]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/fortran/gfortran.texi
PR 48915 Update mixed-language programming documentation
[thirdparty/gcc.git] / gcc / fortran / gfortran.texi
CommitLineData
de514255 1\input texinfo @c -*-texinfo-*-
6de9cd9a
DN
2@c %**start of header
3@setfilename gfortran.info
fc1e05d2 4@set copyrights-gfortran 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
6de9cd9a
DN
5
6@include gcc-common.texi
7
7fc15ba5 8@settitle The GNU Fortran Compiler
6de9cd9a
DN
9
10@c Create a separate index for command line options
11@defcodeindex op
12@c Merge the standard indexes into a single one.
13@syncodeindex fn cp
14@syncodeindex vr cp
15@syncodeindex ky cp
16@syncodeindex pg cp
17@syncodeindex tp cp
18
c8cf50e4
BM
19@c TODO: The following "Part" definitions are included here temporarily
20@c until they are incorporated into the official Texinfo distribution.
21@c They borrow heavily from Texinfo's \unnchapentry definitions.
22
23@tex
24\gdef\part#1#2{%
25 \pchapsepmacro
26 \gdef\thischapter{}
27 \begingroup
28 \vglue\titlepagetopglue
29 \titlefonts \rm
30 \leftline{Part #1:@* #2}
31 \vskip4pt \hrule height 4pt width \hsize \vskip4pt
32 \endgroup
33 \writetocentry{part}{#2}{#1}
34}
35\gdef\blankpart{%
36 \writetocentry{blankpart}{}{}
37}
38% Part TOC-entry definition for summary contents.
39\gdef\dosmallpartentry#1#2#3#4{%
40 \vskip .5\baselineskip plus.2\baselineskip
41 \begingroup
42 \let\rm=\bf \rm
43 \tocentry{Part #2: #1}{\doshortpageno\bgroup#4\egroup}
44 \endgroup
45}
46\gdef\dosmallblankpartentry#1#2#3#4{%
47 \vskip .5\baselineskip plus.2\baselineskip
48}
49% Part TOC-entry definition for regular contents. This has to be
50% equated to an existing entry to not cause problems when the PDF
51% outline is created.
52\gdef\dopartentry#1#2#3#4{%
53 \unnchapentry{Part #2: #1}{}{#3}{#4}
54}
55\gdef\doblankpartentry#1#2#3#4{}
56@end tex
57
6de9cd9a
DN
58@c %**end of header
59
60@c Use with @@smallbook.
61
62@c %** start of document
63
64@c Cause even numbered pages to be printed on the left hand side of
65@c the page and odd numbered pages to be printed on the right hand
66@c side of the page. Using this, you can print on both sides of a
67@c sheet of paper and have the text on the same part of the sheet.
68
69@c The text on right hand pages is pushed towards the right hand
70@c margin and the text on left hand pages is pushed toward the left
71@c hand margin.
72@c (To provide the reverse effect, set bindingoffset to -0.75in.)
73
74@c @tex
75@c \global\bindingoffset=0.75in
76@c \global\normaloffset =0.75in
77@c @end tex
78
79@copying
80Copyright @copyright{} @value{copyrights-gfortran} Free Software Foundation, Inc.
81
82Permission is granted to copy, distribute and/or modify this document
07a67d6a 83under the terms of the GNU Free Documentation License, Version 1.3 or
6de9cd9a 84any later version published by the Free Software Foundation; with the
70b1e376
RW
85Invariant Sections being ``Funding Free Software'', the Front-Cover
86Texts being (a) (see below), and with the Back-Cover Texts being (b)
6de9cd9a
DN
87(see below). A copy of the license is included in the section entitled
88``GNU Free Documentation License''.
89
90(a) The FSF's Front-Cover Text is:
91
92 A GNU Manual
93
94(b) The FSF's Back-Cover Text is:
95
96 You have freedom to copy and modify this GNU Manual, like GNU
97 software. Copies published by the Free Software Foundation raise
98 funds for GNU development.
99@end copying
100
101@ifinfo
2cec61bd 102@dircategory Software development
6de9cd9a 103@direntry
7fc15ba5 104* gfortran: (gfortran). The GNU Fortran Compiler.
6de9cd9a
DN
105@end direntry
106This file documents the use and the internals of
7fc15ba5 107the GNU Fortran compiler, (@command{gfortran}).
6de9cd9a
DN
108
109Published by the Free Software Foundation
ab57747b
KC
11051 Franklin Street, Fifth Floor
111Boston, MA 02110-1301 USA
6de9cd9a
DN
112
113@insertcopying
114@end ifinfo
115
6de9cd9a
DN
116
117@setchapternewpage odd
118@titlepage
7fc15ba5 119@title Using GNU Fortran
7771bb62
BM
120@versionsubtitle
121@author The @t{gfortran} team
6de9cd9a
DN
122@page
123@vskip 0pt plus 1filll
4e8b3590 124Published by the Free Software Foundation@*
ab57747b
KC
12551 Franklin Street, Fifth Floor@*
126Boston, MA 02110-1301, USA@*
6de9cd9a
DN
127@c Last printed ??ber, 19??.@*
128@c Printed copies are available for $? each.@*
129@c ISBN ???
130@sp 1
131@insertcopying
132@end titlepage
c8cf50e4
BM
133
134@c TODO: The following "Part" definitions are included here temporarily
135@c until they are incorporated into the official Texinfo distribution.
136
137@tex
138\global\let\partentry=\dosmallpartentry
139\global\let\blankpartentry=\dosmallblankpartentry
140@end tex
6de9cd9a 141@summarycontents
c8cf50e4
BM
142
143@tex
144\global\let\partentry=\dopartentry
145\global\let\blankpartentry=\doblankpartentry
146@end tex
6de9cd9a 147@contents
c8cf50e4 148
6de9cd9a
DN
149@page
150
e6b38f67
BM
151@c ---------------------------------------------------------------------
152@c TexInfo table of contents.
153@c ---------------------------------------------------------------------
154
155@ifnottex
a63dad5b 156@node Top
6de9cd9a
DN
157@top Introduction
158@cindex Introduction
159
160This manual documents the use of @command{gfortran},
3994c6b1 161the GNU Fortran compiler. You can find in this manual how to invoke
e0f2a7c6 162@command{gfortran}, as well as its features and incompatibilities.
6de9cd9a
DN
163
164@ifset DEVELOPMENT
165@emph{Warning:} This document, and the compiler it describes, are still
8db2ba40 166under development. While efforts are made to keep it up-to-date, it might
7fc15ba5 167not accurately reflect the status of the most recent GNU Fortran compiler.
6de9cd9a
DN
168@end ifset
169
8db2ba40
SK
170@comment
171@comment When you add a new menu item, please keep the right hand
172@comment aligned to the same column. Do not use tabs. This provides
173@comment better formatting.
174@comment
6de9cd9a 175@menu
e6b38f67 176* Introduction::
c8cf50e4 177
e6b38f67 178Part I: Invoking GNU Fortran
c8cf50e4 179* Invoking GNU Fortran:: Command options supported by @command{gfortran}.
eaa90d25 180* Runtime:: Influencing runtime behavior with environment variables.
c8cf50e4 181
e6b38f67 182Part II: Language Reference
f489fba1 183* Fortran 2003 and 2008 status:: Fortran 2003 and 2008 features supported by GNU Fortran.
927f4842 184* Compiler Characteristics:: User-visible implementation details.
9e0667cd 185* Mixed-Language Programming:: Interoperability with C
7fc15ba5
BM
186* Extensions:: Language extensions implemented by GNU Fortran.
187* Intrinsic Procedures:: Intrinsic procedures supported by GNU Fortran.
dcf6c255 188* Intrinsic Modules:: Intrinsic modules supported by GNU Fortran.
c8cf50e4
BM
189
190* Contributing:: How you can help.
a63dad5b
TS
191* Copying:: GNU General Public License says
192 how you can copy and share GNU Fortran.
193* GNU Free Documentation License::
6ccde948 194 How you can copy and share this manual.
a63dad5b 195* Funding:: How to help assure continued work for free software.
32864778
DF
196* Option Index:: Index of command line options
197* Keyword Index:: Index of concepts
6de9cd9a 198@end menu
e6b38f67 199@end ifnottex
6de9cd9a 200
6de9cd9a 201@c ---------------------------------------------------------------------
e6b38f67 202@c Introduction
6de9cd9a
DN
203@c ---------------------------------------------------------------------
204
e6b38f67
BM
205@node Introduction
206@chapter Introduction
207
208@c The following duplicates the text on the TexInfo table of contents.
209@iftex
210This manual documents the use of @command{gfortran}, the GNU Fortran
3994c6b1 211compiler. You can find in this manual how to invoke @command{gfortran},
e6b38f67
BM
212as well as its features and incompatibilities.
213
214@ifset DEVELOPMENT
215@emph{Warning:} This document, and the compiler it describes, are still
216under development. While efforts are made to keep it up-to-date, it
217might not accurately reflect the status of the most recent GNU Fortran
218compiler.
219@end ifset
220@end iftex
6de9cd9a 221
7fc15ba5 222The GNU Fortran compiler front end was
6de9cd9a
DN
223designed initially as a free replacement for,
224or alternative to, the unix @command{f95} command;
5724da63 225@command{gfortran} is the command you'll use to invoke the compiler.
6de9cd9a 226
e6b38f67
BM
227@menu
228* About GNU Fortran:: What you should know about the GNU Fortran compiler.
229* GNU Fortran and GCC:: You can compile Fortran, C, or other programs.
2b44ab8b 230* Preprocessing and conditional compilation:: The Fortran preprocessor
e6b38f67
BM
231* GNU Fortran and G77:: Why we chose to start from scratch.
232* Project Status:: Status of GNU Fortran, roadmap, proposed extensions.
6ccde948 233* Standards:: Standards supported by GNU Fortran.
e6b38f67
BM
234@end menu
235
236
237@c ---------------------------------------------------------------------
238@c About GNU Fortran
239@c ---------------------------------------------------------------------
240
241@node About GNU Fortran
242@section About GNU Fortran
243
9e0667cd
TB
244The GNU Fortran compiler supports the Fortran 77, 90 and 95 standards
245completely, parts of the Fortran 2003 and Fortran 2008 standards, and
3994c6b1 246several vendor extensions. The development goal is to provide the
9e0667cd 247following features:
6de9cd9a
DN
248
249@itemize @bullet
250@item
251Read a user's program,
252stored in a file and containing instructions written
f489fba1 253in Fortran 77, Fortran 90, Fortran 95, Fortran 2003 or Fortran 2008.
6de9cd9a
DN
254This file contains @dfn{source code}.
255
256@item
257Translate the user's program into instructions a computer
258can carry out more quickly than it takes to translate the
259instructions in the first
260place. The result after compilation of a program is
261@dfn{machine code},
262code designed to be efficiently translated and processed
263by a machine such as your computer.
264Humans usually aren't as good writing machine code
265as they are at writing Fortran (or C++, Ada, or Java),
aad9c4f4 266because it is easy to make tiny mistakes writing machine code.
6de9cd9a
DN
267
268@item
269Provide the user with information about the reasons why
270the compiler is unable to create a binary from the source code.
271Usually this will be the case if the source code is flawed.
aad9c4f4 272The Fortran 90 standard requires that the compiler can point out
6de9cd9a
DN
273mistakes to the user.
274An incorrect usage of the language causes an @dfn{error message}.
275
276The compiler will also attempt to diagnose cases where the
277user's program contains a correct usage of the language,
278but instructs the computer to do something questionable.
279This kind of diagnostics message is called a @dfn{warning message}.
280
281@item
282Provide optional information about the translation passes
283from the source code to machine code.
284This can help a user of the compiler to find the cause of
285certain bugs which may not be obvious in the source code,
286but may be more easily found at a lower level compiler output.
287It also helps developers to find bugs in the compiler itself.
288
289@item
290Provide information in the generated machine code that can
291make it easier to find bugs in the program (using a debugging tool,
292called a @dfn{debugger}, such as the GNU Debugger @command{gdb}).
293
294@item
295Locate and gather machine code already generated to
296perform actions requested by statements in the user's program.
297This machine code is organized into @dfn{modules} and is located
298and @dfn{linked} to the user program.
299@end itemize
300
7fc15ba5 301The GNU Fortran compiler consists of several components:
6de9cd9a
DN
302
303@itemize @bullet
304@item
305A version of the @command{gcc} command
306(which also might be installed as the system's @command{cc} command)
307that also understands and accepts Fortran source code.
308The @command{gcc} command is the @dfn{driver} program for
309all the languages in the GNU Compiler Collection (GCC);
310With @command{gcc},
5724da63 311you can compile the source code of any language for
6de9cd9a
DN
312which a front end is available in GCC.
313
314@item
315The @command{gfortran} command itself,
316which also might be installed as the
317system's @command{f95} command.
318@command{gfortran} is just another driver program,
7fc15ba5 319but specifically for the Fortran compiler only.
6de9cd9a
DN
320The difference with @command{gcc} is that @command{gfortran}
321will automatically link the correct libraries to your program.
322
323@item
324A collection of run-time libraries.
5724da63 325These libraries contain the machine code needed to support
6de9cd9a
DN
326capabilities of the Fortran language that are not directly
327provided by the machine code generated by the
328@command{gfortran} compilation phase,
329such as intrinsic functions and subroutines,
330and routines for interaction with files and the operating system.
331@c and mechanisms to spawn,
332@c unleash and pause threads in parallelized code.
333
334@item
335The Fortran compiler itself, (@command{f951}).
7fc15ba5 336This is the GNU Fortran parser and code generator,
6de9cd9a
DN
337linked to and interfaced with the GCC backend library.
338@command{f951} ``translates'' the source code to
339assembler code. You would typically not use this
340program directly;
341instead, the @command{gcc} or @command{gfortran} driver
342programs will call it for you.
343@end itemize
344
345
6de9cd9a 346@c ---------------------------------------------------------------------
7fc15ba5 347@c GNU Fortran and GCC
6de9cd9a
DN
348@c ---------------------------------------------------------------------
349
7fc15ba5 350@node GNU Fortran and GCC
e6b38f67 351@section GNU Fortran and GCC
6de9cd9a 352@cindex GNU Compiler Collection
de43c613
BM
353@cindex GCC
354
355GNU Fortran is a part of GCC, the @dfn{GNU Compiler Collection}. GCC
356consists of a collection of front ends for various languages, which
357translate the source code into a language-independent form called
358@dfn{GENERIC}. This is then processed by a common middle end which
359provides optimization, and then passed to one of a collection of back
360ends which generate code for different computer architectures and
361operating systems.
362
363Functionally, this is implemented with a driver program (@command{gcc})
364which provides the command-line interface for the compiler. It calls
365the relevant compiler front-end program (e.g., @command{f951} for
366Fortran) for each file in the source code, and then calls the assembler
3994c6b1 367and linker as appropriate to produce the compiled output. In a copy of
de43c613 368GCC which has been compiled with Fortran language support enabled,
1200489c 369@command{gcc} will recognize files with @file{.f}, @file{.for}, @file{.ftn},
f489fba1 370@file{.f90}, @file{.f95}, @file{.f03} and @file{.f08} extensions as
3994c6b1 371Fortran source code, and compile it accordingly. A @command{gfortran}
f489fba1
FXC
372driver program is also provided, which is identical to @command{gcc}
373except that it automatically links the Fortran runtime libraries into the
374compiled program.
de43c613 375
48d5fab4
JD
376Source files with @file{.f}, @file{.for}, @file{.fpp}, @file{.ftn}, @file{.F},
377@file{.FOR}, @file{.FPP}, and @file{.FTN} extensions are treated as fixed form.
f489fba1
FXC
378Source files with @file{.f90}, @file{.f95}, @file{.f03}, @file{.f08},
379@file{.F90}, @file{.F95}, @file{.F03} and @file{.F08} extensions are
380treated as free form. The capitalized versions of either form are run
3994c6b1 381through preprocessing. Source files with the lower case @file{.fpp}
f489fba1 382extension are also run through preprocessing.
48d5fab4 383
de43c613
BM
384This manual specifically documents the Fortran front end, which handles
385the programming language's syntax and semantics. The aspects of GCC
386which relate to the optimization passes and the back-end code generation
387are documented in the GCC manual; see
388@ref{Top,,Introduction,gcc,Using the GNU Compiler Collection (GCC)}.
389The two manuals together provide a complete reference for the GNU
390Fortran compiler.
