]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/fortran/interface.c
cgraph.c: Update overall comment; fix vertical spacing.
[thirdparty/gcc.git] / gcc / fortran / interface.c
CommitLineData
6de9cd9a 1/* Deal with interfaces.
bc0a33d3
TS
2 Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006 Free Software
3 Foundation, Inc.
6de9cd9a
DN
4 Contributed by Andy Vaught
5
9fc4d79b 6This file is part of GCC.
6de9cd9a 7
9fc4d79b
TS
8GCC is free software; you can redistribute it and/or modify it under
9the terms of the GNU General Public License as published by the Free
10Software Foundation; either version 2, or (at your option) any later
11version.
6de9cd9a 12
9fc4d79b
TS
13GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14WARRANTY; without even the implied warranty of MERCHANTABILITY or
15FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16for more details.
6de9cd9a
DN
17
18You should have received a copy of the GNU General Public License
9fc4d79b 19along with GCC; see the file COPYING. If not, write to the Free
ab57747b
KC
20Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
2102110-1301, USA. */
6de9cd9a
DN
22
23
24/* Deal with interfaces. An explicit interface is represented as a
25 singly linked list of formal argument structures attached to the
26 relevant symbols. For an implicit interface, the arguments don't
27 point to symbols. Explicit interfaces point to namespaces that
28 contain the symbols within that interface.
29
30 Implicit interfaces are linked together in a singly linked list
31 along the next_if member of symbol nodes. Since a particular
32 symbol can only have a single explicit interface, the symbol cannot
33 be part of multiple lists and a single next-member suffices.
34
35 This is not the case for general classes, though. An operator
36 definition is independent of just about all other uses and has it's
37 own head pointer.
38
39 Nameless interfaces:
40 Nameless interfaces create symbols with explicit interfaces within
41 the current namespace. They are otherwise unlinked.
42
43 Generic interfaces:
44 The generic name points to a linked list of symbols. Each symbol
6892757c 45 has an explicit interface. Each explicit interface has its own
6de9cd9a
DN
46 namespace containing the arguments. Module procedures are symbols in
47 which the interface is added later when the module procedure is parsed.
48
49 User operators:
50 User-defined operators are stored in a their own set of symtrees
51 separate from regular symbols. The symtrees point to gfc_user_op
52 structures which in turn head up a list of relevant interfaces.
53
54 Extended intrinsics and assignment:
55 The head of these interface lists are stored in the containing namespace.
56
57 Implicit interfaces:
58 An implicit interface is represented as a singly linked list of
59 formal argument list structures that don't point to any symbol
60 nodes -- they just contain types.
61
62
63 When a subprogram is defined, the program unit's name points to an
64 interface as usual, but the link to the namespace is NULL and the
65 formal argument list points to symbols within the same namespace as
66 the program unit name. */
67
68#include "config.h"
d22e4895 69#include "system.h"
6de9cd9a
DN
70#include "gfortran.h"
71#include "match.h"
72
73
74/* The current_interface structure holds information about the
75 interface currently being parsed. This structure is saved and
76 restored during recursive interfaces. */
77
78gfc_interface_info current_interface;
79
80
81/* Free a singly linked list of gfc_interface structures. */
82
83void
84gfc_free_interface (gfc_interface * intr)
85{
86 gfc_interface *next;
87
88 for (; intr; intr = next)
89 {
90 next = intr->next;
91 gfc_free (intr);
92 }
93}
94
95
96/* Change the operators unary plus and minus into binary plus and
97 minus respectively, leaving the rest unchanged. */
98
99static gfc_intrinsic_op
100fold_unary (gfc_intrinsic_op operator)
101{
102
103 switch (operator)
104 {
105 case INTRINSIC_UPLUS:
106 operator = INTRINSIC_PLUS;
107 break;
108 case INTRINSIC_UMINUS:
109 operator = INTRINSIC_MINUS;
110 break;
111 default:
112 break;
113 }
114
115 return operator;
116}
117
118
119/* Match a generic specification. Depending on which type of
120 interface is found, the 'name' or 'operator' pointers may be set.
121 This subroutine doesn't return MATCH_NO. */
122
123match
124gfc_match_generic_spec (interface_type * type,
125 char *name,
126 gfc_intrinsic_op *operator)
127{
128 char buffer[GFC_MAX_SYMBOL_LEN + 1];
129 match m;
130 gfc_intrinsic_op i;
131
132 if (gfc_match (" assignment ( = )") == MATCH_YES)
133 {
134 *type = INTERFACE_INTRINSIC_OP;
135 *operator = INTRINSIC_ASSIGN;
136 return MATCH_YES;
137 }
138
139 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
140 { /* Operator i/f */
141 *type = INTERFACE_INTRINSIC_OP;
142 *operator = fold_unary (i);
143 return MATCH_YES;
144 }
145
146 if (gfc_match (" operator ( ") == MATCH_YES)
147 {
148 m = gfc_match_defined_op_name (buffer, 1);
149 if (m == MATCH_NO)
150 goto syntax;
151 if (m != MATCH_YES)
152 return MATCH_ERROR;
153
154 m = gfc_match_char (')');
155 if (m == MATCH_NO)
156 goto syntax;
157 if (m != MATCH_YES)
158 return MATCH_ERROR;
159
160 strcpy (name, buffer);
161 *type = INTERFACE_USER_OP;
162 return MATCH_YES;
163 }
164
165 if (gfc_match_name (buffer) == MATCH_YES)
166 {
167 strcpy (name, buffer);
168 *type = INTERFACE_GENERIC;
169 return MATCH_YES;
170 }
171
172 *type = INTERFACE_NAMELESS;
173 return MATCH_YES;
174
175syntax:
176 gfc_error ("Syntax error in generic specification at %C");
177 return MATCH_ERROR;
178}
179
180
181/* Match one of the five forms of an interface statement. */
182
183match
184gfc_match_interface (void)
185{
186 char name[GFC_MAX_SYMBOL_LEN + 1];
187 interface_type type;
188 gfc_symbol *sym;
189 gfc_intrinsic_op operator;
190 match m;
191
192 m = gfc_match_space ();
193
194 if (gfc_match_generic_spec (&type, name, &operator) == MATCH_ERROR)
195 return MATCH_ERROR;
196
197
198 /* If we're not looking at the end of the statement now, or if this
199 is not a nameless interface but we did not see a space, punt. */
200 if (gfc_match_eos () != MATCH_YES
201 || (type != INTERFACE_NAMELESS
202 && m != MATCH_YES))
203 {
204 gfc_error
205 ("Syntax error: Trailing garbage in INTERFACE statement at %C");
206 return MATCH_ERROR;
207 }
208
209 current_interface.type = type;
210
211 switch (type)
212 {
213 case INTERFACE_GENERIC:
214 if (gfc_get_symbol (name, NULL, &sym))
215 return MATCH_ERROR;
216
231b2fcc
TS
217 if (!sym->attr.generic
218 && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
6de9cd9a
DN
219 return MATCH_ERROR;
220
e5d7f6f7
FXC
221 if (sym->attr.dummy)
222 {
223 gfc_error ("Dummy procedure '%s' at %C cannot have a "
224 "generic interface", sym->name);
225 return MATCH_ERROR;
226 }
227
6de9cd9a
DN
228 current_interface.sym = gfc_new_block = sym;
229 break;
230
231 case INTERFACE_USER_OP:
232 current_interface.uop = gfc_get_uop (name);
233 break;
234
235 case INTERFACE_INTRINSIC_OP:
