
6cf9ac28
AJ
258default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
259 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
08c148a8
NB
260{
261}
262
b4c25db2
NB
263/* Default target hook that outputs nothing to a stream. */
264void
6cf9ac28 265no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
b4c25db2
NB
266{
267}
268
3cf2715d
DE
269/* Enable APP processing of subsequent output.
270 Used before the output from an `asm' statement. */
271
272void
6cf9ac28 273app_enable (void)
3cf2715d
DE
274{
275 if (! app_on)
276 {
51723711 277 fputs (ASM_APP_ON, asm_out_file);
3cf2715d
DE
278 app_on = 1;
279 }
280}
281
282/* Disable APP processing of subsequent output.
283 Called from varasm.c before most kinds of output. */
284
285void
6cf9ac28 286app_disable (void)
3cf2715d
DE
287{
288 if (app_on)
289 {
51723711 290 fputs (ASM_APP_OFF, asm_out_file);
3cf2715d
DE
291 app_on = 0;
292 }
293}
294\f
f5d927c0 295/* Return the number of slots filled in the current
3cf2715d
DE
296 delayed branch sequence (we don't count the insn needing the
297 delay slot). Zero if not in a delayed branch sequence. */
298
299#ifdef DELAY_SLOTS
300int
6cf9ac28 301dbr_sequence_length (void)
3cf2715d
DE
302{
303 if (final_sequence != 0)
304 return XVECLEN (final_sequence, 0) - 1;
305 else
306 return 0;
307}
308#endif
309\f
310/* The next two pages contain routines used to compute the length of an insn
311 and to shorten branches. */
312
313/* Arrays for insn lengths, and addresses. The latter is referenced by
314 `insn_current_length'. */
315
addd7df6 316static int *insn_lengths;
9d98a694 317
9d98a694 318varray_type insn_addresses_;
3cf2715d 319
ea3cbda5
R
320/* Max uid for which the above arrays are valid. */
321static int insn_lengths_max_uid;
322
3cf2715d
DE
323/* Address of insn being processed. Used by `insn_current_length'. */
324int insn_current_address;
325
fc470718
R
326/* Address of insn being processed in previous iteration. */
327int insn_last_address;
328
d6a7951f 329/* known invariant alignment of insn being processed. */
fc470718
R
330int insn_current_align;
331
95707627
R
332/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
333 gives the next following alignment insn that increases the known
334 alignment, or NULL_RTX if there is no such insn.
335 For any alignment obtained this way, we can again index uid_align with
336 its uid to obtain the next following align that in turn increases the
337 alignment, till we reach NULL_RTX; the sequence obtained this way
338 for each insn we'll call the alignment chain of this insn in the following
339 comments. */
340
f5d927c0
KH
341struct label_alignment
342{
9e423e6d
JW
343 short alignment;
344 short max_skip;
345};
346
347static rtx *uid_align;
348static int *uid_shuid;
349static struct label_alignment *label_align;
95707627 350
3cf2715d
DE
351/* Indicate that branch shortening hasn't yet been done. */
352
353void
6cf9ac28 354init_insn_lengths (void)
3cf2715d 355{
95707627
R
356 if (uid_shuid)
357 {
358 free (uid_shuid);
359 uid_shuid = 0;
360 }
361 if (insn_lengths)
362 {
363 free (insn_lengths);
364 insn_lengths = 0;
ea3cbda5 365 insn_lengths_max_uid = 0;
95707627 366 }
9d98a694
AO
367#ifdef HAVE_ATTR_length
368 INSN_ADDRESSES_FREE ();
369#endif
95707627
R
370 if (uid_align)
371 {
372 free (uid_align);
373 uid_align = 0;
374 }
3cf2715d
DE
375}
376
377/* Obtain the current length of an insn. If branch shortening has been done,
378 get its actual length. Otherwise, get its maximum length. */
379
380int
6cf9ac28 381get_attr_length (rtx insn ATTRIBUTE_UNUSED)
3cf2715d
DE
382{
383#ifdef HAVE_ATTR_length
384 rtx body;
385 int i;
386 int length = 0;
387
ea3cbda5 388 if (insn_lengths_max_uid > INSN_UID (insn))
3cf2715d
DE
389 return insn_lengths[INSN_UID (insn)];
390 else
391 switch (GET_CODE (insn))
392 {
393 case NOTE:
394 case BARRIER:
395 case CODE_LABEL:
396 return 0;
397
398 case CALL_INSN:
399 length = insn_default_length (insn);
400 break;
401
402 case JUMP_INSN:
403 body = PATTERN (insn);
dd3f0101 404 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
3cf2715d 405 {
fc470718
R
406 /* Alignment is machine-dependent and should be handled by
407 ADDR_VEC_ALIGN. */
3cf2715d
DE
408 }
409 else
410 length = insn_default_length (insn);
411 break;
412
413 case INSN:
414 body = PATTERN (insn);
415 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
416 return 0;
417
418 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
419 length = asm_insn_count (body) * insn_default_length (insn);
420 else if (GET_CODE (body) == SEQUENCE)
421 for (i = 0; i < XVECLEN (body, 0); i++)
422 length += get_attr_length (XVECEXP (body, 0, i));
423 else
424 length = insn_default_length (insn);
e9a25f70
JL
425 break;
426
427 default:
428 break;
3cf2715d
DE
429 }
430
431#ifdef ADJUST_INSN_LENGTH
432 ADJUST_INSN_LENGTH (insn, length);
433#endif
434 return length;
435#else /* not HAVE_ATTR_length */
436 return 0;
437#endif /* not HAVE_ATTR_length */
438}
439\f
fc470718
R
440/* Code to handle alignment inside shorten_branches. */
441
442/* Here is an explanation how the algorithm in align_fuzz can give
443 proper results:
444
445 Call a sequence of instructions beginning with alignment point X
446 and continuing until the next alignment point `block X'. When `X'
f5d927c0 447 is used in an expression, it means the alignment value of the
fc470718 448 alignment point.
f5d927c0 449
fc470718
R
450 Call the distance between the start of the first insn of block X, and
451 the end of the last insn of block X `IX', for the `inner size of X'.
452 This is clearly the sum of the instruction lengths.
f5d927c0 453
fc470718
R
454 Likewise with the next alignment-delimited block following X, which we
455 shall call block Y.
f5d927c0 456
fc470718
R
457 Call the distance between the start of the first insn of block X, and
458 the start of the first insn of block Y `OX', for the `outer size of X'.
f5d927c0 459
fc470718 460 The estimated padding is then OX - IX.
f5d927c0 461
fc470718 462 OX can be safely estimated as
f5d927c0 463
fc470718
R
464 if (X >= Y)
465 OX = round_up(IX, Y)
466 else
467 OX = round_up(IX, X) + Y - X
f5d927c0 468
fc470718
R
469 Clearly est(IX) >= real(IX), because that only depends on the
470 instruction lengths, and those being overestimated is a given.
f5d927c0 471
fc470718
R
472 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
473 we needn't worry about that when thinking about OX.
f5d927c0 474
fc470718
R
475 When X >= Y, the alignment provided by Y adds no uncertainty factor
476 for branch ranges starting before X, so we can just round what we have.
477 But when X < Y, we don't know anything about the, so to speak,
478 `middle bits', so we have to assume the worst when aligning up from an
479 address mod X to one mod Y, which is Y - X. */
480
481#ifndef LABEL_ALIGN
efa3896a 482#define LABEL_ALIGN(LABEL) align_labels_log
fc470718
R
483#endif
484
9e423e6d 485#ifndef LABEL_ALIGN_MAX_SKIP
2cca7283 486#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
9e423e6d
JW
487#endif
488
fc470718 489#ifndef LOOP_ALIGN
efa3896a 490#define LOOP_ALIGN(LABEL) align_loops_log
fc470718
R
491#endif
492
9e423e6d 493#ifndef LOOP_ALIGN_MAX_SKIP
2cca7283 494#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
9e423e6d
JW
495#endif
496
fc470718 497#ifndef LABEL_ALIGN_AFTER_BARRIER
340f7e7c 498#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
fc470718
R
499#endif
500
9e423e6d 501#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
247a370b
JH
502#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
503#endif
504
505#ifndef JUMP_ALIGN
506#define JUMP_ALIGN(LABEL) align_jumps_log
507#endif
508
509#ifndef JUMP_ALIGN_MAX_SKIP
2cca7283 510#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
9e423e6d
JW
511#endif
512
fc470718 513#ifndef ADDR_VEC_ALIGN
ca3075bd 514static int
6cf9ac28 515final_addr_vec_align (rtx addr_vec)
fc470718 516{
2a841588 517 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
fc470718
R
518
519 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
520 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2a841588 521 return exact_log2 (align);
fc470718
R
522
523}
f5d927c0 524
fc470718
R
525#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
526#endif
527
528#ifndef INSN_LENGTH_ALIGNMENT
529#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
530#endif
531
fc470718
R
532#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533
de7987a6 534static int min_labelno, max_labelno;
fc470718
R
535
536#define LABEL_TO_ALIGNMENT(LABEL) \
9e423e6d
JW
537 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538
539#define LABEL_TO_MAX_SKIP(LABEL) \
540 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
fc470718
R
541
542/* For the benefit of port specific code do this also as a function. */
f5d927c0 543
fc470718 544int
6cf9ac28 545label_to_alignment (rtx label)
fc470718
R
546{
547 return LABEL_TO_ALIGNMENT (label);
548}
549
550#ifdef HAVE_ATTR_length
551/* The differences in addresses
552 between a branch and its target might grow or shrink depending on
553 the alignment the start insn of the range (the branch for a forward
554 branch or the label for a backward branch) starts out on; if these
555 differences are used naively, they can even oscillate infinitely.
556 We therefore want to compute a 'worst case' address difference that
557 is independent of the alignment the start insn of the range end
558 up on, and that is at least as large as the actual difference.
559 The function align_fuzz calculates the amount we have to add to the
560 naively computed difference, by traversing the part of the alignment
561 chain of the start insn of the range that is in front of the end insn
562 of the range, and considering for each alignment the maximum amount
563 that it might contribute to a size increase.
564
565 For casesi tables, we also want to know worst case minimum amounts of
566 address difference, in case a machine description wants to introduce
567 some common offset that is added to all offsets in a table.
d6a7951f 568 For this purpose, align_fuzz with a growth argument of 0 computes the
fc470718
R
569 appropriate adjustment. */
570
fc470718
R
571/* Compute the maximum delta by which the difference of the addresses of
572 START and END might grow / shrink due to a different address for start
573 which changes the size of alignment insns between START and END.
574 KNOWN_ALIGN_LOG is the alignment known for START.
575 GROWTH should be ~0 if the objective is to compute potential code size
576 increase, and 0 if the objective is to compute potential shrink.
577 The return value is undefined for any other value of GROWTH. */
f5d927c0 578
ca3075bd 579static int
6cf9ac28 580align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
fc470718
R
581{
582 int uid = INSN_UID (start);
583 rtx align_label;
584 int known_align = 1 << known_align_log;
585 int end_shuid = INSN_SHUID (end);
586 int fuzz = 0;
587
588 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
589 {
590 int align_addr, new_align;
591
592 uid = INSN_UID (align_label);
9d98a694 593 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
fc470718
R
594 if (uid_shuid[uid] > end_shuid)
595 break;
596 known_align_log = LABEL_TO_ALIGNMENT (align_label);
597 new_align = 1 << known_align_log;
598 if (new_align < known_align)
599 continue;
600 fuzz += (-align_addr ^ growth) & (new_align - known_align);
601 known_align = new_align;
602 }
603 return fuzz;
604}
605
606/* Compute a worst-case reference address of a branch so that it
607 can be safely used in the presence of aligned labels. Since the
608 size of the branch itself is unknown, the size of the branch is
609 not included in the range. I.e. for a forward branch, the reference
610 address is the end address of the branch as known from the previous
611 branch shortening pass, minus a value to account for possible size
612 increase due to alignment. For a backward branch, it is the start
613 address of the branch as known from the current pass, plus a value
614 to account for possible size increase due to alignment.
615 NB.: Therefore, the maximum offset allowed for backward branches needs
616 to exclude the branch size. */
f5d927c0 617
fc470718 618int
6cf9ac28 619insn_current_reference_address (rtx branch)
fc470718 620{
5527bf14
RH
621 rtx dest, seq;
622 int seq_uid;
623
624 if (! INSN_ADDRESSES_SET_P ())
625 return 0;
626
627 seq = NEXT_INSN (PREV_INSN (branch));
628 seq_uid = INSN_UID (seq);
4b4bf941 629 if (!JUMP_P (branch))
fc470718
R
630 /* This can happen for example on the PA; the objective is to know the
631 offset to address something in front of the start of the function.
632 Thus, we can treat it like a backward branch.
633 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
634 any alignment we'd encounter, so we skip the call to align_fuzz. */
635 return insn_current_address;
636 dest = JUMP_LABEL (branch);
5527bf14 637
b9f22704 638 /* BRANCH has no proper alignment chain set, so use SEQ.
afc6898e
BS
639 BRANCH also has no INSN_SHUID. */
640 if (INSN_SHUID (seq) < INSN_SHUID (dest))
fc470718 641 {
f5d927c0 642 /* Forward branch. */
fc470718 643 return (insn_last_address + insn_lengths[seq_uid]
26024475 644 - align_fuzz (seq, dest, length_unit_log, ~0));
fc470718
R
645 }
646 else
647 {
f5d927c0 648 /* Backward branch. */
fc470718 649 return (insn_current_address
923f7cf9 650 + align_fuzz (dest, seq, length_unit_log, ~0));
fc470718
R
651 }
652}
653#endif /* HAVE_ATTR_length */
654\f
247a370b 655void
6cf9ac28 656compute_alignments (void)
247a370b 657{
247a370b 658 int log, max_skip, max_log;
e0082a72 659 basic_block bb;
247a370b
JH
660
661 if (label_align)
662 {
663 free (label_align);
664 label_align = 0;
665 }
666
667 max_labelno = max_label_num ();
668 min_labelno = get_first_label_num ();
703ad42b
KG
669 label_align = xcalloc (max_labelno - min_labelno + 1,
670 sizeof (struct label_alignment));
247a370b
JH
671
672 /* If not optimizing or optimizing for size, don't assign any alignments. */
ba712955 673 if (! optimize || optimize_size)
247a370b
JH
674 return;
675
e0082a72 676 FOR_EACH_BB (bb)
247a370b 677 {
a813c111 678 rtx label = BB_HEAD (bb);
247a370b
JH
679 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
680 edge e;
628f6a4e 681 edge_iterator ei;
247a370b 682
4b4bf941 683 if (!LABEL_P (label)
66b4e478 684 || probably_never_executed_bb_p (bb))
247a370b
JH
685 continue;
686 max_log = LABEL_ALIGN (label);
687 max_skip = LABEL_ALIGN_MAX_SKIP;
688
628f6a4e 689 FOR_EACH_EDGE (e, ei, bb->preds)
247a370b
JH
690 {
691 if (e->flags & EDGE_FALLTHRU)
692 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
693 else
694 branch_frequency += EDGE_FREQUENCY (e);
695 }
696
f63d1bf7 697 /* There are two purposes to align block with no fallthru incoming edge:
247a370b 698 1) to avoid fetch stalls when branch destination is near cache boundary
d6a7951f 699 2) to improve cache efficiency in case the previous block is not executed
247a370b
JH
700 (so it does not need to be in the cache).
