]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/fortran/interface.c
df-problems.c (df_live_problem_data): Add live_bitmaps.
[thirdparty/gcc.git] / gcc / fortran / interface.c
CommitLineData
6de9cd9a 1/* Deal with interfaces.
fa502cb2
PT
2 Copyright (C) 2000, 2001, 2002, 2004, 2005, 2006, 2007, 2008, 2009,
3 2010
b251af97 4 Free Software Foundation, Inc.
6de9cd9a
DN
5 Contributed by Andy Vaught
6
9fc4d79b 7This file is part of GCC.
6de9cd9a 8
9fc4d79b
TS
9GCC is free software; you can redistribute it and/or modify it under
10the terms of the GNU General Public License as published by the Free
d234d788 11Software Foundation; either version 3, or (at your option) any later
9fc4d79b 12version.
6de9cd9a 13
9fc4d79b
TS
14GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15WARRANTY; without even the implied warranty of MERCHANTABILITY or
16FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17for more details.
6de9cd9a
DN
18
19You should have received a copy of the GNU General Public License
d234d788
NC
20along with GCC; see the file COPYING3. If not see
21<http://www.gnu.org/licenses/>. */
6de9cd9a
DN
22
23
24/* Deal with interfaces. An explicit interface is represented as a
25 singly linked list of formal argument structures attached to the
26 relevant symbols. For an implicit interface, the arguments don't
27 point to symbols. Explicit interfaces point to namespaces that
28 contain the symbols within that interface.
29
30 Implicit interfaces are linked together in a singly linked list
31 along the next_if member of symbol nodes. Since a particular
32 symbol can only have a single explicit interface, the symbol cannot
33 be part of multiple lists and a single next-member suffices.
34
35 This is not the case for general classes, though. An operator
36 definition is independent of just about all other uses and has it's
37 own head pointer.
38
39 Nameless interfaces:
40 Nameless interfaces create symbols with explicit interfaces within
41 the current namespace. They are otherwise unlinked.
42
43 Generic interfaces:
44 The generic name points to a linked list of symbols. Each symbol
6892757c 45 has an explicit interface. Each explicit interface has its own
6de9cd9a
DN
46 namespace containing the arguments. Module procedures are symbols in
47 which the interface is added later when the module procedure is parsed.
48
49 User operators:
50 User-defined operators are stored in a their own set of symtrees
51 separate from regular symbols. The symtrees point to gfc_user_op
52 structures which in turn head up a list of relevant interfaces.
53
54 Extended intrinsics and assignment:
55 The head of these interface lists are stored in the containing namespace.
56
57 Implicit interfaces:
58 An implicit interface is represented as a singly linked list of
59 formal argument list structures that don't point to any symbol
60 nodes -- they just contain types.
61
62
63 When a subprogram is defined, the program unit's name points to an
64 interface as usual, but the link to the namespace is NULL and the
65 formal argument list points to symbols within the same namespace as
66 the program unit name. */
67
68#include "config.h"
d22e4895 69#include "system.h"
6de9cd9a
DN
70#include "gfortran.h"
71#include "match.h"
72
6de9cd9a
DN
73/* The current_interface structure holds information about the
74 interface currently being parsed. This structure is saved and
75 restored during recursive interfaces. */
76
77gfc_interface_info current_interface;
78
79
80/* Free a singly linked list of gfc_interface structures. */
81
82void
b251af97 83gfc_free_interface (gfc_interface *intr)
6de9cd9a
DN
84{
85 gfc_interface *next;
86
87 for (; intr; intr = next)
88 {
89 next = intr->next;
90 gfc_free (intr);
91 }
92}
93
94
95/* Change the operators unary plus and minus into binary plus and
96 minus respectively, leaving the rest unchanged. */
97
98static gfc_intrinsic_op
e8d4f3fc 99fold_unary_intrinsic (gfc_intrinsic_op op)
6de9cd9a 100{
a1ee985f 101 switch (op)
6de9cd9a
DN
102 {
103 case INTRINSIC_UPLUS:
a1ee985f 104 op = INTRINSIC_PLUS;
6de9cd9a
DN
105 break;
106 case INTRINSIC_UMINUS:
a1ee985f 107 op = INTRINSIC_MINUS;
6de9cd9a
DN
108 break;
109 default:
110 break;
111 }
112
a1ee985f 113 return op;
6de9cd9a
DN
114}
115
116
117/* Match a generic specification. Depending on which type of
a1ee985f 118 interface is found, the 'name' or 'op' pointers may be set.
6de9cd9a
DN
119 This subroutine doesn't return MATCH_NO. */
120
121match
b251af97 122gfc_match_generic_spec (interface_type *type,
6de9cd9a 123 char *name,
a1ee985f 124 gfc_intrinsic_op *op)
6de9cd9a
DN
125{
126 char buffer[GFC_MAX_SYMBOL_LEN + 1];
127 match m;
128 gfc_intrinsic_op i;
129
130 if (gfc_match (" assignment ( = )") == MATCH_YES)
131 {
132 *type = INTERFACE_INTRINSIC_OP;
a1ee985f 133 *op = INTRINSIC_ASSIGN;
6de9cd9a
DN
134 return MATCH_YES;
135 }
136
137 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
138 { /* Operator i/f */
139 *type = INTERFACE_INTRINSIC_OP;
e8d4f3fc 140 *op = fold_unary_intrinsic (i);
6de9cd9a
DN
141 return MATCH_YES;
142 }
143
e8d4f3fc 144 *op = INTRINSIC_NONE;
6de9cd9a
DN
145 if (gfc_match (" operator ( ") == MATCH_YES)
146 {
147 m = gfc_match_defined_op_name (buffer, 1);
148 if (m == MATCH_NO)
149 goto syntax;
150 if (m != MATCH_YES)
151 return MATCH_ERROR;
152
153 m = gfc_match_char (')');
154 if (m == MATCH_NO)
155 goto syntax;
156 if (m != MATCH_YES)
157 return MATCH_ERROR;
158
159 strcpy (name, buffer);
160 *type = INTERFACE_USER_OP;
161 return MATCH_YES;
162 }
163
164 if (gfc_match_name (buffer) == MATCH_YES)
165 {
166 strcpy (name, buffer);
167 *type = INTERFACE_GENERIC;
168 return MATCH_YES;
169 }
170
171 *type = INTERFACE_NAMELESS;
172 return MATCH_YES;
173
174syntax:
175 gfc_error ("Syntax error in generic specification at %C");
176 return MATCH_ERROR;
177}
178
179
9e1d712c
TB
180/* Match one of the five F95 forms of an interface statement. The
181 matcher for the abstract interface follows. */
6de9cd9a
DN
182
183match
184gfc_match_interface (void)
185{
186 char name[GFC_MAX_SYMBOL_LEN + 1];
187 interface_type type;
188 gfc_symbol *sym;
a1ee985f 189 gfc_intrinsic_op op;
6de9cd9a
DN
190 match m;
191
192 m = gfc_match_space ();
193
a1ee985f 194 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
6de9cd9a
DN
195 return MATCH_ERROR;
196
6de9cd9a
DN
197 /* If we're not looking at the end of the statement now, or if this
198 is not a nameless interface but we did not see a space, punt. */
199 if (gfc_match_eos () != MATCH_YES
b251af97 200 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
6de9cd9a 201 {
b251af97
SK
202 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
203 "at %C");
6de9cd9a
DN
204 return MATCH_ERROR;
205 }
206
207 current_interface.type = type;
208
209 switch (type)
210 {
211 case INTERFACE_GENERIC:
212 if (gfc_get_symbol (name, NULL, &sym))
213 return MATCH_ERROR;
214
231b2fcc
TS
215 if (!sym->attr.generic
216 && gfc_add_generic (&sym->attr, sym->name, NULL) == FAILURE)
6de9cd9a
DN
217 return MATCH_ERROR;
218
e5d7f6f7
FXC
219 if (sym->attr.dummy)
220 {
221 gfc_error ("Dummy procedure '%s' at %C cannot have a "
222 "generic interface", sym->name);
223 return MATCH_ERROR;
224 }
225
6de9cd9a
DN
226 current_interface.sym = gfc_new_block = sym;
227 break;
228
229 case INTERFACE_USER_OP:
230 current_interface.uop = gfc_get_uop (name);
231 break;
232
233 case INTERFACE_INTRINSIC_OP:
a1ee985f 234 current_interface.op = op;
6de9cd9a
DN
235 break;
236
237 case INTERFACE_NAMELESS:
9e1d712c 238 case INTERFACE_ABSTRACT:
6de9cd9a
DN
239 break;
240 }
241
242 return MATCH_YES;
243}
244
245
9e1d712c
TB
246
247/* Match a F2003 abstract interface. */
248
249match
250gfc_match_abstract_interface (void)
251{
252 match m;
253
254 if (gfc_notify_std (GFC_STD_F2003, "Fortran 2003: ABSTRACT INTERFACE at %C")
255 == FAILURE)
256 return MATCH_ERROR;
257
258 m = gfc_match_eos ();
259
260 if (m != MATCH_YES)
261 {
262 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
263 return MATCH_ERROR;
264 }
265
266 current_interface.type = INTERFACE_ABSTRACT;
267
268 return m;
269}
270
271
6de9cd9a
DN
272/* Match the different sort of generic-specs that can be present after
273 the END INTERFACE itself. */
274
275match
276gfc_match_end_interface (void)
277{
278 char name[GFC_MAX_SYMBOL_LEN + 1];
279 interface_type type;
a1ee985f 280 gfc_intrinsic_op op;
6de9cd9a
DN
281 match m;
282
283 m = gfc_match_space ();
284
a1ee985f 285 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
6de9cd9a
DN
286 return MATCH_ERROR;
287
288 /* If we're not looking at the end of the statement now, or if this
289 is not a nameless interface but we did not see a space, punt. */
290 if (gfc_match_eos () != MATCH_YES
b251af97 291 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
6de9cd9a 292 {
b251af97
SK
293 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
294 "statement at %C");
6de9cd9a
DN
295 return MATCH_ERROR;
296 }
297
298 m = MATCH_YES;
299
300 switch (current_interface.type)
301 {
302 case INTERFACE_NAMELESS:
9e1d712c
TB
303 case INTERFACE_ABSTRACT:
304 if (type != INTERFACE_NAMELESS)
6de9cd9a
DN
305 {
306 gfc_error ("Expected a nameless interface at %C");
307 m = MATCH_ERROR;
308 }
309
310 break;
311
312 case INTERFACE_INTRINSIC_OP:
a1ee985f 313 if (type != current_interface.type || op != current_interface.op)
6de9cd9a
DN
314 {
315
316 if (current_interface.op == INTRINSIC_ASSIGN)
317 gfc_error ("Expected 'END INTERFACE ASSIGNMENT (=)' at %C");
318 else
319 gfc_error ("Expecting 'END INTERFACE OPERATOR (%s)' at %C",
320 gfc_op2string (current_interface.op));
321
322 m = MATCH_ERROR;
323 }
324
325 break;
326
327 case INTERFACE_USER_OP:
328 /* Comparing the symbol node names is OK because only use-associated
b251af97 329 symbols can be renamed. */
6de9cd9a 330 if (type != current_interface.type
9b46f94f 331 || strcmp (current_interface.uop->name, name) != 0)
6de9cd9a
DN
332 {
333 gfc_error ("Expecting 'END INTERFACE OPERATOR (.%s.)' at %C",
55898b2c 334 current_interface.uop->name);
6de9cd9a
DN
335 m = MATCH_ERROR;
336 }
337
338 break;
339
340 case INTERFACE_GENERIC:
341 if (type != current_interface.type
342 || strcmp (current_interface.sym->name, name) != 0)
343 {
344 gfc_error ("Expecting 'END INTERFACE %s' at %C",
345 current_interface.sym->name);
346 m = MATCH_ERROR;
347 }
348
349 break;
350 }
351
352 return m;
353}
354
355
e0e85e06
PT
356/* Compare two derived types using the criteria in 4.4.2 of the standard,
357 recursing through gfc_compare_types for the components. */
6de9cd9a
DN
358
359int
b251af97 360gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
6de9cd9a
DN
361{
362 gfc_component *dt1, *dt2;
363
cf2b3c22
TB
364 if (derived1 == derived2)
365 return 1;
366
6de9cd9a
DN
367 /* Special case for comparing derived types across namespaces. If the
368 true names and module names are the same and the module name is
369 nonnull, then they are equal. */
a8b3b0b6
CR
370 if (derived1 != NULL && derived2 != NULL
371 && strcmp (derived1->name, derived2->name) == 0
b251af97
SK
372 && derived1->module != NULL && derived2->module != NULL
373 && strcmp (derived1->module, derived2->module) == 0)
6de9cd9a
DN
374 return 1;
375
376 /* Compare type via the rules of the standard. Both types must have
377 the SEQUENCE attribute to be equal. */
378
e0e85e06 379 if (strcmp (derived1->name, derived2->name))
6de9cd9a
DN
380 return 0;
381
e0e85e06 382 if (derived1->component_access == ACCESS_PRIVATE
b251af97 383 || derived2->component_access == ACCESS_PRIVATE)
e0e85e06 384 return 0;
6de9cd9a 385
e0e85e06 386 if (derived1->attr.sequence == 0 || derived2->attr.sequence == 0)
6de9cd9a
DN
387 return 0;
388
e0e85e06
PT
389 dt1 = derived1->components;
390 dt2 = derived2->components;
391
6de9cd9a
DN
392 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
393 simple test can speed things up. Otherwise, lots of things have to
394 match. */
395 for (;;)
396 {
397 if (strcmp (dt1->name, dt2->name) != 0)
398 return 0;
399
d4b7d0f0 400 if (dt1->attr.access != dt2->attr.access)
2eae3dc7
TB
401 return 0;
402
d4b7d0f0 403 if (dt1->attr.pointer != dt2->attr.pointer)
6de9cd9a
DN
404 return 0;
405
d4b7d0f0 406 if (dt1->attr.dimension != dt2->attr.dimension)
6de9cd9a
DN
407 return 0;
408
d4b7d0f0 409 if (dt1->attr.allocatable != dt2->attr.allocatable)
5046aff5
PT
410 return 0;
411
d4b7d0f0 412 if (dt1->attr.dimension && gfc_compare_array_spec (dt1->as, dt2->as) == 0)
6de9cd9a
DN
413 return 0;
414
6669dbdf
PT
415 /* Make sure that link lists do not put this function into an
416 endless recursive loop! */
bc21d315
JW
417 if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
418 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
63287e10
PT
419 && gfc_compare_types (&dt1->ts, &dt2->ts) == 0)
420 return 0;
421
bc21d315
JW
422 else if ((dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
423 && !(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
6669dbdf
PT
424 return 0;
425
bc21d315
JW
426 else if (!(dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived)
427 && (dt1->ts.type == BT_DERIVED && derived1 == dt1->ts.u.derived))
6de9cd9a
DN
428 return 0;
429
430 dt1 = dt1->next;
431 dt2 = dt2->next;
432
433 if (dt1 == NULL && dt2 == NULL)
434 break;
435 if (dt1 == NULL || dt2 == NULL)
436 return 0;
437 }
438
439 return 1;
440}
441
b251af97 442
e0e85e06
PT
443/* Compare two typespecs, recursively if necessary. */
444
445int
b251af97 446gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
e0e85e06 447{
a8b3b0b6
CR
448 /* See if one of the typespecs is a BT_VOID, which is what is being used
449 to allow the funcs like c_f_pointer to accept any pointer type.