236 current_interface.op = operator;
237 break;
238
239 case INTERFACE_NAMELESS:
240 break;
241 }
242
243 return MATCH_YES;
244}
245
246
247/* Match the different sort of generic-specs that can be present after
248 the END INTERFACE itself. */
249
250match
251gfc_match_end_interface (void)
252{
253 char name[GFC_MAX_SYMBOL_LEN + 1];
254 interface_type type;
255 gfc_intrinsic_op operator;
256 match m;
257
258 m = gfc_match_space ();
259
260 if (gfc_match_generic_spec (&type, name, &operator) == MATCH_ERROR)
261 return MATCH_ERROR;
262
263 /* If we're not looking at the end of the statement now, or if this
264 is not a nameless interface but we did not see a space, punt. */
265 if (gfc_match_eos () != MATCH_YES
266 || (type != INTERFACE_NAMELESS
267 && m != MATCH_YES))
268 {
269 gfc_error
270 ("Syntax error: Trailing garbage in END INTERFACE statement at %C");
271 return MATCH_ERROR;
272 }
273
274 m = MATCH_YES;
275
276 switch (current_interface.type)
277 {
278 case INTERFACE_NAMELESS:
279 if (type != current_interface.type)
280 {
281 gfc_error ("Expected a nameless interface at %C");
282 m = MATCH_ERROR;
283 }
284
285 break;
286
287 case INTERFACE_INTRINSIC_OP:
288 if (type != current_interface.type || operator != current_interface.op)
289 {
290
291 if (current_interface.op == INTRINSIC_ASSIGN)
292 gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
293 else
294 gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C",
295 gfc_op2string (current_interface.op));
296
297 m = MATCH_ERROR;
298 }
299
300 break;
301
302 case INTERFACE_USER_OP:
303 /* Comparing the symbol node names is OK because only use-associated
304 symbols can be renamed. */
305 if (type != current_interface.type
9b46f94f 306 || strcmp (current_interface.uop->name, name) != 0)
6de9cd9a
DN
307 {
308 gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
55898b2c 309 current_interface.uop->name);
6de9cd9a
DN
310 m = MATCH_ERROR;
311 }
312
313 break;
314
315 case INTERFACE_GENERIC:
316 if (type != current_interface.type
317 || strcmp (current_interface.sym->name, name) != 0)
318 {
319 gfc_error ("Expecting 'END INTERFACE %s' at %C",
320 current_interface.sym->name);
321 m = MATCH_ERROR;
322 }
323
324 break;
325 }
326
327 return m;
328}
329
330
e0e85e06
PT
331/* Compare two derived types using the criteria in 4.4.2 of the standard,
332 recursing through gfc_compare_types for the components. */
6de9cd9a
DN
333
334int
e0e85e06 335gfc_compare_derived_types (gfc_symbol * derived1, gfc_symbol * derived2)
6de9cd9a
DN
336{
337 gfc_component *dt1, *dt2;
338
6de9cd9a
DN
339 /* Special case for comparing derived types across namespaces. If the
340 true names and module names are the same and the module name is
341 nonnull, then they are equal. */
e0e85e06
PT
342 if (strcmp (derived1->name, derived2->name) == 0
343 && derived1 != NULL && derived2 != NULL
344 && derived1->module != NULL && derived2->module != NULL
345 && strcmp (derived1->module, derived2->module) == 0)
6de9cd9a
DN
346 return 1;
347
348 /* Compare type via the rules of the standard. Both types must have
349 the SEQUENCE attribute to be equal. */
350
e0e85e06 351 if (strcmp (derived1->name, derived2->name))
6de9cd9a
DN
352 return 0;
353
e0e85e06
PT
354 if (derived1->component_access == ACCESS_PRIVATE
355 || derived2->component_access == ACCESS_PRIVATE)
356 return 0;
6de9cd9a 357
e0e85e06 358 if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0)
6de9cd9a
DN
359 return 0;
360
e0e85e06
PT
361 dt1 = derived1->components;
362 dt2 = derived2->components;
363
6de9cd9a
DN
364 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
365 simple test can speed things up. Otherwise, lots of things have to
366 match. */
367 for (;;)
368 {
369 if (strcmp (dt1->name, dt2->name) != 0)
370 return 0;
371
372 if (dt1->pointer != dt2->pointer)
373 return 0;
374
375 if (dt1->dimension != dt2->dimension)
376 return 0;
377
5046aff5
PT
378 if (dt1->allocatable != dt2->allocatable)
379 return 0;
380
6de9cd9a
DN
381 if (dt1->dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
382 return 0;
383
384 if (gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
385 return 0;
386
387 dt1 = dt1->next;
388 dt2 = dt2->next;
389
390 if (dt1 == NULL && dt2 == NULL)
391 break;
392 if (dt1 == NULL || dt2 == NULL)
393 return 0;
394 }
395
396 return 1;
397}
398
e0e85e06
PT
399/* Compare two typespecs, recursively if necessary. */
400
401int
402gfc_compare_types (gfc_typespec * ts1, gfc_typespec * ts2)
403{
404
405 if (ts1->type != ts2->type)
406 return 0;
407 if (ts1->type != BT_DERIVED)
408 return (ts1->kind == ts2->kind);
409
410 /* Compare derived types. */
411 if (ts1->derived == ts2->derived)
412 return 1;
413
414 return gfc_compare_derived_types (ts1->derived ,ts2->derived);
415}
416
6de9cd9a
DN
417
418/* Given two symbols that are formal arguments, compare their ranks
419 and types. Returns nonzero if they have the same rank and type,
420 zero otherwise. */
421
422static int
423compare_type_rank (gfc_symbol * s1, gfc_symbol * s2)
424{
425 int r1, r2;
426
427 r1 = (s1->as != NULL) ? s1->as->rank : 0;
428 r2 = (s2->as != NULL) ? s2->as->rank : 0;
429
430 if (r1 != r2)
431 return 0; /* Ranks differ */
432
433 return gfc_compare_types (&s1->ts, &s2->ts);
434}
435
436
437static int compare_interfaces (gfc_symbol *, gfc_symbol *, int);
438
439/* Given two symbols that are formal arguments, compare their types
440 and rank and their formal interfaces if they are both dummy
441 procedures. Returns nonzero if the same, zero if different. */
442
443static int
444compare_type_rank_if (gfc_symbol * s1, gfc_symbol * s2)
445{
26f2ca2b
PT
446 if (s1 == NULL || s2 == NULL)
447 return s1 == s2 ? 1 : 0;
6de9cd9a
DN
448
449 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
450 return compare_type_rank (s1, s2);
451
452 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
453 return 0;
454
455 /* At this point, both symbols are procedures. */
456 if ((s1->attr.function == 0 && s1->attr.subroutine == 0)
457 || (s2->attr.function == 0 && s2->attr.subroutine == 0))
458 return 0;
459
460 if (s1->attr.function != s2->attr.function
461 || s1->attr.subroutine != s2->attr.subroutine)
462 return 0;
463
464 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
465 return 0;
466
993ef28f
PT
467 /* Originally, gfortran recursed here to check the interfaces of passed
468 procedures. This is explicitly not required by the standard. */
469 return 1;
6de9cd9a
DN
470}
471
472
473/* Given a formal argument list and a keyword name, search the list
474 for that keyword. Returns the correct symbol node if found, NULL
475 if not found. */
476
477static gfc_symbol *
478find_keyword_arg (const char *name, gfc_formal_arglist * f)
479{
480
481 for (; f; f = f->next)
482 if (strcmp (f->sym->name, name) == 0)
483 return f->sym;
484
485 return NULL;
486}
487
488
489/******** Interface checking subroutines **********/
490
491
492/* Given an operator interface and the operator, make sure that all
493 interfaces for that operator are legal. */
494
495static void