701
702 We to catch first case, we align frequently executed blocks.
703 To catch the second, we align blocks that are executed more frequently
eaec9b3d 704 than the predecessor and the predecessor is likely to not be executed
247a370b
JH
705 when function is called. */
706
707 if (!has_fallthru
708 && (branch_frequency > BB_FREQ_MAX / 10
f6366fc7
ZD
709 || (bb->frequency > bb->prev_bb->frequency * 10
710 && (bb->prev_bb->frequency
247a370b
JH
711 <= ENTRY_BLOCK_PTR->frequency / 2))))
712 {
713 log = JUMP_ALIGN (label);
714 if (max_log < log)
715 {
716 max_log = log;
717 max_skip = JUMP_ALIGN_MAX_SKIP;
718 }
719 }
720 /* In case block is frequent and reached mostly by non-fallthru edge,
09da1532 721 align it. It is most likely a first block of loop. */
247a370b 722 if (has_fallthru
66b4e478 723 && maybe_hot_bb_p (bb)
247a370b 724 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1877be45 725 && branch_frequency > fallthru_frequency * 2)
247a370b
JH
726 {
727 log = LOOP_ALIGN (label);
728 if (max_log < log)
729 {
730 max_log = log;
731 max_skip = LOOP_ALIGN_MAX_SKIP;
732 }
733 }
734 LABEL_TO_ALIGNMENT (label) = max_log;
735 LABEL_TO_MAX_SKIP (label) = max_skip;
736 }
737}
738\f
3cf2715d
DE
739/* Make a pass over all insns and compute their actual lengths by shortening
740 any branches of variable length if possible. */
741
fc470718
R
742/* shorten_branches might be called multiple times: for example, the SH
743 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
744 In order to do this, it needs proper length information, which it obtains
745 by calling shorten_branches. This cannot be collapsed with
d6a7951f 746 shorten_branches itself into a single pass unless we also want to integrate
fc470718
R
747 reorg.c, since the branch splitting exposes new instructions with delay
748 slots. */
749
3cf2715d 750void
6cf9ac28 751shorten_branches (rtx first ATTRIBUTE_UNUSED)
3cf2715d 752{
3cf2715d 753 rtx insn;
fc470718
R
754 int max_uid;
755 int i;
fc470718 756 int max_log;
9e423e6d 757 int max_skip;
fc470718
R
758#ifdef HAVE_ATTR_length
759#define MAX_CODE_ALIGN 16
760 rtx seq;
3cf2715d 761 int something_changed = 1;
3cf2715d
DE
762 char *varying_length;
763 rtx body;
764 int uid;
fc470718 765 rtx align_tab[MAX_CODE_ALIGN];
3cf2715d 766
fc470718 767#endif
3d14e82f 768
3446405d
JH
769 /* Compute maximum UID and allocate label_align / uid_shuid. */
770 max_uid = get_max_uid ();
d9b6874b 771
471854f8 772 /* Free uid_shuid before reallocating it. */
07a1f795
AP
773 free (uid_shuid);
774
703ad42b 775 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
25e22dc0 776
247a370b
JH
777 if (max_labelno != max_label_num ())
778 {
779 int old = max_labelno;
780 int n_labels;
781 int n_old_labels;
782
783 max_labelno = max_label_num ();
784
785 n_labels = max_labelno - min_labelno + 1;
786 n_old_labels = old - min_labelno + 1;
787
703ad42b
KG
788 label_align = xrealloc (label_align,
789 n_labels * sizeof (struct label_alignment));
247a370b
JH
790
791 /* Range of labels grows monotonically in the function. Abort here
792 means that the initialization of array got lost. */
0bccc606 793 gcc_assert (n_old_labels <= n_labels);
247a370b
JH
794
795 memset (label_align + n_old_labels, 0,
796 (n_labels - n_old_labels) * sizeof (struct label_alignment));
797 }
798
fc470718
R
799 /* Initialize label_align and set up uid_shuid to be strictly
800 monotonically rising with insn order. */
e2faec75
R
801 /* We use max_log here to keep track of the maximum alignment we want to
802 impose on the next CODE_LABEL (or the current one if we are processing
803 the CODE_LABEL itself). */
f5d927c0 804
9e423e6d
JW
805 max_log = 0;
806 max_skip = 0;
807
808 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
fc470718
R
809 {
810 int log;
811
812 INSN_SHUID (insn) = i++;
2c3c49de 813 if (INSN_P (insn))
e2faec75
R
814 {
815 /* reorg might make the first insn of a loop being run once only,
816 and delete the label in front of it. Then we want to apply
817 the loop alignment to the new label created by reorg, which
818 is separated by the former loop start insn from the
819 NOTE_INSN_LOOP_BEG. */
820 }
4b4bf941 821 else if (LABEL_P (insn))
fc470718
R
822 {
823 rtx next;
ff81832f 824
247a370b
JH
825 /* Merge in alignments computed by compute_alignments. */
826 log = LABEL_TO_ALIGNMENT (insn);
827 if (max_log < log)
828 {
829 max_log = log;
830 max_skip = LABEL_TO_MAX_SKIP (insn);
831 }
fc470718
R
832
833 log = LABEL_ALIGN (insn);
834 if (max_log < log)
9e423e6d
JW
835 {
836 max_log = log;
837 max_skip = LABEL_ALIGN_MAX_SKIP;
838 }
b2a6a2fb 839 next = next_nonnote_insn (insn);
75197b37
BS
840 /* ADDR_VECs only take room if read-only data goes into the text
841 section. */
d48bc59a 842 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
4b4bf941 843 if (next && JUMP_P (next))
75197b37
BS
844 {
845 rtx nextbody = PATTERN (next);
846 if (GET_CODE (nextbody) == ADDR_VEC
847 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
848 {
849 log = ADDR_VEC_ALIGN (next);
850 if (max_log < log)
851 {
852 max_log = log;
853 max_skip = LABEL_ALIGN_MAX_SKIP;
854 }
855 }
856 }
fc470718 857 LABEL_TO_ALIGNMENT (insn) = max_log;
9e423e6d 858 LABEL_TO_MAX_SKIP (insn) = max_skip;
fc470718 859 max_log = 0;
9e423e6d 860 max_skip = 0;
fc470718 861 }
4b4bf941 862 else if (BARRIER_P (insn))
fc470718
R
863 {
864 rtx label;
865
2c3c49de 866 for (label = insn; label && ! INSN_P (label);
fc470718 867 label = NEXT_INSN (label))
4b4bf941 868 if (LABEL_P (label))
fc470718
R
869 {
870 log = LABEL_ALIGN_AFTER_BARRIER (insn);
871 if (max_log < log)
9e423e6d
JW
872 {
873 max_log = log;
874 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
875 }
fc470718
R
876 break;
877 }
878 }
fc470718
R
879 }
880#ifdef HAVE_ATTR_length
881
882 /* Allocate the rest of the arrays. */
703ad42b 883 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
ea3cbda5 884 insn_lengths_max_uid = max_uid;
af035616
R
885 /* Syntax errors can lead to labels being outside of the main insn stream.
886 Initialize insn_addresses, so that we get reproducible results. */
9d98a694 887 INSN_ADDRESSES_ALLOC (max_uid);
fc470718 888
703ad42b 889 varying_length = xcalloc (max_uid, sizeof (char));
fc470718
R
890
891 /* Initialize uid_align. We scan instructions
892 from end to start, and keep in align_tab[n] the last seen insn
893 that does an alignment of at least n+1, i.e. the successor
894 in the alignment chain for an insn that does / has a known
895 alignment of n. */
703ad42b 896 uid_align = xcalloc (max_uid, sizeof *uid_align);
fc470718 897
f5d927c0 898 for (i = MAX_CODE_ALIGN; --i >= 0;)
fc470718
R
899 align_tab[i] = NULL_RTX;
900 seq = get_last_insn ();
33f7f353 901 for (; seq; seq = PREV_INSN (seq))
fc470718
R
902 {
903 int uid = INSN_UID (seq);
904 int log;
4b4bf941 905 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
fc470718 906 uid_align[uid] = align_tab[0];
fc470718
R
907 if (log)
908 {
909 /* Found an alignment label. */
910 uid_align[uid] = align_tab[log];
911 for (i = log - 1; i >= 0; i--)
912 align_tab[i] = seq;
913 }
33f7f353
JR
914 }
915#ifdef CASE_VECTOR_SHORTEN_MODE
916 if (optimize)
917 {
918 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
919 label fields. */
920
921 int min_shuid = INSN_SHUID (get_insns ()) - 1;
922 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
923 int rel;
924
925 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
fc470718 926 {
33f7f353
JR
927 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
928 int len, i, min, max, insn_shuid;
929 int min_align;
930 addr_diff_vec_flags flags;
931
4b4bf941 932 if (!JUMP_P (insn)
33f7f353
JR
933 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
934 continue;
935 pat = PATTERN (insn);
936 len = XVECLEN (pat, 1);
0bccc606 937 gcc_assert (len > 0);
33f7f353
JR
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
940 {
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
944 {
945 min = shuid;
946 min_lab = lab;
947 }
948 if (shuid > max)
949 {
950 max = shuid;
951 max_lab = lab;
952 }
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
955 }
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
5921f276 960 memset (&flags, 0, sizeof (flags));
33f7f353
JR
961 flags.min_align = min_align;
962 flags.base_after_vec = rel > insn_shuid;
963 flags.min_after_vec = min > insn_shuid;
964 flags.max_after_vec = max > insn_shuid;
965 flags.min_after_base = min > rel;
966 flags.max_after_base = max > rel;
967 ADDR_DIFF_VEC_FLAGS (pat) = flags;
fc470718
R
968 }
969 }
33f7f353 970#endif /* CASE_VECTOR_SHORTEN_MODE */
3cf2715d 971
3cf2715d 972 /* Compute initial lengths, addresses, and varying flags for each insn. */
b816f339 973 for (insn_current_address = 0, insn = first;
3cf2715d
DE
974 insn != 0;
975 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
976 {
977 uid = INSN_UID (insn);
fc470718 978
3cf2715d 979 insn_lengths[uid] = 0;
fc470718 980
4b4bf941 981 if (LABEL_P (insn))
fc470718
R
982 {
983 int log = LABEL_TO_ALIGNMENT (insn);
984 if (log)
985 {
986 int align = 1 << log;
ecb06768 987 int new_address = (insn_current_address + align - 1) & -align;
fc470718 988 insn_lengths[uid] = new_address - insn_current_address;
fc470718
R
989 }
990 }
991
5a09edba 992 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
f5d927c0 993
4b4bf941
JQ
994 if (NOTE_P (insn) || BARRIER_P (insn)
995 || LABEL_P (insn))
3cf2715d 996 continue;
04da53bd
R
997 if (INSN_DELETED_P (insn))
998 continue;
3cf2715d
DE
999
1000 body = PATTERN (insn);
1001 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
5a32a90c
JR
1002 {
1003 /* This only takes room if read-only data goes into the text
1004 section. */
d48bc59a 1005 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1006 insn_lengths[uid] = (XVECLEN (body,
1007 GET_CODE (body) == ADDR_DIFF_VEC)
1008 * GET_MODE_SIZE (GET_MODE (body)));
5a32a90c 1009 /* Alignment is handled by ADDR_VEC_ALIGN. */
5a32a90c 1010 }
a30caf5c 1011 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
3cf2715d
DE
1012 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1013 else if (GET_CODE (body) == SEQUENCE)
1014 {
1015 int i;
1016 int const_delay_slots;
1017#ifdef DELAY_SLOTS
1018 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1019#else
1020 const_delay_slots = 0;
1021#endif
1022 /* Inside a delay slot sequence, we do not do any branch shortening
1023 if the shortening could change the number of delay slots
0f41302f 1024 of the branch. */
3cf2715d
DE
1025 for (i = 0; i < XVECLEN (body, 0); i++)
1026 {
1027 rtx inner_insn = XVECEXP (body, 0, i);
1028 int inner_uid = INSN_UID (inner_insn);
1029 int inner_length;
1030
a30caf5c
DC
1031 if (GET_CODE (body) == ASM_INPUT
1032 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
3cf2715d
DE
1033 inner_length = (asm_insn_count (PATTERN (inner_insn))
1034 * insn_default_length (inner_insn));
1035 else
1036 inner_length = insn_default_length (inner_insn);
f5d927c0 1037
3cf2715d
DE
1038 insn_lengths[inner_uid] = inner_length;
1039 if (const_delay_slots)
1040 {
1041 if ((varying_length[inner_uid]
1042 = insn_variable_length_p (inner_insn)) != 0)
1043 varying_length[uid] = 1;
9d98a694
AO
1044 INSN_ADDRESSES (inner_uid) = (insn_current_address
1045 + insn_lengths[uid]);
3cf2715d
DE
1046 }
1047 else
1048 varying_length[inner_uid] = 0;
1049 insn_lengths[uid] += inner_length;
1050 }
1051 }
1052 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1053 {
1054 insn_lengths[uid] = insn_default_length (insn);
1055 varying_length[uid] = insn_variable_length_p (insn);
1056 }
1057
1058 /* If needed, do any adjustment. */
1059#ifdef ADJUST_INSN_LENGTH
1060 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
04b6000c 1061 if (insn_lengths[uid] < 0)
c725bd79 1062 fatal_insn ("negative insn length", insn);
3cf2715d
DE
1063#endif
1064 }
1065
1066 /* Now loop over all the insns finding varying length insns. For each,
1067 get the current insn length. If it has changed, reflect the change.
