]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/fixed-value.c
Update copyright years.
[thirdparty/gcc.git] / gcc / fixed-value.c
CommitLineData
1e1ba002 1/* Fixed-point arithmetic support.
818ab71a 2 Copyright (C) 2006-2016 Free Software Foundation, Inc.
1e1ba002
CF
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#include "config.h"
21#include "system.h"
22#include "coretypes.h"
23#include "tm.h"
24#include "tree.h"
718f9c0f 25#include "diagnostic-core.h"
1e1ba002
CF
26
27/* Compare two fixed objects for bitwise identity. */
28
29bool
30fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
31{
32 return (a->mode == b->mode
33 && a->data.high == b->data.high
34 && a->data.low == b->data.low);
35}
36
37/* Calculate a hash value. */
38
39unsigned int
40fixed_hash (const FIXED_VALUE_TYPE *f)
41{
42 return (unsigned int) (f->data.low ^ f->data.high);
43}
44
45/* Define the enum code for the range of the fixed-point value. */
46enum fixed_value_range_code {
47 FIXED_OK, /* The value is within the range. */
48 FIXED_UNDERFLOW, /* The value is less than the minimum. */
49 FIXED_GT_MAX_EPS, /* The value is greater than the maximum, but not equal
50 to the maximum plus the epsilon. */
51 FIXED_MAX_EPS /* The value equals the maximum plus the epsilon. */
52};
53
54/* Check REAL_VALUE against the range of the fixed-point mode.
55 Return FIXED_OK, if it is within the range.
56 FIXED_UNDERFLOW, if it is less than the minimum.
57 FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
58 the maximum plus the epsilon.
59 FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon. */
60
61static enum fixed_value_range_code
ef4bddc2 62check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, machine_mode mode)
1e1ba002
CF
63{
64 REAL_VALUE_TYPE max_value, min_value, epsilon_value;
65
4ff7defd
RS
66 real_2expN (&max_value, GET_MODE_IBIT (mode), VOIDmode);
67 real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), VOIDmode);
1e1ba002
CF
68
69 if (SIGNED_FIXED_POINT_MODE_P (mode))
d49b6e1e 70 min_value = real_value_negate (&max_value);
1e1ba002
CF
71 else
72 real_from_string (&min_value, "0.0");
73
74 if (real_compare (LT_EXPR, real_value, &min_value))
75 return FIXED_UNDERFLOW;
76 if (real_compare (EQ_EXPR, real_value, &max_value))
77 return FIXED_MAX_EPS;
78 real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
79 if (real_compare (GT_EXPR, real_value, &max_value))
80 return FIXED_GT_MAX_EPS;
81 return FIXED_OK;
82}
83
cc06c01d
GJL
84
85/* Construct a CONST_FIXED from a bit payload and machine mode MODE.
ff544649 86 The bits in PAYLOAD are sign-extended/zero-extended according to MODE. */
cc06c01d
GJL
87
88FIXED_VALUE_TYPE
ef4bddc2 89fixed_from_double_int (double_int payload, machine_mode mode)
cc06c01d
GJL
90{
91 FIXED_VALUE_TYPE value;
92
93 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
94
ff544649
GJL
95 if (SIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
96 value.data = payload.sext (1 + GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
97 else if (UNSIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
98 value.data = payload.zext (GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
99 else
c3284718 100 gcc_unreachable ();
ff544649 101
cc06c01d
GJL
102 value.mode = mode;
103
104 return value;
105}
106
107
1e1ba002
CF
108/* Initialize from a decimal or hexadecimal string. */
109
110void
ef4bddc2 111fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, machine_mode mode)
1e1ba002
CF
112{
113 REAL_VALUE_TYPE real_value, fixed_value, base_value;
114 unsigned int fbit;
115 enum fixed_value_range_code temp;
807e902e 116 bool fail;
1e1ba002
CF
117
118 f->mode = mode;
119 fbit = GET_MODE_FBIT (mode);
120
121 real_from_string (&real_value, str);
122 temp = check_real_for_fixed_mode (&real_value, f->mode);
123 /* We don't want to warn the case when the _Fract value is 1.0. */
124 if (temp == FIXED_UNDERFLOW
125 || temp == FIXED_GT_MAX_EPS
126 || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
127 warning (OPT_Woverflow,
128 "large fixed-point constant implicitly truncated to fixed-point type");
4ff7defd 129 real_2expN (&base_value, fbit, VOIDmode);
1e1ba002 130 real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
807e902e
KZ
131 wide_int w = real_to_integer (&fixed_value, &fail,
132 GET_MODE_PRECISION (mode));
133 f->data.low = w.elt (0);
134 f->data.high = w.elt (1);
1e1ba002
CF
135
136 if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
137 {
138 /* From the spec, we need to evaluate 1 to the maximal value. */
139 f->data.low = -1;
140 f->data.high = -1;
0823efed
DN
141 f->data = f->data.zext (GET_MODE_FBIT (f->mode)
142 + GET_MODE_IBIT (f->mode));
1e1ba002
CF
143 }
144 else
0823efed 145 f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
1e1ba002
CF
146 + GET_MODE_FBIT (f->mode)
147 + GET_MODE_IBIT (f->mode),
148 UNSIGNED_FIXED_POINT_MODE_P (f->mode));
149}
150
151/* Render F as a decimal floating point constant. */
152
153void
154fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
155 size_t buf_size)
156{
157 REAL_VALUE_TYPE real_value, base_value, fixed_value;
158
807e902e 159 signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode) ? UNSIGNED : SIGNED;
4ff7defd 160 real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), VOIDmode);
807e902e
KZ
161 real_from_integer (&real_value, VOIDmode,
162 wide_int::from (f_orig->data,
163 GET_MODE_PRECISION (f_orig->mode), sgn),
164 sgn);
1e1ba002
CF
165 real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
166 real_to_decimal (str, &fixed_value, buf_size, 0, 1);
167}
168
169/* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
170 the machine mode MODE.
