]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/final.c
* target.h: Remove texi jargons in comments.
[thirdparty/gcc.git] / gcc / final.c
CommitLineData
3cf2715d 1/* Convert RTL to assembler code and output it, for GNU compiler.
3b708058 2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3897f229 3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
3cf2715d 4
1322177d 5This file is part of GCC.
3cf2715d 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
3cf2715d 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
3cf2715d
DE
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
3cf2715d 21
3cf2715d
DE
22/* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
08c148a8
NB
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
3cf2715d
DE
46
47#include "config.h"
670ee920 48#include "system.h"
4977bab6
ZW
49#include "coretypes.h"
50#include "tm.h"
3cf2715d
DE
51
52#include "tree.h"
53#include "rtl.h"
6baf1cc8 54#include "tm_p.h"
3cf2715d
DE
55#include "regs.h"
56#include "insn-config.h"
3cf2715d 57#include "insn-attr.h"
3cf2715d
DE
58#include "recog.h"
59#include "conditions.h"
60#include "flags.h"
61#include "real.h"
62#include "hard-reg-set.h"
3cf2715d 63#include "output.h"
3d195391 64#include "except.h"
49ad7cfa 65#include "function.h"
10f0ad3d 66#include "toplev.h"
d6f4ec51 67#include "reload.h"
ab87f8c8 68#include "intl.h"
be1bb652 69#include "basic-block.h"
08c148a8 70#include "target.h"
a5a42b92 71#include "debug.h"
49d801d3 72#include "expr.h"
ba4f7968 73#include "cfglayout.h"
3cf2715d 74
440aabf8
NB
75#ifdef XCOFF_DEBUGGING_INFO
76#include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78#endif
79
76ead72b
RL
80#if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81#include "dwarf2out.h"
82#endif
83
6a08f7b3
DP
84#ifdef DBX_DEBUGGING_INFO
85#include "dbxout.h"
86#endif
87
3cf2715d
DE
88/* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90#ifndef CC_STATUS_INIT
91#define CC_STATUS_INIT
92#endif
93
94/* How to start an assembler comment. */
95#ifndef ASM_COMMENT_START
96#define ASM_COMMENT_START ";#"
97#endif
98
99/* Is the given character a logical line separator for the assembler? */
100#ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101#define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102#endif
103
75197b37
BS
104#ifndef JUMP_TABLES_IN_TEXT_SECTION
105#define JUMP_TABLES_IN_TEXT_SECTION 0
106#endif
107
d48bc59a
RH
108#if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109#define HAVE_READONLY_DATA_SECTION 1
110#else
111#define HAVE_READONLY_DATA_SECTION 0
112#endif
113
589fe865
DJ
114/* Bitflags used by final_scan_insn. */
115#define SEEN_BB 1
116#define SEEN_NOTE 2
117#define SEEN_EMITTED 4
118
3cf2715d 119/* Last insn processed by final_scan_insn. */
b1a9f6a0
RH
120static rtx debug_insn;
121rtx current_output_insn;
3cf2715d
DE
122
123/* Line number of last NOTE. */
124static int last_linenum;
125
eac40081
RK
126/* Highest line number in current block. */
127static int high_block_linenum;
128
129/* Likewise for function. */
130static int high_function_linenum;
131
3cf2715d 132/* Filename of last NOTE. */
3cce094d 133static const char *last_filename;
3cf2715d 134
fc470718
R
135extern int length_unit_log; /* This is defined in insn-attrtab.c. */
136
3cf2715d
DE
137/* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
c8b94768 140rtx this_is_asm_operands;
3cf2715d
DE
141
142/* Number of operands of this insn, for an `asm' with operands. */
22bf4422 143static unsigned int insn_noperands;
3cf2715d
DE
144
145/* Compare optimization flag. */
146
147static rtx last_ignored_compare = 0;
148
3cf2715d
DE
149/* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
151
152static int insn_counter = 0;
153
154#ifdef HAVE_cc0
155/* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
158
159CC_STATUS cc_status;
160
161/* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
163
164CC_STATUS cc_prev_status;
165#endif
166
167/* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
169
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
175
176char regs_ever_live[FIRST_PSEUDO_REGISTER];
177
df2ef49b
AM
178/* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
181
182char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
183
3cf2715d 184/* Nonzero means current function must be given a frame pointer.
b483cfb7
EB
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
3cf2715d
DE
187
188int frame_pointer_needed;
189
18c038b9 190/* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
3cf2715d
DE
191
192static int block_depth;
193
194/* Nonzero if have enabled APP processing of our assembler output. */
195
196static int app_on;
197
198/* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
200
201rtx final_sequence;
202
203#ifdef ASSEMBLER_DIALECT
204
205/* Number of the assembler dialect to use, starting at 0. */
206static int dialect_number;
207#endif
208
afe48e06
RH
209#ifdef HAVE_conditional_execution
210/* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211rtx current_insn_predicate;
212#endif
213
1d300e19 214#ifdef HAVE_ATTR_length
6cf9ac28
AJ
215static int asm_insn_count (rtx);
216#endif
217static void profile_function (FILE *);
218static void profile_after_prologue (FILE *);
219static bool notice_source_line (rtx);
220static rtx walk_alter_subreg (rtx *);
221static void output_asm_name (void);
222static void output_alternate_entry_point (FILE *, rtx);
223static tree get_mem_expr_from_op (rtx, int *);
224static void output_asm_operand_names (rtx *, int *, int);
225static void output_operand (rtx, int);
e9a25f70 226#ifdef LEAF_REGISTERS
6cf9ac28 227static void leaf_renumber_regs (rtx);
e9a25f70
JL
228#endif
229#ifdef HAVE_cc0
6cf9ac28 230static int alter_cond (rtx);
e9a25f70 231#endif
ca3075bd 232#ifndef ADDR_VEC_ALIGN
6cf9ac28 233static int final_addr_vec_align (rtx);
ca3075bd 234#endif
7bdb32b9 235#ifdef HAVE_ATTR_length
6cf9ac28 236static int align_fuzz (rtx, rtx, int, unsigned);
7bdb32b9 237#endif
3cf2715d
DE
238\f
239/* Initialize data in final at the beginning of a compilation. */
240
241void
6cf9ac28 242init_final (const char *filename ATTRIBUTE_UNUSED)
3cf2715d 243{
3cf2715d 244 app_on = 0;
3cf2715d
DE
245 final_sequence = 0;
246
247#ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249#endif
250}
251
08c148a8 252/* Default target function prologue and epilogue assembler output.
b9f22704 253
08c148a8
NB
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256void
6cf9ac28
AJ
257default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
08c148a8
NB
259{
260}
261
b4c25db2
NB
262/* Default target hook that outputs nothing to a stream. */
263void
6cf9ac28 264no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
b4c25db2
NB
265{
266}
267
3cf2715d
DE
268/* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
270
271void
6cf9ac28 272app_enable (void)
3cf2715d
DE
273{
274 if (! app_on)
275 {
51723711 276 fputs (ASM_APP_ON, asm_out_file);
3cf2715d
DE
277 app_on = 1;
278 }
279}
280
281/* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
283
284void
6cf9ac28 285app_disable (void)
3cf2715d
DE
286{
287 if (app_on)
288 {
51723711 289 fputs (ASM_APP_OFF, asm_out_file);
3cf2715d
DE
290 app_on = 0;
291 }
292}
293\f
f5d927c0 294/* Return the number of slots filled in the current
3cf2715d
DE
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
297
298#ifdef DELAY_SLOTS
299int
6cf9ac28 300dbr_sequence_length (void)
3cf2715d
DE
301{
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306}
307#endif
308\f
309/* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312/* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
addd7df6 315static int *insn_lengths;
9d98a694 316
9d98a694 317varray_type insn_addresses_;
3cf2715d 318
ea3cbda5
R
319/* Max uid for which the above arrays are valid. */
320static int insn_lengths_max_uid;
321
3cf2715d
DE
322/* Address of insn being processed. Used by `insn_current_length'. */
323int insn_current_address;
324
fc470718
R
325/* Address of insn being processed in previous iteration. */
326int insn_last_address;
327
d6a7951f 328/* known invariant alignment of insn being processed. */
fc470718
R
329int insn_current_align;
330
95707627
R
331/* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
f5d927c0
KH
340struct label_alignment
341{
9e423e6d
JW
342 short alignment;
343 short max_skip;
344};
345
346static rtx *uid_align;
347static int *uid_shuid;
348static struct label_alignment *label_align;
95707627 349
3cf2715d
DE
350/* Indicate that branch shortening hasn't yet been done. */
351
352void
6cf9ac28 353init_insn_lengths (void)
3cf2715d 354{
95707627
R
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
ea3cbda5 364 insn_lengths_max_uid = 0;
95707627 365 }
9d98a694
AO
366#ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368#endif
95707627
R
369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
3cf2715d
DE
374}
375
376/* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379int
6cf9ac28 380get_attr_length (rtx insn ATTRIBUTE_UNUSED)
3cf2715d
DE
381{
382#ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
ea3cbda5 387 if (insn_lengths_max_uid > INSN_UID (insn))
3cf2715d
DE
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
dd3f0101 403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
3cf2715d 404 {
fc470718
R
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
3cf2715d
DE
407 }
408 else
409 length = insn_default_length (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
e9a25f70
JL
424 break;
425
426 default:
427 break;
3cf2715d
DE
428 }
429
430#ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432#endif
433 return length;
434#else /* not HAVE_ATTR_length */
435 return 0;
436#endif /* not HAVE_ATTR_length */
437}
438\f
fc470718
R
439/* Code to handle alignment inside shorten_branches. */
440
441/* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
f5d927c0 446 is used in an expression, it means the alignment value of the
fc470718 447 alignment point.
f5d927c0 448
fc470718
R
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
f5d927c0 452
fc470718
R
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
f5d927c0 455
fc470718
R
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
f5d927c0 458
fc470718 459 The estimated padding is then OX - IX.
f5d927c0 460
fc470718 461 OX can be safely estimated as
f5d927c0 462
fc470718
R
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
f5d927c0 467
fc470718
R
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
f5d927c0 470
fc470718
R
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
f5d927c0 473
fc470718
R
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480#ifndef LABEL_ALIGN
efa3896a 481#define LABEL_ALIGN(LABEL) align_labels_log
fc470718
R
482#endif
483
9e423e6d 484#ifndef LABEL_ALIGN_MAX_SKIP
2cca7283 485#define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
9e423e6d
JW
486#endif
487
fc470718 488#ifndef LOOP_ALIGN
efa3896a 489#define LOOP_ALIGN(LABEL) align_loops_log
fc470718
R
490#endif
491
9e423e6d 492#ifndef LOOP_ALIGN_MAX_SKIP
2cca7283 493#define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
9e423e6d
JW
494#endif
495
fc470718 496#ifndef LABEL_ALIGN_AFTER_BARRIER
340f7e7c 497#define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
fc470718
R
498#endif
499
9e423e6d 500#ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
247a370b
JH
501#define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502#endif
503
504#ifndef JUMP_ALIGN
505#define JUMP_ALIGN(LABEL) align_jumps_log
506#endif
507
508#ifndef JUMP_ALIGN_MAX_SKIP
2cca7283 509#define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
9e423e6d
JW
510#endif
511
fc470718 512#ifndef ADDR_VEC_ALIGN
ca3075bd 513static int
6cf9ac28 514final_addr_vec_align (rtx addr_vec)
fc470718 515{
2a841588 516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
fc470718
R
517
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
2a841588 520 return exact_log2 (align);
fc470718
R
521
522}
f5d927c0 523
fc470718
R
524#define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525#endif
526
527#ifndef INSN_LENGTH_ALIGNMENT
528#define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529#endif
530
fc470718
R
531#define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
532
de7987a6 533static int min_labelno, max_labelno;
fc470718
R
534
535#define LABEL_TO_ALIGNMENT(LABEL) \
9e423e6d
JW
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
537
538#define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
fc470718
R
540
541/* For the benefit of port specific code do this also as a function. */
f5d927c0 542
fc470718 543int
6cf9ac28 544label_to_alignment (rtx label)
fc470718
R
545{
546 return LABEL_TO_ALIGNMENT (label);
547}
548
549#ifdef HAVE_ATTR_length
550/* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
563
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
d6a7951f 567 For this purpose, align_fuzz with a growth argument of 0 computes the
fc470718
R
568 appropriate adjustment. */
569
fc470718
R
570/* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
f5d927c0 577
ca3075bd 578static int
6cf9ac28 579align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
fc470718
R
580{
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
586
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
588 {
589 int align_addr, new_align;
590
591 uid = INSN_UID (align_label);
9d98a694 592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
fc470718
R
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
601 }
602 return fuzz;
603}
604
605/* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
f5d927c0 616
fc470718 617int
6cf9ac28 618insn_current_reference_address (rtx branch)
fc470718 619{
5527bf14
RH
620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
fc470718
R
628 if (GET_CODE (branch) != JUMP_INSN)
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
5527bf14 636
b9f22704 637 /* BRANCH has no proper alignment chain set, so use SEQ.
afc6898e
BS
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
fc470718 640 {
f5d927c0 641 /* Forward branch. */
fc470718 642 return (insn_last_address + insn_lengths[seq_uid]
26024475 643 - align_fuzz (seq, dest, length_unit_log, ~0));
fc470718
R
644 }
645 else
646 {
f5d927c0 647 /* Backward branch. */
fc470718 648 return (insn_current_address
923f7cf9 649 + align_fuzz (dest, seq, length_unit_log, ~0));
fc470718
R
650 }
651}
652#endif /* HAVE_ATTR_length */
653\f
247a370b 654void
6cf9ac28 655compute_alignments (void)
247a370b 656{
247a370b 657 int log, max_skip, max_log;
e0082a72 658 basic_block bb;
247a370b
JH
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
703ad42b
KG
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
247a370b
JH
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
ba712955 672 if (! optimize || optimize_size)
247a370b
JH
673 return;
674
e0082a72 675 FOR_EACH_BB (bb)
247a370b 676 {
a813c111 677 rtx label = BB_HEAD (bb);
247a370b
JH
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
680
66b4e478
JH
681 if (GET_CODE (label) != CODE_LABEL
682 || probably_never_executed_bb_p (bb))
247a370b
JH
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
686
687 for (e = bb->pred; e; e = e->pred_next)
688 {
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
693 }
694
f63d1bf7 695 /* There are two purposes to align block with no fallthru incoming edge:
247a370b 696 1) to avoid fetch stalls when branch destination is near cache boundary
d6a7951f 697 2) to improve cache efficiency in case the previous block is not executed
247a370b
JH
698 (so it does not need to be in the cache).