1068 When nothing changes for a full pass, we are done. */
1069
1070 while (something_changed)
1071 {
1072 something_changed = 0;
fc470718 1073 insn_current_align = MAX_CODE_ALIGN - 1;
b816f339 1074 for (insn_current_address = 0, insn = first;
3cf2715d
DE
1075 insn != 0;
1076 insn = NEXT_INSN (insn))
1077 {
1078 int new_length;
b729186a 1079#ifdef ADJUST_INSN_LENGTH
3cf2715d 1080 int tmp_length;
b729186a 1081#endif
fc470718 1082 int length_align;
3cf2715d
DE
1083
1084 uid = INSN_UID (insn);
fc470718 1085
4b4bf941 1086 if (LABEL_P (insn))
fc470718
R
1087 {
1088 int log = LABEL_TO_ALIGNMENT (insn);
1089 if (log > insn_current_align)
1090 {
1091 int align = 1 << log;
ecb06768 1092 int new_address= (insn_current_address + align - 1) & -align;
fc470718
R
1093 insn_lengths[uid] = new_address - insn_current_address;
1094 insn_current_align = log;
1095 insn_current_address = new_address;
1096 }
1097 else
1098 insn_lengths[uid] = 0;
9d98a694 1099 INSN_ADDRESSES (uid) = insn_current_address;
fc470718
R
1100 continue;
1101 }
1102
1103 length_align = INSN_LENGTH_ALIGNMENT (insn);
1104 if (length_align < insn_current_align)
1105 insn_current_align = length_align;
1106
9d98a694
AO
1107 insn_last_address = INSN_ADDRESSES (uid);
1108 INSN_ADDRESSES (uid) = insn_current_address;
fc470718 1109
5e75ef4a 1110#ifdef CASE_VECTOR_SHORTEN_MODE
4b4bf941 1111 if (optimize && JUMP_P (insn)
33f7f353
JR
1112 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1113 {
33f7f353
JR
1114 rtx body = PATTERN (insn);
1115 int old_length = insn_lengths[uid];
1116 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1117 rtx min_lab = XEXP (XEXP (body, 2), 0);
1118 rtx max_lab = XEXP (XEXP (body, 3), 0);
9d98a694
AO
1119 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1120 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1121 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
33f7f353
JR
1122 rtx prev;
1123 int rel_align = 0;
950a3816
KG
1124 addr_diff_vec_flags flags;
1125
1126 /* Avoid automatic aggregate initialization. */
1127 flags = ADDR_DIFF_VEC_FLAGS (body);
33f7f353
JR
1128
1129 /* Try to find a known alignment for rel_lab. */
1130 for (prev = rel_lab;
1131 prev
1132 && ! insn_lengths[INSN_UID (prev)]
1133 && ! (varying_length[INSN_UID (prev)] & 1);
1134 prev = PREV_INSN (prev))
1135 if (varying_length[INSN_UID (prev)] & 2)
1136 {
1137 rel_align = LABEL_TO_ALIGNMENT (prev);
1138 break;
1139 }
1140
1141 /* See the comment on addr_diff_vec_flags in rtl.h for the
1142 meaning of the flags values. base: REL_LAB vec: INSN */
1143 /* Anything after INSN has still addresses from the last
1144 pass; adjust these so that they reflect our current
1145 estimate for this pass. */
1146 if (flags.base_after_vec)
1147 rel_addr += insn_current_address - insn_last_address;
1148 if (flags.min_after_vec)
1149 min_addr += insn_current_address - insn_last_address;
1150 if (flags.max_after_vec)
1151 max_addr += insn_current_address - insn_last_address;
1152 /* We want to know the worst case, i.e. lowest possible value
1153 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1154 its offset is positive, and we have to be wary of code shrink;
1155 otherwise, it is negative, and we have to be vary of code
1156 size increase. */
1157 if (flags.min_after_base)
1158 {
1159 /* If INSN is between REL_LAB and MIN_LAB, the size
1160 changes we are about to make can change the alignment
1161 within the observed offset, therefore we have to break
1162 it up into two parts that are independent. */
1163 if (! flags.base_after_vec && flags.min_after_vec)
1164 {
1165 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1166 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1167 }
1168 else
1169 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1170 }
1171 else
1172 {
1173 if (flags.base_after_vec && ! flags.min_after_vec)
1174 {
1175 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1176 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1177 }
1178 else
1179 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1180 }
1181 /* Likewise, determine the highest lowest possible value
1182 for the offset of MAX_LAB. */
1183 if (flags.max_after_base)
1184 {
1185 if (! flags.base_after_vec && flags.max_after_vec)
1186 {
1187 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1188 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1189 }
1190 else
1191 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1192 }
1193 else
1194 {
1195 if (flags.base_after_vec && ! flags.max_after_vec)
1196 {
1197 max_addr += align_fuzz (max_lab, insn, 0, 0);
1198 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1199 }
1200 else
1201 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1202 }
1203 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1204 max_addr - rel_addr,
1205 body));
d48bc59a 1206 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1207 {
1208 insn_lengths[uid]
1209 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1210 insn_current_address += insn_lengths[uid];
1211 if (insn_lengths[uid] != old_length)
1212 something_changed = 1;
1213 }
1214
33f7f353 1215 continue;
33f7f353 1216 }
5e75ef4a
JL
1217#endif /* CASE_VECTOR_SHORTEN_MODE */
1218
1219 if (! (varying_length[uid]))
3cf2715d 1220 {
4b4bf941 1221 if (NONJUMP_INSN_P (insn)
674fc07d
GS
1222 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1223 {
1224 int i;
1225
1226 body = PATTERN (insn);
1227 for (i = 0; i < XVECLEN (body, 0); i++)
1228 {
1229 rtx inner_insn = XVECEXP (body, 0, i);
1230 int inner_uid = INSN_UID (inner_insn);
1231
1232 INSN_ADDRESSES (inner_uid) = insn_current_address;
1233
1234 insn_current_address += insn_lengths[inner_uid];
1235 }
dd3f0101 1236 }
674fc07d
GS
1237 else
1238 insn_current_address += insn_lengths[uid];
1239
3cf2715d
DE
1240 continue;
1241 }
674fc07d 1242
4b4bf941 1243 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
3cf2715d
DE
1244 {
1245 int i;
f5d927c0 1246
3cf2715d
DE
1247 body = PATTERN (insn);
1248 new_length = 0;
1249 for (i = 0; i < XVECLEN (body, 0); i++)
1250 {
1251 rtx inner_insn = XVECEXP (body, 0, i);
1252 int inner_uid = INSN_UID (inner_insn);
1253 int inner_length;
1254
9d98a694 1255 INSN_ADDRESSES (inner_uid) = insn_current_address;
3cf2715d
DE
1256
1257 /* insn_current_length returns 0 for insns with a
1258 non-varying length. */
1259 if (! varying_length[inner_uid])
1260 inner_length = insn_lengths[inner_uid];
1261 else
1262 inner_length = insn_current_length (inner_insn);
1263
1264 if (inner_length != insn_lengths[inner_uid])
1265 {
1266 insn_lengths[inner_uid] = inner_length;
1267 something_changed = 1;
1268 }
1269 insn_current_address += insn_lengths[inner_uid];
1270 new_length += inner_length;
1271 }
1272 }
1273 else
1274 {
1275 new_length = insn_current_length (insn);
1276 insn_current_address += new_length;
1277 }
1278
3cf2715d
DE
1279#ifdef ADJUST_INSN_LENGTH
1280 /* If needed, do any adjustment. */
1281 tmp_length = new_length;
1282 ADJUST_INSN_LENGTH (insn, new_length);
1283 insn_current_address += (new_length - tmp_length);
3cf2715d
DE
1284#endif
1285
1286 if (new_length != insn_lengths[uid])
1287 {
1288 insn_lengths[uid] = new_length;
1289 something_changed = 1;
1290 }
1291 }
bb4aaf18
TG
1292 /* For a non-optimizing compile, do only a single pass. */
1293 if (!optimize)
1294 break;
3cf2715d 1295 }
fc470718
R
1296
1297 free (varying_length);
1298
3cf2715d
DE
1299#endif /* HAVE_ATTR_length */
1300}
1301
1302#ifdef HAVE_ATTR_length
1303/* Given the body of an INSN known to be generated by an ASM statement, return
1304 the number of machine instructions likely to be generated for this insn.
1305 This is used to compute its length. */
1306
1307static int
6cf9ac28 1308asm_insn_count (rtx body)
3cf2715d 1309{
3cce094d 1310 const char *template;
3cf2715d
DE
1311 int count = 1;
1312
5d0930ea
DE
1313 if (GET_CODE (body) == ASM_INPUT)
1314 template = XSTR (body, 0);
1315 else
df4ae160 1316 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
5d0930ea 1317
f5d927c0
KH
1318 for (; *template; template++)
1319 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
3cf2715d
DE
1320 count++;
1321
1322 return count;
1323}
1324#endif
1325\f
1326/* Output assembler code for the start of a function,
1327 and initialize some of the variables in this file
1328 for the new function. The label for the function and associated
1329 assembler pseudo-ops have already been output in `assemble_start_function'.
1330
1331 FIRST is the first insn of the rtl for the function being compiled.
1332 FILE is the file to write assembler code to.
1333 OPTIMIZE is nonzero if we should eliminate redundant
1334 test and compare insns. */
1335
1336void
6cf9ac28
AJ
1337final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1338 int optimize ATTRIBUTE_UNUSED)
3cf2715d
DE
1339{
1340 block_depth = 0;
1341
1342 this_is_asm_operands = 0;
1343
9ae130f8
JH
1344 last_filename = locator_file (prologue_locator);
1345 last_linenum = locator_line (prologue_locator);
1346
653e276c 1347 high_block_linenum = high_function_linenum = last_linenum;
eac40081 1348
653e276c 1349 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
d291dd49 1350
951120ea 1351#if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
7a0c8d71 1352 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
653e276c 1353 dwarf2out_begin_prologue (0, NULL);
f5d927c0 1354#endif
3cf2715d
DE
1355
1356#ifdef LEAF_REG_REMAP
54ff41b7 1357 if (current_function_uses_only_leaf_regs)
3cf2715d
DE
1358 leaf_renumber_regs (first);
1359#endif
1360
1361 /* The Sun386i and perhaps other machines don't work right
1362 if the profiling code comes after the prologue. */
1363#ifdef PROFILE_BEFORE_PROLOGUE
70f4f91c 1364 if (current_function_profile)
3cf2715d
DE
1365 profile_function (file);
1366#endif /* PROFILE_BEFORE_PROLOGUE */
1367
0021b564
JM
1368#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1369 if (dwarf2out_do_frame ())
e0c0490b 1370 dwarf2out_frame_debug (NULL_RTX, false);
0021b564
JM
1371#endif
1372
18c038b9
MM
1373 /* If debugging, assign block numbers to all of the blocks in this
1374 function. */
1375 if (write_symbols)
1376 {
3ac79482 1377 remove_unnecessary_notes ();
0435312e 1378 reemit_insn_block_notes ();
a20612aa 1379 number_blocks (current_function_decl);
18c038b9
MM
1380 /* We never actually put out begin/end notes for the top-level
1381 block in the function. But, conceptually, that block is
1382 always needed. */
1383 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1384 }
1385
3cf2715d 1386 /* First output the function prologue: code to set up the stack frame. */
5fd9b178 1387 targetm.asm_out.function_prologue (file, get_frame_size ());
3cf2715d 1388
3cf2715d
DE
1389 /* If the machine represents the prologue as RTL, the profiling code must
1390 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1391#ifdef HAVE_prologue
1392 if (! HAVE_prologue)
1393#endif
1394 profile_after_prologue (file);
3cf2715d
DE
1395}
1396
1397static void
6cf9ac28 1398profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
3cf2715d 1399{
3cf2715d 1400#ifndef PROFILE_BEFORE_PROLOGUE
70f4f91c 1401 if (current_function_profile)
3cf2715d
DE
1402 profile_function (file);
1403#endif /* not PROFILE_BEFORE_PROLOGUE */
1404}
1405
1406static void
6cf9ac28 1407profile_function (FILE *file ATTRIBUTE_UNUSED)
3cf2715d 1408{
dcacfa04 1409#ifndef NO_PROFILE_COUNTERS
9739c90c 1410# define NO_PROFILE_COUNTERS 0
dcacfa04 1411#endif
b729186a 1412#if defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1413 int sval = current_function_returns_struct;
61f71b34 1414 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
b729186a 1415#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
6de9cd9a 1416 int cxt = cfun->static_chain_decl != NULL;
b729186a
JL
1417#endif
1418#endif /* ASM_OUTPUT_REG_PUSH */
3cf2715d 1419
9739c90c
JJ
1420 if (! NO_PROFILE_COUNTERS)
1421 {
1422 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1423 data_section ();
1424 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
5fd9b178 1425 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
9739c90c
JJ
1426 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1427 }
3cf2715d 1428
499df339 1429 function_section (current_function_decl);
3cf2715d 1430
61f71b34 1431#if defined(ASM_OUTPUT_REG_PUSH)
f8cfc6aa 1432 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
61f71b34 1433 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
3cf2715d
DE
1434#endif
1435
65ed39df 1436#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1437 if (cxt)
1438 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1439#else
65ed39df 1440#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1441 if (cxt)
51723711
KG
1442 {
1443 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1444 }
3cf2715d
DE
1445#endif
1446#endif
3cf2715d 1447
df696a75 1448 FUNCTION_PROFILER (file, current_function_funcdef_no);
3cf2715d 1449
65ed39df 1450#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1451 if (cxt)
1452 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1453#else
65ed39df 1454#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1455 if (cxt)
51723711
KG
1456 {
1457 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1458 }
3cf2715d
DE
1459#endif
1460#endif
3cf2715d 1461
61f71b34 1462#if defined(ASM_OUTPUT_REG_PUSH)
f8cfc6aa 1463 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
61f71b34 1464 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
3cf2715d
DE
1465#endif
1466}
1467
1468/* Output assembler code for the end of a function.
1469 For clarity, args are same as those of `final_start_function'
1470 even though not all of them are needed. */
1471
1472void
6cf9ac28 1473final_end_function (void)
3cf2715d 1474{
be1bb652 1475 app_disable ();
3cf2715d 1476
e2a12aca 1477 (*debug_hooks->end_function) (high_function_linenum);
3cf2715d 1478
3cf2715d
DE
1479 /* Finally, output the function epilogue:
1480 code to restore the stack frame and return to the caller. */
5fd9b178 1481 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
3cf2715d 1482
e2a12aca 1483 /* And debug output. */
702ada3d 1484 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
3cf2715d 1485
e2a12aca 1486#if defined (DWARF2_UNWIND_INFO)
7a0c8d71
DR
1487 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1488 && dwarf2out_do_frame ())
702ada3d 1489 dwarf2out_end_epilogue (last_linenum, last_filename);
9a666dda 1490#endif
3cf2715d
DE
1491}
1492\f
3cf2715d
DE
1493/* Output assembler code for some insns: all or part of a function.
1494 For description of args, see `final_start_function', above.
1495
1496 PRESCAN is 1 if we are not really outputting,
1497 just scanning as if we were outputting.
1498 Prescanning deletes and rearranges insns just like ordinary output.
1499 PRESCAN is -2 if we are outputting after having prescanned.
1500 In this case, don't try to delete or rearrange insns
1501 because that has already been done.
1502 Prescanning is done only on certain machines. */
1503
1504void
6cf9ac28 1505final (rtx first, FILE *file, int optimize, int prescan)
3cf2715d 1506{
b3694847 1507 rtx insn;
a8c3510c 1508 int max_uid = 0;
589fe865 1509 int seen = 0;
3cf2715d
DE
1510
1511 last_ignored_compare = 0;
3cf2715d 1512
589fe865
DJ
1513#ifdef SDB_DEBUGGING_INFO
1514 /* When producing SDB debugging info, delete troublesome line number
3cf2715d
DE
1515 notes from inlined functions in other files as well as duplicate
1516 line number notes. */
3cf2715d
DE
1517 if (write_symbols == SDB_DEBUG)
1518 {
1519 rtx last = 0;
1520 for (insn = first; insn; insn = NEXT_INSN (insn))
4b4bf941 1521 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
3cf2715d 1522 {
6de9cd9a 1523 if (last != 0
6773e15f
PB
1524#ifdef USE_MAPPED_LOCATION
1525 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1526#else
6de9cd9a 1527 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
6773e15f 1528 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
d70dc103 1529#endif
6773e15f 1530 )
3cf2715d 1531 {
2e106602 1532 delete_insn (insn); /* Use delete_note. */
3cf2715d
DE
1533 continue;
1534 }
1535 last = insn;
3cf2715d
DE
1536 }
1537 }
3cf2715d 1538#endif
3cf2715d
DE
1539
1540 for (insn = first; insn; insn = NEXT_INSN (insn))
a8c3510c 1541 {
938d968e 1542 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
f5d927c0 1543 max_uid = INSN_UID (insn);
9ef4c6ef
JC
1544#ifdef HAVE_cc0
1545 /* If CC tracking across branches is enabled, record the insn which
1546 jumps to each branch only reached from one place. */
4b4bf941 1547 if (optimize && JUMP_P (insn))
9ef4c6ef
JC
1548 {
1549 rtx lab = JUMP_LABEL (insn);
1550 if (lab && LABEL_NUSES (lab) == 1)
1551 {
1552 LABEL_REFS (lab) = insn;
1553 }
1554 }
1555#endif
a8c3510c
AM
1556 }
1557
3cf2715d
DE
1558 init_recog ();
1559
1560 CC_STATUS_INIT;
1561
1562 /* Output the insns. */
1563 for (insn = NEXT_INSN (first); insn;)
2f16edb1
TG
1564 {
1565#ifdef HAVE_ATTR_length
b9f22704 1566 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
0ac76ad9 1567 {
0ac76ad9
RH
1568 /* This can be triggered by bugs elsewhere in the compiler if
1569 new insns are created after init_insn_lengths is called. */
0bccc606
NS
1570 gcc_assert (NOTE_P (insn));
1571 insn_current_address = -1;
0ac76ad9
RH
1572 }
1573 else
9d98a694 1574 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
0ac76ad9
RH
1575#endif /* HAVE_ATTR_length */
1576
589fe865 1577 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
2f16edb1 1578 }
3cf2715d
DE
1579}
1580\f
4bbf910e 1581const char *
6cf9ac28 1582get_insn_template (int code, rtx insn)
4bbf910e 1583{
4bbf910e
RH
1584 switch (insn_data[code].output_format)
1585 {
1586 case INSN_OUTPUT_FORMAT_SINGLE:
3897f229 1587 return insn_data[code].output.single;
4bbf910e 1588 case INSN_OUTPUT_FORMAT_MULTI:
3897f229 1589 return insn_data[code].output.multi[which_alternative];
4bbf910e 1590 case INSN_OUTPUT_FORMAT_FUNCTION:
0bccc606 1591 gcc_assert (insn);
3897f229 1592 return (*insn_data[code].output.function) (recog_data.operand, insn);
4bbf910e
RH
1593
1594 default:
0bccc606 1595 gcc_unreachable ();
4bbf910e
RH
1596 }
1597}
f5d927c0 1598
0dc36574
ZW
1599/* Emit the appropriate declaration for an alternate-entry-point
1600 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1601 LABEL_KIND != LABEL_NORMAL.
1602
1603 The case fall-through in this function is intentional. */
1604static void
6cf9ac28 1605output_alternate_entry_point (FILE *file, rtx insn)
0dc36574
ZW
1606{
1607 const char *name = LABEL_NAME (insn);
1608
1609 switch (LABEL_KIND (insn))
1610 {
1611 case LABEL_WEAK_ENTRY:
1612#ifdef ASM_WEAKEN_LABEL
1613 ASM_WEAKEN_LABEL (file, name);
1614#endif
1615 case LABEL_GLOBAL_ENTRY:
5fd9b178 1616 targetm.asm_out.globalize_label (file, name);
0dc36574 1617 case LABEL_STATIC_ENTRY:
905173eb
ZW
1618#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1619 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1620#endif
0dc36574
ZW
1621 ASM_OUTPUT_LABEL (file, name);
1622 break;
1623
1624 case LABEL_NORMAL:
1625 default:
0bccc606 1626 gcc_unreachable ();
0dc36574
ZW
1627 }
1628}
1629
750054a2
CT
1630/* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1631 note in the instruction chain (going forward) between the current
1632 instruction, and the next 'executable' instruction. */
1633
1634bool
1635scan_ahead_for_unlikely_executed_note (rtx insn)
1636{
1637 rtx temp;
1638 int bb_note_count = 0;
1639
1640 for (temp = insn; temp; temp = NEXT_INSN (temp))
1641 {
4b4bf941 1642 if (NOTE_P (temp)
750054a2
CT
1643 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1644 return true;
4b4bf941 1645 if (NOTE_P (temp)
750054a2
CT
1646 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1647 {
1648 bb_note_count++;
1649 if (bb_note_count > 1)
1650 return false;
1651 }
1652 if (INSN_P (temp))
1653 return false;
1654 }
1655
1656 return false;
1657}
1658
3cf2715d
DE
1659/* The final scan for one insn, INSN.
