]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/final.c
Makefile.in (cse.o): Add params.h dependency.
[thirdparty/gcc.git] / gcc / final.c
CommitLineData
3cf2715d 1/* Convert RTL to assembler code and output it, for GNU compiler.
3b708058 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
ff81832f 3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
3cf2715d 4
1322177d 5This file is part of GCC.
3cf2715d 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
3cf2715d 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
3cf2715d
DE
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
3cf2715d 21
3cf2715d
DE
22/* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
08c148a8
NB
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
3cf2715d
DE
46
47#include "config.h"
670ee920 48#include "system.h"
4977bab6
ZW
49#include "coretypes.h"
50#include "tm.h"
3cf2715d
DE
51
52#include "tree.h"
53#include "rtl.h"
6baf1cc8 54#include "tm_p.h"
3cf2715d
DE
55#include "regs.h"
56#include "insn-config.h"
3cf2715d 57#include "insn-attr.h"
3cf2715d
DE
58#include "recog.h"
59#include "conditions.h"
60#include "flags.h"
61#include "real.h"
62#include "hard-reg-set.h"
3cf2715d 63#include "output.h"
3d195391 64#include "except.h"
49ad7cfa 65#include "function.h"
10f0ad3d 66#include "toplev.h"
d6f4ec51 67#include "reload.h"
ab87f8c8 68#include "intl.h"
be1bb652 69#include "basic-block.h"
08c148a8 70#include "target.h"
a5a42b92 71#include "debug.h"
49d801d3 72#include "expr.h"
ba4f7968 73#include "cfglayout.h"
3cf2715d 74
440aabf8
NB
75#ifdef XCOFF_DEBUGGING_INFO
76#include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78#endif
79
76ead72b
RL
80#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81#include "dwarf2out.h"
82#endif
83
3cf2715d
DE
84/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
85 null default for it to save conditionalization later. */
86#ifndef CC_STATUS_INIT
87#define CC_STATUS_INIT
88#endif
89
90/* How to start an assembler comment. */
91#ifndef ASM_COMMENT_START
92#define ASM_COMMENT_START ";#"
93#endif
94
95/* Is the given character a logical line separator for the assembler? */
96#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
97#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
98#endif
99
75197b37
BS
100#ifndef JUMP_TABLES_IN_TEXT_SECTION
101#define JUMP_TABLES_IN_TEXT_SECTION 0
102#endif
103
d48bc59a
RH
104#if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
105#define HAVE_READONLY_DATA_SECTION 1
106#else
107#define HAVE_READONLY_DATA_SECTION 0
108#endif
109
3cf2715d 110/* Last insn processed by final_scan_insn. */
b1a9f6a0
RH
111static rtx debug_insn;
112rtx current_output_insn;
3cf2715d
DE
113
114/* Line number of last NOTE. */
115static int last_linenum;
116
eac40081
RK
117/* Highest line number in current block. */
118static int high_block_linenum;
119
120/* Likewise for function. */
121static int high_function_linenum;
122
3cf2715d 123/* Filename of last NOTE. */
3cce094d 124static const char *last_filename;
3cf2715d 125
fc470718
R
126extern int length_unit_log; /* This is defined in insn-attrtab.c. */
127
3cf2715d
DE
128/* Nonzero while outputting an `asm' with operands.
129 This means that inconsistencies are the user's fault, so don't abort.
130 The precise value is the insn being output, to pass to error_for_asm. */
c8b94768 131rtx this_is_asm_operands;
3cf2715d
DE
132
133/* Number of operands of this insn, for an `asm' with operands. */
22bf4422 134static unsigned int insn_noperands;
3cf2715d
DE
135
136/* Compare optimization flag. */
137
138static rtx last_ignored_compare = 0;
139
3cf2715d
DE
140/* Assign a unique number to each insn that is output.
141 This can be used to generate unique local labels. */
142
143static int insn_counter = 0;
144
145#ifdef HAVE_cc0
146/* This variable contains machine-dependent flags (defined in tm.h)
147 set and examined by output routines
148 that describe how to interpret the condition codes properly. */
149
150CC_STATUS cc_status;
151
152/* During output of an insn, this contains a copy of cc_status
153 from before the insn. */
154
155CC_STATUS cc_prev_status;
156#endif
157
158/* Indexed by hardware reg number, is 1 if that register is ever
159 used in the current function.
160
161 In life_analysis, or in stupid_life_analysis, this is set
162 up to record the hard regs used explicitly. Reload adds
163 in the hard regs used for holding pseudo regs. Final uses
164 it to generate the code in the function prologue and epilogue
165 to save and restore registers as needed. */
166
167char regs_ever_live[FIRST_PSEUDO_REGISTER];
168
169/* Nonzero means current function must be given a frame pointer.
170 Set in stmt.c if anything is allocated on the stack there.
171 Set in reload1.c if anything is allocated on the stack there. */
172
173int frame_pointer_needed;
174
18c038b9 175/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
3cf2715d
DE
176
177static int block_depth;
178
179/* Nonzero if have enabled APP processing of our assembler output. */
180
181static int app_on;
182
183/* If we are outputting an insn sequence, this contains the sequence rtx.
184 Zero otherwise. */
185
186rtx final_sequence;
187
188#ifdef ASSEMBLER_DIALECT
189
190/* Number of the assembler dialect to use, starting at 0. */
191static int dialect_number;
192#endif
193
194/* Indexed by line number, nonzero if there is a note for that line. */
195
196static char *line_note_exists;
197
afe48e06
RH
198#ifdef HAVE_conditional_execution
199/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
200rtx current_insn_predicate;
201#endif
202
1d300e19 203#ifdef HAVE_ATTR_length
711d877c
KG
204static int asm_insn_count PARAMS ((rtx));
205#endif
206static void profile_function PARAMS ((FILE *));
207static void profile_after_prologue PARAMS ((FILE *));
653e276c 208static void notice_source_line PARAMS ((rtx));
49d801d3 209static rtx walk_alter_subreg PARAMS ((rtx *));
711d877c 210static void output_asm_name PARAMS ((void));
0dc36574 211static void output_alternate_entry_point PARAMS ((FILE *, rtx));
998d7deb 212static tree get_mem_expr_from_op PARAMS ((rtx, int *));
4f9b4029 213static void output_asm_operand_names PARAMS ((rtx *, int *, int));
711d877c 214static void output_operand PARAMS ((rtx, int));
e9a25f70 215#ifdef LEAF_REGISTERS
711d877c 216static void leaf_renumber_regs PARAMS ((rtx));
e9a25f70
JL
217#endif
218#ifdef HAVE_cc0
711d877c 219static int alter_cond PARAMS ((rtx));
e9a25f70 220#endif
ca3075bd 221#ifndef ADDR_VEC_ALIGN
711d877c 222static int final_addr_vec_align PARAMS ((rtx));
ca3075bd 223#endif
7bdb32b9 224#ifdef HAVE_ATTR_length
711d877c 225static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
7bdb32b9 226#endif
3cf2715d
DE
227\f
228/* Initialize data in final at the beginning of a compilation. */
229
230void
231init_final (filename)
6a651371 232 const char *filename ATTRIBUTE_UNUSED;
3cf2715d 233{
3cf2715d 234 app_on = 0;
3cf2715d
DE
235 final_sequence = 0;
236
237#ifdef ASSEMBLER_DIALECT
238 dialect_number = ASSEMBLER_DIALECT;
239#endif
240}
241
08c148a8 242/* Default target function prologue and epilogue assembler output.
b9f22704 243
08c148a8
NB
244 If not overridden for epilogue code, then the function body itself
245 contains return instructions wherever needed. */
246void
247default_function_pro_epilogue (file, size)
248 FILE *file ATTRIBUTE_UNUSED;
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
250{
251}
252
b4c25db2
NB
253/* Default target hook that outputs nothing to a stream. */
254void
255no_asm_to_stream (file)
256 FILE *file ATTRIBUTE_UNUSED;
257{
258}
259
3cf2715d
DE
260/* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
262
263void
264app_enable ()
265{
266 if (! app_on)
267 {
51723711 268 fputs (ASM_APP_ON, asm_out_file);
3cf2715d
DE
269 app_on = 1;
270 }
271}
272
273/* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
275
276void
277app_disable ()
278{
279 if (app_on)
280 {
51723711 281 fputs (ASM_APP_OFF, asm_out_file);
3cf2715d
DE
282 app_on = 0;
283 }
284}
285\f
f5d927c0 286/* Return the number of slots filled in the current
3cf2715d
DE
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
289
290#ifdef DELAY_SLOTS
291int
292dbr_sequence_length ()
293{
294 if (final_sequence != 0)
295 return XVECLEN (final_sequence, 0) - 1;
296 else
297 return 0;
298}
299#endif
300\f
301/* The next two pages contain routines used to compute the length of an insn
302 and to shorten branches. */
303
304/* Arrays for insn lengths, and addresses. The latter is referenced by
305 `insn_current_length'. */
306
addd7df6 307static int *insn_lengths;
9d98a694 308
9d98a694 309varray_type insn_addresses_;
3cf2715d 310
ea3cbda5
R
311/* Max uid for which the above arrays are valid. */
312static int insn_lengths_max_uid;
313
3cf2715d
DE
314/* Address of insn being processed. Used by `insn_current_length'. */
315int insn_current_address;
316
fc470718
R
317/* Address of insn being processed in previous iteration. */
318int insn_last_address;
319
d6a7951f 320/* known invariant alignment of insn being processed. */
fc470718
R
321int insn_current_align;
322
95707627
R
323/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
324 gives the next following alignment insn that increases the known
325 alignment, or NULL_RTX if there is no such insn.
326 For any alignment obtained this way, we can again index uid_align with
327 its uid to obtain the next following align that in turn increases the
328 alignment, till we reach NULL_RTX; the sequence obtained this way
329 for each insn we'll call the alignment chain of this insn in the following
330 comments. */
331
f5d927c0
KH
332struct label_alignment
333{
9e423e6d
JW
334 short alignment;
335 short max_skip;
336};
337
338static rtx *uid_align;
339static int *uid_shuid;
340static struct label_alignment *label_align;
95707627 341
3cf2715d
DE
342/* Indicate that branch shortening hasn't yet been done. */
343
344void
345init_insn_lengths ()
346{
95707627
R
347 if (uid_shuid)
348 {
349 free (uid_shuid);
350 uid_shuid = 0;
351 }
352 if (insn_lengths)
353 {
354 free (insn_lengths);
355 insn_lengths = 0;
ea3cbda5 356 insn_lengths_max_uid = 0;
95707627 357 }
9d98a694
AO
358#ifdef HAVE_ATTR_length
359 INSN_ADDRESSES_FREE ();
360#endif
95707627
R
361 if (uid_align)
362 {
363 free (uid_align);
364 uid_align = 0;
365 }
3cf2715d
DE
366}
367
368/* Obtain the current length of an insn. If branch shortening has been done,
369 get its actual length. Otherwise, get its maximum length. */
370
371int
372get_attr_length (insn)
7bdb32b9 373 rtx insn ATTRIBUTE_UNUSED;
3cf2715d
DE
374{
375#ifdef HAVE_ATTR_length
376 rtx body;
377 int i;
378 int length = 0;
379
ea3cbda5 380 if (insn_lengths_max_uid > INSN_UID (insn))
3cf2715d
DE
381 return insn_lengths[INSN_UID (insn)];
382 else
383 switch (GET_CODE (insn))
384 {
385 case NOTE:
386 case BARRIER:
387 case CODE_LABEL:
388 return 0;
389
390 case CALL_INSN:
391 length = insn_default_length (insn);
392 break;
393
394 case JUMP_INSN:
395 body = PATTERN (insn);
dd3f0101 396 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
3cf2715d 397 {
fc470718
R
398 /* Alignment is machine-dependent and should be handled by
399 ADDR_VEC_ALIGN. */
3cf2715d
DE
400 }
401 else
402 length = insn_default_length (insn);
403 break;
404
405 case INSN:
406 body = PATTERN (insn);
407 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
408 return 0;
409
410 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
411 length = asm_insn_count (body) * insn_default_length (insn);
412 else if (GET_CODE (body) == SEQUENCE)
413 for (i = 0; i < XVECLEN (body, 0); i++)
414 length += get_attr_length (XVECEXP (body, 0, i));
415 else
416 length = insn_default_length (insn);
e9a25f70
JL
417 break;
418
419 default:
420 break;
3cf2715d
DE
421 }
422
423#ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn, length);
425#endif
426 return length;
427#else /* not HAVE_ATTR_length */
428 return 0;
429#endif /* not HAVE_ATTR_length */
430}
431\f
fc470718
R
432/* Code to handle alignment inside shorten_branches. */
433
434/* Here is an explanation how the algorithm in align_fuzz can give
435 proper results:
436
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
f5d927c0 439 is used in an expression, it means the alignment value of the
fc470718 440 alignment point.
f5d927c0 441
fc470718
R
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
f5d927c0 445
fc470718
R
446 Likewise with the next alignment-delimited block following X, which we
447 shall call block Y.
f5d927c0 448
fc470718
R
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
f5d927c0 451
fc470718 452 The estimated padding is then OX - IX.
f5d927c0 453
fc470718 454 OX can be safely estimated as
f5d927c0 455
fc470718
R
456 if (X >= Y)
457 OX = round_up(IX, Y)
458 else
459 OX = round_up(IX, X) + Y - X
f5d927c0 460
fc470718
R
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
f5d927c0 463
fc470718
R
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
f5d927c0 466
fc470718
R
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
472
473#ifndef LABEL_ALIGN
efa3896a 474#define LABEL_ALIGN(LABEL) align_labels_log
fc470718
R
475#endif
476
9e423e6d 477#ifndef LABEL_ALIGN_MAX_SKIP
2cca7283 478#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
9e423e6d
JW
479#endif
480
fc470718 481#ifndef LOOP_ALIGN
efa3896a 482#define LOOP_ALIGN(LABEL) align_loops_log
fc470718
R
483#endif
484
9e423e6d 485#ifndef LOOP_ALIGN_MAX_SKIP
2cca7283 486#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
9e423e6d
JW
487#endif
488
fc470718 489#ifndef LABEL_ALIGN_AFTER_BARRIER
340f7e7c 490#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
fc470718
R
491#endif
492
9e423e6d 493#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
247a370b
JH
494#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
495#endif
496
497#ifndef JUMP_ALIGN
498#define JUMP_ALIGN(LABEL) align_jumps_log
499#endif
500
501#ifndef JUMP_ALIGN_MAX_SKIP
2cca7283 502#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
9e423e6d
JW
503#endif
504
fc470718 505#ifndef ADDR_VEC_ALIGN
ca3075bd 506static int
fc470718
R
507final_addr_vec_align (addr_vec)
508 rtx addr_vec;
509{
2a841588 510 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
fc470718
R
511
512 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
513 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2a841588 514 return exact_log2 (align);
fc470718
R
515
516}
f5d927c0 517
fc470718
R
518#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
519#endif
520
521#ifndef INSN_LENGTH_ALIGNMENT
522#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
523#endif
524
fc470718
R
525#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
526
de7987a6 527static int min_labelno, max_labelno;
fc470718
R
528
529#define LABEL_TO_ALIGNMENT(LABEL) \
9e423e6d
JW
530 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
531
532#define LABEL_TO_MAX_SKIP(LABEL) \
533 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
fc470718
R
534
535/* For the benefit of port specific code do this also as a function. */
f5d927c0 536
fc470718
R
537int
538label_to_alignment (label)
539 rtx label;
540{
541 return LABEL_TO_ALIGNMENT (label);
542}
543
544#ifdef HAVE_ATTR_length
545/* The differences in addresses
546 between a branch and its target might grow or shrink depending on
547 the alignment the start insn of the range (the branch for a forward
548 branch or the label for a backward branch) starts out on; if these
549 differences are used naively, they can even oscillate infinitely.
550 We therefore want to compute a 'worst case' address difference that
551 is independent of the alignment the start insn of the range end
552 up on, and that is at least as large as the actual difference.
553 The function align_fuzz calculates the amount we have to add to the
554 naively computed difference, by traversing the part of the alignment
555 chain of the start insn of the range that is in front of the end insn
556 of the range, and considering for each alignment the maximum amount
557 that it might contribute to a size increase.