171 Do not modify *F otherwise.
172 This function assumes the width of double_int is greater than the width
173 of the fixed-point value (the sum of a possible sign bit, possible ibits,
174 and fbits).
175 Return true, if !SAT_P and overflow. */
176
177static bool
ef4bddc2 178fixed_saturate1 (machine_mode mode, double_int a, double_int *f,
1e1ba002
CF
179 bool sat_p)
180{
181 bool overflow_p = false;
182 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
183 int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
184
185 if (unsigned_p) /* Unsigned type. */
186 {
187 double_int max;
188 max.low = -1;
189 max.high = -1;
0823efed
DN
190 max = max.zext (i_f_bits);
191 if (a.ugt (max))
1e1ba002
CF
192 {
193 if (sat_p)
194 *f = max;
195 else
196 overflow_p = true;
197 }
198 }
199 else /* Signed type. */
200 {
201 double_int max, min;
202 max.high = -1;
203 max.low = -1;
0823efed 204 max = max.zext (i_f_bits);
1e1ba002
CF
205 min.high = 0;
206 min.low = 1;
0823efed
DN
207 min = min.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
208 min = min.sext (1 + i_f_bits);
209 if (a.sgt (max))
1e1ba002
CF
210 {
211 if (sat_p)
212 *f = max;
213 else
214 overflow_p = true;
215 }
0823efed 216 else if (a.slt (min))
1e1ba002
CF
217 {
218 if (sat_p)
219 *f = min;
220 else
221 overflow_p = true;
222 }
223 }
224 return overflow_p;
225}
226
227/* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
228 save to *F based on the machine mode MODE.
229 Do not modify *F otherwise.
230 This function assumes the width of two double_int is greater than the width
231 of the fixed-point value (the sum of a possible sign bit, possible ibits,
232 and fbits).
233 Return true, if !SAT_P and overflow. */
234
235static bool
ef4bddc2 236fixed_saturate2 (machine_mode mode, double_int a_high, double_int a_low,
1e1ba002
CF
237 double_int *f, bool sat_p)
238{
239 bool overflow_p = false;
240 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
241 int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
242
243 if (unsigned_p) /* Unsigned type. */
244 {
245 double_int max_r, max_s;
246 max_r.high = 0;
247 max_r.low = 0;
248 max_s.high = -1;
249 max_s.low = -1;
0823efed
DN
250 max_s = max_s.zext (i_f_bits);
251 if (a_high.ugt (max_r)
252 || (a_high == max_r &&
253 a_low.ugt (max_s)))
1e1ba002
CF
254 {
255 if (sat_p)
256 *f = max_s;
257 else
258 overflow_p = true;
259 }
260 }
261 else /* Signed type. */
262 {
263 double_int max_r, max_s, min_r, min_s;
264 max_r.high = 0;
265 max_r.low = 0;
266 max_s.high = -1;
267 max_s.low = -1;
0823efed 268 max_s = max_s.zext (i_f_bits);
1e1ba002
CF
269 min_r.high = -1;
270 min_r.low = -1;
271 min_s.high = 0;
272 min_s.low = 1;
0823efed
DN
273 min_s = min_s.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
274 min_s = min_s.sext (1 + i_f_bits);
275 if (a_high.sgt (max_r)
276 || (a_high == max_r &&
277 a_low.ugt (max_s)))
1e1ba002
CF
278 {
279 if (sat_p)
280 *f = max_s;
281 else
282 overflow_p = true;
283 }
0823efed
DN
284 else if (a_high.slt (min_r)
285 || (a_high == min_r &&
286 a_low.ult (min_s)))
1e1ba002
CF
287 {
288 if (sat_p)
289 *f = min_s;
290 else
291 overflow_p = true;
292 }
293 }
294 return overflow_p;
295}
296
297/* Return the sign bit based on I_F_BITS. */
298
299static inline int
300get_fixed_sign_bit (double_int a, int i_f_bits)
301{
302 if (i_f_bits < HOST_BITS_PER_WIDE_INT)
303 return (a.low >> i_f_bits) & 1;
304 else
305 return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
306}
307
308/* Calculate F = A + (SUBTRACT_P ? -B : B).