1660 Args are same as in `final', except that INSN
1661 is the insn being scanned.
1662 Value returned is the next insn to be scanned.
1663
ff8cea7e
EB
1664 NOPEEPHOLES is the flag to disallow peephole processing (currently
1665 used for within delayed branch sequence output).
3cf2715d 1666
589fe865
DJ
1667 SEEN is used to track the end of the prologue, for emitting
1668 debug information. We force the emission of a line note after
1669 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1670 at the beginning of the second basic block, whichever comes
1671 first. */
1672
5cfc5f84 1673rtx
6cf9ac28 1674final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
ff8cea7e
EB
1675 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1676 int *seen)
3cf2715d 1677{
90ca38bb
MM
1678#ifdef HAVE_cc0
1679 rtx set;
1680#endif
b2a6a2fb 1681 rtx next;
90ca38bb 1682
3cf2715d
DE
1683 insn_counter++;
1684
1685 /* Ignore deleted insns. These can occur when we split insns (due to a
1686 template of "#") while not optimizing. */
1687 if (INSN_DELETED_P (insn))
1688 return NEXT_INSN (insn);
1689
1690 switch (GET_CODE (insn))
1691 {
1692 case NOTE:
1693 if (prescan > 0)
1694 break;
1695
be1bb652
RH
1696 switch (NOTE_LINE_NUMBER (insn))
1697 {
1698 case NOTE_INSN_DELETED:
1699 case NOTE_INSN_LOOP_BEG:
1700 case NOTE_INSN_LOOP_END:
be1bb652 1701 case NOTE_INSN_FUNCTION_END:
be1bb652 1702 case NOTE_INSN_REPEATED_LINE_NUMBER:
be1bb652
RH
1703 case NOTE_INSN_EXPECTED_VALUE:
1704 break;
3cf2715d 1705
750054a2
CT
1706 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1707
1708 /* The presence of this note indicates that this basic block
1709 belongs in the "cold" section of the .o file. If we are
1710 not already writing to the cold section we need to change
1711 to it. */
1712
1713 unlikely_text_section ();
1714 break;
1715
be1bb652 1716 case NOTE_INSN_BASIC_BLOCK:
750054a2 1717
2b8a92de 1718 /* If we are performing the optimization that partitions
750054a2
CT
1719 basic blocks into hot & cold sections of the .o file,
1720 then at the start of each new basic block, before
1721 beginning to write code for the basic block, we need to
1722 check to see whether the basic block belongs in the hot
1723 or cold section of the .o file, and change the section we
1724 are writing to appropriately. */
1725
1726 if (flag_reorder_blocks_and_partition
750054a2 1727 && !scan_ahead_for_unlikely_executed_note (insn))
9fb32434 1728 function_section (current_function_decl);
750054a2 1729
951120ea
PB
1730#ifdef TARGET_UNWIND_INFO
1731 targetm.asm_out.unwind_emit (asm_out_file, insn);
ad0fc698 1732#endif
951120ea 1733
be1bb652
RH
1734 if (flag_debug_asm)
1735 fprintf (asm_out_file, "\t%s basic block %d\n",
0b17ab2f 1736 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
589fe865
DJ
1737
1738 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1739 {
1740 *seen |= SEEN_EMITTED;
1741 last_filename = NULL;
1742 }
1743 else
1744 *seen |= SEEN_BB;
1745
be1bb652 1746 break;
3cf2715d 1747
be1bb652 1748 case NOTE_INSN_EH_REGION_BEG:
52a11cbf
RH
1749 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1750 NOTE_EH_HANDLER (insn));
3d195391 1751 break;
3d195391 1752
be1bb652 1753 case NOTE_INSN_EH_REGION_END:
52a11cbf
RH
1754 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1755 NOTE_EH_HANDLER (insn));
3d195391 1756 break;
3d195391 1757
be1bb652 1758 case NOTE_INSN_PROLOGUE_END:
5fd9b178 1759 targetm.asm_out.function_end_prologue (file);
3cf2715d 1760 profile_after_prologue (file);
589fe865
DJ
1761
1762 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1763 {
1764 *seen |= SEEN_EMITTED;
1765 last_filename = NULL;
1766 }
1767 else
1768 *seen |= SEEN_NOTE;
1769
3cf2715d 1770 break;
3cf2715d 1771
be1bb652 1772 case NOTE_INSN_EPILOGUE_BEG:
5fd9b178 1773 targetm.asm_out.function_begin_epilogue (file);
be1bb652 1774 break;
3cf2715d 1775
be1bb652 1776 case NOTE_INSN_FUNCTION_BEG:
653e276c 1777 app_disable ();
702ada3d 1778 (*debug_hooks->end_prologue) (last_linenum, last_filename);
589fe865
DJ
1779
1780 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1781 {
1782 *seen |= SEEN_EMITTED;
1783 last_filename = NULL;
1784 }
1785 else
1786 *seen |= SEEN_NOTE;
1787
3cf2715d 1788 break;
be1bb652
RH
1789
1790 case NOTE_INSN_BLOCK_BEG:
1791 if (debug_info_level == DINFO_LEVEL_NORMAL
3cf2715d 1792 || debug_info_level == DINFO_LEVEL_VERBOSE
7a0c8d71
DR
1793 || write_symbols == DWARF2_DEBUG
1794 || write_symbols == VMS_AND_DWARF2_DEBUG
1795 || write_symbols == VMS_DEBUG)
be1bb652
RH
1796 {
1797 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1798
be1bb652
RH
1799 app_disable ();
1800 ++block_depth;
1801 high_block_linenum = last_linenum;
eac40081 1802
a5a42b92 1803 /* Output debugging info about the symbol-block beginning. */
e2a12aca 1804 (*debug_hooks->begin_block) (last_linenum, n);
3cf2715d 1805
be1bb652
RH
1806 /* Mark this block as output. */
1807 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1808 }
1809 break;
18c038b9 1810
be1bb652
RH
1811 case NOTE_INSN_BLOCK_END:
1812 if (debug_info_level == DINFO_LEVEL_NORMAL
1813 || debug_info_level == DINFO_LEVEL_VERBOSE
7a0c8d71
DR
1814 || write_symbols == DWARF2_DEBUG
1815 || write_symbols == VMS_AND_DWARF2_DEBUG
1816 || write_symbols == VMS_DEBUG)
be1bb652
RH
1817 {
1818 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1819
be1bb652
RH
1820 app_disable ();
1821
1822 /* End of a symbol-block. */
1823 --block_depth;
0bccc606 1824 gcc_assert (block_depth >= 0);
3cf2715d 1825
e2a12aca 1826 (*debug_hooks->end_block) (high_block_linenum, n);
be1bb652
RH
1827 }
1828 break;
1829
1830 case NOTE_INSN_DELETED_LABEL:
1831 /* Emit the label. We may have deleted the CODE_LABEL because
1832 the label could be proved to be unreachable, though still
1833 referenced (in the form of having its address taken. */
8215347e 1834 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
be1bb652 1835 break;
3cf2715d 1836
014a1138
JZ
1837 case NOTE_INSN_VAR_LOCATION:
1838 (*debug_hooks->var_location) (insn);
1839 break;
1840
21835d9b
JJ
1841 case 0:
1842 break;
1843
be1bb652 1844 default:
0bccc606 1845 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
f5d927c0 1846 break;
3cf2715d
DE
1847 }
1848 break;
1849
1850 case BARRIER:
f73ad30e 1851#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 1852 if (dwarf2out_do_frame ())
e0c0490b 1853 dwarf2out_frame_debug (insn, false);
3cf2715d
DE
1854#endif
1855 break;
1856
1857 case CODE_LABEL:
1dd8faa8
R
1858 /* The target port might emit labels in the output function for
1859 some insn, e.g. sh.c output_branchy_insn. */
de7987a6
R
1860 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1861 {
1862 int align = LABEL_TO_ALIGNMENT (insn);
50b2596f 1863#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
9e423e6d 1864 int max_skip = LABEL_TO_MAX_SKIP (insn);
50b2596f 1865#endif
fc470718 1866
1dd8faa8 1867 if (align && NEXT_INSN (insn))
40cdfca6 1868 {
9e423e6d 1869#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
40cdfca6 1870 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
8e16ab99
SF
1871#else
1872#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1873 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
9e423e6d 1874#else
40cdfca6 1875 ASM_OUTPUT_ALIGN (file, align);
8e16ab99 1876#endif
9e423e6d 1877#endif
40cdfca6 1878 }
de7987a6 1879 }
9ef4c6ef 1880#ifdef HAVE_cc0
3cf2715d 1881 CC_STATUS_INIT;
9ef4c6ef
JC
1882 /* If this label is reached from only one place, set the condition
1883 codes from the instruction just before the branch. */
7ad7f828
JC
1884
1885 /* Disabled because some insns set cc_status in the C output code
1886 and NOTICE_UPDATE_CC alone can set incorrect status. */
1887 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
9ef4c6ef
JC
1888 {
1889 rtx jump = LABEL_REFS (insn);
1890 rtx barrier = prev_nonnote_insn (insn);
1891 rtx prev;
1892 /* If the LABEL_REFS field of this label has been set to point
1893 at a branch, the predecessor of the branch is a regular
1894 insn, and that branch is the only way to reach this label,
1895 set the condition codes based on the branch and its
1896 predecessor. */
4b4bf941
JQ
1897 if (barrier && BARRIER_P (barrier)
1898 && jump && JUMP_P (jump)
9ef4c6ef 1899 && (prev = prev_nonnote_insn (jump))
4b4bf941 1900 && NONJUMP_INSN_P (prev))
9ef4c6ef
JC
1901 {
1902 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1903 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1904 }
1905 }
1906#endif
3cf2715d
DE
1907 if (prescan > 0)
1908 break;
03ffa171 1909
e1772ac0
NB
1910 if (LABEL_NAME (insn))
1911 (*debug_hooks->label) (insn);
1912
750054a2
CT
1913 /* If we are doing the optimization that partitions hot & cold
1914 basic blocks into separate sections of the .o file, we need
1915 to ensure the jump table ends up in the correct section... */
1916
9fb32434
CT
1917 if (flag_reorder_blocks_and_partition
1918 && targetm.have_named_sections)
750054a2
CT
1919 {
1920 rtx tmp_table, tmp_label;
4b4bf941 1921 if (LABEL_P (insn)
750054a2
CT
1922 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1923 {
1924 /* Do nothing; Do NOT change the current section. */
1925 }
1926 else if (scan_ahead_for_unlikely_executed_note (insn))
1927 unlikely_text_section ();
9fb32434
CT
1928 else if (in_unlikely_text_section ())
1929 function_section (current_function_decl);
750054a2
CT
1930 }
1931
3cf2715d
DE
1932 if (app_on)
1933 {
51723711 1934 fputs (ASM_APP_OFF, file);
3cf2715d
DE
1935 app_on = 0;
1936 }
b2a6a2fb
JJ
1937
1938 next = next_nonnote_insn (insn);
1939 if (next != 0 && JUMP_P (next))
3cf2715d 1940 {
b2a6a2fb 1941 rtx nextbody = PATTERN (next);
3cf2715d
DE
1942
1943 /* If this label is followed by a jump-table,
1944 make sure we put the label in the read-only section. Also
1945 possibly write the label and jump table together. */
1946
1947 if (GET_CODE (nextbody) == ADDR_VEC
1948 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1949 {
e0d80184
DM
1950#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1951 /* In this case, the case vector is being moved by the
1952 target, so don't output the label at all. Leave that
1953 to the back end macros. */
1954#else
75197b37
BS
1955 if (! JUMP_TABLES_IN_TEXT_SECTION)
1956 {
340f7e7c
RH
1957 int log_align;
1958
ab5c8549 1959 targetm.asm_out.function_rodata_section (current_function_decl);
340f7e7c
RH
1960
1961#ifdef ADDR_VEC_ALIGN
b2a6a2fb 1962 log_align = ADDR_VEC_ALIGN (next);
340f7e7c
RH
1963#else
1964 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1965#endif
1966 ASM_OUTPUT_ALIGN (file, log_align);
75197b37
BS
1967 }
1968 else
1969 function_section (current_function_decl);
1970
3cf2715d
DE
1971#ifdef ASM_OUTPUT_CASE_LABEL
1972 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
b2a6a2fb 1973 next);
3cf2715d 1974#else
5fd9b178 1975 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
e0d80184 1976#endif
3cf2715d
DE
1977#endif
1978 break;
1979 }
1980 }
0dc36574
ZW
1981 if (LABEL_ALT_ENTRY_P (insn))
1982 output_alternate_entry_point (file, insn);
8cd0faaf 1983 else
5fd9b178 1984 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
3cf2715d
DE
1985 break;
1986
1987 default:
1988 {
b3694847 1989 rtx body = PATTERN (insn);
3cf2715d 1990 int insn_code_number;
9b3142b3 1991 const char *template;
3cf2715d
DE
1992
1993 /* An INSN, JUMP_INSN or CALL_INSN.