699
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
eaec9b3d 702 than the predecessor and the predecessor is likely to not be executed
247a370b
JH
703 when function is called. */
704
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
f6366fc7
ZD
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
247a370b
JH
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
710 {
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
713 {
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
716 }
717 }
718 /* In case block is frequent and reached mostly by non-fallthru edge,
09da1532 719 align it. It is most likely a first block of loop. */
247a370b 720 if (has_fallthru
66b4e478 721 && maybe_hot_bb_p (bb)
247a370b 722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1877be45 723 && branch_frequency > fallthru_frequency * 2)
247a370b
JH
724 {
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
727 {
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
730 }
731 }
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
734 }
735}
736\f
3cf2715d
DE
737/* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
739
fc470718
R
740/* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
d6a7951f 744 shorten_branches itself into a single pass unless we also want to integrate
fc470718
R
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
747
3cf2715d 748void
6cf9ac28 749shorten_branches (rtx first ATTRIBUTE_UNUSED)
3cf2715d 750{
3cf2715d 751 rtx insn;
fc470718
R
752 int max_uid;
753 int i;
fc470718 754 int max_log;
9e423e6d 755 int max_skip;
fc470718
R
756#ifdef HAVE_ATTR_length
757#define MAX_CODE_ALIGN 16
758 rtx seq;
3cf2715d 759 int something_changed = 1;
3cf2715d
DE
760 char *varying_length;
761 rtx body;
762 int uid;
fc470718 763 rtx align_tab[MAX_CODE_ALIGN];
3cf2715d 764
fc470718 765#endif
3d14e82f 766
3446405d
JH
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
d9b6874b 769
703ad42b 770 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
25e22dc0 771
247a370b
JH
772 if (max_labelno != max_label_num ())
773 {
774 int old = max_labelno;
775 int n_labels;
776 int n_old_labels;
777
778 max_labelno = max_label_num ();
779
780 n_labels = max_labelno - min_labelno + 1;
781 n_old_labels = old - min_labelno + 1;
782
703ad42b
KG
783 label_align = xrealloc (label_align,
784 n_labels * sizeof (struct label_alignment));
247a370b
JH
785
786 /* Range of labels grows monotonically in the function. Abort here
787 means that the initialization of array got lost. */
788 if (n_old_labels > n_labels)
789 abort ();
790
791 memset (label_align + n_old_labels, 0,
792 (n_labels - n_old_labels) * sizeof (struct label_alignment));
793 }
794
fc470718
R
795 /* Initialize label_align and set up uid_shuid to be strictly
796 monotonically rising with insn order. */
e2faec75
R
797 /* We use max_log here to keep track of the maximum alignment we want to
798 impose on the next CODE_LABEL (or the current one if we are processing
799 the CODE_LABEL itself). */
f5d927c0 800
9e423e6d
JW
801 max_log = 0;
802 max_skip = 0;
803
804 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
fc470718
R
805 {
806 int log;
807
808 INSN_SHUID (insn) = i++;
2c3c49de 809 if (INSN_P (insn))
e2faec75
R
810 {
811 /* reorg might make the first insn of a loop being run once only,
812 and delete the label in front of it. Then we want to apply
813 the loop alignment to the new label created by reorg, which
814 is separated by the former loop start insn from the
815 NOTE_INSN_LOOP_BEG. */
816 }
fc470718
R
817 else if (GET_CODE (insn) == CODE_LABEL)
818 {
819 rtx next;
ff81832f 820
247a370b
JH
821 /* Merge in alignments computed by compute_alignments. */
822 log = LABEL_TO_ALIGNMENT (insn);
823 if (max_log < log)
824 {
825 max_log = log;
826 max_skip = LABEL_TO_MAX_SKIP (insn);
827 }
fc470718
R
828
829 log = LABEL_ALIGN (insn);
830 if (max_log < log)
9e423e6d
JW
831 {
832 max_log = log;
833 max_skip = LABEL_ALIGN_MAX_SKIP;
834 }
fc470718 835 next = NEXT_INSN (insn);
75197b37
BS
836 /* ADDR_VECs only take room if read-only data goes into the text
837 section. */
d48bc59a 838 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
839 if (next && GET_CODE (next) == JUMP_INSN)
840 {
841 rtx nextbody = PATTERN (next);
842 if (GET_CODE (nextbody) == ADDR_VEC
843 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
844 {
845 log = ADDR_VEC_ALIGN (next);
846 if (max_log < log)
847 {
848 max_log = log;
849 max_skip = LABEL_ALIGN_MAX_SKIP;
850 }
851 }
852 }
fc470718 853 LABEL_TO_ALIGNMENT (insn) = max_log;
9e423e6d 854 LABEL_TO_MAX_SKIP (insn) = max_skip;
fc470718 855 max_log = 0;
9e423e6d 856 max_skip = 0;
fc470718
R
857 }
858 else if (GET_CODE (insn) == BARRIER)
859 {
860 rtx label;
861
2c3c49de 862 for (label = insn; label && ! INSN_P (label);
fc470718
R
863 label = NEXT_INSN (label))
864 if (GET_CODE (label) == CODE_LABEL)
865 {
866 log = LABEL_ALIGN_AFTER_BARRIER (insn);
867 if (max_log < log)
9e423e6d
JW
868 {
869 max_log = log;
870 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
871 }
fc470718
R
872 break;
873 }
874 }
fc470718
R
875 }
876#ifdef HAVE_ATTR_length
877
878 /* Allocate the rest of the arrays. */
703ad42b 879 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
ea3cbda5 880 insn_lengths_max_uid = max_uid;
af035616
R
881 /* Syntax errors can lead to labels being outside of the main insn stream.
882 Initialize insn_addresses, so that we get reproducible results. */
9d98a694 883 INSN_ADDRESSES_ALLOC (max_uid);
fc470718 884
703ad42b 885 varying_length = xcalloc (max_uid, sizeof (char));
fc470718
R
886
887 /* Initialize uid_align. We scan instructions
888 from end to start, and keep in align_tab[n] the last seen insn
889 that does an alignment of at least n+1, i.e. the successor
890 in the alignment chain for an insn that does / has a known
891 alignment of n. */
703ad42b 892 uid_align = xcalloc (max_uid, sizeof *uid_align);
fc470718 893
f5d927c0 894 for (i = MAX_CODE_ALIGN; --i >= 0;)
fc470718
R
895 align_tab[i] = NULL_RTX;
896 seq = get_last_insn ();
33f7f353 897 for (; seq; seq = PREV_INSN (seq))
fc470718
R
898 {
899 int uid = INSN_UID (seq);
900 int log;
fc470718
R
901 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
902 uid_align[uid] = align_tab[0];
fc470718
R
903 if (log)
904 {
905 /* Found an alignment label. */
906 uid_align[uid] = align_tab[log];
907 for (i = log - 1; i >= 0; i--)
908 align_tab[i] = seq;
909 }
33f7f353
JR
910 }
911#ifdef CASE_VECTOR_SHORTEN_MODE
912 if (optimize)
913 {
914 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
915 label fields. */
916
917 int min_shuid = INSN_SHUID (get_insns ()) - 1;
918 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
919 int rel;
920
921 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
fc470718 922 {
33f7f353
JR
923 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
924 int len, i, min, max, insn_shuid;
925 int min_align;
926 addr_diff_vec_flags flags;
927
928 if (GET_CODE (insn) != JUMP_INSN
929 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
930 continue;
931 pat = PATTERN (insn);
932 len = XVECLEN (pat, 1);
933 if (len <= 0)
934 abort ();
935 min_align = MAX_CODE_ALIGN;
936 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
937 {
938 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
939 int shuid = INSN_SHUID (lab);
940 if (shuid < min)
941 {
942 min = shuid;
943 min_lab = lab;
944 }
945 if (shuid > max)
946 {
947 max = shuid;
948 max_lab = lab;
949 }
950 if (min_align > LABEL_TO_ALIGNMENT (lab))
951 min_align = LABEL_TO_ALIGNMENT (lab);
952 }
953 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
954 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
955 insn_shuid = INSN_SHUID (insn);
956 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
957 flags.min_align = min_align;
958 flags.base_after_vec = rel > insn_shuid;
959 flags.min_after_vec = min > insn_shuid;
960 flags.max_after_vec = max > insn_shuid;
961 flags.min_after_base = min > rel;
962 flags.max_after_base = max > rel;
963 ADDR_DIFF_VEC_FLAGS (pat) = flags;
fc470718
R
964 }
965 }
33f7f353 966#endif /* CASE_VECTOR_SHORTEN_MODE */
3cf2715d 967
3cf2715d 968 /* Compute initial lengths, addresses, and varying flags for each insn. */
b816f339 969 for (insn_current_address = 0, insn = first;
3cf2715d
DE
970 insn != 0;
971 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
972 {
973 uid = INSN_UID (insn);
fc470718 974
3cf2715d 975 insn_lengths[uid] = 0;
fc470718
R
976
977 if (GET_CODE (insn) == CODE_LABEL)
978 {
979 int log = LABEL_TO_ALIGNMENT (insn);
980 if (log)
981 {
982 int align = 1 << log;
ecb06768 983 int new_address = (insn_current_address + align - 1) & -align;
fc470718 984 insn_lengths[uid] = new_address - insn_current_address;
fc470718
R
985 }
986 }
987
5a09edba 988 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
f5d927c0 989
3cf2715d
DE
990 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
991 || GET_CODE (insn) == CODE_LABEL)
992 continue;
04da53bd
R
993 if (INSN_DELETED_P (insn))
994 continue;
3cf2715d
DE
995
996 body = PATTERN (insn);
997 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
5a32a90c
JR
998 {
999 /* This only takes room if read-only data goes into the text
1000 section. */
d48bc59a 1001 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1002 insn_lengths[uid] = (XVECLEN (body,
1003 GET_CODE (body) == ADDR_DIFF_VEC)
1004 * GET_MODE_SIZE (GET_MODE (body)));
5a32a90c 1005 /* Alignment is handled by ADDR_VEC_ALIGN. */
5a32a90c 1006 }
a30caf5c 1007 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
3cf2715d
DE
1008 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1009 else if (GET_CODE (body) == SEQUENCE)
1010 {
1011 int i;
1012 int const_delay_slots;
1013#ifdef DELAY_SLOTS
1014 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1015#else
1016 const_delay_slots = 0;
1017#endif
1018 /* Inside a delay slot sequence, we do not do any branch shortening
1019 if the shortening could change the number of delay slots
0f41302f 1020 of the branch. */
3cf2715d
DE
1021 for (i = 0; i < XVECLEN (body, 0); i++)
1022 {
1023 rtx inner_insn = XVECEXP (body, 0, i);
1024 int inner_uid = INSN_UID (inner_insn);
1025 int inner_length;
1026
a30caf5c
DC
1027 if (GET_CODE (body) == ASM_INPUT
1028 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
3cf2715d
DE
1029 inner_length = (asm_insn_count (PATTERN (inner_insn))
1030 * insn_default_length (inner_insn));
1031 else
1032 inner_length = insn_default_length (inner_insn);
f5d927c0 1033
3cf2715d
DE
1034 insn_lengths[inner_uid] = inner_length;
1035 if (const_delay_slots)
1036 {
1037 if ((varying_length[inner_uid]
1038 = insn_variable_length_p (inner_insn)) != 0)
1039 varying_length[uid] = 1;
9d98a694
AO
1040 INSN_ADDRESSES (inner_uid) = (insn_current_address
1041 + insn_lengths[uid]);
3cf2715d
DE
1042 }
1043 else
1044 varying_length[inner_uid] = 0;
1045 insn_lengths[uid] += inner_length;
1046 }
1047 }
1048 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1049 {
1050 insn_lengths[uid] = insn_default_length (insn);
1051 varying_length[uid] = insn_variable_length_p (insn);
1052 }
1053
1054 /* If needed, do any adjustment. */
1055#ifdef ADJUST_INSN_LENGTH
1056 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
04b6000c 1057 if (insn_lengths[uid] < 0)
c725bd79 1058 fatal_insn ("negative insn length", insn);
3cf2715d
DE
1059#endif
1060 }
1061
1062 /* Now loop over all the insns finding varying length insns. For each,
1063 get the current insn length. If it has changed, reflect the change.
1064 When nothing changes for a full pass, we are done. */
1065
1066 while (something_changed)
1067 {
1068 something_changed = 0;
fc470718 1069 insn_current_align = MAX_CODE_ALIGN - 1;
b816f339 1070 for (insn_current_address = 0, insn = first;
3cf2715d
DE
1071 insn != 0;
1072 insn = NEXT_INSN (insn))
1073 {
1074 int new_length;
b729186a 1075#ifdef ADJUST_INSN_LENGTH
3cf2715d 1076 int tmp_length;
b729186a 1077#endif
fc470718 1078 int length_align;
3cf2715d
DE
1079
1080 uid = INSN_UID (insn);
fc470718
R
1081
1082 if (GET_CODE (insn) == CODE_LABEL)
1083 {
1084 int log = LABEL_TO_ALIGNMENT (insn);
1085 if (log > insn_current_align)
1086 {
1087 int align = 1 << log;
ecb06768 1088 int new_address= (insn_current_address + align - 1) & -align;
fc470718
R
1089 insn_lengths[uid] = new_address - insn_current_address;
1090 insn_current_align = log;
1091 insn_current_address = new_address;
1092 }
1093 else
1094 insn_lengths[uid] = 0;
9d98a694 1095 INSN_ADDRESSES (uid) = insn_current_address;
fc470718
R
1096 continue;
1097 }
1098
1099 length_align = INSN_LENGTH_ALIGNMENT (insn);
1100 if (length_align < insn_current_align)
1101 insn_current_align = length_align;
1102
9d98a694
AO
1103 insn_last_address = INSN_ADDRESSES (uid);
1104 INSN_ADDRESSES (uid) = insn_current_address;
fc470718 1105
5e75ef4a 1106#ifdef CASE_VECTOR_SHORTEN_MODE
33f7f353
JR
1107 if (optimize && GET_CODE (insn) == JUMP_INSN
1108 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1109 {
33f7f353
JR
1110 rtx body = PATTERN (insn);
1111 int old_length = insn_lengths[uid];
1112 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1113 rtx min_lab = XEXP (XEXP (body, 2), 0);
1114 rtx max_lab = XEXP (XEXP (body, 3), 0);
9d98a694
AO
1115 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1116 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1117 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
33f7f353
JR
1118 rtx prev;
1119 int rel_align = 0;
950a3816
KG
1120 addr_diff_vec_flags flags;
1121
1122 /* Avoid automatic aggregate initialization. */
1123 flags = ADDR_DIFF_VEC_FLAGS (body);
33f7f353
JR
1124
1125 /* Try to find a known alignment for rel_lab. */
1126 for (prev = rel_lab;
1127 prev
1128 && ! insn_lengths[INSN_UID (prev)]
1129 && ! (varying_length[INSN_UID (prev)] & 1);
1130 prev = PREV_INSN (prev))
1131 if (varying_length[INSN_UID (prev)] & 2)
1132 {
1133 rel_align = LABEL_TO_ALIGNMENT (prev);
1134 break;
1135 }
1136
1137 /* See the comment on addr_diff_vec_flags in rtl.h for the
1138 meaning of the flags values. base: REL_LAB vec: INSN */
1139 /* Anything after INSN has still addresses from the last
1140 pass; adjust these so that they reflect our current
1141 estimate for this pass. */
1142 if (flags.base_after_vec)
1143 rel_addr += insn_current_address - insn_last_address;
1144 if (flags.min_after_vec)
1145 min_addr += insn_current_address - insn_last_address;
1146 if (flags.max_after_vec)
1147 max_addr += insn_current_address - insn_last_address;
1148 /* We want to know the worst case, i.e. lowest possible value
1149 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1150 its offset is positive, and we have to be wary of code shrink;
1151 otherwise, it is negative, and we have to be vary of code
1152 size increase. */
1153 if (flags.min_after_base)
1154 {
1155 /* If INSN is between REL_LAB and MIN_LAB, the size
1156 changes we are about to make can change the alignment
1157 within the observed offset, therefore we have to break
1158 it up into two parts that are independent. */
1159 if (! flags.base_after_vec && flags.min_after_vec)
1160 {
1161 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1162 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1163 }
1164 else
1165 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1166 }
1167 else
1168 {
1169 if (flags.base_after_vec && ! flags.min_after_vec)
1170 {
1171 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1172 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1173 }
1174 else
1175 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1176 }
1177 /* Likewise, determine the highest lowest possible value
1178 for the offset of MAX_LAB. */
1179 if (flags.max_after_base)
1180 {
1181 if (! flags.base_after_vec && flags.max_after_vec)
1182 {
1183 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1184 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1185 }
1186 else
1187 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1188 }
1189 else
1190 {
1191 if (flags.base_after_vec && ! flags.max_after_vec)
1192 {
1193 max_addr += align_fuzz (max_lab, insn, 0, 0);
1194 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1195 }
1196 else
1197 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1198 }
1199 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1200 max_addr - rel_addr,
1201 body));
d48bc59a 1202 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
75197b37
BS
1203 {
1204 insn_lengths[uid]
1205 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1206 insn_current_address += insn_lengths[uid];
1207 if (insn_lengths[uid] != old_length)
1208 something_changed = 1;
1209 }
1210
33f7f353 1211 continue;
33f7f353 1212 }
5e75ef4a
JL
1213#endif /* CASE_VECTOR_SHORTEN_MODE */
1214
1215 if (! (varying_length[uid]))
3cf2715d 1216 {
674fc07d
GS
1217 if (GET_CODE (insn) == INSN
1218 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1219 {
1220 int i;
1221
1222 body = PATTERN (insn);
1223 for (i = 0; i < XVECLEN (body, 0); i++)
1224 {
1225 rtx inner_insn = XVECEXP (body, 0, i);
1226 int inner_uid = INSN_UID (inner_insn);
1227
1228 INSN_ADDRESSES (inner_uid) = insn_current_address;
1229
1230 insn_current_address += insn_lengths[inner_uid];
1231 }
dd3f0101 1232 }
674fc07d
GS
1233 else
1234 insn_current_address += insn_lengths[uid];
1235
3cf2715d
DE
1236 continue;
1237 }
674fc07d 1238
3cf2715d
DE
1239 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1240 {
1241 int i;
f5d927c0 1242
3cf2715d
DE
1243 body = PATTERN (insn);
1244 new_length = 0;
1245 for (i = 0; i < XVECLEN (body, 0); i++)
1246 {
1247 rtx inner_insn = XVECEXP (body, 0, i);
1248 int inner_uid = INSN_UID (inner_insn);
1249 int inner_length;
1250
9d98a694 1251 INSN_ADDRESSES (inner_uid) = insn_current_address;
3cf2715d
DE
1252
1253 /* insn_current_length returns 0 for insns with a
1254 non-varying length. */
1255 if (! varying_length[inner_uid])
1256 inner_length = insn_lengths[inner_uid];
1257 else
1258 inner_length = insn_current_length (inner_insn);
1259
1260 if (inner_length != insn_lengths[inner_uid])
1261 {
1262 insn_lengths[inner_uid] = inner_length;
1263 something_changed = 1;
1264 }
1265 insn_current_address += insn_lengths[inner_uid];
1266 new_length += inner_length;
1267 }
1268 }
1269 else
1270 {
1271 new_length = insn_current_length (insn);
1272 insn_current_address += new_length;
1273 }
1274
3cf2715d
DE
1275#ifdef ADJUST_INSN_LENGTH
1276 /* If needed, do any adjustment. */
1277 tmp_length = new_length;
1278 ADJUST_INSN_LENGTH (insn, new_length);
1279 insn_current_address += (new_length - tmp_length);
3cf2715d
DE
1280#endif
1281
1282 if (new_length != insn_lengths[uid])
1283 {
1284 insn_lengths[uid] = new_length;
1285 something_changed = 1;
1286 }
1287 }
bb4aaf18
TG
1288 /* For a non-optimizing compile, do only a single pass. */
1289 if (!optimize)
1290 break;
3cf2715d 1291 }
fc470718
R
1292
1293 free (varying_length);
1294
3cf2715d
DE
1295#endif /* HAVE_ATTR_length */
1296}
1297
1298#ifdef HAVE_ATTR_length
1299/* Given the body of an INSN known to be generated by an ASM statement, return
1300 the number of machine instructions likely to be generated for this insn.