496check_operator_interface (gfc_interface * intr, gfc_intrinsic_op operator)
497{
498 gfc_formal_arglist *formal;
499 sym_intent i1, i2;
500 gfc_symbol *sym;
501 bt t1, t2;
502 int args;
503
504 if (intr == NULL)
505 return;
506
507 args = 0;
508 t1 = t2 = BT_UNKNOWN;
509 i1 = i2 = INTENT_UNKNOWN;
510
511 for (formal = intr->sym->formal; formal; formal = formal->next)
512 {
513 sym = formal->sym;
8c086c9c
PT
514 if (sym == NULL)
515 {
516 gfc_error ("Alternate return cannot appear in operator "
517 "interface at %L", &intr->where);
518 return;
519 }
6de9cd9a
DN
520 if (args == 0)
521 {
522 t1 = sym->ts.type;
523 i1 = sym->attr.intent;
524 }
525 if (args == 1)
526 {
527 t2 = sym->ts.type;
528 i2 = sym->attr.intent;
529 }
530 args++;
531 }
532
533 if (args == 0 || args > 2)
534 goto num_args;
535
536 sym = intr->sym;
537
538 if (operator == INTRINSIC_ASSIGN)
539 {
540 if (!sym->attr.subroutine)
541 {
542 gfc_error
543 ("Assignment operator interface at %L must be a SUBROUTINE",
544 &intr->where);
545 return;
546 }
8c086c9c
PT
547 if (args != 2)
548 {
549 gfc_error
550 ("Assignment operator interface at %L must have two arguments",
551 &intr->where);
552 return;
553 }
554 if (sym->formal->sym->ts.type != BT_DERIVED
555 && sym->formal->next->sym->ts.type != BT_DERIVED
556 && (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type
557 || (gfc_numeric_ts (&sym->formal->sym->ts)
558 && gfc_numeric_ts (&sym->formal->next->sym->ts))))
559 {
560 gfc_error
561 ("Assignment operator interface at %L must not redefine "
562 "an INTRINSIC type assignment", &intr->where);
563 return;
564 }
6de9cd9a
DN
565 }
566 else
567 {
568 if (!sym->attr.function)
569 {
570 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
571 &intr->where);
572 return;
573 }
574 }
575
576 switch (operator)
577 {
578 case INTRINSIC_PLUS: /* Numeric unary or binary */
579 case INTRINSIC_MINUS:
580 if ((args == 1)
581 && (t1 == BT_INTEGER
582 || t1 == BT_REAL
583 || t1 == BT_COMPLEX))
584 goto bad_repl;
585
586 if ((args == 2)
587 && (t1 == BT_INTEGER || t1 == BT_REAL || t1 == BT_COMPLEX)
588 && (t2 == BT_INTEGER || t2 == BT_REAL || t2 == BT_COMPLEX))
589 goto bad_repl;
590
591 break;
592
593 case INTRINSIC_POWER: /* Binary numeric */
594 case INTRINSIC_TIMES:
595 case INTRINSIC_DIVIDE:
596
597 case INTRINSIC_EQ:
598 case INTRINSIC_NE:
599 if (args == 1)
600 goto num_args;
601
602 if ((t1 == BT_INTEGER || t1 == BT_REAL || t1 == BT_COMPLEX)
603 && (t2 == BT_INTEGER || t2 == BT_REAL || t2 == BT_COMPLEX))
604 goto bad_repl;
605
606 break;
607
608 case INTRINSIC_GE: /* Binary numeric operators that do not support */
609 case INTRINSIC_LE: /* complex numbers */
610 case INTRINSIC_LT:
611 case INTRINSIC_GT:
612 if (args == 1)
613 goto num_args;
614
615 if ((t1 == BT_INTEGER || t1 == BT_REAL)
616 && (t2 == BT_INTEGER || t2 == BT_REAL))
617 goto bad_repl;
618
619 break;
620
621 case INTRINSIC_OR: /* Binary logical */
622 case INTRINSIC_AND:
623 case INTRINSIC_EQV:
624 case INTRINSIC_NEQV:
625 if (args == 1)
626 goto num_args;
627 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
628 goto bad_repl;
629 break;
630
631 case INTRINSIC_NOT: /* Unary logical */
632 if (args != 1)
633 goto num_args;
634 if (t1 == BT_LOGICAL)
635 goto bad_repl;
636 break;
637
638 case INTRINSIC_CONCAT: /* Binary string */
639 if (args != 2)
640 goto num_args;
641 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
642 goto bad_repl;
643 break;
644
645 case INTRINSIC_ASSIGN: /* Class by itself */
646 if (args != 2)
647 goto num_args;
648 break;
649 default:
650 gfc_internal_error ("check_operator_interface(): Bad operator");
651 }
652
653 /* Check intents on operator interfaces. */
654 if (operator == INTRINSIC_ASSIGN)
655 {
656 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
657 gfc_error ("First argument of defined assignment at %L must be "
658 "INTENT(IN) or INTENT(INOUT)", &intr->where);
659
660 if (i2 != INTENT_IN)
661 gfc_error ("Second argument of defined assignment at %L must be "
662 "INTENT(IN)", &intr->where);
663 }
664 else
665 {
666 if (i1 != INTENT_IN)
667 gfc_error ("First argument of operator interface at %L must be "
668 "INTENT(IN)", &intr->where);
669
670 if (args == 2 && i2 != INTENT_IN)
671 gfc_error ("Second argument of operator interface at %L must be "
672 "INTENT(IN)", &intr->where);
673 }
674
675 return;
676
677bad_repl:
678 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
679 &intr->where);
680 return;
681
682num_args:
683 gfc_error ("Operator interface at %L has the wrong number of arguments",
684 &intr->where);
685 return;
686}
687
688
689/* Given a pair of formal argument lists, we see if the two lists can
690 be distinguished by counting the number of nonoptional arguments of
691 a given type/rank in f1 and seeing if there are less then that
692 number of those arguments in f2 (including optional arguments).
693 Since this test is asymmetric, it has to be called twice to make it
694 symmetric. Returns nonzero if the argument lists are incompatible
695 by this test. This subroutine implements rule 1 of section
696 14.1.2.3. */
697
698static int
699count_types_test (gfc_formal_arglist * f1, gfc_formal_arglist * f2)
700{
701 int rc, ac1, ac2, i, j, k, n1;
702 gfc_formal_arglist *f;
703
704 typedef struct
705 {
706 int flag;
707 gfc_symbol *sym;
708 }
709 arginfo;
710
711 arginfo *arg;
712
713 n1 = 0;
714
715 for (f = f1; f; f = f->next)
716 n1++;
717
718 /* Build an array of integers that gives the same integer to
719 arguments of the same type/rank. */
720 arg = gfc_getmem (n1 * sizeof (arginfo));
721
722 f = f1;
723 for (i = 0; i < n1; i++, f = f->next)
724 {
725 arg[i].flag = -1;
726 arg[i].sym = f->sym;
727 }
728
729 k = 0;
730
731 for (i = 0; i < n1; i++)
732 {
733 if (arg[i].flag != -1)
734 continue;
735
26f2ca2b 736 if (arg[i].sym && arg[i].sym->attr.optional)
6de9cd9a
DN
737 continue; /* Skip optional arguments */
738
739 arg[i].flag = k;
740
741 /* Find other nonoptional arguments of the same type/rank. */
742 for (j = i + 1; j < n1; j++)
26f2ca2b 743 if ((arg[j].sym == NULL || !arg[j].sym->attr.optional)
6de9cd9a
DN
744 && compare_type_rank_if (arg[i].sym, arg[j].sym))
745 arg[j].flag = k;
746
747 k++;
748 }
749
750 /* Now loop over each distinct type found in f1. */
751 k = 0;
752 rc = 0;
753
754 for (i = 0; i < n1; i++)
755 {
756 if (arg[i].flag != k)
757 continue;
758
759 ac1 = 1;
760 for (j = i + 1; j < n1; j++)
761 if (arg[j].flag == k)
762 ac1++;
763
764 /* Count the number of arguments in f2 with that type, including
f7b529fa 765 those that are optional. */
6de9cd9a
DN
766 ac2 = 0;
767
768 for (f = f2; f; f = f->next)
769 if (compare_type_rank_if (arg[i].sym, f->sym))
770 ac2++;
771
772 if (ac1 > ac2)
773 {
774 rc = 1;
775 break;
776 }
777
778 k++;
779 }
780
781 gfc_free (arg);
782
783 return rc;
784}
785
786
787/* Perform the abbreviated correspondence test for operators. The
788 arguments cannot be optional and are always ordered correctly,
789 which makes this test much easier than that for generic tests.