558
559 For casesi tables, we also want to know worst case minimum amounts of
560 address difference, in case a machine description wants to introduce
561 some common offset that is added to all offsets in a table.
d6a7951f 562 For this purpose, align_fuzz with a growth argument of 0 computes the
fc470718
R
563 appropriate adjustment. */
564
fc470718
R
565/* Compute the maximum delta by which the difference of the addresses of
566 START and END might grow / shrink due to a different address for start
567 which changes the size of alignment insns between START and END.
568 KNOWN_ALIGN_LOG is the alignment known for START.
569 GROWTH should be ~0 if the objective is to compute potential code size
570 increase, and 0 if the objective is to compute potential shrink.
571 The return value is undefined for any other value of GROWTH. */
f5d927c0 572
ca3075bd 573static int
687d0ab6 574align_fuzz (start, end, known_align_log, growth)
fc470718
R
575 rtx start, end;
576 int known_align_log;
577 unsigned growth;
578{
579 int uid = INSN_UID (start);
580 rtx align_label;
581 int known_align = 1 << known_align_log;
582 int end_shuid = INSN_SHUID (end);
583 int fuzz = 0;
584
585 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
586 {
587 int align_addr, new_align;
588
589 uid = INSN_UID (align_label);
9d98a694 590 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
fc470718
R
591 if (uid_shuid[uid] > end_shuid)
592 break;
593 known_align_log = LABEL_TO_ALIGNMENT (align_label);
594 new_align = 1 << known_align_log;
595 if (new_align < known_align)
596 continue;
597 fuzz += (-align_addr ^ growth) & (new_align - known_align);
598 known_align = new_align;
599 }
600 return fuzz;
601}
602
603/* Compute a worst-case reference address of a branch so that it
604 can be safely used in the presence of aligned labels. Since the
605 size of the branch itself is unknown, the size of the branch is
606 not included in the range. I.e. for a forward branch, the reference
607 address is the end address of the branch as known from the previous
608 branch shortening pass, minus a value to account for possible size
609 increase due to alignment. For a backward branch, it is the start
610 address of the branch as known from the current pass, plus a value
611 to account for possible size increase due to alignment.
612 NB.: Therefore, the maximum offset allowed for backward branches needs
613 to exclude the branch size. */
f5d927c0 614
fc470718
R
615int
616insn_current_reference_address (branch)
617 rtx branch;
618{
5527bf14
RH
619 rtx dest, seq;
620 int seq_uid;
621
622 if (! INSN_ADDRESSES_SET_P ())
623 return 0;
624
625 seq = NEXT_INSN (PREV_INSN (branch));
626 seq_uid = INSN_UID (seq);
fc470718
R
627 if (GET_CODE (branch) != JUMP_INSN)
628 /* This can happen for example on the PA; the objective is to know the
629 offset to address something in front of the start of the function.
630 Thus, we can treat it like a backward branch.
631 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
632 any alignment we'd encounter, so we skip the call to align_fuzz. */
633 return insn_current_address;
634 dest = JUMP_LABEL (branch);
5527bf14 635
b9f22704 636 /* BRANCH has no proper alignment chain set, so use SEQ.
afc6898e
BS
637 BRANCH also has no INSN_SHUID. */
638 if (INSN_SHUID (seq) < INSN_SHUID (dest))
fc470718 639 {
f5d927c0 640 /* Forward branch. */
fc470718 641 return (insn_last_address + insn_lengths[seq_uid]
26024475 642 - align_fuzz (seq, dest, length_unit_log, ~0));
fc470718
R
643 }
644 else
645 {
f5d927c0 646 /* Backward branch. */
fc470718 647 return (insn_current_address
923f7cf9 648 + align_fuzz (dest, seq, length_unit_log, ~0));
fc470718
R
649 }
650}
651#endif /* HAVE_ATTR_length */
652\f
247a370b
JH
653void
654compute_alignments ()
655{
247a370b 656 int log, max_skip, max_log;
e0082a72 657 basic_block bb;
247a370b
JH
658
659 if (label_align)
660 {
661 free (label_align);
662 label_align = 0;
663 }
664
665 max_labelno = max_label_num ();
666 min_labelno = get_first_label_num ();
667 label_align = (struct label_alignment *)
668 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
669
670 /* If not optimizing or optimizing for size, don't assign any alignments. */
ba712955 671 if (! optimize || optimize_size)
247a370b
JH
672 return;
673
e0082a72 674 FOR_EACH_BB (bb)
247a370b 675 {
247a370b
JH
676 rtx label = bb->head;
677 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
678 edge e;
679
66b4e478
JH
680 if (GET_CODE (label) != CODE_LABEL
681 || probably_never_executed_bb_p (bb))
247a370b
JH
682 continue;
683 max_log = LABEL_ALIGN (label);
684 max_skip = LABEL_ALIGN_MAX_SKIP;
685
686 for (e = bb->pred; e; e = e->pred_next)
687 {
688 if (e->flags & EDGE_FALLTHRU)
689 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
690 else
691 branch_frequency += EDGE_FREQUENCY (e);
692 }
693
f63d1bf7 694 /* There are two purposes to align block with no fallthru incoming edge:
247a370b 695 1) to avoid fetch stalls when branch destination is near cache boundary
d6a7951f 696 2) to improve cache efficiency in case the previous block is not executed
247a370b
JH
697 (so it does not need to be in the cache).
698
699 We to catch first case, we align frequently executed blocks.
700 To catch the second, we align blocks that are executed more frequently
eaec9b3d 701 than the predecessor and the predecessor is likely to not be executed
247a370b
JH
702 when function is called. */
703
704 if (!has_fallthru
705 && (branch_frequency > BB_FREQ_MAX / 10
f6366fc7
ZD
706 || (bb->frequency > bb->prev_bb->frequency * 10
707 && (bb->prev_bb->frequency
247a370b
JH
708 <= ENTRY_BLOCK_PTR->frequency / 2))))
709 {
710 log = JUMP_ALIGN (label);
711 if (max_log < log)
712 {
713 max_log = log;
714 max_skip = JUMP_ALIGN_MAX_SKIP;
715 }
716 }
717 /* In case block is frequent and reached mostly by non-fallthru edge,
09da1532 718 align it. It is most likely a first block of loop. */
247a370b 719 if (has_fallthru
66b4e478 720 && maybe_hot_bb_p (bb)
247a370b 721 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1877be45 722 && branch_frequency > fallthru_frequency * 2)
247a370b
JH
723 {
724 log = LOOP_ALIGN (label);
725 if (max_log < log)
726 {
727 max_log = log;
728 max_skip = LOOP_ALIGN_MAX_SKIP;
729 }
730 }
731 LABEL_TO_ALIGNMENT (label) = max_log;
732 LABEL_TO_MAX_SKIP (label) = max_skip;
733 }
734}
735\f
3cf2715d
DE
736/* Make a pass over all insns and compute their actual lengths by shortening
737 any branches of variable length if possible. */
738
739/* Give a default value for the lowest address in a function. */
740
741#ifndef FIRST_INSN_ADDRESS
742#define FIRST_INSN_ADDRESS 0
743#endif
744
fc470718
R
745/* shorten_branches might be called multiple times: for example, the SH
746 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
747 In order to do this, it needs proper length information, which it obtains
748 by calling shorten_branches. This cannot be collapsed with
d6a7951f 749 shorten_branches itself into a single pass unless we also want to integrate
fc470718
R
750 reorg.c, since the branch splitting exposes new instructions with delay
751 slots. */
752
3cf2715d
DE
753void
754shorten_branches (first)
7bdb32b9 755 rtx first ATTRIBUTE_UNUSED;
3cf2715d 756{
3cf2715d 757 rtx insn;
fc470718
R
758 int max_uid;
759 int i;
fc470718 760 int max_log;
9e423e6d 761 int max_skip;
fc470718
R
762#ifdef HAVE_ATTR_length
763#define MAX_CODE_ALIGN 16
764 rtx seq;
3cf2715d 765 int something_changed = 1;
3cf2715d
DE
766 char *varying_length;
767 rtx body;
768 int uid;
fc470718 769 rtx align_tab[MAX_CODE_ALIGN];
3cf2715d 770
fc470718 771#endif
3d14e82f 772
3446405d
JH
773 /* Compute maximum UID and allocate label_align / uid_shuid. */
774 max_uid = get_max_uid ();
d9b6874b 775
3446405d 776 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
25e22dc0 777
247a370b
JH
778 if (max_labelno != max_label_num ())
779 {
780 int old = max_labelno;
781 int n_labels;
782 int n_old_labels;
783
784 max_labelno = max_label_num ();
785
786 n_labels = max_labelno - min_labelno + 1;
787 n_old_labels = old - min_labelno + 1;
788
789 label_align = (struct label_alignment *) xrealloc
790 (label_align, n_labels * sizeof (struct label_alignment));
791
792 /* Range of labels grows monotonically in the function. Abort here
793 means that the initialization of array got lost. */
794 if (n_old_labels > n_labels)
795 abort ();
796
797 memset (label_align + n_old_labels, 0,
798 (n_labels - n_old_labels) * sizeof (struct label_alignment));
799 }
800
fc470718
R
801 /* Initialize label_align and set up uid_shuid to be strictly
802 monotonically rising with insn order. */
e2faec75
R
803 /* We use max_log here to keep track of the maximum alignment we want to
804 impose on the next CODE_LABEL (or the current one if we are processing
805 the CODE_LABEL itself). */
f5d927c0 806
9e423e6d
JW
807 max_log = 0;
808 max_skip = 0;
809
810 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
fc470718
R
811 {
812 int log;
813
814 INSN_SHUID (insn) = i++;
2c3c49de 815 if (INSN_P (insn))
e2faec75
R
816 {
817 /* reorg might make the first insn of a loop being run once only,
818 and delete the label in front of it. Then we want to apply
819 the loop alignment to the new label created by reorg, which
820 is separated by the former loop start insn from the
821 NOTE_INSN_LOOP_BEG. */
822 }
fc470718
R
823 else if (GET_CODE (insn) == CODE_LABEL)
824 {
825 rtx next;
ff81832f 826
247a370b
JH
827 /* Merge in alignments computed by compute_alignments. */
828 log = LABEL_TO_ALIGNMENT (insn);
829 if (max_log < log)
830 {
831 max_log = log;
832 max_skip = LABEL_TO_MAX_SKIP (insn);
833 }
fc470718
R
834
835 log = LABEL_ALIGN (insn);
836 if (max_log < log)
9e423e6d
JW
837 {
838 max_log = log;
839 max_skip = LABEL_ALIGN_MAX_SKIP;
840 }
fc470718 841 next = NEXT_INSN (insn);
75197b37
BS
842 /* ADDR_VECs only take room if read-only data goes into the text
843 section. */
d48bc59a 844 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
845 if (next && GET_CODE (next) == JUMP_INSN)
846 {
847 rtx nextbody = PATTERN (next);
848 if (GET_CODE (nextbody) == ADDR_VEC
849 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
850 {
851 log = ADDR_VEC_ALIGN (next);
852 if (max_log < log)
853 {
854 max_log = log;
855 max_skip = LABEL_ALIGN_MAX_SKIP;
856 }
857 }
858 }
fc470718 859 LABEL_TO_ALIGNMENT (insn) = max_log;
9e423e6d 860 LABEL_TO_MAX_SKIP (insn) = max_skip;
fc470718 861 max_log = 0;
9e423e6d 862 max_skip = 0;
fc470718
R
863 }
864 else if (GET_CODE (insn) == BARRIER)
865 {
866 rtx label;
867
2c3c49de 868 for (label = insn; label && ! INSN_P (label);
fc470718
R
869 label = NEXT_INSN (label))
870 if (GET_CODE (label) == CODE_LABEL)
871 {
872 log = LABEL_ALIGN_AFTER_BARRIER (insn);
873 if (max_log < log)
9e423e6d
JW
874 {
875 max_log = log;
876 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
877 }
fc470718
R
878 break;
879 }
880 }
fc470718
R
881 }
882#ifdef HAVE_ATTR_length
883
884 /* Allocate the rest of the arrays. */
addd7df6 885 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
ea3cbda5 886 insn_lengths_max_uid = max_uid;
af035616
R
887 /* Syntax errors can lead to labels being outside of the main insn stream.
888 Initialize insn_addresses, so that we get reproducible results. */
9d98a694 889 INSN_ADDRESSES_ALLOC (max_uid);
fc470718 890
3de90026 891 varying_length = (char *) xcalloc (max_uid, sizeof (char));
fc470718
R
892
893 /* Initialize uid_align. We scan instructions
894 from end to start, and keep in align_tab[n] the last seen insn
895 that does an alignment of at least n+1, i.e. the successor
896 in the alignment chain for an insn that does / has a known
897 alignment of n. */
3de90026 898 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
fc470718 899
f5d927c0 900 for (i = MAX_CODE_ALIGN; --i >= 0;)
fc470718
R
901 align_tab[i] = NULL_RTX;
902 seq = get_last_insn ();
33f7f353 903 for (; seq; seq = PREV_INSN (seq))
fc470718
R
904 {
905 int uid = INSN_UID (seq);
906 int log;
fc470718
R
907 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
908 uid_align[uid] = align_tab[0];
fc470718
R
909 if (log)
910 {
911 /* Found an alignment label. */
912 uid_align[uid] = align_tab[log];
913 for (i = log - 1; i >= 0; i--)
914 align_tab[i] = seq;
915 }
33f7f353
JR
916 }
917#ifdef CASE_VECTOR_SHORTEN_MODE
918 if (optimize)
919 {
920 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
921 label fields. */
922
923 int min_shuid = INSN_SHUID (get_insns ()) - 1;
924 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
925 int rel;
926
927 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
fc470718 928 {
33f7f353
JR
929 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
930 int len, i, min, max, insn_shuid;
931 int min_align;
932 addr_diff_vec_flags flags;
933
934 if (GET_CODE (insn) != JUMP_INSN
935 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
936 continue;
937 pat = PATTERN (insn);
938 len = XVECLEN (pat, 1);
939 if (len <= 0)
940 abort ();
941 min_align = MAX_CODE_ALIGN;
942 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
943 {
944 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
945 int shuid = INSN_SHUID (lab);
946 if (shuid < min)
947 {
948 min = shuid;
949 min_lab = lab;
950 }
951 if (shuid > max)
952 {
953 max = shuid;
954 max_lab = lab;
955 }
956 if (min_align > LABEL_TO_ALIGNMENT (lab))
957 min_align = LABEL_TO_ALIGNMENT (lab);
958 }
959 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
960 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
961 insn_shuid = INSN_SHUID (insn);
962 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
963 flags.min_align = min_align;
964 flags.base_after_vec = rel > insn_shuid;
965 flags.min_after_vec = min > insn_shuid;
966 flags.max_after_vec = max > insn_shuid;
967 flags.min_after_base = min > rel;
968 flags.max_after_base = max > rel;
969 ADDR_DIFF_VEC_FLAGS (pat) = flags;
fc470718
R
970 }
971 }
33f7f353 972#endif /* CASE_VECTOR_SHORTEN_MODE */
3cf2715d 973
3cf2715d
DE
974 /* Compute initial lengths, addresses, and varying flags for each insn. */
975 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
976 insn != 0;
977 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
978 {
979 uid = INSN_UID (insn);
fc470718 980
3cf2715d 981 insn_lengths[uid] = 0;
fc470718
R
982
983 if (GET_CODE (insn) == CODE_LABEL)
984 {
985 int log = LABEL_TO_ALIGNMENT (insn);
986 if (log)
987 {
988 int align = 1 << log;
ecb06768 989 int new_address = (insn_current_address + align - 1) & -align;
fc470718 990 insn_lengths[uid] = new_address - insn_current_address;
fc470718
R
991 }
992 }
993
5a09edba 994 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
f5d927c0 995
3cf2715d
DE
996 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
997 || GET_CODE (insn) == CODE_LABEL)
998 continue;
04da53bd
R
999 if (INSN_DELETED_P (insn))
1000 continue;
3cf2715d
DE
1001
1002 body = PATTERN (insn);
1003 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
5a32a90c
JR
1004 {
1005 /* This only takes room if read-only data goes into the text
1006 section. */
d48bc59a 1007 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1008 insn_lengths[uid] = (XVECLEN (body,
1009 GET_CODE (body) == ADDR_DIFF_VEC)
1010 * GET_MODE_SIZE (GET_MODE (body)));
5a32a90c 1011 /* Alignment is handled by ADDR_VEC_ALIGN. */
5a32a90c 1012 }
a30caf5c 1013 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
3cf2715d
DE
1014 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1015 else if (GET_CODE (body) == SEQUENCE)
1016 {
1017 int i;
1018 int const_delay_slots;
1019#ifdef DELAY_SLOTS
1020 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1021#else
1022 const_delay_slots = 0;
1023#endif
1024 /* Inside a delay slot sequence, we do not do any branch shortening
1025 if the shortening could change the number of delay slots
0f41302f 1026 of the branch. */
3cf2715d
DE
1027 for (i = 0; i < XVECLEN (body, 0); i++)
1028 {
1029 rtx inner_insn = XVECEXP (body, 0, i);
1030 int inner_uid = INSN_UID (inner_insn);
1031 int inner_length;
1032
a30caf5c
DC
1033 if (GET_CODE (body) == ASM_INPUT
1034 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
3cf2715d
DE
1035 inner_length = (asm_insn_count (PATTERN (inner_insn))
1036 * insn_default_length (inner_insn));
1037 else
1038 inner_length = insn_default_length (inner_insn);
f5d927c0 1039
3cf2715d
DE
1040 insn_lengths[inner_uid] = inner_length;
1041 if (const_delay_slots)
1042 {
1043 if ((varying_length[inner_uid]
1044 = insn_variable_length_p (inner_insn)) != 0)
1045 varying_length[uid] = 1;
9d98a694
AO
1046 INSN_ADDRESSES (inner_uid) = (insn_current_address
1047 + insn_lengths[uid]);
3cf2715d
DE
1048 }
1049 else
1050 varying_length[inner_uid] = 0;
1051 insn_lengths[uid] += inner_length;
1052 }
1053 }
1054 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1055 {
1056 insn_lengths[uid] = insn_default_length (insn);
1057 varying_length[uid] = insn_variable_length_p (insn);
1058 }
1059
1060 /* If needed, do any adjustment. */
1061#ifdef ADJUST_INSN_LENGTH
1062 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
04b6000c 1063 if (insn_lengths[uid] < 0)
c725bd79 1064 fatal_insn ("negative insn length", insn);
3cf2715d
DE
1065#endif
1066 }
1067
1068 /* Now loop over all the insns finding varying length insns. For each,
1069 get the current insn length. If it has changed, reflect the change.