1301 This is used to compute its length. */
1302
1303static int
6cf9ac28 1304asm_insn_count (rtx body)
3cf2715d 1305{
3cce094d 1306 const char *template;
3cf2715d
DE
1307 int count = 1;
1308
5d0930ea
DE
1309 if (GET_CODE (body) == ASM_INPUT)
1310 template = XSTR (body, 0);
1311 else
df4ae160 1312 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
5d0930ea 1313
f5d927c0
KH
1314 for (; *template; template++)
1315 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
3cf2715d
DE
1316 count++;
1317
1318 return count;
1319}
1320#endif
1321\f
1322/* Output assembler code for the start of a function,
1323 and initialize some of the variables in this file
1324 for the new function. The label for the function and associated
1325 assembler pseudo-ops have already been output in `assemble_start_function'.
1326
1327 FIRST is the first insn of the rtl for the function being compiled.
1328 FILE is the file to write assembler code to.
1329 OPTIMIZE is nonzero if we should eliminate redundant
1330 test and compare insns. */
1331
1332void
6cf9ac28
AJ
1333final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1334 int optimize ATTRIBUTE_UNUSED)
3cf2715d
DE
1335{
1336 block_depth = 0;
1337
1338 this_is_asm_operands = 0;
1339
9ae130f8
JH
1340 last_filename = locator_file (prologue_locator);
1341 last_linenum = locator_line (prologue_locator);
1342
653e276c 1343 high_block_linenum = high_function_linenum = last_linenum;
eac40081 1344
653e276c 1345 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
d291dd49 1346
653e276c 1347#if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
7a0c8d71 1348 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
653e276c 1349 dwarf2out_begin_prologue (0, NULL);
f5d927c0 1350#endif
3cf2715d
DE
1351
1352#ifdef LEAF_REG_REMAP
54ff41b7 1353 if (current_function_uses_only_leaf_regs)
3cf2715d
DE
1354 leaf_renumber_regs (first);
1355#endif
1356
1357 /* The Sun386i and perhaps other machines don't work right
1358 if the profiling code comes after the prologue. */
1359#ifdef PROFILE_BEFORE_PROLOGUE
70f4f91c 1360 if (current_function_profile)
3cf2715d
DE
1361 profile_function (file);
1362#endif /* PROFILE_BEFORE_PROLOGUE */
1363
0021b564
JM
1364#if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1365 if (dwarf2out_do_frame ())
1366 dwarf2out_frame_debug (NULL_RTX);
1367#endif
1368
18c038b9
MM
1369 /* If debugging, assign block numbers to all of the blocks in this
1370 function. */
1371 if (write_symbols)
1372 {
3ac79482 1373 remove_unnecessary_notes ();
0435312e 1374 reemit_insn_block_notes ();
a20612aa 1375 number_blocks (current_function_decl);
18c038b9
MM
1376 /* We never actually put out begin/end notes for the top-level
1377 block in the function. But, conceptually, that block is
1378 always needed. */
1379 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1380 }
1381
3cf2715d 1382 /* First output the function prologue: code to set up the stack frame. */
f6897b10 1383 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
3cf2715d 1384
3cf2715d
DE
1385 /* If the machine represents the prologue as RTL, the profiling code must
1386 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1387#ifdef HAVE_prologue
1388 if (! HAVE_prologue)
1389#endif
1390 profile_after_prologue (file);
3cf2715d
DE
1391}
1392
1393static void
6cf9ac28 1394profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
3cf2715d 1395{
3cf2715d 1396#ifndef PROFILE_BEFORE_PROLOGUE
70f4f91c 1397 if (current_function_profile)
3cf2715d
DE
1398 profile_function (file);
1399#endif /* not PROFILE_BEFORE_PROLOGUE */
1400}
1401
1402static void
6cf9ac28 1403profile_function (FILE *file ATTRIBUTE_UNUSED)
3cf2715d 1404{
dcacfa04 1405#ifndef NO_PROFILE_COUNTERS
9739c90c 1406# define NO_PROFILE_COUNTERS 0
dcacfa04 1407#endif
b729186a 1408#if defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1409 int sval = current_function_returns_struct;
61f71b34 1410 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
b729186a 1411#if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
3cf2715d 1412 int cxt = current_function_needs_context;
b729186a
JL
1413#endif
1414#endif /* ASM_OUTPUT_REG_PUSH */
3cf2715d 1415
9739c90c
JJ
1416 if (! NO_PROFILE_COUNTERS)
1417 {
1418 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1419 data_section ();
1420 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1421 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1422 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1423 }
3cf2715d 1424
499df339 1425 function_section (current_function_decl);
3cf2715d 1426
61f71b34 1427#if defined(ASM_OUTPUT_REG_PUSH)
3d63de24 1428 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
61f71b34 1429 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
3cf2715d
DE
1430#endif
1431
65ed39df 1432#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1433 if (cxt)
1434 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1435#else
65ed39df 1436#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1437 if (cxt)
51723711
KG
1438 {
1439 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1440 }
3cf2715d
DE
1441#endif
1442#endif
3cf2715d 1443
df696a75 1444 FUNCTION_PROFILER (file, current_function_funcdef_no);
3cf2715d 1445
65ed39df 1446#if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d
DE
1447 if (cxt)
1448 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1449#else
65ed39df 1450#if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
3cf2715d 1451 if (cxt)
51723711
KG
1452 {
1453 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1454 }
3cf2715d
DE
1455#endif
1456#endif
3cf2715d 1457
61f71b34 1458#if defined(ASM_OUTPUT_REG_PUSH)
3d63de24 1459 if (sval && svrtx != NULL_RTX && GET_CODE (svrtx) == REG)
61f71b34 1460 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
3cf2715d
DE
1461#endif
1462}
1463
1464/* Output assembler code for the end of a function.
1465 For clarity, args are same as those of `final_start_function'
1466 even though not all of them are needed. */
1467
1468void
6cf9ac28 1469final_end_function (void)
3cf2715d 1470{
be1bb652 1471 app_disable ();
3cf2715d 1472
e2a12aca 1473 (*debug_hooks->end_function) (high_function_linenum);
3cf2715d 1474
3cf2715d
DE
1475 /* Finally, output the function epilogue:
1476 code to restore the stack frame and return to the caller. */
e2a12aca 1477 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
3cf2715d 1478
e2a12aca 1479 /* And debug output. */
702ada3d 1480 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
3cf2715d 1481
e2a12aca 1482#if defined (DWARF2_UNWIND_INFO)
7a0c8d71
DR
1483 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1484 && dwarf2out_do_frame ())
702ada3d 1485 dwarf2out_end_epilogue (last_linenum, last_filename);
9a666dda 1486#endif
3cf2715d
DE
1487}
1488\f
3cf2715d
DE
1489/* Output assembler code for some insns: all or part of a function.
1490 For description of args, see `final_start_function', above.
1491
1492 PRESCAN is 1 if we are not really outputting,
1493 just scanning as if we were outputting.
1494 Prescanning deletes and rearranges insns just like ordinary output.
1495 PRESCAN is -2 if we are outputting after having prescanned.
1496 In this case, don't try to delete or rearrange insns
1497 because that has already been done.
1498 Prescanning is done only on certain machines. */
1499
1500void
6cf9ac28 1501final (rtx first, FILE *file, int optimize, int prescan)
3cf2715d 1502{
b3694847 1503 rtx insn;
a8c3510c 1504 int max_uid = 0;
589fe865 1505 int seen = 0;
3cf2715d
DE
1506
1507 last_ignored_compare = 0;
3cf2715d 1508
589fe865
DJ
1509#ifdef SDB_DEBUGGING_INFO
1510 /* When producing SDB debugging info, delete troublesome line number
3cf2715d
DE
1511 notes from inlined functions in other files as well as duplicate
1512 line number notes. */
3cf2715d
DE
1513 if (write_symbols == SDB_DEBUG)
1514 {
1515 rtx last = 0;
1516 for (insn = first; insn; insn = NEXT_INSN (insn))
1517 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1518 {
1519 if ((RTX_INTEGRATED_P (insn)
1520 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
589fe865
DJ
1521 || (last != 0
1522 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1523 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
3cf2715d 1524 {
2e106602 1525 delete_insn (insn); /* Use delete_note. */
3cf2715d
DE
1526 continue;
1527 }
1528 last = insn;
3cf2715d
DE
1529 }
1530 }
3cf2715d 1531#endif
3cf2715d
DE
1532
1533 for (insn = first; insn; insn = NEXT_INSN (insn))
a8c3510c 1534 {
938d968e 1535 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
f5d927c0 1536 max_uid = INSN_UID (insn);
9ef4c6ef
JC
1537#ifdef HAVE_cc0
1538 /* If CC tracking across branches is enabled, record the insn which
1539 jumps to each branch only reached from one place. */
7ad7f828 1540 if (optimize && GET_CODE (insn) == JUMP_INSN)
9ef4c6ef
JC
1541 {
1542 rtx lab = JUMP_LABEL (insn);
1543 if (lab && LABEL_NUSES (lab) == 1)
1544 {
1545 LABEL_REFS (lab) = insn;
1546 }
1547 }
1548#endif
a8c3510c
AM
1549 }
1550
3cf2715d
DE
1551 init_recog ();
1552
1553 CC_STATUS_INIT;
1554
1555 /* Output the insns. */
1556 for (insn = NEXT_INSN (first); insn;)
2f16edb1
TG
1557 {
1558#ifdef HAVE_ATTR_length
b9f22704 1559 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
0ac76ad9 1560 {
0ac76ad9
RH
1561 /* This can be triggered by bugs elsewhere in the compiler if
1562 new insns are created after init_insn_lengths is called. */
0acb0203
JH
1563 if (GET_CODE (insn) == NOTE)
1564 insn_current_address = -1;
1565 else
1566 abort ();
0ac76ad9
RH
1567 }
1568 else
9d98a694 1569 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
0ac76ad9
RH
1570#endif /* HAVE_ATTR_length */
1571
589fe865 1572 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
2f16edb1 1573 }
3cf2715d
DE
1574}
1575\f
4bbf910e 1576const char *
6cf9ac28 1577get_insn_template (int code, rtx insn)
4bbf910e 1578{
4bbf910e
RH
1579 switch (insn_data[code].output_format)
1580 {
1581 case INSN_OUTPUT_FORMAT_SINGLE:
3897f229 1582 return insn_data[code].output.single;
4bbf910e 1583 case INSN_OUTPUT_FORMAT_MULTI:
3897f229 1584 return insn_data[code].output.multi[which_alternative];
4bbf910e
RH
1585 case INSN_OUTPUT_FORMAT_FUNCTION:
1586 if (insn == NULL)
1587 abort ();
3897f229 1588 return (*insn_data[code].output.function) (recog_data.operand, insn);
4bbf910e
RH
1589
1590 default:
1591 abort ();
1592 }
1593}
f5d927c0 1594
0dc36574
ZW
1595/* Emit the appropriate declaration for an alternate-entry-point
1596 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1597 LABEL_KIND != LABEL_NORMAL.
1598
1599 The case fall-through in this function is intentional. */
1600static void
6cf9ac28 1601output_alternate_entry_point (FILE *file, rtx insn)
0dc36574
ZW
1602{
1603 const char *name = LABEL_NAME (insn);
1604
1605 switch (LABEL_KIND (insn))
1606 {
1607 case LABEL_WEAK_ENTRY:
1608#ifdef ASM_WEAKEN_LABEL
1609 ASM_WEAKEN_LABEL (file, name);
1610#endif
1611 case LABEL_GLOBAL_ENTRY:
5eb99654 1612 (*targetm.asm_out.globalize_label) (file, name);
0dc36574 1613 case LABEL_STATIC_ENTRY:
905173eb
ZW
1614#ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1615 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1616#endif
0dc36574
ZW
1617 ASM_OUTPUT_LABEL (file, name);
1618 break;
1619
1620 case LABEL_NORMAL:
1621 default:
1622 abort ();
1623 }
1624}
1625
3cf2715d
DE
1626/* The final scan for one insn, INSN.