450 TODO: Possibly should narrow this to just the one typespec coming in
451 that is for the formal arg, but oh well. */
452 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
453 return 1;
454
cf2b3c22
TB
455 if (ts1->type != ts2->type
456 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
457 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
e0e85e06 458 return 0;
cf2b3c22 459 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
e0e85e06
PT
460 return (ts1->kind == ts2->kind);
461
462 /* Compare derived types. */
cf2b3c22 463 if (gfc_type_compatible (ts1, ts2))
e0e85e06
PT
464 return 1;
465
bc21d315 466 return gfc_compare_derived_types (ts1->u.derived ,ts2->u.derived);
e0e85e06
PT
467}
468
6de9cd9a
DN
469
470/* Given two symbols that are formal arguments, compare their ranks
471 and types. Returns nonzero if they have the same rank and type,
472 zero otherwise. */
473
474static int
b251af97 475compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
6de9cd9a
DN
476{
477 int r1, r2;
478
479 r1 = (s1->as != NULL) ? s1->as->rank : 0;
480 r2 = (s2->as != NULL) ? s2->as->rank : 0;
481
482 if (r1 != r2)
66e4ab31 483 return 0; /* Ranks differ. */
6de9cd9a
DN
484
485 return gfc_compare_types (&s1->ts, &s2->ts);
486}
487
488
6de9cd9a
DN
489/* Given two symbols that are formal arguments, compare their types
490 and rank and their formal interfaces if they are both dummy
491 procedures. Returns nonzero if the same, zero if different. */
492
493static int
b251af97 494compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
6de9cd9a 495{
26f2ca2b
PT
496 if (s1 == NULL || s2 == NULL)
497 return s1 == s2 ? 1 : 0;
6de9cd9a 498
489ec4e3
PT
499 if (s1 == s2)
500 return 1;
501
6de9cd9a
DN
502 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
503 return compare_type_rank (s1, s2);
504
505 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
506 return 0;
507
489ec4e3
PT
508 /* At this point, both symbols are procedures. It can happen that
509 external procedures are compared, where one is identified by usage
510 to be a function or subroutine but the other is not. Check TKR
511 nonetheless for these cases. */
512 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
513 return s1->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
514
515 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
516 return s2->attr.external == 1 ? compare_type_rank (s1, s2) : 0;
6de9cd9a 517
489ec4e3 518 /* Now the type of procedure has been identified. */
6de9cd9a
DN
519 if (s1->attr.function != s2->attr.function
520 || s1->attr.subroutine != s2->attr.subroutine)
521 return 0;
522
523 if (s1->attr.function && compare_type_rank (s1, s2) == 0)
524 return 0;
525
993ef28f
PT
526 /* Originally, gfortran recursed here to check the interfaces of passed
527 procedures. This is explicitly not required by the standard. */
528 return 1;
6de9cd9a
DN
529}
530
531
532/* Given a formal argument list and a keyword name, search the list
533 for that keyword. Returns the correct symbol node if found, NULL
534 if not found. */
535
536static gfc_symbol *
b251af97 537find_keyword_arg (const char *name, gfc_formal_arglist *f)
6de9cd9a 538{
6de9cd9a
DN
539 for (; f; f = f->next)
540 if (strcmp (f->sym->name, name) == 0)
541 return f->sym;
542
543 return NULL;
544}
545
546
547/******** Interface checking subroutines **********/
548
549
550/* Given an operator interface and the operator, make sure that all
551 interfaces for that operator are legal. */
552
94747289
DK
553bool
554gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
555 locus opwhere)
6de9cd9a
DN
556{
557 gfc_formal_arglist *formal;
558 sym_intent i1, i2;
6de9cd9a 559 bt t1, t2;
27189292 560 int args, r1, r2, k1, k2;
6de9cd9a 561
94747289 562 gcc_assert (sym);
6de9cd9a
DN
563
564 args = 0;
565 t1 = t2 = BT_UNKNOWN;
566 i1 = i2 = INTENT_UNKNOWN;
27189292
FXC
567 r1 = r2 = -1;
568 k1 = k2 = -1;
6de9cd9a 569
94747289 570 for (formal = sym->formal; formal; formal = formal->next)
6de9cd9a 571 {
94747289
DK
572 gfc_symbol *fsym = formal->sym;
573 if (fsym == NULL)
8c086c9c
PT
574 {
575 gfc_error ("Alternate return cannot appear in operator "
94747289
DK
576 "interface at %L", &sym->declared_at);
577 return false;
8c086c9c 578 }
6de9cd9a
DN
579 if (args == 0)
580 {
94747289
DK
581 t1 = fsym->ts.type;
582 i1 = fsym->attr.intent;
583 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
584 k1 = fsym->ts.kind;
6de9cd9a
DN
585 }
586 if (args == 1)
587 {
94747289
DK
588 t2 = fsym->ts.type;
589 i2 = fsym->attr.intent;
590 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
591 k2 = fsym->ts.kind;
6de9cd9a
DN
592 }
593 args++;
594 }
595
27189292
FXC
596 /* Only +, - and .not. can be unary operators.
597 .not. cannot be a binary operator. */
a1ee985f
KG
598 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
599 && op != INTRINSIC_MINUS
600 && op != INTRINSIC_NOT)
601 || (args == 2 && op == INTRINSIC_NOT))
27189292
FXC
602 {
603 gfc_error ("Operator interface at %L has the wrong number of arguments",
94747289
DK
604 &sym->declared_at);
605 return false;
27189292
FXC
606 }
607
608 /* Check that intrinsics are mapped to functions, except
609 INTRINSIC_ASSIGN which should map to a subroutine. */
a1ee985f 610 if (op == INTRINSIC_ASSIGN)
6de9cd9a
DN
611 {
612 if (!sym->attr.subroutine)
613 {
b251af97 614 gfc_error ("Assignment operator interface at %L must be "
94747289
DK
615 "a SUBROUTINE", &sym->declared_at);
616 return false;
6de9cd9a 617 }
8c086c9c
PT
618 if (args != 2)
619 {
b251af97 620 gfc_error ("Assignment operator interface at %L must have "
94747289
DK
621 "two arguments", &sym->declared_at);
622 return false;
8c086c9c 623 }
e19bb186
TB
624
625 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
94747289
DK
626 - First argument an array with different rank than second,
627 - Types and kinds do not conform, and
628 - First argument is of derived type. */
8c086c9c 629 if (sym->formal->sym->ts.type != BT_DERIVED
6168891d 630 && sym->formal->sym->ts.type != BT_CLASS
e19bb186 631 && (r1 == 0 || r1 == r2)
b251af97
SK
632 && (sym->formal->sym->ts.type == sym->formal->next->sym->ts.type
633 || (gfc_numeric_ts (&sym->formal->sym->ts)
634 && gfc_numeric_ts (&sym->formal->next->sym->ts))))
8c086c9c 635 {
b251af97 636 gfc_error ("Assignment operator interface at %L must not redefine "
94747289
DK
637 "an INTRINSIC type assignment", &sym->declared_at);
638 return false;
8c086c9c 639 }
6de9cd9a
DN
640 }
641 else
642 {
643 if (!sym->attr.function)
644 {
645 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
94747289
DK
646 &sym->declared_at);
647 return false;
6de9cd9a
DN
648 }
649 }
650
27189292 651 /* Check intents on operator interfaces. */
a1ee985f 652 if (op == INTRINSIC_ASSIGN)
6de9cd9a 653 {
27189292 654 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
94747289
DK
655 {
656 gfc_error ("First argument of defined assignment at %L must be "
657 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
658 return false;
659 }
27189292
FXC
660
661 if (i2 != INTENT_IN)
94747289
DK
662 {
663 gfc_error ("Second argument of defined assignment at %L must be "
664 "INTENT(IN)", &sym->declared_at);
665 return false;
666 }
27189292
FXC
667 }
668 else
669 {
670 if (i1 != INTENT_IN)
94747289
DK
671 {
672 gfc_error ("First argument of operator interface at %L must be "
673 "INTENT(IN)", &sym->declared_at);
674 return false;
675 }
27189292
FXC
676
677 if (args == 2 && i2 != INTENT_IN)
94747289
DK
678 {
679 gfc_error ("Second argument of operator interface at %L must be "
680 "INTENT(IN)", &sym->declared_at);
681 return false;
682 }
27189292
FXC
683 }
684
685 /* From now on, all we have to do is check that the operator definition
686 doesn't conflict with an intrinsic operator. The rules for this
687 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
688 as well as 12.3.2.1.1 of Fortran 2003:
689
690 "If the operator is an intrinsic-operator (R310), the number of
691 function arguments shall be consistent with the intrinsic uses of
692 that operator, and the types, kind type parameters, or ranks of the
693 dummy arguments shall differ from those required for the intrinsic
694 operation (7.1.2)." */
695
696#define IS_NUMERIC_TYPE(t) \
697 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
698
699 /* Unary ops are easy, do them first. */
a1ee985f 700 if (op == INTRINSIC_NOT)
27189292
FXC
701 {
702 if (t1 == BT_LOGICAL)
6de9cd9a 703 goto bad_repl;
27189292 704 else
94747289 705 return true;
27189292 706 }
6de9cd9a 707
a1ee985f 708 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
27189292
FXC
709 {
710 if (IS_NUMERIC_TYPE (t1))
6de9cd9a 711 goto bad_repl;
27189292 712 else
94747289 713 return true;
27189292 714 }
6de9cd9a 715
27189292
FXC
716 /* Character intrinsic operators have same character kind, thus
717 operator definitions with operands of different character kinds
718 are always safe. */
719 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
94747289 720 return true;
6de9cd9a 721
27189292
FXC
722 /* Intrinsic operators always perform on arguments of same rank,
723 so different ranks is also always safe. (rank == 0) is an exception
724 to that, because all intrinsic operators are elemental. */
725 if (r1 != r2 && r1 != 0 && r2 != 0)
94747289 726 return true;
6de9cd9a 727
a1ee985f 728 switch (op)
27189292 729 {
6de9cd9a 730 case INTRINSIC_EQ:
3bed9dd0 731 case INTRINSIC_EQ_OS:
6de9cd9a 732 case INTRINSIC_NE:
3bed9dd0 733 case INTRINSIC_NE_OS:
27189292 734 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
6de9cd9a 735 goto bad_repl;
27189292 736 /* Fall through. */
6de9cd9a 737
27189292
FXC
738 case INTRINSIC_PLUS:
739 case INTRINSIC_MINUS:
740 case INTRINSIC_TIMES:
741 case INTRINSIC_DIVIDE:
742 case INTRINSIC_POWER:
743 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
744 goto bad_repl;
6de9cd9a
DN
745 break;
746
6de9cd9a 747 case INTRINSIC_GT:
3bed9dd0 748 case INTRINSIC_GT_OS:
27189292 749 case INTRINSIC_GE:
3bed9dd0 750 case INTRINSIC_GE_OS:
27189292 751 case INTRINSIC_LT:
3bed9dd0 752 case INTRINSIC_LT_OS:
27189292 753 case INTRINSIC_LE:
3bed9dd0 754 case INTRINSIC_LE_OS:
27189292
FXC
755 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
756 goto bad_repl;
6de9cd9a
DN
757 if ((t1 == BT_INTEGER || t1 == BT_REAL)
758 && (t2 == BT_INTEGER || t2 == BT_REAL))
759 goto bad_repl;
27189292 760 break;
6de9cd9a 761
27189292
FXC
762 case INTRINSIC_CONCAT:
763 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
764 goto bad_repl;
6de9cd9a
DN
765 break;
766
6de9cd9a 767 case INTRINSIC_AND:
27189292 768 case INTRINSIC_OR:
6de9cd9a
DN
769 case INTRINSIC_EQV:
770 case INTRINSIC_NEQV:
6de9cd9a
DN
771 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
772 goto bad_repl;
773 break;
774
6de9cd9a 775 default:
27189292
FXC
776 break;
777 }
6de9cd9a 778
94747289 779 return true;
6de9cd9a 780
27189292
FXC
781#undef IS_NUMERIC_TYPE
782
6de9cd9a
DN
783bad_repl:
784 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
94747289
DK
785 &opwhere);
786 return false;
6de9cd9a
DN
787}
788
789
790/* Given a pair of formal argument lists, we see if the two lists can
791 be distinguished by counting the number of nonoptional arguments of
792 a given type/rank in f1 and seeing if there are less then that
793 number of those arguments in f2 (including optional arguments).