1070 When nothing changes for a full pass, we are done. */
1071
1072 while (something_changed)
1073 {
1074 something_changed = 0;
fc470718 1075 insn_current_align = MAX_CODE_ALIGN - 1;
3cf2715d
DE
1076 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1077 insn != 0;
1078 insn = NEXT_INSN (insn))
1079 {
1080 int new_length;
b729186a 1081#ifdef ADJUST_INSN_LENGTH
3cf2715d 1082 int tmp_length;
b729186a 1083#endif
fc470718 1084 int length_align;
3cf2715d
DE
1085
1086 uid = INSN_UID (insn);
fc470718
R
1087
1088 if (GET_CODE (insn) == CODE_LABEL)
1089 {
1090 int log = LABEL_TO_ALIGNMENT (insn);
1091 if (log > insn_current_align)
1092 {
1093 int align = 1 << log;
ecb06768 1094 int new_address= (insn_current_address + align - 1) & -align;
fc470718
R
1095 insn_lengths[uid] = new_address - insn_current_address;
1096 insn_current_align = log;
1097 insn_current_address = new_address;
1098 }
1099 else
1100 insn_lengths[uid] = 0;
9d98a694 1101 INSN_ADDRESSES (uid) = insn_current_address;
fc470718
R
1102 continue;
1103 }
1104
1105 length_align = INSN_LENGTH_ALIGNMENT (insn);
1106 if (length_align < insn_current_align)
1107 insn_current_align = length_align;
1108
9d98a694
AO
1109 insn_last_address = INSN_ADDRESSES (uid);
1110 INSN_ADDRESSES (uid) = insn_current_address;
fc470718 1111
5e75ef4a 1112#ifdef CASE_VECTOR_SHORTEN_MODE
33f7f353
JR
1113 if (optimize && GET_CODE (insn) == JUMP_INSN
1114 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1115 {
33f7f353
JR
1116 rtx body = PATTERN (insn);
1117 int old_length = insn_lengths[uid];
1118 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1119 rtx min_lab = XEXP (XEXP (body, 2), 0);
1120 rtx max_lab = XEXP (XEXP (body, 3), 0);
9d98a694
AO
1121 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1122 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1123 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
33f7f353
JR
1124 rtx prev;
1125 int rel_align = 0;
950a3816
KG
1126 addr_diff_vec_flags flags;
1127
1128 /* Avoid automatic aggregate initialization. */
1129 flags = ADDR_DIFF_VEC_FLAGS (body);
33f7f353
JR
1130
1131 /* Try to find a known alignment for rel_lab. */
1132 for (prev = rel_lab;
1133 prev
1134 && ! insn_lengths[INSN_UID (prev)]
1135 && ! (varying_length[INSN_UID (prev)] & 1);
1136 prev = PREV_INSN (prev))
1137 if (varying_length[INSN_UID (prev)] & 2)
1138 {
1139 rel_align = LABEL_TO_ALIGNMENT (prev);
1140 break;
1141 }
1142
1143 /* See the comment on addr_diff_vec_flags in rtl.h for the
1144 meaning of the flags values. base: REL_LAB vec: INSN */
1145 /* Anything after INSN has still addresses from the last
1146 pass; adjust these so that they reflect our current
1147 estimate for this pass. */
1148 if (flags.base_after_vec)
1149 rel_addr += insn_current_address - insn_last_address;
1150 if (flags.min_after_vec)
1151 min_addr += insn_current_address - insn_last_address;
1152 if (flags.max_after_vec)
1153 max_addr += insn_current_address - insn_last_address;
1154 /* We want to know the worst case, i.e. lowest possible value
1155 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1156 its offset is positive, and we have to be wary of code shrink;
1157 otherwise, it is negative, and we have to be vary of code
1158 size increase. */
1159 if (flags.min_after_base)
1160 {
1161 /* If INSN is between REL_LAB and MIN_LAB, the size
1162 changes we are about to make can change the alignment
1163 within the observed offset, therefore we have to break
1164 it up into two parts that are independent. */
1165 if (! flags.base_after_vec && flags.min_after_vec)
1166 {
1167 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1168 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1169 }
1170 else
1171 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1172 }
1173 else
1174 {
1175 if (flags.base_after_vec && ! flags.min_after_vec)
1176 {
1177 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1178 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1179 }
1180 else
1181 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1182 }
1183 /* Likewise, determine the highest lowest possible value
1184 for the offset of MAX_LAB. */
1185 if (flags.max_after_base)
1186 {
1187 if (! flags.base_after_vec && flags.max_after_vec)
1188 {
1189 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1190 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1191 }
1192 else
1193 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1194 }
1195 else
1196 {
1197 if (flags.base_after_vec && ! flags.max_after_vec)
1198 {
1199 max_addr += align_fuzz (max_lab, insn, 0, 0);
1200 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1201 }
1202 else
1203 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1204 }
1205 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1206 max_addr - rel_addr,
1207 body));
d48bc59a 1208 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1209 {
1210 insn_lengths[uid]
1211 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1212 insn_current_address += insn_lengths[uid];
1213 if (insn_lengths[uid] != old_length)
1214 something_changed = 1;
1215 }
1216
33f7f353 1217 continue;
33f7f353 1218 }
5e75ef4a
JL
1219#endif /* CASE_VECTOR_SHORTEN_MODE */
1220
1221 if (! (varying_length[uid]))
3cf2715d 1222 {
674fc07d
GS
1223 if (GET_CODE (insn) == INSN
1224 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1225 {
1226 int i;
1227
1228 body = PATTERN (insn);
1229 for (i = 0; i < XVECLEN (body, 0); i++)
1230 {
1231 rtx inner_insn = XVECEXP (body, 0, i);
1232 int inner_uid = INSN_UID (inner_insn);
1233
1234 INSN_ADDRESSES (inner_uid) = insn_current_address;
1235
1236 insn_current_address += insn_lengths[inner_uid];
1237 }
dd3f0101 1238 }
674fc07d
GS
1239 else
1240 insn_current_address += insn_lengths[uid];
1241
3cf2715d
DE
1242 continue;
1243 }
674fc07d 1244
3cf2715d
DE
1245 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1246 {
1247 int i;
f5d927c0 1248
3cf2715d
DE
1249 body = PATTERN (insn);
1250 new_length = 0;
1251 for (i = 0; i < XVECLEN (body, 0); i++)
1252 {
1253 rtx inner_insn = XVECEXP (body, 0, i);
1254 int inner_uid = INSN_UID (inner_insn);
1255 int inner_length;
1256
9d98a694 1257 INSN_ADDRESSES (inner_uid) = insn_current_address;
3cf2715d
DE
1258
1259 /* insn_current_length returns 0 for insns with a
1260 non-varying length. */
1261 if (! varying_length[inner_uid])
1262 inner_length = insn_lengths[inner_uid];
1263 else
1264 inner_length = insn_current_length (inner_insn);
1265
1266 if (inner_length != insn_lengths[inner_uid])
1267 {
1268 insn_lengths[inner_uid] = inner_length;
1269 something_changed = 1;
1270 }
1271 insn_current_address += insn_lengths[inner_uid];
1272 new_length += inner_length;
1273 }
1274 }
1275 else
1276 {
1277 new_length = insn_current_length (insn);
1278 insn_current_address += new_length;
1279 }
1280
3cf2715d
DE
1281#ifdef ADJUST_INSN_LENGTH
1282 /* If needed, do any adjustment. */
1283 tmp_length = new_length;
1284 ADJUST_INSN_LENGTH (insn, new_length);
1285 insn_current_address += (new_length - tmp_length);
3cf2715d
DE
1286#endif
1287
1288 if (new_length != insn_lengths[uid])
1289 {
1290 insn_lengths[uid] = new_length;
1291 something_changed = 1;
1292 }
1293 }
bb4aaf18
TG
1294 /* For a non-optimizing compile, do only a single pass. */
1295 if (!optimize)
1296 break;
3cf2715d 1297 }
fc470718
R
1298
1299 free (varying_length);
1300
3cf2715d
DE
1301#endif /* HAVE_ATTR_length */
1302}
1303
1304#ifdef HAVE_ATTR_length
1305/* Given the body of an INSN known to be generated by an ASM statement, return
1306 the number of machine instructions likely to be generated for this insn.
1307 This is used to compute its length. */
1308
1309static int
1310asm_insn_count (body)
1311 rtx body;
1312{
3cce094d 1313 const char *template;
3cf2715d
DE
1314 int count = 1;
1315
5d0930ea
DE
1316 if (GET_CODE (body) == ASM_INPUT)
1317 template = XSTR (body, 0);
1318 else
df4ae160 1319 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
5d0930ea 1320
f5d927c0
KH
1321 for (; *template; template++)
1322 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
3cf2715d
DE
1323 count++;
1324
1325 return count;
1326}
1327#endif
1328\f
1329/* Output assembler code for the start of a function,
1330 and initialize some of the variables in this file
1331 for the new function. The label for the function and associated
1332 assembler pseudo-ops have already been output in `assemble_start_function'.
1333
1334 FIRST is the first insn of the rtl for the function being compiled.
1335 FILE is the file to write assembler code to.
1336 OPTIMIZE is nonzero if we should eliminate redundant
1337 test and compare insns. */
1338
1339void
1340final_start_function (first, file, optimize)
1341 rtx first;
1342 FILE *file;
6a651371 1343 int optimize ATTRIBUTE_UNUSED;
3cf2715d
DE
1344{
1345 block_depth = 0;
1346
1347 this_is_asm_operands = 0;
1348
1349#ifdef NON_SAVING_SETJMP
1350 /* A function that calls setjmp should save and restore all the
1351 call-saved registers on a system where longjmp clobbers them. */
1352 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1353 {
1354 int i;
1355
1356 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
252f342a 1357 if (!call_used_regs[i])
3cf2715d
DE
1358 regs_ever_live[i] = 1;
1359 }
1360#endif
f5d927c0 1361
3cf2715d 1362 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
653e276c
NB
1363 notice_source_line (first);
1364 high_block_linenum = high_function_linenum = last_linenum;
eac40081 1365
653e276c 1366 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
d291dd49 1367
653e276c 1368#if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
7a0c8d71 1369 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
653e276c 1370 dwarf2out_begin_prologue (0, NULL);
f5d927c0 1371#endif
3cf2715d
DE
1372
1373#ifdef LEAF_REG_REMAP
54ff41b7 1374 if (current_function_uses_only_leaf_regs)
3cf2715d
DE
1375 leaf_renumber_regs (first);
1376#endif
1377
1378 /* The Sun386i and perhaps other machines don't work right
1379 if the profiling code comes after the prologue. */
1380#ifdef PROFILE_BEFORE_PROLOGUE
70f4f91c 1381 if (current_function_profile)
3cf2715d
DE
1382 profile_function (file);
1383#endif /* PROFILE_BEFORE_PROLOGUE */
1384
0021b564
JM
1385#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1386 if (dwarf2out_do_frame ())
1387 dwarf2out_frame_debug (NULL_RTX);
1388#endif
1389
18c038b9
MM
1390 /* If debugging, assign block numbers to all of the blocks in this
1391 function. */
1392 if (write_symbols)
1393 {
3ac79482 1394 remove_unnecessary_notes ();
ba4f7968 1395 scope_to_insns_finalize ();
a20612aa 1396 number_blocks (current_function_decl);
18c038b9
MM
1397 /* We never actually put out begin/end notes for the top-level
1398 block in the function. But, conceptually, that block is
1399 always needed. */
1400 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1401 }
1402
3cf2715d 1403 /* First output the function prologue: code to set up the stack frame. */
f6897b10 1404 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
3cf2715d 1405
3cf2715d
DE
1406 /* If the machine represents the prologue as RTL, the profiling code must
1407 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1408#ifdef HAVE_prologue
1409 if (! HAVE_prologue)
1410#endif
1411 profile_after_prologue (file);
3cf2715d
DE
1412}
1413
1414static void
1415profile_after_prologue (file)
7bdb32b9 1416 FILE *file ATTRIBUTE_UNUSED;
3cf2715d 1417{
3cf2715d 1418#ifndef PROFILE_BEFORE_PROLOGUE
70f4f91c 1419 if (current_function_profile)
3cf2715d
DE
1420 profile_function (file);
1421#endif /* not PROFILE_BEFORE_PROLOGUE */
1422}
1423
1424static void
1425profile_function (file)
b3656137 1426 FILE *file ATTRIBUTE_UNUSED;
3cf2715d 1427{
dcacfa04 1428#ifndef NO_PROFILE_COUNTERS
9e2f9a7f 1429 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
dcacfa04 1430#endif
b729186a
JL
1431#if defined(ASM_OUTPUT_REG_PUSH)
1432#if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
3cf2715d 1433 int sval = current_function_returns_struct;
b729186a
JL
1434#endif
1435#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
3cf2715d 1436 int cxt = current_function_needs_context;
b729186a
JL
1437#endif
1438#endif /* ASM_OUTPUT_REG_PUSH */
3cf2715d 1439
dcacfa04 1440#ifndef NO_PROFILE_COUNTERS
3cf2715d
DE
1441 data_section ();
1442 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
4977bab6 1443 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
c8af3574 1444 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
dcacfa04 1445#endif
3cf2715d 1446
499df339 1447 function_section (current_function_decl);
3cf2715d 1448
65ed39df 1449#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1450 if (sval)
1451 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1452#else
65ed39df 1453#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1454 if (sval)
51723711
KG
1455 {
1456 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1457 }
3cf2715d
DE
1458#endif
1459#endif
1460
65ed39df 1461#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1462 if (cxt)
1463 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1464#else
65ed39df 1465#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1466 if (cxt)
51723711
KG
1467 {
1468 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1469 }
3cf2715d
DE
1470#endif
1471#endif
3cf2715d 1472
df696a75 1473 FUNCTION_PROFILER (file, current_function_funcdef_no);
3cf2715d 1474
65ed39df 1475#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1476 if (cxt)
1477 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1478#else
65ed39df 1479#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1480 if (cxt)
51723711
KG
1481 {
1482 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1483 }
3cf2715d
DE
1484#endif
1485#endif
3cf2715d 1486
65ed39df 1487#if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1488 if (sval)
1489 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1490#else
65ed39df 1491#if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1492 if (sval)
51723711
KG
1493 {
1494 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1495 }
3cf2715d
DE
1496#endif
1497#endif
1498}
1499
1500/* Output assembler code for the end of a function.