309 If SAT_P, saturate the result to the max or the min.
310 Return true, if !SAT_P and overflow. */
311
312static bool
313do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
314 const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
315{
316 bool overflow_p = false;
cb4ad180
AH
317 bool unsigned_p;
318 double_int temp;
319 int i_f_bits;
320
c4e93e28
AH
321 /* This was a conditional expression but it triggered a bug in
322 Sun C 5.5. */
cb4ad180 323 if (subtract_p)
0823efed 324 temp = -b->data;
cb4ad180
AH
325 else
326 temp = b->data;
327
328 unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
329 i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
1e1ba002 330 f->mode = a->mode;
0823efed 331 f->data = a->data + temp;
1e1ba002
CF
332 if (unsigned_p) /* Unsigned type. */
333 {
334 if (subtract_p) /* Unsigned subtraction. */
335 {
0823efed 336 if (a->data.ult (b->data))
1e1ba002
CF
337 {
338 if (sat_p)
339 {
340 f->data.high = 0;
341 f->data.low = 0;
342 }
343 else
344 overflow_p = true;
345 }
346 }
347 else /* Unsigned addition. */
348 {
0823efed
DN
349 f->data = f->data.zext (i_f_bits);
350 if (f->data.ult (a->data)
351 || f->data.ult (b->data))
1e1ba002
CF
352 {
353 if (sat_p)
354 {
355 f->data.high = -1;
356 f->data.low = -1;
357 }
358 else
359 overflow_p = true;
360 }
361 }
362 }
363 else /* Signed type. */
364 {
365 if ((!subtract_p
366 && (get_fixed_sign_bit (a->data, i_f_bits)
367 == get_fixed_sign_bit (b->data, i_f_bits))
368 && (get_fixed_sign_bit (a->data, i_f_bits)
369 != get_fixed_sign_bit (f->data, i_f_bits)))
370 || (subtract_p
371 && (get_fixed_sign_bit (a->data, i_f_bits)
372 != get_fixed_sign_bit (b->data, i_f_bits))
373 && (get_fixed_sign_bit (a->data, i_f_bits)
374 != get_fixed_sign_bit (f->data, i_f_bits))))
375 {
376 if (sat_p)
377 {
378 f->data.low = 1;
379 f->data.high = 0;
0823efed 380 f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
1e1ba002
CF
381 if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
382 {
0823efed 383 --f->data;
1e1ba002
CF
384 }
385 }
386 else
387 overflow_p = true;
388 }
389 }
0823efed 390 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1e1ba002
CF
391 return overflow_p;
392}
393
394/* Calculate F = A * B.