1994 First check for special kinds that recog doesn't recognize. */
1995
6614fd40 1996 if (GET_CODE (body) == USE /* These are just declarations. */
3cf2715d
DE
1997 || GET_CODE (body) == CLOBBER)
1998 break;
1999
2000#ifdef HAVE_cc0
4928181c
SB
2001 {
2002 /* If there is a REG_CC_SETTER note on this insn, it means that
2003 the setting of the condition code was done in the delay slot
2004 of the insn that branched here. So recover the cc status
2005 from the insn that set it. */
3cf2715d 2006
4928181c
SB
2007 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2008 if (note)
2009 {
2010 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2011 cc_prev_status = cc_status;
2012 }
2013 }
3cf2715d
DE
2014#endif
2015
2016 /* Detect insns that are really jump-tables
2017 and output them as such. */
2018
2019 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2020 {
7f7f8214 2021#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
b3694847 2022 int vlen, idx;
7f7f8214 2023#endif
3cf2715d
DE
2024
2025 if (prescan > 0)
2026 break;
2027
b2a6a2fb
JJ
2028 if (! JUMP_TABLES_IN_TEXT_SECTION)
2029 targetm.asm_out.function_rodata_section (current_function_decl);
2030 else
2031 function_section (current_function_decl);
2032
3cf2715d
DE
2033 if (app_on)
2034 {
51723711 2035 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2036 app_on = 0;
2037 }
2038
e0d80184
DM
2039#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2040 if (GET_CODE (body) == ADDR_VEC)
2041 {
2042#ifdef ASM_OUTPUT_ADDR_VEC
2043 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2044#else
0bccc606 2045 gcc_unreachable ();
e0d80184
DM
2046#endif
2047 }
2048 else
2049 {
2050#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2051 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2052#else
0bccc606 2053 gcc_unreachable ();
e0d80184
DM
2054#endif
2055 }
2056#else
3cf2715d
DE
2057 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2058 for (idx = 0; idx < vlen; idx++)
2059 {
2060 if (GET_CODE (body) == ADDR_VEC)
2061 {
2062#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2063 ASM_OUTPUT_ADDR_VEC_ELT
2064 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2065#else
0bccc606 2066 gcc_unreachable ();
3cf2715d
DE
2067#endif
2068 }
2069 else
2070 {
2071#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2072 ASM_OUTPUT_ADDR_DIFF_ELT
2073 (file,
33f7f353 2074 body,
3cf2715d
DE
2075 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2076 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2077#else
0bccc606 2078 gcc_unreachable ();
3cf2715d
DE
2079#endif
2080 }
2081 }
2082#ifdef ASM_OUTPUT_CASE_END
2083 ASM_OUTPUT_CASE_END (file,
2084 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2085 insn);
e0d80184 2086#endif
3cf2715d
DE
2087#endif
2088
4d1065ed 2089 function_section (current_function_decl);
3cf2715d
DE
2090
2091 break;
2092 }
0435312e
JH
2093 /* Output this line note if it is the first or the last line
2094 note in a row. */
2095 if (notice_source_line (insn))
2096 {
2097 (*debug_hooks->source_line) (last_linenum, last_filename);
2098 }
3cf2715d 2099
3cf2715d
DE
2100 if (GET_CODE (body) == ASM_INPUT)
2101 {
36d7136e
RH
2102 const char *string = XSTR (body, 0);
2103
3cf2715d
DE
2104 /* There's no telling what that did to the condition codes. */
2105 CC_STATUS_INIT;
2106 if (prescan > 0)
2107 break;
36d7136e
RH
2108
2109 if (string[0])
3cf2715d 2110 {
36d7136e
RH
2111 if (! app_on)
2112 {
2113 fputs (ASM_APP_ON, file);
2114 app_on = 1;
2115 }
2116 fprintf (asm_out_file, "\t%s\n", string);
3cf2715d 2117 }
3cf2715d
DE
2118 break;
2119 }
2120
2121 /* Detect `asm' construct with operands. */
2122 if (asm_noperands (body) >= 0)
2123 {
22bf4422 2124 unsigned int noperands = asm_noperands (body);
703ad42b 2125 rtx *ops = alloca (noperands * sizeof (rtx));
3cce094d 2126 const char *string;
3cf2715d
DE
2127
2128 /* There's no telling what that did to the condition codes. */
2129 CC_STATUS_INIT;
2130 if (prescan > 0)
2131 break;
2132
3cf2715d 2133 /* Get out the operand values. */
df4ae160 2134 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
3cf2715d
DE
2135 /* Inhibit aborts on what would otherwise be compiler bugs. */
2136 insn_noperands = noperands;
2137 this_is_asm_operands = insn;
2138
ad7e39ca
AO
2139#ifdef FINAL_PRESCAN_INSN
2140 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2141#endif
2142
3cf2715d 2143 /* Output the insn using them. */
36d7136e
RH
2144 if (string[0])
2145 {
2146 if (! app_on)
2147 {
2148 fputs (ASM_APP_ON, file);
2149 app_on = 1;
2150 }
2151 output_asm_insn (string, ops);
2152 }
2153
3cf2715d
DE
2154 this_is_asm_operands = 0;
2155 break;
2156 }
2157
2158 if (prescan <= 0 && app_on)
2159 {
51723711 2160 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2161 app_on = 0;
2162 }
2163
2164 if (GET_CODE (body) == SEQUENCE)
2165 {
2166 /* A delayed-branch sequence */
b3694847 2167 int i;
3cf2715d
DE
2168
2169 if (prescan > 0)
2170 break;
2171 final_sequence = body;
2172
d660cefe
RS
2173 /* Record the delay slots' frame information before the branch.
2174 This is needed for delayed calls: see execute_cfa_program(). */
2175#if defined (DWARF2_UNWIND_INFO)
2176 if (dwarf2out_do_frame ())
2177 for (i = 1; i < XVECLEN (body, 0); i++)
e0c0490b 2178 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
d660cefe
RS
2179#endif
2180
3cf2715d
DE
2181 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2182 force the restoration of a comparison that was previously
2183 thought unnecessary. If that happens, cancel this sequence
2184 and cause that insn to be restored. */
2185
589fe865 2186 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
3cf2715d
DE
2187 if (next != XVECEXP (body, 0, 1))
2188 {
2189 final_sequence = 0;
2190 return next;
2191 }
2192
2193 for (i = 1; i < XVECLEN (body, 0); i++)
c7eee2df
RK
2194 {
2195 rtx insn = XVECEXP (body, 0, i);
2196 rtx next = NEXT_INSN (insn);
2197 /* We loop in case any instruction in a delay slot gets
2198 split. */
2199 do
ff8cea7e 2200 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
c7eee2df
RK
2201 while (insn != next);
2202 }
3cf2715d
DE
2203#ifdef DBR_OUTPUT_SEQEND
2204 DBR_OUTPUT_SEQEND (file);
2205#endif
2206 final_sequence = 0;
2207
2208 /* If the insn requiring the delay slot was a CALL_INSN, the
2209 insns in the delay slot are actually executed before the
2210 called function. Hence we don't preserve any CC-setting
2211 actions in these insns and the CC must be marked as being
2212 clobbered by the function. */
4b4bf941 2213 if (CALL_P (XVECEXP (body, 0, 0)))
b729186a
JL
2214 {
2215 CC_STATUS_INIT;
2216 }
3cf2715d
DE
2217 break;
2218 }
2219
2220 /* We have a real machine instruction as rtl. */
2221
2222 body = PATTERN (insn);
2223
2224#ifdef HAVE_cc0
f5d927c0 2225 set = single_set (insn);
b88c92cc 2226
3cf2715d
DE
2227 /* Check for redundant test and compare instructions
2228 (when the condition codes are already set up as desired).
2229 This is done only when optimizing; if not optimizing,
2230 it should be possible for the user to alter a variable
2231 with the debugger in between statements
2232 and the next statement should reexamine the variable
2233 to compute the condition codes. */
2234
30f5e9f5 2235 if (optimize)
3cf2715d 2236 {
30f5e9f5
RK
2237 if (set
2238 && GET_CODE (SET_DEST (set)) == CC0
2239 && insn != last_ignored_compare)
3cf2715d 2240 {
30f5e9f5 2241 if (GET_CODE (SET_SRC (set)) == SUBREG)
49d801d3 2242 SET_SRC (set) = alter_subreg (&SET_SRC (set));
30f5e9f5
RK
2243 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2244 {
2245 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2246 XEXP (SET_SRC (set), 0)
49d801d3 2247 = alter_subreg (&XEXP (SET_SRC (set), 0));
30f5e9f5
RK
2248 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2249 XEXP (SET_SRC (set), 1)
49d801d3 2250 = alter_subreg (&XEXP (SET_SRC (set), 1));
30f5e9f5
RK
2251 }
2252 if ((cc_status.value1 != 0
2253 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2254 || (cc_status.value2 != 0
2255 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
3cf2715d 2256 {
30f5e9f5 2257 /* Don't delete insn if it has an addressing side-effect. */
ff81832f 2258 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
30f5e9f5
RK
2259 /* or if anything in it is volatile. */
2260 && ! volatile_refs_p (PATTERN (insn)))
2261 {
2262 /* We don't really delete the insn; just ignore it. */
2263 last_ignored_compare = insn;
2264 break;
2265 }
3cf2715d
DE
2266 }
2267 }
2268 }
2269#endif
2270
3cf2715d
DE
2271#ifdef HAVE_cc0
2272 /* If this is a conditional branch, maybe modify it
2273 if the cc's are in a nonstandard state
2274 so that it accomplishes the same thing that it would
2275 do straightforwardly if the cc's were set up normally. */
2276
2277 if (cc_status.flags != 0
4b4bf941 2278 && JUMP_P (insn)
3cf2715d
DE
2279 && GET_CODE (body) == SET
2280 && SET_DEST (body) == pc_rtx
2281 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
ec8e098d 2282 && COMPARISON_P (XEXP (SET_SRC (body), 0))
fff752ad 2283 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
3cf2715d
DE
2284 /* This is done during prescan; it is not done again
2285 in final scan when prescan has been done. */
2286 && prescan >= 0)
2287 {
2288 /* This function may alter the contents of its argument
2289 and clear some of the cc_status.flags bits.
2290 It may also return 1 meaning condition now always true
2291 or -1 meaning condition now always false
2292 or 2 meaning condition nontrivial but altered. */
b3694847 2293 int result = alter_cond (XEXP (SET_SRC (body), 0));
3cf2715d
DE
2294 /* If condition now has fixed value, replace the IF_THEN_ELSE
2295 with its then-operand or its else-operand. */
2296 if (result == 1)
2297 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2298 if (result == -1)
2299 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2300
2301 /* The jump is now either unconditional or a no-op.
2302 If it has become a no-op, don't try to output it.
2303 (It would not be recognized.) */
2304 if (SET_SRC (body) == pc_rtx)
2305 {
ca6c03ca 2306 delete_insn (insn);
3cf2715d
DE
2307 break;
2308 }
2309 else if (GET_CODE (SET_SRC (body)) == RETURN)
2310 /* Replace (set (pc) (return)) with (return). */
2311 PATTERN (insn) = body = SET_SRC (body);
2312
2313 /* Rerecognize the instruction if it has changed. */
2314 if (result != 0)
2315 INSN_CODE (insn) = -1;
2316 }
2317
2318 /* Make same adjustments to instructions that examine the
462da2af
SC
2319 condition codes without jumping and instructions that
2320 handle conditional moves (if this machine has either one). */
3cf2715d
DE
2321
2322 if (cc_status.flags != 0
b88c92cc 2323 && set != 0)
3cf2715d 2324 {
462da2af 2325 rtx cond_rtx, then_rtx, else_rtx;
f5d927c0 2326
4b4bf941 2327 if (!JUMP_P (insn)
b88c92cc 2328 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
462da2af 2329 {
b88c92cc
RK
2330 cond_rtx = XEXP (SET_SRC (set), 0);
2331 then_rtx = XEXP (SET_SRC (set), 1);
2332 else_rtx = XEXP (SET_SRC (set), 2);
462da2af
SC
2333 }
2334 else
2335 {
b88c92cc 2336 cond_rtx = SET_SRC (set);
462da2af
SC
2337 then_rtx = const_true_rtx;
2338 else_rtx = const0_rtx;
2339 }
f5d927c0 2340
462da2af 2341 switch (GET_CODE (cond_rtx))
3cf2715d
DE
2342 {
2343 case GTU:
2344 case GT:
2345 case LTU:
2346 case LT:
2347 case GEU:
2348 case GE:
2349 case LEU:
2350 case LE:
2351 case EQ:
2352 case NE:
2353 {
b3694847 2354 int result;
462da2af 2355 if (XEXP (cond_rtx, 0) != cc0_rtx)
3cf2715d 2356 break;
462da2af 2357 result = alter_cond (cond_rtx);
3cf2715d 2358 if (result == 1)
b88c92cc 2359 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3cf2715d 2360 else if (result == -1)
b88c92cc 2361 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3cf2715d
DE
2362 else if (result == 2)
2363 INSN_CODE (insn) = -1;
b88c92cc 2364 if (SET_DEST (set) == SET_SRC (set))
ca6c03ca 2365 delete_insn (insn);
3cf2715d 2366 }
e9a25f70
JL
2367 break;
2368
2369 default:
2370 break;
3cf2715d
DE
2371 }
2372 }
462da2af 2373
3cf2715d
DE
2374#endif
2375
ede7cd44 2376#ifdef HAVE_peephole
3cf2715d
DE
2377 /* Do machine-specific peephole optimizations if desired. */
2378
2379 if (optimize && !flag_no_peephole && !nopeepholes)
2380 {
2381 rtx next = peephole (insn);
2382 /* When peepholing, if there were notes within the peephole,
2383 emit them before the peephole. */
2384 if (next != 0 && next != NEXT_INSN (insn))
2385 {
4928181c 2386 rtx note, prev = PREV_INSN (insn);
3cf2715d
DE
2387
2388 for (note = NEXT_INSN (insn); note != next;
2389 note = NEXT_INSN (note))
589fe865 2390 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
3cf2715d
DE
2391
2392 /* In case this is prescan, put the notes
2393 in proper position for later rescan. */
2394 note = NEXT_INSN (insn);
2395 PREV_INSN (note) = prev;
2396 NEXT_INSN (prev) = note;
2397 NEXT_INSN (PREV_INSN (next)) = insn;
2398 PREV_INSN (insn) = PREV_INSN (next);
2399 NEXT_INSN (insn) = next;
2400 PREV_INSN (next) = insn;
2401 }
2402
2403 /* PEEPHOLE might have changed this. */
2404 body = PATTERN (insn);
2405 }
ede7cd44 2406#endif
3cf2715d
DE
2407
2408 /* Try to recognize the instruction.
2409 If successful, verify that the operands satisfy the
2410 constraints for the instruction. Crash if they don't,
2411 since `reload' should have changed them so that they do. */
2412
2413 insn_code_number = recog_memoized (insn);
0304f787 2414 cleanup_subreg_operands (insn);
3cf2715d 2415
dd3f0101
KH
2416 /* Dump the insn in the assembly for debugging. */
2417 if (flag_dump_rtl_in_asm)
2418 {
2419 print_rtx_head = ASM_COMMENT_START;
2420 print_rtl_single (asm_out_file, insn);
2421 print_rtx_head = "";
2422 }
b9f22704 2423
6c698a6d 2424 if (! constrain_operands_cached (1))
3cf2715d 2425 fatal_insn_not_found (insn);
3cf2715d
DE
2426
2427 /* Some target machines need to prescan each insn before
2428 it is output. */
2429
2430#ifdef FINAL_PRESCAN_INSN
1ccbefce 2431 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3cf2715d
DE
2432#endif
2433
afe48e06
RH
2434#ifdef HAVE_conditional_execution
2435 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2436 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2437 else
2438 current_insn_predicate = NULL_RTX;
2439#endif
2440
3cf2715d
DE
2441#ifdef HAVE_cc0
2442 cc_prev_status = cc_status;
2443
2444 /* Update `cc_status' for this instruction.