790
791 This subroutine is also used when comparing a formal and actual
792 argument list when an actual parameter is a dummy procedure. At
793 that point, two formal interfaces must be compared for equality
794 which is what happens here. */
795
796static int
797operator_correspondence (gfc_formal_arglist * f1, gfc_formal_arglist * f2)
798{
799 for (;;)
800 {
801 if (f1 == NULL && f2 == NULL)
802 break;
803 if (f1 == NULL || f2 == NULL)
804 return 1;
805
806 if (!compare_type_rank (f1->sym, f2->sym))
807 return 1;
808
809 f1 = f1->next;
810 f2 = f2->next;
811 }
812
813 return 0;
814}
815
816
817/* Perform the correspondence test in rule 2 of section 14.1.2.3.
69de3b83 818 Returns zero if no argument is found that satisfies rule 2, nonzero
6de9cd9a
DN
819 otherwise.
820
821 This test is also not symmetric in f1 and f2 and must be called
822 twice. This test finds problems caused by sorting the actual
823 argument list with keywords. For example:
824
825 INTERFACE FOO
826 SUBROUTINE F1(A, B)
827 INTEGER :: A ; REAL :: B
828 END SUBROUTINE F1
829
830 SUBROUTINE F2(B, A)
831 INTEGER :: A ; REAL :: B
832 END SUBROUTINE F1
833 END INTERFACE FOO
834
835 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
836
837static int
838generic_correspondence (gfc_formal_arglist * f1, gfc_formal_arglist * f2)
839{
840
841 gfc_formal_arglist *f2_save, *g;
842 gfc_symbol *sym;
843
844 f2_save = f2;
845
846 while (f1)
847 {
848 if (f1->sym->attr.optional)
849 goto next;
850
851 if (f2 != NULL && compare_type_rank (f1->sym, f2->sym))
852 goto next;
853
854 /* Now search for a disambiguating keyword argument starting at
855 the current non-match. */
856 for (g = f1; g; g = g->next)
857 {
858 if (g->sym->attr.optional)
859 continue;
860
861 sym = find_keyword_arg (g->sym->name, f2_save);
862 if (sym == NULL || !compare_type_rank (g->sym, sym))
863 return 1;
864 }
865
866 next:
867 f1 = f1->next;
868 if (f2 != NULL)
869 f2 = f2->next;
870 }
871
872 return 0;
873}
874
875
876/* 'Compare' two formal interfaces associated with a pair of symbols.
877 We return nonzero if there exists an actual argument list that
878 would be ambiguous between the two interfaces, zero otherwise. */
879
880static int
881compare_interfaces (gfc_symbol * s1, gfc_symbol * s2, int generic_flag)
882{
883 gfc_formal_arglist *f1, *f2;
884
885 if (s1->attr.function != s2->attr.function
886 && s1->attr.subroutine != s2->attr.subroutine)
887 return 0; /* disagreement between function/subroutine */
888
889 f1 = s1->formal;
890 f2 = s2->formal;
891
892 if (f1 == NULL && f2 == NULL)
893 return 1; /* Special case */
894
895 if (count_types_test (f1, f2))
896 return 0;
897 if (count_types_test (f2, f1))
898 return 0;
899
900 if (generic_flag)
901 {
902 if (generic_correspondence (f1, f2))
903 return 0;
904 if (generic_correspondence (f2, f1))
905 return 0;
906 }
907 else
908 {
909 if (operator_correspondence (f1, f2))
910 return 0;
911 }
912
913 return 1;
914}
915
916
917/* Given a pointer to an interface pointer, remove duplicate
918 interfaces and make sure that all symbols are either functions or
919 subroutines. Returns nonzero if something goes wrong. */
920
921static int
922check_interface0 (gfc_interface * p, const char *interface_name)
923{
924 gfc_interface *psave, *q, *qlast;
925
926 psave = p;
927 /* Make sure all symbols in the interface have been defined as
928 functions or subroutines. */
929 for (; p; p = p->next)
930 if (!p->sym->attr.function && !p->sym->attr.subroutine)
931 {
932 gfc_error ("Procedure '%s' in %s at %L is neither function nor "
933 "subroutine", p->sym->name, interface_name,
934 &p->sym->declared_at);
935 return 1;
936 }
937 p = psave;
938
939 /* Remove duplicate interfaces in this interface list. */
940 for (; p; p = p->next)
941 {
942 qlast = p;
943
944 for (q = p->next; q;)
945 {
946 if (p->sym != q->sym)
947 {
948 qlast = q;
949 q = q->next;
950
951 }
952 else
953 {
954 /* Duplicate interface */
955 qlast->next = q->next;
956 gfc_free (q);
957 q = qlast->next;
958 }
959 }
960 }
961
962 return 0;
963}
964
965
966/* Check lists of interfaces to make sure that no two interfaces are
967 ambiguous. Duplicate interfaces (from the same symbol) are OK
968 here. */
969
970static int
991f3b12 971check_interface1 (gfc_interface * p, gfc_interface * q0,
993ef28f 972 int generic_flag, const char *interface_name,
26f2ca2b 973 bool referenced)
6de9cd9a 974{
991f3b12 975 gfc_interface * q;
6de9cd9a 976 for (; p; p = p->next)
991f3b12 977 for (q = q0; q; q = q->next)
6de9cd9a
DN
978 {
979 if (p->sym == q->sym)
980 continue; /* Duplicates OK here */
981
312ae8f4 982 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
6de9cd9a
DN
983 continue;
984
985 if (compare_interfaces (p->sym, q->sym, generic_flag))
986 {
993ef28f
PT
987 if (referenced)
988 {
989 gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
990 p->sym->name, q->sym->name, interface_name,
991 &p->where);
992 }
993
994 if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
995 gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
996 p->sym->name, q->sym->name, interface_name,
997 &p->where);
6de9cd9a
DN
998 return 1;
999 }
1000 }
6de9cd9a
DN
1001 return 0;
1002}
1003
1004
1005/* Check the generic and operator interfaces of symbols to make sure
1006 that none of the interfaces conflict. The check has to be done
1007 after all of the symbols are actually loaded. */
1008
1009static void
1010check_sym_interfaces (gfc_symbol * sym)
1011{
1012 char interface_name[100];
26f2ca2b 1013 bool k;
6de9cd9a
DN
1014
1015 if (sym->ns != gfc_current_ns)
1016 return;
1017
1018 if (sym->generic != NULL)
1019 {
1020 sprintf (interface_name, "generic interface '%s'", sym->name);
1021 if (check_interface0 (sym->generic, interface_name))
1022 return;
1023
993ef28f
PT
1024 /* Originally, this test was aplied to host interfaces too;
1025 this is incorrect since host associated symbols, from any
1026 source, cannot be ambiguous with local symbols. */
1027 k = sym->attr.referenced || !sym->attr.use_assoc;
1028 if (check_interface1 (sym->generic, sym->generic, 1,
1029 interface_name, k))
1030 sym->attr.ambiguous_interfaces = 1;
6de9cd9a
DN
1031 }
1032}
1033
1034
1035static void
1036check_uop_interfaces (gfc_user_op * uop)
1037{
1038 char interface_name[100];
1039 gfc_user_op *uop2;
1040 gfc_namespace *ns;
1041
1042 sprintf (interface_name, "operator interface '%s'", uop->name);
1043 if (check_interface0 (uop->operator, interface_name))
1044 return;
1045
1046 for (ns = gfc_current_ns; ns; ns = ns->parent)
1047 {