395 If SAT_P, saturate the result to the max or the min.
396 Return true, if !SAT_P and overflow. */
397
398static bool
399do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
400 const FIXED_VALUE_TYPE *b, bool sat_p)
401{
402 bool overflow_p = false;
403 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
404 int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
405 f->mode = a->mode;
406 if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
407 {
0823efed 408 f->data = a->data * b->data;
27bcd47c
LC
409 f->data = f->data.lshift (-GET_MODE_FBIT (f->mode),
410 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
1e1ba002
CF
411 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
412 }
413 else
414 {
415 /* The result of multiplication expands to two double_int. */
416 double_int a_high, a_low, b_high, b_low;
417 double_int high_high, high_low, low_high, low_low;
418 double_int r, s, temp1, temp2;
419 int carry = 0;
420
421 /* Decompose a and b to four double_int. */
422 a_high.low = a->data.high;
423 a_high.high = 0;
424 a_low.low = a->data.low;
425 a_low.high = 0;
426 b_high.low = b->data.high;
427 b_high.high = 0;
428 b_low.low = b->data.low;
429 b_low.high = 0;
430
431 /* Perform four multiplications. */
0823efed
DN
432 low_low = a_low * b_low;
433 low_high = a_low * b_high;
434 high_low = a_high * b_low;
435 high_high = a_high * b_high;
1e1ba002
CF
436
437 /* Accumulate four results to {r, s}. */
438 temp1.high = high_low.low;
439 temp1.low = 0;
0823efed
DN
440 s = low_low + temp1;
441 if (s.ult (low_low)
442 || s.ult (temp1))
1e1ba002
CF
443 carry ++; /* Carry */
444 temp1.high = s.high;
445 temp1.low = s.low;
446 temp2.high = low_high.low;
447 temp2.low = 0;
0823efed
DN
448 s = temp1 + temp2;
449 if (s.ult (temp1)
450 || s.ult (temp2))
1e1ba002
CF
451 carry ++; /* Carry */
452
453 temp1.low = high_low.high;
454 temp1.high = 0;
0823efed 455 r = high_high + temp1;
1e1ba002
CF
456 temp1.low = low_high.high;
457 temp1.high = 0;
0823efed 458 r += temp1;
1e1ba002
CF
459 temp1.low = carry;
460 temp1.high = 0;
0823efed 461 r += temp1;
1e1ba002 462
bdc45386 463 /* We need to subtract b from r, if a < 0. */
1e1ba002 464 if (!unsigned_p && a->data.high < 0)
0823efed 465 r -= b->data;
bdc45386 466 /* We need to subtract a from r, if b < 0. */
1e1ba002 467 if (!unsigned_p && b->data.high < 0)
0823efed 468 r -= a->data;
1e1ba002
CF
469
470 /* Shift right the result by FBIT. */
49ab6098 471 if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
1e1ba002
CF
472 {
473 s.low = r.low;
474 s.high = r.high;
475 if (unsigned_p)
476 {
477 r.low = 0;
478 r.high = 0;
479 }
480 else
481 {
482 r.low = -1;
483 r.high = -1;
484 }
485 f->data.low = s.low;
486 f->data.high = s.high;
487 }
488 else
489 {
0823efed
DN
490 s = s.llshift ((-GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT);
491 f->data = r.llshift ((HOST_BITS_PER_DOUBLE_INT
1e1ba002 492 - GET_MODE_FBIT (f->mode)),
0823efed 493 HOST_BITS_PER_DOUBLE_INT);
1e1ba002
CF
494 f->data.low = f->data.low | s.low;
495 f->data.high = f->data.high | s.high;
496 s.low = f->data.low;
497 s.high = f->data.high;
27bcd47c
LC
498 r = r.lshift (-GET_MODE_FBIT (f->mode),
499 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
1e1ba002
CF
500 }
501
502 overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
503 }
504
0823efed 505 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1e1ba002
CF
506 return overflow_p;
507}
508
509/* Calculate F = A / B.
510 If SAT_P, saturate the result to the max or the min.
511 Return true, if !SAT_P and overflow. */
512
513static bool
514do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
515 const FIXED_VALUE_TYPE *b, bool sat_p)
516{
517 bool overflow_p = false;
518 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
519 int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
520 f->mode = a->mode;
521 if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
522 {
0823efed 523 f->data = a->data.lshift (GET_MODE_FBIT (f->mode),
27bcd47c 524 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
0823efed 525 f->data = f->data.div (b->data, unsigned_p, TRUNC_DIV_EXPR);
1e1ba002
CF
526 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
527 }
528 else
529 {
530 double_int pos_a, pos_b, r, s;
531 double_int quo_r, quo_s, mod, temp;
532 int num_of_neg = 0;
533 int i;
534
535 /* If a < 0, negate a. */
536 if (!unsigned_p && a->data.high < 0)
537 {
0823efed 538 pos_a = -a->data;
1e1ba002
CF
539 num_of_neg ++;
540 }
541 else
542 pos_a = a->data;
543
544 /* If b < 0, negate b. */
545 if (!unsigned_p && b->data.high < 0)
546 {
0823efed 547 pos_b = -b->data;
1e1ba002
CF
548 num_of_neg ++;
549 }
550 else
551 pos_b = b->data;
552
553 /* Left shift pos_a to {r, s} by FBIT. */
49ab6098 554 if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