794 Since this test is asymmetric, it has to be called twice to make it
795 symmetric. Returns nonzero if the argument lists are incompatible
796 by this test. This subroutine implements rule 1 of section
8ad15a0a 797 14.1.2.3 in the Fortran 95 standard. */
6de9cd9a
DN
798
799static int
b251af97 800count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
6de9cd9a
DN
801{
802 int rc, ac1, ac2, i, j, k, n1;
803 gfc_formal_arglist *f;
804
805 typedef struct
806 {
807 int flag;
808 gfc_symbol *sym;
809 }
810 arginfo;
811
812 arginfo *arg;
813
814 n1 = 0;
815
816 for (f = f1; f; f = f->next)
817 n1++;
818
819 /* Build an array of integers that gives the same integer to
820 arguments of the same type/rank. */
ece3f663 821 arg = XCNEWVEC (arginfo, n1);
6de9cd9a
DN
822
823 f = f1;
824 for (i = 0; i < n1; i++, f = f->next)
825 {
826 arg[i].flag = -1;
827 arg[i].sym = f->sym;
828 }
829
830 k = 0;
831
832 for (i = 0; i < n1; i++)
833 {
834 if (arg[i].flag != -1)
835 continue;
836
26f2ca2b 837 if (arg[i].sym && arg[i].sym->attr.optional)
66e4ab31 838 continue; /* Skip optional arguments. */
6de9cd9a
DN
839
840 arg[i].flag = k;
841
842 /* Find other nonoptional arguments of the same type/rank. */
843 for (j = i + 1; j < n1; j++)
26f2ca2b 844 if ((arg[j].sym == NULL || !arg[j].sym->attr.optional)
6de9cd9a
DN
845 && compare_type_rank_if (arg[i].sym, arg[j].sym))
846 arg[j].flag = k;
847
848 k++;
849 }
850
851 /* Now loop over each distinct type found in f1. */
852 k = 0;
853 rc = 0;
854
855 for (i = 0; i < n1; i++)
856 {
857 if (arg[i].flag != k)
858 continue;
859
860 ac1 = 1;
861 for (j = i + 1; j < n1; j++)
862 if (arg[j].flag == k)
863 ac1++;
864
865 /* Count the number of arguments in f2 with that type, including
b251af97 866 those that are optional. */
6de9cd9a
DN
867 ac2 = 0;
868
869 for (f = f2; f; f = f->next)
870 if (compare_type_rank_if (arg[i].sym, f->sym))
871 ac2++;
872
873 if (ac1 > ac2)
874 {
875 rc = 1;
876 break;
877 }
878
879 k++;
880 }
881
882 gfc_free (arg);
883
884 return rc;
885}
886
887
6de9cd9a 888/* Perform the correspondence test in rule 2 of section 14.1.2.3.
69de3b83 889 Returns zero if no argument is found that satisfies rule 2, nonzero
6de9cd9a
DN
890 otherwise.
891
892 This test is also not symmetric in f1 and f2 and must be called
893 twice. This test finds problems caused by sorting the actual
894 argument list with keywords. For example:
895
896 INTERFACE FOO
897 SUBROUTINE F1(A, B)
b251af97 898 INTEGER :: A ; REAL :: B
6de9cd9a
DN
899 END SUBROUTINE F1
900
901 SUBROUTINE F2(B, A)
b251af97 902 INTEGER :: A ; REAL :: B
6de9cd9a
DN
903 END SUBROUTINE F1
904 END INTERFACE FOO
905
906 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
907
908static int
b251af97 909generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2)
6de9cd9a 910{
6de9cd9a
DN
911 gfc_formal_arglist *f2_save, *g;
912 gfc_symbol *sym;
913
914 f2_save = f2;
915
916 while (f1)
917 {
918 if (f1->sym->attr.optional)
919 goto next;
920
921 if (f2 != NULL && compare_type_rank (f1->sym, f2->sym))
922 goto next;
923
924 /* Now search for a disambiguating keyword argument starting at
b251af97 925 the current non-match. */
6de9cd9a
DN
926 for (g = f1; g; g = g->next)
927 {
928 if (g->sym->attr.optional)
929 continue;
930
931 sym = find_keyword_arg (g->sym->name, f2_save);
932 if (sym == NULL || !compare_type_rank (g->sym, sym))
933 return 1;
934 }
935
936 next:
937 f1 = f1->next;
938 if (f2 != NULL)
939 f2 = f2->next;
940 }
941
942 return 0;
943}
944
945
946/* 'Compare' two formal interfaces associated with a pair of symbols.
947 We return nonzero if there exists an actual argument list that
8ad15a0a
JW
948 would be ambiguous between the two interfaces, zero otherwise.
949 'intent_flag' specifies whether INTENT and OPTIONAL of the arguments are
950 required to match, which is not the case for ambiguity checks.*/
6de9cd9a 951
e157f736 952int
889dc035
JW
953gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
954 int generic_flag, int intent_flag,
955 char *errmsg, int err_len)
6de9cd9a
DN
956{
957 gfc_formal_arglist *f1, *f2;
958
0175478d
JD
959 gcc_assert (name2 != NULL);
960
9b63f282
JW
961 if (s1->attr.function && (s2->attr.subroutine
962 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
889dc035 963 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
8ad15a0a
JW
964 {
965 if (errmsg != NULL)
889dc035 966 snprintf (errmsg, err_len, "'%s' is not a function", name2);
8ad15a0a
JW
967 return 0;
968 }
969
970 if (s1->attr.subroutine && s2->attr.function)
971 {
972 if (errmsg != NULL)
889dc035 973 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
8ad15a0a
JW
974 return 0;
975 }
3afadac3 976
c73b6478
JW
977 /* If the arguments are functions, check type and kind
978 (only for dummy procedures and procedure pointer assignments). */
889dc035 979 if (!generic_flag && intent_flag && s1->attr.function && s2->attr.function)
6cc309c9 980 {
c73b6478
JW
981 if (s1->ts.type == BT_UNKNOWN)
982 return 1;
983 if ((s1->ts.type != s2->ts.type) || (s1->ts.kind != s2->ts.kind))
8ad15a0a
JW
984 {
985 if (errmsg != NULL)
986 snprintf (errmsg, err_len, "Type/kind mismatch in return value "
889dc035 987 "of '%s'", name2);
8ad15a0a
JW
988 return 0;
989 }
6cc309c9 990 }
26033479 991
8ad15a0a
JW
992 if (s1->attr.if_source == IFSRC_UNKNOWN
993 || s2->attr.if_source == IFSRC_UNKNOWN)
26033479 994 return 1;
26033479 995
c73b6478
JW
996 f1 = s1->formal;
997 f2 = s2->formal;
26033479 998
c73b6478 999 if (f1 == NULL && f2 == NULL)
8ad15a0a 1000 return 1; /* Special case: No arguments. */
6cc309c9 1001
c73b6478 1002 if (generic_flag)
6cc309c9 1003 {
e26f5548
JW
1004 if (count_types_test (f1, f2) || count_types_test (f2, f1))
1005 return 0;
c73b6478 1006 if (generic_correspondence (f1, f2) || generic_correspondence (f2, f1))
6cc309c9 1007 return 0;
6cc309c9 1008 }
c73b6478 1009 else
8ad15a0a
JW
1010 /* Perform the abbreviated correspondence test for operators (the
1011 arguments cannot be optional and are always ordered correctly).
1012 This is also done when comparing interfaces for dummy procedures and in
1013 procedure pointer assignments. */
1014
1015 for (;;)
1016 {
1017 /* Check existence. */
1018 if (f1 == NULL && f2 == NULL)
1019 break;
1020 if (f1 == NULL || f2 == NULL)
1021 {
1022 if (errmsg != NULL)
1023 snprintf (errmsg, err_len, "'%s' has the wrong number of "
889dc035 1024 "arguments", name2);
8ad15a0a
JW
1025 return 0;
1026 }
1027
1028 /* Check type and rank. */
1029 if (!compare_type_rank (f1->sym, f2->sym))
1030 {
1031 if (errmsg != NULL)
1032 snprintf (errmsg, err_len, "Type/rank mismatch in argument '%s'",
1033 f1->sym->name);
1034 return 0;
1035 }
1036
1037 /* Check INTENT. */
1038 if (intent_flag && (f1->sym->attr.intent != f2->sym->attr.intent))
1039 {
1040 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1041 f1->sym->name);
1042 return 0;
1043 }
1044
1045 /* Check OPTIONAL. */
1046 if (intent_flag && (f1->sym->attr.optional != f2->sym->attr.optional))
1047 {
1048 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1049 f1->sym->name);
1050 return 0;
1051 }
1052
1053 f1 = f1->next;
1054 f2 = f2->next;
1055 }
1056
6cc309c9
JD
1057 return 1;
1058}
1059
1060
6de9cd9a
DN
1061/* Given a pointer to an interface pointer, remove duplicate
1062 interfaces and make sure that all symbols are either functions or
1063 subroutines. Returns nonzero if something goes wrong. */
1064
1065static int
b251af97 1066check_interface0 (gfc_interface *p, const char *interface_name)
6de9cd9a
DN
1067{
1068 gfc_interface *psave, *q, *qlast;
1069
1070 psave = p;
1071 /* Make sure all symbols in the interface have been defined as
1072 functions or subroutines. */
1073 for (; p; p = p->next)
69773742
JW
1074 if ((!p->sym->attr.function && !p->sym->attr.subroutine)
1075 || !p->sym->attr.if_source)
6de9cd9a 1076 {
e9f63ace
TB
1077 if (p->sym->attr.external)
1078 gfc_error ("Procedure '%s' in %s at %L has no explicit interface",
1079 p->sym->name, interface_name, &p->sym->declared_at);
1080 else
1081 gfc_error ("Procedure '%s' in %s at %L is neither function nor "
1082 "subroutine", p->sym->name, interface_name,
1083 &p->sym->declared_at);
6de9cd9a
DN
1084 return 1;
1085 }
1086 p = psave;
1087
1088 /* Remove duplicate interfaces in this interface list. */
1089 for (; p; p = p->next)
1090 {
1091 qlast = p;
1092
1093 for (q = p->next; q;)
1094 {
1095 if (p->sym != q->sym)
1096 {
1097 qlast = q;
1098 q = q->next;
6de9cd9a
DN
1099 }
1100 else
1101 {
66e4ab31 1102 /* Duplicate interface. */
6de9cd9a
DN
1103 qlast->next = q->next;
1104 gfc_free (q);
1105 q = qlast->next;
1106 }
1107 }
1108 }
1109
1110 return 0;
1111}
1112
1113
1114/* Check lists of interfaces to make sure that no two interfaces are
66e4ab31 1115 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
6de9cd9a
DN
1116
1117static int
b251af97 1118check_interface1 (gfc_interface *p, gfc_interface *q0,
993ef28f 1119 int generic_flag, const char *interface_name,
26f2ca2b 1120 bool referenced)
6de9cd9a 1121{
b251af97 1122 gfc_interface *q;
6de9cd9a 1123 for (; p; p = p->next)
991f3b12 1124 for (q = q0; q; q = q->next)
6de9cd9a
DN
1125 {
1126 if (p->sym == q->sym)
66e4ab31 1127 continue; /* Duplicates OK here. */
6de9cd9a 1128
312ae8f4 1129 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
6de9cd9a
DN
1130 continue;
1131
eece1eb9
PT
1132 if (gfc_compare_interfaces (p->sym, q->sym, q->sym->name, generic_flag,
1133 0, NULL, 0))
6de9cd9a 1134 {
993ef28f 1135 if (referenced)
ae7c61de
JW
1136 gfc_error ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1137 p->sym->name, q->sym->name, interface_name,
1138 &p->where);
1139 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
993ef28f
PT
1140 gfc_warning ("Ambiguous interfaces '%s' and '%s' in %s at %L",
1141 p->sym->name, q->sym->name, interface_name,
1142 &p->where);
ae7c61de
JW
1143 else
1144 gfc_warning ("Although not referenced, '%s' has ambiguous "
1145 "interfaces at %L", interface_name, &p->where);
6de9cd9a
DN
1146 return 1;
1147 }
1148 }
6de9cd9a
DN
1149 return 0;
1150}
1151
1152
1153/* Check the generic and operator interfaces of symbols to make sure
1154 that none of the interfaces conflict. The check has to be done
1155 after all of the symbols are actually loaded. */
1156
1157static void
b251af97 1158check_sym_interfaces (gfc_symbol *sym)
6de9cd9a
DN
1159{
1160 char interface_name[100];
71f77fd7 1161 gfc_interface *p;
6de9cd9a
DN
1162
1163 if (sym->ns != gfc_current_ns)
1164 return;
1165
1166 if (sym->generic != NULL)
1167 {
1168 sprintf (interface_name, "generic interface '%s'", sym->name);
1169 if (check_interface0 (sym->generic, interface_name))
1170 return;
1171
71f77fd7
PT
1172 for (p = sym->generic; p; p = p->next)
1173 {
abf86978
TB
1174 if (p->sym->attr.mod_proc
1175 && (p->sym->attr.if_source != IFSRC_DECL
1176 || p->sym->attr.procedure))
71f77fd7 1177 {
e9f63ace
TB
1178 gfc_error ("'%s' at %L is not a module procedure",
1179 p->sym->name, &p->where);
71f77fd7
PT
1180 return;
1181 }
1182 }
1183
4c256e34 1184 /* Originally, this test was applied to host interfaces too;
993ef28f
PT
1185 this is incorrect since host associated symbols, from any
1186 source, cannot be ambiguous with local symbols. */
ae7c61de
JW
1187 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1188 sym->attr.referenced || !sym->attr.use_assoc);
6de9cd9a
DN
1189 }
1190}
1191
1192
1193static void
b251af97 1194check_uop_interfaces (gfc_user_op *uop)
6de9cd9a
DN
1195{
1196 char interface_name[100];
1197 gfc_user_op *uop2;
1198 gfc_namespace *ns;
1199
1200 sprintf (interface_name, "operator interface '%s'", uop->name);
a1ee985f 1201 if (check_interface0 (uop->op, interface_name))
6de9cd9a
DN
1202 return;
1203
1204 for (ns = gfc_current_ns; ns; ns = ns->parent)
1205 {
1206 uop2 = gfc_find_uop (uop->name, ns);
1207 if (uop2 == NULL)
1208 continue;
1209
a1ee985f 1210 check_interface1 (uop->op, uop2->op, 0,
26f2ca2b 1211 interface_name, true);
6de9cd9a
DN
1212 }
1213}
1214
1215
1216/* For the namespace, check generic, user operator and intrinsic
1217 operator interfaces for consistency and to remove duplicate
1218 interfaces. We traverse the whole namespace, counting on the fact
1219 that most symbols will not have generic or operator interfaces. */
1220
1221void
b251af97 1222gfc_check_interfaces (gfc_namespace *ns)
6de9cd9a
DN
1223{
1224 gfc_namespace *old_ns, *ns2;
1225 char interface_name[100];
09639a83 1226 int i;
6de9cd9a
DN
1227
1228 old_ns = gfc_current_ns;
1229 gfc_current_ns = ns;
1230
1231 gfc_traverse_ns (ns, check_sym_interfaces);
1232
1233 gfc_traverse_user_op (ns, check_uop_interfaces);
1234
1235 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
1236 {
1237 if (i == INTRINSIC_USER)
1238 continue;
1239
1240 if (i == INTRINSIC_ASSIGN)
1241 strcpy (interface_name, "intrinsic assignment operator");
1242 else
1243 sprintf (interface_name, "intrinsic '%s' operator",
09639a83 1244 gfc_op2string ((gfc_intrinsic_op) i));
6de9cd9a 1245
a1ee985f 1246 if (check_interface0 (ns->op[i], interface_name))
6de9cd9a
DN
1247 continue;
1248
94747289
DK
1249 if (ns->op[i])
1250 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
1251 ns->op[i]->where);
6de9cd9a 1252
3bed9dd0
DF
1253 for (ns2 = ns; ns2; ns2 = ns2->parent)
1254 {
a1ee985f 1255 if (check_interface1 (ns->op[i], ns2->op[i], 0,
3bed9dd0
DF
1256 interface_name, true))
1257 goto done;
1258
1259 switch (i)
1260 {
1261 case INTRINSIC_EQ:
a1ee985f 1262 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ_OS],
3bed9dd0
DF
1263 0, interface_name, true)) goto done;
1264 break;
1265
1266 case INTRINSIC_EQ_OS:
a1ee985f 1267 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_EQ],
3bed9dd0
DF
