]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/function.c
gcc/ada/
[thirdparty/gcc.git] / gcc / function.c
CommitLineData
bccafa26 1/* Expands front end tree to back end RTL for GCC.
3aea1f79 2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
897b77d6 3
f12b58b3 4This file is part of GCC.
897b77d6 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
897b77d6 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
897b77d6 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
897b77d6 19
897b77d6 20/* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
24
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
28
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
e8825bb0 32 not get a hard register. */
897b77d6 33
34#include "config.h"
405711de 35#include "system.h"
805e22b2 36#include "coretypes.h"
37#include "tm.h"
d7091a76 38#include "rtl-error.h"
897b77d6 39#include "tree.h"
9ed99284 40#include "stor-layout.h"
41#include "varasm.h"
42#include "stringpool.h"
897b77d6 43#include "flags.h"
dcabb90e 44#include "except.h"
a3020f2f 45#include "hashtab.h"
46#include "hash-set.h"
47#include "vec.h"
48#include "machmode.h"
49#include "hard-reg-set.h"
50#include "input.h"
897b77d6 51#include "function.h"
897b77d6 52#include "expr.h"
530178a9 53#include "optabs.h"
d8fc4d0b 54#include "libfuncs.h"
897b77d6 55#include "regs.h"
897b77d6 56#include "insn-config.h"
57#include "recog.h"
58#include "output.h"
075136a2 59#include "tm_p.h"
96554925 60#include "langhooks.h"
45550790 61#include "target.h"
218e3e4e 62#include "common/common-target.h"
bc61cadb 63#include "gimple-expr.h"
a8783bee 64#include "gimplify.h"
77fce4cd 65#include "tree-pass.h"
f1a0edff 66#include "predict.h"
94ea8568 67#include "dominance.h"
68#include "cfg.h"
69#include "cfgrtl.h"
70#include "cfganal.h"
71#include "cfgbuild.h"
72#include "cfgcleanup.h"
73#include "basic-block.h"
3072d30e 74#include "df.h"
0a55d497 75#include "params.h"
76#include "bb-reorder.h"
c562205f 77#include "shrink-wrap.h"
e0ff5636 78#include "toplev.h"
2d184b77 79#include "rtl-iter.h"
f1a0edff 80
c8a152f6 81/* So we can assign to cfun in this file. */
82#undef cfun
83
256f9b65 84#ifndef STACK_ALIGNMENT_NEEDED
85#define STACK_ALIGNMENT_NEEDED 1
86#endif
87
1cd50c9a 88#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
89
897b77d6 90/* Round a value to the lowest integer less than it that is a multiple of
91 the required alignment. Avoid using division in case the value is
92 negative. Assume the alignment is a power of two. */
93#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
94
95/* Similar, but round to the next highest integer that meets the
96 alignment. */
97#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
98
897b77d6 99/* Nonzero once virtual register instantiation has been done.
9c0a756f 100 assign_stack_local uses frame_pointer_rtx when this is nonzero.
101 calls.c:emit_library_call_value_1 uses it to set up
102 post-instantiation libcalls. */
103int virtuals_instantiated;
897b77d6 104
4781f9b9 105/* Assign unique numbers to labels generated for profiling, debugging, etc. */
573aba85 106static GTY(()) int funcdef_no;
b8a21949 107
ab5beff9 108/* These variables hold pointers to functions to create and destroy
109 target specific, per-function data structures. */
de1b648b 110struct machine_function * (*init_machine_status) (void);
adc2961c 111
304c5bf1 112/* The currently compiled function. */
08513b52 113struct function *cfun = 0;
304c5bf1 114
25e880b1 115/* These hashes record the prologue and epilogue insns. */
116static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
117 htab_t prologue_insn_hash;
118static GTY((if_marked ("ggc_marked_p"), param_is (struct rtx_def)))
119 htab_t epilogue_insn_hash;
897b77d6 120\f
1a4c44c5 121
2ef51f0e 122hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
f1f41a6c 123vec<tree, va_gc> *types_used_by_cur_var_decl;
1a4c44c5 124
209a68cc 125/* Forward declarations. */
126
de1b648b 127static struct temp_slot *find_temp_slot_from_address (rtx);
de1b648b 128static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
3754d046 129static void pad_below (struct args_size *, machine_mode, tree);
8bb2625b 130static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
de1b648b 131static int all_blocks (tree, tree *);
132static tree *get_block_vector (tree, int *);
133extern tree debug_find_var_in_block_tree (tree, tree);
4885b286 134/* We always define `record_insns' even if it's not used so that we
2dc40d2d 135 can always export `prologue_epilogue_contains'. */
4cd001d5 136static void record_insns (rtx_insn *, rtx, htab_t *) ATTRIBUTE_UNUSED;
25e880b1 137static bool contains (const_rtx, htab_t);
87d4aa85 138static void prepare_function_start (void);
de1b648b 139static void do_clobber_return_reg (rtx, void *);
140static void do_use_return_reg (rtx, void *);
8e4c05da 141\f
5737913a 142/* Stack of nested functions. */
143/* Keep track of the cfun stack. */
997d68fe 144
5737913a 145typedef struct function *function_p;
997d68fe 146
f1f41a6c 147static vec<function_p> function_context_stack;
897b77d6 148
149/* Save the current context for compilation of a nested function.