2445 The instruction's output routine may change it further.
2446 If the output routine for a jump insn needs to depend
2447 on the cc status, it should look at cc_prev_status. */
2448
2449 NOTICE_UPDATE_CC (body, insn);
2450#endif
2451
b1a9f6a0 2452 current_output_insn = debug_insn = insn;
3cf2715d 2453
f73ad30e 2454#if defined (DWARF2_UNWIND_INFO)
4b4bf941 2455 if (CALL_P (insn) && dwarf2out_do_frame ())
e0c0490b 2456 dwarf2out_frame_debug (insn, false);
b57d9225
JM
2457#endif
2458
4bbf910e
RH
2459 /* Find the proper template for this insn. */
2460 template = get_insn_template (insn_code_number, insn);
3cf2715d 2461
4bbf910e
RH
2462 /* If the C code returns 0, it means that it is a jump insn
2463 which follows a deleted test insn, and that test insn
2464 needs to be reinserted. */
3cf2715d
DE
2465 if (template == 0)
2466 {
efd0378b
HPN
2467 rtx prev;
2468
0bccc606 2469 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
efd0378b
HPN
2470
2471 /* We have already processed the notes between the setter and
2472 the user. Make sure we don't process them again, this is
2473 particularly important if one of the notes is a block
2474 scope note or an EH note. */
2475 for (prev = insn;
2476 prev != last_ignored_compare;
2477 prev = PREV_INSN (prev))
2478 {
4b4bf941 2479 if (NOTE_P (prev))
ca6c03ca 2480 delete_insn (prev); /* Use delete_note. */
efd0378b
HPN
2481 }
2482
2483 return prev;
3cf2715d
DE
2484 }
2485
2486 /* If the template is the string "#", it means that this insn must
2487 be split. */
2488 if (template[0] == '#' && template[1] == '\0')
2489 {
2490 rtx new = try_split (body, insn, 0);
2491
2492 /* If we didn't split the insn, go away. */
2493 if (new == insn && PATTERN (new) == body)
c725bd79 2494 fatal_insn ("could not split insn", insn);
f5d927c0 2495
3d14e82f
JW
2496#ifdef HAVE_ATTR_length
2497 /* This instruction should have been split in shorten_branches,
2498 to ensure that we would have valid length info for the
2499 splitees. */
0bccc606 2500 gcc_unreachable ();
3d14e82f
JW
2501#endif
2502
3cf2715d
DE
2503 return new;
2504 }
f5d927c0 2505
3cf2715d
DE
2506 if (prescan > 0)
2507 break;
2508
951120ea
PB
2509#ifdef TARGET_UNWIND_INFO
2510 /* ??? This will put the directives in the wrong place if
2511 get_insn_template outputs assembly directly. However calling it
2512 before get_insn_template breaks if the insns is split. */
2513 targetm.asm_out.unwind_emit (asm_out_file, insn);
ce152ef8 2514#endif
3cf2715d 2515
951120ea 2516 /* Output assembler code from the template. */
1ccbefce 2517 output_asm_insn (template, recog_data.operand);
3cf2715d 2518
d660cefe
RS
2519 /* If necessary, report the effect that the instruction has on
2520 the unwind info. We've already done this for delay slots
2521 and call instructions. */
0021b564 2522#if defined (DWARF2_UNWIND_INFO)
e0c0490b 2523 if (final_sequence == 0
d660cefe
RS
2524#if !defined (HAVE_prologue)
2525 && !ACCUMULATE_OUTGOING_ARGS
2526#endif
fbfa55b0 2527 && dwarf2out_do_frame ())
e0c0490b 2528 dwarf2out_frame_debug (insn, true);
0021b564 2529#endif
469ac993 2530
b1a9f6a0 2531 current_output_insn = debug_insn = 0;
3cf2715d
DE
2532 }
2533 }
2534 return NEXT_INSN (insn);
2535}
2536\f
2537/* Output debugging info to the assembler file FILE
2538 based on the NOTE-insn INSN, assumed to be a line number. */
2539
0435312e 2540static bool
6cf9ac28 2541notice_source_line (rtx insn)
3cf2715d 2542{
0435312e
JH
2543 const char *filename = insn_file (insn);
2544 int linenum = insn_line (insn);
3cf2715d 2545
0435312e
JH
2546 if (filename && (filename != last_filename || last_linenum != linenum))
2547 {
2548 last_filename = filename;
2549 last_linenum = linenum;
2550 high_block_linenum = MAX (last_linenum, high_block_linenum);
2551 high_function_linenum = MAX (last_linenum, high_function_linenum);
2552 return true;
2553 }
2554 return false;
3cf2715d
DE
2555}
2556\f
0304f787
JL
2557/* For each operand in INSN, simplify (subreg (reg)) so that it refers
2558 directly to the desired hard register. */
f5d927c0 2559
0304f787 2560void
6cf9ac28 2561cleanup_subreg_operands (rtx insn)
0304f787 2562{
f62a15e3 2563 int i;
6c698a6d 2564 extract_insn_cached (insn);
1ccbefce 2565 for (i = 0; i < recog_data.n_operands; i++)
0304f787 2566 {
2067c116 2567 /* The following test cannot use recog_data.operand when testing
9f4524f2
RE
2568 for a SUBREG: the underlying object might have been changed
2569 already if we are inside a match_operator expression that
2570 matches the else clause. Instead we test the underlying
2571 expression directly. */
2572 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
49d801d3 2573 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
1ccbefce 2574 else if (GET_CODE (recog_data.operand[i]) == PLUS
04337620 2575 || GET_CODE (recog_data.operand[i]) == MULT
3c0cb5de 2576 || MEM_P (recog_data.operand[i]))
49d801d3 2577 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
0304f787
JL
2578 }
2579
1ccbefce 2580 for (i = 0; i < recog_data.n_dups; i++)
0304f787 2581 {
1ccbefce 2582 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
49d801d3 2583 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
1ccbefce 2584 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
04337620 2585 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3c0cb5de 2586 || MEM_P (*recog_data.dup_loc[i]))
49d801d3 2587 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
0304f787
JL
2588 }
2589}
2590
3cf2715d
DE
2591/* If X is a SUBREG, replace it with a REG or a MEM,
2592 based on the thing it is a subreg of. */
2593
2594rtx
6cf9ac28 2595alter_subreg (rtx *xp)
3cf2715d 2596{
49d801d3 2597 rtx x = *xp;
b3694847 2598 rtx y = SUBREG_REG (x);
f5963e61 2599
49d801d3
JH
2600 /* simplify_subreg does not remove subreg from volatile references.
2601 We are required to. */
3c0cb5de 2602 if (MEM_P (y))
fd326ba8
UW
2603 {
2604 int offset = SUBREG_BYTE (x);
2605
2606 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2607 contains 0 instead of the proper offset. See simplify_subreg. */
2608 if (offset == 0
2609 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2610 {
2611 int difference = GET_MODE_SIZE (GET_MODE (y))
2612 - GET_MODE_SIZE (GET_MODE (x));
2613 if (WORDS_BIG_ENDIAN)
2614 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2615 if (BYTES_BIG_ENDIAN)
2616 offset += difference % UNITS_PER_WORD;
2617 }
2618
2619 *xp = adjust_address (y, GET_MODE (x), offset);
2620 }
49d801d3 2621 else
fea54805
RK
2622 {
2623 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2624 SUBREG_BYTE (x));
2625
2626 if (new != 0)
2627 *xp = new;
0bccc606 2628 else
fea54805 2629 {
0bccc606 2630 /* Simplify_subreg can't handle some REG cases, but we have to. */
6f9e3578 2631 unsigned int regno = subreg_regno (x);
0bccc606 2632 gcc_assert (REG_P (y));
a560d4d4 2633 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
fea54805 2634 }
fea54805
RK
2635 }
2636
49d801d3 2637 return *xp;
3cf2715d
DE
2638}
2639
2640/* Do alter_subreg on all the SUBREGs contained in X. */
2641
2642static rtx
6cf9ac28 2643walk_alter_subreg (rtx *xp)
3cf2715d 2644{
49d801d3 2645 rtx x = *xp;
3cf2715d
DE
2646 switch (GET_CODE (x))
2647 {
2648 case PLUS:
2649 case MULT:
beed8fc0 2650 case AND:
49d801d3
JH
2651 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2652 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
3cf2715d
DE
2653 break;
2654
2655 case MEM:
beed8fc0 2656 case ZERO_EXTEND:
49d801d3 2657 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
3cf2715d
DE
2658 break;
2659
2660 case SUBREG:
49d801d3 2661 return alter_subreg (xp);
f5d927c0 2662
e9a25f70
JL
2663 default:
2664 break;
3cf2715d
DE
2665 }
2666
5bc72aeb 2667 return *xp;
3cf2715d
DE
2668}
2669\f
2670#ifdef HAVE_cc0
2671
2672/* Given BODY, the body of a jump instruction, alter the jump condition
2673 as required by the bits that are set in cc_status.flags.
2674 Not all of the bits there can be handled at this level in all cases.
2675
2676 The value is normally 0.
2677 1 means that the condition has become always true.
2678 -1 means that the condition has become always false.
2679 2 means that COND has been altered. */
2680
2681static int
6cf9ac28 2682alter_cond (rtx cond)
3cf2715d
DE
2683{
2684 int value = 0;
2685
2686 if (cc_status.flags & CC_REVERSED)
2687 {
2688 value = 2;
2689 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2690 }
2691
2692 if (cc_status.flags & CC_INVERTED)
2693 {
2694 value = 2;
2695 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2696 }
2697
2698 if (cc_status.flags & CC_NOT_POSITIVE)
2699 switch (GET_CODE (cond))
2700 {
2701 case LE:
2702 case LEU:
2703 case GEU:
2704 /* Jump becomes unconditional. */
2705 return 1;
2706
2707 case GT:
2708 case GTU:
2709 case LTU:
2710 /* Jump becomes no-op. */
2711 return -1;
2712
2713 case GE:
2714 PUT_CODE (cond, EQ);
2715 value = 2;
2716 break;
2717
2718 case LT:
2719 PUT_CODE (cond, NE);
2720 value = 2;
2721 break;
f5d927c0 2722
e9a25f70
JL
2723 default:
2724 break;
3cf2715d
DE
2725 }
2726
2727 if (cc_status.flags & CC_NOT_NEGATIVE)
2728 switch (GET_CODE (cond))
2729 {
2730 case GE:
2731 case GEU:
2732 /* Jump becomes unconditional. */
2733 return 1;
2734
2735 case LT:
2736 case LTU:
2737 /* Jump becomes no-op. */
2738 return -1;
2739
2740 case LE:
2741 case LEU:
2742 PUT_CODE (cond, EQ);
2743 value = 2;
2744 break;
2745
2746 case GT:
2747 case GTU:
2748 PUT_CODE (cond, NE);
2749 value = 2;
2750 break;
f5d927c0 2751
e9a25f70
JL
2752 default:
2753 break;
3cf2715d
DE
2754 }
2755
2756 if (cc_status.flags & CC_NO_OVERFLOW)
2757 switch (GET_CODE (cond))
2758 {
2759 case GEU:
2760 /* Jump becomes unconditional. */
2761 return 1;
2762
2763 case LEU:
2764 PUT_CODE (cond, EQ);
2765 value = 2;
2766 break;
2767
2768 case GTU:
2769 PUT_CODE (cond, NE);
2770 value = 2;
2771 break;
2772
2773 case LTU:
2774 /* Jump becomes no-op. */
2775 return -1;
f5d927c0 2776
e9a25f70
JL
2777 default:
2778 break;
3cf2715d
DE
2779 }
2780
2781 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2782 switch (GET_CODE (cond))
2783 {
e9a25f70 2784 default:
0bccc606 2785 gcc_unreachable ();
3cf2715d
DE
2786
2787 case NE:
2788 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2789 value = 2;
2790 break;
2791
2792 case EQ:
2793 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2794 value = 2;
2795 break;
2796 }
2797
2798 if (cc_status.flags & CC_NOT_SIGNED)
2799 /* The flags are valid if signed condition operators are converted
2800 to unsigned. */
2801 switch (GET_CODE (cond))
2802 {
2803 case LE:
2804 PUT_CODE (cond, LEU);
2805 value = 2;
2806 break;
2807
2808 case LT:
2809 PUT_CODE (cond, LTU);
2810 value = 2;
2811 break;
2812
2813 case GT:
2814 PUT_CODE (cond, GTU);
2815 value = 2;
2816 break;
2817
2818 case GE:
2819 PUT_CODE (cond, GEU);
2820 value = 2;
2821 break;
e9a25f70
JL
2822
2823 default:
2824 break;
3cf2715d
DE
2825 }
2826
2827 return value;
2828}
2829#endif
2830\f
2831/* Report inconsistency between the assembler template and the operands.
2832 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2833
2834void
e34d07f2 2835output_operand_lossage (const char *msgid, ...)
3cf2715d 2836{
a52453cc
PT
2837 char *fmt_string;
2838 char *new_message;
fd478a0a 2839 const char *pfx_str;
e34d07f2 2840 va_list ap;
6cf9ac28 2841
e34d07f2 2842 va_start (ap, msgid);
a52453cc 2843
9e637a26 2844 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
a52453cc
PT
2845 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2846 vasprintf (&new_message, fmt_string, ap);
dd3f0101 2847
3cf2715d 2848 if (this_is_asm_operands)
a52453cc 2849 error_for_asm (this_is_asm_operands, "%s", new_message);
3cf2715d 2850 else
a52453cc
PT
2851 internal_error ("%s", new_message);
2852
2853 free (fmt_string);
2854 free (new_message);
e34d07f2 2855 va_end (ap);
3cf2715d
DE
2856}
2857\f
2858/* Output of assembler code from a template, and its subroutines. */
2859
0d4903b8
RK
2860/* Annotate the assembly with a comment describing the pattern and
2861 alternative used. */
2862
2863static void
6cf9ac28 2864output_asm_name (void)
0d4903b8
RK
2865{
2866 if (debug_insn)
2867 {
2868 int num = INSN_CODE (debug_insn);
2869 fprintf (asm_out_file, "\t%s %d\t%s",
2870 ASM_COMMENT_START, INSN_UID (debug_insn),
2871 insn_data[num].name);
2872 if (insn_data[num].n_alternatives > 1)
2873 fprintf (asm_out_file, "/%d", which_alternative + 1);
2874#ifdef HAVE_ATTR_length
2875 fprintf (asm_out_file, "\t[length = %d]",
2876 get_attr_length (debug_insn));
2877#endif
2878 /* Clear this so only the first assembler insn
2879 of any rtl insn will get the special comment for -dp. */
2880 debug_insn = 0;
2881 }
2882}
2883
998d7deb
RH
2884/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2885 or its address, return that expr . Set *PADDRESSP to 1 if the expr
c5adc06a
RK
2886 corresponds to the address of the object and 0 if to the object. */
2887
2888static tree
6cf9ac28 2889get_mem_expr_from_op (rtx op, int *paddressp)
c5adc06a 2890{
998d7deb 2891 tree expr;
c5adc06a
RK
2892 int inner_addressp;
2893
2894 *paddressp = 0;
2895
f8cfc6aa 2896 if (REG_P (op))
a560d4d4 2897 return REG_EXPR (op);
3c0cb5de 2898 else if (!MEM_P (op))
c5adc06a
RK
2899 return 0;
2900
998d7deb
RH
2901 if (MEM_EXPR (op) != 0)
2902 return MEM_EXPR (op);
c5adc06a
RK
2903
2904 /* Otherwise we have an address, so indicate it and look at the address. */
2905 *paddressp = 1;
2906 op = XEXP (op, 0);
2907
2908 /* First check if we have a decl for the address, then look at the right side
2909 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2910 But don't allow the address to itself be indirect. */
998d7deb
RH
2911 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2912 return expr;
c5adc06a 2913 else if (GET_CODE (op) == PLUS
998d7deb
RH
2914 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2915 return expr;
c5adc06a 2916
ec8e098d
PB
2917 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2918 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
c5adc06a
RK
2919 op = XEXP (op, 0);
2920
998d7deb
RH
2921 expr = get_mem_expr_from_op (op, &inner_addressp);
2922 return inner_addressp ? 0 : expr;
c5adc06a 2923}
ff81832f 2924
4f9b4029
RK
2925/* Output operand names for assembler instructions. OPERANDS is the
2926 operand vector, OPORDER is the order to write the operands, and NOPS
2927 is the number of operands to write. */
2928
2929static void
6cf9ac28 2930output_asm_operand_names (rtx *operands, int *oporder, int nops)
4f9b4029
RK
2931{
2932 int wrote = 0;
2933 int i;
2934
2935 for (i = 0; i < nops; i++)
2936 {
2937 int addressp;
a560d4d4
JH
2938 rtx op = operands[oporder[i]];
2939 tree expr = get_mem_expr_from_op (op, &addressp);
4f9b4029 2940
a560d4d4
JH
2941 fprintf (asm_out_file, "%c%s",
2942 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2943 wrote = 1;
998d7deb 2944 if (expr)
4f9b4029 2945 {
a560d4d4 2946 fprintf (asm_out_file, "%s",
998d7deb
RH
2947 addressp ? "*" : "");
2948 print_mem_expr (asm_out_file, expr);
4f9b4029
RK
2949 wrote = 1;
2950 }
a560d4d4
JH
2951 else if (REG_P (op) && ORIGINAL_REGNO (op)
2952 && ORIGINAL_REGNO (op) != REGNO (op))
2953 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
4f9b4029
RK
2954 }
2955}
2956
3cf2715d
DE
2957/* Output text from TEMPLATE to the assembler output file,
2958 obeying %-directions to substitute operands taken from
2959 the vector OPERANDS.
2960
2961 %N (for N a digit) means print operand N in usual manner.
2962 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2963 and print the label name with no punctuation.
2964 %cN means require operand N to be a constant
2965 and print the constant expression with no punctuation.
2966 %aN means expect operand N to be a memory address
2967 (not a memory reference!) and print a reference
2968 to that address.