1501 For clarity, args are same as those of `final_start_function'
1502 even though not all of them are needed. */
1503
1504void
e2a12aca 1505final_end_function ()
3cf2715d 1506{
be1bb652 1507 app_disable ();
3cf2715d 1508
e2a12aca 1509 (*debug_hooks->end_function) (high_function_linenum);
3cf2715d 1510
3cf2715d
DE
1511 /* Finally, output the function epilogue:
1512 code to restore the stack frame and return to the caller. */
e2a12aca 1513 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
3cf2715d 1514
e2a12aca 1515 /* And debug output. */
702ada3d 1516 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
3cf2715d 1517
e2a12aca 1518#if defined (DWARF2_UNWIND_INFO)
7a0c8d71
DR
1519 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1520 && dwarf2out_do_frame ())
702ada3d 1521 dwarf2out_end_epilogue (last_linenum, last_filename);
9a666dda 1522#endif
3cf2715d
DE
1523}
1524\f
3cf2715d
DE
1525/* Output assembler code for some insns: all or part of a function.
1526 For description of args, see `final_start_function', above.
1527
1528 PRESCAN is 1 if we are not really outputting,
1529 just scanning as if we were outputting.
1530 Prescanning deletes and rearranges insns just like ordinary output.
1531 PRESCAN is -2 if we are outputting after having prescanned.
1532 In this case, don't try to delete or rearrange insns
1533 because that has already been done.
1534 Prescanning is done only on certain machines. */
1535
1536void
1537final (first, file, optimize, prescan)
1538 rtx first;
1539 FILE *file;
1540 int optimize;
1541 int prescan;
1542{
b3694847 1543 rtx insn;
3cf2715d 1544 int max_line = 0;
a8c3510c 1545 int max_uid = 0;
3cf2715d
DE
1546
1547 last_ignored_compare = 0;
3cf2715d
DE
1548
1549 /* Make a map indicating which line numbers appear in this function.
1550 When producing SDB debugging info, delete troublesome line number
1551 notes from inlined functions in other files as well as duplicate
1552 line number notes. */
1553#ifdef SDB_DEBUGGING_INFO
1554 if (write_symbols == SDB_DEBUG)
1555 {
1556 rtx last = 0;
1557 for (insn = first; insn; insn = NEXT_INSN (insn))
1558 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1559 {
1560 if ((RTX_INTEGRATED_P (insn)
1561 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1562 || (last != 0
1563 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1564 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1565 {
2e106602 1566 delete_insn (insn); /* Use delete_note. */
3cf2715d
DE
1567 continue;
1568 }
1569 last = insn;
1570 if (NOTE_LINE_NUMBER (insn) > max_line)
1571 max_line = NOTE_LINE_NUMBER (insn);
1572 }
1573 }
1574 else
1575#endif
1576 {
1577 for (insn = first; insn; insn = NEXT_INSN (insn))
1578 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1579 max_line = NOTE_LINE_NUMBER (insn);
1580 }
1581
bedda2da 1582 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
3cf2715d
DE
1583
1584 for (insn = first; insn; insn = NEXT_INSN (insn))
a8c3510c
AM
1585 {
1586 if (INSN_UID (insn) > max_uid) /* find largest UID */
f5d927c0 1587 max_uid = INSN_UID (insn);
a8c3510c 1588 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
f5d927c0 1589 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
9ef4c6ef
JC
1590#ifdef HAVE_cc0
1591 /* If CC tracking across branches is enabled, record the insn which
1592 jumps to each branch only reached from one place. */
7ad7f828 1593 if (optimize && GET_CODE (insn) == JUMP_INSN)
9ef4c6ef
JC
1594 {
1595 rtx lab = JUMP_LABEL (insn);
1596 if (lab && LABEL_NUSES (lab) == 1)
1597 {
1598 LABEL_REFS (lab) = insn;
1599 }
1600 }
1601#endif
a8c3510c
AM
1602 }
1603
3cf2715d
DE
1604 init_recog ();
1605
1606 CC_STATUS_INIT;
1607
1608 /* Output the insns. */
1609 for (insn = NEXT_INSN (first); insn;)
2f16edb1
TG
1610 {
1611#ifdef HAVE_ATTR_length
b9f22704 1612 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
0ac76ad9 1613 {
0ac76ad9
RH
1614 /* This can be triggered by bugs elsewhere in the compiler if
1615 new insns are created after init_insn_lengths is called. */
0acb0203
JH
1616 if (GET_CODE (insn) == NOTE)
1617 insn_current_address = -1;
1618 else
1619 abort ();
0ac76ad9
RH
1620 }
1621 else
9d98a694 1622 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
0ac76ad9
RH
1623#endif /* HAVE_ATTR_length */
1624
2f16edb1
TG
1625 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1626 }
3cf2715d 1627
bedda2da
MM
1628 free (line_note_exists);
1629 line_note_exists = NULL;
3cf2715d
DE
1630}
1631\f
4bbf910e
RH
1632const char *
1633get_insn_template (code, insn)
1634 int code;
1635 rtx insn;
1636{
1637 const void *output = insn_data[code].output;
1638 switch (insn_data[code].output_format)
1639 {
1640 case INSN_OUTPUT_FORMAT_SINGLE:
1641 return (const char *) output;
1642 case INSN_OUTPUT_FORMAT_MULTI:
f5d927c0 1643 return ((const char *const *) output)[which_alternative];
4bbf910e
RH
1644 case INSN_OUTPUT_FORMAT_FUNCTION:
1645 if (insn == NULL)
1646 abort ();
f5d927c0 1647 return (*(insn_output_fn) output) (recog_data.operand, insn);
4bbf910e
RH
1648
1649 default:
1650 abort ();
1651 }
1652}
f5d927c0 1653
0dc36574
ZW
1654/* Emit the appropriate declaration for an alternate-entry-point
1655 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1656 LABEL_KIND != LABEL_NORMAL.
1657
1658 The case fall-through in this function is intentional. */
1659static void
1660output_alternate_entry_point (file, insn)
1661 FILE *file;
1662 rtx insn;
1663{
1664 const char *name = LABEL_NAME (insn);
1665
1666 switch (LABEL_KIND (insn))
1667 {
1668 case LABEL_WEAK_ENTRY:
1669#ifdef ASM_WEAKEN_LABEL
1670 ASM_WEAKEN_LABEL (file, name);
1671#endif
1672 case LABEL_GLOBAL_ENTRY:
5eb99654 1673 (*targetm.asm_out.globalize_label) (file, name);
0dc36574 1674 case LABEL_STATIC_ENTRY:
905173eb
ZW
1675#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1676 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1677#endif
0dc36574
ZW
1678 ASM_OUTPUT_LABEL (file, name);
1679 break;
1680
1681 case LABEL_NORMAL:
1682 default:
1683 abort ();
1684 }
1685}
1686
3cf2715d
DE
1687/* The final scan for one insn, INSN.
1688 Args are same as in `final', except that INSN
1689 is the insn being scanned.
1690 Value returned is the next insn to be scanned.
1691
1692 NOPEEPHOLES is the flag to disallow peephole processing (currently
1693 used for within delayed branch sequence output). */
1694
1695rtx
1696final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1697 rtx insn;
1698 FILE *file;
272df862 1699 int optimize ATTRIBUTE_UNUSED;
3cf2715d 1700 int prescan;
272df862 1701 int nopeepholes ATTRIBUTE_UNUSED;
3cf2715d 1702{
90ca38bb
MM
1703#ifdef HAVE_cc0
1704 rtx set;
1705#endif
1706
3cf2715d
DE
1707 insn_counter++;
1708
1709 /* Ignore deleted insns. These can occur when we split insns (due to a
1710 template of "#") while not optimizing. */
1711 if (INSN_DELETED_P (insn))
1712 return NEXT_INSN (insn);
1713
1714 switch (GET_CODE (insn))
1715 {
1716 case NOTE:
1717 if (prescan > 0)
1718 break;
1719
be1bb652
RH
1720 switch (NOTE_LINE_NUMBER (insn))
1721 {
1722 case NOTE_INSN_DELETED:
1723 case NOTE_INSN_LOOP_BEG:
1724 case NOTE_INSN_LOOP_END:
2c79137a 1725 case NOTE_INSN_LOOP_END_TOP_COND:
be1bb652
RH
1726 case NOTE_INSN_LOOP_CONT:
1727 case NOTE_INSN_LOOP_VTOP:
1728 case NOTE_INSN_FUNCTION_END:
be1bb652 1729 case NOTE_INSN_REPEATED_LINE_NUMBER:
be1bb652
RH
1730 case NOTE_INSN_EXPECTED_VALUE:
1731 break;
3cf2715d 1732
be1bb652 1733 case NOTE_INSN_BASIC_BLOCK:
ad0fc698
JW
1734#ifdef IA64_UNWIND_INFO
1735 IA64_UNWIND_EMIT (asm_out_file, insn);
1736#endif
be1bb652
RH
1737 if (flag_debug_asm)
1738 fprintf (asm_out_file, "\t%s basic block %d\n",
0b17ab2f 1739 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
be1bb652 1740 break;
3cf2715d 1741
be1bb652 1742 case NOTE_INSN_EH_REGION_BEG:
52a11cbf
RH
1743 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1744 NOTE_EH_HANDLER (insn));
3d195391 1745 break;
3d195391 1746
be1bb652 1747 case NOTE_INSN_EH_REGION_END:
52a11cbf
RH
1748 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1749 NOTE_EH_HANDLER (insn));
3d195391 1750 break;
3d195391 1751
be1bb652 1752 case NOTE_INSN_PROLOGUE_END:
b9f22704 1753 (*targetm.asm_out.function_end_prologue) (file);
3cf2715d
DE
1754 profile_after_prologue (file);
1755 break;
3cf2715d 1756
be1bb652 1757 case NOTE_INSN_EPILOGUE_BEG:
b9f22704 1758 (*targetm.asm_out.function_begin_epilogue) (file);
be1bb652 1759 break;
3cf2715d 1760
be1bb652 1761 case NOTE_INSN_FUNCTION_BEG:
653e276c 1762 app_disable ();
702ada3d 1763 (*debug_hooks->end_prologue) (last_linenum, last_filename);
3cf2715d 1764 break;
be1bb652
RH
1765
1766 case NOTE_INSN_BLOCK_BEG:
1767 if (debug_info_level == DINFO_LEVEL_NORMAL
3cf2715d 1768 || debug_info_level == DINFO_LEVEL_VERBOSE
3cf2715d 1769 || write_symbols == DWARF_DEBUG
7a0c8d71
DR
1770 || write_symbols == DWARF2_DEBUG
1771 || write_symbols == VMS_AND_DWARF2_DEBUG
1772 || write_symbols == VMS_DEBUG)
be1bb652
RH
1773 {
1774 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1775
be1bb652
RH
1776 app_disable ();
1777 ++block_depth;
1778 high_block_linenum = last_linenum;
eac40081 1779
a5a42b92 1780 /* Output debugging info about the symbol-block beginning. */
e2a12aca 1781 (*debug_hooks->begin_block) (last_linenum, n);
3cf2715d 1782
be1bb652
RH
1783 /* Mark this block as output. */
1784 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1785 }
1786 break;
18c038b9 1787
be1bb652
RH
1788 case NOTE_INSN_BLOCK_END:
1789 if (debug_info_level == DINFO_LEVEL_NORMAL
1790 || debug_info_level == DINFO_LEVEL_VERBOSE
1791 || write_symbols == DWARF_DEBUG
7a0c8d71
DR
1792 || write_symbols == DWARF2_DEBUG
1793 || write_symbols == VMS_AND_DWARF2_DEBUG
1794 || write_symbols == VMS_DEBUG)
be1bb652
RH
1795 {
1796 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1797
be1bb652
RH
1798 app_disable ();
1799
1800 /* End of a symbol-block. */
1801 --block_depth;
1802 if (block_depth < 0)
1803 abort ();
3cf2715d 1804
e2a12aca 1805 (*debug_hooks->end_block) (high_block_linenum, n);
be1bb652
RH
1806 }
1807 break;
1808
1809 case NOTE_INSN_DELETED_LABEL:
1810 /* Emit the label. We may have deleted the CODE_LABEL because
1811 the label could be proved to be unreachable, though still
1812 referenced (in the form of having its address taken. */
8215347e 1813 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
be1bb652 1814 break;
3cf2715d 1815
21835d9b
JJ
1816 case 0:
1817 break;
1818
be1bb652
RH
1819 default:
1820 if (NOTE_LINE_NUMBER (insn) <= 0)
1821 abort ();
3cf2715d 1822
be1bb652
RH
1823 /* This note is a line-number. */
1824 {
b3694847 1825 rtx note;
be1bb652
RH
1826 int note_after = 0;
1827
f5d927c0 1828 /* If there is anything real after this note, output it.
be1bb652
RH
1829 If another line note follows, omit this one. */
1830 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
1831 {
1832 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
3cf2715d 1833 break;
3cf2715d 1834
be1bb652
RH
1835 /* These types of notes can be significant
1836 so make sure the preceding line number stays. */
1837 else if (GET_CODE (note) == NOTE
1838 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
1839 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
1840 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
1841 break;
1842 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
1843 {
1844 /* Another line note follows; we can delete this note
1845 if no intervening line numbers have notes elsewhere. */
1846 int num;
1847 for (num = NOTE_LINE_NUMBER (insn) + 1;
1848 num < NOTE_LINE_NUMBER (note);
1849 num++)
1850 if (line_note_exists[num])
1851 break;
1852
1853 if (num >= NOTE_LINE_NUMBER (note))
1854 note_after = 1;
1855 break;
1856 }
1857 }
1858
1859 /* Output this line note if it is the first or the last line
1860 note in a row. */
1861 if (!note_after)
653e276c
NB
1862 {
1863 notice_source_line (insn);
1864 (*debug_hooks->source_line) (last_linenum, last_filename);
1865 }
be1bb652 1866 }
f5d927c0 1867 break;
3cf2715d
DE
1868 }
1869 break;
1870
1871 case BARRIER:
f73ad30e 1872#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 1873 if (dwarf2out_do_frame ())
be1bb652 1874 dwarf2out_frame_debug (insn);
3cf2715d
DE
1875#endif
1876 break;
1877
1878 case CODE_LABEL:
1dd8faa8
R
1879 /* The target port might emit labels in the output function for
1880 some insn, e.g. sh.c output_branchy_insn. */
de7987a6
R
1881 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1882 {
1883 int align = LABEL_TO_ALIGNMENT (insn);
50b2596f 1884#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
9e423e6d 1885 int max_skip = LABEL_TO_MAX_SKIP (insn);
50b2596f 1886#endif
fc470718 1887
1dd8faa8 1888 if (align && NEXT_INSN (insn))
40cdfca6 1889 {
9e423e6d 1890#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
40cdfca6 1891 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
8e16ab99
SF
1892#else
1893#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1894 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
9e423e6d 1895#else
40cdfca6 1896 ASM_OUTPUT_ALIGN (file, align);
8e16ab99 1897#endif
9e423e6d 1898#endif
40cdfca6 1899 }
de7987a6 1900 }
9ef4c6ef 1901#ifdef HAVE_cc0
3cf2715d 1902 CC_STATUS_INIT;
9ef4c6ef
JC
1903 /* If this label is reached from only one place, set the condition
1904 codes from the instruction just before the branch. */
7ad7f828
JC
1905
1906 /* Disabled because some insns set cc_status in the C output code
1907 and NOTICE_UPDATE_CC alone can set incorrect status. */
1908 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
9ef4c6ef
JC
1909 {
1910 rtx jump = LABEL_REFS (insn);
1911 rtx barrier = prev_nonnote_insn (insn);
1912 rtx prev;
1913 /* If the LABEL_REFS field of this label has been set to point
1914 at a branch, the predecessor of the branch is a regular
1915 insn, and that branch is the only way to reach this label,
1916 set the condition codes based on the branch and its
1917 predecessor. */
1918 if (barrier && GET_CODE (barrier) == BARRIER
1919 && jump && GET_CODE (jump) == JUMP_INSN
1920 && (prev = prev_nonnote_insn (jump))
1921 && GET_CODE (prev) == INSN)
1922 {
1923 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1924 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1925 }
1926 }
1927#endif
3cf2715d
DE
1928 if (prescan > 0)
1929 break;
03ffa171
RK
1930
1931#ifdef FINAL_PRESCAN_LABEL
df4ae160 1932 FINAL_PRESCAN_INSN (insn, NULL, 0);
03ffa171
RK
1933#endif
1934
e1772ac0
NB
1935 if (LABEL_NAME (insn))
1936 (*debug_hooks->label) (insn);
1937
3cf2715d
DE
1938 if (app_on)
1939 {
51723711 1940 fputs (ASM_APP_OFF, file);
3cf2715d
DE
1941 app_on = 0;
1942 }
1943 if (NEXT_INSN (insn) != 0
1944 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1945 {
1946 rtx nextbody = PATTERN (NEXT_INSN (insn));
1947
1948 /* If this label is followed by a jump-table,
1949 make sure we put the label in the read-only section. Also
1950 possibly write the label and jump table together. */
1951
1952 if (GET_CODE (nextbody) == ADDR_VEC
1953 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1954 {
e0d80184
DM
1955#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1956 /* In this case, the case vector is being moved by the
1957 target, so don't output the label at all. Leave that
1958 to the back end macros. */
1959#else
75197b37
BS
1960 if (! JUMP_TABLES_IN_TEXT_SECTION)
1961 {
340f7e7c
RH
1962 int log_align;
1963
75197b37 1964 readonly_data_section ();
340f7e7c
RH
1965
1966#ifdef ADDR_VEC_ALIGN
3e4eece3 1967 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
340f7e7c
RH
1968#else
1969 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1970#endif
1971 ASM_OUTPUT_ALIGN (file, log_align);
75197b37
BS
1972 }
1973 else
1974 function_section (current_function_decl);
1975
3cf2715d
DE
1976#ifdef ASM_OUTPUT_CASE_LABEL
1977 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1978 NEXT_INSN (insn));
1979#else
4977bab6 1980 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
e0d80184 1981#endif
3cf2715d
DE
1982#endif
1983 break;
1984 }
1985 }
0dc36574
ZW
1986 if (LABEL_ALT_ENTRY_P (insn))
1987 output_alternate_entry_point (file, insn);
8cd0faaf 1988 else
4977bab6 1989 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
3cf2715d
DE
1990 break;
1991
1992 default:
1993 {
b3694847 1994 rtx body = PATTERN (insn);
3cf2715d 1995 int insn_code_number;
9b3142b3 1996 const char *template;
3cf2715d
DE
1997 rtx note;
1998
1999 /* An INSN, JUMP_INSN or CALL_INSN.