1627 Args are same as in `final', except that INSN
1628 is the insn being scanned.
1629 Value returned is the next insn to be scanned.
1630
1631 NOPEEPHOLES is the flag to disallow peephole processing (currently
589fe865 1632 used for within delayed branch sequence output).
3cf2715d 1633
589fe865
DJ
1634 SEEN is used to track the end of the prologue, for emitting
1635 debug information. We force the emission of a line note after
1636 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1637 at the beginning of the second basic block, whichever comes
1638 first. */
1639
5cfc5f84 1640rtx
6cf9ac28 1641final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
589fe865
DJ
1642 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1643 int *seen)
3cf2715d 1644{
90ca38bb
MM
1645#ifdef HAVE_cc0
1646 rtx set;
1647#endif
1648
3cf2715d
DE
1649 insn_counter++;
1650
1651 /* Ignore deleted insns. These can occur when we split insns (due to a
1652 template of "#") while not optimizing. */
1653 if (INSN_DELETED_P (insn))
1654 return NEXT_INSN (insn);
1655
1656 switch (GET_CODE (insn))
1657 {
1658 case NOTE:
1659 if (prescan > 0)
1660 break;
1661
be1bb652
RH
1662 switch (NOTE_LINE_NUMBER (insn))
1663 {
1664 case NOTE_INSN_DELETED:
1665 case NOTE_INSN_LOOP_BEG:
1666 case NOTE_INSN_LOOP_END:
2c79137a 1667 case NOTE_INSN_LOOP_END_TOP_COND:
be1bb652
RH
1668 case NOTE_INSN_LOOP_CONT:
1669 case NOTE_INSN_LOOP_VTOP:
1670 case NOTE_INSN_FUNCTION_END:
be1bb652 1671 case NOTE_INSN_REPEATED_LINE_NUMBER:
be1bb652
RH
1672 case NOTE_INSN_EXPECTED_VALUE:
1673 break;
3cf2715d 1674
be1bb652 1675 case NOTE_INSN_BASIC_BLOCK:
ad0fc698
JW
1676#ifdef IA64_UNWIND_INFO
1677 IA64_UNWIND_EMIT (asm_out_file, insn);
1678#endif
be1bb652
RH
1679 if (flag_debug_asm)
1680 fprintf (asm_out_file, "\t%s basic block %d\n",
0b17ab2f 1681 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
589fe865
DJ
1682
1683 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1684 {
1685 *seen |= SEEN_EMITTED;
1686 last_filename = NULL;
1687 }
1688 else
1689 *seen |= SEEN_BB;
1690
be1bb652 1691 break;
3cf2715d 1692
be1bb652 1693 case NOTE_INSN_EH_REGION_BEG:
52a11cbf
RH
1694 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1695 NOTE_EH_HANDLER (insn));
3d195391 1696 break;
3d195391 1697
be1bb652 1698 case NOTE_INSN_EH_REGION_END:
52a11cbf
RH
1699 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1700 NOTE_EH_HANDLER (insn));
3d195391 1701 break;
3d195391 1702
be1bb652 1703 case NOTE_INSN_PROLOGUE_END:
b9f22704 1704 (*targetm.asm_out.function_end_prologue) (file);
3cf2715d 1705 profile_after_prologue (file);
589fe865
DJ
1706
1707 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1708 {
1709 *seen |= SEEN_EMITTED;
1710 last_filename = NULL;
1711 }
1712 else
1713 *seen |= SEEN_NOTE;
1714
3cf2715d 1715 break;
3cf2715d 1716
be1bb652 1717 case NOTE_INSN_EPILOGUE_BEG:
b9f22704 1718 (*targetm.asm_out.function_begin_epilogue) (file);
be1bb652 1719 break;
3cf2715d 1720
be1bb652 1721 case NOTE_INSN_FUNCTION_BEG:
653e276c 1722 app_disable ();
702ada3d 1723 (*debug_hooks->end_prologue) (last_linenum, last_filename);
589fe865
DJ
1724
1725 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1726 {
1727 *seen |= SEEN_EMITTED;
1728 last_filename = NULL;
1729 }
1730 else
1731 *seen |= SEEN_NOTE;
1732
3cf2715d 1733 break;
be1bb652
RH
1734
1735 case NOTE_INSN_BLOCK_BEG:
1736 if (debug_info_level == DINFO_LEVEL_NORMAL
3cf2715d 1737 || debug_info_level == DINFO_LEVEL_VERBOSE
3cf2715d 1738 || write_symbols == DWARF_DEBUG
7a0c8d71
DR
1739 || write_symbols == DWARF2_DEBUG
1740 || write_symbols == VMS_AND_DWARF2_DEBUG
1741 || write_symbols == VMS_DEBUG)
be1bb652
RH
1742 {
1743 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1744
be1bb652
RH
1745 app_disable ();
1746 ++block_depth;
1747 high_block_linenum = last_linenum;
eac40081 1748
a5a42b92 1749 /* Output debugging info about the symbol-block beginning. */
e2a12aca 1750 (*debug_hooks->begin_block) (last_linenum, n);
3cf2715d 1751
be1bb652
RH
1752 /* Mark this block as output. */
1753 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1754 }
1755 break;
18c038b9 1756
be1bb652
RH
1757 case NOTE_INSN_BLOCK_END:
1758 if (debug_info_level == DINFO_LEVEL_NORMAL
1759 || debug_info_level == DINFO_LEVEL_VERBOSE
1760 || write_symbols == DWARF_DEBUG
7a0c8d71
DR
1761 || write_symbols == DWARF2_DEBUG
1762 || write_symbols == VMS_AND_DWARF2_DEBUG
1763 || write_symbols == VMS_DEBUG)
be1bb652
RH
1764 {
1765 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
3cf2715d 1766
be1bb652
RH
1767 app_disable ();
1768
1769 /* End of a symbol-block. */
1770 --block_depth;
1771 if (block_depth < 0)
1772 abort ();
3cf2715d 1773
e2a12aca 1774 (*debug_hooks->end_block) (high_block_linenum, n);
be1bb652
RH
1775 }
1776 break;
1777
1778 case NOTE_INSN_DELETED_LABEL:
1779 /* Emit the label. We may have deleted the CODE_LABEL because
1780 the label could be proved to be unreachable, though still
1781 referenced (in the form of having its address taken. */
8215347e 1782 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
be1bb652 1783 break;
3cf2715d 1784
014a1138
JZ
1785 case NOTE_INSN_VAR_LOCATION:
1786 (*debug_hooks->var_location) (insn);
1787 break;
1788
21835d9b
JJ
1789 case 0:
1790 break;
1791
be1bb652
RH
1792 default:
1793 if (NOTE_LINE_NUMBER (insn) <= 0)
1794 abort ();
f5d927c0 1795 break;
3cf2715d
DE
1796 }
1797 break;
1798
1799 case BARRIER:
f73ad30e 1800#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 1801 if (dwarf2out_do_frame ())
be1bb652 1802 dwarf2out_frame_debug (insn);
3cf2715d
DE
1803#endif
1804 break;
1805
1806 case CODE_LABEL:
1dd8faa8
R
1807 /* The target port might emit labels in the output function for
1808 some insn, e.g. sh.c output_branchy_insn. */
de7987a6
R
1809 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1810 {
1811 int align = LABEL_TO_ALIGNMENT (insn);
50b2596f 1812#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
9e423e6d 1813 int max_skip = LABEL_TO_MAX_SKIP (insn);
50b2596f 1814#endif
fc470718 1815
1dd8faa8 1816 if (align && NEXT_INSN (insn))
40cdfca6 1817 {
9e423e6d 1818#ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
40cdfca6 1819 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
8e16ab99
SF
1820#else
1821#ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1822 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
9e423e6d 1823#else
40cdfca6 1824 ASM_OUTPUT_ALIGN (file, align);
8e16ab99 1825#endif
9e423e6d 1826#endif
40cdfca6 1827 }
de7987a6 1828 }
9ef4c6ef 1829#ifdef HAVE_cc0
3cf2715d 1830 CC_STATUS_INIT;
9ef4c6ef
JC
1831 /* If this label is reached from only one place, set the condition
1832 codes from the instruction just before the branch. */
7ad7f828
JC
1833
1834 /* Disabled because some insns set cc_status in the C output code
1835 and NOTICE_UPDATE_CC alone can set incorrect status. */
1836 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
9ef4c6ef
JC
1837 {
1838 rtx jump = LABEL_REFS (insn);
1839 rtx barrier = prev_nonnote_insn (insn);
1840 rtx prev;
1841 /* If the LABEL_REFS field of this label has been set to point
1842 at a branch, the predecessor of the branch is a regular
1843 insn, and that branch is the only way to reach this label,
1844 set the condition codes based on the branch and its
1845 predecessor. */
1846 if (barrier && GET_CODE (barrier) == BARRIER
1847 && jump && GET_CODE (jump) == JUMP_INSN
1848 && (prev = prev_nonnote_insn (jump))
1849 && GET_CODE (prev) == INSN)
1850 {
1851 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1852 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1853 }
1854 }
1855#endif
3cf2715d
DE
1856 if (prescan > 0)
1857 break;
03ffa171 1858
e1772ac0
NB
1859 if (LABEL_NAME (insn))
1860 (*debug_hooks->label) (insn);
1861
3cf2715d
DE
1862 if (app_on)
1863 {
51723711 1864 fputs (ASM_APP_OFF, file);
3cf2715d
DE
1865 app_on = 0;
1866 }
1867 if (NEXT_INSN (insn) != 0
1868 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1869 {
1870 rtx nextbody = PATTERN (NEXT_INSN (insn));
1871
1872 /* If this label is followed by a jump-table,
1873 make sure we put the label in the read-only section. Also
1874 possibly write the label and jump table together. */
1875
1876 if (GET_CODE (nextbody) == ADDR_VEC
1877 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1878 {
e0d80184
DM
1879#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1880 /* In this case, the case vector is being moved by the
1881 target, so don't output the label at all. Leave that
1882 to the back end macros. */
1883#else
75197b37
BS
1884 if (! JUMP_TABLES_IN_TEXT_SECTION)
1885 {
340f7e7c
RH
1886 int log_align;
1887
75197b37 1888 readonly_data_section ();
340f7e7c
RH
1889
1890#ifdef ADDR_VEC_ALIGN
3e4eece3 1891 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
340f7e7c
RH
1892#else
1893 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1894#endif
1895 ASM_OUTPUT_ALIGN (file, log_align);
75197b37
BS
1896 }
1897 else
1898 function_section (current_function_decl);
1899
3cf2715d
DE
1900#ifdef ASM_OUTPUT_CASE_LABEL
1901 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1902 NEXT_INSN (insn));
1903#else
4977bab6 1904 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
e0d80184 1905#endif
3cf2715d
DE
1906#endif
1907 break;
1908 }
1909 }
0dc36574
ZW
1910 if (LABEL_ALT_ENTRY_P (insn))
1911 output_alternate_entry_point (file, insn);
8cd0faaf 1912 else
4977bab6 1913 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
3cf2715d
DE
1914 break;
1915
1916 default:
1917 {
b3694847 1918 rtx body = PATTERN (insn);
3cf2715d 1919 int insn_code_number;
9b3142b3 1920 const char *template;
3cf2715d
DE
1921 rtx note;
1922
1923 /* An INSN, JUMP_INSN or CALL_INSN.
1924 First check for special kinds that recog doesn't recognize. */
1925
6614fd40 1926 if (GET_CODE (body) == USE /* These are just declarations. */
3cf2715d
DE
1927 || GET_CODE (body) == CLOBBER)
1928 break;
1929
1930#ifdef HAVE_cc0
1931 /* If there is a REG_CC_SETTER note on this insn, it means that
1932 the setting of the condition code was done in the delay slot
1933 of the insn that branched here. So recover the cc status
1934 from the insn that set it. */
1935
1936 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1937 if (note)
1938 {
1939 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1940 cc_prev_status = cc_status;
1941 }
1942#endif
1943
1944 /* Detect insns that are really jump-tables
1945 and output them as such. */
1946
1947 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1948 {
7f7f8214 1949#if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
b3694847 1950 int vlen, idx;
7f7f8214 1951#endif
3cf2715d
DE
1952
1953 if (prescan > 0)
1954 break;
1955
1956 if (app_on)
1957 {
51723711 1958 fputs (ASM_APP_OFF, file);
3cf2715d
DE
1959 app_on = 0;
1960 }
1961
e0d80184
DM
1962#if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1963 if (GET_CODE (body) == ADDR_VEC)
1964 {
1965#ifdef ASM_OUTPUT_ADDR_VEC
1966 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1967#else
f5d927c0 1968 abort ();
e0d80184
DM
1969#endif
1970 }
1971 else
1972 {
1973#ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1974 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1975#else
f5d927c0 1976 abort ();
e0d80184
DM
1977#endif
1978 }
1979#else
3cf2715d
DE
1980 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1981 for (idx = 0; idx < vlen; idx++)
1982 {
1983 if (GET_CODE (body) == ADDR_VEC)
1984 {
1985#ifdef ASM_OUTPUT_ADDR_VEC_ELT
1986 ASM_OUTPUT_ADDR_VEC_ELT
1987 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1988#else
1989 abort ();
1990#endif
1991 }
1992 else
1993 {
1994#ifdef ASM_OUTPUT_ADDR_DIFF_ELT
1995 ASM_OUTPUT_ADDR_DIFF_ELT
1996 (file,
33f7f353 1997 body,
3cf2715d
DE
1998 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
1999 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2000#else
2001 abort ();
2002#endif
2003 }
2004 }
2005#ifdef ASM_OUTPUT_CASE_END
2006 ASM_OUTPUT_CASE_END (file,
2007 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2008 insn);
e0d80184 2009#endif
3cf2715d
DE
2010#endif
2011
4d1065ed 2012 function_section (current_function_decl);
3cf2715d
DE
2013
2014 break;
2015 }
0435312e
JH
2016 /* Output this line note if it is the first or the last line
2017 note in a row. */
2018 if (notice_source_line (insn))
2019 {
2020 (*debug_hooks->source_line) (last_linenum, last_filename);
2021 }
3cf2715d 2022
3cf2715d
DE
2023 if (GET_CODE (body) == ASM_INPUT)
2024 {
36d7136e
RH
2025 const char *string = XSTR (body, 0);
2026
3cf2715d
DE
2027 /* There's no telling what that did to the condition codes. */
2028 CC_STATUS_INIT;
2029 if (prescan > 0)
2030 break;
36d7136e
RH
2031
2032 if (string[0])
3cf2715d 2033 {
36d7136e
RH
2034 if (! app_on)
2035 {
2036 fputs (ASM_APP_ON, file);
2037 app_on = 1;
2038 }
2039 fprintf (asm_out_file, "\t%s\n", string);
3cf2715d 2040 }
3cf2715d
DE
2041 break;
2042 }
2043
2044 /* Detect `asm' construct with operands. */
2045 if (asm_noperands (body) >= 0)
2046 {
22bf4422 2047 unsigned int noperands = asm_noperands (body);
703ad42b 2048 rtx *ops = alloca (noperands * sizeof (rtx));
3cce094d 2049 const char *string;
3cf2715d
DE
2050
2051 /* There's no telling what that did to the condition codes. */
2052 CC_STATUS_INIT;
2053 if (prescan > 0)
2054 break;
2055
3cf2715d 2056 /* Get out the operand values. */
df4ae160 2057 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
3cf2715d
DE
2058 /* Inhibit aborts on what would otherwise be compiler bugs. */
2059 insn_noperands = noperands;
2060 this_is_asm_operands = insn;
2061
ad7e39ca
AO
2062#ifdef FINAL_PRESCAN_INSN
2063 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2064#endif
2065
3cf2715d 2066 /* Output the insn using them. */
36d7136e
RH
2067 if (string[0])
2068 {
2069 if (! app_on)
2070 {
2071 fputs (ASM_APP_ON, file);
2072 app_on = 1;
2073 }
2074 output_asm_insn (string, ops);
2075 }
2076
3cf2715d
DE
2077 this_is_asm_operands = 0;
2078 break;
2079 }
2080
2081 if (prescan <= 0 && app_on)
2082 {
51723711 2083 fputs (ASM_APP_OFF, file);
3cf2715d
DE
2084 app_on = 0;
2085 }
2086
2087 if (GET_CODE (body) == SEQUENCE)
2088 {
2089 /* A delayed-branch sequence */
b3694847 2090 int i;
3cf2715d
DE
2091 rtx next;
2092
2093 if (prescan > 0)
2094 break;
2095 final_sequence = body;
2096
d660cefe
RS
2097 /* Record the delay slots' frame information before the branch.