1048 uop2 = gfc_find_uop (uop->name, ns);
1049 if (uop2 == NULL)
1050 continue;
1051
993ef28f 1052 check_interface1 (uop->operator, uop2->operator, 0,
26f2ca2b 1053 interface_name, true);
6de9cd9a
DN
1054 }
1055}
1056
1057
1058/* For the namespace, check generic, user operator and intrinsic
1059 operator interfaces for consistency and to remove duplicate
1060 interfaces. We traverse the whole namespace, counting on the fact
1061 that most symbols will not have generic or operator interfaces. */
1062
1063void
1064gfc_check_interfaces (gfc_namespace * ns)
1065{
1066 gfc_namespace *old_ns, *ns2;
1067 char interface_name[100];
1068 gfc_intrinsic_op i;
1069
1070 old_ns = gfc_current_ns;
1071 gfc_current_ns = ns;
1072
1073 gfc_traverse_ns (ns, check_sym_interfaces);
1074
1075 gfc_traverse_user_op (ns, check_uop_interfaces);
1076
1077 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1078 {
1079 if (i == INTRINSIC_USER)
1080 continue;
1081
1082 if (i == INTRINSIC_ASSIGN)
1083 strcpy (interface_name, "intrinsic assignment operator");
1084 else
1085 sprintf (interface_name, "intrinsic '%s' operator",
1086 gfc_op2string (i));
1087
1088 if (check_interface0 (ns->operator[i], interface_name))
1089 continue;
1090
1091 check_operator_interface (ns->operator[i], i);
1092
1093 for (ns2 = ns->parent; ns2; ns2 = ns2->parent)
1094 if (check_interface1 (ns->operator[i], ns2->operator[i], 0,
26f2ca2b 1095 interface_name, true))
6de9cd9a
DN
1096 break;
1097 }
1098
1099 gfc_current_ns = old_ns;
1100}
1101
1102
1103static int
1104symbol_rank (gfc_symbol * sym)
1105{
1106
1107 return (sym->as == NULL) ? 0 : sym->as->rank;
1108}
1109
1110
aa08038d
EE
1111/* Given a symbol of a formal argument list and an expression, if the
1112 formal argument is allocatable, check that the actual argument is
1113 allocatable. Returns nonzero if compatible, zero if not compatible. */
1114
1115static int
1116compare_allocatable (gfc_symbol * formal, gfc_expr * actual)
1117{
1118 symbol_attribute attr;
1119
1120 if (formal->attr.allocatable)
1121 {
1122 attr = gfc_expr_attr (actual);
1123 if (!attr.allocatable)
1124 return 0;
1125 }
1126
1127 return 1;
1128}
1129
1130
6de9cd9a
DN
1131/* Given a symbol of a formal argument list and an expression, if the
1132 formal argument is a pointer, see if the actual argument is a
1133 pointer. Returns nonzero if compatible, zero if not compatible. */
1134
1135static int
1136compare_pointer (gfc_symbol * formal, gfc_expr * actual)
1137{
1138 symbol_attribute attr;
1139
1140 if (formal->attr.pointer)
1141 {
1142 attr = gfc_expr_attr (actual);
1143 if (!attr.pointer)
1144 return 0;
1145 }
1146
1147 return 1;
1148}
1149
1150
1151/* Given a symbol of a formal argument list and an expression, see if
1152 the two are compatible as arguments. Returns nonzero if
1153 compatible, zero if not compatible. */
1154
1155static int
1156compare_parameter (gfc_symbol * formal, gfc_expr * actual,
1157 int ranks_must_agree, int is_elemental)
1158{
1159 gfc_ref *ref;
1160
1161 if (actual->ts.type == BT_PROCEDURE)
1162 {
1163 if (formal->attr.flavor != FL_PROCEDURE)
1164 return 0;
1165
1166 if (formal->attr.function
1167 && !compare_type_rank (formal, actual->symtree->n.sym))
1168 return 0;
1169
699fa7aa
PT
1170 if (formal->attr.if_source == IFSRC_UNKNOWN
1171 || actual->symtree->n.sym->attr.external)
6de9cd9a
DN
1172 return 1; /* Assume match */
1173
1174 return compare_interfaces (formal, actual->symtree->n.sym, 0);
1175 }
1176
90aeadcb 1177 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
1600fe22 1178 && !gfc_compare_types (&formal->ts, &actual->ts))
6de9cd9a
DN
1179 return 0;
1180
1181 if (symbol_rank (formal) == actual->rank)
1182 return 1;
1183
1184 /* At this point the ranks didn't agree. */
1185 if (ranks_must_agree || formal->attr.pointer)
1186 return 0;
1187
1188 if (actual->rank != 0)
1189 return is_elemental || formal->attr.dimension;
1190
1191 /* At this point, we are considering a scalar passed to an array.
1192 This is legal if the scalar is an array element of the right sort. */
1193 if (formal->as->type == AS_ASSUMED_SHAPE)
1194 return 0;
1195
1196 for (ref = actual->ref; ref; ref = ref->next)
1197 if (ref->type == REF_SUBSTRING)
1198 return 0;
1199
1200 for (ref = actual->ref; ref; ref = ref->next)
1201 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT)
1202 break;
1203
1204 if (ref == NULL)
1205 return 0; /* Not an array element */
1206
1207 return 1;
1208}
1209
1210
ee7e677f
TB
1211/* Given a symbol of a formal argument list and an expression, see if
1212 the two are compatible as arguments. Returns nonzero if
1213 compatible, zero if not compatible. */
1214
1215static int
1216compare_parameter_protected (gfc_symbol * formal, gfc_expr * actual)
1217{
1218 if (actual->expr_type != EXPR_VARIABLE)
1219 return 1;
1220
1221 if (!actual->symtree->n.sym->attr.protected)
1222 return 1;
1223
1224 if (!actual->symtree->n.sym->attr.use_assoc)
1225 return 1;
1226
1227 if (formal->attr.intent == INTENT_IN
1228 || formal->attr.intent == INTENT_UNKNOWN)
1229 return 1;
1230
1231 if (!actual->symtree->n.sym->attr.pointer)
1232 return 0;
1233
1234 if (actual->symtree->n.sym->attr.pointer && formal->attr.pointer)
1235 return 0;
1236
1237 return 1;
1238}
1239
1240
6de9cd9a
DN
1241/* Given formal and actual argument lists, see if they are compatible.
1242 If they are compatible, the actual argument list is sorted to
1243 correspond with the formal list, and elements for missing optional
1244 arguments are inserted. If WHERE pointer is nonnull, then we issue
1245 errors when things don't match instead of just returning the status
1246 code. */
1247
1248static int
1249compare_actual_formal (gfc_actual_arglist ** ap,
1250 gfc_formal_arglist * formal,
1251 int ranks_must_agree, int is_elemental, locus * where)
1252{
1253 gfc_actual_arglist **new, *a, *actual, temp;
1254 gfc_formal_arglist *f;
699fa7aa 1255 gfc_gsymbol *gsym;
6de9cd9a 1256 int i, n, na;
98cb5a54 1257 bool rank_check;
6de9cd9a
DN
1258
1259 actual = *ap;
1260
1261 if (actual == NULL && formal == NULL)
1262 return 1;
1263
1264 n = 0;
1265 for (f = formal; f; f = f->next)
1266 n++;
1267
1268 new = (gfc_actual_arglist **) alloca (n * sizeof (gfc_actual_arglist *));
1269
1270 for (i = 0; i < n; i++)
1271 new[i] = NULL;
1272
1273 na = 0;
1274 f = formal;
1275 i = 0;
1276
1277 for (a = actual; a; a = a->next, f = f->next)
1278 {
cb9e4f55 1279 if (a->name != NULL)
6de9cd9a
DN
1280 {
1281 i = 0;
1282 for (f = formal; f; f = f->next, i++)
1283 {
1284 if (f->sym == NULL)
1285 continue;