1268 0, interface_name, true)) goto done;
1269 break;
1270
1271 case INTRINSIC_NE:
a1ee985f 1272 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE_OS],
3bed9dd0
DF
1273 0, interface_name, true)) goto done;
1274 break;
1275
1276 case INTRINSIC_NE_OS:
a1ee985f 1277 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_NE],
3bed9dd0
DF
1278 0, interface_name, true)) goto done;
1279 break;
1280
1281 case INTRINSIC_GT:
a1ee985f 1282 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT_OS],
3bed9dd0
DF
1283 0, interface_name, true)) goto done;
1284 break;
1285
1286 case INTRINSIC_GT_OS:
a1ee985f 1287 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GT],
3bed9dd0
DF
1288 0, interface_name, true)) goto done;
1289 break;
1290
1291 case INTRINSIC_GE:
a1ee985f 1292 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE_OS],
3bed9dd0
DF
1293 0, interface_name, true)) goto done;
1294 break;
1295
1296 case INTRINSIC_GE_OS:
a1ee985f 1297 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_GE],
3bed9dd0
DF
1298 0, interface_name, true)) goto done;
1299 break;
1300
1301 case INTRINSIC_LT:
a1ee985f 1302 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT_OS],
3bed9dd0
DF
1303 0, interface_name, true)) goto done;
1304 break;
1305
1306 case INTRINSIC_LT_OS:
a1ee985f 1307 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LT],
3bed9dd0
DF
1308 0, interface_name, true)) goto done;
1309 break;
1310
1311 case INTRINSIC_LE:
a1ee985f 1312 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE_OS],
3bed9dd0
DF
1313 0, interface_name, true)) goto done;
1314 break;
1315
1316 case INTRINSIC_LE_OS:
a1ee985f 1317 if (check_interface1 (ns->op[i], ns2->op[INTRINSIC_LE],
3bed9dd0
DF
1318 0, interface_name, true)) goto done;
1319 break;
1320
1321 default:
1322 break;
1323 }
1324 }
6de9cd9a
DN
1325 }
1326
3bed9dd0 1327done:
6de9cd9a
DN
1328 gfc_current_ns = old_ns;
1329}
1330
1331
1332static int
b251af97 1333symbol_rank (gfc_symbol *sym)
6de9cd9a 1334{
6de9cd9a
DN
1335 return (sym->as == NULL) ? 0 : sym->as->rank;
1336}
1337
1338
aa08038d
EE
1339/* Given a symbol of a formal argument list and an expression, if the
1340 formal argument is allocatable, check that the actual argument is
1341 allocatable. Returns nonzero if compatible, zero if not compatible. */
1342
1343static int
b251af97 1344compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
aa08038d
EE
1345{
1346 symbol_attribute attr;
1347
1348 if (formal->attr.allocatable)
1349 {
1350 attr = gfc_expr_attr (actual);
1351 if (!attr.allocatable)
1352 return 0;
1353 }
1354
1355 return 1;
1356}
1357
1358
6de9cd9a
DN
1359/* Given a symbol of a formal argument list and an expression, if the
1360 formal argument is a pointer, see if the actual argument is a
1361 pointer. Returns nonzero if compatible, zero if not compatible. */
1362
1363static int
b251af97 1364compare_pointer (gfc_symbol *formal, gfc_expr *actual)
6de9cd9a
DN
1365{
1366 symbol_attribute attr;
1367
1368 if (formal->attr.pointer)
1369 {
1370 attr = gfc_expr_attr (actual);
1371 if (!attr.pointer)
1372 return 0;
1373 }
1374
1375 return 1;
1376}
1377
1378
1379/* Given a symbol of a formal argument list and an expression, see if
1380 the two are compatible as arguments. Returns nonzero if
1381 compatible, zero if not compatible. */
1382
1383static int
b251af97 1384compare_parameter (gfc_symbol *formal, gfc_expr *actual,
5ad6345e 1385 int ranks_must_agree, int is_elemental, locus *where)
6de9cd9a
DN
1386{
1387 gfc_ref *ref;
5ad6345e 1388 bool rank_check;
6de9cd9a 1389
a8b3b0b6
CR
1390 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
1391 procs c_f_pointer or c_f_procpointer, and we need to accept most
1392 pointers the user could give us. This should allow that. */
1393 if (formal->ts.type == BT_VOID)
1394 return 1;
1395
1396 if (formal->ts.type == BT_DERIVED
bc21d315 1397 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
a8b3b0b6 1398 && actual->ts.type == BT_DERIVED
bc21d315 1399 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
a8b3b0b6
CR
1400 return 1;
1401
6de9cd9a
DN
1402 if (actual->ts.type == BT_PROCEDURE)
1403 {
8ad15a0a 1404 char err[200];
9b63f282 1405 gfc_symbol *act_sym = actual->symtree->n.sym;
6de9cd9a 1406
8ad15a0a
JW
1407 if (formal->attr.flavor != FL_PROCEDURE)
1408 {
1409 if (where)
1410 gfc_error ("Invalid procedure argument at %L", &actual->where);
1411 return 0;
1412 }
6de9cd9a 1413
889dc035 1414 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
8ad15a0a
JW
1415 sizeof(err)))
1416 {
1417 if (where)
1418 gfc_error ("Interface mismatch in dummy procedure '%s' at %L: %s",
1419 formal->name, &actual->where, err);
1420 return 0;
1421 }
5ad6345e 1422
9b63f282 1423 if (formal->attr.function && !act_sym->attr.function)
03bd096b
JW
1424 {
1425 gfc_add_function (&act_sym->attr, act_sym->name,
1426 &act_sym->declared_at);
1427 if (act_sym->ts.type == BT_UNKNOWN
1428 && gfc_set_default_type (act_sym, 1, act_sym->ns) == FAILURE)
1429 return 0;
1430 }
1431 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
9b63f282
JW
1432 gfc_add_subroutine (&act_sym->attr, act_sym->name,
1433 &act_sym->declared_at);
1434
5ad6345e 1435 return 1;
6de9cd9a
DN
1436 }
1437
90aeadcb 1438 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
1600fe22 1439 && !gfc_compare_types (&formal->ts, &actual->ts))
5ad6345e 1440 {
d68e117b 1441 if (where)
5ad6345e 1442 gfc_error ("Type mismatch in argument '%s' at %L; passed %s to %s",
d68e117b
TB
1443 formal->name, &actual->where, gfc_typename (&actual->ts),
1444 gfc_typename (&formal->ts));
5ad6345e
TB
1445 return 0;
1446 }
6de9cd9a 1447
d3a9eea2
TB
1448 if (formal->attr.codimension)
1449 {
1450 gfc_ref *last = NULL;
1451
1452 if (actual->expr_type != EXPR_VARIABLE
1453 || (actual->ref == NULL
1454 && !actual->symtree->n.sym->attr.codimension))
1455 {
1456 if (where)
1457 gfc_error ("Actual argument to '%s' at %L must be a coarray",
1458 formal->name, &actual->where);
1459 return 0;
1460 }
1461
1462 for (ref = actual->ref; ref; ref = ref->next)
1463 {
1464 if (ref->type == REF_ARRAY && ref->u.ar.codimen != 0)
1465 {
1466 if (where)
1467 gfc_error ("Actual argument to '%s' at %L must be a coarray "
1468 "and not coindexed", formal->name, &ref->u.ar.where);
1469 return 0;
1470 }
1471 if (ref->type == REF_ARRAY && ref->u.ar.as->corank
1472 && ref->u.ar.type != AR_FULL && ref->u.ar.dimen != 0)
1473 {
1474 if (where)
1475 gfc_error ("Actual argument to '%s' at %L must be a coarray "
1476 "and thus shall not have an array designator",
1477 formal->name, &ref->u.ar.where);
1478 return 0;
1479 }
1480 if (ref->type == REF_COMPONENT)
1481 last = ref;
1482 }
1483
1484 if (last && !last->u.c.component->attr.codimension)
1485 {
1486 if (where)
1487 gfc_error ("Actual argument to '%s' at %L must be a coarray",
1488 formal->name, &actual->where);
1489 return 0;
1490 }
1491
1492 /* F2008, 12.5.2.6. */
1493 if (formal->attr.allocatable &&
1494 ((last && last->u.c.component->as->corank != formal->as->corank)
1495 || (!last
1496 && actual->symtree->n.sym->as->corank != formal->as->corank)))
1497 {
1498 if (where)
1499 gfc_error ("Corank mismatch in argument '%s' at %L (%d and %d)",
1500 formal->name, &actual->where, formal->as->corank,
1501 last ? last->u.c.component->as->corank
1502 : actual->symtree->n.sym->as->corank);
1503 return 0;
1504 }
1505 }
1506
6de9cd9a
DN
1507 if (symbol_rank (formal) == actual->rank)
1508 return 1;
1509
5ad6345e
TB
1510 rank_check = where != NULL && !is_elemental && formal->as
1511 && (formal->as->type == AS_ASSUMED_SHAPE
d8a8dab3
TB
1512 || formal->as->type == AS_DEFERRED)
1513 && actual->expr_type != EXPR_NULL;
6de9cd9a 1514
d3a9eea2 1515 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
d8a8dab3
TB
1516 if (rank_check || ranks_must_agree
1517 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
5ad6345e 1518 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
d3a9eea2
TB
1519 || (actual->rank == 0 && formal->as->type == AS_ASSUMED_SHAPE)
1520 || (actual->rank == 0 && formal->attr.dimension
1521 && gfc_is_coindexed (actual)))
5ad6345e
TB
1522 {
1523 if (where)
1524 gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
1525 formal->name, &actual->where, symbol_rank (formal),
1526 actual->rank);
6de9cd9a 1527 return 0;
5ad6345e
TB
1528 }
1529 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
1530 return 1;
1531
1532 /* At this point, we are considering a scalar passed to an array. This
1533 is valid (cf. F95 12.4.1.1; F2003 12.4.1.2),
1534 - if the actual argument is (a substring of) an element of a
1535 non-assumed-shape/non-pointer array;
1536 - (F2003) if the actual argument is of type character. */
6de9cd9a
DN
1537
1538 for (ref = actual->ref; ref; ref = ref->next)
d3a9eea2
TB
1539 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
1540 && ref->u.ar.dimen > 0)
6de9cd9a
DN
1541 break;
1542
5ad6345e
TB
1543 /* Not an array element. */
1544 if (formal->ts.type == BT_CHARACTER
1545 && (ref == NULL
1546 || (actual->expr_type == EXPR_VARIABLE
1547 && (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
6da0839a 1548 || actual->symtree->n.sym->attr.pointer))))
5ad6345e
TB
1549 {
1550 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
1551 {
1552 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
1553 "array dummy argument '%s' at %L",
1554 formal->name, &actual->where);
1555 return 0;
1556 }
1557 else if ((gfc_option.allow_std & GFC_STD_F2003) == 0)
1558 return 0;
1559 else
1560 return 1;
1561 }
d8a8dab3 1562 else if (ref == NULL && actual->expr_type != EXPR_NULL)
5ad6345e
TB
1563 {
1564 if (where)
1565 gfc_error ("Rank mismatch in argument '%s' at %L (%d and %d)",
1566 formal->name, &actual->where, symbol_rank (formal),
1567 actual->rank);
1568 return 0;
1569 }
1570
1571 if (actual->expr_type == EXPR_VARIABLE
1572 && actual->symtree->n.sym->as
1573 && (actual->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
6da0839a 1574 || actual->symtree->n.sym->attr.pointer))
5ad6345e
TB
1575 {
1576 if (where)
1577 gfc_error ("Element of assumed-shaped array passed to dummy "
1578 "argument '%s' at %L", formal->name, &actual->where);
1579 return 0;
1580 }
6de9cd9a
DN
1581
1582 return 1;
1583}
1584
1585
ee7e677f
TB
1586/* Given a symbol of a formal argument list and an expression, see if
1587 the two are compatible as arguments. Returns nonzero if
1588 compatible, zero if not compatible. */
1589
1590static int
b251af97 1591compare_parameter_protected (gfc_symbol *formal, gfc_expr *actual)
ee7e677f
TB
1592{
1593 if (actual->expr_type != EXPR_VARIABLE)
1594 return 1;
1595
9aa433c2 1596 if (!actual->symtree->n.sym->attr.is_protected)
ee7e677f
TB
1597 return 1;
1598
1599 if (!actual->symtree->n.sym->attr.use_assoc)
1600 return 1;
1601
1602 if (formal->attr.intent == INTENT_IN
1603 || formal->attr.intent == INTENT_UNKNOWN)
1604 return 1;
1605
1606 if (!actual->symtree->n.sym->attr.pointer)
1607 return 0;
1608
1609 if (actual->symtree->n.sym->attr.pointer && formal->attr.pointer)
1610 return 0;
1611
1612 return 1;
1613}
1614
1615
2d5b90b2
TB
1616/* Returns the storage size of a symbol (formal argument) or
1617 zero if it cannot be determined. */
1618
1619static unsigned long
1620get_sym_storage_size (gfc_symbol *sym)
1621{
1622 int i;
1623 unsigned long strlen, elements;
1624
1625 if (sym->ts.type == BT_CHARACTER)
1626 {
bc21d315
JW
1627 if (sym->ts.u.cl && sym->ts.u.cl->length
1628 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
1629 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
2d5b90b2
TB
1630 else
1631 return 0;
1632 }
1633 else
1634 strlen = 1;
1635
1636 if (symbol_rank (sym) == 0)
1637 return strlen;
1638
1639 elements = 1;
1640 if (sym->as->type != AS_EXPLICIT)
1641 return 0;
1642 for (i = 0; i < sym->as->rank; i++)
1643 {
1644 if (!sym->as || sym->as->upper[i]->expr_type != EXPR_CONSTANT
1645 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
1646 return 0;
1647
c13af44b
SK
1648 elements *= mpz_get_si (sym->as->upper[i]->value.integer)
1649 - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
2d5b90b2
TB
1650 }
1651
1652 return strlen*elements;
1653}
1654
1655
1656/* Returns the storage size of an expression (actual argument) or
1657 zero if it cannot be determined. For an array element, it returns
1207ac67 1658 the remaining size as the element sequence consists of all storage
2d5b90b2
TB
1659 units of the actual argument up to the end of the array. */
1660
1661static unsigned long
1662get_expr_storage_size (gfc_expr *e)
1663{
1664 int i;
1665 long int strlen, elements;
6da0839a 1666 long int substrlen = 0;
a0710c29 1667 bool is_str_storage = false;
2d5b90b2
TB
1668 gfc_ref *ref;
1669
1670 if (e == NULL)
1671 return 0;
1672
1673 if (e->ts.type == BT_CHARACTER)
1674 {
bc21d315
JW
1675 if (e->ts.u.cl && e->ts.u.cl->length
1676 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
1677 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
2d5b90b2 1678 else if (e->expr_type == EXPR_CONSTANT
bc21d315 1679 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
2d5b90b2
TB
1680 strlen = e->value.character.length;
1681 else
1682 return 0;
1683 }
1684 else
1685 strlen = 1; /* Length per element. */
1686
1687 if (e->rank == 0 && !e->ref)
1688 return strlen;
1689
1690 elements = 1;
1691 if (!e->ref)
1692 {
1693 if (!e->shape)
1694 return 0;
1695 for (i = 0; i < e->rank; i++)
1696 elements *= mpz_get_si (e->shape[i]);
1697 return elements*strlen;
1698 }
1699
1700 for (ref = e->ref; ref; ref = ref->next)
1701 {
6da0839a
TB
1702 if (ref->type == REF_SUBSTRING && ref->u.ss.start
1703 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
1704 {
a0710c29
TB
1705 if (is_str_storage)
1706 {
1707 /* The string length is the substring length.