2098 This is needed for delayed calls: see execute_cfa_program(). */
2099#if defined (DWARF2_UNWIND_INFO)
2100 if (dwarf2out_do_frame ())
2101 for (i = 1; i < XVECLEN (body, 0); i++)
2102 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2103#endif
2104
3cf2715d
DE
2105 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2106 force the restoration of a comparison that was previously
2107 thought unnecessary. If that happens, cancel this sequence
2108 and cause that insn to be restored. */
2109
589fe865 2110 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
3cf2715d
DE
2111 if (next != XVECEXP (body, 0, 1))
2112 {
2113 final_sequence = 0;
2114 return next;
2115 }
2116
2117 for (i = 1; i < XVECLEN (body, 0); i++)
c7eee2df
RK
2118 {
2119 rtx insn = XVECEXP (body, 0, i);
2120 rtx next = NEXT_INSN (insn);
2121 /* We loop in case any instruction in a delay slot gets
2122 split. */
2123 do
589fe865 2124 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
c7eee2df
RK
2125 while (insn != next);
2126 }
3cf2715d
DE
2127#ifdef DBR_OUTPUT_SEQEND
2128 DBR_OUTPUT_SEQEND (file);
2129#endif
2130 final_sequence = 0;
2131
2132 /* If the insn requiring the delay slot was a CALL_INSN, the
2133 insns in the delay slot are actually executed before the
2134 called function. Hence we don't preserve any CC-setting
2135 actions in these insns and the CC must be marked as being
2136 clobbered by the function. */
2137 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
b729186a
JL
2138 {
2139 CC_STATUS_INIT;
2140 }
3cf2715d
DE
2141 break;
2142 }
2143
2144 /* We have a real machine instruction as rtl. */
2145
2146 body = PATTERN (insn);
2147
2148#ifdef HAVE_cc0
f5d927c0 2149 set = single_set (insn);
b88c92cc 2150
3cf2715d
DE
2151 /* Check for redundant test and compare instructions
2152 (when the condition codes are already set up as desired).
2153 This is done only when optimizing; if not optimizing,
2154 it should be possible for the user to alter a variable
2155 with the debugger in between statements
2156 and the next statement should reexamine the variable
2157 to compute the condition codes. */
2158
30f5e9f5 2159 if (optimize)
3cf2715d 2160 {
30f5e9f5
RK
2161 if (set
2162 && GET_CODE (SET_DEST (set)) == CC0
2163 && insn != last_ignored_compare)
3cf2715d 2164 {
30f5e9f5 2165 if (GET_CODE (SET_SRC (set)) == SUBREG)
49d801d3 2166 SET_SRC (set) = alter_subreg (&SET_SRC (set));
30f5e9f5
RK
2167 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2168 {
2169 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2170 XEXP (SET_SRC (set), 0)
49d801d3 2171 = alter_subreg (&XEXP (SET_SRC (set), 0));
30f5e9f5
RK
2172 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2173 XEXP (SET_SRC (set), 1)
49d801d3 2174 = alter_subreg (&XEXP (SET_SRC (set), 1));
30f5e9f5
RK
2175 }
2176 if ((cc_status.value1 != 0
2177 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2178 || (cc_status.value2 != 0
2179 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
3cf2715d 2180 {
30f5e9f5 2181 /* Don't delete insn if it has an addressing side-effect. */
ff81832f 2182 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
30f5e9f5
RK
2183 /* or if anything in it is volatile. */
2184 && ! volatile_refs_p (PATTERN (insn)))
2185 {
2186 /* We don't really delete the insn; just ignore it. */
2187 last_ignored_compare = insn;
2188 break;
2189 }
3cf2715d
DE
2190 }
2191 }
2192 }
2193#endif
2194
3cf2715d
DE
2195#ifndef STACK_REGS
2196 /* Don't bother outputting obvious no-ops, even without -O.
2197 This optimization is fast and doesn't interfere with debugging.
2198 Don't do this if the insn is in a delay slot, since this
2199 will cause an improper number of delay insns to be written. */
2200 if (final_sequence == 0
2201 && prescan >= 0
2202 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2203 && GET_CODE (SET_SRC (body)) == REG
2204 && GET_CODE (SET_DEST (body)) == REG
2205 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2206 break;
2207#endif
2208
2209#ifdef HAVE_cc0
2210 /* If this is a conditional branch, maybe modify it
2211 if the cc's are in a nonstandard state
2212 so that it accomplishes the same thing that it would
2213 do straightforwardly if the cc's were set up normally. */
2214
2215 if (cc_status.flags != 0
2216 && GET_CODE (insn) == JUMP_INSN
2217 && GET_CODE (body) == SET
2218 && SET_DEST (body) == pc_rtx
2219 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
de2b56f9 2220 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
fff752ad 2221 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
3cf2715d
DE
2222 /* This is done during prescan; it is not done again
2223 in final scan when prescan has been done. */
2224 && prescan >= 0)
2225 {
2226 /* This function may alter the contents of its argument
2227 and clear some of the cc_status.flags bits.
2228 It may also return 1 meaning condition now always true
2229 or -1 meaning condition now always false
2230 or 2 meaning condition nontrivial but altered. */
b3694847 2231 int result = alter_cond (XEXP (SET_SRC (body), 0));
3cf2715d
DE
2232 /* If condition now has fixed value, replace the IF_THEN_ELSE
2233 with its then-operand or its else-operand. */
2234 if (result == 1)
2235 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2236 if (result == -1)
2237 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2238
2239 /* The jump is now either unconditional or a no-op.
2240 If it has become a no-op, don't try to output it.
2241 (It would not be recognized.) */
2242 if (SET_SRC (body) == pc_rtx)
2243 {
ca6c03ca 2244 delete_insn (insn);
3cf2715d
DE
2245 break;
2246 }
2247 else if (GET_CODE (SET_SRC (body)) == RETURN)
2248 /* Replace (set (pc) (return)) with (return). */
2249 PATTERN (insn) = body = SET_SRC (body);
2250
2251 /* Rerecognize the instruction if it has changed. */
2252 if (result != 0)
2253 INSN_CODE (insn) = -1;
2254 }
2255
2256 /* Make same adjustments to instructions that examine the
462da2af
SC
2257 condition codes without jumping and instructions that
2258 handle conditional moves (if this machine has either one). */
3cf2715d
DE
2259
2260 if (cc_status.flags != 0
b88c92cc 2261 && set != 0)
3cf2715d 2262 {
462da2af 2263 rtx cond_rtx, then_rtx, else_rtx;
f5d927c0 2264
462da2af 2265 if (GET_CODE (insn) != JUMP_INSN
b88c92cc 2266 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
462da2af 2267 {
b88c92cc
RK
2268 cond_rtx = XEXP (SET_SRC (set), 0);
2269 then_rtx = XEXP (SET_SRC (set), 1);
2270 else_rtx = XEXP (SET_SRC (set), 2);
462da2af
SC
2271 }
2272 else
2273 {
b88c92cc 2274 cond_rtx = SET_SRC (set);
462da2af
SC
2275 then_rtx = const_true_rtx;
2276 else_rtx = const0_rtx;
2277 }
f5d927c0 2278
462da2af 2279 switch (GET_CODE (cond_rtx))
3cf2715d
DE
2280 {
2281 case GTU:
2282 case GT:
2283 case LTU:
2284 case LT:
2285 case GEU:
2286 case GE:
2287 case LEU:
2288 case LE:
2289 case EQ:
2290 case NE:
2291 {
b3694847 2292 int result;
462da2af 2293 if (XEXP (cond_rtx, 0) != cc0_rtx)
3cf2715d 2294 break;
462da2af 2295 result = alter_cond (cond_rtx);
3cf2715d 2296 if (result == 1)
b88c92cc 2297 validate_change (insn, &SET_SRC (set), then_rtx, 0);
3cf2715d 2298 else if (result == -1)
b88c92cc 2299 validate_change (insn, &SET_SRC (set), else_rtx, 0);
3cf2715d
DE
2300 else if (result == 2)
2301 INSN_CODE (insn) = -1;
b88c92cc 2302 if (SET_DEST (set) == SET_SRC (set))
ca6c03ca 2303 delete_insn (insn);
3cf2715d 2304 }
e9a25f70
JL
2305 break;
2306
2307 default:
2308 break;
3cf2715d
DE
2309 }
2310 }
462da2af 2311
3cf2715d
DE
2312#endif
2313
ede7cd44 2314#ifdef HAVE_peephole
3cf2715d
DE
2315 /* Do machine-specific peephole optimizations if desired. */
2316
2317 if (optimize && !flag_no_peephole && !nopeepholes)
2318 {
2319 rtx next = peephole (insn);
2320 /* When peepholing, if there were notes within the peephole,
2321 emit them before the peephole. */
2322 if (next != 0 && next != NEXT_INSN (insn))
2323 {
2324 rtx prev = PREV_INSN (insn);
3cf2715d
DE
2325
2326 for (note = NEXT_INSN (insn); note != next;
2327 note = NEXT_INSN (note))
589fe865 2328 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
3cf2715d
DE
2329
2330 /* In case this is prescan, put the notes
2331 in proper position for later rescan. */
2332 note = NEXT_INSN (insn);
2333 PREV_INSN (note) = prev;
2334 NEXT_INSN (prev) = note;
2335 NEXT_INSN (PREV_INSN (next)) = insn;
2336 PREV_INSN (insn) = PREV_INSN (next);
2337 NEXT_INSN (insn) = next;
2338 PREV_INSN (next) = insn;
2339 }
2340
2341 /* PEEPHOLE might have changed this. */
2342 body = PATTERN (insn);
2343 }
ede7cd44 2344#endif
3cf2715d
DE
2345
2346 /* Try to recognize the instruction.
2347 If successful, verify that the operands satisfy the
2348 constraints for the instruction. Crash if they don't,
2349 since `reload' should have changed them so that they do. */
2350
2351 insn_code_number = recog_memoized (insn);
0304f787 2352 cleanup_subreg_operands (insn);
3cf2715d 2353
dd3f0101
KH
2354 /* Dump the insn in the assembly for debugging. */
2355 if (flag_dump_rtl_in_asm)
2356 {
2357 print_rtx_head = ASM_COMMENT_START;
2358 print_rtl_single (asm_out_file, insn);
2359 print_rtx_head = "";
2360 }
b9f22704 2361
6c698a6d 2362 if (! constrain_operands_cached (1))
3cf2715d 2363 fatal_insn_not_found (insn);
3cf2715d
DE
2364
2365 /* Some target machines need to prescan each insn before
2366 it is output. */
2367
2368#ifdef FINAL_PRESCAN_INSN
1ccbefce 2369 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
3cf2715d
DE
2370#endif
2371
afe48e06
RH
2372#ifdef HAVE_conditional_execution
2373 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2374 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2375 else
2376 current_insn_predicate = NULL_RTX;
2377#endif
2378
3cf2715d
DE
2379#ifdef HAVE_cc0
2380 cc_prev_status = cc_status;
2381
2382 /* Update `cc_status' for this instruction.
2383 The instruction's output routine may change it further.
2384 If the output routine for a jump insn needs to depend
2385 on the cc status, it should look at cc_prev_status. */
2386
2387 NOTICE_UPDATE_CC (body, insn);
2388#endif
2389
b1a9f6a0 2390 current_output_insn = debug_insn = insn;
3cf2715d 2391
f73ad30e 2392#if defined (DWARF2_UNWIND_INFO)
fbfa55b0 2393 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
b57d9225
JM
2394 dwarf2out_frame_debug (insn);
2395#endif
2396
4bbf910e
RH
2397 /* Find the proper template for this insn. */
2398 template = get_insn_template (insn_code_number, insn);
3cf2715d 2399
4bbf910e
RH
2400 /* If the C code returns 0, it means that it is a jump insn
2401 which follows a deleted test insn, and that test insn
2402 needs to be reinserted. */
3cf2715d
DE
2403 if (template == 0)
2404 {
efd0378b
HPN
2405 rtx prev;
2406
4bbf910e
RH
2407 if (prev_nonnote_insn (insn) != last_ignored_compare)
2408 abort ();
efd0378b
HPN
2409
2410 /* We have already processed the notes between the setter and
2411 the user. Make sure we don't process them again, this is
2412 particularly important if one of the notes is a block
2413 scope note or an EH note. */
2414 for (prev = insn;
2415 prev != last_ignored_compare;
2416 prev = PREV_INSN (prev))
2417 {
2418 if (GET_CODE (prev) == NOTE)
ca6c03ca 2419 delete_insn (prev); /* Use delete_note. */
efd0378b
HPN
2420 }
2421
2422 return prev;
3cf2715d
DE
2423 }
2424
2425 /* If the template is the string "#", it means that this insn must
2426 be split. */
2427 if (template[0] == '#' && template[1] == '\0')
2428 {
2429 rtx new = try_split (body, insn, 0);
2430
2431 /* If we didn't split the insn, go away. */
2432 if (new == insn && PATTERN (new) == body)
c725bd79 2433 fatal_insn ("could not split insn", insn);
f5d927c0 2434
3d14e82f
JW
2435#ifdef HAVE_ATTR_length
2436 /* This instruction should have been split in shorten_branches,
2437 to ensure that we would have valid length info for the
2438 splitees. */
2439 abort ();
2440#endif
2441
3cf2715d
DE
2442 return new;
2443 }
f5d927c0 2444
3cf2715d
DE
2445 if (prescan > 0)
2446 break;
2447
ce152ef8
AM
2448#ifdef IA64_UNWIND_INFO
2449 IA64_UNWIND_EMIT (asm_out_file, insn);
2450#endif
3cf2715d
DE
2451 /* Output assembler code from the template. */
2452
1ccbefce 2453 output_asm_insn (template, recog_data.operand);
3cf2715d 2454
d660cefe
RS
2455 /* If necessary, report the effect that the instruction has on
2456 the unwind info. We've already done this for delay slots
2457 and call instructions. */
0021b564 2458#if defined (DWARF2_UNWIND_INFO)
d660cefe
RS
2459 if (GET_CODE (insn) == INSN
2460#if !defined (HAVE_prologue)
2461 && !ACCUMULATE_OUTGOING_ARGS
2462#endif
2463 && final_sequence == 0
fbfa55b0
RH
2464 && dwarf2out_do_frame ())
2465 dwarf2out_frame_debug (insn);
0021b564 2466#endif
469ac993 2467
3cf2715d 2468#if 0
6001794d
KH
2469 /* It's not at all clear why we did this and doing so used to
2470 interfere with tests that used REG_WAS_0 notes, which are
2471 now gone, so let's try with this out. */
3cf2715d
DE
2472
2473 /* Mark this insn as having been output. */
2474 INSN_DELETED_P (insn) = 1;
2475#endif
2476
4a8d0c9c
RH
2477 /* Emit information for vtable gc. */
2478 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
4a8d0c9c 2479
b1a9f6a0 2480 current_output_insn = debug_insn = 0;
3cf2715d
DE
2481 }
2482 }
2483 return NEXT_INSN (insn);
2484}
2485\f
2486/* Output debugging info to the assembler file FILE
2487 based on the NOTE-insn INSN, assumed to be a line number. */
2488
0435312e 2489static bool
6cf9ac28 2490notice_source_line (rtx insn)
3cf2715d 2491{
0435312e
JH
2492 const char *filename = insn_file (insn);
2493 int linenum = insn_line (insn);
3cf2715d 2494
0435312e
JH
2495 if (filename && (filename != last_filename || last_linenum != linenum))
2496 {
2497 last_filename = filename;
2498 last_linenum = linenum;
2499 high_block_linenum = MAX (last_linenum, high_block_linenum);
2500 high_function_linenum = MAX (last_linenum, high_function_linenum);
2501 return true;
2502 }
2503 return false;
3cf2715d
DE
2504}
2505\f
0304f787
JL
2506/* For each operand in INSN, simplify (subreg (reg)) so that it refers
2507 directly to the desired hard register. */
f5d927c0 2508
0304f787 2509void
6cf9ac28 2510cleanup_subreg_operands (rtx insn)
0304f787 2511{
f62a15e3 2512 int i;
6c698a6d 2513 extract_insn_cached (insn);
1ccbefce 2514 for (i = 0; i < recog_data.n_operands; i++)
0304f787 2515 {
2067c116 2516 /* The following test cannot use recog_data.operand when testing
9f4524f2
RE
2517 for a SUBREG: the underlying object might have been changed
2518 already if we are inside a match_operator expression that
2519 matches the else clause. Instead we test the underlying
2520 expression directly. */
2521 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
49d801d3 2522 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
1ccbefce 2523 else if (GET_CODE (recog_data.operand[i]) == PLUS
04337620
BS
2524 || GET_CODE (recog_data.operand[i]) == MULT
2525 || GET_CODE (recog_data.operand[i]) == MEM)
49d801d3 2526 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
0304f787
JL
2527 }
2528
1ccbefce 2529 for (i = 0; i < recog_data.n_dups; i++)
0304f787 2530 {
1ccbefce 2531 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
49d801d3 2532 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
1ccbefce 2533 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
04337620
BS
2534 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2535 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
49d801d3 2536 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
0304f787
JL
2537 }
2538}
2539
3cf2715d
DE
2540/* If X is a SUBREG, replace it with a REG or a MEM,
2541 based on the thing it is a subreg of. */
2542
2543rtx
6cf9ac28 2544alter_subreg (rtx *xp)
3cf2715d 2545{
49d801d3 2546 rtx x = *xp;
b3694847 2547 rtx y = SUBREG_REG (x);
f5963e61 2548
49d801d3
JH
2549 /* simplify_subreg does not remove subreg from volatile references.