1286 if (strcmp (f->sym->name, a->name) == 0)
1287 break;
1288 }
1289
1290 if (f == NULL)
1291 {
1292 if (where)
1293 gfc_error
1294 ("Keyword argument '%s' at %L is not in the procedure",
1295 a->name, &a->expr->where);
1296 return 0;
1297 }
1298
1299 if (new[i] != NULL)
1300 {
1301 if (where)
1302 gfc_error
1303 ("Keyword argument '%s' at %L is already associated "
1304 "with another actual argument", a->name, &a->expr->where);
1305 return 0;
1306 }
1307 }
1308
1309 if (f == NULL)
1310 {
1311 if (where)
1312 gfc_error
1313 ("More actual than formal arguments in procedure call at %L",
1314 where);
1315
1316 return 0;
1317 }
1318
1319 if (f->sym == NULL && a->expr == NULL)
1320 goto match;
1321
1322 if (f->sym == NULL)
1323 {
1324 if (where)
1325 gfc_error
1326 ("Missing alternate return spec in subroutine call at %L",
1327 where);
1328 return 0;
1329 }
1330
1331 if (a->expr == NULL)
1332 {
1333 if (where)
1334 gfc_error
1335 ("Unexpected alternate return spec in subroutine call at %L",
1336 where);
1337 return 0;
1338 }
1339
98cb5a54
PT
1340 rank_check = where != NULL
1341 && !is_elemental
1342 && f->sym->as
1343 && (f->sym->as->type == AS_ASSUMED_SHAPE
1344 || f->sym->as->type == AS_DEFERRED);
1345
6de9cd9a 1346 if (!compare_parameter
98cb5a54 1347 (f->sym, a->expr, ranks_must_agree || rank_check, is_elemental))
6de9cd9a
DN
1348 {
1349 if (where)
1350 gfc_error ("Type/rank mismatch in argument '%s' at %L",
1351 f->sym->name, &a->expr->where);
1352 return 0;
1353 }
1354
699fa7aa
PT
1355 /* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is
1356 provided for a procedure formal argument. */
1357 if (a->expr->ts.type != BT_PROCEDURE
1358 && a->expr->expr_type == EXPR_VARIABLE
1359 && f->sym->attr.flavor == FL_PROCEDURE)
1360 {
1361 gsym = gfc_find_gsymbol (gfc_gsym_root,
1362 a->expr->symtree->n.sym->name);
1363 if (gsym == NULL || (gsym->type != GSYM_FUNCTION
1364 && gsym->type != GSYM_SUBROUTINE))
1365 {
1366 if (where)
1367 gfc_error ("Expected a procedure for argument '%s' at %L",
1368 f->sym->name, &a->expr->where);
1369 return 0;
1370 }
1371 }
1372
d68bd5a8
PT
1373 if (f->sym->attr.flavor == FL_PROCEDURE
1374 && f->sym->attr.pure
1375 && a->expr->ts.type == BT_PROCEDURE
1376 && !a->expr->symtree->n.sym->attr.pure)
1377 {
1378 if (where)
1379 gfc_error ("Expected a PURE procedure for argument '%s' at %L",
1380 f->sym->name, &a->expr->where);
1381 return 0;
1382 }
1383
bf9d2177
JJ
1384 if (f->sym->as
1385 && f->sym->as->type == AS_ASSUMED_SHAPE
1386 && a->expr->expr_type == EXPR_VARIABLE
1387 && a->expr->symtree->n.sym->as
1388 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
1389 && (a->expr->ref == NULL
1390 || (a->expr->ref->type == REF_ARRAY
1391 && a->expr->ref->u.ar.type == AR_FULL)))
1392 {
1393 if (where)
1394 gfc_error ("Actual argument for '%s' cannot be an assumed-size"
1395 " array at %L", f->sym->name, where);
1396 return 0;
1397 }
1398
1600fe22
TS
1399 if (a->expr->expr_type != EXPR_NULL
1400 && compare_pointer (f->sym, a->expr) == 0)
6de9cd9a
DN
1401 {
1402 if (where)
1403 gfc_error ("Actual argument for '%s' must be a pointer at %L",
1404 f->sym->name, &a->expr->where);
1405 return 0;
1406 }
1407
aa08038d
EE
1408 if (a->expr->expr_type != EXPR_NULL
1409 && compare_allocatable (f->sym, a->expr) == 0)
1410 {
1411 if (where)
1412 gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
1413 f->sym->name, &a->expr->where);
1414 return 0;
1415 }
1416
a920e94a
PT
1417 /* Check intent = OUT/INOUT for definable actual argument. */
1418 if (a->expr->expr_type != EXPR_VARIABLE
1419 && (f->sym->attr.intent == INTENT_OUT
1420 || f->sym->attr.intent == INTENT_INOUT))
1421 {
536afc35
PT
1422 if (where)
1423 gfc_error ("Actual argument at %L must be definable to "
1424 "match dummy INTENT = OUT/INOUT", &a->expr->where);
a920e94a
PT
1425 return 0;
1426 }
1427
ee7e677f
TB
1428 if (!compare_parameter_protected(f->sym, a->expr))
1429 {
1430 if (where)
1431 gfc_error ("Actual argument at %L is use-associated with "
1432 "PROTECTED attribute and dummy argument '%s' is "
1433 "INTENT = OUT/INOUT",
1434 &a->expr->where,f->sym->name);
1435 return 0;
1436 }
1437
6de9cd9a
DN
1438 match:
1439 if (a == actual)
1440 na = i;
1441
1442 new[i++] = a;
1443 }
1444
1445 /* Make sure missing actual arguments are optional. */
1446 i = 0;
1447 for (f = formal; f; f = f->next, i++)
1448 {
1449 if (new[i] != NULL)
1450 continue;
1451 if (!f->sym->attr.optional)
1452 {
1453 if (where)
1454 gfc_error ("Missing actual argument for argument '%s' at %L",
1455 f->sym->name, where);
1456 return 0;
1457 }
1458 }
1459
1460 /* The argument lists are compatible. We now relink a new actual
1461 argument list with null arguments in the right places. The head
1462 of the list remains the head. */
1463 for (i = 0; i < n; i++)
1464 if (new[i] == NULL)
1465 new[i] = gfc_get_actual_arglist ();
1466
1467 if (na != 0)
1468 {
1469 temp = *new[0];
1470 *new[0] = *actual;
1471 *actual = temp;
1472
1473 a = new[0];
1474 new[0] = new[na];
1475 new[na] = a;
1476 }
1477
1478 for (i = 0; i < n - 1; i++)
1479 new[i]->next = new[i + 1];
1480
1481 new[i]->next = NULL;
1482
1483 if (*ap == NULL && n > 0)
1484 *ap = new[0];
1485
1600fe22
TS
1486 /* Note the types of omitted optional arguments. */
1487 for (a = actual, f = formal; a; a = a->next, f = f->next)
1488 if (a->expr == NULL && a->label == NULL)
1489 a->missing_arg_type = f->sym->ts.type;
1490
6de9cd9a
DN
1491 return 1;
1492}
1493
1494
1495typedef struct
1496{
1497 gfc_formal_arglist *f;
1498 gfc_actual_arglist *a;
1499}
1500argpair;
1501
1502/* qsort comparison function for argument pairs, with the following
1503 order:
1504 - p->a->expr == NULL
1505 - p->a->expr->expr_type != EXPR_VARIABLE
f7b529fa 1506 - growing p->a->expr->symbol. */
6de9cd9a
DN
1507
1508static int
1509pair_cmp (const void *p1, const void *p2)
1510{
1511 const gfc_actual_arglist *a1, *a2;
1512
1513 /* *p1 and *p2 are elements of the to-be-sorted array. */
1514 a1 = ((const argpair *) p1)->a;
1515 a2 = ((const argpair *) p2)->a;
1516 if (!a1->expr)
1517 {
1518 if (!a2->expr)
1519 return 0;
1520 return -1;
1521 }
1522 if (!a2->expr)
1523 return 1;
1524 if (a1->expr->expr_type != EXPR_VARIABLE)
1525 {
1526 if (a2->expr->expr_type != EXPR_VARIABLE)
1527 return 0;
1528 return -1;
1529 }
1530 if (a2->expr->expr_type != EXPR_VARIABLE)
1531 return 1;
1532 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
1533}
1534
1535
1536/* Given two expressions from some actual arguments, test whether they
1537 refer to the same expression. The analysis is conservative.