6de9cd9a
DN
391
392
2b44ab8b
TB
393@c ---------------------------------------------------------------------
394@c Preprocessing and conditional compilation
395@c ---------------------------------------------------------------------
396
397@node Preprocessing and conditional compilation
398@section Preprocessing and conditional compilation
399@cindex CPP
400@cindex FPP
401@cindex Conditional compilation
402@cindex Preprocessing
f34cf28d 403@cindex preprocessor, include file handling
2b44ab8b 404
48d5fab4
JD
405Many Fortran compilers including GNU Fortran allow passing the source code
406through a C preprocessor (CPP; sometimes also called the Fortran preprocessor,
3994c6b1
TB
407FPP) to allow for conditional compilation. In the case of GNU Fortran,
408this is the GNU C Preprocessor in the traditional mode. On systems with
2b44ab8b 409case-preserving file names, the preprocessor is automatically invoked if the
3994c6b1
TB
410filename extension is @file{.F}, @file{.FOR}, @file{.FTN}, @file{.fpp},
411@file{.FPP}, @file{.F90}, @file{.F95}, @file{.F03} or @file{.F08}. To manually
670637ee
DF
412invoke the preprocessor on any file, use @option{-cpp}, to disable
413preprocessing on files where the preprocessor is run automatically, use
414@option{-nocpp}.
2b44ab8b 415
f34cf28d 416If a preprocessed file includes another file with the Fortran @code{INCLUDE}
3994c6b1 417statement, the included file is not preprocessed. To preprocess included
f34cf28d
DF
418files, use the equivalent preprocessor statement @code{#include}.
419
420If GNU Fortran invokes the preprocessor, @code{__GFORTRAN__}
2b44ab8b
TB
421is defined and @code{__GNUC__}, @code{__GNUC_MINOR__} and
422@code{__GNUC_PATCHLEVEL__} can be used to determine the version of the
3994c6b1 423compiler. See @ref{Top,,Overview,cpp,The C Preprocessor} for details.
2b44ab8b
TB
424
425While CPP is the de-facto standard for preprocessing Fortran code,
426Part 3 of the Fortran 95 standard (ISO/IEC 1539-3:1998) defines
427Conditional Compilation, which is not widely used and not directly
3994c6b1 428supported by the GNU Fortran compiler. You can use the program coco
f39168b3 429to preprocess such files (@uref{http://www.daniellnagle.com/coco.html}).
2b44ab8b
TB
430
431
6de9cd9a 432@c ---------------------------------------------------------------------
7fc15ba5 433@c GNU Fortran and G77
6de9cd9a
DN
434@c ---------------------------------------------------------------------
435
7fc15ba5 436@node GNU Fortran and G77
e6b38f67 437@section GNU Fortran and G77
6de9cd9a 438@cindex Fortran 77
e739dfac 439@cindex @command{g77}
6de9cd9a 440
e739dfac
DF
441The GNU Fortran compiler is the successor to @command{g77}, the Fortran
44277 front end included in GCC prior to version 4. It is an entirely new
443program that has been designed to provide Fortran 95 support and
444extensibility for future Fortran language standards, as well as providing
445backwards compatibility for Fortran 77 and nearly all of the GNU language
446extensions supported by @command{g77}.
6de9cd9a 447
6de9cd9a 448
6de9cd9a
DN
449@c ---------------------------------------------------------------------
450@c Project Status
451@c ---------------------------------------------------------------------
452
453@node Project Status
e6b38f67 454@section Project Status
6de9cd9a
DN
455
456@quotation
7fc15ba5 457As soon as @command{gfortran} can parse all of the statements correctly,
6de9cd9a
DN
458it will be in the ``larva'' state.
459When we generate code, the ``puppa'' state.
7fc15ba5 460When @command{gfortran} is done,
6de9cd9a
DN
461we'll see if it will be a beautiful butterfly,
462or just a big bug....
463
464--Andy Vaught, April 2000
465@end quotation
466
467The start of the GNU Fortran 95 project was announced on
468the GCC homepage in March 18, 2000
469(even though Andy had already been working on it for a while,
5724da63 470of course).
6de9cd9a 471
cf822c04
BM
472The GNU Fortran compiler is able to compile nearly all
473standard-compliant Fortran 95, Fortran 90, and Fortran 77 programs,
474including a number of standard and non-standard extensions, and can be
475used on real-world programs. In particular, the supported extensions
f489fba1 476include OpenMP, Cray-style pointers, and several Fortran 2003 and Fortran
3994c6b1
TB
4772008 features, including TR 15581. However, it is still under
478development and has a few remaining rough edges.
cf822c04
BM
479
480At present, the GNU Fortran compiler passes the
481@uref{http://www.fortran-2000.com/ArnaudRecipes/fcvs21_f95.html,
482NIST Fortran 77 Test Suite}, and produces acceptable results on the
483@uref{http://www.netlib.org/lapack/faq.html#1.21, LAPACK Test Suite}.
484It also provides respectable performance on
485the @uref{http://www.polyhedron.com/pb05.html, Polyhedron Fortran
486compiler benchmarks} and the
487@uref{http://www.llnl.gov/asci_benchmarks/asci/limited/lfk/README.html,
488Livermore Fortran Kernels test}. It has been used to compile a number of
489large real-world programs, including
490@uref{http://mysite.verizon.net/serveall/moene.pdf, the HIRLAM
491weather-forecasting code} and
492@uref{http://www.theochem.uwa.edu.au/tonto/, the Tonto quantum
3994c6b1 493chemistry package}; see @url{http://gcc.gnu.org/@/wiki/@/GfortranApps} for an
26d29061 494extended list.
cf822c04
BM
495
496Among other things, the GNU Fortran compiler is intended as a replacement
497for G77. At this point, nearly all programs that could be compiled with
498G77 can be compiled with GNU Fortran, although there are a few minor known
499regressions.
500
501The primary work remaining to be done on GNU Fortran falls into three
502categories: bug fixing (primarily regarding the treatment of invalid code
503and providing useful error messages), improving the compiler optimizations
504and the performance of compiled code, and extending the compiler to support
9e0667cd 505future standards---in particular, Fortran 2003 and Fortran 2008.
cf822c04 506
6de9cd9a 507
c8cf50e4
BM
508@c ---------------------------------------------------------------------
509@c Standards
510@c ---------------------------------------------------------------------
6de9cd9a 511
c8cf50e4 512@node Standards
e6b38f67 513@section Standards
c8cf50e4 514@cindex Standards
6de9cd9a 515
9e0667cd
TB
516@menu
517* Varying Length Character Strings::
518@end menu
519
c8cf50e4
BM
520The GNU Fortran compiler implements
521ISO/IEC 1539:1997 (Fortran 95). As such, it can also compile essentially all
522standard-compliant Fortran 90 and Fortran 77 programs. It also supports
3994c6b1 523the ISO/IEC TR-15581 enhancements to allocatable arrays.
6de9cd9a 524
f489fba1 525In the future, the GNU Fortran compiler will also support ISO/IEC
3994c6b1
TB
5261539-1:2004 (Fortran 2003), ISO/IEC 1539-1:2010 (Fortran 2008) and
527future Fortran standards. Partial support of the Fortran 2003 and
528Fortran 2008 standard is already provided; the current status of the
529support is reported in the @ref{Fortran 2003 status} and
530@ref{Fortran 2008 status} sections of the documentation.
6de9cd9a 531
9e0667cd 532Additionally, the GNU Fortran compilers supports the OpenMP specification
3994c6b1 533(version 3.0, @url{http://openmp.org/@/wp/@/openmp-specifications/}).
9e0667cd
TB
534
535@node Varying Length Character Strings
536@subsection Varying Length Character Strings
537@cindex Varying length character strings
538@cindex Varying length strings
539@cindex strings, varying length
540
541The Fortran 95 standard specifies in Part 2 (ISO/IEC 1539-2:2000)
3994c6b1 542varying length character strings. While GNU Fortran currently does not
9e0667cd 543support such strings directly, there exist two Fortran implementations
3994c6b1 544for them, which work with GNU Fortran. They can be found at
9e0667cd
TB
545@uref{http://www.fortran.com/@/iso_varying_string.f95} and at
546@uref{ftp://ftp.nag.co.uk/@/sc22wg5/@/ISO_VARYING_STRING/}.
547
548
6de9cd9a 549
c8cf50e4 550@c =====================================================================
e6b38f67 551@c PART I: INVOCATION REFERENCE
c8cf50e4 552@c =====================================================================
6de9cd9a 553
c8cf50e4 554@tex
e6b38f67 555\part{I}{Invoking GNU Fortran}
c8cf50e4 556@end tex
6de9cd9a 557
c8cf50e4
BM
558@c ---------------------------------------------------------------------
559@c Compiler Options
560@c ---------------------------------------------------------------------
6de9cd9a 561
c8cf50e4 562@include invoke.texi
6de9cd9a 563
cf822c04
BM
564
565@c ---------------------------------------------------------------------
566@c Runtime
567@c ---------------------------------------------------------------------
568
eaa90d25
TK
569@node Runtime
570@chapter Runtime: Influencing runtime behavior with environment variables
e739dfac 571@cindex environment variable
eaa90d25 572
b82feea5 573The behavior of the @command{gfortran} can be influenced by
eaa90d25 574environment variables.
f5dc42bb
TK
575
576Malformed environment variables are silently ignored.
577
eaa90d25 578@menu
f5dc42bb
TK
579* GFORTRAN_STDIN_UNIT:: Unit number for standard input
580* GFORTRAN_STDOUT_UNIT:: Unit number for standard output
581* GFORTRAN_STDERR_UNIT:: Unit number for standard error
f5dc42bb 582* GFORTRAN_TMPDIR:: Directory for scratch files
6e34d7b8 583* GFORTRAN_UNBUFFERED_ALL:: Don't buffer I/O for all units.
f41899f6 584* GFORTRAN_UNBUFFERED_PRECONNECTED:: Don't buffer I/O for preconnected units.
f5dc42bb
TK
585* GFORTRAN_SHOW_LOCUS:: Show location for runtime errors
586* GFORTRAN_OPTIONAL_PLUS:: Print leading + where permitted
587* GFORTRAN_DEFAULT_RECL:: Default record length for new files
588* GFORTRAN_LIST_SEPARATOR:: Separator for list output
eaa90d25 589* GFORTRAN_CONVERT_UNIT:: Set endianness for unformatted I/O
a0cb58b2 590* GFORTRAN_ERROR_BACKTRACE:: Show backtrace on run-time errors
eaa90d25
TK
591@end menu
592
f5dc42bb
TK
593@node GFORTRAN_STDIN_UNIT
594@section @env{GFORTRAN_STDIN_UNIT}---Unit number for standard input
595
596This environment variable can be used to select the unit number
597preconnected to standard input. This must be a positive integer.
598The default value is 5.
599
600@node GFORTRAN_STDOUT_UNIT
601@section @env{GFORTRAN_STDOUT_UNIT}---Unit number for standard output
602
603This environment variable can be used to select the unit number
604preconnected to standard output. This must be a positive integer.
605The default value is 6.
606
607@node GFORTRAN_STDERR_UNIT
608@section @env{GFORTRAN_STDERR_UNIT}---Unit number for standard error
609
610This environment variable can be used to select the unit number
611preconnected to standard error. This must be a positive integer.
612The default value is 0.
613
f5dc42bb
TK
614@node GFORTRAN_TMPDIR
615@section @env{GFORTRAN_TMPDIR}---Directory for scratch files
616
617This environment variable controls where scratch files are
618created. If this environment variable is missing,
0e9496cc
JD
619GNU Fortran searches for the environment variable @env{TMP}, then @env{TEMP}.
620If these are missing, the default is @file{/tmp}.
f5dc42bb
TK
621
622@node GFORTRAN_UNBUFFERED_ALL
6e34d7b8 623@section @env{GFORTRAN_UNBUFFERED_ALL}---Don't buffer I/O on all units
f5dc42bb 624
6e34d7b8
JB
625This environment variable controls whether all I/O is unbuffered. If
626the first letter is @samp{y}, @samp{Y} or @samp{1}, all I/O is
3994c6b1 627unbuffered. This will slow down small sequential reads and writes. If
6e34d7b8
JB
628the first letter is @samp{n}, @samp{N} or @samp{0}, I/O is buffered.
629This is the default.
f5dc42bb 630
f41899f6 631@node GFORTRAN_UNBUFFERED_PRECONNECTED
49309826 632@section @env{GFORTRAN_UNBUFFERED_PRECONNECTED}---Don't buffer I/O on preconnected units
f41899f6
JD
633
634The environment variable named @env{GFORTRAN_UNBUFFERED_PRECONNECTED} controls
24219f12 635whether I/O on a preconnected unit (i.e.@: STDOUT or STDERR) is unbuffered. If
3994c6b1 636the first letter is @samp{y}, @samp{Y} or @samp{1}, I/O is unbuffered. This
f41899f6
JD
637will slow down small sequential reads and writes. If the first letter
638is @samp{n}, @samp{N} or @samp{0}, I/O is buffered. This is the default.
639
f5dc42bb
TK
640@node GFORTRAN_SHOW_LOCUS
641@section @env{GFORTRAN_SHOW_LOCUS}---Show location for runtime errors
642
643If the first letter is @samp{y}, @samp{Y} or @samp{1}, filename and
644line numbers for runtime errors are printed. If the first letter is
645@samp{n}, @samp{N} or @samp{0}, don't print filename and line numbers
3994c6b1 646for runtime errors. The default is to print the location.
f5dc42bb
TK
647
648@node GFORTRAN_OPTIONAL_PLUS
649@section @env{GFORTRAN_OPTIONAL_PLUS}---Print leading + where permitted
650
651If the first letter is @samp{y}, @samp{Y} or @samp{1},
652a plus sign is printed
b82feea5 653where permitted by the Fortran standard. If the first letter
f5dc42bb 654is @samp{n}, @samp{N} or @samp{0}, a plus sign is not printed
3994c6b1 655in most cases. Default is not to print plus signs.
f5dc42bb
TK
656
657@node GFORTRAN_DEFAULT_RECL
658@section @env{GFORTRAN_DEFAULT_RECL}---Default record length for new files
659
11de78ff
BM
660This environment variable specifies the default record length, in
661bytes, for files which are opened without a @code{RECL} tag in the
662@code{OPEN} statement. This must be a positive integer. The
663default value is 1073741824 bytes (1 GB).
f5dc42bb
TK
664
665@node GFORTRAN_LIST_SEPARATOR
666@section @env{GFORTRAN_LIST_SEPARATOR}---Separator for list output
667
668This environment variable specifies the separator when writing
669list-directed output. It may contain any number of spaces and
670at most one comma. If you specify this on the command line,
671be sure to quote spaces, as in
672@smallexample
673$ GFORTRAN_LIST_SEPARATOR=' , ' ./a.out
674@end smallexample
40746dcc 675when @command{a.out} is the compiled Fortran program that you want to run.
f5dc42bb
TK
676Default is a single space.
677
eaa90d25 678@node GFORTRAN_CONVERT_UNIT
f5dc42bb 679@section @env{GFORTRAN_CONVERT_UNIT}---Set endianness for unformatted I/O
eaa90d25 680
f5dc42bb 681By setting the @env{GFORTRAN_CONVERT_UNIT} variable, it is possible
eaa90d25 682to change the representation of data for unformatted files.
f5dc42bb 683The syntax for the @env{GFORTRAN_CONVERT_UNIT} variable is:
eaa90d25 684@smallexample
1941551a 685GFORTRAN_CONVERT_UNIT: mode | mode ';' exception | exception ;
eaa90d25
TK
686mode: 'native' | 'swap' | 'big_endian' | 'little_endian' ;
687exception: mode ':' unit_list | unit_list ;
688unit_list: unit_spec | unit_list unit_spec ;
689unit_spec: INTEGER | INTEGER '-' INTEGER ;
690@end smallexample
691The variable consists of an optional default mode, followed by
692a list of optional exceptions, which are separated by semicolons
693from the preceding default and each other. Each exception consists
694of a format and a comma-separated list of units. Valid values for
695the modes are the same as for the @code{CONVERT} specifier:
696
697@itemize @w{}
698@item @code{NATIVE} Use the native format. This is the default.
699@item @code{SWAP} Swap between little- and big-endian.
700@item @code{LITTLE_ENDIAN} Use the little-endian format
6ccde948 701for unformatted files.
eaa90d25
TK
702@item @code{BIG_ENDIAN} Use the big-endian format for unformatted files.
703@end itemize
704A missing mode for an exception is taken to mean @code{BIG_ENDIAN}.
40746dcc 705Examples of values for @env{GFORTRAN_CONVERT_UNIT} are:
eaa90d25
TK
706@itemize @w{}
707@item @code{'big_endian'} Do all unformatted I/O in big_endian mode.
708@item @code{'little_endian;native:10-20,25'} Do all unformatted I/O
709in little_endian mode, except for units 10 to 20 and 25, which are in
710native format.
711@item @code{'10-20'} Units 10 to 20 are big-endian, the rest is native.
6de9cd9a
DN
712@end itemize
713
eaa90d25 714Setting the environment variables should be done on the command
40746dcc
BM
715line or via the @command{export}
716command for @command{sh}-compatible shells and via @command{setenv}
717for @command{csh}-compatible shells.
eaa90d25 718
40746dcc 719Example for @command{sh}:
eaa90d25
TK
720@smallexample
721$ gfortran foo.f90
722$ GFORTRAN_CONVERT_UNIT='big_endian;native:10-20' ./a.out
723@end smallexample
724
40746dcc 725Example code for @command{csh}:
eaa90d25
TK
726@smallexample
727% gfortran foo.f90
728% setenv GFORTRAN_CONVERT_UNIT 'big_endian;native:10-20'
729% ./a.out
730@end smallexample
731
732Using anything but the native representation for unformatted data
733carries a significant speed overhead. If speed in this area matters
734to you, it is best if you use this only for data that needs to be
735portable.