2550 We are required to. */
2551 if (GET_CODE (y) == MEM)
2552 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2553 else
fea54805
RK
2554 {
2555 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2556 SUBREG_BYTE (x));
2557
2558 if (new != 0)
2559 *xp = new;
2560 /* Simplify_subreg can't handle some REG cases, but we have to. */
2561 else if (GET_CODE (y) == REG)
2562 {
7687c5b8 2563 unsigned int regno = subreg_hard_regno (x, 1);
a560d4d4 2564 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
fea54805
RK
2565 }
2566 else
2567 abort ();
2568 }
2569
49d801d3 2570 return *xp;
3cf2715d
DE
2571}
2572
2573/* Do alter_subreg on all the SUBREGs contained in X. */
2574
2575static rtx
6cf9ac28 2576walk_alter_subreg (rtx *xp)
3cf2715d 2577{
49d801d3 2578 rtx x = *xp;
3cf2715d
DE
2579 switch (GET_CODE (x))
2580 {
2581 case PLUS:
2582 case MULT:
49d801d3
JH
2583 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2584 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
3cf2715d
DE
2585 break;
2586
2587 case MEM:
49d801d3 2588 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
3cf2715d
DE
2589 break;
2590
2591 case SUBREG:
49d801d3 2592 return alter_subreg (xp);
f5d927c0 2593
e9a25f70
JL
2594 default:
2595 break;
3cf2715d
DE
2596 }
2597
5bc72aeb 2598 return *xp;
3cf2715d
DE
2599}
2600\f
2601#ifdef HAVE_cc0
2602
2603/* Given BODY, the body of a jump instruction, alter the jump condition
2604 as required by the bits that are set in cc_status.flags.
2605 Not all of the bits there can be handled at this level in all cases.
2606
2607 The value is normally 0.
2608 1 means that the condition has become always true.
2609 -1 means that the condition has become always false.
2610 2 means that COND has been altered. */
2611
2612static int
6cf9ac28 2613alter_cond (rtx cond)
3cf2715d
DE
2614{
2615 int value = 0;
2616
2617 if (cc_status.flags & CC_REVERSED)
2618 {
2619 value = 2;
2620 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2621 }
2622
2623 if (cc_status.flags & CC_INVERTED)
2624 {
2625 value = 2;
2626 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2627 }
2628
2629 if (cc_status.flags & CC_NOT_POSITIVE)
2630 switch (GET_CODE (cond))
2631 {
2632 case LE:
2633 case LEU:
2634 case GEU:
2635 /* Jump becomes unconditional. */
2636 return 1;
2637
2638 case GT:
2639 case GTU:
2640 case LTU:
2641 /* Jump becomes no-op. */
2642 return -1;
2643
2644 case GE:
2645 PUT_CODE (cond, EQ);
2646 value = 2;
2647 break;
2648
2649 case LT:
2650 PUT_CODE (cond, NE);
2651 value = 2;
2652 break;
f5d927c0 2653
e9a25f70
JL
2654 default:
2655 break;
3cf2715d
DE
2656 }
2657
2658 if (cc_status.flags & CC_NOT_NEGATIVE)
2659 switch (GET_CODE (cond))
2660 {
2661 case GE:
2662 case GEU:
2663 /* Jump becomes unconditional. */
2664 return 1;
2665
2666 case LT:
2667 case LTU:
2668 /* Jump becomes no-op. */
2669 return -1;
2670
2671 case LE:
2672 case LEU:
2673 PUT_CODE (cond, EQ);
2674 value = 2;
2675 break;
2676
2677 case GT:
2678 case GTU:
2679 PUT_CODE (cond, NE);
2680 value = 2;
2681 break;
f5d927c0 2682
e9a25f70
JL
2683 default:
2684 break;
3cf2715d
DE
2685 }
2686
2687 if (cc_status.flags & CC_NO_OVERFLOW)
2688 switch (GET_CODE (cond))
2689 {
2690 case GEU:
2691 /* Jump becomes unconditional. */
2692 return 1;
2693
2694 case LEU:
2695 PUT_CODE (cond, EQ);
2696 value = 2;
2697 break;
2698
2699 case GTU:
2700 PUT_CODE (cond, NE);
2701 value = 2;
2702 break;
2703
2704 case LTU:
2705 /* Jump becomes no-op. */
2706 return -1;
f5d927c0 2707
e9a25f70
JL
2708 default:
2709 break;
3cf2715d
DE
2710 }
2711
2712 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2713 switch (GET_CODE (cond))
2714 {
e9a25f70 2715 default:
3cf2715d
DE
2716 abort ();
2717
2718 case NE:
2719 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2720 value = 2;
2721 break;
2722
2723 case EQ:
2724 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2725 value = 2;
2726 break;
2727 }
2728
2729 if (cc_status.flags & CC_NOT_SIGNED)
2730 /* The flags are valid if signed condition operators are converted
2731 to unsigned. */
2732 switch (GET_CODE (cond))
2733 {
2734 case LE:
2735 PUT_CODE (cond, LEU);
2736 value = 2;
2737 break;
2738
2739 case LT:
2740 PUT_CODE (cond, LTU);
2741 value = 2;
2742 break;
2743
2744 case GT:
2745 PUT_CODE (cond, GTU);
2746 value = 2;
2747 break;
2748
2749 case GE:
2750 PUT_CODE (cond, GEU);
2751 value = 2;
2752 break;
e9a25f70
JL
2753
2754 default:
2755 break;
3cf2715d
DE
2756 }
2757
2758 return value;
2759}
2760#endif
2761\f
2762/* Report inconsistency between the assembler template and the operands.
2763 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2764
2765void
e34d07f2 2766output_operand_lossage (const char *msgid, ...)
3cf2715d 2767{
a52453cc
PT
2768 char *fmt_string;
2769 char *new_message;
fd478a0a 2770 const char *pfx_str;
e34d07f2 2771 va_list ap;
6cf9ac28 2772
e34d07f2 2773 va_start (ap, msgid);
a52453cc
PT
2774
2775 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2776 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2777 vasprintf (&new_message, fmt_string, ap);
dd3f0101 2778
3cf2715d 2779 if (this_is_asm_operands)
a52453cc 2780 error_for_asm (this_is_asm_operands, "%s", new_message);
3cf2715d 2781 else
a52453cc
PT
2782 internal_error ("%s", new_message);
2783
2784 free (fmt_string);
2785 free (new_message);
e34d07f2 2786 va_end (ap);
3cf2715d
DE
2787}
2788\f
2789/* Output of assembler code from a template, and its subroutines. */
2790
0d4903b8
RK
2791/* Annotate the assembly with a comment describing the pattern and
2792 alternative used. */
2793
2794static void
6cf9ac28 2795output_asm_name (void)
0d4903b8
RK
2796{
2797 if (debug_insn)
2798 {
2799 int num = INSN_CODE (debug_insn);
2800 fprintf (asm_out_file, "\t%s %d\t%s",
2801 ASM_COMMENT_START, INSN_UID (debug_insn),
2802 insn_data[num].name);
2803 if (insn_data[num].n_alternatives > 1)
2804 fprintf (asm_out_file, "/%d", which_alternative + 1);
2805#ifdef HAVE_ATTR_length
2806 fprintf (asm_out_file, "\t[length = %d]",
2807 get_attr_length (debug_insn));
2808#endif
2809 /* Clear this so only the first assembler insn
2810 of any rtl insn will get the special comment for -dp. */
2811 debug_insn = 0;
2812 }
2813}
2814
998d7deb
RH
2815/* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2816 or its address, return that expr . Set *PADDRESSP to 1 if the expr
c5adc06a
RK
2817 corresponds to the address of the object and 0 if to the object. */
2818
2819static tree
6cf9ac28 2820get_mem_expr_from_op (rtx op, int *paddressp)
c5adc06a 2821{
998d7deb 2822 tree expr;
c5adc06a
RK
2823 int inner_addressp;
2824
2825 *paddressp = 0;
2826
a560d4d4
JH
2827 if (GET_CODE (op) == REG)
2828 return REG_EXPR (op);
c5adc06a
RK
2829 else if (GET_CODE (op) != MEM)
2830 return 0;
2831
998d7deb
RH
2832 if (MEM_EXPR (op) != 0)
2833 return MEM_EXPR (op);
c5adc06a
RK
2834
2835 /* Otherwise we have an address, so indicate it and look at the address. */
2836 *paddressp = 1;
2837 op = XEXP (op, 0);
2838
2839 /* First check if we have a decl for the address, then look at the right side
2840 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2841 But don't allow the address to itself be indirect. */
998d7deb
RH
2842 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2843 return expr;
c5adc06a 2844 else if (GET_CODE (op) == PLUS
998d7deb
RH
2845 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2846 return expr;
c5adc06a
RK
2847
2848 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2849 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2850 op = XEXP (op, 0);
2851
998d7deb
RH
2852 expr = get_mem_expr_from_op (op, &inner_addressp);
2853 return inner_addressp ? 0 : expr;
c5adc06a 2854}
ff81832f 2855
4f9b4029
RK
2856/* Output operand names for assembler instructions. OPERANDS is the
2857 operand vector, OPORDER is the order to write the operands, and NOPS
2858 is the number of operands to write. */
2859
2860static void
6cf9ac28 2861output_asm_operand_names (rtx *operands, int *oporder, int nops)
4f9b4029
RK
2862{
2863 int wrote = 0;
2864 int i;
2865
2866 for (i = 0; i < nops; i++)
2867 {
2868 int addressp;
a560d4d4
JH
2869 rtx op = operands[oporder[i]];
2870 tree expr = get_mem_expr_from_op (op, &addressp);
4f9b4029 2871
a560d4d4
JH
2872 fprintf (asm_out_file, "%c%s",
2873 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2874 wrote = 1;
998d7deb 2875 if (expr)
4f9b4029 2876 {
a560d4d4 2877 fprintf (asm_out_file, "%s",
998d7deb
RH
2878 addressp ? "*" : "");
2879 print_mem_expr (asm_out_file, expr);
4f9b4029
RK
2880 wrote = 1;
2881 }
a560d4d4
JH
2882 else if (REG_P (op) && ORIGINAL_REGNO (op)
2883 && ORIGINAL_REGNO (op) != REGNO (op))
2884 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
4f9b4029
RK
2885 }
2886}
2887
3cf2715d
DE
2888/* Output text from TEMPLATE to the assembler output file,
2889 obeying %-directions to substitute operands taken from
2890 the vector OPERANDS.
2891
2892 %N (for N a digit) means print operand N in usual manner.
2893 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2894 and print the label name with no punctuation.
2895 %cN means require operand N to be a constant
2896 and print the constant expression with no punctuation.
2897 %aN means expect operand N to be a memory address
2898 (not a memory reference!) and print a reference
2899 to that address.