2000 First check for special kinds that recog doesn't recognize. */
2001
2002 if (GET_CODE (body) == USE /* These are just declarations */
2003 || GET_CODE (body) == CLOBBER)
2004 break;
2005
2006#ifdef HAVE_cc0
2007 /* If there is a REG_CC_SETTER note on this insn, it means that
2008 the setting of the condition code was done in the delay slot
2009 of the insn that branched here. So recover the cc status
2010 from the insn that set it. */
2011
2012 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2013 if (note)
2014 {
2015 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2016 cc_prev_status = cc_status;
2017 }
2018#endif
2019
2020 /* Detect insns that are really jump-tables
2021 and output them as such. */
2022
2023 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2024 {
7f7f8214 2025#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
b3694847 2026 int vlen, idx;
7f7f8214 2027#endif
3cf2715d
DE
2028
2029 if (prescan > 0)
2030 break;
2031
2032 if (app_on)
2033 {
51723711 2034 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2035 app_on = 0;
2036 }
2037
e0d80184
DM
2038#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2039 if (GET_CODE (body) == ADDR_VEC)
2040 {
2041#ifdef ASM_OUTPUT_ADDR_VEC
2042 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2043#else
f5d927c0 2044 abort ();
e0d80184
DM
2045#endif
2046 }
2047 else
2048 {
2049#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2050 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2051#else
f5d927c0 2052 abort ();
e0d80184
DM
2053#endif
2054 }
2055#else
3cf2715d
DE
2056 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2057 for (idx = 0; idx < vlen; idx++)
2058 {
2059 if (GET_CODE (body) == ADDR_VEC)
2060 {
2061#ifdef ASM_OUTPUT_ADDR_VEC_ELT
2062 ASM_OUTPUT_ADDR_VEC_ELT
2063 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2064#else
2065 abort ();
2066#endif
2067 }
2068 else
2069 {
2070#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2071 ASM_OUTPUT_ADDR_DIFF_ELT
2072 (file,
33f7f353 2073 body,
3cf2715d
DE
2074 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2075 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2076#else
2077 abort ();
2078#endif
2079 }
2080 }
2081#ifdef ASM_OUTPUT_CASE_END
2082 ASM_OUTPUT_CASE_END (file,
2083 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2084 insn);
e0d80184 2085#endif
3cf2715d
DE
2086#endif
2087
4d1065ed 2088 function_section (current_function_decl);
3cf2715d
DE
2089
2090 break;
2091 }
2092
3cf2715d
DE
2093 if (GET_CODE (body) == ASM_INPUT)
2094 {
36d7136e
RH
2095 const char *string = XSTR (body, 0);
2096
3cf2715d
DE
2097 /* There's no telling what that did to the condition codes. */
2098 CC_STATUS_INIT;
2099 if (prescan > 0)
2100 break;
36d7136e
RH
2101
2102 if (string[0])
3cf2715d 2103 {
36d7136e
RH
2104 if (! app_on)
2105 {
2106 fputs (ASM_APP_ON, file);
2107 app_on = 1;
2108 }
2109 fprintf (asm_out_file, "\t%s\n", string);
3cf2715d 2110 }
3cf2715d
DE
2111 break;
2112 }
2113
2114 /* Detect `asm' construct with operands. */
2115 if (asm_noperands (body) >= 0)
2116 {
22bf4422 2117 unsigned int noperands = asm_noperands (body);
3cf2715d 2118 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
3cce094d 2119 const char *string;
3cf2715d
DE
2120
2121 /* There's no telling what that did to the condition codes. */
2122 CC_STATUS_INIT;
2123 if (prescan > 0)
2124 break;
2125
3cf2715d 2126 /* Get out the operand values. */
df4ae160 2127 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
3cf2715d
DE
2128 /* Inhibit aborts on what would otherwise be compiler bugs. */
2129 insn_noperands = noperands;
2130 this_is_asm_operands = insn;
2131
2132 /* Output the insn using them. */
36d7136e
RH
2133 if (string[0])
2134 {
2135 if (! app_on)
2136 {
2137 fputs (ASM_APP_ON, file);
2138 app_on = 1;
2139 }
2140 output_asm_insn (string, ops);
2141 }
2142
3cf2715d
DE
2143 this_is_asm_operands = 0;
2144 break;
2145 }
2146
2147 if (prescan <= 0 && app_on)
2148 {
51723711 2149 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2150 app_on = 0;
2151 }
2152
2153 if (GET_CODE (body) == SEQUENCE)
2154 {
2155 /* A delayed-branch sequence */
b3694847 2156 int i;
3cf2715d
DE
2157 rtx next;
2158
2159 if (prescan > 0)
2160 break;
2161 final_sequence = body;
2162
d660cefe
RS
2163 /* Record the delay slots' frame information before the branch.
2164 This is needed for delayed calls: see execute_cfa_program(). */
2165#if defined (DWARF2_UNWIND_INFO)
2166 if (dwarf2out_do_frame ())
2167 for (i = 1; i < XVECLEN (body, 0); i++)
2168 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2169#endif
2170
3cf2715d
DE
2171 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2172 force the restoration of a comparison that was previously
2173 thought unnecessary. If that happens, cancel this sequence
2174 and cause that insn to be restored. */
2175
2176 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2177 if (next != XVECEXP (body, 0, 1))
2178 {
2179 final_sequence = 0;
2180 return next;
2181 }
2182
2183 for (i = 1; i < XVECLEN (body, 0); i++)
c7eee2df
RK
2184 {
2185 rtx insn = XVECEXP (body, 0, i);
2186 rtx next = NEXT_INSN (insn);
2187 /* We loop in case any instruction in a delay slot gets
2188 split. */
2189 do
2190 insn = final_scan_insn (insn, file, 0, prescan, 1);
2191 while (insn != next);
2192 }
3cf2715d
DE
2193#ifdef DBR_OUTPUT_SEQEND
2194 DBR_OUTPUT_SEQEND (file);
2195#endif
2196 final_sequence = 0;
2197
2198 /* If the insn requiring the delay slot was a CALL_INSN, the
2199 insns in the delay slot are actually executed before the
2200 called function. Hence we don't preserve any CC-setting
2201 actions in these insns and the CC must be marked as being
2202 clobbered by the function. */
2203 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
b729186a
JL
2204 {
2205 CC_STATUS_INIT;
2206 }
3cf2715d
DE
2207 break;
2208 }
2209
2210 /* We have a real machine instruction as rtl. */
2211
2212 body = PATTERN (insn);
2213
2214#ifdef HAVE_cc0
f5d927c0 2215 set = single_set (insn);
b88c92cc 2216
3cf2715d
DE
2217 /* Check for redundant test and compare instructions
2218 (when the condition codes are already set up as desired).
2219 This is done only when optimizing; if not optimizing,
2220 it should be possible for the user to alter a variable
2221 with the debugger in between statements
2222 and the next statement should reexamine the variable
2223 to compute the condition codes. */
2224
30f5e9f5 2225 if (optimize)
3cf2715d 2226 {
b88c92cc 2227#if 0
f5d927c0 2228 rtx set = single_set (insn);
b88c92cc 2229#endif
30f5e9f5
RK
2230
2231 if (set
2232 && GET_CODE (SET_DEST (set)) == CC0
2233 && insn != last_ignored_compare)
3cf2715d 2234 {
30f5e9f5 2235 if (GET_CODE (SET_SRC (set)) == SUBREG)
49d801d3 2236 SET_SRC (set) = alter_subreg (&SET_SRC (set));
30f5e9f5
RK
2237 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2238 {
2239 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2240 XEXP (SET_SRC (set), 0)
49d801d3 2241 = alter_subreg (&XEXP (SET_SRC (set), 0));
30f5e9f5
RK
2242 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2243 XEXP (SET_SRC (set), 1)
49d801d3 2244 = alter_subreg (&XEXP (SET_SRC (set), 1));
30f5e9f5
RK
2245 }
2246 if ((cc_status.value1 != 0
2247 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2248 || (cc_status.value2 != 0
2249 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
3cf2715d 2250 {
30f5e9f5 2251 /* Don't delete insn if it has an addressing side-effect. */
ff81832f 2252 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
30f5e9f5
RK
2253 /* or if anything in it is volatile. */
2254 && ! volatile_refs_p (PATTERN (insn)))
2255 {
2256 /* We don't really delete the insn; just ignore it. */
2257 last_ignored_compare = insn;
2258 break;
2259 }
3cf2715d
DE
2260 }
2261 }
2262 }
2263#endif
2264
3cf2715d
DE
2265#ifndef STACK_REGS
2266 /* Don't bother outputting obvious no-ops, even without -O.
2267 This optimization is fast and doesn't interfere with debugging.
2268 Don't do this if the insn is in a delay slot, since this
2269 will cause an improper number of delay insns to be written. */
2270 if (final_sequence == 0
2271 && prescan >= 0
2272 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2273 && GET_CODE (SET_SRC (body)) == REG
2274 && GET_CODE (SET_DEST (body)) == REG
2275 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2276 break;
2277#endif
2278
2279#ifdef HAVE_cc0
2280 /* If this is a conditional branch, maybe modify it
2281 if the cc's are in a nonstandard state
2282 so that it accomplishes the same thing that it would
2283 do straightforwardly if the cc's were set up normally. */
2284
2285 if (cc_status.flags != 0
2286 && GET_CODE (insn) == JUMP_INSN
2287 && GET_CODE (body) == SET
2288 && SET_DEST (body) == pc_rtx
2289 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
de2b56f9 2290 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
fff752ad 2291 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
3cf2715d
DE
2292 /* This is done during prescan; it is not done again
2293 in final scan when prescan has been done. */
2294 && prescan >= 0)
2295 {
2296 /* This function may alter the contents of its argument
2297 and clear some of the cc_status.flags bits.
2298 It may also return 1 meaning condition now always true
2299 or -1 meaning condition now always false
2300 or 2 meaning condition nontrivial but altered. */
b3694847 2301 int result = alter_cond (XEXP (SET_SRC (body), 0));
3cf2715d
DE
2302 /* If condition now has fixed value, replace the IF_THEN_ELSE
2303 with its then-operand or its else-operand. */
2304 if (result == 1)
2305 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2306 if (result == -1)
2307 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2308
2309 /* The jump is now either unconditional or a no-op.
2310 If it has become a no-op, don't try to output it.
2311 (It would not be recognized.) */
2312 if (SET_SRC (body) == pc_rtx)
2313 {
ca6c03ca 2314 delete_insn (insn);
3cf2715d
DE
2315 break;
2316 }
2317 else if (GET_CODE (SET_SRC (body)) == RETURN)
2318 /* Replace (set (pc) (return)) with (return). */
2319 PATTERN (insn) = body = SET_SRC (body);
2320
2321 /* Rerecognize the instruction if it has changed. */
2322 if (result != 0)
2323 INSN_CODE (insn) = -1;
2324 }
2325
2326 /* Make same adjustments to instructions that examine the
462da2af
SC
2327 condition codes without jumping and instructions that
2328 handle conditional moves (if this machine has either one). */
3cf2715d
DE
2329
2330 if (cc_status.flags != 0
b88c92cc 2331 && set != 0)
3cf2715d 2332 {
462da2af 2333 rtx cond_rtx, then_rtx, else_rtx;
f5d927c0 2334
462da2af 2335 if (GET_CODE (insn) != JUMP_INSN
b88c92cc 2336 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
462da2af 2337 {
b88c92cc
RK
2338 cond_rtx = XEXP (SET_SRC (set), 0);
2339 then_rtx = XEXP (SET_SRC (set), 1);
2340 else_rtx = XEXP (SET_SRC (set), 2);
462da2af
SC
2341 }
2342 else
2343 {
b88c92cc 2344 cond_rtx = SET_SRC (set);
462da2af
SC
2345 then_rtx = const_true_rtx;
2346 else_rtx = const0_rtx;
2347 }
f5d927c0 2348
462da2af 2349 switch (GET_CODE (cond_rtx))
3cf2715d
DE
2350 {
2351 case GTU:
2352 case GT:
2353 case LTU:
2354 case LT:
2355 case GEU:
2356 case GE:
2357 case LEU:
2358 case LE:
2359 case EQ:
2360 case NE:
2361 {
b3694847 2362 int result;
462da2af 2363 if (XEXP (cond_rtx, 0) != cc0_rtx)
3cf2715d 2364 break;
462da2af 2365 result = alter_cond (cond_rtx);
3cf2715d 2366 if (result == 1)
b88c92cc 2367 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3cf2715d 2368 else if (result == -1)
b88c92cc 2369 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3cf2715d
DE
2370 else if (result == 2)
2371 INSN_CODE (insn) = -1;
b88c92cc 2372 if (SET_DEST (set) == SET_SRC (set))
ca6c03ca 2373 delete_insn (insn);
3cf2715d 2374 }
e9a25f70
JL
2375 break;
2376
2377 default:
2378 break;
3cf2715d
DE
2379 }
2380 }
462da2af 2381
3cf2715d
DE
2382#endif
2383
ede7cd44 2384#ifdef HAVE_peephole
3cf2715d
DE
2385 /* Do machine-specific peephole optimizations if desired. */
2386
2387 if (optimize && !flag_no_peephole && !nopeepholes)
2388 {
2389 rtx next = peephole (insn);
2390 /* When peepholing, if there were notes within the peephole,
2391 emit them before the peephole. */
2392 if (next != 0 && next != NEXT_INSN (insn))
2393 {
2394 rtx prev = PREV_INSN (insn);
3cf2715d
DE
2395
2396 for (note = NEXT_INSN (insn); note != next;
2397 note = NEXT_INSN (note))
2398 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2399
2400 /* In case this is prescan, put the notes
2401 in proper position for later rescan. */
2402 note = NEXT_INSN (insn);
2403 PREV_INSN (note) = prev;
2404 NEXT_INSN (prev) = note;
2405 NEXT_INSN (PREV_INSN (next)) = insn;
2406 PREV_INSN (insn) = PREV_INSN (next);
2407 NEXT_INSN (insn) = next;
2408 PREV_INSN (next) = insn;
2409 }
2410
2411 /* PEEPHOLE might have changed this. */
2412 body = PATTERN (insn);
2413 }
ede7cd44 2414#endif
3cf2715d
DE
2415
2416 /* Try to recognize the instruction.