1e1ba002
CF
555 {
556 r = pos_a;
557 s.high = 0;
558 s.low = 0;
559 }
560 else
561 {
0823efed
DN
562 s = pos_a.llshift (GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT);
563 r = pos_a.llshift (- (HOST_BITS_PER_DOUBLE_INT
1e1ba002 564 - GET_MODE_FBIT (f->mode)),
0823efed 565 HOST_BITS_PER_DOUBLE_INT);
1e1ba002
CF
566 }
567
15dc95cb 568 /* Divide r by pos_b to quo_r. The remainder is in mod. */
0823efed
DN
569 quo_r = r.divmod (pos_b, 1, TRUNC_DIV_EXPR, &mod);
570 quo_s = double_int_zero;
1e1ba002 571
49ab6098 572 for (i = 0; i < HOST_BITS_PER_DOUBLE_INT; i++)
1e1ba002
CF
573 {
574 /* Record the leftmost bit of mod. */
575 int leftmost_mod = (mod.high < 0);
576
577 /* Shift left mod by 1 bit. */
07bfc9ec 578 mod = mod.lshift (1);
1e1ba002
CF
579
580 /* Test the leftmost bit of s to add to mod. */
581 if (s.high < 0)
582 mod.low += 1;
583
584 /* Shift left quo_s by 1 bit. */
07bfc9ec 585 quo_s = quo_s.lshift (1);
1e1ba002
CF
586
587 /* Try to calculate (mod - pos_b). */
0823efed 588 temp = mod - pos_b;
1e1ba002 589
0823efed 590 if (leftmost_mod == 1 || mod.ucmp (pos_b) != -1)
1e1ba002
CF
591 {
592 quo_s.low += 1;
593 mod = temp;
594 }
595
596 /* Shift left s by 1 bit. */
07bfc9ec 597 s = s.lshift (1);
1e1ba002
CF
598
599 }
600
601 if (num_of_neg == 1)
602 {
0823efed 603 quo_s = -quo_s;
1e1ba002 604 if (quo_s.high == 0 && quo_s.low == 0)
0823efed 605 quo_r = -quo_r;
1e1ba002
CF
606 else
607 {
608 quo_r.low = ~quo_r.low;
609 quo_r.high = ~quo_r.high;
610 }
611 }
612
613 f->data = quo_s;
614 overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
615 }
616
0823efed 617 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1e1ba002
CF
618 return overflow_p;
619}
620
15dc95cb 621/* Calculate F = A << B if LEFT_P. Otherwise, F = A >> B.
1e1ba002
CF
622 If SAT_P, saturate the result to the max or the min.
623 Return true, if !SAT_P and overflow. */
624
625static bool
626do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
627 const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
628{
629 bool overflow_p = false;
630 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
631 int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
632 f->mode = a->mode;
633
634 if (b->data.low == 0)
635 {
636 f->data = a->data;
637 return overflow_p;
638 }
639
640 if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
641 {
27bcd47c
LC
642 f->data = a->data.lshift (left_p ? b->data.low : -b->data.low,
643 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
1e1ba002
CF
644 if (left_p) /* Only left shift saturates. */
645 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
646 }
647 else /* We need two double_int to store the left-shift result. */
648 {
649 double_int temp_high, temp_low;
49ab6098 650 if (b->data.low == HOST_BITS_PER_DOUBLE_INT)
1e1ba002
CF
651 {
652 temp_high = a->data;
653 temp_low.high = 0;
654 temp_low.low = 0;
655 }
656 else
657 {
0823efed 658 temp_low = a->data.lshift (b->data.low,
27bcd47c 659 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
1e1ba002 660 /* Logical shift right to temp_high. */
0823efed
DN
661 temp_high = a->data.llshift (b->data.low - HOST_BITS_PER_DOUBLE_INT,
662 HOST_BITS_PER_DOUBLE_INT);
1e1ba002
CF
663 }
664 if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high. */
0823efed 665 temp_high = temp_high.ext (b->data.low, unsigned_p);
1e1ba002
CF
666 f->data = temp_low;
667 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
668 sat_p);
669 }
0823efed 670 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1e1ba002
CF
671 return overflow_p;
672}
673
674/* Calculate F = -A.
675 If SAT_P, saturate the result to the max or the min.
676 Return true, if !SAT_P and overflow. */
677
678static bool
679do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
680{
681 bool overflow_p = false;
682 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
683 int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
684 f->mode = a->mode;
0823efed
DN
685 f->data = -a->data;
686 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1e1ba002
CF
687
688 if (unsigned_p) /* Unsigned type. */
689 {
690 if (f->data.low != 0 || f->data.high != 0)
691 {
692 if (sat_p)
693 {
694 f->data.low = 0;
695 f->data.high = 0;
696 }
697 else
698 overflow_p = true;
699 }
700 }
701 else /* Signed type. */
702 {
703 if (!(f->data.high == 0 && f->data.low == 0)
704 && f->data.high == a->data.high && f->data.low == a->data.low )
705 {
706 if (sat_p)
707 {
708 /* Saturate to the maximum by subtracting f->data by one. */
709 f->data.low = -1;
710 f->data.high = -1;
0823efed 711 f->data = f->data.zext (i_f_bits);
1e1ba002
CF
712 }
713 else
714 overflow_p = true;
715 }
716 }
717 return overflow_p;
718}
719
720/* Perform the binary or unary operation described by CODE.