736
737@xref{CONVERT specifier}, for an alternative way to specify the
738data representation for unformatted files. @xref{Runtime Options}, for
739setting a default data representation for the whole program. The
40746dcc 740@code{CONVERT} specifier overrides the @option{-fconvert} compile options.
eaa90d25 741
1941551a
TB
742@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
743environment variable will override the CONVERT specifier in the
744open statement}. This is to give control over data formats to
745users who do not have the source code of their program available.
746
a0cb58b2
TB
747@node GFORTRAN_ERROR_BACKTRACE
748@section @env{GFORTRAN_ERROR_BACKTRACE}---Show backtrace on run-time errors
749
de8bd142
JB
750If the @env{GFORTRAN_ERROR_BACKTRACE} variable is set to @samp{y},
751@samp{Y} or @samp{1} (only the first letter is relevant) then a
752backtrace is printed when a serious run-time error occurs. To disable
753the backtracing, set the variable to @samp{n}, @samp{N}, @samp{0}.
754Default is to print a backtrace unless the @option{-fno-backtrace}
755compile option was used.
c8cf50e4
BM
756
757@c =====================================================================
e6b38f67 758@c PART II: LANGUAGE REFERENCE
c8cf50e4
BM
759@c =====================================================================
760
761@tex
e6b38f67 762\part{II}{Language Reference}
c8cf50e4
BM
763@end tex
764
765@c ---------------------------------------------------------------------
f489fba1 766@c Fortran 2003 and 2008 Status
c8cf50e4
BM
767@c ---------------------------------------------------------------------
768
f489fba1
FXC
769@node Fortran 2003 and 2008 status
770@chapter Fortran 2003 and 2008 Status
771
772@menu
773* Fortran 2003 status::
774* Fortran 2008 status::
775@end menu
776
c8cf50e4 777@node Fortran 2003 status
f489fba1 778@section Fortran 2003 status
c8cf50e4 779
9e0667cd 780GNU Fortran supports several Fortran 2003 features; an incomplete
26ef2b42
DK
781list can be found below. See also the
782@uref{http://gcc.gnu.org/wiki/Fortran2003, wiki page} about Fortran 2003.
c8cf50e4
BM
783
784@itemize
fc1e05d2
TB
785@item Procedure pointers including procedure-pointer components with
786@code{PASS} attribute.
c8cf50e4 787
fc1e05d2
TB
788@item Procedures which are bound to a derived type (type-bound procedures)
789including @code{PASS}, @code{PROCEDURE} and @code{GENERIC}, and
790operators bound to a type.
791
dd5a833e 792@item Abstract interfaces and type extension with the possibility to
fc1e05d2
TB
793override type-bound procedures or to have deferred binding.
794
795@item Polymorphic entities (``@code{CLASS}'') for derived types -- including
796@code{SAME_TYPE_AS}, @code{EXTENDS_TYPE_OF} and @code{SELECT TYPE}.
797Note that the support for array-valued polymorphic entities is incomplete
798and unlimited polymophism is currently not supported.
799
800@item The @code{ASSOCIATE} construct.
801
802@item Interoperability with C including enumerations,
803
804@item In structure constructors the components with default values may be
805omitted.
806
807@item Extensions to the @code{ALLOCATE} statement, allowing for a
808type-specification with type parameter and for allocation and initialization
809from a @code{SOURCE=} expression; @code{ALLOCATE} and @code{DEALLOCATE}
810optionally return an error message string via @code{ERRMSG=}.
811
8d51f26f 812@item Reallocation on assignment: If an intrinsic assignment is
fc1e05d2 813used, an allocatable variable on the left-hand side is automatically allocated
8d51f26f
PT
814(if unallocated) or reallocated (if the shape is different). Currently, scalar
815deferred character length left-hand sides are correctly handled but arrays
816are not yet fully implemented.
fc1e05d2
TB
817
818@item Transferring of allocations via @code{MOVE_ALLOC}.
819
820@item The @code{PRIVATE} and @code{PUBLIC} attributes may be given individually
821to derived-type components.
822
823@item In pointer assignments, the lower bound may be specified and
824the remapping of elements is supported.
825
826@item For pointers an @code{INTENT} may be specified which affect the
827association status not the value of the pointer target.
828
829@item Intrinsics @code{command_argument_count}, @code{get_command},
830@code{get_command_argument}, and @code{get_environment_variable}.
831
832@item Support for unicode characters (ISO 10646) and UTF-8, including
833the @code{SELECTED_CHAR_KIND} and @code{NEW_LINE} intrinsic functions.
834
835@item Support for binary, octal and hexadecimal (BOZ) constants in the
836intrinsic functions @code{INT}, @code{REAL}, @code{CMPLX} and @code{DBLE}.
837
5582f599
TB
838@item Support for namelist variables with allocatable and pointer
839attribute and nonconstant length type parameter.
840
fc1e05d2 841@item
e739dfac 842@cindex array, constructors
c8cf50e4 843@cindex @code{[...]}
3994c6b1 844Array constructors using square brackets. That is, @code{[...]} rather
26ef2b42
DK
845than @code{(/.../)}. Type-specification for array constructors like
846@code{(/ some-type :: ... /)}.
c8cf50e4 847
fc1e05d2
TB
848@item Extensions to the specification and initialization expressions,
849including the support for intrinsics with real and complex arguments.
850
851@item Support for the asynchronous input/output syntax; however, the
852data transfer is currently always synchronously performed.
853
c8cf50e4
BM
854@item
855@cindex @code{FLUSH} statement
e739dfac 856@cindex statement, @code{FLUSH}
c8cf50e4
BM
857@code{FLUSH} statement.
858
859@item
860@cindex @code{IOMSG=} specifier
861@code{IOMSG=} specifier for I/O statements.
862
863@item
864@cindex @code{ENUM} statement
865@cindex @code{ENUMERATOR} statement
e739dfac
DF
866@cindex statement, @code{ENUM}
867@cindex statement, @code{ENUMERATOR}
32864778 868@opindex @code{fshort-enums}
c8cf50e4
BM
869Support for the declaration of enumeration constants via the
870@code{ENUM} and @code{ENUMERATOR} statements. Interoperability with
871@command{gcc} is guaranteed also for the case where the
872@command{-fshort-enums} command line option is given.
873
874@item
875@cindex TR 15581
876TR 15581:
877@itemize
878@item
879@cindex @code{ALLOCATABLE} dummy arguments
880@code{ALLOCATABLE} dummy arguments.
881@item
882@cindex @code{ALLOCATABLE} function results
883@code{ALLOCATABLE} function results
884@item
885@cindex @code{ALLOCATABLE} components of derived types
886@code{ALLOCATABLE} components of derived types
887@end itemize
888
889@item
890@cindex @code{STREAM} I/O
891@cindex @code{ACCESS='STREAM'} I/O
892The @code{OPEN} statement supports the @code{ACCESS='STREAM'} specifier,
893allowing I/O without any record structure.
894
895@item
896Namelist input/output for internal files.
897
fc1e05d2
TB
898@item Further I/O extensions: Rounding during formatted output, using of
899a decimal comma instead of a decimal point, setting whether a plus sign
900should appear for positive numbers.
901
c8cf50e4 902@item
e739dfac
DF
903@cindex @code{PROTECTED} statement
904@cindex statement, @code{PROTECTED}
c8cf50e4
BM
905The @code{PROTECTED} statement and attribute.
906
907@item
e739dfac
DF
908@cindex @code{VALUE} statement
909@cindex statement, @code{VALUE}
c8cf50e4
BM
910The @code{VALUE} statement and attribute.
911
912@item
e739dfac
DF
913@cindex @code{VOLATILE} statement
914@cindex statement, @code{VOLATILE}
c8cf50e4
BM
915The @code{VOLATILE} statement and attribute.
916
917@item
e739dfac
DF
918@cindex @code{IMPORT} statement
919@cindex statement, @code{IMPORT}
c8cf50e4
BM
920The @code{IMPORT} statement, allowing to import
921host-associated derived types.
922
fc1e05d2
TB
923@item The intrinsic modules @code{ISO_FORTRAN_ENVIRONMENT} is supported,
924which contains parameters of the I/O units, storage sizes. Additionally,
925procedures for C interoperability are available in the @code{ISO_C_BINDING}
926module.
927
c8cf50e4 928@item
e739dfac
DF
929@cindex @code{USE, INTRINSIC} statement
930@cindex statement, @code{USE, INTRINSIC}
931@cindex @code{ISO_FORTRAN_ENV} statement
932@cindex statement, @code{ISO_FORTRAN_ENV}
c8cf50e4
BM
933@code{USE} statement with @code{INTRINSIC} and @code{NON_INTRINSIC}
934attribute; supported intrinsic modules: @code{ISO_FORTRAN_ENV},
fc1e05d2 935@code{ISO_C_BINDING}, @code{OMP_LIB} and @code{OMP_LIB_KINDS}.
c8cf50e4 936
56bedf42
TB
937@item
938Renaming of operators in the @code{USE} statement.
939
c8cf50e4
BM
940@end itemize
941
942
f489fba1
FXC
943@node Fortran 2008 status
944@section Fortran 2008 status
945
3994c6b1
TB
946The latest version of the Fortran standard is ISO/IEC 1539-1:2010, informally
947known as Fortran 2008. The official version is available from International
948Organization for Standardization (ISO) or its national member organizations.
949The the final draft (FDIS) can be downloaded free of charge from
950@url{http://www.nag.co.uk/@/sc22wg5/@/links.html}. Fortran is developed by the
951Working Group 5 of Sub-Committee 22 of the Joint Technical Committee 1 of the
952International Organization for Standardization and the International
953Electrotechnical Commission (IEC). This group is known as
954@uref{http://www.nag.co.uk/sc22wg5/, WG5}.
955
956The GNU Fortran supports several of the new features of Fortran 2008; the
957@uref{http://gcc.gnu.org/wiki/Fortran2008Status, wiki} has some information
958about the current Fortran 2008 implementation status. In particular, the
959following is implemented.
960
961@itemize
962@item The @option{-std=f2008} option and support for the file extensions
963@file{.f08} and @file{.F08}.
964
965@item The @code{OPEN} statement now supports the @code{NEWUNIT=} option,
966which returns a unique file unit, thus preventing inadvertent use of the
967same unit in different parts of the program.
968
969@item The @code{g0} format descriptor and unlimited format items.
970
971@item The mathematical intrinsics @code{ASINH}, @code{ACOSH}, @code{ATANH},
972@code{ERF}, @code{ERFC}, @code{GAMMA}, @code{LOG_GAMMA}, @code{BESSEL_J0},
973@code{BESSEL_J1}, @code{BESSEL_JN}, @code{BESSEL_Y0}, @code{BESSEL_Y1},
974@code{BESSEL_YN}, @code{HYPOT}, @code{NORM2}, and @code{ERFC_SCALED}.
975
976@item Using complex arguments with @code{TAN}, @code{SINH}, @code{COSH},
977@code{TANH}, @code{ASIN}, @code{ACOS}, and @code{ATAN} is now possible;
978@code{ATAN}(@var{Y},@var{X}) is now an alias for @code{ATAN2}(@var{Y},@var{X}).
979
980@item Support of the @code{PARITY} intrinsic functions.
981
982@item The following bit intrinsics: @code{LEADZ} and @code{TRAILZ} for
983counting the number of leading and trailing zero bits, @code{POPCNT} and
984@code{POPPAR} for counting the number of one bits and returning the parity;
985@code{BGE}, @code{BGT}, @code{BLE}, and @code{BLT} for bitwise comparisons;
986@code{DSHIFTL} and @code{DSHIFTR} for combined left and right shifts,
987@code{MASKL} and @code{MASKR} for simple left and right justified masks,
988@code{MERGE_BITS} for a bitwise merge using a mask, @code{SHIFTA},
989@code{SHIFTL} and @code{SHIFTR} for shift operations, and the
990transformational bit intrinsics @code{IALL}, @code{IANY} and @code{IPARITY}.
991
992@item Support of the @code{EXECUTE_COMMAND_LINE} intrinsic subroutine.
993
994@item Support for the @code{STORAGE_SIZE} intrinsic inquiry function.
995
996@item The @code{INT@{8,16,32@}} and @code{REAL@{32,64,128@}} kind type
e9853e1c
TB
997parameters and the array-valued named constants @code{INTEGER_KINDS},
998@code{LOGICAL_KINDS}, @code{REAL_KINDS} and @code{CHARACTER_KINDS} of
999the intrinsic module @code{ISO_FORTRAN_ENV}.
1000
1001@item The module procedures @code{C_SIZEOF} of the intrinsic module
1002@code{ISO_C_BINDINGS} and @code{COMPILER_VERSION} and @code{COMPILER_OPTIONS}
1003of @code{ISO_FORTRAN_ENV}.
3994c6b1
TB
1004
1005@item Experimental coarray support (for one image only), use the
1006@option{-fcoarray=single} flag to enable it.
1007
1008@item The @code{BLOCK} construct is supported.
1009
1010@item The @code{STOP} and the new @code{ERROR STOP} statements now
1011support all constant expressions.
1012
1013@item Support for the @code{CONTIGUOUS} attribute.
1014
1015@item Support for @code{ALLOCATE} with @code{MOLD}.
1016
1017@item Support for the @code{IMPURE} attribute for procedures, which
1018allows for @code{ELEMENTAL} procedures without the restrictions of
1019@code{PURE}.
1020
1021@item Null pointers (including @code{NULL()}) and not-allocated variables
1022can be used as actual argument to optional non-pointer, non-allocatable
1023dummy arguments, denoting an absent argument.
1024
1025@item Non-pointer variables with @code{TARGET} attribute can be used as
1026actual argument to @code{POINTER} dummies with @code{INTENT(IN)}.
1027
1028@item Pointers including procedure pointers and those in a derived
1029type (pointer components) can now be initialized by a target instead
1030of only by @code{NULL}.
1031
1032@item The @code{EXIT} statement (with construct-name) can be now be
1033used to leave not only the @code{DO} but also the @code{ASSOCIATE},
1034@code{BLOCK}, @code{IF}, @code{SELECT CASE} and @code{SELECT TYPE}
1035constructs.
1036
1037@item Internal procedures can now be used as actual argument.
1038
1039@item Minor features: obsolesce diagnostics for @code{ENTRY} with
1040@option{-std=f2008}; a line may start with a semicolon; for internal
1041and module procedures @code{END} can be used instead of
1042@code{END SUBROUTINE} and @code{END FUNCTION}; @code{SELECTED_REAL_KIND}
1043now also takes a @code{RADIX} argument; intrinsic types are supported
1044for @code{TYPE}(@var{intrinsic-type-spec}); multiple type-bound procedures
1045can be declared in a single @code{PROCEDURE} statement; implied-shape
1046arrays are supported for named constants (@code{PARAMETER}).
1047@end itemize
f489fba1 1048
26ef2b42 1049
71810d0e
DK
1050
1051@c ---------------------------------------------------------------------
1052@c Compiler Characteristics
1053@c ---------------------------------------------------------------------
1054
1055@node Compiler Characteristics
1056@chapter Compiler Characteristics
1057
927f4842
JB
1058This chapter describes certain characteristics of the GNU Fortran
1059compiler, that are not specified by the Fortran standard, but which
1060might in some way or another become visible to the programmer.
71810d0e
DK
1061
1062@menu
1063* KIND Type Parameters::
927f4842 1064* Internal representation of LOGICAL variables::
85883d65 1065* Thread-safety of the runtime library::
71810d0e
DK
1066@end menu
1067
1068
1069@node KIND Type Parameters
1070@section KIND Type Parameters
1071@cindex kind
1072
1073The @code{KIND} type parameters supported by GNU Fortran for the primitive
1074data types are:
1075
1076@table @code
1077
1078@item INTEGER
10791, 2, 4, 8*, 16*, default: 4 (1)
1080
1081@item LOGICAL
10821, 2, 4, 8*, 16*, default: 4 (1)
1083
1084@item REAL
6a683de1 10854, 8, 10*, 16*, default: 4 (2)
71810d0e
DK
1086
1087@item COMPLEX
6a683de1 10884, 8, 10*, 16*, default: 4 (2)
71810d0e
DK
1089
1090@item CHARACTER
10911, 4, default: 1
1092
1093@end table
1094
1095@noindent
1096* = not available on all systems @*
71810d0e
DK
1097(1) Unless -fdefault-integer-8 is used @*
1098(2) Unless -fdefault-real-8 is used
1099
1100@noindent
1101The @code{KIND} value matches the storage size in bytes, except for
1102@code{COMPLEX} where the storage size is twice as much (or both real and
1103imaginary part are a real value of the given size). It is recommended to use
6a683de1
TB
1104the @code{SELECTED_CHAR_KIND}, @code{SELECTED_INT_KIND} and
1105@code{SELECTED_REAL_KIND} intrinsics or the @code{INT8}, @code{INT16},
1106@code{INT32}, @code{INT64}, @code{REAL32}, @code{REAL64}, and @code{REAL128}
1107parameters of the @code{ISO_FORTRAN_ENV} module instead of the concrete values.