1708 Set now to full string length. */
1709 if (ref->u.ss.length == NULL
1710 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
1711 return 0;
1712
1713 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
1714 }
1715 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
6da0839a
TB
1716 continue;
1717 }
1718
2d5b90b2
TB
1719 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION
1720 && ref->u.ar.start && ref->u.ar.end && ref->u.ar.stride
1721 && ref->u.ar.as->upper)
1722 for (i = 0; i < ref->u.ar.dimen; i++)
1723 {
1724 long int start, end, stride;
1725 stride = 1;
37639728 1726
2d5b90b2
TB
1727 if (ref->u.ar.stride[i])
1728 {
1729 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
1730 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
1731 else
1732 return 0;
1733 }
1734
1735 if (ref->u.ar.start[i])
1736 {
1737 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
1738 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
1739 else
1740 return 0;
1741 }
37639728
TB
1742 else if (ref->u.ar.as->lower[i]
1743 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
1744 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
1745 else
1746 return 0;
2d5b90b2
TB
1747
1748 if (ref->u.ar.end[i])
1749 {
1750 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
1751 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
1752 else
1753 return 0;
1754 }
1755 else if (ref->u.ar.as->upper[i]
1756 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
1757 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
1758 else
1759 return 0;
1760
1761 elements *= (end - start)/stride + 1L;
1762 }
1763 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL
1764 && ref->u.ar.as->lower && ref->u.ar.as->upper)
1765 for (i = 0; i < ref->u.ar.as->rank; i++)
1766 {
1767 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
1768 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
1769 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
da9ad923
TB
1770 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
1771 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2d5b90b2
TB
1772 + 1L;
1773 else
1774 return 0;
1775 }
6da0839a 1776 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
a0710c29
TB
1777 && e->expr_type == EXPR_VARIABLE)
1778 {
1779 if (e->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
1780 || e->symtree->n.sym->attr.pointer)
1781 {
1782 elements = 1;
1783 continue;
1784 }
1785
1786 /* Determine the number of remaining elements in the element
1787 sequence for array element designators. */
1788 is_str_storage = true;
1789 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
1790 {
1791 if (ref->u.ar.start[i] == NULL
1792 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
1793 || ref->u.ar.as->upper[i] == NULL
1794 || ref->u.ar.as->lower[i] == NULL
1795 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
1796 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
1797 return 0;
1798
1799 elements
1800 = elements
1801 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
1802 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
1803 + 1L)
1804 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
1805 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
1806 }
1807 }
2d5b90b2 1808 else
2d5b90b2
TB
1809 return 0;
1810 }
1811
6da0839a 1812 if (substrlen)
a0710c29
TB
1813 return (is_str_storage) ? substrlen + (elements-1)*strlen
1814 : elements*strlen;
1815 else
1816 return elements*strlen;
2d5b90b2
TB
1817}
1818
1819
59be8071
TB
1820/* Given an expression, check whether it is an array section
1821 which has a vector subscript. If it has, one is returned,
1822 otherwise zero. */
1823
1824static int
1825has_vector_subscript (gfc_expr *e)
1826{
1827 int i;
1828 gfc_ref *ref;
1829
1830 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
1831 return 0;
1832
1833 for (ref = e->ref; ref; ref = ref->next)
1834 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
1835 for (i = 0; i < ref->u.ar.dimen; i++)
1836 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
1837 return 1;
1838
1839 return 0;
1840}
1841
1842
6de9cd9a
DN
1843/* Given formal and actual argument lists, see if they are compatible.
1844 If they are compatible, the actual argument list is sorted to
1845 correspond with the formal list, and elements for missing optional
1846 arguments are inserted. If WHERE pointer is nonnull, then we issue
1847 errors when things don't match instead of just returning the status
1848 code. */
1849
f0ac18b7
DK
1850static int
1851compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
1852 int ranks_must_agree, int is_elemental, locus *where)
6de9cd9a 1853{
7b901ac4 1854 gfc_actual_arglist **new_arg, *a, *actual, temp;
6de9cd9a
DN
1855 gfc_formal_arglist *f;
1856 int i, n, na;
2d5b90b2 1857 unsigned long actual_size, formal_size;
6de9cd9a
DN
1858
1859 actual = *ap;
1860
1861 if (actual == NULL && formal == NULL)
1862 return 1;
1863
1864 n = 0;
1865 for (f = formal; f; f = f->next)
1866 n++;
1867
7b901ac4 1868 new_arg = (gfc_actual_arglist **) alloca (n * sizeof (gfc_actual_arglist *));
6de9cd9a
DN
1869
1870 for (i = 0; i < n; i++)
7b901ac4 1871 new_arg[i] = NULL;
6de9cd9a
DN
1872
1873 na = 0;
1874 f = formal;
1875 i = 0;
1876
1877 for (a = actual; a; a = a->next, f = f->next)
1878 {
7fcafa71
PT
1879 /* Look for keywords but ignore g77 extensions like %VAL. */
1880 if (a->name != NULL && a->name[0] != '%')
6de9cd9a
DN
1881 {
1882 i = 0;
1883 for (f = formal; f; f = f->next, i++)
1884 {
1885 if (f->sym == NULL)
1886 continue;
1887 if (strcmp (f->sym->name, a->name) == 0)
1888 break;
1889 }
1890
1891 if (f == NULL)
1892 {
1893 if (where)
b251af97
SK
1894 gfc_error ("Keyword argument '%s' at %L is not in "
1895 "the procedure", a->name, &a->expr->where);
6de9cd9a
DN
1896 return 0;
1897 }
1898
7b901ac4 1899 if (new_arg[i] != NULL)
6de9cd9a
DN
1900 {
1901 if (where)
b251af97
SK
1902 gfc_error ("Keyword argument '%s' at %L is already associated "
1903 "with another actual argument", a->name,
1904 &a->expr->where);
6de9cd9a
DN
1905 return 0;
1906 }
1907 }
1908
1909 if (f == NULL)
1910 {
1911 if (where)
b251af97
SK
1912 gfc_error ("More actual than formal arguments in procedure "
1913 "call at %L", where);
6de9cd9a
DN
1914
1915 return 0;
1916 }
1917
1918 if (f->sym == NULL && a->expr == NULL)
1919 goto match;
1920
1921 if (f->sym == NULL)
1922 {
1923 if (where)
b251af97
SK
1924 gfc_error ("Missing alternate return spec in subroutine call "
1925 "at %L", where);
6de9cd9a
DN
1926 return 0;
1927 }
1928
1929 if (a->expr == NULL)
1930 {
1931 if (where)
b251af97
SK
1932 gfc_error ("Unexpected alternate return spec in subroutine "
1933 "call at %L", where);
6de9cd9a
DN
1934 return 0;
1935 }
5ad6345e
TB
1936
1937 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
1938 is_elemental, where))
1939 return 0;
6de9cd9a 1940
a0710c29
TB
1941 /* Special case for character arguments. For allocatable, pointer
1942 and assumed-shape dummies, the string length needs to match
1943 exactly. */
2d5b90b2 1944 if (a->expr->ts.type == BT_CHARACTER
bc21d315
JW
1945 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
1946 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
1947 && f->sym->ts.u.cl && f->sym->ts.u.cl && f->sym->ts.u.cl->length
1948 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
a0710c29
TB
1949 && (f->sym->attr.pointer || f->sym->attr.allocatable
1950 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
bc21d315
JW
1951 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
1952 f->sym->ts.u.cl->length->value.integer) != 0))
a0324f7b 1953 {
a0710c29
TB
1954 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
1955 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
1956 "argument and pointer or allocatable dummy argument "
1957 "'%s' at %L",
bc21d315
JW
1958 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
1959 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
a0710c29
TB
1960 f->sym->name, &a->expr->where);
1961 else if (where)
1962 gfc_warning ("Character length mismatch (%ld/%ld) between actual "
1963 "argument and assumed-shape dummy argument '%s' "
1964 "at %L",
bc21d315
JW
1965 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
1966 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
a0710c29
TB
1967 f->sym->name, &a->expr->where);
1968 return 0;
a0324f7b
TB
1969 }
1970
37639728
TB
1971 actual_size = get_expr_storage_size (a->expr);
1972 formal_size = get_sym_storage_size (f->sym);
16f2a7a4
PT
1973 if (actual_size != 0
1974 && actual_size < formal_size
1975 && a->expr->ts.type != BT_PROCEDURE)
2d5b90b2
TB
1976 {
1977 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
1978 gfc_warning ("Character length of actual argument shorter "
096f0d9d
FXC
1979 "than of dummy argument '%s' (%lu/%lu) at %L",
1980 f->sym->name, actual_size, formal_size,
1981 &a->expr->where);
2d5b90b2
TB
1982 else if (where)
1983 gfc_warning ("Actual argument contains too few "
096f0d9d
FXC
1984 "elements for dummy argument '%s' (%lu/%lu) at %L",
1985 f->sym->name, actual_size, formal_size,
1986 &a->expr->where);
2d5b90b2
TB
1987 return 0;
1988 }
1989
8fb74da4
JW
1990 /* Satisfy 12.4.1.3 by ensuring that a procedure pointer actual argument
1991 is provided for a procedure pointer formal argument. */
1992 if (f->sym->attr.proc_pointer
a7c0b11d
JW
1993 && !((a->expr->expr_type == EXPR_VARIABLE
1994 && a->expr->symtree->n.sym->attr.proc_pointer)
1995 || (a->expr->expr_type == EXPR_FUNCTION
1996 && a->expr->symtree->n.sym->result->attr.proc_pointer)
f64edc8b 1997 || gfc_is_proc_ptr_comp (a->expr, NULL)))
8fb74da4
JW
1998 {
1999 if (where)
2000 gfc_error ("Expected a procedure pointer for argument '%s' at %L",
2001 f->sym->name, &a->expr->where);
2002 return 0;
2003 }
2004
699fa7aa
PT
2005 /* Satisfy 12.4.1.2 by ensuring that a procedure actual argument is
2006 provided for a procedure formal argument. */
f64edc8b 2007 if (a->expr->ts.type != BT_PROCEDURE && !gfc_is_proc_ptr_comp (a->expr, NULL)
699fa7aa
PT
2008 && a->expr->expr_type == EXPR_VARIABLE
2009 && f->sym->attr.flavor == FL_PROCEDURE)
2010 {
9914f8cf
PT
2011 if (where)
2012 gfc_error ("Expected a procedure for argument '%s' at %L",
2013 f->sym->name, &a->expr->where);
2014 return 0;
699fa7aa
PT
2015 }
2016
b251af97
SK
2017 if (f->sym->attr.flavor == FL_PROCEDURE && f->sym->attr.pure
2018 && a->expr->ts.type == BT_PROCEDURE
2019 && !a->expr->symtree->n.sym->attr.pure)
d68bd5a8
PT
2020 {
2021 if (where)
2022 gfc_error ("Expected a PURE procedure for argument '%s' at %L",
2023 f->sym->name, &a->expr->where);
2024 return 0;
2025 }
2026
b251af97 2027 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
bf9d2177
JJ
2028 && a->expr->expr_type == EXPR_VARIABLE
2029 && a->expr->symtree->n.sym->as
2030 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
2031 && (a->expr->ref == NULL
2032 || (a->expr->ref->type == REF_ARRAY
2033 && a->expr->ref->u.ar.type == AR_FULL)))
2034 {
2035 if (where)
2036 gfc_error ("Actual argument for '%s' cannot be an assumed-size"
2037 " array at %L", f->sym->name, where);
2038 return 0;
2039 }
2040
1600fe22
TS
2041 if (a->expr->expr_type != EXPR_NULL
2042 && compare_pointer (f->sym, a->expr) == 0)
6de9cd9a
DN
2043 {
2044 if (where)
2045 gfc_error ("Actual argument for '%s' must be a pointer at %L",
2046 f->sym->name, &a->expr->where);
2047 return 0;
2048 }
2049
d3a9eea2
TB
2050 /* Fortran 2008, C1242. */
2051 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
2052 {
2053 if (where)
2054 gfc_error ("Coindexed actual argument at %L to pointer "
2055 "dummy '%s'",
2056 &a->expr->where, f->sym->name);
2057 return 0;
2058 }
2059
2060 /* Fortran 2008, 12.5.2.5 (no constraint). */
2061 if (a->expr->expr_type == EXPR_VARIABLE
2062 && f->sym->attr.intent != INTENT_IN