721 Note that OP0 and OP1 must have the same mode for binary operators.
722 For a unary operation, leave OP1 NULL.
723 Return true, if !SAT_P and overflow. */
724
725bool
726fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
727 const FIXED_VALUE_TYPE *op1, bool sat_p)
728{
729 switch (icode)
730 {
731 case NEGATE_EXPR:
732 return do_fixed_neg (f, op0, sat_p);
733 break;
734
735 case PLUS_EXPR:
736 gcc_assert (op0->mode == op1->mode);
737 return do_fixed_add (f, op0, op1, false, sat_p);
738 break;
739
740 case MINUS_EXPR:
741 gcc_assert (op0->mode == op1->mode);
742 return do_fixed_add (f, op0, op1, true, sat_p);
743 break;
744
745 case MULT_EXPR:
746 gcc_assert (op0->mode == op1->mode);
747 return do_fixed_multiply (f, op0, op1, sat_p);
748 break;
749
750 case TRUNC_DIV_EXPR:
751 gcc_assert (op0->mode == op1->mode);
752 return do_fixed_divide (f, op0, op1, sat_p);
753 break;
754
755 case LSHIFT_EXPR:
756 return do_fixed_shift (f, op0, op1, true, sat_p);
757 break;
758
759 case RSHIFT_EXPR:
760 return do_fixed_shift (f, op0, op1, false, sat_p);
761 break;
762
763 default:
764 gcc_unreachable ();
765 }
766 return false;
767}
768
769/* Compare fixed-point values by tree_code.
770 Note that OP0 and OP1 must have the same mode. */
771
772bool
773fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
774 const FIXED_VALUE_TYPE *op1)
775{
81f40b79 776 enum tree_code code = (enum tree_code) icode;
1e1ba002
CF
777 gcc_assert (op0->mode == op1->mode);
778
779 switch (code)
780 {
781 case NE_EXPR:
0823efed 782 return op0->data != op1->data;
1e1ba002
CF
783
784 case EQ_EXPR:
0823efed 785 return op0->data == op1->data;
1e1ba002
CF
786
787 case LT_EXPR:
0823efed 788 return op0->data.cmp (op1->data,
1e1ba002
CF
789 UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
790
791 case LE_EXPR:
0823efed 792 return op0->data.cmp (op1->data,
1e1ba002
CF
793 UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
794
795 case GT_EXPR:
0823efed 796 return op0->data.cmp (op1->data,
1e1ba002
CF
797 UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
798
799 case GE_EXPR:
0823efed 800 return op0->data.cmp (op1->data,
1e1ba002
CF
801 UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
802
803 default:
804 gcc_unreachable ();
805 }
806}
807
808/* Extend or truncate to a new mode.
809 If SAT_P, saturate the result to the max or the min.
810 Return true, if !SAT_P and overflow. */
811
812bool
ef4bddc2 813fixed_convert (FIXED_VALUE_TYPE *f, machine_mode mode,
1e1ba002
CF
814 const FIXED_VALUE_TYPE *a, bool sat_p)
815{
816 bool overflow_p = false;
817 if (mode == a->mode)
818 {
819 *f = *a;
820 return overflow_p;
821 }
822
823 if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
824 {
825 /* Left shift a to temp_high, temp_low based on a->mode. */
826 double_int temp_high, temp_low;
827 int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
0823efed 828 temp_low = a->data.lshift (amount,
27bcd47c
LC
829 HOST_BITS_PER_DOUBLE_INT,
830 SIGNED_FIXED_POINT_MODE_P (a->mode));
1e1ba002 831 /* Logical shift right to temp_high. */
0823efed
DN
832 temp_high = a->data.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
833 HOST_BITS_PER_DOUBLE_INT);
1e1ba002
CF
834 if (SIGNED_FIXED_POINT_MODE_P (a->mode)
835 && a->data.high < 0) /* Signed-extend temp_high. */
0823efed 836 temp_high = temp_high.sext (amount);
1e1ba002
CF
837 f->mode = mode;
838 f->data = temp_low;
839 if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
840 SIGNED_FIXED_POINT_MODE_P (f->mode))
841 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
842 sat_p);
843 else
844 {
845 /* Take care of the cases when converting between signed and
846 unsigned. */
847 if (SIGNED_FIXED_POINT_MODE_P (a->mode))
848 {
849 /* Signed -> Unsigned. */
850 if (a->data.high < 0)
851 {
852 if (sat_p)
853 {
854 f->data.low = 0; /* Set to zero. */
855 f->data.high = 0; /* Set to zero. */
856 }
857 else
858 overflow_p = true;
859 }
860 else
861 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
862 &f->data, sat_p);
863 }
864 else
865 {
866 /* Unsigned -> Signed. */
867 if (temp_high.high < 0)
868 {
869 if (sat_p)
870 {
871 /* Set to maximum. */
872 f->data.low = -1; /* Set to all ones. */
873 f->data.high = -1; /* Set to all ones. */
0823efed
DN
874 f->data = f->data.zext (GET_MODE_FBIT (f->mode)