2900 %nN means expect operand N to be a constant
2901 and print a constant expression for minus the value
2902 of the operand, with no other punctuation. */
2903
2904void
6cf9ac28 2905output_asm_insn (const char *template, rtx *operands)
3cf2715d 2906{
b3694847
SS
2907 const char *p;
2908 int c;
8554d9a4
JJ
2909#ifdef ASSEMBLER_DIALECT
2910 int dialect = 0;
2911#endif
0d4903b8 2912 int oporder[MAX_RECOG_OPERANDS];
4f9b4029 2913 char opoutput[MAX_RECOG_OPERANDS];
0d4903b8 2914 int ops = 0;
3cf2715d
DE
2915
2916 /* An insn may return a null string template
2917 in a case where no assembler code is needed. */
2918 if (*template == 0)
2919 return;
2920
4f9b4029 2921 memset (opoutput, 0, sizeof opoutput);
3cf2715d
DE
2922 p = template;
2923 putc ('\t', asm_out_file);
2924
2925#ifdef ASM_OUTPUT_OPCODE
2926 ASM_OUTPUT_OPCODE (asm_out_file, p);
2927#endif
2928
b729186a 2929 while ((c = *p++))
3cf2715d
DE
2930 switch (c)
2931 {
3cf2715d 2932 case '\n':
4f9b4029
RK
2933 if (flag_verbose_asm)
2934 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
2935 if (flag_print_asm_name)
2936 output_asm_name ();
2937
4f9b4029
RK
2938 ops = 0;
2939 memset (opoutput, 0, sizeof opoutput);
2940
3cf2715d 2941 putc (c, asm_out_file);
cb649530 2942#ifdef ASM_OUTPUT_OPCODE
3cf2715d
DE
2943 while ((c = *p) == '\t')
2944 {
2945 putc (c, asm_out_file);
2946 p++;
2947 }
2948 ASM_OUTPUT_OPCODE (asm_out_file, p);
3cf2715d 2949#endif
cb649530 2950 break;
3cf2715d
DE
2951
2952#ifdef ASSEMBLER_DIALECT
2953 case '{':
b729186a 2954 {
b3694847 2955 int i;
f5d927c0 2956
8554d9a4
JJ
2957 if (dialect)
2958 output_operand_lossage ("nested assembly dialect alternatives");
2959 else
2960 dialect = 1;
2961
b729186a
JL
2962 /* If we want the first dialect, do nothing. Otherwise, skip
2963 DIALECT_NUMBER of strings ending with '|'. */
2964 for (i = 0; i < dialect_number; i++)
2965 {
463a8384 2966 while (*p && *p != '}' && *p++ != '|')
b729186a 2967 ;
463a8384
BS
2968 if (*p == '}')
2969 break;
b729186a
JL
2970 if (*p == '|')
2971 p++;
2972 }
8554d9a4
JJ
2973
2974 if (*p == '\0')
2975 output_operand_lossage ("unterminated assembly dialect alternative");
b729186a 2976 }
3cf2715d
DE
2977 break;
2978
2979 case '|':
8554d9a4
JJ
2980 if (dialect)
2981 {
2982 /* Skip to close brace. */
2983 do
2984 {
2985 if (*p == '\0')
2986 {
2987 output_operand_lossage ("unterminated assembly dialect alternative");
2988 break;
2989 }
ff81832f 2990 }
8554d9a4
JJ
2991 while (*p++ != '}');
2992 dialect = 0;
2993 }
2994 else
2995 putc (c, asm_out_file);
3cf2715d
DE
2996 break;
2997
2998 case '}':
8554d9a4
JJ
2999 if (! dialect)
3000 putc (c, asm_out_file);
3001 dialect = 0;
3cf2715d
DE
3002 break;
3003#endif
3004
3005 case '%':
3006 /* %% outputs a single %. */
3007 if (*p == '%')
3008 {
3009 p++;
3010 putc (c, asm_out_file);
3011 }
3012 /* %= outputs a number which is unique to each insn in the entire
3013 compilation. This is useful for making local labels that are
3014 referred to more than once in a given insn. */
3015 else if (*p == '=')
3016 {
3017 p++;
3018 fprintf (asm_out_file, "%d", insn_counter);
3019 }
3020 /* % followed by a letter and some digits
3021 outputs an operand in a special way depending on the letter.
3022 Letters `acln' are implemented directly.
3023 Other letters are passed to `output_operand' so that
3024 the PRINT_OPERAND macro can define them. */
0df6c2c7 3025 else if (ISALPHA (*p))
3cf2715d
DE
3026 {
3027 int letter = *p++;
3028 c = atoi (p);
3029
0df6c2c7 3030 if (! ISDIGIT (*p))
a52453cc 3031 output_operand_lossage ("operand number missing after %%-letter");
0d4903b8
RK
3032 else if (this_is_asm_operands
3033 && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3034 output_operand_lossage ("operand number out of range");
3035 else if (letter == 'l')
3036 output_asm_label (operands[c]);
3037 else if (letter == 'a')
3038 output_address (operands[c]);
3039 else if (letter == 'c')
3040 {
3041 if (CONSTANT_ADDRESS_P (operands[c]))
3042 output_addr_const (asm_out_file, operands[c]);
3043 else
3044 output_operand (operands[c], 'c');
3045 }
3046 else if (letter == 'n')
3047 {
3048 if (GET_CODE (operands[c]) == CONST_INT)
21e3a81b 3049 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3cf2715d
DE
3050 - INTVAL (operands[c]));
3051 else
3052 {
3053 putc ('-', asm_out_file);
3054 output_addr_const (asm_out_file, operands[c]);
3055 }
3056 }
3057 else
3058 output_operand (operands[c], letter);
f5d927c0 3059
4f9b4029
RK
3060 if (!opoutput[c])
3061 oporder[ops++] = c;
3062 opoutput[c] = 1;
0d4903b8 3063
0df6c2c7 3064 while (ISDIGIT (c = *p))
f5d927c0 3065 p++;
3cf2715d
DE
3066 }
3067 /* % followed by a digit outputs an operand the default way. */
0df6c2c7 3068 else if (ISDIGIT (*p))
3cf2715d
DE
3069 {
3070 c = atoi (p);
f5d927c0
KH
3071 if (this_is_asm_operands
3072 && (c < 0 || (unsigned int) c >= insn_noperands))
3cf2715d
DE
3073 output_operand_lossage ("operand number out of range");
3074 else
3075 output_operand (operands[c], 0);
0d4903b8 3076
4f9b4029
RK
3077 if (!opoutput[c])
3078 oporder[ops++] = c;
3079 opoutput[c] = 1;
3080
0df6c2c7 3081 while (ISDIGIT (c = *p))
f5d927c0 3082 p++;
3cf2715d
DE
3083 }
3084 /* % followed by punctuation: output something for that
3085 punctuation character alone, with no operand.
3086 The PRINT_OPERAND macro decides what is actually done. */
3087#ifdef PRINT_OPERAND_PUNCT_VALID_P
f5d927c0 3088 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3cf2715d
DE
3089 output_operand (NULL_RTX, *p++);
3090#endif
3091 else
3092 output_operand_lossage ("invalid %%-code");
3093 break;
3094
3095 default:
3096 putc (c, asm_out_file);
3097 }
3098
0d4903b8
RK
3099 /* Write out the variable names for operands, if we know them. */
3100 if (flag_verbose_asm)
4f9b4029 3101 output_asm_operand_names (operands, oporder, ops);
0d4903b8
RK
3102 if (flag_print_asm_name)
3103 output_asm_name ();
3cf2715d
DE
3104
3105 putc ('\n', asm_out_file);
3106}
3107\f
3108/* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3109
3110void
6cf9ac28 3111output_asm_label (rtx x)
3cf2715d
DE
3112{
3113 char buf[256];
3114
3115 if (GET_CODE (x) == LABEL_REF)
be1bb652
RH
3116 x = XEXP (x, 0);
3117 if (GET_CODE (x) == CODE_LABEL
3118 || (GET_CODE (x) == NOTE
3119 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3cf2715d
DE
3120 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3121 else
a52453cc 3122 output_operand_lossage ("`%%l' operand isn't a label");
3cf2715d
DE
3123
3124 assemble_name (asm_out_file, buf);
3125}
3126
3127/* Print operand X using machine-dependent assembler syntax.
3128 The macro PRINT_OPERAND is defined just to control this function.
3129 CODE is a non-digit that preceded the operand-number in the % spec,
3130 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3131 between the % and the digits.
3132 When CODE is a non-letter, X is 0.
3133
3134 The meanings of the letters are machine-dependent and controlled
3135 by PRINT_OPERAND. */
3136
3137static void
6cf9ac28 3138output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3cf2715d
DE
3139{
3140 if (x && GET_CODE (x) == SUBREG)
49d801d3 3141 x = alter_subreg (&x);
3cf2715d
DE
3142
3143 /* If X is a pseudo-register, abort now rather than writing trash to the
3144 assembler file. */
3145
3146 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3147 abort ();
3148
3149 PRINT_OPERAND (asm_out_file, x, code);
3150}
3151
3152/* Print a memory reference operand for address X
3153 using machine-dependent assembler syntax.
3154 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3155
3156void
6cf9ac28 3157output_address (rtx x)
3cf2715d 3158{
49d801d3 3159 walk_alter_subreg (&x);
3cf2715d
DE
3160 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3161}
3162\f
3163/* Print an integer constant expression in assembler syntax.
3164 Addition and subtraction are the only arithmetic
3165 that may appear in these expressions. */
3166
3167void
6cf9ac28 3168output_addr_const (FILE *file, rtx x)
3cf2715d
DE
3169{
3170 char buf[256];
3171
3172 restart:
3173 switch (GET_CODE (x))
3174 {
3175 case PC:
eac50d7a 3176 putc ('.', file);
3cf2715d
DE
3177 break;
3178
3179 case SYMBOL_REF:
99c8c61c
AO
3180#ifdef ASM_OUTPUT_SYMBOL_REF
3181 ASM_OUTPUT_SYMBOL_REF (file, x);
3182#else
3cf2715d 3183 assemble_name (file, XSTR (x, 0));
99c8c61c 3184#endif
3cf2715d
DE
3185 break;
3186
3187 case LABEL_REF:
422be3c3
AO
3188 x = XEXP (x, 0);
3189 /* Fall through. */
3cf2715d
DE
3190 case CODE_LABEL:
3191 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
2f0b7af6
GK
3192#ifdef ASM_OUTPUT_LABEL_REF
3193 ASM_OUTPUT_LABEL_REF (file, buf);
3194#else
3cf2715d 3195 assemble_name (file, buf);
2f0b7af6 3196#endif
3cf2715d
DE
3197 break;
3198
3199 case CONST_INT:
21e3a81b 3200 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3cf2715d
DE
3201 break;
3202
3203 case CONST:
3204 /* This used to output parentheses around the expression,
3205 but that does not work on the 386 (either ATT or BSD assembler). */
3206 output_addr_const (file, XEXP (x, 0));
3207 break;
3208
3209 case CONST_DOUBLE:
3210 if (GET_MODE (x) == VOIDmode)
3211 {
3212 /* We can use %d if the number is one word and positive. */
3213 if (CONST_DOUBLE_HIGH (x))
21e3a81b 3214 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3cf2715d 3215 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
f5d927c0 3216 else if (CONST_DOUBLE_LOW (x) < 0)
21e3a81b 3217 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3cf2715d 3218 else
21e3a81b 3219 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3cf2715d
DE
3220 }
3221 else
3222 /* We can't handle floating point constants;
3223 PRINT_OPERAND must handle them. */
3224 output_operand_lossage ("floating constant misused");
3225 break;
3226
3227 case PLUS:
3228 /* Some assemblers need integer constants to appear last (eg masm). */
3229 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3230 {
3231 output_addr_const (file, XEXP (x, 1));
3232 if (INTVAL (XEXP (x, 0)) >= 0)
3233 fprintf (file, "+");
3234 output_addr_const (file, XEXP (x, 0));
3235 }
3236 else
3237 {
3238 output_addr_const (file, XEXP (x, 0));
08106825
AO
3239 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3240 || INTVAL (XEXP (x, 1)) >= 0)
3cf2715d
DE
3241 fprintf (file, "+");
3242 output_addr_const (file, XEXP (x, 1));
3243 }
3244 break;
3245
3246 case MINUS:
3247 /* Avoid outputting things like x-x or x+5-x,
3248 since some assemblers can't handle that. */
3249 x = simplify_subtraction (x);
3250 if (GET_CODE (x) != MINUS)
3251 goto restart;
3252
3253 output_addr_const (file, XEXP (x, 0));
3254 fprintf (file, "-");
301d03af
RS
3255 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3256 || GET_CODE (XEXP (x, 1)) == PC
3257 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3258 output_addr_const (file, XEXP (x, 1));
3259 else
3cf2715d 3260 {
17b53c33 3261 fputs (targetm.asm_out.open_paren, file);
3cf2715d 3262 output_addr_const (file, XEXP (x, 1));
17b53c33 3263 fputs (targetm.asm_out.close_paren, file);
3cf2715d 3264 }
3cf2715d
DE
3265 break;
3266
3267 case ZERO_EXTEND:
3268 case SIGN_EXTEND:
fdf473ae 3269 case SUBREG:
3cf2715d
DE
3270 output_addr_const (file, XEXP (x, 0));
3271 break;
3272
3273 default:
422be3c3
AO
3274#ifdef OUTPUT_ADDR_CONST_EXTRA
3275 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3276 break;
3277
3278 fail:
3279#endif
3cf2715d
DE
3280 output_operand_lossage ("invalid expression as operand");
3281 }
3282}
3283\f
3284/* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3285 %R prints the value of REGISTER_PREFIX.
3286 %L prints the value of LOCAL_LABEL_PREFIX.
3287 %U prints the value of USER_LABEL_PREFIX.
3288 %I prints the value of IMMEDIATE_PREFIX.
3289 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
b1721339 3290 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3cf2715d
DE
3291
3292 We handle alternate assembler dialects here, just like output_asm_insn. */
3293
3294void
e34d07f2 3295asm_fprintf (FILE *file, const char *p, ...)
3cf2715d 3296{
3cf2715d
DE
3297 char buf[10];
3298 char *q, c;
e34d07f2 3299 va_list argptr;
6cf9ac28 3300
e34d07f2 3301 va_start (argptr, p);
3cf2715d
DE
3302
3303 buf[0] = '%';
3304
b729186a 3305 while ((c = *p++))
3cf2715d
DE
3306 switch (c)
3307 {
3308#ifdef ASSEMBLER_DIALECT
3309 case '{':
b729186a
JL
3310 {
3311 int i;
3cf2715d 3312
b729186a
JL
3313 /* If we want the first dialect, do nothing. Otherwise, skip
3314 DIALECT_NUMBER of strings ending with '|'. */
3315 for (i = 0; i < dialect_number; i++)
3316 {
3317 while (*p && *p++ != '|')
3318 ;
3319
3320 if (*p == '|')
3321 p++;
f5d927c0 3322 }
b729186a 3323 }
3cf2715d
DE
3324 break;
3325
3326 case '|':
3327 /* Skip to close brace. */
3328 while (*p && *p++ != '}')
3329 ;
3330 break;
3331
3332 case '}':
3333 break;
3334#endif
3335
3336 case '%':
3337 c = *p++;
3338 q = &buf[1];
b1721339
KG
3339 while (strchr ("-+ #0", c))
3340 {
3341 *q++ = c;
3342 c = *p++;
3343 }
0df6c2c7 3344 while (ISDIGIT (c) || c == '.')
3cf2715d
DE
3345 {
3346 *q++ = c;
3347 c = *p++;
3348 }
3349 switch (c)
3350 {
3351 case '%':
b1721339 3352 putc ('%', file);
3cf2715d
DE
3353 break;
3354
3355 case 'd': case 'i': case 'u':
b1721339
KG
3356 case 'x': case 'X': case 'o':
3357 case 'c':
3cf2715d
DE
3358 *q++ = c;
3359 *q = 0;
3360 fprintf (file, buf, va_arg (argptr, int));
3361 break;
3362
3363 case 'w':
b1721339
KG
3364 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3365 'o' cases, but we do not check for those cases. It
3366 means that the value is a HOST_WIDE_INT, which may be
3367 either `long' or `long long'. */
85f015e1
KG
3368 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3369 q += strlen (HOST_WIDE_INT_PRINT);
3cf2715d
DE
3370 *q++ = *p++;
3371 *q = 0;
3372 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3373 break;
3374
3375 case 'l':
3376 *q++ = c;
b1721339
KG
3377#ifdef HAVE_LONG_LONG
3378 if (*p == 'l')
3379 {
3380 *q++ = *p++;
3381 *q++ = *p++;
3382 *q = 0;
3383 fprintf (file, buf, va_arg (argptr, long long));
3384 }
3385 else
3386#endif
3387 {
3388 *q++ = *p++;
3389 *q = 0;
3390 fprintf (file, buf, va_arg (argptr, long));
3391 }
6cf9ac28 3392
3cf2715d
DE
3393 break;
3394
3395 case 's':
3396 *q++ = c;
3397 *q = 0;
3398 fprintf (file, buf, va_arg (argptr, char *));
3399 break;
3400
3401 case 'O':
3402#ifdef ASM_OUTPUT_OPCODE
3403 ASM_OUTPUT_OPCODE (asm_out_file, p);
3404#endif
3405 break;
3406
3407 case 'R':
3408#ifdef REGISTER_PREFIX
3409 fprintf (file, "%s", REGISTER_PREFIX);
3410#endif
3411 break;
3412
3413 case 'I':
3414#ifdef IMMEDIATE_PREFIX
3415 fprintf (file, "%s", IMMEDIATE_PREFIX);
3416#endif
3417 break;
3418
3419 case 'L':
3420#ifdef LOCAL_LABEL_PREFIX
3421 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3422#endif
3423 break;
3424
3425 case 'U':
19283265 3426 fputs (user_label_prefix, file);
3cf2715d
DE
3427 break;
3428
fe0503ea 3429#ifdef ASM_FPRINTF_EXTENSIONS
7ef0daad 3430 /* Uppercase letters are reserved for general use by asm_fprintf
fe0503ea
NC
3431 and so are not available to target specific code. In order to
3432 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3433 they are defined here. As they get turned into real extensions
3434 to asm_fprintf they should be removed from this list. */
3435 case 'A': case 'B': case 'C': case 'D': case 'E':
3436 case 'F': case 'G': case 'H': case 'J': case 'K':
3437 case 'M': case 'N': case 'P': case 'Q': case 'S':
3438 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3439 break;
f5d927c0 3440
fe0503ea
NC
3441 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3442#endif
3cf2715d
DE
3443 default:
3444 abort ();
3445 }
3446 break;
3447
3448 default:
b1721339 3449 putc (c, file);
3cf2715d 3450 }
e34d07f2 3451 va_end (argptr);
3cf2715d
DE
3452}
3453\f
3454/* Split up a CONST_DOUBLE or integer constant rtx
3455 into two rtx's for single words,
3456 storing in *FIRST the word that comes first in memory in the target
3457 and in *SECOND the other. */
3458
3459void
6cf9ac28 3460split_double (rtx value, rtx *first, rtx *second)
3cf2715d
DE
3461{
3462 if (GET_CODE (value) == CONST_INT)
3463 {
5a1a6efd 3464 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
f76b9db2 3465 {
5a1a6efd 3466 /* In this case the CONST_INT holds both target words.