1108The available kind parameters can be found in the constant arrays
1109@code{CHARACTER_KINDS}, @code{INTEGER_KINDS}, @code{LOGICAL_KINDS} and
1110@code{REAL_KINDS} in the @code{ISO_FORTRAN_ENV} module
1111(see @ref{ISO_FORTRAN_ENV}).
71810d0e
DK
1112
1113
927f4842
JB
1114@node Internal representation of LOGICAL variables
1115@section Internal representation of LOGICAL variables
1116@cindex logical, variable representation
1117
1118The Fortran standard does not specify how variables of @code{LOGICAL}
1119type are represented, beyond requiring that @code{LOGICAL} variables
1120of default kind have the same storage size as default @code{INTEGER}
1121and @code{REAL} variables. The GNU Fortran internal representation is
1122as follows.
1123
1124A @code{LOGICAL(KIND=N)} variable is represented as an
1125@code{INTEGER(KIND=N)} variable, however, with only two permissible
1126values: @code{1} for @code{.TRUE.} and @code{0} for
3994c6b1 1127@code{.FALSE.}. Any other integer value results in undefined behavior.
927f4842
JB
1128
1129Note that for mixed-language programming using the
1130@code{ISO_C_BINDING} feature, there is a @code{C_BOOL} kind that can
1131be used to create @code{LOGICAL(KIND=C_BOOL)} variables which are
1132interoperable with the C99 _Bool type. The C99 _Bool type has an
1133internal representation described in the C99 standard, which is
1134identical to the above description, i.e. with 1 for true and 0 for
1135false being the only permissible values. Thus the internal
1136representation of @code{LOGICAL} variables in GNU Fortran is identical
1137to C99 _Bool, except for a possible difference in storage size
1138depending on the kind.
1139
6985b4a1
JB
1140
1141@node Thread-safety of the runtime library
1142@section Thread-safety of the runtime library
1143@cindex thread-safety, threads
1144
159c2794 1145GNU Fortran can be used in programs with multiple threads, e.g.@: by
6985b4a1
JB
1146using OpenMP, by calling OS thread handling functions via the
1147@code{ISO_C_BINDING} facility, or by GNU Fortran compiled library code
1148being called from a multi-threaded program.
1149
f3f2c465 1150The GNU Fortran runtime library, (@code{libgfortran}), supports being
6985b4a1
JB
1151called concurrently from multiple threads with the following
1152exceptions.
1153
f3f2c465
JB
1154During library initialization, the C @code{getenv} function is used,
1155which need not be thread-safe. Similarly, the @code{getenv}
6985b4a1
JB
1156function is used to implement the @code{GET_ENVIRONMENT_VARIABLE} and
1157@code{GETENV} intrinsics. It is the responsibility of the user to
1158ensure that the environment is not being updated concurrently when any
1159of these actions are taking place.
1160
1161The @code{EXECUTE_COMMAND_LINE} and @code{SYSTEM} intrinsics are
f3f2c465 1162implemented with the @code{system} function, which need not be
6985b4a1 1163thread-safe. It is the responsibility of the user to ensure that
f3f2c465 1164@code{system} is not called concurrently.
6985b4a1 1165
f3f2c465
JB
1166Finally, for platforms not supporting thread-safe POSIX functions,
1167further functionality might not be thread-safe. For details, please
1168consult the documentation for your operating system.
6985b4a1 1169
294fbfc8
TS
1170@c ---------------------------------------------------------------------
1171@c Extensions
1172@c ---------------------------------------------------------------------
1173
1174@c Maybe this chapter should be merged with the 'Standards' section,
1175@c whenever that is written :-)
1176
1177@node Extensions
1178@chapter Extensions
49309826
FXC
1179@cindex extensions
1180
1181The two sections below detail the extensions to standard Fortran that are
1182implemented in GNU Fortran, as well as some of the popular or
1183historically important extensions that are not (or not yet) implemented.
1184For the latter case, we explain the alternatives available to GNU Fortran
1185users, including replacement by standard-conforming code or GNU
1186extensions.
1187
1188@menu
1189* Extensions implemented in GNU Fortran::
1190* Extensions not implemented in GNU Fortran::
1191@end menu
1192
1193
1194@node Extensions implemented in GNU Fortran
1195@section Extensions implemented in GNU Fortran
1196@cindex extensions, implemented
294fbfc8 1197
7fc15ba5 1198GNU Fortran implements a number of extensions over standard
3994c6b1 1199Fortran. This chapter contains information on their syntax and
7fc15ba5 1200meaning. There are currently two categories of GNU Fortran
c0309c74 1201extensions, those that provide functionality beyond that provided
7fc15ba5 1202by any standard, and those that are supported by GNU Fortran
c0309c74
RS
1203purely for backward compatibility with legacy compilers. By default,
1204@option{-std=gnu} allows the compiler to accept both types of
1205extensions, but to warn about the use of the latter. Specifying
f489fba1
FXC
1206either @option{-std=f95}, @option{-std=f2003} or @option{-std=f2008}
1207disables both types of extensions, and @option{-std=legacy} allows both
1208without warning.
294fbfc8
TS
1209
1210@menu
1211* Old-style kind specifications::
1212* Old-style variable initialization::
670026fb 1213* Extensions to namelist::
11de78ff 1214* X format descriptor without count field::
ec8a1940 1215* Commas in FORMAT specifications::
c9f4aa97 1216* Missing period in FORMAT specifications::
ec8a1940 1217* I/O item lists::
11de78ff 1218* BOZ literal constants::
5a17346a 1219* @code{Q} exponent-letter::
ec8a1940
RS
1220* Real array indices::
1221* Unary operators::
11de78ff 1222* Implicitly convert LOGICAL and INTEGER values::
bc192c77 1223* Hollerith constants support::
83d890b9 1224* Cray pointers::
181c9f4a 1225* CONVERT specifier::
6c7a4dfd 1226* OpenMP::
d60e76db 1227* Argument list functions::
294fbfc8 1228@end menu
6de9cd9a 1229
294fbfc8 1230@node Old-style kind specifications
49309826 1231@subsection Old-style kind specifications
e739dfac 1232@cindex kind, old-style
294fbfc8 1233
3994c6b1 1234GNU Fortran allows old-style kind specifications in declarations. These
b69862d1 1235look like:
294fbfc8 1236@smallexample
b69862d1 1237 TYPESPEC*size x,y,z
294fbfc8 1238@end smallexample
b2b81a3f 1239@noindent
11de78ff 1240where @code{TYPESPEC} is a basic type (@code{INTEGER}, @code{REAL},
b2b81a3f
BM
1241etc.), and where @code{size} is a byte count corresponding to the
1242storage size of a valid kind for that type. (For @code{COMPLEX}
1243variables, @code{size} is the total size of the real and imaginary
1244parts.) The statement then declares @code{x}, @code{y} and @code{z} to
1245be of type @code{TYPESPEC} with the appropriate kind. This is
1246equivalent to the standard-conforming declaration
294fbfc8
TS
1247@smallexample
1248 TYPESPEC(k) x,y,z
1249@end smallexample
b2b81a3f 1250@noindent
aad9c4f4
AM
1251where @code{k} is the kind parameter suitable for the intended precision. As
1252kind parameters are implementation-dependent, use the @code{KIND},
1253@code{SELECTED_INT_KIND} and @code{SELECTED_REAL_KIND} intrinsics to retrieve
1254the correct value, for instance @code{REAL*8 x} can be replaced by:
1255@smallexample
1256INTEGER, PARAMETER :: dbl = KIND(1.0d0)
1257REAL(KIND=dbl) :: x
1258@end smallexample
294fbfc8
TS
1259
1260@node Old-style variable initialization
49309826 1261@subsection Old-style variable initialization
294fbfc8 1262
7fc15ba5 1263GNU Fortran allows old-style initialization of variables of the
294fbfc8
TS
1264form:
1265@smallexample
11de78ff
BM
1266 INTEGER i/1/,j/2/
1267 REAL x(2,2) /3*0.,1./
294fbfc8 1268@end smallexample
11de78ff 1269The syntax for the initializers is as for the @code{DATA} statement, but
294fbfc8 1270unlike in a @code{DATA} statement, an initializer only applies to the
11de78ff
BM
1271variable immediately preceding the initialization. In other words,
1272something like @code{INTEGER I,J/2,3/} is not valid. This style of
1273initialization is only allowed in declarations without double colons
1274(@code{::}); the double colons were introduced in Fortran 90, which also
0979f01d 1275introduced a standard syntax for initializing variables in type
11de78ff
BM
1276declarations.
1277
1278Examples of standard-conforming code equivalent to the above example
1279are:
294fbfc8
TS
1280@smallexample
1281! Fortran 90
11de78ff
BM
1282 INTEGER :: i = 1, j = 2
1283 REAL :: x(2,2) = RESHAPE((/0.,0.,0.,1./),SHAPE(x))
294fbfc8 1284! Fortran 77
11de78ff
BM
1285 INTEGER i, j
1286 REAL x(2,2)
1287 DATA i/1/, j/2/, x/3*0.,1./
294fbfc8 1288@end smallexample
6de9cd9a 1289
11de78ff
BM
1290Note that variables which are explicitly initialized in declarations
1291or in @code{DATA} statements automatically acquire the @code{SAVE}
1292attribute.
9618502b 1293
670026fb 1294@node Extensions to namelist
49309826 1295@subsection Extensions to namelist
670026fb
PT
1296@cindex Namelist
1297
7fc15ba5 1298GNU Fortran fully supports the Fortran 95 standard for namelist I/O
670026fb
PT
1299including array qualifiers, substrings and fully qualified derived types.
1300The output from a namelist write is compatible with namelist read. The
1301output has all names in upper case and indentation to column 1 after the
1302namelist name. Two extensions are permitted:
1303
11de78ff 1304Old-style use of @samp{$} instead of @samp{&}
670026fb
PT
1305@smallexample
1306$MYNML
1307 X(:)%Y(2) = 1.0 2.0 3.0
1308 CH(1:4) = "abcd"
1309$END
1310@end smallexample
1311
11de78ff
BM
1312It should be noted that the default terminator is @samp{/} rather than
1313@samp{&END}.
670026fb 1314
3994c6b1 1315Querying of the namelist when inputting from stdin. After at least
11de78ff 1316one space, entering @samp{?} sends to stdout the namelist name and the names of
670026fb
PT
1317the variables in the namelist:
1318@smallexample
11de78ff 1319 ?
670026fb
PT
1320
1321&mynml
1322 x
1323 x%y
1324 ch
1325&end
1326@end smallexample
1327
11de78ff
BM
1328Entering @samp{=?} outputs the namelist to stdout, as if
1329@code{WRITE(*,NML = mynml)} had been called:
670026fb
PT
1330@smallexample
1331=?
1332
1333&MYNML
1334 X(1)%Y= 0.000000 , 1.000000 , 0.000000 ,
1335 X(2)%Y= 0.000000 , 2.000000 , 0.000000 ,
1336 X(3)%Y= 0.000000 , 3.000000 , 0.000000 ,
1337 CH=abcd, /
1338@end smallexample
1339
5724da63 1340To aid this dialog, when input is from stdin, errors send their
11de78ff 1341messages to stderr and execution continues, even if @code{IOSTAT} is set.
670026fb 1342
11de78ff
BM
1343@code{PRINT} namelist is permitted. This causes an error if
1344@option{-std=f95} is used.
21d7d31f
PT
1345@smallexample
1346PROGRAM test_print
1347 REAL, dimension (4) :: x = (/1.0, 2.0, 3.0, 4.0/)
1348 NAMELIST /mynml/ x
1349 PRINT mynml
1350END PROGRAM test_print
1351@end smallexample
1352
11de78ff
BM
1353Expanded namelist reads are permitted. This causes an error if
1354@option{-std=f95} is used. In the following example, the first element
1355of the array will be given the value 0.00 and the two succeeding
1356elements will be given the values 1.00 and 2.00.
c9f4aa97
JD
1357@smallexample
1358&MYNML
1359 X(1,1) = 0.00 , 1.00 , 2.00
1360/
1361@end smallexample
1362
11de78ff 1363@node X format descriptor without count field
49309826 1364@subsection @code{X} format descriptor without count field
ec8a1940 1365
11de78ff
BM
1366To support legacy codes, GNU Fortran permits the count field of the
1367@code{X} edit descriptor in @code{FORMAT} statements to be omitted.
1368When omitted, the count is implicitly assumed to be one.
ec8a1940
RS
1369
1370@smallexample
1371 PRINT 10, 2, 3
137210 FORMAT (I1, X, I1)
1373@end smallexample
1374
1375@node Commas in FORMAT specifications
49309826 1376@subsection Commas in @code{FORMAT} specifications
ec8a1940 1377
7fc15ba5 1378To support legacy codes, GNU Fortran allows the comma separator
ec8a1940 1379to be omitted immediately before and after character string edit
11de78ff 1380descriptors in @code{FORMAT} statements.
ec8a1940
RS
1381
1382@smallexample
1383 PRINT 10, 2, 3
138410 FORMAT ('FOO='I1' BAR='I2)
1385@end smallexample
1386
c9f4aa97
JD
1387
1388@node Missing period in FORMAT specifications
49309826 1389@subsection Missing period in @code{FORMAT} specifications
c9f4aa97 1390
7fc15ba5 1391To support legacy codes, GNU Fortran allows missing periods in format
11de78ff
BM
1392specifications if and only if @option{-std=legacy} is given on the
1393command line. This is considered non-conforming code and is
1394discouraged.
c9f4aa97
JD
1395
1396@smallexample
1397 REAL :: value
1398 READ(*,10) value
139910 FORMAT ('F4')
1400@end smallexample
1401
ec8a1940 1402@node I/O item lists
49309826 1403@subsection I/O item lists
ec8a1940
RS
1404@cindex I/O item lists
1405
7fc15ba5 1406To support legacy codes, GNU Fortran allows the input item list
11de78ff
BM
1407of the @code{READ} statement, and the output item lists of the
1408@code{WRITE} and @code{PRINT} statements, to start with a comma.
ec8a1940 1409
5a17346a
SK
1410@node @code{Q} exponent-letter
1411@subsection @code{Q} exponent-letter
1412@cindex @code{Q} exponent-letter
1413
1414GNU Fortran accepts real literal constants with an exponent-letter
1415of @code{Q}, for example, @code{1.23Q45}. The constant is interpreted
1416as a @code{REAL(16)} entity on targets that suppports this type. If
1417the target does not support @code{REAL(16)} but has a @code{REAL(10)}
1418type, then the real-literal-constant will be interpreted as a
1419@code{REAL(10)} entity. In the absence of @code{REAL(16)} and
1420@code{REAL(10)}, an error will occur.
1421
11de78ff 1422@node BOZ literal constants
49309826 1423@subsection BOZ literal constants
11de78ff 1424@cindex BOZ literal constants
ec8a1940 1425
00a4618b 1426Besides decimal constants, Fortran also supports binary (@code{b}),
3994c6b1 1427octal (@code{o}) and hexadecimal (@code{z}) integer constants. The
00a4618b
TB
1428syntax is: @samp{prefix quote digits quote}, were the prefix is
1429either @code{b}, @code{o} or @code{z}, quote is either @code{'} or
1430@code{"} and the digits are for binary @code{0} or @code{1}, for
1431octal between @code{0} and @code{7}, and for hexadecimal between
3994c6b1 1432@code{0} and @code{F}. (Example: @code{b'01011101'}.)
00a4618b
TB
1433
1434Up to Fortran 95, BOZ literals were only allowed to initialize
3994c6b1 1435integer variables in DATA statements. Since Fortran 2003 BOZ literals
00a4618b
TB
1436are also allowed as argument of @code{REAL}, @code{DBLE}, @code{INT}
1437and @code{CMPLX}; the result is the same as if the integer BOZ
1438literal had been converted by @code{TRANSFER} to, respectively,
1439@code{real}, @code{double precision}, @code{integer} or @code{complex}.
7f59aaba
TB
1440As GNU Fortran extension the intrinsic procedures @code{FLOAT},
1441@code{DFLOAT}, @code{COMPLEX} and @code{DCMPLX} are treated alike.
00a4618b 1442
11de78ff 1443As an extension, GNU Fortran allows hexadecimal BOZ literal constants to
00a4618b 1444be specified using the @code{X} prefix, in addition to the standard
3994c6b1 1445@code{Z} prefix. The BOZ literal can also be specified by adding a
00a4618b
TB
1446suffix to the string, for example, @code{Z'ABC'} and @code{'ABC'Z} are
1447equivalent.