2063 && f->sym->attr.allocatable
2064 && gfc_is_coindexed (a->expr))
2065 {
2066 if (where)
2067 gfc_error ("Coindexed actual argument at %L to allocatable "
2068 "dummy '%s' requires INTENT(IN)",
2069 &a->expr->where, f->sym->name);
2070 return 0;
2071 }
2072
2073 /* Fortran 2008, C1237. */
2074 if (a->expr->expr_type == EXPR_VARIABLE
2075 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
2076 && gfc_is_coindexed (a->expr)
2077 && (a->expr->symtree->n.sym->attr.volatile_
2078 || a->expr->symtree->n.sym->attr.asynchronous))
2079 {
2080 if (where)
2081 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
2082 "at %L requires that dummy %s' has neither "
2083 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
2084 f->sym->name);
2085 return 0;
2086 }
2087
2088 /* Fortran 2008, 12.5.2.4 (no constraint). */
2089 if (a->expr->expr_type == EXPR_VARIABLE
2090 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
2091 && gfc_is_coindexed (a->expr)
2092 && gfc_has_ultimate_allocatable (a->expr))
2093 {
2094 if (where)
2095 gfc_error ("Coindexed actual argument at %L with allocatable "
2096 "ultimate component to dummy '%s' requires either VALUE "
2097 "or INTENT(IN)", &a->expr->where, f->sym->name);
2098 return 0;
2099 }
2100
aa08038d
EE
2101 if (a->expr->expr_type != EXPR_NULL
2102 && compare_allocatable (f->sym, a->expr) == 0)
2103 {
2104 if (where)
2105 gfc_error ("Actual argument for '%s' must be ALLOCATABLE at %L",
2106 f->sym->name, &a->expr->where);
2107 return 0;
2108 }
2109
a920e94a 2110 /* Check intent = OUT/INOUT for definable actual argument. */
a5c655e8 2111 if ((a->expr->expr_type != EXPR_VARIABLE
ac61ba6a
TB
2112 || (a->expr->symtree->n.sym->attr.flavor != FL_VARIABLE
2113 && a->expr->symtree->n.sym->attr.flavor != FL_PROCEDURE))
b251af97
SK
2114 && (f->sym->attr.intent == INTENT_OUT
2115 || f->sym->attr.intent == INTENT_INOUT))
a920e94a 2116 {
536afc35 2117 if (where)
a5c655e8
TB
2118 gfc_error ("Actual argument at %L must be definable as "
2119 "the dummy argument '%s' is INTENT = OUT/INOUT",
2120 &a->expr->where, f->sym->name);
b251af97
SK
2121 return 0;
2122 }
a920e94a 2123
ee7e677f
TB
2124 if (!compare_parameter_protected(f->sym, a->expr))
2125 {
2126 if (where)
2127 gfc_error ("Actual argument at %L is use-associated with "
2128 "PROTECTED attribute and dummy argument '%s' is "
2129 "INTENT = OUT/INOUT",
2130 &a->expr->where,f->sym->name);
b251af97 2131 return 0;
ee7e677f
TB
2132 }
2133
59be8071
TB
2134 if ((f->sym->attr.intent == INTENT_OUT
2135 || f->sym->attr.intent == INTENT_INOUT
2136 || f->sym->attr.volatile_)
2137 && has_vector_subscript (a->expr))
2138 {
2139 if (where)
2140 gfc_error ("Array-section actual argument with vector subscripts "
a0710c29 2141 "at %L is incompatible with INTENT(OUT), INTENT(INOUT) "
59be8071
TB
2142 "or VOLATILE attribute of the dummy argument '%s'",
2143 &a->expr->where, f->sym->name);
2144 return 0;
2145 }
2146
9bce3c1c
TB
2147 /* C1232 (R1221) For an actual argument which is an array section or
2148 an assumed-shape array, the dummy argument shall be an assumed-
2149 shape array, if the dummy argument has the VOLATILE attribute. */
2150
2151 if (f->sym->attr.volatile_
2152 && a->expr->symtree->n.sym->as
2153 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
2154 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2155 {
2156 if (where)
2157 gfc_error ("Assumed-shape actual argument at %L is "
2158 "incompatible with the non-assumed-shape "
2159 "dummy argument '%s' due to VOLATILE attribute",
2160 &a->expr->where,f->sym->name);
2161 return 0;
2162 }
2163
2164 if (f->sym->attr.volatile_
2165 && a->expr->ref && a->expr->ref->u.ar.type == AR_SECTION
2166 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2167 {
2168 if (where)
2169 gfc_error ("Array-section actual argument at %L is "
2170 "incompatible with the non-assumed-shape "
2171 "dummy argument '%s' due to VOLATILE attribute",
2172 &a->expr->where,f->sym->name);
2173 return 0;
2174 }
2175
2176 /* C1233 (R1221) For an actual argument which is a pointer array, the
2177 dummy argument shall be an assumed-shape or pointer array, if the
2178 dummy argument has the VOLATILE attribute. */
2179
2180 if (f->sym->attr.volatile_
2181 && a->expr->symtree->n.sym->attr.pointer
2182 && a->expr->symtree->n.sym->as
2183 && !(f->sym->as
2184 && (f->sym->as->type == AS_ASSUMED_SHAPE
2185 || f->sym->attr.pointer)))
2186 {
2187 if (where)
2188 gfc_error ("Pointer-array actual argument at %L requires "
2189 "an assumed-shape or pointer-array dummy "
2190 "argument '%s' due to VOLATILE attribute",
2191 &a->expr->where,f->sym->name);
2192 return 0;
2193 }
2194
6de9cd9a
DN
2195 match:
2196 if (a == actual)
2197 na = i;
2198
7b901ac4 2199 new_arg[i++] = a;
6de9cd9a
DN
2200 }
2201
2202 /* Make sure missing actual arguments are optional. */
2203 i = 0;
2204 for (f = formal; f; f = f->next, i++)
2205 {
7b901ac4 2206 if (new_arg[i] != NULL)
6de9cd9a 2207 continue;
3ab7b3de
BM
2208 if (f->sym == NULL)
2209 {
2210 if (where)
b251af97
SK
2211 gfc_error ("Missing alternate return spec in subroutine call "
2212 "at %L", where);
3ab7b3de
BM
2213 return 0;
2214 }
6de9cd9a
DN
2215 if (!f->sym->attr.optional)
2216 {
2217 if (where)
2218 gfc_error ("Missing actual argument for argument '%s' at %L",
2219 f->sym->name, where);
2220 return 0;
2221 }
2222 }
2223
2224 /* The argument lists are compatible. We now relink a new actual
2225 argument list with null arguments in the right places. The head
2226 of the list remains the head. */
2227 for (i = 0; i < n; i++)
7b901ac4
KG
2228 if (new_arg[i] == NULL)
2229 new_arg[i] = gfc_get_actual_arglist ();
6de9cd9a
DN
2230
2231 if (na != 0)
2232 {
7b901ac4
KG
2233 temp = *new_arg[0];
2234 *new_arg[0] = *actual;
6de9cd9a
DN
2235 *actual = temp;
2236
7b901ac4
KG
2237 a = new_arg[0];
2238 new_arg[0] = new_arg[na];
2239 new_arg[na] = a;
6de9cd9a
DN
2240 }
2241
2242 for (i = 0; i < n - 1; i++)
7b901ac4 2243 new_arg[i]->next = new_arg[i + 1];
6de9cd9a 2244
7b901ac4 2245 new_arg[i]->next = NULL;
6de9cd9a
DN
2246
2247 if (*ap == NULL && n > 0)
7b901ac4 2248 *ap = new_arg[0];
6de9cd9a 2249
1600fe22 2250 /* Note the types of omitted optional arguments. */
b5ca4fd2 2251 for (a = *ap, f = formal; a; a = a->next, f = f->next)
1600fe22
TS
2252 if (a->expr == NULL && a->label == NULL)
2253 a->missing_arg_type = f->sym->ts.type;
2254
6de9cd9a
DN
2255 return 1;
2256}
2257
2258
2259typedef struct
2260{
2261 gfc_formal_arglist *f;
2262 gfc_actual_arglist *a;
2263}
2264argpair;
2265
2266/* qsort comparison function for argument pairs, with the following
2267 order:
2268 - p->a->expr == NULL
2269 - p->a->expr->expr_type != EXPR_VARIABLE
f7b529fa 2270 - growing p->a->expr->symbol. */
6de9cd9a
DN
2271
2272static int
2273pair_cmp (const void *p1, const void *p2)
2274{
2275 const gfc_actual_arglist *a1, *a2;
2276
2277 /* *p1 and *p2 are elements of the to-be-sorted array. */
2278 a1 = ((const argpair *) p1)->a;
2279 a2 = ((const argpair *) p2)->a;
2280 if (!a1->expr)
2281 {
2282 if (!a2->expr)
2283 return 0;
2284 return -1;
2285 }
2286 if (!a2->expr)
2287 return 1;
2288 if (a1->expr->expr_type != EXPR_VARIABLE)
2289 {
2290 if (a2->expr->expr_type != EXPR_VARIABLE)
2291 return 0;
2292 return -1;
2293 }
2294 if (a2->expr->expr_type != EXPR_VARIABLE)
2295 return 1;
2296 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
2297}
2298
2299
2300/* Given two expressions from some actual arguments, test whether they
2301 refer to the same expression. The analysis is conservative.
2302 Returning FAILURE will produce no warning. */
2303
17b1d2a0 2304static gfc_try
b251af97 2305compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
6de9cd9a
DN
2306{
2307 const gfc_ref *r1, *r2;
2308
2309 if (!e1 || !e2
2310 || e1->expr_type != EXPR_VARIABLE
2311 || e2->expr_type != EXPR_VARIABLE
2312 || e1->symtree->n.sym != e2->symtree->n.sym)
2313 return FAILURE;
2314
2315 /* TODO: improve comparison, see expr.c:show_ref(). */
2316 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
2317 {
2318 if (r1->type != r2->type)
2319 return FAILURE;
2320 switch (r1->type)
2321 {
2322 case REF_ARRAY:
2323 if (r1->u.ar.type != r2->u.ar.type)
2324 return FAILURE;
2325 /* TODO: At the moment, consider only full arrays;
2326 we could do better. */
2327 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
2328 return FAILURE;
2329 break;
2330
2331 case REF_COMPONENT:
2332 if (r1->u.c.component != r2->u.c.component)
2333 return FAILURE;
2334 break;
2335
2336 case REF_SUBSTRING:
2337 return FAILURE;
2338
2339 default:
2340 gfc_internal_error ("compare_actual_expr(): Bad component code");
2341 }
2342 }
2343 if (!r1 && !r2)
2344 return SUCCESS;
2345 return FAILURE;
2346}
2347
b251af97 2348
6de9cd9a
DN
2349/* Given formal and actual argument lists that correspond to one
2350 another, check that identical actual arguments aren't not
2351 associated with some incompatible INTENTs. */
2352
17b1d2a0 2353static gfc_try
b251af97 2354check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
6de9cd9a
DN
2355{
2356 sym_intent f1_intent, f2_intent;
2357 gfc_formal_arglist *f1;
2358 gfc_actual_arglist *a1;
2359 size_t n, i, j;
2360 argpair *p;
17b1d2a0 2361 gfc_try t = SUCCESS;
6de9cd9a
DN
2362
2363 n = 0;
2364 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
2365 {
2366 if (f1 == NULL && a1 == NULL)
2367 break;
2368 if (f1 == NULL || a1 == NULL)
2369 gfc_internal_error ("check_some_aliasing(): List mismatch");
2370 n++;
2371 }
2372 if (n == 0)
2373 return t;
2374 p = (argpair *) alloca (n * sizeof (argpair));
2375
2376 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
2377 {
2378 p[i].f = f1;
2379 p[i].a = a1;
2380 }
2381
2382 qsort (p, n, sizeof (argpair), pair_cmp);
2383
2384 for (i = 0; i < n; i++)
2385 {
2386 if (!p[i].a->expr
2387 || p[i].a->expr->expr_type != EXPR_VARIABLE
2388 || p[i].a->expr->ts.type == BT_PROCEDURE)
2389 continue;
2390 f1_intent = p[i].f->sym->attr.intent;
2391 for (j = i + 1; j < n; j++)
2392 {
2393 /* Expected order after the sort. */
2394 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
2395 gfc_internal_error ("check_some_aliasing(): corrupted data");
2396
2397 /* Are the expression the same? */
2398 if (compare_actual_expr (p[i].a->expr, p[j].a->expr) == FAILURE)
2399 break;
2400 f2_intent = p[j].f->sym->attr.intent;
2401 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
2402 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN))
2403 {
2404 gfc_warning ("Same actual argument associated with INTENT(%s) "
2405 "argument '%s' and INTENT(%s) argument '%s' at %L",
2406 gfc_intent_string (f1_intent), p[i].f->sym->name,
2407 gfc_intent_string (f2_intent), p[j].f->sym->name,
2408 &p[i].a->expr->where);
2409 t = FAILURE;
2410 }
2411 }
2412 }
2413
2414 return t;
2415}
2416
2417
f17facac 2418/* Given a symbol of a formal argument list and an expression,
86bf520d 2419 return nonzero if their intents are compatible, zero otherwise. */
f17facac
TB
2420
2421static int
b251af97 2422compare_parameter_intent (gfc_symbol *formal, gfc_expr *actual)
f17facac 2423{
b251af97 2424 if (actual->symtree->n.sym->attr.pointer && !formal->attr.pointer)
f17facac
TB
2425 return 1;
2426
2427 if (actual->symtree->n.sym->attr.intent != INTENT_IN)
2428 return 1;
2429
b251af97 2430 if (formal->attr.intent == INTENT_INOUT || formal->attr.intent == INTENT_OUT)
f17facac
TB
2431 return 0;
2432
2433 return 1;
2434}
2435
2436
6de9cd9a
DN
2437/* Given formal and actual argument lists that correspond to one
2438 another, check that they are compatible in the sense that intents
2439 are not mismatched. */
2440
17b1d2a0 2441static gfc_try
b251af97 2442check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
6de9cd9a 2443{
f17facac 2444 sym_intent f_intent;
6de9cd9a
DN
2445
2446 for (;; f = f->next, a = a->next)