27eef9ce
JC
3467 Extract the bits from it into two word-sized pieces.
3468 Sign extend each half to HOST_WIDE_INT. */
7f251dee
AO
3469 unsigned HOST_WIDE_INT low, high;
3470 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3471
3472 /* Set sign_bit to the most significant bit of a word. */
3473 sign_bit = 1;
3474 sign_bit <<= BITS_PER_WORD - 1;
3475
3476 /* Set mask so that all bits of the word are set. We could
3477 have used 1 << BITS_PER_WORD instead of basing the
3478 calculation on sign_bit. However, on machines where
3479 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3480 compiler warning, even though the code would never be
3481 executed. */
3482 mask = sign_bit << 1;
3483 mask--;
3484
3485 /* Set sign_extend as any remaining bits. */
3486 sign_extend = ~mask;
f5d927c0 3487
7f251dee
AO
3488 /* Pick the lower word and sign-extend it. */
3489 low = INTVAL (value);
3490 low &= mask;
3491 if (low & sign_bit)
3492 low |= sign_extend;
3493
3494 /* Pick the higher word, shifted to the least significant
3495 bits, and sign-extend it. */
3496 high = INTVAL (value);
3497 high >>= BITS_PER_WORD - 1;
3498 high >>= 1;
3499 high &= mask;
3500 if (high & sign_bit)
3501 high |= sign_extend;
3502
3503 /* Store the words in the target machine order. */
5a1a6efd
RK
3504 if (WORDS_BIG_ENDIAN)
3505 {
7f251dee
AO
3506 *first = GEN_INT (high);
3507 *second = GEN_INT (low);
5a1a6efd
RK
3508 }
3509 else
3510 {
7f251dee
AO
3511 *first = GEN_INT (low);
3512 *second = GEN_INT (high);
5a1a6efd 3513 }
f76b9db2
ILT
3514 }
3515 else
3516 {
5a1a6efd
RK
3517 /* The rule for using CONST_INT for a wider mode
3518 is that we regard the value as signed.
3519 So sign-extend it. */
3520 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3521 if (WORDS_BIG_ENDIAN)
3522 {
3523 *first = high;
3524 *second = value;
3525 }
3526 else
3527 {
3528 *first = value;
3529 *second = high;
3530 }
f76b9db2 3531 }
3cf2715d
DE
3532 }
3533 else if (GET_CODE (value) != CONST_DOUBLE)
3534 {
f76b9db2
ILT
3535 if (WORDS_BIG_ENDIAN)
3536 {
3537 *first = const0_rtx;
3538 *second = value;
3539 }
3540 else
3541 {
3542 *first = value;
3543 *second = const0_rtx;
3544 }
3cf2715d
DE
3545 }
3546 else if (GET_MODE (value) == VOIDmode
3547 /* This is the old way we did CONST_DOUBLE integers. */
3548 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3549 {
3550 /* In an integer, the words are defined as most and least significant.
3551 So order them by the target's convention. */
f76b9db2
ILT
3552 if (WORDS_BIG_ENDIAN)
3553 {
3554 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3555 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3556 }
3557 else
3558 {
3559 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3560 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3561 }
3cf2715d
DE
3562 }
3563 else
3564 {
f5d927c0
KH
3565 REAL_VALUE_TYPE r;
3566 long l[2];
3cf2715d
DE
3567 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3568
3569 /* Note, this converts the REAL_VALUE_TYPE to the target's
3570 format, splits up the floating point double and outputs
3571 exactly 32 bits of it into each of l[0] and l[1] --
0f41302f 3572 not necessarily BITS_PER_WORD bits. */
3cf2715d
DE
3573 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3574
b5a3eb84
JW
3575 /* If 32 bits is an entire word for the target, but not for the host,
3576 then sign-extend on the host so that the number will look the same
3577 way on the host that it would on the target. See for instance
3578 simplify_unary_operation. The #if is needed to avoid compiler
3579 warnings. */
3580
3581#if HOST_BITS_PER_LONG > 32
3582 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3583 {
3584 if (l[0] & ((long) 1 << 31))
3585 l[0] |= ((long) (-1) << 32);
3586 if (l[1] & ((long) 1 << 31))
3587 l[1] |= ((long) (-1) << 32);
3588 }
3589#endif
3590
3cf2715d
DE
3591 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3592 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3cf2715d
DE
3593 }
3594}
3595\f
3596/* Return nonzero if this function has no function calls. */
3597
3598int
6cf9ac28 3599leaf_function_p (void)
3cf2715d
DE
3600{
3601 rtx insn;
b660f82f 3602 rtx link;
3cf2715d 3603
70f4f91c 3604 if (current_function_profile || profile_arc_flag)
3cf2715d
DE
3605 return 0;
3606
3607 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3608 {
7d167afd
JJ
3609 if (GET_CODE (insn) == CALL_INSN
3610 && ! SIBLING_CALL_P (insn))
3cf2715d
DE
3611 return 0;
3612 if (GET_CODE (insn) == INSN
3613 && GET_CODE (PATTERN (insn)) == SEQUENCE
0a1c58a2
JL
3614 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3615 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3616 return 0;
3617 }
b660f82f
JW
3618 for (link = current_function_epilogue_delay_list;
3619 link;
3620 link = XEXP (link, 1))
3cf2715d 3621 {
b660f82f
JW
3622 insn = XEXP (link, 0);
3623
3624 if (GET_CODE (insn) == CALL_INSN
7d167afd 3625 && ! SIBLING_CALL_P (insn))
3cf2715d 3626 return 0;
b660f82f
JW
3627 if (GET_CODE (insn) == INSN
3628 && GET_CODE (PATTERN (insn)) == SEQUENCE
3629 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3630 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3cf2715d
DE
3631 return 0;
3632 }
3633
3634 return 1;
3635}
3636
09da1532 3637/* Return 1 if branch is a forward branch.
ef6257cd
JH
3638 Uses insn_shuid array, so it works only in the final pass. May be used by
3639 output templates to customary add branch prediction hints.
3640 */
3641int
6cf9ac28 3642final_forward_branch_p (rtx insn)
ef6257cd
JH
3643{
3644 int insn_id, label_id;
3645 if (!uid_shuid)
3646 abort ();
3647 insn_id = INSN_SHUID (insn);
3648 label_id = INSN_SHUID (JUMP_LABEL (insn));
3649 /* We've hit some insns that does not have id information available. */
3650 if (!insn_id || !label_id)
3651 abort ();
3652 return insn_id < label_id;
3653}
3654
3cf2715d
DE
3655/* On some machines, a function with no call insns
3656 can run faster if it doesn't create its own register window.
3657 When output, the leaf function should use only the "output"
3658 registers. Ordinarily, the function would be compiled to use
3659 the "input" registers to find its arguments; it is a candidate
3660 for leaf treatment if it uses only the "input" registers.
3661 Leaf function treatment means renumbering so the function
3662 uses the "output" registers instead. */
3663
3664#ifdef LEAF_REGISTERS
3665
3cf2715d
DE
3666/* Return 1 if this function uses only the registers that can be
3667 safely renumbered. */
3668
3669int
6cf9ac28 3670only_leaf_regs_used (void)
3cf2715d
DE
3671{
3672 int i;
4977bab6 3673 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3cf2715d
DE
3674
3675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
e5e809f4
JL
3676 if ((regs_ever_live[i] || global_regs[i])
3677 && ! permitted_reg_in_leaf_functions[i])
3678 return 0;
3679
3680 if (current_function_uses_pic_offset_table
3681 && pic_offset_table_rtx != 0
3682 && GET_CODE (pic_offset_table_rtx) == REG
3683 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3684 return 0;
3685
3cf2715d
DE
3686 return 1;
3687}
3688
3689/* Scan all instructions and renumber all registers into those
3690 available in leaf functions. */
3691
3692static void
6cf9ac28 3693leaf_renumber_regs (rtx first)
3cf2715d
DE
3694{
3695 rtx insn;
3696
3697 /* Renumber only the actual patterns.
3698 The reg-notes can contain frame pointer refs,
3699 and renumbering them could crash, and should not be needed. */
3700 for (insn = first; insn; insn = NEXT_INSN (insn))
2c3c49de 3701 if (INSN_P (insn))
3cf2715d 3702 leaf_renumber_regs_insn (PATTERN (insn));
f5d927c0
KH
3703 for (insn = current_function_epilogue_delay_list;
3704 insn;
3705 insn = XEXP (insn, 1))
2c3c49de 3706 if (INSN_P (XEXP (insn, 0)))
3cf2715d
DE
3707 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3708}
3709
3710/* Scan IN_RTX and its subexpressions, and renumber all regs into those
3711 available in leaf functions. */
3712
3713void
6cf9ac28 3714leaf_renumber_regs_insn (rtx in_rtx)
3cf2715d 3715{
b3694847
SS
3716 int i, j;
3717 const char *format_ptr;
3cf2715d
DE
3718
3719 if (in_rtx == 0)
3720 return;
3721
3722 /* Renumber all input-registers into output-registers.
3723 renumbered_regs would be 1 for an output-register;
3724 they */
3725
3726 if (GET_CODE (in_rtx) == REG)
3727 {
3728 int newreg;
3729
3730 /* Don't renumber the same reg twice. */
3731 if (in_rtx->used)
3732 return;
3733
3734 newreg = REGNO (in_rtx);
3735 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3736 to reach here as part of a REG_NOTE. */
3737 if (newreg >= FIRST_PSEUDO_REGISTER)
3738 {
3739 in_rtx->used = 1;
3740 return;
3741 }
3742 newreg = LEAF_REG_REMAP (newreg);
3743 if (newreg < 0)
3744 abort ();
3745 regs_ever_live[REGNO (in_rtx)] = 0;
3746 regs_ever_live[newreg] = 1;
3747 REGNO (in_rtx) = newreg;
3748 in_rtx->used = 1;
3749 }
3750
2c3c49de 3751 if (INSN_P (in_rtx))
3cf2715d
DE
3752 {
3753 /* Inside a SEQUENCE, we find insns.
3754 Renumber just the patterns of these insns,
3755 just as we do for the top-level insns. */
3756 leaf_renumber_regs_insn (PATTERN (in_rtx));
3757 return;
3758 }
3759
3760 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3761
3762 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3763 switch (*format_ptr++)
3764 {
3765 case 'e':
3766 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3767 break;
3768
3769 case 'E':
3770 if (NULL != XVEC (in_rtx, i))
3771 {
3772 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3773 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3774 }
3775 break;
3776
3777 case 'S':
3778 case 's':
3779 case '0':
3780 case 'i':
3781 case 'w':
3782 case 'n':
3783 case 'u':
3784 break;
3785
3786 default:
3787 abort ();
3788 }
3789}
3790#endif
6a08f7b3
DP
3791
3792
3793/* When -gused is used, emit debug info for only used symbols. But in
3794 addition to the standard intercepted debug_hooks there are some direct
3795 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3796 Those routines may also be called from a higher level intercepted routine. So
3797 to prevent recording data for an inner call to one of these for an intercept,
5d3cc252 3798 we maintain an intercept nesting counter (debug_nesting). We only save the
6a08f7b3
DP
3799 intercepted arguments if the nesting is 1. */
3800int debug_nesting = 0;
3801
3802static tree *symbol_queue;
3803int symbol_queue_index = 0;
3804static int symbol_queue_size = 0;
3805
3806/* Generate the symbols for any queued up type symbols we encountered
3807 while generating the type info for some originally used symbol.
3808 This might generate additional entries in the queue. Only when
3809 the nesting depth goes to 0 is this routine called. */
3810
3811void
6cf9ac28 3812debug_flush_symbol_queue (void)
6a08f7b3
DP
3813{
3814 int i;
6cf9ac28 3815
6a08f7b3
DP
3816 /* Make sure that additionally queued items are not flushed
3817 prematurely. */
6cf9ac28 3818
6a08f7b3 3819 ++debug_nesting;
6cf9ac28 3820
6a08f7b3
DP
3821 for (i = 0; i < symbol_queue_index; ++i)
3822 {
3823 /* If we pushed queued symbols then such symbols are must be
3824 output no matter what anyone else says. Specifically,
3825 we need to make sure dbxout_symbol() thinks the symbol was
3826 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3827 which may be set for outside reasons. */
3828 int saved_tree_used = TREE_USED (symbol_queue[i]);
3829 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3830 TREE_USED (symbol_queue[i]) = 1;
3831 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3832
3833#ifdef DBX_DEBUGGING_INFO
3834 dbxout_symbol (symbol_queue[i], 0);
3835#endif
3836
3837 TREE_USED (symbol_queue[i]) = saved_tree_used;
3838 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3839 }
3840
3841 symbol_queue_index = 0;
6cf9ac28 3842 --debug_nesting;
6a08f7b3
DP
3843}
3844
3845/* Queue a type symbol needed as part of the definition of a decl
3846 symbol. These symbols are generated when debug_flush_symbol_queue()
3847 is called. */
3848
6cf9ac28 3849void
6a08f7b3
DP
3850debug_queue_symbol (tree decl)
3851{
6cf9ac28 3852 if (symbol_queue_index >= symbol_queue_size)
6a08f7b3
DP
3853 {
3854 symbol_queue_size += 10;
703ad42b
KG
3855 symbol_queue = xrealloc (symbol_queue,
3856 symbol_queue_size * sizeof (tree));
6a08f7b3
DP
3857 }
3858
3859 symbol_queue[symbol_queue_index++] = decl;
6cf9ac28 3860}
6a08f7b3 3861
f9da5064 3862/* Free symbol queue. */
6a08f7b3 3863void
6cf9ac28 3864debug_free_queue (void)
6a08f7b3
DP
3865{
3866 if (symbol_queue)
3867 {
3868 free (symbol_queue);
3869 symbol_queue = NULL;
3870 symbol_queue_size = 0;
3871 }
3872}