1448
1449Furthermore, GNU Fortran allows using BOZ literal constants outside
1450DATA statements and the four intrinsic functions allowed by Fortran 2003.
1451In DATA statements, in direct assignments, where the right-hand side
1452only contains a BOZ literal constant, and for old-style initializers of
1453the form @code{integer i /o'0173'/}, the constant is transferred
c7abc45c 1454as if @code{TRANSFER} had been used; for @code{COMPLEX} numbers, only
3994c6b1 1455the real part is initialized unless @code{CMPLX} is used. In all other
c7abc45c 1456cases, the BOZ literal constant is converted to an @code{INTEGER} value with
00a4618b
TB
1457the largest decimal representation. This value is then converted
1458numerically to the type and kind of the variable in question.
9e0667cd 1459(For instance, @code{real :: r = b'0000001' + 1} initializes @code{r}
00a4618b
TB
1460with @code{2.0}.) As different compilers implement the extension
1461differently, one should be careful when doing bitwise initialization
1462of non-integer variables.
1463
1464Note that initializing an @code{INTEGER} variable with a statement such
1465as @code{DATA i/Z'FFFFFFFF'/} will give an integer overflow error rather
11de78ff
BM
1466than the desired result of @math{-1} when @code{i} is a 32-bit integer
1467on a system that supports 64-bit integers. The @samp{-fno-range-check}
1468option can be used as a workaround for legacy code that initializes
1469integers in this manner.
ec8a1940
RS
1470
1471@node Real array indices
49309826 1472@subsection Real array indices
e739dfac 1473@cindex array, indices of type real
ec8a1940 1474
11de78ff
BM
1475As an extension, GNU Fortran allows the use of @code{REAL} expressions
1476or variables as array indices.
ec8a1940
RS
1477
1478@node Unary operators
49309826 1479@subsection Unary operators
e739dfac 1480@cindex operators, unary
ec8a1940 1481
11de78ff
BM
1482As an extension, GNU Fortran allows unary plus and unary minus operators
1483to appear as the second operand of binary arithmetic operators without
1484the need for parenthesis.
ec8a1940
RS
1485
1486@smallexample
1487 X = Y * -Z
1488@end smallexample
1489
11de78ff 1490@node Implicitly convert LOGICAL and INTEGER values
49309826 1491@subsection Implicitly convert @code{LOGICAL} and @code{INTEGER} values
e739dfac
DF
1492@cindex conversion, to integer
1493@cindex conversion, to logical
c3a29423 1494
11de78ff
BM
1495As an extension for backwards compatibility with other compilers, GNU
1496Fortran allows the implicit conversion of @code{LOGICAL} values to
1497@code{INTEGER} values and vice versa. When converting from a
1498@code{LOGICAL} to an @code{INTEGER}, @code{.FALSE.} is interpreted as
1499zero, and @code{.TRUE.} is interpreted as one. When converting from
1500@code{INTEGER} to @code{LOGICAL}, the value zero is interpreted as
49de9e73 1501@code{.FALSE.} and any nonzero value is interpreted as @code{.TRUE.}.
c3a29423
RS
1502
1503@smallexample
a8eabe74
DF
1504 LOGICAL :: l
1505 l = 1
1506@end smallexample
1507@smallexample
1508 INTEGER :: i
1509 i = .TRUE.
c3a29423
RS
1510@end smallexample
1511
a8eabe74
DF
1512However, there is no implicit conversion of @code{INTEGER} values in
1513@code{if}-statements, nor of @code{LOGICAL} or @code{INTEGER} values
1514in I/O operations.
69130754 1515
bc192c77 1516@node Hollerith constants support
49309826 1517@subsection Hollerith constants support
bc192c77
FW
1518@cindex Hollerith constants
1519
11de78ff
BM
1520GNU Fortran supports Hollerith constants in assignments, function
1521arguments, and @code{DATA} and @code{ASSIGN} statements. A Hollerith
0979f01d 1522constant is written as a string of characters preceded by an integer
11de78ff
BM
1523constant indicating the character count, and the letter @code{H} or
1524@code{h}, and stored in bytewise fashion in a numeric (@code{INTEGER},
1525@code{REAL}, or @code{complex}) or @code{LOGICAL} variable. The
1526constant will be padded or truncated to fit the size of the variable in
1527which it is stored.
bc192c77 1528
11de78ff 1529Examples of valid uses of Hollerith constants:
bc192c77 1530@smallexample
11de78ff
BM
1531 complex*16 x(2)
1532 data x /16Habcdefghijklmnop, 16Hqrstuvwxyz012345/
1533 x(1) = 16HABCDEFGHIJKLMNOP
1534 call foo (4h abc)
bc192c77
FW
1535@end smallexample
1536
1537Invalid Hollerith constants examples:
1538@smallexample
11de78ff
BM
1539 integer*4 a
1540 a = 8H12345678 ! Valid, but the Hollerith constant will be truncated.
1541 a = 0H ! At least one character is needed.
bc192c77
FW
1542@end smallexample
1543
11de78ff
BM
1544In general, Hollerith constants were used to provide a rudimentary
1545facility for handling character strings in early Fortran compilers,
1546prior to the introduction of @code{CHARACTER} variables in Fortran 77;
1547in those cases, the standard-compliant equivalent is to convert the
1548program to use proper character strings. On occasion, there may be a
1549case where the intent is specifically to initialize a numeric variable
1550with a given byte sequence. In these cases, the same result can be
1551obtained by using the @code{TRANSFER} statement, as in this example.
1552@smallexample
1553 INTEGER(KIND=4) :: a
1554 a = TRANSFER ("abcd", a) ! equivalent to: a = 4Habcd
1555@end smallexample
1556
1557
83d890b9 1558@node Cray pointers
49309826
FXC
1559@subsection Cray pointers
1560@cindex pointer, Cray
83d890b9
AL
1561
1562Cray pointers are part of a non-standard extension that provides a
1563C-like pointer in Fortran. This is accomplished through a pair of
1564variables: an integer "pointer" that holds a memory address, and a
1565"pointee" that is used to dereference the pointer.
1566
1567Pointer/pointee pairs are declared in statements of the form:
1568@smallexample
1569 pointer ( <pointer> , <pointee> )
1570@end smallexample
1571or,
1572@smallexample
1573 pointer ( <pointer1> , <pointee1> ), ( <pointer2> , <pointee2> ), ...
1574@end smallexample
1575The pointer is an integer that is intended to hold a memory address.
1576The pointee may be an array or scalar. A pointee can be an assumed
8556236b 1577size array---that is, the last dimension may be left unspecified by
11de78ff
BM
1578using a @code{*} in place of a value---but a pointee cannot be an
1579assumed shape array. No space is allocated for the pointee.
83d890b9
AL
1580
1581The pointee may have its type declared before or after the pointer
1582statement, and its array specification (if any) may be declared
1583before, during, or after the pointer statement. The pointer may be
1584declared as an integer prior to the pointer statement. However, some
1585machines have default integer sizes that are different than the size
1586of a pointer, and so the following code is not portable:
1587@smallexample
1588 integer ipt
1589 pointer (ipt, iarr)
1590@end smallexample
1591If a pointer is declared with a kind that is too small, the compiler
1592will issue a warning; the resulting binary will probably not work
1593correctly, because the memory addresses stored in the pointers may be
1594truncated. It is safer to omit the first line of the above example;
1595if explicit declaration of ipt's type is omitted, then the compiler
1596will ensure that ipt is an integer variable large enough to hold a
1597pointer.
1598
1599Pointer arithmetic is valid with Cray pointers, but it is not the same
1600as C pointer arithmetic. Cray pointers are just ordinary integers, so
1601the user is responsible for determining how many bytes to add to a
1602pointer in order to increment it. Consider the following example:
1603@smallexample
1604 real target(10)
1605 real pointee(10)
1606 pointer (ipt, pointee)
1607 ipt = loc (target)
1608 ipt = ipt + 1
1609@end smallexample
11de78ff
BM
1610The last statement does not set @code{ipt} to the address of
1611@code{target(1)}, as it would in C pointer arithmetic. Adding @code{1}
1612to @code{ipt} just adds one byte to the address stored in @code{ipt}.
83d890b9
AL
1613
1614Any expression involving the pointee will be translated to use the
b122dc6a 1615value stored in the pointer as the base address.
83d890b9
AL
1616
1617To get the address of elements, this extension provides an intrinsic
11de78ff
BM
1618function @code{LOC()}. The @code{LOC()} function is equivalent to the
1619@code{&} operator in C, except the address is cast to an integer type:
83d890b9
AL
1620@smallexample
1621 real ar(10)
1622 pointer(ipt, arpte(10))
1623 real arpte
1624 ipt = loc(ar) ! Makes arpte is an alias for ar
1625 arpte(1) = 1.0 ! Sets ar(1) to 1.0
1626@end smallexample
3397327c
BM
1627The pointer can also be set by a call to the @code{MALLOC} intrinsic
1628(see @ref{MALLOC}).
1629
83d890b9
AL
1630Cray pointees often are used to alias an existing variable. For
1631example:
1632@smallexample
1633 integer target(10)
1634 integer iarr(10)
1635 pointer (ipt, iarr)
1636 ipt = loc(target)
1637@end smallexample
11de78ff 1638As long as @code{ipt} remains unchanged, @code{iarr} is now an alias for
3994c6b1 1639@code{target}. The optimizer, however, will not detect this aliasing, so
11de78ff
BM
1640it is unsafe to use @code{iarr} and @code{target} simultaneously. Using
1641a pointee in any way that violates the Fortran aliasing rules or
3994c6b1 1642assumptions is illegal. It is the user's responsibility to avoid doing
11de78ff
BM
1643this; the compiler works under the assumption that no such aliasing
1644occurs.
1645
1646Cray pointers will work correctly when there is no aliasing (i.e., when
1647they are used to access a dynamically allocated block of memory), and
1648also in any routine where a pointee is used, but any variable with which
1649it shares storage is not used. Code that violates these rules may not
1650run as the user intends. This is not a bug in the optimizer; any code
1651that violates the aliasing rules is illegal. (Note that this is not
1652unique to GNU Fortran; any Fortran compiler that supports Cray pointers
1653will ``incorrectly'' optimize code with illegal aliasing.)
1654
1655There are a number of restrictions on the attributes that can be applied
1656to Cray pointers and pointees. Pointees may not have the
1657@code{ALLOCATABLE}, @code{INTENT}, @code{OPTIONAL}, @code{DUMMY},
3994c6b1 1658@code{TARGET}, @code{INTRINSIC}, or @code{POINTER} attributes. Pointers
11de78ff 1659may not have the @code{DIMENSION}, @code{POINTER}, @code{TARGET},
f14b9067 1660@code{ALLOCATABLE}, @code{EXTERNAL}, or @code{INTRINSIC} attributes, nor
3994c6b1 1661may they be function results. Pointees may not occur in more than one
f14b9067
FXC
1662pointer statement. A pointee cannot be a pointer. Pointees cannot occur
1663in equivalence, common, or data statements.
83d890b9 1664
11de78ff
BM
1665A Cray pointer may also point to a function or a subroutine. For
1666example, the following excerpt is valid:
7074ea72
AL
1667@smallexample
1668 implicit none
1669 external sub
1670 pointer (subptr,subpte)
1671 external subpte
1672 subptr = loc(sub)
1673 call subpte()
1674 [...]
1675 subroutine sub
1676 [...]
1677 end subroutine sub
1678@end smallexample
1679
83d890b9
AL
1680A pointer may be modified during the course of a program, and this
1681will change the location to which the pointee refers. However, when
1682pointees are passed as arguments, they are treated as ordinary
1683variables in the invoked function. Subsequent changes to the pointer
1684will not change the base address of the array that was passed.
1685
181c9f4a 1686@node CONVERT specifier
49309826
FXC
1687@subsection @code{CONVERT} specifier
1688@cindex @code{CONVERT} specifier
181c9f4a 1689
7fc15ba5 1690GNU Fortran allows the conversion of unformatted data between little-
181c9f4a 1691and big-endian representation to facilitate moving of data
eaa90d25 1692between different systems. The conversion can be indicated with
181c9f4a 1693the @code{CONVERT} specifier on the @code{OPEN} statement.
eaa90d25
TK
1694@xref{GFORTRAN_CONVERT_UNIT}, for an alternative way of specifying
1695the data format via an environment variable.
181c9f4a
TK
1696
1697Valid values for @code{CONVERT} are:
1698@itemize @w{}
1699@item @code{CONVERT='NATIVE'} Use the native format. This is the default.
1700@item @code{CONVERT='SWAP'} Swap between little- and big-endian.
eaa90d25 1701@item @code{CONVERT='LITTLE_ENDIAN'} Use the little-endian representation
6ccde948 1702for unformatted files.
eaa90d25 1703@item @code{CONVERT='BIG_ENDIAN'} Use the big-endian representation for
6ccde948 1704unformatted files.
181c9f4a
TK
1705@end itemize
1706
1707Using the option could look like this:
1708@smallexample
1709 open(file='big.dat',form='unformatted',access='sequential', &
1710 convert='big_endian')
1711@end smallexample
1712
1713The value of the conversion can be queried by using
1714@code{INQUIRE(CONVERT=ch)}. The values returned are
1715@code{'BIG_ENDIAN'} and @code{'LITTLE_ENDIAN'}.
1716
1717@code{CONVERT} works between big- and little-endian for
1718@code{INTEGER} values of all supported kinds and for @code{REAL}
8a6c4339 1719on IEEE systems of kinds 4 and 8. Conversion between different
181c9f4a 1720``extended double'' types on different architectures such as
7fc15ba5 1721m68k and x86_64, which GNU Fortran
11de78ff
BM
1722supports as @code{REAL(KIND=10)} and @code{REAL(KIND=16)}, will
1723probably not work.
181c9f4a 1724
eaa90d25
TK
1725@emph{Note that the values specified via the GFORTRAN_CONVERT_UNIT
1726environment variable will override the CONVERT specifier in the
1727open statement}. This is to give control over data formats to
11de78ff 1728users who do not have the source code of their program available.
eaa90d25
TK
1729
1730Using anything but the native representation for unformatted data
1731carries a significant speed overhead. If speed in this area matters
1732to you, it is best if you use this only for data that needs to be
1733portable.
1734
6c7a4dfd 1735@node OpenMP
49309826 1736@subsection OpenMP
6c7a4dfd
JJ
1737@cindex OpenMP
1738
3b303683
DF
1739OpenMP (Open Multi-Processing) is an application programming
1740interface (API) that supports multi-platform shared memory
1741multiprocessing programming in C/C++ and Fortran on many
1742architectures, including Unix and Microsoft Windows platforms.
1743It consists of a set of compiler directives, library routines,
1744and environment variables that influence run-time behavior.
1745
1746GNU Fortran strives to be compatible to the
9e0667cd
TB
1747@uref{http://www.openmp.org/mp-documents/spec30.pdf,
1748OpenMP Application Program Interface v3.0}.
3b303683
DF
1749
1750To enable the processing of the OpenMP directive @code{!$omp} in
1751free-form source code; the @code{c$omp}, @code{*$omp} and @code{!$omp}
1752directives in fixed form; the @code{!$} conditional compilation sentinels
1753in free form; and the @code{c$}, @code{*$} and @code{!$} sentinels
1754in fixed form, @command{gfortran} needs to be invoked with the
3994c6b1 1755@option{-fopenmp}. This also arranges for automatic linking of the
3b303683
DF
1756GNU OpenMP runtime library @ref{Top,,libgomp,libgomp,GNU OpenMP
1757runtime library}.
1758
1759The OpenMP Fortran runtime library routines are provided both in a
1760form of a Fortran 90 module named @code{omp_lib} and in a form of
1761a Fortran @code{include} file named @file{omp_lib.h}.
1762
1763An example of a parallelized loop taken from Appendix A.1 of
1764the OpenMP Application Program Interface v2.5:
1765@smallexample
1766SUBROUTINE A1(N, A, B)
1767 INTEGER I, N
1768 REAL B(N), A(N)
1769!$OMP PARALLEL DO !I is private by default
1770 DO I=2,N
1771 B(I) = (A(I) + A(I-1)) / 2.0
1772 ENDDO
1773!$OMP END PARALLEL DO
1774END SUBROUTINE A1
1775@end smallexample
1776
1777Please note:
1778@itemize
1779@item
24219f12 1780@option{-fopenmp} implies @option{-frecursive}, i.e., all local arrays
3994c6b1 1781will be allocated on the stack. When porting existing code to OpenMP,
3b303683
DF
1782this may lead to surprising results, especially to segmentation faults
1783if the stacksize is limited.
1784
1785@item
9e0667cd 1786On glibc-based systems, OpenMP enabled applications cannot be statically
3994c6b1 1787linked due to limitations of the underlying pthreads-implementation. It
3b303683
DF
1788might be possible to get a working solution if
1789@command{-Wl,--whole-archive -lpthread -Wl,--no-whole-archive} is added
3994c6b1 1790to the command line. However, this is not supported by @command{gcc} and
3b303683
DF
1791thus not recommended.