1538 Returning FAILURE will produce no warning. */
1539
1540static try
1541compare_actual_expr (gfc_expr * e1, gfc_expr * e2)
1542{
1543 const gfc_ref *r1, *r2;
1544
1545 if (!e1 || !e2
1546 || e1->expr_type != EXPR_VARIABLE
1547 || e2->expr_type != EXPR_VARIABLE
1548 || e1->symtree->n.sym != e2->symtree->n.sym)
1549 return FAILURE;
1550
1551 /* TODO: improve comparison, see expr.c:show_ref(). */
1552 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
1553 {
1554 if (r1->type != r2->type)
1555 return FAILURE;
1556 switch (r1->type)
1557 {
1558 case REF_ARRAY:
1559 if (r1->u.ar.type != r2->u.ar.type)
1560 return FAILURE;
1561 /* TODO: At the moment, consider only full arrays;
1562 we could do better. */
1563 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
1564 return FAILURE;
1565 break;
1566
1567 case REF_COMPONENT:
1568 if (r1->u.c.component != r2->u.c.component)
1569 return FAILURE;
1570 break;
1571
1572 case REF_SUBSTRING:
1573 return FAILURE;
1574
1575 default:
1576 gfc_internal_error ("compare_actual_expr(): Bad component code");
1577 }
1578 }
1579 if (!r1 && !r2)
1580 return SUCCESS;
1581 return FAILURE;
1582}
1583
1584/* Given formal and actual argument lists that correspond to one
1585 another, check that identical actual arguments aren't not
1586 associated with some incompatible INTENTs. */
1587
1588static try
1589check_some_aliasing (gfc_formal_arglist * f, gfc_actual_arglist * a)
1590{
1591 sym_intent f1_intent, f2_intent;
1592 gfc_formal_arglist *f1;
1593 gfc_actual_arglist *a1;
1594 size_t n, i, j;
1595 argpair *p;
1596 try t = SUCCESS;
1597
1598 n = 0;
1599 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
1600 {
1601 if (f1 == NULL && a1 == NULL)
1602 break;
1603 if (f1 == NULL || a1 == NULL)
1604 gfc_internal_error ("check_some_aliasing(): List mismatch");
1605 n++;
1606 }
1607 if (n == 0)
1608 return t;
1609 p = (argpair *) alloca (n * sizeof (argpair));
1610
1611 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
1612 {
1613 p[i].f = f1;
1614 p[i].a = a1;
1615 }
1616
1617 qsort (p, n, sizeof (argpair), pair_cmp);
1618
1619 for (i = 0; i < n; i++)
1620 {
1621 if (!p[i].a->expr
1622 || p[i].a->expr->expr_type != EXPR_VARIABLE
1623 || p[i].a->expr->ts.type == BT_PROCEDURE)
1624 continue;
1625 f1_intent = p[i].f->sym->attr.intent;
1626 for (j = i + 1; j < n; j++)
1627 {
1628 /* Expected order after the sort. */
1629 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
1630 gfc_internal_error ("check_some_aliasing(): corrupted data");
1631
1632 /* Are the expression the same? */
1633 if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
1634 break;
1635 f2_intent = p[j].f->sym->attr.intent;
1636 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
1637 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
1638 {
1639 gfc_warning ("Same actual argument associated with INTENT(%s) "
1640 "argument '%s' and INTENT(%s) argument '%s' at %L",
1641 gfc_intent_string (f1_intent), p[i].f->sym->name,
1642 gfc_intent_string (f2_intent), p[j].f->sym->name,
1643 &p[i].a->expr->where);
1644 t = FAILURE;
1645 }
1646 }
1647 }
1648
1649 return t;
1650}
1651
1652
1653/* Given formal and actual argument lists that correspond to one
1654 another, check that they are compatible in the sense that intents
1655 are not mismatched. */
1656
1657static try
1658check_intents (gfc_formal_arglist * f, gfc_actual_arglist * a)
1659{
1660 sym_intent a_intent, f_intent;
1661
1662 for (;; f = f->next, a = a->next)
1663 {
1664 if (f == NULL && a == NULL)
1665 break;
1666 if (f == NULL || a == NULL)
1667 gfc_internal_error ("check_intents(): List mismatch");
1668
1669 if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
1670 continue;
1671
1672 a_intent = a->expr->symtree->n.sym->attr.intent;
1673 f_intent = f->sym->attr.intent;
1674
1675 if (a_intent == INTENT_IN
1676 && (f_intent == INTENT_INOUT
1677 || f_intent == INTENT_OUT))
1678 {
1679
1680 gfc_error ("Procedure argument at %L is INTENT(IN) while interface "
1681 "specifies INTENT(%s)", &a->expr->where,
1682 gfc_intent_string (f_intent));
1683 return FAILURE;
1684 }
1685
1686 if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
1687 {
1688 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
1689 {
1690 gfc_error
1691 ("Procedure argument at %L is local to a PURE procedure and "
1692 "is passed to an INTENT(%s) argument", &a->expr->where,
1693 gfc_intent_string (f_intent));
1694 return FAILURE;
1695 }
1696
1697 if (a->expr->symtree->n.sym->attr.pointer)
1698 {
1699 gfc_error
1700 ("Procedure argument at %L is local to a PURE procedure and "
1701 "has the POINTER attribute", &a->expr->where);
1702 return FAILURE;
1703 }
1704 }
1705 }
1706
1707 return SUCCESS;
1708}
1709
1710
1711/* Check how a procedure is used against its interface. If all goes
1712 well, the actual argument list will also end up being properly
1713 sorted. */
1714
1715void
1716gfc_procedure_use (gfc_symbol * sym, gfc_actual_arglist ** ap, locus * where)
1717{
c4bbc105 1718
6de9cd9a
DN
1719 /* Warn about calls with an implicit interface. */
1720 if (gfc_option.warn_implicit_interface
1721 && sym->attr.if_source == IFSRC_UNKNOWN)
1722 gfc_warning ("Procedure '%s' called with an implicit interface at %L",
1723 sym->name, where);
1724
1725 if (sym->attr.if_source == IFSRC_UNKNOWN
98cb5a54 1726 || !compare_actual_formal (ap, sym->formal, 0,
c4bbc105 1727 sym->attr.elemental, where))
6de9cd9a
DN
1728 return;
1729
1730 check_intents (sym->formal, *ap);
1731 if (gfc_option.warn_aliasing)
1732 check_some_aliasing (sym->formal, *ap);
1733}
1734
1735
1736/* Given an interface pointer and an actual argument list, search for
1737 a formal argument list that matches the actual. If found, returns
1738 a pointer to the symbol of the correct interface. Returns NULL if
1739 not found. */
1740
1741gfc_symbol *
1742gfc_search_interface (gfc_interface * intr, int sub_flag,
1743 gfc_actual_arglist ** ap)
1744{
1745 int r;
1746
1747 for (; intr; intr = intr->next)
1748 {
1749 if (sub_flag && intr->sym->attr.function)
1750 continue;
1751 if (!sub_flag && intr->sym->attr.subroutine)
1752 continue;
1753
1754 r = !intr->sym->attr.elemental;
1755
1756 if (compare_actual_formal (ap, intr->sym->formal, r, !r, NULL))
1757 {
1758 check_intents (intr->sym->formal, *ap);
1759 if (gfc_option.warn_aliasing)
1760 check_some_aliasing (intr->sym->formal, *ap);
1761 return intr->sym;
1762 }
1763 }
1764
1765 return NULL;
1766}
1767
1768
1769/* Do a brute force recursive search for a symbol. */
1770
1771static gfc_symtree *
1772find_symtree0 (gfc_symtree * root, gfc_symbol * sym)
1773{
1774 gfc_symtree * st;
1775
1776 if (root->n.sym == sym)
1777 return root;
1778
1779 st = NULL;
1780 if (root->left)
1781 st = find_symtree0 (root->left, sym);
1782 if (root->right && ! st)
1783 st = find_symtree0 (root->right, sym);
1784 return st;
1785}
1786
1787
1788/* Find a symtree for a symbol. */
1789
1790static gfc_symtree *
1791find_sym_in_symtree (gfc_symbol * sym)
1792{
1793 gfc_symtree *st;
1794 gfc_namespace *ns;
1795
1796 /* First try to find it by name. */
1797 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
1798 if (st && st->n.sym == sym)
1799 return st;
1800
1801 /* if it's been renamed, resort to a brute-force search. */
1802 /* TODO: avoid having to do this search. If the symbol doesn't exist
1803 in the symtree for the current namespace, it should probably be added. */
1804 for (ns = gfc_current_ns; ns; ns = ns->parent)
1805 {
1806 st = find_symtree0 (ns->sym_root, sym);
1807 if (st)
1808 return st;
1809 }
1810 gfc_internal_error ("Unable to find symbol %s", sym->name);
1811 /* Not reached */
1812}
1813
1814
1815/* This subroutine is called when an expression is being resolved.