2969 %nN means expect operand N to be a constant
2970 and print a constant expression for minus the value
2971 of the operand, with no other punctuation. */
2972
2973void
6cf9ac28 2974output_asm_insn (const char *template, rtx *operands)
3cf2715d 2975{
b3694847
SS
2976 const char *p;
2977 int c;
8554d9a4
JJ
2978#ifdef ASSEMBLER_DIALECT
2979 int dialect = 0;
2980#endif
0d4903b8 2981 int oporder[MAX_RECOG_OPERANDS];
4f9b4029 2982 char opoutput[MAX_RECOG_OPERANDS];
0d4903b8 2983 int ops = 0;
3cf2715d
DE
2984
2985 /* An insn may return a null string template
2986 in a case where no assembler code is needed. */
2987 if (*template == 0)
2988 return;
2989
4f9b4029 2990 memset (opoutput, 0, sizeof opoutput);
3cf2715d
DE
2991 p = template;
2992 putc ('\t', asm_out_file);
2993
2994#ifdef ASM_OUTPUT_OPCODE
2995 ASM_OUTPUT_OPCODE (asm_out_file, p);
2996#endif
2997
b729186a 2998 while ((c = *p++))
3cf2715d
DE
2999 switch (c)
3000 {
3cf2715d 3001 case '\n':
4f9b4029
RK
3002 if (flag_verbose_asm)
3003 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
3004 if (flag_print_asm_name)
3005 output_asm_name ();
3006
4f9b4029
RK
3007 ops = 0;
3008 memset (opoutput, 0, sizeof opoutput);
3009
3cf2715d 3010 putc (c, asm_out_file);
cb649530 3011#ifdef ASM_OUTPUT_OPCODE
3cf2715d
DE
3012 while ((c = *p) == '\t')
3013 {
3014 putc (c, asm_out_file);
3015 p++;
3016 }
3017 ASM_OUTPUT_OPCODE (asm_out_file, p);
3cf2715d 3018#endif
cb649530 3019 break;
3cf2715d
DE
3020
3021#ifdef ASSEMBLER_DIALECT
3022 case '{':
b729186a 3023 {
b3694847 3024 int i;
f5d927c0 3025
8554d9a4
JJ
3026 if (dialect)
3027 output_operand_lossage ("nested assembly dialect alternatives");
3028 else
3029 dialect = 1;
3030
b729186a
JL
3031 /* If we want the first dialect, do nothing. Otherwise, skip
3032 DIALECT_NUMBER of strings ending with '|'. */
3033 for (i = 0; i < dialect_number; i++)
3034 {
463a8384 3035 while (*p && *p != '}' && *p++ != '|')
b729186a 3036 ;
463a8384
BS
3037 if (*p == '}')
3038 break;
b729186a
JL
3039 if (*p == '|')
3040 p++;
3041 }
8554d9a4
JJ
3042
3043 if (*p == '\0')
3044 output_operand_lossage ("unterminated assembly dialect alternative");
b729186a 3045 }
3cf2715d
DE
3046 break;
3047
3048 case '|':
8554d9a4
JJ
3049 if (dialect)
3050 {
3051 /* Skip to close brace. */
3052 do
3053 {
3054 if (*p == '\0')
3055 {
3056 output_operand_lossage ("unterminated assembly dialect alternative");
3057 break;
3058 }
ff81832f 3059 }
8554d9a4
JJ
3060 while (*p++ != '}');
3061 dialect = 0;
3062 }
3063 else
3064 putc (c, asm_out_file);
3cf2715d
DE
3065 break;
3066
3067 case '}':
8554d9a4
JJ
3068 if (! dialect)
3069 putc (c, asm_out_file);
3070 dialect = 0;
3cf2715d
DE
3071 break;
3072#endif
3073
3074 case '%':
3075 /* %% outputs a single %. */
3076 if (*p == '%')
3077 {
3078 p++;
3079 putc (c, asm_out_file);
3080 }
3081 /* %= outputs a number which is unique to each insn in the entire
3082 compilation. This is useful for making local labels that are
3083 referred to more than once in a given insn. */
3084 else if (*p == '=')
3085 {
3086 p++;
3087 fprintf (asm_out_file, "%d", insn_counter);
3088 }
3089 /* % followed by a letter and some digits
3090 outputs an operand in a special way depending on the letter.
3091 Letters `acln' are implemented directly.
3092 Other letters are passed to `output_operand' so that
3093 the PRINT_OPERAND macro can define them. */
0df6c2c7 3094 else if (ISALPHA (*p))
3cf2715d
DE
3095 {
3096 int letter = *p++;
c383c15f
GK
3097 unsigned long opnum;
3098 char *endptr;
3099
3100 opnum = strtoul (p, &endptr, 10);
3101
3102 if (endptr == p)
3103 output_operand_lossage ("operand number missing "
3104 "after %%-letter");
3105 else if (this_is_asm_operands && opnum >= insn_noperands)
3cf2715d
DE
3106 output_operand_lossage ("operand number out of range");
3107 else if (letter == 'l')
c383c15f 3108 output_asm_label (operands[opnum]);
3cf2715d 3109 else if (letter == 'a')
c383c15f 3110 output_address (operands[opnum]);
3cf2715d
DE
3111 else if (letter == 'c')
3112 {
c383c15f
GK
3113 if (CONSTANT_ADDRESS_P (operands[opnum]))
3114 output_addr_const (asm_out_file, operands[opnum]);
3cf2715d 3115 else
c383c15f 3116 output_operand (operands[opnum], 'c');
3cf2715d
DE
3117 }
3118 else if (letter == 'n')
3119 {
c383c15f 3120 if (GET_CODE (operands[opnum]) == CONST_INT)
21e3a81b 3121 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
c383c15f 3122 - INTVAL (operands[opnum]));
3cf2715d
DE
3123 else
3124 {
3125 putc ('-', asm_out_file);
c383c15f 3126 output_addr_const (asm_out_file, operands[opnum]);
3cf2715d
DE
3127 }
3128 }
3129 else
c383c15f 3130 output_operand (operands[opnum], letter);
f5d927c0 3131
c383c15f 3132 if (!opoutput[opnum])
dc9d0b14 3133 oporder[ops++] = opnum;
c383c15f 3134 opoutput[opnum] = 1;
0d4903b8 3135
c383c15f
GK
3136 p = endptr;
3137 c = *p;
3cf2715d
DE
3138 }
3139 /* % followed by a digit outputs an operand the default way. */
0df6c2c7 3140 else if (ISDIGIT (*p))
3cf2715d 3141 {
c383c15f
GK
3142 unsigned long opnum;
3143 char *endptr;
3144
3145 opnum = strtoul (p, &endptr, 10);
3146 if (this_is_asm_operands && opnum >= insn_noperands)
3cf2715d
DE
3147 output_operand_lossage ("operand number out of range");
3148 else
c383c15f 3149 output_operand (operands[opnum], 0);
0d4903b8 3150
c383c15f 3151 if (!opoutput[opnum])
dc9d0b14 3152 oporder[ops++] = opnum;
c383c15f 3153 opoutput[opnum] = 1;
4f9b4029 3154
c383c15f
GK
3155 p = endptr;
3156 c = *p;
3cf2715d
DE
3157 }
3158 /* % followed by punctuation: output something for that
3159 punctuation character alone, with no operand.
3160 The PRINT_OPERAND macro decides what is actually done. */
3161#ifdef PRINT_OPERAND_PUNCT_VALID_P
f5d927c0 3162 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3cf2715d
DE
3163 output_operand (NULL_RTX, *p++);
3164#endif
3165 else
3166 output_operand_lossage ("invalid %%-code");
3167 break;
3168
3169 default:
3170 putc (c, asm_out_file);
3171 }
3172
0d4903b8
RK
3173 /* Write out the variable names for operands, if we know them. */
3174 if (flag_verbose_asm)
4f9b4029 3175 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
3176 if (flag_print_asm_name)
3177 output_asm_name ();
3cf2715d
DE
3178
3179 putc ('\n', asm_out_file);
3180}
3181\f
3182/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3183
3184void
6cf9ac28 3185output_asm_label (rtx x)
3cf2715d
DE
3186{
3187 char buf[256];
3188
3189 if (GET_CODE (x) == LABEL_REF)
be1bb652 3190 x = XEXP (x, 0);
4b4bf941
JQ
3191 if (LABEL_P (x)
3192 || (NOTE_P (x)
be1bb652 3193 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3cf2715d
DE
3194 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3195 else
9e637a26 3196 output_operand_lossage ("'%%l' operand isn't a label");
3cf2715d
DE
3197
3198 assemble_name (asm_out_file, buf);
3199}
3200
3201/* Print operand X using machine-dependent assembler syntax.
3202 The macro PRINT_OPERAND is defined just to control this function.
3203 CODE is a non-digit that preceded the operand-number in the % spec,
3204 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3205 between the % and the digits.
3206 When CODE is a non-letter, X is 0.
3207
3208 The meanings of the letters are machine-dependent and controlled
3209 by PRINT_OPERAND. */
3210
3211static void
6cf9ac28 3212output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3cf2715d
DE
3213{
3214 if (x && GET_CODE (x) == SUBREG)
49d801d3 3215 x = alter_subreg (&x);
3cf2715d
DE
3216
3217 /* If X is a pseudo-register, abort now rather than writing trash to the
3218 assembler file. */
0bccc606 3219 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3cf2715d
DE
3220
3221 PRINT_OPERAND (asm_out_file, x, code);
3222}
3223
3224/* Print a memory reference operand for address X
3225 using machine-dependent assembler syntax.
3226 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3227
3228void
6cf9ac28 3229output_address (rtx x)
3cf2715d 3230{
49d801d3 3231 walk_alter_subreg (&x);
3cf2715d
DE
3232 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3233}
3234\f
3235/* Print an integer constant expression in assembler syntax.
3236 Addition and subtraction are the only arithmetic
3237 that may appear in these expressions. */
3238
3239void
6cf9ac28 3240output_addr_const (FILE *file, rtx x)
3cf2715d
DE
3241{
3242 char buf[256];
3243
3244 restart:
3245 switch (GET_CODE (x))
3246 {
3247 case PC:
eac50d7a 3248 putc ('.', file);
3cf2715d
DE
3249 break;
3250
3251 case SYMBOL_REF:
bb9a388d
ZW
3252 if (SYMBOL_REF_DECL (x))
3253 mark_decl_referenced (SYMBOL_REF_DECL (x));
99c8c61c
AO
3254#ifdef ASM_OUTPUT_SYMBOL_REF
3255 ASM_OUTPUT_SYMBOL_REF (file, x);
3256#else
3cf2715d 3257 assemble_name (file, XSTR (x, 0));
99c8c61c 3258#endif
3cf2715d
DE
3259 break;
3260
3261 case LABEL_REF:
422be3c3
AO
3262 x = XEXP (x, 0);
3263 /* Fall through. */
3cf2715d
DE
3264 case CODE_LABEL:
3265 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
2f0b7af6
GK
3266#ifdef ASM_OUTPUT_LABEL_REF
3267 ASM_OUTPUT_LABEL_REF (file, buf);
3268#else
3cf2715d 3269 assemble_name (file, buf);
2f0b7af6 3270#endif
3cf2715d
DE
3271 break;
3272
3273 case CONST_INT:
21e3a81b 3274 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3cf2715d
DE
3275 break;
3276
3277 case CONST:
3278 /* This used to output parentheses around the expression,
3279 but that does not work on the 386 (either ATT or BSD assembler). */
3280 output_addr_const (file, XEXP (x, 0));
3281 break;
3282
3283 case CONST_DOUBLE:
3284 if (GET_MODE (x) == VOIDmode)
3285 {
3286 /* We can use %d if the number is one word and positive. */
3287 if (CONST_DOUBLE_HIGH (x))
21e3a81b 3288 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3cf2715d 3289 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
f5d927c0 3290 else if (CONST_DOUBLE_LOW (x) < 0)
21e3a81b 3291 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3cf2715d 3292 else
21e3a81b 3293 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3cf2715d
DE
3294 }
3295 else
3296 /* We can't handle floating point constants;
3297 PRINT_OPERAND must handle them. */
3298 output_operand_lossage ("floating constant misused");
3299 break;
3300
3301 case PLUS:
3302 /* Some assemblers need integer constants to appear last (eg masm). */
3303 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3304 {
3305 output_addr_const (file, XEXP (x, 1));
3306 if (INTVAL (XEXP (x, 0)) >= 0)
3307 fprintf (file, "+");
3308 output_addr_const (file, XEXP (x, 0));
3309 }
3310 else
3311 {
3312 output_addr_const (file, XEXP (x, 0));
08106825
AO
3313 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3314 || INTVAL (XEXP (x, 1)) >= 0)
3cf2715d
DE
3315 fprintf (file, "+");
3316 output_addr_const (file, XEXP (x, 1));
3317 }
3318 break;
3319
3320 case MINUS:
3321 /* Avoid outputting things like x-x or x+5-x,
3322 since some assemblers can't handle that. */
3323 x = simplify_subtraction (x);
3324 if (GET_CODE (x) != MINUS)
3325 goto restart;
3326
3327 output_addr_const (file, XEXP (x, 0));
3328 fprintf (file, "-");
301d03af
RS
3329 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3330 || GET_CODE (XEXP (x, 1)) == PC
3331 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3332 output_addr_const (file, XEXP (x, 1));
3333 else
3cf2715d 3334 {
17b53c33 3335 fputs (targetm.asm_out.open_paren, file);
3cf2715d 3336 output_addr_const (file, XEXP (x, 1));
17b53c33 3337 fputs (targetm.asm_out.close_paren, file);
3cf2715d 3338 }
3cf2715d
DE
3339 break;
3340
3341 case ZERO_EXTEND:
3342 case SIGN_EXTEND:
fdf473ae 3343 case SUBREG:
3cf2715d
DE
3344 output_addr_const (file, XEXP (x, 0));
3345 break;
3346
3347 default:
422be3c3
AO
3348#ifdef OUTPUT_ADDR_CONST_EXTRA
3349 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3350 break;
3351
3352 fail:
3353#endif
3cf2715d
DE
3354 output_operand_lossage ("invalid expression as operand");
3355 }
3356}
3357\f
3358/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3359 %R prints the value of REGISTER_PREFIX.
3360 %L prints the value of LOCAL_LABEL_PREFIX.
3361 %U prints the value of USER_LABEL_PREFIX.
3362 %I prints the value of IMMEDIATE_PREFIX.
3363 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
b1721339 3364 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3cf2715d
DE
3365
3366 We handle alternate assembler dialects here, just like output_asm_insn. */
3367
3368void
e34d07f2 3369asm_fprintf (FILE *file, const char *p, ...)
3cf2715d 3370{
3cf2715d
DE
3371 char buf[10];
3372 char *q, c;
e34d07f2 3373 va_list argptr;
6cf9ac28 3374
e34d07f2 3375 va_start (argptr, p);
3cf2715d
DE
3376
3377 buf[0] = '%';
3378
b729186a 3379 while ((c = *p++))
3cf2715d
DE
3380 switch (c)
3381 {
3382#ifdef ASSEMBLER_DIALECT
3383 case '{':
b729186a
JL
3384 {
3385 int i;
3cf2715d 3386
b729186a
JL
3387 /* If we want the first dialect, do nothing. Otherwise, skip
3388 DIALECT_NUMBER of strings ending with '|'. */
3389 for (i = 0; i < dialect_number; i++)
3390 {
3391 while (*p && *p++ != '|')
3392 ;
3393
3394 if (*p == '|')
3395 p++;
f5d927c0 3396 }
b729186a 3397 }
3cf2715d
DE
3398 break;
3399
3400 case '|':
3401 /* Skip to close brace. */
3402 while (*p && *p++ != '}')
3403 ;
3404 break;
3405
3406 case '}':
3407 break;
3408#endif
3409
3410 case '%':
3411 c = *p++;
3412 q = &buf[1];
b1721339
KG
3413 while (strchr ("-+ #0", c))
3414 {
3415 *q++ = c;
3416 c = *p++;
3417 }
0df6c2c7 3418 while (ISDIGIT (c) || c == '.')