1792@end itemize
6c7a4dfd 1793
d60e76db 1794@node Argument list functions
49309826 1795@subsection Argument list functions @code{%VAL}, @code{%REF} and @code{%LOC}
e739dfac 1796@cindex argument list functions
49309826
FXC
1797@cindex @code{%VAL}
1798@cindex @code{%REF}
1799@cindex @code{%LOC}
d60e76db
PT
1800
1801GNU Fortran supports argument list functions @code{%VAL}, @code{%REF}
1802and @code{%LOC} statements, for backward compatibility with g77.
1803It is recommended that these should be used only for code that is
1804accessing facilities outside of GNU Fortran, such as operating system
3994c6b1 1805or windowing facilities. It is best to constrain such uses to isolated
d60e76db 1806portions of a program--portions that deal specifically and exclusively
3994c6b1 1807with low-level, system-dependent facilities. Such portions might well
d60e76db
PT
1808provide a portable interface for use by the program as a whole, but are
1809themselves not portable, and should be thoroughly tested each time they
1810are rebuilt using a new compiler or version of a compiler.
1811
1812@code{%VAL} passes a scalar argument by value, @code{%REF} passes it by
1813reference and @code{%LOC} passes its memory location. Since gfortran
1814already passes scalar arguments by reference, @code{%REF} is in effect
9e0667cd 1815a do-nothing. @code{%LOC} has the same effect as a Fortran pointer.
d60e76db
PT
1816
1817An example of passing an argument by value to a C subroutine foo.:
1818@smallexample
1819C
1820C prototype void foo_ (float x);
1821C
1822 external foo
1823 real*4 x
1824 x = 3.14159
1825 call foo (%VAL (x))
1826 end
1827@end smallexample
1828
1829For details refer to the g77 manual
ab940b73 1830@uref{http://gcc.gnu.org/@/onlinedocs/@/gcc-3.4.6/@/g77/@/index.html#Top}.
d60e76db 1831
9e0667cd
TB
1832Also, @code{c_by_val.f} and its partner @code{c_by_val.c} of the
1833GNU Fortran testsuite are worth a look.
49309826
FXC
1834
1835
1836@node Extensions not implemented in GNU Fortran
1837@section Extensions not implemented in GNU Fortran
1838@cindex extensions, not implemented
1839
1840The long history of the Fortran language, its wide use and broad
1841userbase, the large number of different compiler vendors and the lack of
1842some features crucial to users in the first standards have lead to the
aad9c4f4 1843existence of a number of important extensions to the language. While
49309826 1844some of the most useful or popular extensions are supported by the GNU
aad9c4f4 1845Fortran compiler, not all existing extensions are supported. This section
49309826
FXC
1846aims at listing these extensions and offering advice on how best make
1847code that uses them running with the GNU Fortran compiler.
1848
1849@c More can be found here:
1850@c -- http://gcc.gnu.org/onlinedocs/gcc-3.4.6/g77/Missing-Features.html
9e0667cd 1851@c -- the list of Fortran and libgfortran bugs closed as WONTFIX:
49309826
FXC
1852@c http://tinyurl.com/2u4h5y
1853
1854@menu
1855* STRUCTURE and RECORD::
1856@c * UNION and MAP::
1857* ENCODE and DECODE statements::
2995ed9a 1858* Variable FORMAT expressions::
49309826
FXC
1859@c * Q edit descriptor::
1860@c * AUTOMATIC statement::
1861@c * TYPE and ACCEPT I/O Statements::
1862@c * .XOR. operator::
1863@c * CARRIAGECONTROL, DEFAULTFILE, DISPOSE and RECORDTYPE I/O specifiers::
f14b9067
FXC
1864@c * Omitted arguments in procedure call::
1865* Alternate complex function syntax::
49309826
FXC
1866@end menu
1867
1868
1869@node STRUCTURE and RECORD
1870@subsection @code{STRUCTURE} and @code{RECORD}
1871@cindex @code{STRUCTURE}
1872@cindex @code{RECORD}
1873
1874Structures are user-defined aggregate data types; this functionality was
1875standardized in Fortran 90 with an different syntax, under the name of
3994c6b1 1876``derived types''. Here is an example of code using the non portable
49309826
FXC
1877structure syntax:
1878
1879@example
1880! Declaring a structure named ``item'' and containing three fields:
1881! an integer ID, an description string and a floating-point price.
1882STRUCTURE /item/
1883 INTEGER id
1884 CHARACTER(LEN=200) description
1885 REAL price
1886END STRUCTURE
1887
1888! Define two variables, an single record of type ``item''
1889! named ``pear'', and an array of items named ``store_catalog''
1890RECORD /item/ pear, store_catalog(100)
1891
1892! We can directly access the fields of both variables
1893pear.id = 92316
1894pear.description = "juicy D'Anjou pear"
1895pear.price = 0.15
1896store_catalog(7).id = 7831
1897store_catalog(7).description = "milk bottle"
1898store_catalog(7).price = 1.2
1899
aad9c4f4 1900! We can also manipulate the whole structure
49309826
FXC
1901store_catalog(12) = pear
1902print *, store_catalog(12)
1903@end example
1904
1905@noindent
1906This code can easily be rewritten in the Fortran 90 syntax as following:
1907
1908@example
1909! ``STRUCTURE /name/ ... END STRUCTURE'' becomes
1910! ``TYPE name ... END TYPE''
1911TYPE item
1912 INTEGER id
1913 CHARACTER(LEN=200) description
1914 REAL price
1915END TYPE
1916
1917! ``RECORD /name/ variable'' becomes ``TYPE(name) variable''
1918TYPE(item) pear, store_catalog(100)
1919
1920! Instead of using a dot (.) to access fields of a record, the
1921! standard syntax uses a percent sign (%)
1922pear%id = 92316
1923pear%description = "juicy D'Anjou pear"
1924pear%price = 0.15
1925store_catalog(7)%id = 7831
1926store_catalog(7)%description = "milk bottle"
1927store_catalog(7)%price = 1.2
1928
1929! Assignments of a whole variable don't change
1930store_catalog(12) = pear
1931print *, store_catalog(12)
1932@end example
1933
1934
1935@c @node UNION and MAP
1936@c @subsection @code{UNION} and @code{MAP}
1937@c @cindex @code{UNION}
1938@c @cindex @code{MAP}
1939@c
1940@c For help writing this one, see
1941@c http://www.eng.umd.edu/~nsw/ench250/fortran1.htm#UNION and
1942@c http://www.tacc.utexas.edu/services/userguides/pgi/pgiws_ug/pgi32u06.htm
1943
1944
1945@node ENCODE and DECODE statements
1946@subsection @code{ENCODE} and @code{DECODE} statements
1947@cindex @code{ENCODE}
1948@cindex @code{DECODE}
1949
1950GNU Fortran doesn't support the @code{ENCODE} and @code{DECODE}
1951statements. These statements are best replaced by @code{READ} and
1952@code{WRITE} statements involving internal files (@code{CHARACTER}
1953variables and arrays), which have been part of the Fortran standard since
3994c6b1 1954Fortran 77. For example, replace a code fragment like
49309826
FXC
1955
1956@smallexample
1957 INTEGER*1 LINE(80)
1958 REAL A, B, C
1959c ... Code that sets LINE
1960 DECODE (80, 9000, LINE) A, B, C
1961 9000 FORMAT (1X, 3(F10.5))
1962@end smallexample
1963
1964@noindent
1965with the following:
1966
1967@smallexample
1968 CHARACTER(LEN=80) LINE
1969 REAL A, B, C
1970c ... Code that sets LINE
1971 READ (UNIT=LINE, FMT=9000) A, B, C
1972 9000 FORMAT (1X, 3(F10.5))
1973@end smallexample
1974
1975Similarly, replace a code fragment like
1976
1977@smallexample
1978 INTEGER*1 LINE(80)
1979 REAL A, B, C
1980c ... Code that sets A, B and C
1981 ENCODE (80, 9000, LINE) A, B, C
1982 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
1983@end smallexample
1984
1985@noindent
1986with the following:
1987
1988@smallexample
3fe9e1ff 1989 CHARACTER(LEN=80) LINE
49309826
FXC
1990 REAL A, B, C
1991c ... Code that sets A, B and C
1992 WRITE (UNIT=LINE, FMT=9000) A, B, C
1993 9000 FORMAT (1X, 'OUTPUT IS ', 3(F10.5))
1994@end smallexample
1995
1996
2995ed9a
FXC
1997@node Variable FORMAT expressions
1998@subsection Variable @code{FORMAT} expressions
1999@cindex @code{FORMAT}
2000
2001A variable @code{FORMAT} expression is format statement which includes
3994c6b1
TB
2002angle brackets enclosing a Fortran expression: @code{FORMAT(I<N>)}. GNU
2003Fortran does not support this legacy extension. The effect of variable
2995ed9a 2004format expressions can be reproduced by using the more powerful (and
3994c6b1 2005standard) combination of internal output and string formats. For example,
2995ed9a
FXC
2006replace a code fragment like this:
2007
2008@smallexample
2009 WRITE(6,20) INT1
2010 20 FORMAT(I<N+1>)
2011@end smallexample
2012
2013@noindent
2014with the following:
2015
2016@smallexample
2017c Variable declaration
87187539 2018 CHARACTER(LEN=20) FMT
2995ed9a
FXC
2019c
2020c Other code here...
2021c
2022 WRITE(FMT,'("(I", I0, ")")') N+1
87187539 2023 WRITE(6,FMT) INT1
2995ed9a
FXC
2024@end smallexample
2025
2026@noindent
2027or with:
2028
2029@smallexample
2030c Variable declaration
2031 CHARACTER(LEN=20) FMT
2032c
2033c Other code here...
2034c
2035 WRITE(FMT,*) N+1
2036 WRITE(6,"(I" // ADJUSTL(FMT) // ")") INT1
2037@end smallexample
2038
2039
f14b9067
FXC
2040@node Alternate complex function syntax
2041@subsection Alternate complex function syntax
2042@cindex Complex function
2043
2044Some Fortran compilers, including @command{g77}, let the user declare
2045complex functions with the syntax @code{COMPLEX FUNCTION name*16()}, as
3994c6b1
TB
2046well as @code{COMPLEX*16 FUNCTION name()}. Both are non-standard, legacy
2047extensions. @command{gfortran} accepts the latter form, which is more
f14b9067
FXC
2048common, but not the former.
2049
2050
2051
9e0667cd
TB
2052@c ---------------------------------------------------------------------
2053@c Mixed-Language Programming
2054@c ---------------------------------------------------------------------
2055
2056@node Mixed-Language Programming
2057@chapter Mixed-Language Programming
2058@cindex Interoperability
2059@cindex Mixed-language programming
2060
2061@menu
2062* Interoperability with C::
08a6b8e0 2063* GNU Fortran Compiler Directives::
9e0667cd
TB
2064* Non-Fortran Main Program::
2065@end menu
2066
2067This chapter is about mixed-language interoperability, but also applies
3994c6b1 2068if one links Fortran code compiled by different compilers. In most cases,
9e0667cd
TB
2069use of the C Binding features of the Fortran 2003 standard is sufficient,
2070and their use is highly recommended.
2071
2072
2073@node Interoperability with C
2074@section Interoperability with C
2075
2076@menu
2077* Intrinsic Types::
9e0667cd
TB
2078* Derived Types and struct::
2079* Interoperable Global Variables::
2080* Interoperable Subroutines and Functions::
da4dbc25
DK
2081* Working with Pointers::
2082* Further Interoperability of Fortran with C::
9e0667cd
TB
2083@end menu
2084
2085Since Fortran 2003 (ISO/IEC 1539-1:2004(E)) there is a
2086standardized way to generate procedure and derived-type
2087declarations and global variables which are interoperable with C
3994c6b1 2088(ISO/IEC 9899:1999). The @code{bind(C)} attribute has been added
9e0667cd 2089to inform the compiler that a symbol shall be interoperable with C;
3994c6b1
TB
2090also, some constraints are added. Note, however, that not
2091all C features have a Fortran equivalent or vice versa. For instance,
9e0667cd
TB
2092neither C's unsigned integers nor C's functions with variable number
2093of arguments have an equivalent in Fortran.
2094
c7d9f803 2095Note that array dimensions are reversely ordered in C and that arrays in
96c49324 2096C always start with index 0 while in Fortran they start by default with
3994c6b1 20971. Thus, an array declaration @code{A(n,m)} in Fortran matches
96c49324 2098@code{A[m][n]} in C and accessing the element @code{A(i,j)} matches
3994c6b1 2099@code{A[j-1][i-1]}. The element following @code{A(i,j)} (C: @code{A[j-1][i-1]};
96c49324 2100assuming @math{i < n}) in memory is @code{A(i+1,j)} (C: @code{A[j-1][i]}).
9e0667cd
TB
2101
2102@node Intrinsic Types
2103@subsection Intrinsic Types
2104
2105In order to ensure that exactly the same variable type and kind is used
2106in C and Fortran, the named constants shall be used which are defined in the
3994c6b1 2107@code{ISO_C_BINDING} intrinsic module. That module contains named constants
9e0667cd 2108for kind parameters and character named constants for the escape sequences
3994c6b1 2109in C. For a list of the constants, see @ref{ISO_C_BINDING}.
9e0667cd
TB
2110
2111@node Derived Types and struct
2112@subsection Derived Types and struct
2113
2114For compatibility of derived types with @code{struct}, one needs to use
3994c6b1 2115the @code{BIND(C)} attribute in the type declaration. For instance, the
9e0667cd
TB
2116following type declaration
2117
2118@smallexample
2119 USE ISO_C_BINDING
2120 TYPE, BIND(C) :: myType
2121 INTEGER(C_INT) :: i1, i2
2122 INTEGER(C_SIGNED_CHAR) :: i3
2123 REAL(C_DOUBLE) :: d1
2124 COMPLEX(C_FLOAT_COMPLEX) :: c1
2125 CHARACTER(KIND=C_CHAR) :: str(5)
2126 END TYPE
2127@end smallexample
2128
2129matches the following @code{struct} declaration in C
2130
2131@smallexample
2132 struct @{
2133 int i1, i2;
2134 /* Note: "char" might be signed or unsigned. */
2135 signed char i3;
2136 double d1;
2137 float _Complex c1;
2138 char str[5];
2139 @} myType;
2140@end smallexample
2141
2142Derived types with the C binding attribute shall not have the @code{sequence}
2143attribute, type parameters, the @code{extends} attribute, nor type-bound
3994c6b1
TB
2144procedures. Every component must be of interoperable type and kind and may not
2145have the @code{pointer} or @code{allocatable} attribute. The names of the
9e0667cd
TB
2146variables are irrelevant for interoperability.
2147
2148As there exist no direct Fortran equivalents, neither unions nor structs
2149with bit field or variable-length array members are interoperable.
2150
2151@node Interoperable Global Variables
2152@subsection Interoperable Global Variables
2153
2154Variables can be made accessible from C using the C binding attribute,
3994c6b1 2155optionally together with specifying a binding name. Those variables
9e0667cd
TB
2156have to be declared in the declaration part of a @code{MODULE},
2157be of interoperable type, and have neither the @code{pointer} nor
2158the @code{allocatable} attribute.
2159
2160@smallexample
2161 MODULE m
2162 USE myType_module
2163 USE ISO_C_BINDING
2164 integer(C_INT), bind(C, name="_MyProject_flags") :: global_flag
2165 type(myType), bind(C) :: tp
2166 END MODULE
2167@end smallexample
2168
2169Here, @code{_MyProject_flags} is the case-sensitive name of the variable
2170as seen from C programs while @code{global_flag} is the case-insensitive
3994c6b1 2171name as seen from Fortran. If no binding name is specified, as for
9e0667cd
TB
2172@var{tp}, the C binding name is the (lowercase) Fortran binding name.
2173If a binding name is specified, only a single variable may be after the
3994c6b1 2174double colon. Note of warning: You cannot use a global variable to
9e0667cd 2175access @var{errno} of the C library as the C standard allows it to be
3994c6b1 2176a macro. Use the @code{IERRNO} intrinsic (GNU extension) instead.
9e0667cd
TB
2177
2178@node Interoperable Subroutines and Functions
2179@subsection Interoperable Subroutines and Functions
2180
2181Subroutines and functions have to have the @code{BIND(C)} attribute to
3994c6b1
TB
2182be compatible with C. The dummy argument declaration is relatively
2183straightforward. However, one needs to be careful because C uses
20460eb9 2184call-by-value by default while Fortran behaves usually similar to
3994c6b1
TB
2185call-by-reference. Furthermore, strings and pointers are handled
2186differently. Note that only explicit size and assumed-size arrays are
20460eb9 2187supported but not assumed-shape or allocatable arrays.
9e0667cd
TB
2188
2189To pass a variable by value, use the @code{VALUE} attribute.