1816 The expression node in question is either a user defined operator
1f2959f0 1817 or an intrinsic operator with arguments that aren't compatible
6de9cd9a
DN
1818 with the operator. This subroutine builds an actual argument list
1819 corresponding to the operands, then searches for a compatible
1820 interface. If one is found, the expression node is replaced with
1821 the appropriate function call. */
1822
1823try
1824gfc_extend_expr (gfc_expr * e)
1825{
1826 gfc_actual_arglist *actual;
1827 gfc_symbol *sym;
1828 gfc_namespace *ns;
1829 gfc_user_op *uop;
1830 gfc_intrinsic_op i;
1831
1832 sym = NULL;
1833
1834 actual = gfc_get_actual_arglist ();
58b03ab2 1835 actual->expr = e->value.op.op1;
6de9cd9a 1836
58b03ab2 1837 if (e->value.op.op2 != NULL)
6de9cd9a
DN
1838 {
1839 actual->next = gfc_get_actual_arglist ();
58b03ab2 1840 actual->next->expr = e->value.op.op2;
6de9cd9a
DN
1841 }
1842
58b03ab2 1843 i = fold_unary (e->value.op.operator);
6de9cd9a
DN
1844
1845 if (i == INTRINSIC_USER)
1846 {
1847 for (ns = gfc_current_ns; ns; ns = ns->parent)
1848 {
58b03ab2 1849 uop = gfc_find_uop (e->value.op.uop->name, ns);
6de9cd9a
DN
1850 if (uop == NULL)
1851 continue;
1852
1853 sym = gfc_search_interface (uop->operator, 0, &actual);
1854 if (sym != NULL)
1855 break;
1856 }
1857 }
1858 else
1859 {
1860 for (ns = gfc_current_ns; ns; ns = ns->parent)
1861 {
1862 sym = gfc_search_interface (ns->operator[i], 0, &actual);
1863 if (sym != NULL)
1864 break;
1865 }
1866 }
1867
1868 if (sym == NULL)
1869 {
1870 /* Don't use gfc_free_actual_arglist() */
1871 if (actual->next != NULL)
1872 gfc_free (actual->next);
1873 gfc_free (actual);
1874
1875 return FAILURE;
1876 }
1877
1878 /* Change the expression node to a function call. */
1879 e->expr_type = EXPR_FUNCTION;
1880 e->symtree = find_sym_in_symtree (sym);
1881 e->value.function.actual = actual;
58b03ab2
TS
1882 e->value.function.esym = NULL;
1883 e->value.function.isym = NULL;
cf013e9f 1884 e->value.function.name = NULL;
6de9cd9a
DN
1885
1886 if (gfc_pure (NULL) && !gfc_pure (sym))
1887 {
1888 gfc_error
1889 ("Function '%s' called in lieu of an operator at %L must be PURE",
1890 sym->name, &e->where);
1891 return FAILURE;
1892 }
1893
1894 if (gfc_resolve_expr (e) == FAILURE)
1895 return FAILURE;
1896
1897 return SUCCESS;
1898}
1899
1900
1901/* Tries to replace an assignment code node with a subroutine call to
1902 the subroutine associated with the assignment operator. Return
1903 SUCCESS if the node was replaced. On FAILURE, no error is
1904 generated. */
1905
1906try
1907gfc_extend_assign (gfc_code * c, gfc_namespace * ns)
1908{
1909 gfc_actual_arglist *actual;
1910 gfc_expr *lhs, *rhs;
1911 gfc_symbol *sym;
1912
1913 lhs = c->expr;
1914 rhs = c->expr2;
1915
1916 /* Don't allow an intrinsic assignment to be replaced. */
1917 if (lhs->ts.type != BT_DERIVED && rhs->ts.type != BT_DERIVED
1918 && (lhs->ts.type == rhs->ts.type
1919 || (gfc_numeric_ts (&lhs->ts)
1920 && gfc_numeric_ts (&rhs->ts))))
1921 return FAILURE;
1922
1923 actual = gfc_get_actual_arglist ();
1924 actual->expr = lhs;
1925
1926 actual->next = gfc_get_actual_arglist ();
1927 actual->next->expr = rhs;
1928
1929 sym = NULL;
1930
1931 for (; ns; ns = ns->parent)
1932 {
1933 sym = gfc_search_interface (ns->operator[INTRINSIC_ASSIGN], 1, &actual);
1934 if (sym != NULL)
1935 break;
1936 }
1937
1938 if (sym == NULL)
1939 {
1940 gfc_free (actual->next);
1941 gfc_free (actual);
1942 return FAILURE;
1943 }
1944
1945 /* Replace the assignment with the call. */
476220e7 1946 c->op = EXEC_ASSIGN_CALL;
6de9cd9a
DN
1947 c->symtree = find_sym_in_symtree (sym);
1948 c->expr = NULL;
1949 c->expr2 = NULL;
1950 c->ext.actual = actual;
1951
6de9cd9a
DN
1952 return SUCCESS;
1953}
1954
1955
1956/* Make sure that the interface just parsed is not already present in
1957 the given interface list. Ambiguity isn't checked yet since module
1958 procedures can be present without interfaces. */
1959
1960static try
1961check_new_interface (gfc_interface * base, gfc_symbol * new)
1962{
1963 gfc_interface *ip;
1964
1965 for (ip = base; ip; ip = ip->next)
1966 {
1967 if (ip->sym == new)
1968 {
1969 gfc_error ("Entity '%s' at %C is already present in the interface",
1970 new->name);
1971 return FAILURE;
1972 }
1973 }
1974
1975 return SUCCESS;
1976}
1977
1978
1979/* Add a symbol to the current interface. */
1980
1981try
1982gfc_add_interface (gfc_symbol * new)
1983{
1984 gfc_interface **head, *intr;
1985 gfc_namespace *ns;
1986 gfc_symbol *sym;
1987
1988 switch (current_interface.type)
1989 {
1990 case INTERFACE_NAMELESS:
1991 return SUCCESS;
1992
1993 case INTERFACE_INTRINSIC_OP:
1994 for (ns = current_interface.ns; ns; ns = ns->parent)
1995 if (check_new_interface (ns->operator[current_interface.op], new)
1996 == FAILURE)
1997 return FAILURE;
1998
1999 head = &current_interface.ns->operator[current_interface.op];
2000 break;
2001
2002 case INTERFACE_GENERIC:
2003 for (ns = current_interface.ns; ns; ns = ns->parent)
2004 {
2005 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
2006 if (sym == NULL)
2007 continue;
2008
2009 if (check_new_interface (sym->generic, new) == FAILURE)
2010 return FAILURE;
2011 }
2012
2013 head = &current_interface.sym->generic;
2014 break;
2015
2016 case INTERFACE_USER_OP:
2017 if (check_new_interface (current_interface.uop->operator, new) ==
2018 FAILURE)
2019 return FAILURE;
2020
2021 head = &current_interface.uop->operator;
2022 break;
2023
2024 default:
2025 gfc_internal_error ("gfc_add_interface(): Bad interface type");
2026 }
2027
2028 intr = gfc_get_interface ();
2029 intr->sym = new;
63645982 2030 intr->where = gfc_current_locus;
6de9cd9a
DN
2031
2032 intr->next = *head;
2033 *head = intr;
2034
2035 return SUCCESS;
2036}
2037
2038
2039/* Gets rid of a formal argument list. We do not free symbols.
2040 Symbols are freed when a namespace is freed. */
2041
2042void
2043gfc_free_formal_arglist (gfc_formal_arglist * p)
2044{
2045 gfc_formal_arglist *q;
2046
2047 for (; p; p = q)
2048 {
2049 q = p->next;
2050 gfc_free (p);
2051 }
2052}