2447 {
2448 if (f == NULL && a == NULL)
2449 break;
2450 if (f == NULL || a == NULL)
2451 gfc_internal_error ("check_intents(): List mismatch");
2452
2453 if (a->expr == NULL || a->expr->expr_type != EXPR_VARIABLE)
2454 continue;
2455
6de9cd9a
DN
2456 f_intent = f->sym->attr.intent;
2457
f17facac 2458 if (!compare_parameter_intent(f->sym, a->expr))
6de9cd9a 2459 {
6de9cd9a
DN
2460 gfc_error ("Procedure argument at %L is INTENT(IN) while interface "
2461 "specifies INTENT(%s)", &a->expr->where,
2462 gfc_intent_string (f_intent));
2463 return FAILURE;
2464 }
2465
2466 if (gfc_pure (NULL) && gfc_impure_variable (a->expr->symtree->n.sym))
2467 {
2468 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
2469 {
b251af97
SK
2470 gfc_error ("Procedure argument at %L is local to a PURE "
2471 "procedure and is passed to an INTENT(%s) argument",
2472 &a->expr->where, gfc_intent_string (f_intent));
6de9cd9a
DN
2473 return FAILURE;
2474 }
2475
c4e3543d 2476 if (f->sym->attr.pointer)
6de9cd9a 2477 {
b251af97
SK
2478 gfc_error ("Procedure argument at %L is local to a PURE "
2479 "procedure and has the POINTER attribute",
2480 &a->expr->where);
6de9cd9a
DN
2481 return FAILURE;
2482 }
2483 }
d3a9eea2
TB
2484
2485 /* Fortran 2008, C1283. */
2486 if (gfc_pure (NULL) && gfc_is_coindexed (a->expr))
2487 {
2488 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
2489 {
2490 gfc_error ("Coindexed actual argument at %L in PURE procedure "
2491 "is passed to an INTENT(%s) argument",
2492 &a->expr->where, gfc_intent_string (f_intent));
2493 return FAILURE;
2494 }
2495
2496 if (f->sym->attr.pointer)
2497 {
2498 gfc_error ("Coindexed actual argument at %L in PURE procedure "
2499 "is passed to a POINTER dummy argument",
2500 &a->expr->where);
2501 return FAILURE;
2502 }
2503 }
2504
2505 /* F2008, Section 12.5.2.4. */
2506 if (a->expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
2507 && gfc_is_coindexed (a->expr))
2508 {
2509 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
2510 "polymorphic dummy argument '%s'",
2511 &a->expr->where, f->sym->name);
2512 return FAILURE;
2513 }
6de9cd9a
DN
2514 }
2515
2516 return SUCCESS;
2517}
2518
2519
2520/* Check how a procedure is used against its interface. If all goes
2521 well, the actual argument list will also end up being properly
2522 sorted. */
2523
2524void
b251af97 2525gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
6de9cd9a 2526{
c4bbc105 2527
a9c5fe7e
TK
2528 /* Warn about calls with an implicit interface. Special case
2529 for calling a ISO_C_BINDING becase c_loc and c_funloc
ca071303
FXC
2530 are pseudo-unknown. Additionally, warn about procedures not
2531 explicitly declared at all if requested. */
2532 if (sym->attr.if_source == IFSRC_UNKNOWN && ! sym->attr.is_iso_c)
2533 {
2534 if (gfc_option.warn_implicit_interface)
2535 gfc_warning ("Procedure '%s' called with an implicit interface at %L",
2536 sym->name, where);
2537 else if (gfc_option.warn_implicit_procedure
2538 && sym->attr.proc == PROC_UNKNOWN)
2539 gfc_warning ("Procedure '%s' called at %L is not explicitly declared",
2540 sym->name, where);
2541 }
6de9cd9a 2542
e6895430 2543 if (sym->attr.if_source == IFSRC_UNKNOWN)
ac05557c
DF
2544 {
2545 gfc_actual_arglist *a;
2546 for (a = *ap; a; a = a->next)
2547 {
2548 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
2549 if (a->name != NULL && a->name[0] != '%')
2550 {
2551 gfc_error("Keyword argument requires explicit interface "
2552 "for procedure '%s' at %L", sym->name, &a->expr->where);
2553 break;
2554 }
2555 }
2556
2557 return;
2558 }
2559
f0ac18b7 2560 if (!compare_actual_formal (ap, sym->formal, 0, sym->attr.elemental, where))
6de9cd9a
DN
2561 return;
2562
2563 check_intents (sym->formal, *ap);
2564 if (gfc_option.warn_aliasing)
2565 check_some_aliasing (sym->formal, *ap);
2566}
2567
2568
7e196f89
JW
2569/* Check how a procedure pointer component is used against its interface.
2570 If all goes well, the actual argument list will also end up being properly
2571 sorted. Completely analogous to gfc_procedure_use. */
2572
2573void
2574gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
2575{
2576
2577 /* Warn about calls with an implicit interface. Special case
2578 for calling a ISO_C_BINDING becase c_loc and c_funloc
2579 are pseudo-unknown. */
2580 if (gfc_option.warn_implicit_interface
2581 && comp->attr.if_source == IFSRC_UNKNOWN
2582 && !comp->attr.is_iso_c)
2583 gfc_warning ("Procedure pointer component '%s' called with an implicit "
2584 "interface at %L", comp->name, where);
2585
2586 if (comp->attr.if_source == IFSRC_UNKNOWN)
2587 {
2588 gfc_actual_arglist *a;
2589 for (a = *ap; a; a = a->next)
2590 {
2591 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
2592 if (a->name != NULL && a->name[0] != '%')
2593 {
2594 gfc_error("Keyword argument requires explicit interface "
2595 "for procedure pointer component '%s' at %L",
2596 comp->name, &a->expr->where);
2597 break;
2598 }
2599 }
2600
2601 return;
2602 }
2603
2604 if (!compare_actual_formal (ap, comp->formal, 0, comp->attr.elemental, where))
2605 return;
2606
2607 check_intents (comp->formal, *ap);
2608 if (gfc_option.warn_aliasing)
2609 check_some_aliasing (comp->formal, *ap);
2610}
2611
2612
f0ac18b7
DK
2613/* Try if an actual argument list matches the formal list of a symbol,
2614 respecting the symbol's attributes like ELEMENTAL. This is used for
2615 GENERIC resolution. */
2616
2617bool
2618gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
2619{
2620 bool r;
2621
2622 gcc_assert (sym->attr.flavor == FL_PROCEDURE);
2623
2624 r = !sym->attr.elemental;
2625 if (compare_actual_formal (args, sym->formal, r, !r, NULL))
2626 {
2627 check_intents (sym->formal, *args);
2628 if (gfc_option.warn_aliasing)
2629 check_some_aliasing (sym->formal, *args);
2630 return true;
2631 }
2632
2633 return false;
2634}
2635
2636
6de9cd9a
DN
2637/* Given an interface pointer and an actual argument list, search for
2638 a formal argument list that matches the actual. If found, returns
2639 a pointer to the symbol of the correct interface. Returns NULL if
2640 not found. */
2641
2642gfc_symbol *
b251af97
SK
2643gfc_search_interface (gfc_interface *intr, int sub_flag,
2644 gfc_actual_arglist **ap)
6de9cd9a 2645{
22a0a780 2646 gfc_symbol *elem_sym = NULL;
6de9cd9a
DN
2647 for (; intr; intr = intr->next)
2648 {
2649 if (sub_flag && intr->sym->attr.function)
2650 continue;
2651 if (!sub_flag && intr->sym->attr.subroutine)
2652 continue;
2653
f0ac18b7 2654 if (gfc_arglist_matches_symbol (ap, intr->sym))
22a0a780
PT
2655 {
2656 /* Satisfy 12.4.4.1 such that an elemental match has lower
2657 weight than a non-elemental match. */
2658 if (intr->sym->attr.elemental)
2659 {
2660 elem_sym = intr->sym;
2661 continue;
2662 }
2663 return intr->sym;
2664 }
6de9cd9a
DN
2665 }
2666
22a0a780 2667 return elem_sym ? elem_sym : NULL;
6de9cd9a
DN
2668}
2669
2670
2671/* Do a brute force recursive search for a symbol. */
2672
2673static gfc_symtree *
b251af97 2674find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
6de9cd9a
DN
2675{
2676 gfc_symtree * st;
2677
2678 if (root->n.sym == sym)
2679 return root;
2680
2681 st = NULL;
2682 if (root->left)
2683 st = find_symtree0 (root->left, sym);
2684 if (root->right && ! st)
2685 st = find_symtree0 (root->right, sym);
2686 return st;
2687}
2688
2689
2690/* Find a symtree for a symbol. */
2691
f6fad28e
DK
2692gfc_symtree *
2693gfc_find_sym_in_symtree (gfc_symbol *sym)
6de9cd9a
DN
2694{
2695 gfc_symtree *st;
2696 gfc_namespace *ns;
2697
2698 /* First try to find it by name. */
2699 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
2700 if (st && st->n.sym == sym)
2701 return st;
2702
66e4ab31 2703 /* If it's been renamed, resort to a brute-force search. */
6de9cd9a
DN
2704 /* TODO: avoid having to do this search. If the symbol doesn't exist
2705 in the symtree for the current namespace, it should probably be added. */
2706 for (ns = gfc_current_ns; ns; ns = ns->parent)
2707 {
2708 st = find_symtree0 (ns->sym_root, sym);
2709 if (st)
b251af97 2710 return st;
6de9cd9a
DN
2711 }
2712 gfc_internal_error ("Unable to find symbol %s", sym->name);
66e4ab31 2713 /* Not reached. */
6de9cd9a
DN
2714}
2715
2716
4a44a72d
DK
2717/* See if the arglist to an operator-call contains a derived-type argument
2718 with a matching type-bound operator. If so, return the matching specific
2719 procedure defined as operator-target as well as the base-object to use
2720 (which is the found derived-type argument with operator). */
2721
2722static gfc_typebound_proc*
2723matching_typebound_op (gfc_expr** tb_base,
2724 gfc_actual_arglist* args,
2725 gfc_intrinsic_op op, const char* uop)
2726{
2727 gfc_actual_arglist* base;
2728
2729 for (base = args; base; base = base->next)
4b7dd692 2730 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
4a44a72d
DK
2731 {
2732 gfc_typebound_proc* tb;
2733 gfc_symbol* derived;
2734 gfc_try result;
2735
4b7dd692 2736 if (base->expr->ts.type == BT_CLASS)
7a08eda1 2737 derived = CLASS_DATA (base->expr)->ts.u.derived;
4b7dd692
JW
2738 else
2739 derived = base->expr->ts.u.derived;
4a44a72d
DK
2740
2741 if (op == INTRINSIC_USER)
2742 {
2743 gfc_symtree* tb_uop;
2744
2745 gcc_assert (uop);
2746 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
2747 false, NULL);
2748
2749 if (tb_uop)
2750 tb = tb_uop->n.tb;
2751 else
2752 tb = NULL;
2753 }
2754 else
2755 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
2756 false, NULL);
2757
2758 /* This means we hit a PRIVATE operator which is use-associated and
2759 should thus not be seen. */
2760 if (result == FAILURE)
2761 tb = NULL;
2762
2763 /* Look through the super-type hierarchy for a matching specific
2764 binding. */
2765 for (; tb; tb = tb->overridden)
2766 {
2767 gfc_tbp_generic* g;
2768
2769 gcc_assert (tb->is_generic);
2770 for (g = tb->u.generic; g; g = g->next)
2771 {
2772 gfc_symbol* target;
2773 gfc_actual_arglist* argcopy;
2774 bool matches;
2775
2776 gcc_assert (g->specific);
2777 if (g->specific->error)
2778 continue;
2779
2780 target = g->specific->u.specific->n.sym;
2781
2782 /* Check if this arglist matches the formal. */
2783 argcopy = gfc_copy_actual_arglist (args);
2784 matches = gfc_arglist_matches_symbol (&argcopy, target);
2785 gfc_free_actual_arglist (argcopy);
2786
2787 /* Return if we found a match. */
2788 if (matches)
2789 {
2790 *tb_base = base->expr;
2791 return g->specific;
2792 }
2793 }
2794 }
2795 }
2796
2797 return NULL;
2798}
2799
2800
2801/* For the 'actual arglist' of an operator call and a specific typebound
2802 procedure that has been found the target of a type-bound operator, build the
2803 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
2804 type-bound procedures rather than resolving type-bound operators 'directly'
2805 so that we can reuse the existing logic. */
2806
2807static void
2808build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
2809 gfc_expr* base, gfc_typebound_proc* target)
2810{
2811 e->expr_type = EXPR_COMPCALL;
2812 e->value.compcall.tbp = target;
2813 e->value.compcall.name = "operator"; /* Should not matter. */
2814 e->value.compcall.actual = actual;
2815 e->value.compcall.base_object = base;
2816 e->value.compcall.ignore_pass = 1;
2817 e->value.compcall.assign = 0;
2818}
2819
2820
6de9cd9a
DN
2821/* This subroutine is called when an expression is being resolved.
2822 The expression node in question is either a user defined operator
1f2959f0 2823 or an intrinsic operator with arguments that aren't compatible
6de9cd9a
DN
2824 with the operator. This subroutine builds an actual argument list
2825 corresponding to the operands, then searches for a compatible
2826 interface. If one is found, the expression node is replaced with
4a44a72d
DK
2827 the appropriate function call.