2190Thus the following C prototype
2191
2192@smallexample
2193@code{int func(int i, int *j)}
2194@end smallexample
2195
2196matches the Fortran declaration
2197
2198@smallexample
dae5882f
TB
2199 integer(c_int) function func(i,j)
2200 use iso_c_binding, only: c_int
2201 integer(c_int), VALUE :: i
2202 integer(c_int) :: j
9e0667cd
TB
2203@end smallexample
2204
da4dbc25
DK
2205Note that pointer arguments also frequently need the @code{VALUE} attribute,
2206see @ref{Working with Pointers}.
9e0667cd 2207
3994c6b1 2208Strings are handled quite differently in C and Fortran. In C a string
9e0667cd
TB
2209is a @code{NUL}-terminated array of characters while in Fortran each string
2210has a length associated with it and is thus not terminated (by e.g.
3994c6b1 2211@code{NUL}). For example, if one wants to use the following C function,
9e0667cd
TB
2212
2213@smallexample
2214 #include <stdio.h>
2215 void print_C(char *string) /* equivalent: char string[] */
2216 @{
2217 printf("%s\n", string);
2218 @}
2219@end smallexample
2220
2221to print ``Hello World'' from Fortran, one can call it using
2222
2223@smallexample
2224 use iso_c_binding, only: C_CHAR, C_NULL_CHAR
2225 interface
2226 subroutine print_c(string) bind(C, name="print_C")
2227 use iso_c_binding, only: c_char
2228 character(kind=c_char) :: string(*)
2229 end subroutine print_c
2230 end interface
2231 call print_c(C_CHAR_"Hello World"//C_NULL_CHAR)
2232@end smallexample
2233
2234As the example shows, one needs to ensure that the
3994c6b1 2235string is @code{NUL} terminated. Additionally, the dummy argument
9e0667cd 2236@var{string} of @code{print_C} is a length-one assumed-size
3994c6b1 2237array; using @code{character(len=*)} is not allowed. The example
9e0667cd
TB
2238above uses @code{c_char_"Hello World"} to ensure the string
2239literal has the right type; typically the default character
2240kind and @code{c_char} are the same and thus @code{"Hello World"}
3994c6b1 2241is equivalent. However, the standard does not guarantee this.
9e0667cd 2242
da4dbc25 2243The use of strings is now further illustrated using the C library
9e0667cd
TB
2244function @code{strncpy}, whose prototype is
2245
2246@smallexample
2247 char *strncpy(char *restrict s1, const char *restrict s2, size_t n);
2248@end smallexample
2249
2250The function @code{strncpy} copies at most @var{n} characters from
3994c6b1 2251string @var{s2} to @var{s1} and returns @var{s1}. In the following
9e0667cd
TB
2252example, we ignore the return value:
2253
2254@smallexample
2255 use iso_c_binding
2256 implicit none
2257 character(len=30) :: str,str2
2258 interface
2259 ! Ignore the return value of strncpy -> subroutine
2260 ! "restrict" is always assumed if we do not pass a pointer
2261 subroutine strncpy(dest, src, n) bind(C)
2262 import
2263 character(kind=c_char), intent(out) :: dest(*)
2264 character(kind=c_char), intent(in) :: src(*)
2265 integer(c_size_t), value, intent(in) :: n
2266 end subroutine strncpy
2267 end interface
2268 str = repeat('X',30) ! Initialize whole string with 'X'
2269 call strncpy(str, c_char_"Hello World"//C_NULL_CHAR, &
2270 len(c_char_"Hello World",kind=c_size_t))
2271 print '(a)', str ! prints: "Hello WorldXXXXXXXXXXXXXXXXXXX"
2272 end
2273@end smallexample
2274
da4dbc25
DK
2275The intrinsic procedures are described in @ref{Intrinsic Procedures}.
2276
2277@node Working with Pointers
2278@subsection Working with Pointers
2279
2280C pointers are represented in Fortran via the special opaque derived type
3994c6b1 2281@code{type(c_ptr)} (with private components). Thus one needs to
9e0667cd
TB
2282use intrinsic conversion procedures to convert from or to C pointers.
2283For example,
2284
2285@smallexample
2286 use iso_c_binding
2287 type(c_ptr) :: cptr1, cptr2
2288 integer, target :: array(7), scalar
2289 integer, pointer :: pa(:), ps
2290 cptr1 = c_loc(array(1)) ! The programmer needs to ensure that the
2291 ! array is contiguous if required by the C
2292 ! procedure
2293 cptr2 = c_loc(scalar)
2294 call c_f_pointer(cptr2, ps)
2295 call c_f_pointer(cptr2, pa, shape=[7])
2296@end smallexample
2297
2298When converting C to Fortran arrays, the one-dimensional @code{SHAPE} argument
da4dbc25
DK
2299has to be passed.
2300
2301If a pointer is a dummy-argument of an interoperable procedure, it usually
2302has to be declared using the @code{VALUE} attribute. @code{void*}
2303matches @code{TYPE(C_PTR), VALUE}, while @code{TYPE(C_PTR)} alone
2304matches @code{void**}.
9e0667cd
TB
2305
2306Procedure pointers are handled analogously to pointers; the C type is
2307@code{TYPE(C_FUNPTR)} and the intrinsic conversion procedures are
da4dbc25 2308@code{C_F_PROCPOINTER} and @code{C_FUNLOC}.
9e0667cd 2309
da4dbc25
DK
2310Let's consider two examples of actually passing a procedure pointer from
2311C to Fortran and vice versa. Note that these examples are also very
2312similar to passing ordinary pointers between both languages.
2313First, consider this code in C:
2314
2315@smallexample
2316/* Procedure implemented in Fortran. */
2317void get_values (void (*)(double));
2318
2319/* Call-back routine we want called from Fortran. */
2320void
2321print_it (double x)
2322@{
2323 printf ("Number is %f.\n", x);
2324@}
2325
2326/* Call Fortran routine and pass call-back to it. */
2327void
2328foobar ()
2329@{
2330 get_values (&print_it);
2331@}
2332@end smallexample
2333
2334A matching implementation for @code{get_values} in Fortran, that correctly
2335receives the procedure pointer from C and is able to call it, is given
2336in the following @code{MODULE}:
2337
2338@smallexample
2339MODULE m
2340 IMPLICIT NONE
2341
2342 ! Define interface of call-back routine.
2343 ABSTRACT INTERFACE
2344 SUBROUTINE callback (x)
2345 USE, INTRINSIC :: ISO_C_BINDING
2346 REAL(KIND=C_DOUBLE), INTENT(IN), VALUE :: x
2347 END SUBROUTINE callback
2348 END INTERFACE
2349
2350CONTAINS
2351
2352 ! Define C-bound procedure.
2353 SUBROUTINE get_values (cproc) BIND(C)
2354 USE, INTRINSIC :: ISO_C_BINDING
2355 TYPE(C_FUNPTR), INTENT(IN), VALUE :: cproc
2356
2357 PROCEDURE(callback), POINTER :: proc
2358
2359 ! Convert C to Fortran procedure pointer.
2360 CALL C_F_PROCPOINTER (cproc, proc)
2361
2362 ! Call it.
2363 CALL proc (1.0_C_DOUBLE)
2364 CALL proc (-42.0_C_DOUBLE)
2365 CALL proc (18.12_C_DOUBLE)
2366 END SUBROUTINE get_values
2367
2368END MODULE m
2369@end smallexample
2370
2371Next, we want to call a C routine that expects a procedure pointer argument
2372and pass it a Fortran procedure (which clearly must be interoperable!).
2373Again, the C function may be:
2374
2375@smallexample
2376int
2377call_it (int (*func)(int), int arg)
2378@{
2379 return func (arg);
2380@}
2381@end smallexample
2382
2383It can be used as in the following Fortran code:
2384
2385@smallexample
2386MODULE m
2387 USE, INTRINSIC :: ISO_C_BINDING
2388 IMPLICIT NONE
2389
2390 ! Define interface of C function.
2391 INTERFACE
2392 INTEGER(KIND=C_INT) FUNCTION call_it (func, arg) BIND(C)
2393 USE, INTRINSIC :: ISO_C_BINDING
2394 TYPE(C_FUNPTR), INTENT(IN), VALUE :: func
2395 INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
2396 END FUNCTION call_it
2397 END INTERFACE
2398
2399CONTAINS
2400
2401 ! Define procedure passed to C function.
2402 ! It must be interoperable!
2403 INTEGER(KIND=C_INT) FUNCTION double_it (arg) BIND(C)
2404 INTEGER(KIND=C_INT), INTENT(IN), VALUE :: arg
2405 double_it = arg + arg
2406 END FUNCTION double_it
2407
2408 ! Call C function.
2409 SUBROUTINE foobar ()
2410 TYPE(C_FUNPTR) :: cproc
2411 INTEGER(KIND=C_INT) :: i
2412
2413 ! Get C procedure pointer.
2414 cproc = C_FUNLOC (double_it)
2415
2416 ! Use it.
2417 DO i = 1_C_INT, 10_C_INT
2418 PRINT *, call_it (cproc, i)
2419 END DO
2420 END SUBROUTINE foobar
2421
2422END MODULE m
2423@end smallexample
9e0667cd
TB
2424
2425@node Further Interoperability of Fortran with C
2426@subsection Further Interoperability of Fortran with C
2427
2428Assumed-shape and allocatable arrays are passed using an array descriptor
3994c6b1
TB
2429(dope vector). The internal structure of the array descriptor used
2430by GNU Fortran is not yet documented and will change. There will also be
9e0667cd 2431a Technical Report (TR 29113) which standardizes an interoperable
3994c6b1 2432array descriptor. Until then, you can use the Chasm Language
9e0667cd
TB
2433Interoperability Tools, @url{http://chasm-interop.sourceforge.net/},
2434which provide an interface to GNU Fortran's array descriptor.
2435
2436The technical report 29113 will presumably also include support for
2437C-interoperable @code{OPTIONAL} and for assumed-rank and assumed-type
3994c6b1 2438dummy arguments. However, the TR has neither been approved nor implemented
9e0667cd
TB
2439in GNU Fortran; therefore, these features are not yet available.
2440
08a6b8e0
TB
2441
2442
2443@node GNU Fortran Compiler Directives
2444@section GNU Fortran Compiler Directives
2445
2446The Fortran standard standard describes how a conforming program shall
3994c6b1 2447behave; however, the exact implementation is not standardized. In order
08a6b8e0
TB
2448to allow the user to choose specific implementation details, compiler
2449directives can be used to set attributes of variables and procedures
3994c6b1 2450which are not part of the standard. Whether a given attribute is
08a6b8e0
TB
2451supported and its exact effects depend on both the operating system and
2452on the processor; see
2453@ref{Top,,C Extensions,gcc,Using the GNU Compiler Collection (GCC)}
2454for details.
2455
2456For procedures and procedure pointers, the following attributes can
2457be used to change the calling convention:
2458
2459@itemize
2460@item @code{CDECL} -- standard C calling convention
2461@item @code{STDCALL} -- convention where the called procedure pops the stack
2462@item @code{FASTCALL} -- part of the arguments are passed via registers
2463instead using the stack
2464@end itemize
2465
2466Besides changing the calling convention, the attributes also influence
2467the decoration of the symbol name, e.g., by a leading underscore or by
3994c6b1 2468a trailing at-sign followed by the number of bytes on the stack. When
08a6b8e0
TB
2469assigning a procedure to a procedure pointer, both should use the same
2470calling convention.
2471
2472On some systems, procedures and global variables (module variables and
2473@code{COMMON} blocks) need special handling to be accessible when they
3994c6b1 2474are in a shared library. The following attributes are available:
08a6b8e0
TB
2475
2476@itemize
2477@item @code{DLLEXPORT} -- provide a global pointer to a pointer in the DLL
2478@item @code{DLLIMPORT} -- reference the function or variable using a global pointer
2479@end itemize
2480
2481The attributes are specified using the syntax
2482
2483@code{!GCC$ ATTRIBUTES} @var{attribute-list} @code{::} @var{variable-list}
2484
2485where in free-form source code only whitespace is allowed before @code{!GCC$}
2486and in fixed-form source code @code{!GCC$}, @code{cGCC$} or @code{*GCC$} shall
2487start in the first column.
2488
2489For procedures, the compiler directives shall be placed into the body
2490of the procedure; for variables and procedure pointers, they shall be in
2491the same declaration part as the variable or procedure pointer.
2492
2493
2494
9e0667cd
TB
2495@node Non-Fortran Main Program
2496@section Non-Fortran Main Program
2497
2498@menu
2499* _gfortran_set_args:: Save command-line arguments
2500* _gfortran_set_options:: Set library option flags
2501* _gfortran_set_convert:: Set endian conversion
2502* _gfortran_set_record_marker:: Set length of record markers
2503* _gfortran_set_max_subrecord_length:: Set subrecord length
96c49324 2504* _gfortran_set_fpe:: Set when a Floating Point Exception should be raised
9e0667cd
TB
2505@end menu
2506
2507Even if you are doing mixed-language programming, it is very
2508likely that you do not need to know or use the information in this
3994c6b1 2509section. Since it is about the internal structure of GNU Fortran,
9e0667cd
TB
2510it may also change in GCC minor releases.
2511
2512When you compile a @code{PROGRAM} with GNU Fortran, a function
2513with the name @code{main} (in the symbol table of the object file)
2514is generated, which initializes the libgfortran library and then
2515calls the actual program which uses the name @code{MAIN__}, for
3994c6b1 2516historic reasons. If you link GNU Fortran compiled procedures
9e0667cd
TB
2517to, e.g., a C or C++ program or to a Fortran program compiled by
2518a different compiler, the libgfortran library is not initialized
2519and thus a few intrinsic procedures do not work properly, e.g.
2520those for obtaining the command-line arguments.
2521
2522Therefore, if your @code{PROGRAM} is not compiled with
2523GNU Fortran and the GNU Fortran compiled procedures require
2524intrinsics relying on the library initialization, you need to
3994c6b1 2525initialize the library yourself. Using the default options,
9e0667cd 2526gfortran calls @code{_gfortran_set_args} and
3994c6b1 2527@code{_gfortran_set_options}. The initialization of the former
9e0667cd
TB
2528is needed if the called procedures access the command line
2529(and for backtracing); the latter sets some flags based on the
7daa7b1d 2530standard chosen or to disable backtracing. In typical programs,
9e0667cd
TB
2531it is not necessary to call any initialization function.
2532
2533If your @code{PROGRAM} is compiled with GNU Fortran, you shall
3994c6b1 2534not call any of the following functions. The libgfortran
9e0667cd
TB
2535initialization functions are shown in C syntax but using C
2536bindings they are also accessible from Fortran.
2537
2538
2539@node _gfortran_set_args
2540@subsection @code{_gfortran_set_args} --- Save command-line arguments
2541@fnindex _gfortran_set_args
2542@cindex libgfortran initialization, set_args
2543
2544@table @asis
2545@item @emph{Description}:
2546@code{_gfortran_set_args} saves the command-line arguments; this
2547initialization is required if any of the command-line intrinsics
3994c6b1 2548is called. Additionally, it shall be called if backtracing is
9e0667cd
TB
2549enabled (see @code{_gfortran_set_options}).
2550
2551@item @emph{Syntax}:
2552@code{void _gfortran_set_args (int argc, char *argv[])}
2553
2554@item @emph{Arguments}:
2555@multitable @columnfractions .15 .70
2556@item @var{argc} @tab number of command line argument strings
2557@item @var{argv} @tab the command-line argument strings; argv[0]
2558is the pathname of the executable itself.
2559@end multitable
2560
2561@item @emph{Example}:
2562@smallexample
2563int main (int argc, char *argv[])
2564@{
2565 /* Initialize libgfortran. */
2566 _gfortran_set_args (argc, argv);
2567 return 0;
2568@}
2569@end smallexample
2570@end table
2571
2572
2573@node _gfortran_set_options
2574@subsection @code{_gfortran_set_options} --- Set library option flags
2575@fnindex _gfortran_set_options
2576@cindex libgfortran initialization, set_options
2577
2578@table @asis
2579@item @emph{Description}:
2580@code{_gfortran_set_options} sets several flags related to the Fortran
7daa7b1d 2581standard to be used, whether backtracing should be enabled
3994c6b1 2582and whether range checks should be performed. The syntax allows for
9e0667cd 2583upward compatibility since the number of passed flags is specified; for
3994c6b1
TB
2584non-passed flags, the default value is used. See also
2585@pxref{Code Gen Options}. Please note that not all flags are actually
9e0667cd
TB
2586used.
2587
2588@item @emph{Syntax}:
2589@code{void _gfortran_set_options (int num, int options[])}
2590
2591@item @emph{Arguments}:
2592@multitable @columnfractions .15 .70
2593@item @var{num} @tab number of options passed
2594@item @var{argv} @tab The list of flag values
2595@end multitable
2596
2597@item @emph{option flag list}:
2598@multitable @columnfractions .15 .70
2599@item @var{option}[0] @tab Allowed standard; can give run-time errors
2600if e.g. an input-output edit descriptor is invalid in a given standard.