875 + GET_MODE_IBIT (f->mode));
876 /* Clear the sign. */
1e1ba002
CF
877 }
878 else
879 overflow_p = true;
880 }
881 else
882 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
883 &f->data, sat_p);
884 }
885 }
886 }
887 else
888 {
889 /* Right shift a to temp based on a->mode. */
890 double_int temp;
0823efed 891 temp = a->data.lshift (GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
27bcd47c
LC
892 HOST_BITS_PER_DOUBLE_INT,
893 SIGNED_FIXED_POINT_MODE_P (a->mode));
1e1ba002
CF
894 f->mode = mode;
895 f->data = temp;
896 if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
897 SIGNED_FIXED_POINT_MODE_P (f->mode))
898 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
899 else
900 {
901 /* Take care of the cases when converting between signed and
902 unsigned. */
903 if (SIGNED_FIXED_POINT_MODE_P (a->mode))
904 {
905 /* Signed -> Unsigned. */
906 if (a->data.high < 0)
907 {
908 if (sat_p)
909 {
910 f->data.low = 0; /* Set to zero. */
911 f->data.high = 0; /* Set to zero. */
912 }
913 else
914 overflow_p = true;
915 }
916 else
917 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
918 sat_p);
919 }
920 else
921 {
922 /* Unsigned -> Signed. */
923 if (temp.high < 0)
924 {
925 if (sat_p)
926 {
927 /* Set to maximum. */
928 f->data.low = -1; /* Set to all ones. */
929 f->data.high = -1; /* Set to all ones. */
0823efed
DN
930 f->data = f->data.zext (GET_MODE_FBIT (f->mode)
931 + GET_MODE_IBIT (f->mode));
932 /* Clear the sign. */
1e1ba002
CF
933 }
934 else
935 overflow_p = true;
936 }
937 else
938 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
939 sat_p);
940 }
941 }
942 }
943
0823efed 944 f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
1e1ba002
CF
945 + GET_MODE_FBIT (f->mode)
946 + GET_MODE_IBIT (f->mode),
947 UNSIGNED_FIXED_POINT_MODE_P (f->mode));
948 return overflow_p;
949}
950
951/* Convert to a new fixed-point mode from an integer.
952 If UNSIGNED_P, this integer is unsigned.
953 If SAT_P, saturate the result to the max or the min.
954 Return true, if !SAT_P and overflow. */
955
956bool
ef4bddc2 957fixed_convert_from_int (FIXED_VALUE_TYPE *f, machine_mode mode,
1e1ba002
CF
958 double_int a, bool unsigned_p, bool sat_p)
959{
960 bool overflow_p = false;
961 /* Left shift a to temp_high, temp_low. */
962 double_int temp_high, temp_low;
963 int amount = GET_MODE_FBIT (mode);
49ab6098 964 if (amount == HOST_BITS_PER_DOUBLE_INT)
1e1ba002
CF
965 {
966 temp_high = a;
967 temp_low.low = 0;
968 temp_low.high = 0;
969 }
970 else
971 {
0823efed 972 temp_low = a.llshift (amount, HOST_BITS_PER_DOUBLE_INT);
1e1ba002
CF
973
974 /* Logical shift right to temp_high. */
0823efed
DN
975 temp_high = a.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
976 HOST_BITS_PER_DOUBLE_INT);
1e1ba002
CF
977 }
978 if (!unsigned_p && a.high < 0) /* Signed-extend temp_high. */
0823efed 979 temp_high = temp_high.sext (amount);
1e1ba002
CF
980
981 f->mode = mode;
982 f->data = temp_low;
983
984 if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
985 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
986 sat_p);
987 else
988 {
989 /* Take care of the cases when converting between signed and unsigned. */
990 if (!unsigned_p)
991 {
992 /* Signed -> Unsigned. */
993 if (a.high < 0)
994 {
995 if (sat_p)
996 {
997 f->data.low = 0; /* Set to zero. */
998 f->data.high = 0; /* Set to zero. */
999 }
1000 else
1001 overflow_p = true;
1002 }
1003 else
1004 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1005 &f->data, sat_p);
1006 }
1007 else
1008 {
1009 /* Unsigned -> Signed. */
1010 if (temp_high.high < 0)
1011 {
1012 if (sat_p)
1013 {
1014 /* Set to maximum. */
1015 f->data.low = -1; /* Set to all ones. */
1016 f->data.high = -1; /* Set to all ones. */
0823efed
DN
1017 f->data = f->data.zext (GET_MODE_FBIT (f->mode)
1018 + GET_MODE_IBIT (f->mode));
1019 /* Clear the sign. */
1e1ba002
CF
1020 }
1021 else
1022 overflow_p = true;
1023 }
1024 else
1025 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1026 &f->data, sat_p);
1027 }
1028 }
0823efed 1029 f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
1e1ba002
CF
1030 + GET_MODE_FBIT (f->mode)
1031 + GET_MODE_IBIT (f->mode),
1032 UNSIGNED_FIXED_POINT_MODE_P (f->mode));
1033 return overflow_p;
1034}
1035
1036/* Convert to a new fixed-point mode from a real.