3cf2715d
DE
3419 {
3420 *q++ = c;
3421 c = *p++;
3422 }
3423 switch (c)
3424 {
3425 case '%':
b1721339 3426 putc ('%', file);
3cf2715d
DE
3427 break;
3428
3429 case 'd': case 'i': case 'u':
b1721339
KG
3430 case 'x': case 'X': case 'o':
3431 case 'c':
3cf2715d
DE
3432 *q++ = c;
3433 *q = 0;
3434 fprintf (file, buf, va_arg (argptr, int));
3435 break;
3436
3437 case 'w':
b1721339
KG
3438 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3439 'o' cases, but we do not check for those cases. It
3440 means that the value is a HOST_WIDE_INT, which may be
3441 either `long' or `long long'. */
85f015e1
KG
3442 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3443 q += strlen (HOST_WIDE_INT_PRINT);
3cf2715d
DE
3444 *q++ = *p++;
3445 *q = 0;
3446 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3447 break;
3448
3449 case 'l':
3450 *q++ = c;
b1721339
KG
3451#ifdef HAVE_LONG_LONG
3452 if (*p == 'l')
3453 {
3454 *q++ = *p++;
3455 *q++ = *p++;
3456 *q = 0;
3457 fprintf (file, buf, va_arg (argptr, long long));
3458 }
3459 else
3460#endif
3461 {
3462 *q++ = *p++;
3463 *q = 0;
3464 fprintf (file, buf, va_arg (argptr, long));
3465 }
6cf9ac28 3466
3cf2715d
DE
3467 break;
3468
3469 case 's':
3470 *q++ = c;
3471 *q = 0;
3472 fprintf (file, buf, va_arg (argptr, char *));
3473 break;
3474
3475 case 'O':
3476#ifdef ASM_OUTPUT_OPCODE
3477 ASM_OUTPUT_OPCODE (asm_out_file, p);
3478#endif
3479 break;
3480
3481 case 'R':
3482#ifdef REGISTER_PREFIX
3483 fprintf (file, "%s", REGISTER_PREFIX);
3484#endif
3485 break;
3486
3487 case 'I':
3488#ifdef IMMEDIATE_PREFIX
3489 fprintf (file, "%s", IMMEDIATE_PREFIX);
3490#endif
3491 break;
3492
3493 case 'L':
3494#ifdef LOCAL_LABEL_PREFIX
3495 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3496#endif
3497 break;
3498
3499 case 'U':
19283265 3500 fputs (user_label_prefix, file);
3cf2715d
DE
3501 break;
3502
fe0503ea 3503#ifdef ASM_FPRINTF_EXTENSIONS
7ef0daad 3504 /* Uppercase letters are reserved for general use by asm_fprintf
fe0503ea
NC
3505 and so are not available to target specific code. In order to
3506 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3507 they are defined here. As they get turned into real extensions
3508 to asm_fprintf they should be removed from this list. */
3509 case 'A': case 'B': case 'C': case 'D': case 'E':
3510 case 'F': case 'G': case 'H': case 'J': case 'K':
3511 case 'M': case 'N': case 'P': case 'Q': case 'S':
3512 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3513 break;
f5d927c0 3514
fe0503ea
NC
3515 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3516#endif
3cf2715d 3517 default:
0bccc606 3518 gcc_unreachable ();
3cf2715d
DE
3519 }
3520 break;
3521
3522 default:
b1721339 3523 putc (c, file);
3cf2715d 3524 }
e34d07f2 3525 va_end (argptr);
3cf2715d
DE
3526}
3527\f
3528/* Split up a CONST_DOUBLE or integer constant rtx
3529 into two rtx's for single words,
3530 storing in *FIRST the word that comes first in memory in the target
3531 and in *SECOND the other. */
3532
3533void
6cf9ac28 3534split_double (rtx value, rtx *first, rtx *second)
3cf2715d
DE
3535{
3536 if (GET_CODE (value) == CONST_INT)
3537 {
5a1a6efd 3538 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
f76b9db2 3539 {
5a1a6efd 3540 /* In this case the CONST_INT holds both target words.
27eef9ce
JC
3541 Extract the bits from it into two word-sized pieces.
3542 Sign extend each half to HOST_WIDE_INT. */
7f251dee
AO
3543 unsigned HOST_WIDE_INT low, high;
3544 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3545
3546 /* Set sign_bit to the most significant bit of a word. */
3547 sign_bit = 1;
3548 sign_bit <<= BITS_PER_WORD - 1;
3549
3550 /* Set mask so that all bits of the word are set. We could
3551 have used 1 << BITS_PER_WORD instead of basing the
3552 calculation on sign_bit. However, on machines where
3553 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3554 compiler warning, even though the code would never be
3555 executed. */
3556 mask = sign_bit << 1;
3557 mask--;
3558
3559 /* Set sign_extend as any remaining bits. */
3560 sign_extend = ~mask;
f5d927c0 3561
7f251dee
AO
3562 /* Pick the lower word and sign-extend it. */
3563 low = INTVAL (value);
3564 low &= mask;
3565 if (low & sign_bit)
3566 low |= sign_extend;
3567
3568 /* Pick the higher word, shifted to the least significant
3569 bits, and sign-extend it. */
3570 high = INTVAL (value);
3571 high >>= BITS_PER_WORD - 1;
3572 high >>= 1;
3573 high &= mask;
3574 if (high & sign_bit)
3575 high |= sign_extend;
3576
3577 /* Store the words in the target machine order. */
5a1a6efd
RK
3578 if (WORDS_BIG_ENDIAN)
3579 {
7f251dee
AO
3580 *first = GEN_INT (high);
3581 *second = GEN_INT (low);
5a1a6efd
RK
3582 }
3583 else
3584 {
7f251dee
AO
3585 *first = GEN_INT (low);
3586 *second = GEN_INT (high);
5a1a6efd 3587 }
f76b9db2
ILT
3588 }
3589 else
3590 {
5a1a6efd
RK
3591 /* The rule for using CONST_INT for a wider mode
3592 is that we regard the value as signed.
3593 So sign-extend it. */
3594 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3595 if (WORDS_BIG_ENDIAN)
3596 {
3597 *first = high;
3598 *second = value;
3599 }
3600 else
3601 {
3602 *first = value;
3603 *second = high;
3604 }
f76b9db2 3605 }
3cf2715d
DE
3606 }
3607 else if (GET_CODE (value) != CONST_DOUBLE)
3608 {
f76b9db2
ILT
3609 if (WORDS_BIG_ENDIAN)
3610 {
3611 *first = const0_rtx;
3612 *second = value;
3613 }
3614 else
3615 {
3616 *first = value;
3617 *second = const0_rtx;
3618 }
3cf2715d
DE
3619 }
3620 else if (GET_MODE (value) == VOIDmode
3621 /* This is the old way we did CONST_DOUBLE integers. */
3622 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3623 {
3624 /* In an integer, the words are defined as most and least significant.
3625 So order them by the target's convention. */
f76b9db2
ILT
3626 if (WORDS_BIG_ENDIAN)
3627 {
3628 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3629 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3630 }
3631 else
3632 {
3633 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3634 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3635 }
3cf2715d
DE
3636 }
3637 else
3638 {
f5d927c0
KH
3639 REAL_VALUE_TYPE r;
3640 long l[2];
3cf2715d
DE
3641 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3642
3643 /* Note, this converts the REAL_VALUE_TYPE to the target's
3644 format, splits up the floating point double and outputs
3645 exactly 32 bits of it into each of l[0] and l[1] --
0f41302f 3646 not necessarily BITS_PER_WORD bits. */
3cf2715d
DE
3647 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3648
b5a3eb84
JW
3649 /* If 32 bits is an entire word for the target, but not for the host,
3650 then sign-extend on the host so that the number will look the same
3651 way on the host that it would on the target. See for instance
3652 simplify_unary_operation. The #if is needed to avoid compiler
3653 warnings. */
3654
3655#if HOST_BITS_PER_LONG > 32
3656 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3657 {
3658 if (l[0] & ((long) 1 << 31))
3659 l[0] |= ((long) (-1) << 32);
3660 if (l[1] & ((long) 1 << 31))
3661 l[1] |= ((long) (-1) << 32);
3662 }
3663#endif
3664
3e95a7cb
ZW
3665 *first = GEN_INT (l[0]);
3666 *second = GEN_INT (l[1]);
3cf2715d
DE
3667 }
3668}
3669\f
3670/* Return nonzero if this function has no function calls. */
3671
3672int
6cf9ac28 3673leaf_function_p (void)
3cf2715d
DE
3674{
3675 rtx insn;
b660f82f 3676 rtx link;
3cf2715d 3677
70f4f91c 3678 if (current_function_profile || profile_arc_flag)
3cf2715d
DE
3679 return 0;
3680
3681 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3682 {
4b4bf941 3683 if (CALL_P (insn)
7d167afd 3684 && ! SIBLING_CALL_P (insn))
3cf2715d 3685 return 0;
4b4bf941 3686 if (NONJUMP_INSN_P (insn)
3cf2715d 3687 && GET_CODE (PATTERN (insn)) == SEQUENCE
4b4bf941 3688 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
0a1c58a2 3689 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3690 return 0;
3691 }
b660f82f
JW
3692 for (link = current_function_epilogue_delay_list;
3693 link;
3694 link = XEXP (link, 1))
3cf2715d 3695 {
b660f82f
JW
3696 insn = XEXP (link, 0);
3697
4b4bf941 3698 if (CALL_P (insn)
7d167afd 3699 && ! SIBLING_CALL_P (insn))
3cf2715d 3700 return 0;
4b4bf941 3701 if (NONJUMP_INSN_P (insn)
b660f82f 3702 && GET_CODE (PATTERN (insn)) == SEQUENCE
4b4bf941 3703 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
b660f82f 3704 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3705 return 0;
3706 }
3707
3708 return 1;
3709}
3710
09da1532 3711/* Return 1 if branch is a forward branch.
ef6257cd
JH
3712 Uses insn_shuid array, so it works only in the final pass. May be used by
3713 output templates to customary add branch prediction hints.
3714 */
3715int
6cf9ac28 3716final_forward_branch_p (rtx insn)
ef6257cd
JH
3717{
3718 int insn_id, label_id;
0bccc606
NS
3719
3720 gcc_assert (uid_shuid);
ef6257cd
JH
3721 insn_id = INSN_SHUID (insn);
3722 label_id = INSN_SHUID (JUMP_LABEL (insn));
3723 /* We've hit some insns that does not have id information available. */
0bccc606 3724 gcc_assert (insn_id && label_id);
ef6257cd
JH
3725 return insn_id < label_id;
3726}
3727
3cf2715d
DE
3728/* On some machines, a function with no call insns
3729 can run faster if it doesn't create its own register window.
3730 When output, the leaf function should use only the "output"
3731 registers. Ordinarily, the function would be compiled to use
3732 the "input" registers to find its arguments; it is a candidate
3733 for leaf treatment if it uses only the "input" registers.
3734 Leaf function treatment means renumbering so the function
3735 uses the "output" registers instead. */
3736
3737#ifdef LEAF_REGISTERS
3738
3cf2715d
DE
3739/* Return 1 if this function uses only the registers that can be
3740 safely renumbered. */
3741
3742int
6cf9ac28 3743only_leaf_regs_used (void)
3cf2715d
DE
3744{
3745 int i;
4977bab6 3746 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3cf2715d
DE
3747
3748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e5e809f4
JL
3749 if ((regs_ever_live[i] || global_regs[i])
3750 && ! permitted_reg_in_leaf_functions[i])
3751 return 0;
3752
3753 if (current_function_uses_pic_offset_table
3754 && pic_offset_table_rtx != 0
f8cfc6aa 3755 && REG_P (pic_offset_table_rtx)
e5e809f4
JL
3756 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3757 return 0;
3758
3cf2715d
DE
3759 return 1;
3760}
3761
3762/* Scan all instructions and renumber all registers into those
3763 available in leaf functions. */
3764
3765static void
6cf9ac28 3766leaf_renumber_regs (rtx first)
3cf2715d
DE
3767{
3768 rtx insn;
3769
3770 /* Renumber only the actual patterns.
3771 The reg-notes can contain frame pointer refs,
3772 and renumbering them could crash, and should not be needed. */
3773 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 3774 if (INSN_P (insn))
3cf2715d 3775 leaf_renumber_regs_insn (PATTERN (insn));
f5d927c0
KH
3776 for (insn = current_function_epilogue_delay_list;
3777 insn;
3778 insn = XEXP (insn, 1))
2c3c49de 3779 if (INSN_P (XEXP (insn, 0)))
3cf2715d
DE
3780 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3781}
3782
3783/* Scan IN_RTX and its subexpressions, and renumber all regs into those
3784 available in leaf functions. */
3785
3786void
6cf9ac28 3787leaf_renumber_regs_insn (rtx in_rtx)
3cf2715d 3788{
b3694847
SS
3789 int i, j;
3790 const char *format_ptr;
3cf2715d
DE
3791
3792 if (in_rtx == 0)
3793 return;
3794
3795 /* Renumber all input-registers into output-registers.
3796 renumbered_regs would be 1 for an output-register;
3797 they */
3798
f8cfc6aa 3799 if (REG_P (in_rtx))
3cf2715d
DE
3800 {
3801 int newreg;
3802
3803 /* Don't renumber the same reg twice. */
3804 if (in_rtx->used)
3805 return;
3806
3807 newreg = REGNO (in_rtx);
3808 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3809 to reach here as part of a REG_NOTE. */
3810 if (newreg >= FIRST_PSEUDO_REGISTER)
3811 {
3812 in_rtx->used = 1;
3813 return;
3814 }
3815 newreg = LEAF_REG_REMAP (newreg);
0bccc606 3816 gcc_assert (newreg >= 0);
3cf2715d
DE
3817 regs_ever_live[REGNO (in_rtx)] = 0;
3818 regs_ever_live[newreg] = 1;
3819 REGNO (in_rtx) = newreg;
3820 in_rtx->used = 1;
3821 }
3822
2c3c49de 3823 if (INSN_P (in_rtx))
3cf2715d
DE
3824 {
3825 /* Inside a SEQUENCE, we find insns.
3826 Renumber just the patterns of these insns,
3827 just as we do for the top-level insns. */
3828 leaf_renumber_regs_insn (PATTERN (in_rtx));
3829 return;
3830 }
3831
3832 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3833
3834 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3835 switch (*format_ptr++)
3836 {
3837 case 'e':
3838 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3839 break;
3840
3841 case 'E':
3842 if (NULL != XVEC (in_rtx, i))
3843 {
3844 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3845 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3846 }
3847 break;
3848
3849 case 'S':
3850 case 's':
3851 case '0':
3852 case 'i':
3853 case 'w':
3854 case 'n':
3855 case 'u':
3856 break;
3857
3858 default:
0bccc606 3859 gcc_unreachable ();
3cf2715d
DE
3860 }
3861}
3862#endif
6a08f7b3
DP
3863
3864
3865/* When -gused is used, emit debug info for only used symbols. But in
3866 addition to the standard intercepted debug_hooks there are some direct
3867 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3868 Those routines may also be called from a higher level intercepted routine. So
3869 to prevent recording data for an inner call to one of these for an intercept,
5d3cc252 3870 we maintain an intercept nesting counter (debug_nesting). We only save the
6a08f7b3
DP
3871 intercepted arguments if the nesting is 1. */
3872int debug_nesting = 0;
3873
3874static tree *symbol_queue;
3875int symbol_queue_index = 0;
3876static int symbol_queue_size = 0;
3877
3878/* Generate the symbols for any queued up type symbols we encountered
3879 while generating the type info for some originally used symbol.
3880 This might generate additional entries in the queue. Only when
3881 the nesting depth goes to 0 is this routine called. */
3882
3883void
6cf9ac28 3884debug_flush_symbol_queue (void)
6a08f7b3
DP
3885{
3886 int i;
6cf9ac28 3887
6a08f7b3
DP
3888 /* Make sure that additionally queued items are not flushed
3889 prematurely. */
6cf9ac28 3890
6a08f7b3 3891 ++debug_nesting;
6cf9ac28 3892
6a08f7b3
DP
3893 for (i = 0; i < symbol_queue_index; ++i)
3894 {
3895 /* If we pushed queued symbols then such symbols are must be
3896 output no matter what anyone else says. Specifically,
3897 we need to make sure dbxout_symbol() thinks the symbol was
3898 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3899 which may be set for outside reasons. */
3900 int saved_tree_used = TREE_USED (symbol_queue[i]);
3901 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3902 TREE_USED (symbol_queue[i]) = 1;
3903 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3904
3905#ifdef DBX_DEBUGGING_INFO
3906 dbxout_symbol (symbol_queue[i], 0);
3907#endif
3908
3909 TREE_USED (symbol_queue[i]) = saved_tree_used;
3910 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3911 }
3912
3913 symbol_queue_index = 0;
6cf9ac28 3914 --debug_nesting;
6a08f7b3
DP
3915}
3916
3917/* Queue a type symbol needed as part of the definition of a decl
3918 symbol. These symbols are generated when debug_flush_symbol_queue()
3919 is called. */
3920
6cf9ac28 3921void
6a08f7b3
DP
3922debug_queue_symbol (tree decl)
3923{
6cf9ac28 3924 if (symbol_queue_index >= symbol_queue_size)
6a08f7b3
DP
3925 {
3926 symbol_queue_size += 10;
703ad42b
KG
3927 symbol_queue = xrealloc (symbol_queue,
3928 symbol_queue_size * sizeof (tree));
6a08f7b3
DP
3929 }
3930
3931 symbol_queue[symbol_queue_index++] = decl;
6cf9ac28 3932}
6a08f7b3 3933
f9da5064 3934/* Free symbol queue. */
6a08f7b3 3935void
6cf9ac28 3936debug_free_queue (void)
6a08f7b3
DP
3937{
3938 if (symbol_queue)
3939 {
3940 free (symbol_queue);
3941 symbol_queue = NULL;
3942 symbol_queue_size = 0;
3943 }
3944}