2417 If successful, verify that the operands satisfy the
2418 constraints for the instruction. Crash if they don't,
2419 since `reload' should have changed them so that they do. */
2420
2421 insn_code_number = recog_memoized (insn);
0304f787 2422 cleanup_subreg_operands (insn);
3cf2715d 2423
dd3f0101
KH
2424 /* Dump the insn in the assembly for debugging. */
2425 if (flag_dump_rtl_in_asm)
2426 {
2427 print_rtx_head = ASM_COMMENT_START;
2428 print_rtl_single (asm_out_file, insn);
2429 print_rtx_head = "";
2430 }
b9f22704 2431
6c698a6d 2432 if (! constrain_operands_cached (1))
3cf2715d 2433 fatal_insn_not_found (insn);
3cf2715d
DE
2434
2435 /* Some target machines need to prescan each insn before
2436 it is output. */
2437
2438#ifdef FINAL_PRESCAN_INSN
1ccbefce 2439 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3cf2715d
DE
2440#endif
2441
afe48e06
RH
2442#ifdef HAVE_conditional_execution
2443 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2444 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2445 else
2446 current_insn_predicate = NULL_RTX;
2447#endif
2448
3cf2715d
DE
2449#ifdef HAVE_cc0
2450 cc_prev_status = cc_status;
2451
2452 /* Update `cc_status' for this instruction.
2453 The instruction's output routine may change it further.
2454 If the output routine for a jump insn needs to depend
2455 on the cc status, it should look at cc_prev_status. */
2456
2457 NOTICE_UPDATE_CC (body, insn);
2458#endif
2459
b1a9f6a0 2460 current_output_insn = debug_insn = insn;
3cf2715d 2461
f73ad30e 2462#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 2463 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
b57d9225
JM
2464 dwarf2out_frame_debug (insn);
2465#endif
2466
4bbf910e
RH
2467 /* Find the proper template for this insn. */
2468 template = get_insn_template (insn_code_number, insn);
3cf2715d 2469
4bbf910e
RH
2470 /* If the C code returns 0, it means that it is a jump insn
2471 which follows a deleted test insn, and that test insn
2472 needs to be reinserted. */
3cf2715d
DE
2473 if (template == 0)
2474 {
efd0378b
HPN
2475 rtx prev;
2476
4bbf910e
RH
2477 if (prev_nonnote_insn (insn) != last_ignored_compare)
2478 abort ();
efd0378b
HPN
2479
2480 /* We have already processed the notes between the setter and
2481 the user. Make sure we don't process them again, this is
2482 particularly important if one of the notes is a block
2483 scope note or an EH note. */
2484 for (prev = insn;
2485 prev != last_ignored_compare;
2486 prev = PREV_INSN (prev))
2487 {
2488 if (GET_CODE (prev) == NOTE)
ca6c03ca 2489 delete_insn (prev); /* Use delete_note. */
efd0378b
HPN
2490 }
2491
2492 return prev;
3cf2715d
DE
2493 }
2494
2495 /* If the template is the string "#", it means that this insn must
2496 be split. */
2497 if (template[0] == '#' && template[1] == '\0')
2498 {
2499 rtx new = try_split (body, insn, 0);
2500
2501 /* If we didn't split the insn, go away. */
2502 if (new == insn && PATTERN (new) == body)
c725bd79 2503 fatal_insn ("could not split insn", insn);
f5d927c0 2504
3d14e82f
JW
2505#ifdef HAVE_ATTR_length
2506 /* This instruction should have been split in shorten_branches,
2507 to ensure that we would have valid length info for the
2508 splitees. */
2509 abort ();
2510#endif
2511
3cf2715d
DE
2512 return new;
2513 }
f5d927c0 2514
3cf2715d
DE
2515 if (prescan > 0)
2516 break;
2517
ce152ef8
AM
2518#ifdef IA64_UNWIND_INFO
2519 IA64_UNWIND_EMIT (asm_out_file, insn);
2520#endif
3cf2715d
DE
2521 /* Output assembler code from the template. */
2522
1ccbefce 2523 output_asm_insn (template, recog_data.operand);
3cf2715d 2524
d660cefe
RS
2525 /* If necessary, report the effect that the instruction has on
2526 the unwind info. We've already done this for delay slots
2527 and call instructions. */
0021b564 2528#if defined (DWARF2_UNWIND_INFO)
d660cefe
RS
2529 if (GET_CODE (insn) == INSN
2530#if !defined (HAVE_prologue)
2531 && !ACCUMULATE_OUTGOING_ARGS
2532#endif
2533 && final_sequence == 0
fbfa55b0
RH
2534 && dwarf2out_do_frame ())
2535 dwarf2out_frame_debug (insn);
0021b564 2536#endif
469ac993 2537
3cf2715d
DE
2538#if 0
2539 /* It's not at all clear why we did this and doing so interferes
2540 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2541 with this out. */
2542
2543 /* Mark this insn as having been output. */
2544 INSN_DELETED_P (insn) = 1;
2545#endif
2546
4a8d0c9c
RH
2547 /* Emit information for vtable gc. */
2548 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2549 if (note)
2550 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2551 INTVAL (XEXP (XEXP (note, 0), 1)));
2552
b1a9f6a0 2553 current_output_insn = debug_insn = 0;
3cf2715d
DE
2554 }
2555 }
2556 return NEXT_INSN (insn);
2557}
2558\f
2559/* Output debugging info to the assembler file FILE
2560 based on the NOTE-insn INSN, assumed to be a line number. */
2561
2562static void
653e276c 2563notice_source_line (insn)
3cf2715d
DE
2564 rtx insn;
2565{
b3694847 2566 const char *filename = NOTE_SOURCE_FILE (insn);
3cf2715d 2567
3cf2715d
DE
2568 last_filename = filename;
2569 last_linenum = NOTE_LINE_NUMBER (insn);
eac40081
RK
2570 high_block_linenum = MAX (last_linenum, high_block_linenum);
2571 high_function_linenum = MAX (last_linenum, high_function_linenum);
3cf2715d
DE
2572}
2573\f
0304f787
JL
2574/* For each operand in INSN, simplify (subreg (reg)) so that it refers
2575 directly to the desired hard register. */
f5d927c0 2576
0304f787
JL
2577void
2578cleanup_subreg_operands (insn)
2579 rtx insn;
2580{
f62a15e3 2581 int i;
6c698a6d 2582 extract_insn_cached (insn);
1ccbefce 2583 for (i = 0; i < recog_data.n_operands; i++)
0304f787 2584 {
9f4524f2
RE
2585 /* The following test cannot use recog_data.operand when tesing
2586 for a SUBREG: the underlying object might have been changed
2587 already if we are inside a match_operator expression that
2588 matches the else clause. Instead we test the underlying
2589 expression directly. */
2590 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
49d801d3 2591 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
1ccbefce 2592 else if (GET_CODE (recog_data.operand[i]) == PLUS
04337620
BS
2593 || GET_CODE (recog_data.operand[i]) == MULT
2594 || GET_CODE (recog_data.operand[i]) == MEM)
49d801d3 2595 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
0304f787
JL
2596 }
2597
1ccbefce 2598 for (i = 0; i < recog_data.n_dups; i++)
0304f787 2599 {
1ccbefce 2600 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
49d801d3 2601 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
1ccbefce 2602 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
04337620
BS
2603 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2604 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
49d801d3 2605 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
0304f787
JL
2606 }
2607}
2608
3cf2715d
DE
2609/* If X is a SUBREG, replace it with a REG or a MEM,
2610 based on the thing it is a subreg of. */
2611
2612rtx
49d801d3
JH
2613alter_subreg (xp)
2614 rtx *xp;
3cf2715d 2615{
49d801d3 2616 rtx x = *xp;
b3694847 2617 rtx y = SUBREG_REG (x);
f5963e61 2618
49d801d3
JH
2619 /* simplify_subreg does not remove subreg from volatile references.
2620 We are required to. */
2621 if (GET_CODE (y) == MEM)
2622 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2623 else
fea54805
RK
2624 {
2625 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2626 SUBREG_BYTE (x));
2627
2628 if (new != 0)
2629 *xp = new;
2630 /* Simplify_subreg can't handle some REG cases, but we have to. */
2631 else if (GET_CODE (y) == REG)
2632 {
7687c5b8 2633 unsigned int regno = subreg_hard_regno (x, 1);
a560d4d4 2634 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
fea54805
RK
2635 }
2636 else
2637 abort ();
2638 }
2639
49d801d3 2640 return *xp;
3cf2715d
DE
2641}
2642
2643/* Do alter_subreg on all the SUBREGs contained in X. */
2644
2645static rtx
49d801d3
JH
2646walk_alter_subreg (xp)
2647 rtx *xp;
3cf2715d 2648{
49d801d3 2649 rtx x = *xp;
3cf2715d
DE
2650 switch (GET_CODE (x))
2651 {
2652 case PLUS:
2653 case MULT:
49d801d3
JH
2654 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2655 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
3cf2715d
DE
2656 break;
2657
2658 case MEM:
49d801d3 2659 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
3cf2715d
DE
2660 break;
2661
2662 case SUBREG:
49d801d3 2663 return alter_subreg (xp);
f5d927c0 2664
e9a25f70
JL
2665 default:
2666 break;
3cf2715d
DE
2667 }
2668
5bc72aeb 2669 return *xp;
3cf2715d
DE
2670}
2671\f
2672#ifdef HAVE_cc0
2673
2674/* Given BODY, the body of a jump instruction, alter the jump condition
2675 as required by the bits that are set in cc_status.flags.
2676 Not all of the bits there can be handled at this level in all cases.
2677
2678 The value is normally 0.
2679 1 means that the condition has become always true.
2680 -1 means that the condition has become always false.
2681 2 means that COND has been altered. */
2682
2683static int
2684alter_cond (cond)
b3694847 2685 rtx cond;
3cf2715d
DE
2686{
2687 int value = 0;
2688
2689 if (cc_status.flags & CC_REVERSED)
2690 {
2691 value = 2;
2692 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2693 }
2694
2695 if (cc_status.flags & CC_INVERTED)
2696 {
2697 value = 2;
2698 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2699 }
2700
2701 if (cc_status.flags & CC_NOT_POSITIVE)
2702 switch (GET_CODE (cond))
2703 {
2704 case LE:
2705 case LEU:
2706 case GEU:
2707 /* Jump becomes unconditional. */
2708 return 1;
2709
2710 case GT:
2711 case GTU:
2712 case LTU:
2713 /* Jump becomes no-op. */
2714 return -1;
2715
2716 case GE:
2717 PUT_CODE (cond, EQ);
2718 value = 2;
2719 break;
2720
2721 case LT:
2722 PUT_CODE (cond, NE);
2723 value = 2;
2724 break;
f5d927c0 2725
e9a25f70
JL
2726 default:
2727 break;
3cf2715d
DE
2728 }
2729
2730 if (cc_status.flags & CC_NOT_NEGATIVE)
2731 switch (GET_CODE (cond))
2732 {
2733 case GE:
2734 case GEU:
2735 /* Jump becomes unconditional. */
2736 return 1;
2737
2738 case LT:
2739 case LTU:
2740 /* Jump becomes no-op. */
2741 return -1;
2742
2743 case LE:
2744 case LEU:
2745 PUT_CODE (cond, EQ);
2746 value = 2;
2747 break;
2748
2749 case GT:
2750 case GTU:
2751 PUT_CODE (cond, NE);
2752 value = 2;
2753 break;
f5d927c0 2754
e9a25f70
JL
2755 default:
2756 break;
3cf2715d
DE
2757 }
2758
2759 if (cc_status.flags & CC_NO_OVERFLOW)
2760 switch (GET_CODE (cond))
2761 {
2762 case GEU:
2763 /* Jump becomes unconditional. */
2764 return 1;
2765
2766 case LEU:
2767 PUT_CODE (cond, EQ);
2768 value = 2;
2769 break;
2770
2771 case GTU:
2772 PUT_CODE (cond, NE);
2773 value = 2;
2774 break;
2775
2776 case LTU:
2777 /* Jump becomes no-op. */
2778 return -1;
f5d927c0 2779
e9a25f70
JL
2780 default:
2781 break;
3cf2715d
DE
2782 }
2783
2784 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2785 switch (GET_CODE (cond))
2786 {
e9a25f70 2787 default:
3cf2715d
DE
2788 abort ();
2789
2790 case NE:
2791 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2792 value = 2;
2793 break;
2794
2795 case EQ:
2796 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2797 value = 2;
2798 break;
2799 }
2800
2801 if (cc_status.flags & CC_NOT_SIGNED)
2802 /* The flags are valid if signed condition operators are converted
2803 to unsigned. */
2804 switch (GET_CODE (cond))
2805 {
2806 case LE:
2807 PUT_CODE (cond, LEU);
2808 value = 2;
2809 break;
2810
2811 case LT:
2812 PUT_CODE (cond, LTU);
2813 value = 2;
2814 break;
2815
2816 case GT:
2817 PUT_CODE (cond, GTU);
2818 value = 2;
2819 break;
2820
2821 case GE:
2822 PUT_CODE (cond, GEU);
2823 value = 2;
2824 break;
e9a25f70
JL
2825
2826 default:
2827 break;
3cf2715d
DE
2828 }
2829
2830 return value;
2831}
2832#endif
2833\f
2834/* Report inconsistency between the assembler template and the operands.
2835 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2836
2837void
e34d07f2 2838output_operand_lossage (const char *msgid, ...)