2601Possible values are (bitwise or-ed) @code{GFC_STD_F77} (1),
2602@code{GFC_STD_F95_OBS} (2), @code{GFC_STD_F95_DEL} (4), @code{GFC_STD_F95}
2603(8), @code{GFC_STD_F2003} (16), @code{GFC_STD_GNU} (32),
58fc89f6
TB
2604@code{GFC_STD_LEGACY} (64), @code{GFC_STD_F2008} (128), and
2605@code{GFC_STD_F2008_OBS} (256). Default: @code{GFC_STD_F95_OBS
2606| GFC_STD_F95_DEL | GFC_STD_F95 | GFC_STD_F2003 | GFC_STD_F2008
2607| GFC_STD_F2008_OBS | GFC_STD_F77 | GFC_STD_GNU | GFC_STD_LEGACY}.
9e0667cd 2608@item @var{option}[1] @tab Standard-warning flag; prints a warning to
3994c6b1 2609standard error. Default: @code{GFC_STD_F95_DEL | GFC_STD_LEGACY}.
9e0667cd
TB
2610@item @var{option}[2] @tab If non zero, enable pedantic checking.
2611Default: off.
7daa7b1d 2612@item @var{option}[3] @tab Unused.
9e0667cd 2613@item @var{option}[4] @tab If non zero, enable backtracing on run-time
7daa7b1d 2614errors. Default: enabled.
9e0667cd
TB
2615Note: Installs a signal handler and requires command-line
2616initialization using @code{_gfortran_set_args}.
2617@item @var{option}[5] @tab If non zero, supports signed zeros.
2618Default: enabled.
3994c6b1 2619@item @var{option}[6] @tab Enables run-time checking. Possible values
9e0667cd 2620are (bitwise or-ed): GFC_RTCHECK_BOUNDS (1), GFC_RTCHECK_ARRAY_TEMPS (2),
20460eb9 2621GFC_RTCHECK_RECURSION (4), GFC_RTCHECK_DO (16), GFC_RTCHECK_POINTER (32).
9e0667cd
TB
2622Default: disabled.
2623@item @var{option}[7] @tab If non zero, range checking is enabled.
3994c6b1 2624Default: enabled. See -frange-check (@pxref{Code Gen Options}).
9e0667cd
TB
2625@end multitable
2626
2627@item @emph{Example}:
2628@smallexample
7daa7b1d
JB
2629 /* Use gfortran 4.7 default options. */
2630 static int options[] = @{68, 255, 0, 0, 1, 1, 0, 1@};
9e0667cd
TB
2631 _gfortran_set_options (8, &options);
2632@end smallexample
2633@end table
2634
2635
2636@node _gfortran_set_convert
2637@subsection @code{_gfortran_set_convert} --- Set endian conversion
2638@fnindex _gfortran_set_convert
2639@cindex libgfortran initialization, set_convert
2640
2641@table @asis
2642@item @emph{Description}:
2643@code{_gfortran_set_convert} set the representation of data for
2644unformatted files.
2645
2646@item @emph{Syntax}:
2647@code{void _gfortran_set_convert (int conv)}
2648
2649@item @emph{Arguments}:
2650@multitable @columnfractions .15 .70
2651@item @var{conv} @tab Endian conversion, possible values:
2652GFC_CONVERT_NATIVE (0, default), GFC_CONVERT_SWAP (1),
2653GFC_CONVERT_BIG (2), GFC_CONVERT_LITTLE (3).
2654@end multitable
2655
2656@item @emph{Example}:
2657@smallexample
2658int main (int argc, char *argv[])
2659@{
2660 /* Initialize libgfortran. */
2661 _gfortran_set_args (argc, argv);
2662 _gfortran_set_convert (1);
2663 return 0;
2664@}
2665@end smallexample
2666@end table
2667
2668
2669@node _gfortran_set_record_marker
2670@subsection @code{_gfortran_set_record_marker} --- Set length of record markers
2671@fnindex _gfortran_set_record_marker
2672@cindex libgfortran initialization, set_record_marker
2673
2674@table @asis
2675@item @emph{Description}:
96c49324 2676@code{_gfortran_set_record_marker} sets the length of record markers
9e0667cd
TB
2677for unformatted files.
2678
2679@item @emph{Syntax}:
2680@code{void _gfortran_set_record_marker (int val)}
2681
2682@item @emph{Arguments}:
2683@multitable @columnfractions .15 .70
2684@item @var{val} @tab Length of the record marker; valid values
3994c6b1 2685are 4 and 8. Default is 4.
9e0667cd
TB
2686@end multitable
2687
2688@item @emph{Example}:
2689@smallexample
2690int main (int argc, char *argv[])
2691@{
2692 /* Initialize libgfortran. */
2693 _gfortran_set_args (argc, argv);
2694 _gfortran_set_record_marker (8);
2695 return 0;
2696@}
2697@end smallexample
2698@end table
2699
2700
96c49324
TB
2701@node _gfortran_set_fpe
2702@subsection @code{_gfortran_set_fpe} --- Set when a Floating Point Exception should be raised
2703@fnindex _gfortran_set_fpe
2704@cindex libgfortran initialization, set_fpe
2705
2706@table @asis
2707@item @emph{Description}:
2708@code{_gfortran_set_fpe} sets the IEEE exceptions for which a
3994c6b1 2709Floating Point Exception (FPE) should be raised. On most systems,
96c49324
TB
2710this will result in a SIGFPE signal being sent and the program
2711being interrupted.
2712
2713@item @emph{Syntax}:
2714@code{void _gfortran_set_fpe (int val)}
2715
2716@item @emph{Arguments}:
2717@multitable @columnfractions .15 .70
3994c6b1 2718@item @var{option}[0] @tab IEEE exceptions. Possible values are
96c49324
TB
2719(bitwise or-ed) zero (0, default) no trapping,
2720@code{GFC_FPE_INVALID} (1), @code{GFC_FPE_DENORMAL} (2),
2721@code{GFC_FPE_ZERO} (4), @code{GFC_FPE_OVERFLOW} (8),
2722@code{GFC_FPE_UNDERFLOW} (16), and @code{GFC_FPE_PRECISION} (32).
2723@end multitable
2724
2725@item @emph{Example}:
2726@smallexample
2727int main (int argc, char *argv[])
2728@{
2729 /* Initialize libgfortran. */
2730 _gfortran_set_args (argc, argv);
2731 /* FPE for invalid operations such as SQRT(-1.0). */
2732 _gfortran_set_fpe (1);
2733 return 0;
2734@}
2735@end smallexample
2736@end table
2737
2738
9e0667cd
TB
2739@node _gfortran_set_max_subrecord_length
2740@subsection @code{_gfortran_set_max_subrecord_length} --- Set subrecord length
2741@fnindex _gfortran_set_max_subrecord_length
2742@cindex libgfortran initialization, set_max_subrecord_length
2743
2744@table @asis
2745@item @emph{Description}:
2746@code{_gfortran_set_max_subrecord_length} set the maximum length
3994c6b1 2747for a subrecord. This option only makes sense for testing and
9e0667cd
TB
2748debugging of unformatted I/O.
2749
2750@item @emph{Syntax}:
2751@code{void _gfortran_set_max_subrecord_length (int val)}
2752
2753@item @emph{Arguments}:
2754@multitable @columnfractions .15 .70
2755@item @var{val} @tab the maximum length for a subrecord;
2756the maximum permitted value is 2147483639, which is also
2757the default.
2758@end multitable
2759
2760@item @emph{Example}:
2761@smallexample
2762int main (int argc, char *argv[])
2763@{
2764 /* Initialize libgfortran. */
2765 _gfortran_set_args (argc, argv);
2766 _gfortran_set_max_subrecord_length (8);
2767 return 0;
2768@}
2769@end smallexample
2770@end table
2771
2995ed9a
FXC
2772
2773
c8cf50e4 2774@c Intrinsic Procedures
a63dad5b
TS
2775@c ---------------------------------------------------------------------
2776
c8cf50e4
BM
2777@include intrinsic.texi
2778
2779
2780@tex
2781\blankpart
2782@end tex
2783
6de9cd9a
DN
2784@c ---------------------------------------------------------------------
2785@c Contributing
2786@c ---------------------------------------------------------------------
2787
2788@node Contributing
c8cf50e4 2789@unnumbered Contributing
6de9cd9a
DN
2790@cindex Contributing
2791
2792Free software is only possible if people contribute to efforts
2793to create it.
2794We're always in need of more people helping out with ideas
2795and comments, writing documentation and contributing code.
2796
7fc15ba5 2797If you want to contribute to GNU Fortran,
6de9cd9a
DN
2798have a look at the long lists of projects you can take on.
2799Some of these projects are small,
2800some of them are large;
2801some are completely orthogonal to the rest of what is
7fc15ba5 2802happening on GNU Fortran,
6de9cd9a
DN
2803but others are ``mainstream'' projects in need of enthusiastic hackers.
2804All of these projects are important!
2805We'll eventually get around to the things here,
2806but they are also things doable by someone who is willing and able.
2807
2808@menu
2809* Contributors::
2810* Projects::
c8cf50e4 2811* Proposed Extensions::
6de9cd9a
DN
2812@end menu
2813
2814
2815@node Contributors
7fc15ba5 2816@section Contributors to GNU Fortran
6de9cd9a
DN
2817@cindex Contributors
2818@cindex Credits
2819@cindex Authors
2820
2821Most of the parser was hand-crafted by @emph{Andy Vaught}, who is
2822also the initiator of the whole project. Thanks Andy!
2823Most of the interface with GCC was written by @emph{Paul Brook}.
2824
2825The following individuals have contributed code and/or
7fc15ba5 2826ideas and significant help to the GNU Fortran project
3b303683 2827(in alphabetical order):
6de9cd9a
DN
2828
2829@itemize @minus
3b303683 2830@item Janne Blomqvist
6de9cd9a 2831@item Steven Bosscher
6de9cd9a 2832@item Paul Brook
3b303683 2833@item Tobias Burnus
deeddce6 2834@item Fran@,{c}ois-Xavier Coudert
3b303683
DF
2835@item Bud Davis
2836@item Jerry DeLisle
cf6ae955 2837@item Erik Edelmann
3b303683
DF
2838@item Bernhard Fischer
2839@item Daniel Franke
2840@item Richard Guenther
2841@item Richard Henderson
2842@item Katherine Holcomb
2843@item Jakub Jelinek
2844@item Niels Kristian Bech Jensen
2845@item Steven Johnson
2846@item Steven G. Kargl
cf6ae955
SB
2847@item Thomas Koenig
2848@item Asher Langton
3b303683
DF
2849@item H. J. Lu
2850@item Toon Moene
2851@item Brooks Moses
2852@item Andrew Pinski
2853@item Tim Prince
2854@item Christopher D. Rickett
deeddce6 2855@item Richard Sandiford
3b303683
DF
2856@item Tobias Schl@"uter
2857@item Roger Sayle
2858@item Paul Thomas
2859@item Andy Vaught
2860@item Feng Wang
2861@item Janus Weil
9e0667cd 2862@item Daniel Kraft
6de9cd9a
DN
2863@end itemize
2864
2865The following people have contributed bug reports,
2866smaller or larger patches,
2867and much needed feedback and encouragement for the
7fc15ba5 2868GNU Fortran project:
6de9cd9a
DN
2869
2870@itemize @minus
6de9cd9a 2871@item Bill Clodius
49309826 2872@item Dominique d'Humi@`eres
6de9cd9a 2873@item Kate Hedstrom
3b303683 2874@item Erik Schnetter
9e0667cd 2875@item Joost VandeVondele
6de9cd9a
DN
2876@end itemize
2877
2878Many other individuals have helped debug,
7fc15ba5 2879test and improve the GNU Fortran compiler over the past few years,
ed499b9f 2880and we welcome you to do the same!
6de9cd9a
DN
2881If you already have done so,
2882and you would like to see your name listed in the
2883list above, please contact us.
2884
2885
2886@node Projects
2887@section Projects
2888
2889@table @emph
2890
2891@item Help build the test suite
49309826
FXC
2892Solicit more code for donation to the test suite: the more extensive the
2893testsuite, the smaller the risk of breaking things in the future! We can
2894keep code private on request.
6de9cd9a
DN
2895
2896@item Bug hunting/squishing
49309826
FXC
2897Find bugs and write more test cases! Test cases are especially very
2898welcome, because it allows us to concentrate on fixing bugs instead of
3994c6b1
TB
2899isolating them. Going through the bugzilla database at
2900@url{http://gcc.gnu.org/@/bugzilla/} to reduce testcases posted there and
49309826
FXC
2901add more information (for example, for which version does the testcase
2902work, for which versions does it fail?) is also very helpful.
6de9cd9a 2903
49309826 2904@end table
6de9cd9a
DN
2905
2906
c8cf50e4
BM
2907@node Proposed Extensions
2908@section Proposed Extensions
6de9cd9a 2909
c8cf50e4
BM
2910Here's a list of proposed extensions for the GNU Fortran compiler, in no particular
2911order. Most of these are necessary to be fully compatible with
2912existing Fortran compilers, but they are not part of the official
2913J3 Fortran 95 standard.
6de9cd9a 2914
c8cf50e4
BM
2915@subsection Compiler extensions:
2916@itemize @bullet
2917@item
2918User-specified alignment rules for structures.
6de9cd9a 2919
c8cf50e4
BM
2920@item
2921Automatically extend single precision constants to double.
e014df90 2922
c8cf50e4
BM
2923@item
2924Compile code that conserves memory by dynamically allocating common and
2925module storage either on stack or heap.
e014df90 2926
c8cf50e4
BM
2927@item
2928Compile flag to generate code for array conformance checking (suggest -CC).
e014df90 2929
c8cf50e4
BM
2930@item
2931User control of symbol names (underscores, etc).
e014df90 2932
c8cf50e4
BM
2933@item
2934Compile setting for maximum size of stack frame size before spilling
2935parts to static or heap.
e014df90 2936
a63dad5b 2937@item
c8cf50e4 2938Flag to force local variables into static space.
e27edcd4
TK
2939
2940@item
c8cf50e4 2941Flag to force local variables onto stack.
c8cf50e4
BM
2942@end itemize
2943
2944
2945@subsection Environment Options
2946@itemize @bullet
aa08038d 2947@item
c8cf50e4
BM
2948Pluggable library modules for random numbers, linear algebra.
2949LA should use BLAS calling conventions.
2950
8e119f1b 2951@item
c8cf50e4
BM
2952Environment variables controlling actions on arithmetic exceptions like
2953overflow, underflow, precision loss---Generate NaN, abort, default.
2954action.
2955
da1e2517 2956@item
c8cf50e4 2957Set precision for fp units that support it (i387).
aa08038d 2958
ffcba571 2959@item
c8cf50e4 2960Variable for setting fp rounding mode.
ffcba571 2961
08d7f64e 2962@item
c8cf50e4
BM
2963Variable to fill uninitialized variables with a user-defined bit
2964pattern.
08d7f64e 2965
669353d5 2966@item
c8cf50e4
BM
2967Environment variable controlling filename that is opened for that unit
2968number.
669353d5
TB
2969
2970@item
c8cf50e4 2971Environment variable to clear/trash memory being freed.
669353d5 2972
08d7f64e 2973@item
c8cf50e4 2974Environment variable to control tracing of allocations and frees.
ffcba571 2975
8998be20 2976@item
c8cf50e4 2977Environment variable to display allocated memory at normal program end.
8998be20 2978
669353d5 2979@item
c8cf50e4
BM
2980Environment variable for filename for * IO-unit.
2981
2982@item
2983Environment variable for temporary file directory.
2984
2985@item
2986Environment variable forcing standard output to be line buffered (unix).
ffcba571 2987
e014df90
JB
2988@end itemize
2989
2990
a63dad5b
TS
2991@c ---------------------------------------------------------------------
2992@c GNU General Public License
2993@c ---------------------------------------------------------------------
2994
7f9766e4 2995@include gpl_v3.texi
a63dad5b
TS
2996
2997
2998
2999@c ---------------------------------------------------------------------
3000@c GNU Free Documentation License
3001@c ---------------------------------------------------------------------
3002
3003@include fdl.texi
3004
3005
3006
3007@c ---------------------------------------------------------------------
3008@c Funding Free Software
3009@c ---------------------------------------------------------------------
3010
3011@include funding.texi
3012
e014df90 3013@c ---------------------------------------------------------------------
32864778 3014@c Indices
e014df90 3015@c ---------------------------------------------------------------------
6de9cd9a 3016
32864778 3017@node Option Index
e739dfac 3018@unnumbered Option Index
67948fd2 3019@command{gfortran}'s command line options are indexed here without any
3994c6b1 3020initial @samp{-} or @samp{--}. Where an option has both positive and
67948fd2
BM
3021negative forms (such as -foption and -fno-option), relevant entries in
3022the manual are indexed under the most appropriate form; it may sometimes
3023be useful to look up both forms.
32864778
DF
3024@printindex op
3025
3026@node Keyword Index
e739dfac 3027@unnumbered Keyword Index
6de9cd9a
DN
3028@printindex cp
3029
3030@bye