1037 If SAT_P, saturate the result to the max or the min.
1038 Return true, if !SAT_P and overflow. */
1039
1040bool
ef4bddc2 1041fixed_convert_from_real (FIXED_VALUE_TYPE *f, machine_mode mode,
1e1ba002
CF
1042 const REAL_VALUE_TYPE *a, bool sat_p)
1043{
1044 bool overflow_p = false;
1045 REAL_VALUE_TYPE real_value, fixed_value, base_value;
1046 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
1047 int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
1048 unsigned int fbit = GET_MODE_FBIT (mode);
1049 enum fixed_value_range_code temp;
807e902e 1050 bool fail;
1e1ba002
CF
1051
1052 real_value = *a;
1053 f->mode = mode;
4ff7defd 1054 real_2expN (&base_value, fbit, VOIDmode);
1e1ba002 1055 real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
807e902e
KZ
1056
1057 wide_int w = real_to_integer (&fixed_value, &fail,
1058 GET_MODE_PRECISION (mode));
1059 f->data.low = w.elt (0);
1060 f->data.high = w.elt (1);
1e1ba002
CF
1061 temp = check_real_for_fixed_mode (&real_value, mode);
1062 if (temp == FIXED_UNDERFLOW) /* Minimum. */
1063 {
1064 if (sat_p)
1065 {
1066 if (unsigned_p)
1067 {
1068 f->data.low = 0;
1069 f->data.high = 0;
1070 }
1071 else
1072 {
1073 f->data.low = 1;
1074 f->data.high = 0;
0823efed
DN
1075 f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
1076 f->data = f->data.sext (1 + i_f_bits);
1e1ba002
CF
1077 }
1078 }
1079 else
1080 overflow_p = true;
1081 }
1082 else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum. */
1083 {
1084 if (sat_p)
1085 {
1086 f->data.low = -1;
1087 f->data.high = -1;
0823efed 1088 f->data = f->data.zext (i_f_bits);
1e1ba002
CF
1089 }
1090 else
1091 overflow_p = true;
1092 }
0823efed 1093 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1e1ba002
CF
1094 return overflow_p;
1095}
1096
1097/* Convert to a new real mode from a fixed-point. */
1098
1099void
ef4bddc2 1100real_convert_from_fixed (REAL_VALUE_TYPE *r, machine_mode mode,
1e1ba002
CF
1101 const FIXED_VALUE_TYPE *f)
1102{
1103 REAL_VALUE_TYPE base_value, fixed_value, real_value;
1104
807e902e 1105 signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f->mode) ? UNSIGNED : SIGNED;
4ff7defd 1106 real_2expN (&base_value, GET_MODE_FBIT (f->mode), VOIDmode);
807e902e
KZ
1107 real_from_integer (&fixed_value, VOIDmode,
1108 wide_int::from (f->data, GET_MODE_PRECISION (f->mode),
1109 sgn), sgn);
1e1ba002
CF
1110 real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
1111 real_convert (r, mode, &real_value);
1112}
1113
1114/* Determine whether a fixed-point value F is negative. */
1115
1116bool
1117fixed_isneg (const FIXED_VALUE_TYPE *f)
1118{
1119 if (SIGNED_FIXED_POINT_MODE_P (f->mode))
1120 {
1121 int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
1122 int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
1123 if (sign_bit == 1)
1124 return true;
1125 }
1126
1127 return false;
1128}