3cf2715d 2839{
a52453cc
PT
2840 char *fmt_string;
2841 char *new_message;
fd478a0a 2842 const char *pfx_str;
e34d07f2
KG
2843 va_list ap;
2844
2845 va_start (ap, msgid);
a52453cc
PT
2846
2847 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2848 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2849 vasprintf (&new_message, fmt_string, ap);
dd3f0101 2850
3cf2715d 2851 if (this_is_asm_operands)
a52453cc 2852 error_for_asm (this_is_asm_operands, "%s", new_message);
3cf2715d 2853 else
a52453cc
PT
2854 internal_error ("%s", new_message);
2855
2856 free (fmt_string);
2857 free (new_message);
e34d07f2 2858 va_end (ap);
3cf2715d
DE
2859}
2860\f
2861/* Output of assembler code from a template, and its subroutines. */
2862
0d4903b8
RK
2863/* Annotate the assembly with a comment describing the pattern and
2864 alternative used. */
2865
2866static void
2867output_asm_name ()
2868{
2869 if (debug_insn)
2870 {
2871 int num = INSN_CODE (debug_insn);
2872 fprintf (asm_out_file, "\t%s %d\t%s",
2873 ASM_COMMENT_START, INSN_UID (debug_insn),
2874 insn_data[num].name);
2875 if (insn_data[num].n_alternatives > 1)
2876 fprintf (asm_out_file, "/%d", which_alternative + 1);
2877#ifdef HAVE_ATTR_length
2878 fprintf (asm_out_file, "\t[length = %d]",
2879 get_attr_length (debug_insn));
2880#endif
2881 /* Clear this so only the first assembler insn
2882 of any rtl insn will get the special comment for -dp. */
2883 debug_insn = 0;
2884 }
2885}
2886
998d7deb
RH
2887/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2888 or its address, return that expr . Set *PADDRESSP to 1 if the expr
c5adc06a
RK
2889 corresponds to the address of the object and 0 if to the object. */
2890
2891static tree
998d7deb 2892get_mem_expr_from_op (op, paddressp)
c5adc06a
RK
2893 rtx op;
2894 int *paddressp;
2895{
998d7deb 2896 tree expr;
c5adc06a
RK
2897 int inner_addressp;
2898
2899 *paddressp = 0;
2900
a560d4d4
JH
2901 if (GET_CODE (op) == REG)
2902 return REG_EXPR (op);
c5adc06a
RK
2903 else if (GET_CODE (op) != MEM)
2904 return 0;
2905
998d7deb
RH
2906 if (MEM_EXPR (op) != 0)
2907 return MEM_EXPR (op);
c5adc06a
RK
2908
2909 /* Otherwise we have an address, so indicate it and look at the address. */
2910 *paddressp = 1;
2911 op = XEXP (op, 0);
2912
2913 /* First check if we have a decl for the address, then look at the right side
2914 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2915 But don't allow the address to itself be indirect. */
998d7deb
RH
2916 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2917 return expr;
c5adc06a 2918 else if (GET_CODE (op) == PLUS
998d7deb
RH
2919 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2920 return expr;
c5adc06a
RK
2921
2922 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2923 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2924 op = XEXP (op, 0);
2925
998d7deb
RH
2926 expr = get_mem_expr_from_op (op, &inner_addressp);
2927 return inner_addressp ? 0 : expr;
c5adc06a 2928}
ff81832f 2929
4f9b4029
RK
2930/* Output operand names for assembler instructions. OPERANDS is the
2931 operand vector, OPORDER is the order to write the operands, and NOPS
2932 is the number of operands to write. */
2933
2934static void
2935output_asm_operand_names (operands, oporder, nops)
2936 rtx *operands;
2937 int *oporder;
2938 int nops;
2939{
2940 int wrote = 0;
2941 int i;
2942
2943 for (i = 0; i < nops; i++)
2944 {
2945 int addressp;
a560d4d4
JH
2946 rtx op = operands[oporder[i]];
2947 tree expr = get_mem_expr_from_op (op, &addressp);
4f9b4029 2948
a560d4d4
JH
2949 fprintf (asm_out_file, "%c%s",
2950 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2951 wrote = 1;
998d7deb 2952 if (expr)
4f9b4029 2953 {
a560d4d4 2954 fprintf (asm_out_file, "%s",
998d7deb
RH
2955 addressp ? "*" : "");
2956 print_mem_expr (asm_out_file, expr);
4f9b4029
RK
2957 wrote = 1;
2958 }
a560d4d4
JH
2959 else if (REG_P (op) && ORIGINAL_REGNO (op)
2960 && ORIGINAL_REGNO (op) != REGNO (op))
2961 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
4f9b4029
RK
2962 }
2963}
2964
3cf2715d
DE
2965/* Output text from TEMPLATE to the assembler output file,
2966 obeying %-directions to substitute operands taken from
2967 the vector OPERANDS.
2968
2969 %N (for N a digit) means print operand N in usual manner.
2970 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2971 and print the label name with no punctuation.
2972 %cN means require operand N to be a constant
2973 and print the constant expression with no punctuation.
2974 %aN means expect operand N to be a memory address
2975 (not a memory reference!) and print a reference
2976 to that address.
2977 %nN means expect operand N to be a constant
2978 and print a constant expression for minus the value
2979 of the operand, with no other punctuation. */
2980
2981void
2982output_asm_insn (template, operands)
9b3142b3 2983 const char *template;
3cf2715d
DE
2984 rtx *operands;
2985{
b3694847
SS
2986 const char *p;
2987 int c;
8554d9a4
JJ
2988#ifdef ASSEMBLER_DIALECT
2989 int dialect = 0;
2990#endif
0d4903b8 2991 int oporder[MAX_RECOG_OPERANDS];
4f9b4029 2992 char opoutput[MAX_RECOG_OPERANDS];
0d4903b8 2993 int ops = 0;
3cf2715d
DE
2994
2995 /* An insn may return a null string template
2996 in a case where no assembler code is needed. */
2997 if (*template == 0)
2998 return;
2999
4f9b4029 3000 memset (opoutput, 0, sizeof opoutput);
3cf2715d
DE
3001 p = template;
3002 putc ('\t', asm_out_file);
3003
3004#ifdef ASM_OUTPUT_OPCODE
3005 ASM_OUTPUT_OPCODE (asm_out_file, p);
3006#endif
3007
b729186a 3008 while ((c = *p++))
3cf2715d
DE
3009 switch (c)
3010 {
3cf2715d 3011 case '\n':
4f9b4029
RK
3012 if (flag_verbose_asm)
3013 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
3014 if (flag_print_asm_name)
3015 output_asm_name ();
3016
4f9b4029
RK
3017 ops = 0;
3018 memset (opoutput, 0, sizeof opoutput);
3019
3cf2715d 3020 putc (c, asm_out_file);
cb649530 3021#ifdef ASM_OUTPUT_OPCODE
3cf2715d
DE
3022 while ((c = *p) == '\t')
3023 {
3024 putc (c, asm_out_file);
3025 p++;
3026 }
3027 ASM_OUTPUT_OPCODE (asm_out_file, p);
3cf2715d 3028#endif
cb649530 3029 break;
3cf2715d
DE
3030
3031#ifdef ASSEMBLER_DIALECT
3032 case '{':
b729186a 3033 {
b3694847 3034 int i;
f5d927c0 3035
8554d9a4
JJ
3036 if (dialect)
3037 output_operand_lossage ("nested assembly dialect alternatives");
3038 else
3039 dialect = 1;
3040
b729186a
JL
3041 /* If we want the first dialect, do nothing. Otherwise, skip
3042 DIALECT_NUMBER of strings ending with '|'. */
3043 for (i = 0; i < dialect_number; i++)
3044 {
463a8384 3045 while (*p && *p != '}' && *p++ != '|')
b729186a 3046 ;
463a8384
BS
3047 if (*p == '}')
3048 break;
b729186a
JL
3049 if (*p == '|')
3050 p++;
3051 }
8554d9a4
JJ
3052
3053 if (*p == '\0')
3054 output_operand_lossage ("unterminated assembly dialect alternative");
b729186a 3055 }
3cf2715d
DE
3056 break;
3057
3058 case '|':
8554d9a4
JJ
3059 if (dialect)
3060 {
3061 /* Skip to close brace. */
3062 do
3063 {
3064 if (*p == '\0')
3065 {
3066 output_operand_lossage ("unterminated assembly dialect alternative");
3067 break;
3068 }
ff81832f 3069 }
8554d9a4
JJ
3070 while (*p++ != '}');
3071 dialect = 0;
3072 }
3073 else
3074 putc (c, asm_out_file);
3cf2715d
DE
3075 break;
3076
3077 case '}':
8554d9a4
JJ
3078 if (! dialect)
3079 putc (c, asm_out_file);
3080 dialect = 0;
3cf2715d
DE
3081 break;
3082#endif
3083
3084 case '%':
3085 /* %% outputs a single %. */
3086 if (*p == '%')
3087 {
3088 p++;
3089 putc (c, asm_out_file);
3090 }
3091 /* %= outputs a number which is unique to each insn in the entire
3092 compilation. This is useful for making local labels that are
3093 referred to more than once in a given insn. */
3094 else if (*p == '=')
3095 {
3096 p++;
3097 fprintf (asm_out_file, "%d", insn_counter);
3098 }
3099 /* % followed by a letter and some digits
3100 outputs an operand in a special way depending on the letter.
3101 Letters `acln' are implemented directly.
3102 Other letters are passed to `output_operand' so that
3103 the PRINT_OPERAND macro can define them. */
0df6c2c7 3104 else if (ISALPHA (*p))
3cf2715d
DE
3105 {
3106 int letter = *p++;
3107 c = atoi (p);
3108
0df6c2c7 3109 if (! ISDIGIT (*p))
a52453cc 3110 output_operand_lossage ("operand number missing after %%-letter");
0d4903b8
RK
3111 else if (this_is_asm_operands
3112 && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3113 output_operand_lossage ("operand number out of range");
3114 else if (letter == 'l')
3115 output_asm_label (operands[c]);
3116 else if (letter == 'a')
3117 output_address (operands[c]);
3118 else if (letter == 'c')
3119 {
3120 if (CONSTANT_ADDRESS_P (operands[c]))
3121 output_addr_const (asm_out_file, operands[c]);
3122 else
3123 output_operand (operands[c], 'c');
3124 }
3125 else if (letter == 'n')
3126 {
3127 if (GET_CODE (operands[c]) == CONST_INT)
21e3a81b 3128 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3cf2715d
DE
3129 - INTVAL (operands[c]));
3130 else
3131 {
3132 putc ('-', asm_out_file);
3133 output_addr_const (asm_out_file, operands[c]);
3134 }
3135 }
3136 else
3137 output_operand (operands[c], letter);
f5d927c0 3138
4f9b4029
RK
3139 if (!opoutput[c])
3140 oporder[ops++] = c;
3141 opoutput[c] = 1;
0d4903b8 3142
0df6c2c7 3143 while (ISDIGIT (c = *p))
f5d927c0 3144 p++;
3cf2715d
DE
3145 }
3146 /* % followed by a digit outputs an operand the default way. */
0df6c2c7 3147 else if (ISDIGIT (*p))
3cf2715d
DE
3148 {
3149 c = atoi (p);
f5d927c0
KH
3150 if (this_is_asm_operands
3151 && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3152 output_operand_lossage ("operand number out of range");
3153 else
3154 output_operand (operands[c], 0);
0d4903b8 3155
4f9b4029
RK
3156 if (!opoutput[c])
3157 oporder[ops++] = c;
3158 opoutput[c] = 1;
3159
0df6c2c7 3160 while (ISDIGIT (c = *p))
f5d927c0 3161 p++;
3cf2715d
DE
3162 }
3163 /* % followed by punctuation: output something for that
3164 punctuation character alone, with no operand.
3165 The PRINT_OPERAND macro decides what is actually done. */
3166#ifdef PRINT_OPERAND_PUNCT_VALID_P
f5d927c0 3167 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3cf2715d
DE
3168 output_operand (NULL_RTX, *p++);
3169#endif
3170 else
3171 output_operand_lossage ("invalid %%-code");
3172 break;
3173
3174 default:
3175 putc (c, asm_out_file);
3176 }
3177
0d4903b8
RK
3178 /* Write out the variable names for operands, if we know them. */
3179 if (flag_verbose_asm)
4f9b4029 3180 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
3181 if (flag_print_asm_name)
3182 output_asm_name ();
3cf2715d
DE
3183
3184 putc ('\n', asm_out_file);
3185}
3186\f
3187/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3188
3189void
3190output_asm_label (x)
3191 rtx x;
3192{
3193 char buf[256];
3194
3195 if (GET_CODE (x) == LABEL_REF)
be1bb652
RH
3196 x = XEXP (x, 0);
3197 if (GET_CODE (x) == CODE_LABEL
3198 || (GET_CODE (x) == NOTE
3199 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3cf2715d
DE
3200 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3201 else
a52453cc 3202 output_operand_lossage ("`%%l' operand isn't a label");
3cf2715d
DE
3203
3204 assemble_name (asm_out_file, buf);
3205}
3206
3207/* Print operand X using machine-dependent assembler syntax.
3208 The macro PRINT_OPERAND is defined just to control this function.
3209 CODE is a non-digit that preceded the operand-number in the % spec,
3210 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3211 between the % and the digits.
3212 When CODE is a non-letter, X is 0.
3213
3214 The meanings of the letters are machine-dependent and controlled
3215 by PRINT_OPERAND. */
3216
3217static void
3218output_operand (x, code)
3219 rtx x;
962f1324 3220 int code ATTRIBUTE_UNUSED;
3cf2715d
DE
3221{
3222 if (x && GET_CODE (x) == SUBREG)
49d801d3 3223 x = alter_subreg (&x);
3cf2715d
DE
3224
3225 /* If X is a pseudo-register, abort now rather than writing trash to the
3226 assembler file. */
3227
3228 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3229 abort ();
3230
3231 PRINT_OPERAND (asm_out_file, x, code);
3232}
3233
3234/* Print a memory reference operand for address X
3235 using machine-dependent assembler syntax.
3236 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3237
3238void
3239output_address (x)
3240 rtx x;
3241{
49d801d3 3242 walk_alter_subreg (&x);
3cf2715d
DE
3243 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3244}
3245\f
3246/* Print an integer constant expression in assembler syntax.
3247 Addition and subtraction are the only arithmetic
3248 that may appear in these expressions. */
3249
3250void
3251output_addr_const (file, x)
3252 FILE *file;
3253 rtx x;
3254{
3255 char buf[256];
3256
3257 restart:
3258 switch (GET_CODE (x))
3259 {
3260 case PC:
eac50d7a 3261 putc ('.', file);
3cf2715d
DE
3262 break;
3263
3264 case SYMBOL_REF:
99c8c61c
AO
3265#ifdef ASM_OUTPUT_SYMBOL_REF
3266 ASM_OUTPUT_SYMBOL_REF (file, x);
3267#else
3cf2715d 3268 assemble_name (file, XSTR (x, 0));
99c8c61c 3269#endif
3cf2715d
DE
3270 break;
3271
3272 case LABEL_REF:
422be3c3
AO
3273 x = XEXP (x, 0);
3274 /* Fall through. */
3cf2715d
DE
3275 case CODE_LABEL:
3276 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
2f0b7af6
GK
3277#ifdef ASM_OUTPUT_LABEL_REF
3278 ASM_OUTPUT_LABEL_REF (file, buf);
3279#else
3cf2715d 3280 assemble_name (file, buf);
2f0b7af6 3281#endif
3cf2715d
DE
3282 break;
3283
3284 case CONST_INT:
21e3a81b 3285 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3cf2715d
DE
3286 break;
3287
3288 case CONST:
3289 /* This used to output parentheses around the expression,
3290 but that does not work on the 386 (either ATT or BSD assembler). */
3291 output_addr_const (file, XEXP (x, 0));
3292 break;
3293
3294 case CONST_DOUBLE:
3295 if (GET_MODE (x) == VOIDmode)
3296 {
3297 /* We can use %d if the number is one word and positive. */
3298 if (CONST_DOUBLE_HIGH (x))
21e3a81b 3299 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3cf2715d 3300 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
f5d927c0 3301 else if (CONST_DOUBLE_LOW (x) < 0)
21e3a81b 3302 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3cf2715d 3303 else
21e3a81b 3304 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3cf2715d
DE
3305 }
3306 else
3307 /* We can't handle floating point constants;
3308 PRINT_OPERAND must handle them. */
3309 output_operand_lossage ("floating constant misused");
3310 break;
3311
3312 case PLUS:
3313 /* Some assemblers need integer constants to appear last (eg masm). */
3314 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3315 {
3316 output_addr_const (file, XEXP (x, 1));
3317 if (INTVAL (XEXP (x, 0)) >= 0)
3318 fprintf (file, "+");
3319 output_addr_const (file, XEXP (x, 0));
3320 }
3321 else
3322 {
3323 output_addr_const (file, XEXP (x, 0));
08106825
AO
3324 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3325 || INTVAL (XEXP (x, 1)) >= 0)
3cf2715d
DE
3326 fprintf (file, "+");
3327 output_addr_const (file, XEXP (x, 1));
3328 }
3329 break;
3330
3331 case MINUS:
3332 /* Avoid outputting things like x-x or x+5-x,
3333 since some assemblers can't handle that. */
3334 x = simplify_subtraction (x);
3335 if (GET_CODE (x) != MINUS)
3336 goto restart;
3337
3338 output_addr_const (file, XEXP (x, 0));
3339 fprintf (file, "-");
301d03af
RS
3340 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3341 || GET_CODE (XEXP (x, 1)) == PC
3342 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3343 output_addr_const (file, XEXP (x, 1));
3344 else
3cf2715d 3345 {
17b53c33 3346 fputs (targetm.asm_out.open_paren, file);
3cf2715d 3347 output_addr_const (file, XEXP (x, 1));
17b53c33 3348 fputs (targetm.asm_out.close_paren, file);
3cf2715d 3349 }
3cf2715d
DE
3350 break;
3351
3352 case ZERO_EXTEND:
3353 case SIGN_EXTEND:
fdf473ae 3354 case SUBREG:
3cf2715d
DE
3355 output_addr_const (file, XEXP (x, 0));
3356 break;
3357
3358 default:
422be3c3
AO
3359#ifdef OUTPUT_ADDR_CONST_EXTRA
3360 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3361 break;
3362
3363 fail:
3364#endif
3cf2715d
DE
3365 output_operand_lossage ("invalid expression as operand");
3366 }
3367}
3368\f
3369/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3370 %R prints the value of REGISTER_PREFIX.