2828 real_error is an additional output argument that specifies if FAILURE
2829 is because of some real error and not because no match was found. */
6de9cd9a 2830
17b1d2a0 2831gfc_try
4a44a72d 2832gfc_extend_expr (gfc_expr *e, bool *real_error)
6de9cd9a
DN
2833{
2834 gfc_actual_arglist *actual;
2835 gfc_symbol *sym;
2836 gfc_namespace *ns;
2837 gfc_user_op *uop;
2838 gfc_intrinsic_op i;
2839
2840 sym = NULL;
2841
2842 actual = gfc_get_actual_arglist ();
58b03ab2 2843 actual->expr = e->value.op.op1;
6de9cd9a 2844
4a44a72d
DK
2845 *real_error = false;
2846
58b03ab2 2847 if (e->value.op.op2 != NULL)
6de9cd9a
DN
2848 {
2849 actual->next = gfc_get_actual_arglist ();
58b03ab2 2850 actual->next->expr = e->value.op.op2;
6de9cd9a
DN
2851 }
2852
e8d4f3fc 2853 i = fold_unary_intrinsic (e->value.op.op);
6de9cd9a
DN
2854
2855 if (i == INTRINSIC_USER)
2856 {
2857 for (ns = gfc_current_ns; ns; ns = ns->parent)
2858 {
58b03ab2 2859 uop = gfc_find_uop (e->value.op.uop->name, ns);
6de9cd9a
DN
2860 if (uop == NULL)
2861 continue;
2862
a1ee985f 2863 sym = gfc_search_interface (uop->op, 0, &actual);
6de9cd9a
DN
2864 if (sym != NULL)
2865 break;
2866 }
2867 }
2868 else
2869 {
2870 for (ns = gfc_current_ns; ns; ns = ns->parent)
2871 {
3bed9dd0
DF
2872 /* Due to the distinction between '==' and '.eq.' and friends, one has
2873 to check if either is defined. */
2874 switch (i)
2875 {
4a44a72d
DK
2876#define CHECK_OS_COMPARISON(comp) \
2877 case INTRINSIC_##comp: \
2878 case INTRINSIC_##comp##_OS: \
2879 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
2880 if (!sym) \
2881 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
2882 break;
2883 CHECK_OS_COMPARISON(EQ)
2884 CHECK_OS_COMPARISON(NE)
2885 CHECK_OS_COMPARISON(GT)
2886 CHECK_OS_COMPARISON(GE)
2887 CHECK_OS_COMPARISON(LT)
2888 CHECK_OS_COMPARISON(LE)
2889#undef CHECK_OS_COMPARISON
3bed9dd0
DF
2890
2891 default:
a1ee985f 2892 sym = gfc_search_interface (ns->op[i], 0, &actual);
3bed9dd0
DF
2893 }
2894
6de9cd9a
DN
2895 if (sym != NULL)
2896 break;
2897 }
2898 }
2899
4a44a72d
DK
2900 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
2901 found rather than just taking the first one and not checking further. */
2902
6de9cd9a
DN
2903 if (sym == NULL)
2904 {
4a44a72d
DK
2905 gfc_typebound_proc* tbo;
2906 gfc_expr* tb_base;
2907
2908 /* See if we find a matching type-bound operator. */
2909 if (i == INTRINSIC_USER)
2910 tbo = matching_typebound_op (&tb_base, actual,
2911 i, e->value.op.uop->name);
2912 else
2913 switch (i)
2914 {
2915#define CHECK_OS_COMPARISON(comp) \
2916 case INTRINSIC_##comp: \
2917 case INTRINSIC_##comp##_OS: \
2918 tbo = matching_typebound_op (&tb_base, actual, \
2919 INTRINSIC_##comp, NULL); \
2920 if (!tbo) \
2921 tbo = matching_typebound_op (&tb_base, actual, \
2922 INTRINSIC_##comp##_OS, NULL); \
2923 break;
2924 CHECK_OS_COMPARISON(EQ)
2925 CHECK_OS_COMPARISON(NE)
2926 CHECK_OS_COMPARISON(GT)
2927 CHECK_OS_COMPARISON(GE)
2928 CHECK_OS_COMPARISON(LT)
2929 CHECK_OS_COMPARISON(LE)
2930#undef CHECK_OS_COMPARISON
2931
2932 default:
2933 tbo = matching_typebound_op (&tb_base, actual, i, NULL);
2934 break;
2935 }
2936
2937 /* If there is a matching typebound-operator, replace the expression with
2938 a call to it and succeed. */
2939 if (tbo)
2940 {
2941 gfc_try result;
2942
2943 gcc_assert (tb_base);
2944 build_compcall_for_operator (e, actual, tb_base, tbo);
2945
2946 result = gfc_resolve_expr (e);
2947 if (result == FAILURE)
2948 *real_error = true;
2949
2950 return result;
2951 }
2952
66e4ab31 2953 /* Don't use gfc_free_actual_arglist(). */
6de9cd9a
DN
2954 if (actual->next != NULL)
2955 gfc_free (actual->next);
2956 gfc_free (actual);
2957
2958 return FAILURE;
2959 }
2960
2961 /* Change the expression node to a function call. */
2962 e->expr_type = EXPR_FUNCTION;
f6fad28e 2963 e->symtree = gfc_find_sym_in_symtree (sym);
6de9cd9a 2964 e->value.function.actual = actual;
58b03ab2
TS
2965 e->value.function.esym = NULL;
2966 e->value.function.isym = NULL;
cf013e9f 2967 e->value.function.name = NULL;
a1ab6660 2968 e->user_operator = 1;
6de9cd9a 2969
4a44a72d 2970 if (gfc_resolve_expr (e) == FAILURE)
6de9cd9a 2971 {
4a44a72d 2972 *real_error = true;
6de9cd9a
DN
2973 return FAILURE;
2974 }
2975
6de9cd9a
DN
2976 return SUCCESS;
2977}
2978
2979
2980/* Tries to replace an assignment code node with a subroutine call to
2981 the subroutine associated with the assignment operator. Return
2982 SUCCESS if the node was replaced. On FAILURE, no error is
2983 generated. */
2984
17b1d2a0 2985gfc_try
b251af97 2986gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
6de9cd9a
DN
2987{
2988 gfc_actual_arglist *actual;
2989 gfc_expr *lhs, *rhs;
2990 gfc_symbol *sym;
2991
a513927a 2992 lhs = c->expr1;
6de9cd9a
DN
2993 rhs = c->expr2;
2994
2995 /* Don't allow an intrinsic assignment to be replaced. */
4b7dd692 2996 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
e19bb186 2997 && (rhs->rank == 0 || rhs->rank == lhs->rank)
6de9cd9a 2998 && (lhs->ts.type == rhs->ts.type
b251af97 2999 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
6de9cd9a
DN
3000 return FAILURE;
3001
3002 actual = gfc_get_actual_arglist ();
3003 actual->expr = lhs;
3004
3005 actual->next = gfc_get_actual_arglist ();
3006 actual->next->expr = rhs;
3007
3008 sym = NULL;
3009
3010 for (; ns; ns = ns->parent)
3011 {
a1ee985f 3012 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
6de9cd9a
DN
3013 if (sym != NULL)
3014 break;
3015 }
3016
4a44a72d
DK
3017 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
3018
6de9cd9a
DN
3019 if (sym == NULL)
3020 {
4a44a72d
DK
3021 gfc_typebound_proc* tbo;
3022 gfc_expr* tb_base;
3023
3024 /* See if we find a matching type-bound assignment. */
3025 tbo = matching_typebound_op (&tb_base, actual,
3026 INTRINSIC_ASSIGN, NULL);
3027
3028 /* If there is one, replace the expression with a call to it and
3029 succeed. */
3030 if (tbo)
3031 {
3032 gcc_assert (tb_base);
3033 c->expr1 = gfc_get_expr ();
3034 build_compcall_for_operator (c->expr1, actual, tb_base, tbo);
3035 c->expr1->value.compcall.assign = 1;
3036 c->expr2 = NULL;
3037 c->op = EXEC_COMPCALL;
3038
3039 /* c is resolved from the caller, so no need to do it here. */
3040
3041 return SUCCESS;
3042 }
3043
6de9cd9a
DN
3044 gfc_free (actual->next);
3045 gfc_free (actual);
3046 return FAILURE;
3047 }
3048
3049 /* Replace the assignment with the call. */
476220e7 3050 c->op = EXEC_ASSIGN_CALL;
f6fad28e 3051 c->symtree = gfc_find_sym_in_symtree (sym);
a513927a 3052 c->expr1 = NULL;
6de9cd9a
DN
3053 c->expr2 = NULL;
3054 c->ext.actual = actual;
3055
6de9cd9a
DN
3056 return SUCCESS;
3057}
3058
3059
3060/* Make sure that the interface just parsed is not already present in
3061 the given interface list. Ambiguity isn't checked yet since module
3062 procedures can be present without interfaces. */
3063
17b1d2a0 3064static gfc_try
7b901ac4 3065check_new_interface (gfc_interface *base, gfc_symbol *new_sym)
6de9cd9a
DN
3066{
3067 gfc_interface *ip;
3068
3069 for (ip = base; ip; ip = ip->next)
3070 {
7b901ac4 3071 if (ip->sym == new_sym)
6de9cd9a
DN
3072 {
3073 gfc_error ("Entity '%s' at %C is already present in the interface",
7b901ac4 3074 new_sym->name);
6de9cd9a
DN
3075 return FAILURE;
3076 }
3077 }
3078
3079 return SUCCESS;
3080}
3081
3082
3083/* Add a symbol to the current interface. */
3084
17b1d2a0 3085gfc_try
7b901ac4 3086gfc_add_interface (gfc_symbol *new_sym)
6de9cd9a
DN
3087{
3088 gfc_interface **head, *intr;
3089 gfc_namespace *ns;
3090 gfc_symbol *sym;
3091
3092 switch (current_interface.type)
3093 {
3094 case INTERFACE_NAMELESS:
9e1d712c 3095 case INTERFACE_ABSTRACT:
6de9cd9a
DN
3096 return SUCCESS;
3097
3098 case INTERFACE_INTRINSIC_OP:
3099 for (ns = current_interface.ns; ns; ns = ns->parent)
3bed9dd0
DF
3100 switch (current_interface.op)
3101 {
3102 case INTRINSIC_EQ:
3103 case INTRINSIC_EQ_OS:
7b901ac4
KG
3104 if (check_new_interface (ns->op[INTRINSIC_EQ], new_sym) == FAILURE ||
3105 check_new_interface (ns->op[INTRINSIC_EQ_OS], new_sym) == FAILURE)
3bed9dd0
DF
3106 return FAILURE;
3107 break;
3108
3109 case INTRINSIC_NE:
3110 case INTRINSIC_NE_OS:
7b901ac4
KG
3111 if (check_new_interface (ns->op[INTRINSIC_NE], new_sym) == FAILURE ||
3112 check_new_interface (ns->op[INTRINSIC_NE_OS], new_sym) == FAILURE)
3bed9dd0
DF
3113 return FAILURE;
3114 break;
3115
3116 case INTRINSIC_GT:
3117 case INTRINSIC_GT_OS:
7b901ac4
KG
3118 if (check_new_interface (ns->op[INTRINSIC_GT], new_sym) == FAILURE ||
3119 check_new_interface (ns->op[INTRINSIC_GT_OS], new_sym) == FAILURE)
3bed9dd0
DF
3120 return FAILURE;
3121 break;
3122
3123 case INTRINSIC_GE:
3124 case INTRINSIC_GE_OS:
7b901ac4
KG
3125 if (check_new_interface (ns->op[INTRINSIC_GE], new_sym) == FAILURE ||
3126 check_new_interface (ns->op[INTRINSIC_GE_OS], new_sym) == FAILURE)
3bed9dd0
DF
3127 return FAILURE;
3128 break;
3129
3130 case INTRINSIC_LT:
3131 case INTRINSIC_LT_OS:
7b901ac4
KG
3132 if (check_new_interface (ns->op[INTRINSIC_LT], new_sym) == FAILURE ||
3133 check_new_interface (ns->op[INTRINSIC_LT_OS], new_sym) == FAILURE)
3bed9dd0
DF
3134 return FAILURE;
3135 break;
3136
3137 case INTRINSIC_LE:
3138 case INTRINSIC_LE_OS:
7b901ac4
KG
3139 if (check_new_interface (ns->op[INTRINSIC_LE], new_sym) == FAILURE ||
3140 check_new_interface (ns->op[INTRINSIC_LE_OS], new_sym) == FAILURE)
3bed9dd0
DF
3141 return FAILURE;
3142 break;
3143
3144 default:
7b901ac4 3145 if (check_new_interface (ns->op[current_interface.op], new_sym) == FAILURE)
3bed9dd0
DF
3146 return FAILURE;
3147 }
6de9cd9a 3148
a1ee985f 3149 head = &current_interface.ns->op[current_interface.op];
6de9cd9a
DN
3150 break;
3151
3152 case INTERFACE_GENERIC:
3153 for (ns = current_interface.ns; ns; ns = ns->parent)
3154 {
3155 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
3156 if (sym == NULL)
3157 continue;
3158
7b901ac4 3159 if (check_new_interface (sym->generic, new_sym) == FAILURE)
6de9cd9a
DN
3160 return FAILURE;
3161 }
3162
3163 head = &current_interface.sym->generic;
3164 break;
3165
3166 case INTERFACE_USER_OP:
7b901ac4 3167 if (check_new_interface (current_interface.uop->op, new_sym)
b251af97 3168 == FAILURE)
6de9cd9a
DN
3169 return FAILURE;
3170
a1ee985f 3171 head = &current_interface.uop->op;
6de9cd9a
DN
3172 break;
3173
3174 default:
3175 gfc_internal_error ("gfc_add_interface(): Bad interface type");
3176 }
3177
3178 intr = gfc_get_interface ();
7b901ac4 3179 intr->sym = new_sym;
63645982 3180 intr->where = gfc_current_locus;
6de9cd9a
DN
3181
3182 intr->next = *head;
3183 *head = intr;
3184
3185 return SUCCESS;
3186}
3187
3188
2b77e908
FXC
3189gfc_interface *
3190gfc_current_interface_head (void)
3191{
3192 switch (current_interface.type)
3193 {
3194 case INTERFACE_INTRINSIC_OP:
a1ee985f 3195 return current_interface.ns->op[current_interface.op];
2b77e908
FXC
3196 break;
3197
3198 case INTERFACE_GENERIC:
3199 return current_interface.sym->generic;
3200 break;
3201
3202 case INTERFACE_USER_OP:
a1ee985f 3203 return current_interface.uop->op;
2b77e908
FXC
3204 break;
3205
3206 default:
3207 gcc_unreachable ();
3208 }
3209}
3210
3211
3212void
3213gfc_set_current_interface_head (gfc_interface *i)
3214{
3215 switch (current_interface.type)
3216 {
3217 case INTERFACE_INTRINSIC_OP:
a1ee985f 3218 current_interface.ns->op[current_interface.op] = i;
2b77e908
FXC
3219 break;
3220
3221 case INTERFACE_GENERIC:
3222 current_interface.sym->generic = i;
3223 break;
3224
3225 case INTERFACE_USER_OP:
a1ee985f 3226 current_interface.uop->op = i;
2b77e908
FXC
3227 break;
3228
3229 default:
3230 gcc_unreachable ();
3231 }
3232}
3233
3234
6de9cd9a
DN
3235/* Gets rid of a formal argument list. We do not free symbols.
3236 Symbols are freed when a namespace is freed. */
3237
3238void
b251af97 3239gfc_free_formal_arglist (gfc_formal_arglist *p)
6de9cd9a
DN
3240{
3241 gfc_formal_arglist *q;
3242
3243 for (; p; p = q)
3244 {
3245 q = p->next;
3246 gfc_free (p);
3247 }
3248}