3371 %L prints the value of LOCAL_LABEL_PREFIX.
3372 %U prints the value of USER_LABEL_PREFIX.
3373 %I prints the value of IMMEDIATE_PREFIX.
3374 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3375 Also supported are %d, %x, %s, %e, %f, %g and %%.
3376
3377 We handle alternate assembler dialects here, just like output_asm_insn. */
3378
3379void
e34d07f2 3380asm_fprintf (FILE *file, const char *p, ...)
3cf2715d 3381{
3cf2715d
DE
3382 char buf[10];
3383 char *q, c;
e34d07f2
KG
3384 va_list argptr;
3385
3386 va_start (argptr, p);
3cf2715d
DE
3387
3388 buf[0] = '%';
3389
b729186a 3390 while ((c = *p++))
3cf2715d
DE
3391 switch (c)
3392 {
3393#ifdef ASSEMBLER_DIALECT
3394 case '{':
b729186a
JL
3395 {
3396 int i;
3cf2715d 3397
b729186a
JL
3398 /* If we want the first dialect, do nothing. Otherwise, skip
3399 DIALECT_NUMBER of strings ending with '|'. */
3400 for (i = 0; i < dialect_number; i++)
3401 {
3402 while (*p && *p++ != '|')
3403 ;
3404
3405 if (*p == '|')
3406 p++;
f5d927c0 3407 }
b729186a 3408 }
3cf2715d
DE
3409 break;
3410
3411 case '|':
3412 /* Skip to close brace. */
3413 while (*p && *p++ != '}')
3414 ;
3415 break;
3416
3417 case '}':
3418 break;
3419#endif
3420
3421 case '%':
3422 c = *p++;
3423 q = &buf[1];
0df6c2c7 3424 while (ISDIGIT (c) || c == '.')
3cf2715d
DE
3425 {
3426 *q++ = c;
3427 c = *p++;
3428 }
3429 switch (c)
3430 {
3431 case '%':
3432 fprintf (file, "%%");
3433 break;
3434
3435 case 'd': case 'i': case 'u':
3436 case 'x': case 'p': case 'X':
3437 case 'o':
3438 *q++ = c;
3439 *q = 0;
3440 fprintf (file, buf, va_arg (argptr, int));
3441 break;
3442
3443 case 'w':
3444 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3445 but we do not check for those cases. It means that the value
3446 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3447
21e3a81b
RK
3448#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3449#else
3450#if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3451 *q++ = 'l';
3452#else
3453 *q++ = 'l';
3cf2715d 3454 *q++ = 'l';
21e3a81b 3455#endif
3cf2715d
DE
3456#endif
3457
3458 *q++ = *p++;
3459 *q = 0;
3460 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3461 break;
3462
3463 case 'l':
3464 *q++ = c;
3465 *q++ = *p++;
3466 *q = 0;
3467 fprintf (file, buf, va_arg (argptr, long));
3468 break;
3469
3470 case 'e':
3471 case 'f':
3472 case 'g':
3473 *q++ = c;
3474 *q = 0;
3475 fprintf (file, buf, va_arg (argptr, double));
3476 break;
3477
3478 case 's':
3479 *q++ = c;
3480 *q = 0;
3481 fprintf (file, buf, va_arg (argptr, char *));
3482 break;
3483
3484 case 'O':
3485#ifdef ASM_OUTPUT_OPCODE
3486 ASM_OUTPUT_OPCODE (asm_out_file, p);
3487#endif
3488 break;
3489
3490 case 'R':
3491#ifdef REGISTER_PREFIX
3492 fprintf (file, "%s", REGISTER_PREFIX);
3493#endif
3494 break;
3495
3496 case 'I':
3497#ifdef IMMEDIATE_PREFIX
3498 fprintf (file, "%s", IMMEDIATE_PREFIX);
3499#endif
3500 break;
3501
3502 case 'L':
3503#ifdef LOCAL_LABEL_PREFIX
3504 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3505#endif
3506 break;
3507
3508 case 'U':
19283265 3509 fputs (user_label_prefix, file);
3cf2715d
DE
3510 break;
3511
fe0503ea
NC
3512#ifdef ASM_FPRINTF_EXTENSIONS
3513 /* Upper case letters are reserved for general use by asm_fprintf
3514 and so are not available to target specific code. In order to
3515 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3516 they are defined here. As they get turned into real extensions
3517 to asm_fprintf they should be removed from this list. */
3518 case 'A': case 'B': case 'C': case 'D': case 'E':
3519 case 'F': case 'G': case 'H': case 'J': case 'K':
3520 case 'M': case 'N': case 'P': case 'Q': case 'S':
3521 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3522 break;
f5d927c0 3523
fe0503ea
NC
3524 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3525#endif
3cf2715d
DE
3526 default:
3527 abort ();
3528 }
3529 break;
3530
3531 default:
3532 fputc (c, file);
3533 }
e34d07f2 3534 va_end (argptr);
3cf2715d
DE
3535}
3536\f
3537/* Split up a CONST_DOUBLE or integer constant rtx
3538 into two rtx's for single words,
3539 storing in *FIRST the word that comes first in memory in the target
3540 and in *SECOND the other. */
3541
3542void
3543split_double (value, first, second)
3544 rtx value;
3545 rtx *first, *second;
3546{
3547 if (GET_CODE (value) == CONST_INT)
3548 {
5a1a6efd 3549 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
f76b9db2 3550 {
5a1a6efd 3551 /* In this case the CONST_INT holds both target words.
27eef9ce
JC
3552 Extract the bits from it into two word-sized pieces.
3553 Sign extend each half to HOST_WIDE_INT. */
7f251dee
AO
3554 unsigned HOST_WIDE_INT low, high;
3555 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3556
3557 /* Set sign_bit to the most significant bit of a word. */
3558 sign_bit = 1;
3559 sign_bit <<= BITS_PER_WORD - 1;
3560
3561 /* Set mask so that all bits of the word are set. We could
3562 have used 1 << BITS_PER_WORD instead of basing the
3563 calculation on sign_bit. However, on machines where
3564 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3565 compiler warning, even though the code would never be
3566 executed. */
3567 mask = sign_bit << 1;
3568 mask--;
3569
3570 /* Set sign_extend as any remaining bits. */
3571 sign_extend = ~mask;
f5d927c0 3572
7f251dee
AO
3573 /* Pick the lower word and sign-extend it. */
3574 low = INTVAL (value);
3575 low &= mask;
3576 if (low & sign_bit)
3577 low |= sign_extend;
3578
3579 /* Pick the higher word, shifted to the least significant
3580 bits, and sign-extend it. */
3581 high = INTVAL (value);
3582 high >>= BITS_PER_WORD - 1;
3583 high >>= 1;
3584 high &= mask;
3585 if (high & sign_bit)
3586 high |= sign_extend;
3587
3588 /* Store the words in the target machine order. */
5a1a6efd
RK
3589 if (WORDS_BIG_ENDIAN)
3590 {
7f251dee
AO
3591 *first = GEN_INT (high);
3592 *second = GEN_INT (low);
5a1a6efd
RK
3593 }
3594 else
3595 {
7f251dee
AO
3596 *first = GEN_INT (low);
3597 *second = GEN_INT (high);
5a1a6efd 3598 }
f76b9db2
ILT
3599 }
3600 else
3601 {
5a1a6efd
RK
3602 /* The rule for using CONST_INT for a wider mode
3603 is that we regard the value as signed.
3604 So sign-extend it. */
3605 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3606 if (WORDS_BIG_ENDIAN)
3607 {
3608 *first = high;
3609 *second = value;
3610 }
3611 else
3612 {
3613 *first = value;
3614 *second = high;
3615 }
f76b9db2 3616 }
3cf2715d
DE
3617 }
3618 else if (GET_CODE (value) != CONST_DOUBLE)
3619 {
f76b9db2
ILT
3620 if (WORDS_BIG_ENDIAN)
3621 {
3622 *first = const0_rtx;
3623 *second = value;
3624 }
3625 else
3626 {
3627 *first = value;
3628 *second = const0_rtx;
3629 }
3cf2715d
DE
3630 }
3631 else if (GET_MODE (value) == VOIDmode
3632 /* This is the old way we did CONST_DOUBLE integers. */
3633 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3634 {
3635 /* In an integer, the words are defined as most and least significant.
3636 So order them by the target's convention. */
f76b9db2
ILT
3637 if (WORDS_BIG_ENDIAN)
3638 {
3639 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3640 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3641 }
3642 else
3643 {
3644 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3645 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3646 }
3cf2715d
DE
3647 }
3648 else
3649 {
f5d927c0
KH
3650 REAL_VALUE_TYPE r;
3651 long l[2];
3cf2715d
DE
3652 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3653
3654 /* Note, this converts the REAL_VALUE_TYPE to the target's
3655 format, splits up the floating point double and outputs
3656 exactly 32 bits of it into each of l[0] and l[1] --
0f41302f 3657 not necessarily BITS_PER_WORD bits. */
3cf2715d
DE
3658 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3659
b5a3eb84
JW
3660 /* If 32 bits is an entire word for the target, but not for the host,
3661 then sign-extend on the host so that the number will look the same
3662 way on the host that it would on the target. See for instance
3663 simplify_unary_operation. The #if is needed to avoid compiler
3664 warnings. */
3665
3666#if HOST_BITS_PER_LONG > 32
3667 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3668 {
3669 if (l[0] & ((long) 1 << 31))
3670 l[0] |= ((long) (-1) << 32);
3671 if (l[1] & ((long) 1 << 31))
3672 l[1] |= ((long) (-1) << 32);
3673 }
3674#endif
3675
3cf2715d
DE
3676 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3677 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3cf2715d
DE
3678 }
3679}
3680\f
3681/* Return nonzero if this function has no function calls. */
3682
3683int
3684leaf_function_p ()
3685{
3686 rtx insn;
b660f82f 3687 rtx link;
3cf2715d 3688
70f4f91c 3689 if (current_function_profile || profile_arc_flag)
3cf2715d
DE
3690 return 0;
3691
3692 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3693 {
7d167afd
JJ
3694 if (GET_CODE (insn) == CALL_INSN
3695 && ! SIBLING_CALL_P (insn))
3cf2715d
DE
3696 return 0;
3697 if (GET_CODE (insn) == INSN
3698 && GET_CODE (PATTERN (insn)) == SEQUENCE
0a1c58a2
JL
3699 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3700 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3701 return 0;
3702 }
b660f82f
JW
3703 for (link = current_function_epilogue_delay_list;
3704 link;
3705 link = XEXP (link, 1))
3cf2715d 3706 {
b660f82f
JW
3707 insn = XEXP (link, 0);
3708
3709 if (GET_CODE (insn) == CALL_INSN
7d167afd 3710 && ! SIBLING_CALL_P (insn))
3cf2715d 3711 return 0;
b660f82f
JW
3712 if (GET_CODE (insn) == INSN
3713 && GET_CODE (PATTERN (insn)) == SEQUENCE
3714 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3715 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3716 return 0;
3717 }
3718
3719 return 1;
3720}
3721
09da1532 3722/* Return 1 if branch is a forward branch.
ef6257cd
JH
3723 Uses insn_shuid array, so it works only in the final pass. May be used by
3724 output templates to customary add branch prediction hints.
3725 */
3726int
3727final_forward_branch_p (insn)
3728 rtx insn;
3729{
3730 int insn_id, label_id;
3731 if (!uid_shuid)
3732 abort ();
3733 insn_id = INSN_SHUID (insn);
3734 label_id = INSN_SHUID (JUMP_LABEL (insn));
3735 /* We've hit some insns that does not have id information available. */
3736 if (!insn_id || !label_id)
3737 abort ();
3738 return insn_id < label_id;
3739}
3740
3cf2715d
DE
3741/* On some machines, a function with no call insns
3742 can run faster if it doesn't create its own register window.
3743 When output, the leaf function should use only the "output"
3744 registers. Ordinarily, the function would be compiled to use
3745 the "input" registers to find its arguments; it is a candidate
3746 for leaf treatment if it uses only the "input" registers.
3747 Leaf function treatment means renumbering so the function
3748 uses the "output" registers instead. */
3749
3750#ifdef LEAF_REGISTERS
3751
3cf2715d
DE
3752/* Return 1 if this function uses only the registers that can be
3753 safely renumbered. */
3754
3755int
3756only_leaf_regs_used ()
3757{
3758 int i;
4977bab6 3759 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3cf2715d
DE
3760
3761 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e5e809f4
JL
3762 if ((regs_ever_live[i] || global_regs[i])
3763 && ! permitted_reg_in_leaf_functions[i])
3764 return 0;
3765
3766 if (current_function_uses_pic_offset_table
3767 && pic_offset_table_rtx != 0
3768 && GET_CODE (pic_offset_table_rtx) == REG
3769 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3770 return 0;
3771
3cf2715d
DE
3772 return 1;
3773}
3774
3775/* Scan all instructions and renumber all registers into those
3776 available in leaf functions. */
3777
3778static void
3779leaf_renumber_regs (first)
3780 rtx first;
3781{
3782 rtx insn;
3783
3784 /* Renumber only the actual patterns.
3785 The reg-notes can contain frame pointer refs,
3786 and renumbering them could crash, and should not be needed. */
3787 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 3788 if (INSN_P (insn))
3cf2715d 3789 leaf_renumber_regs_insn (PATTERN (insn));
f5d927c0
KH
3790 for (insn = current_function_epilogue_delay_list;
3791 insn;
3792 insn = XEXP (insn, 1))
2c3c49de 3793 if (INSN_P (XEXP (insn, 0)))
3cf2715d
DE
3794 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3795}
3796
3797/* Scan IN_RTX and its subexpressions, and renumber all regs into those
3798 available in leaf functions. */
3799
3800void
3801leaf_renumber_regs_insn (in_rtx)
b3694847 3802 rtx in_rtx;
3cf2715d 3803{
b3694847
SS
3804 int i, j;
3805 const char *format_ptr;
3cf2715d
DE
3806
3807 if (in_rtx == 0)
3808 return;
3809
3810 /* Renumber all input-registers into output-registers.
3811 renumbered_regs would be 1 for an output-register;
3812 they */
3813
3814 if (GET_CODE (in_rtx) == REG)
3815 {
3816 int newreg;
3817
3818 /* Don't renumber the same reg twice. */
3819 if (in_rtx->used)
3820 return;
3821
3822 newreg = REGNO (in_rtx);
3823 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3824 to reach here as part of a REG_NOTE. */
3825 if (newreg >= FIRST_PSEUDO_REGISTER)
3826 {
3827 in_rtx->used = 1;
3828 return;
3829 }
3830 newreg = LEAF_REG_REMAP (newreg);
3831 if (newreg < 0)
3832 abort ();
3833 regs_ever_live[REGNO (in_rtx)] = 0;
3834 regs_ever_live[newreg] = 1;
3835 REGNO (in_rtx) = newreg;
3836 in_rtx->used = 1;
3837 }
3838
2c3c49de 3839 if (INSN_P (in_rtx))
3cf2715d
DE
3840 {
3841 /* Inside a SEQUENCE, we find insns.
3842 Renumber just the patterns of these insns,
3843 just as we do for the top-level insns. */
3844 leaf_renumber_regs_insn (PATTERN (in_rtx));
3845 return;
3846 }
3847
3848 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3849
3850 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3851 switch (*format_ptr++)
3852 {
3853 case 'e':
3854 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3855 break;
3856
3857 case 'E':
3858 if (NULL != XVEC (in_rtx, i))
3859 {
3860 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3861 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3862 }
3863 break;
3864
3865 case 'S':
3866 case 's':
3867 case '0':
3868 case 'i':
3869 case 'w':
3870 case 'n':
3871 case 'u':
3872 break;
3873
3874 default:
3875 abort ();
3876 }
3877}
3878#endif