d2764e2d 150 This is called from language-specific code. */
897b77d6 151
152void
d2764e2d 153push_function_context (void)
897b77d6 154{
08513b52 155 if (cfun == 0)
80f2ef47 156 allocate_struct_function (NULL, false);
304c5bf1 157
f1f41a6c 158 function_context_stack.safe_push (cfun);
87d4aa85 159 set_cfun (NULL);
897b77d6 160}
161
162/* Restore the last saved context, at the end of a nested function.
163 This function is called from language-specific code. */
164
165void
d2764e2d 166pop_function_context (void)
897b77d6 167{
f1f41a6c 168 struct function *p = function_context_stack.pop ();
87d4aa85 169 set_cfun (p);
897b77d6 170 current_function_decl = p->decl;
897b77d6 171
897b77d6 172 /* Reset variables that have known state during rtx generation. */
897b77d6 173 virtuals_instantiated = 0;
316bc009 174 generating_concat_p = 1;
897b77d6 175}
2a228d52 176
3c3bb268 177/* Clear out all parts of the state in F that can safely be discarded
178 after the function has been parsed, but not compiled, to let
179 garbage collection reclaim the memory. */
180
181void
de1b648b 182free_after_parsing (struct function *f)
3c3bb268 183{
b75409ba 184 f->language = 0;
3c3bb268 185}
186
26df1c5e 187/* Clear out all parts of the state in F that can safely be discarded
188 after the function has been compiled, to let garbage collection
a57bcb3b 189 reclaim the memory. */
c788feb1 190
26df1c5e 191void
de1b648b 192free_after_compilation (struct function *f)
26df1c5e 193{
25e880b1 194 prologue_insn_hash = NULL;
195 epilogue_insn_hash = NULL;
196
dd045aee 197 free (crtl->emit.regno_pointer_align);
a4a0e8fd 198
fd6ffb7c 199 memset (crtl, 0, sizeof (struct rtl_data));
1f3233d1 200 f->eh = NULL;
1f3233d1 201 f->machine = NULL;
7a22afab 202 f->cfg = NULL;
3c3bb268 203
a9f6414b 204 regno_reg_rtx = NULL;
26df1c5e 205}
897b77d6 206\f
0a893c29 207/* Return size needed for stack frame based on slots so far allocated.
208 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
209 the caller may have to do that. */
26d04e5f 210
0a893c29 211HOST_WIDE_INT
de1b648b 212get_frame_size (void)
0a893c29 213{
b079a207 214 if (FRAME_GROWS_DOWNWARD)
215 return -frame_offset;
216 else
217 return frame_offset;
0a893c29 218}
219
26d04e5f 220/* Issue an error message and return TRUE if frame OFFSET overflows in
221 the signed target pointer arithmetics for function FUNC. Otherwise
222 return FALSE. */
223
224bool
225frame_offset_overflow (HOST_WIDE_INT offset, tree func)
48e1416a 226{
26d04e5f 227 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
228
229 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
230 /* Leave room for the fixed part of the frame. */
231 - 64 * UNITS_PER_WORD)
232 {
712d2297 233 error_at (DECL_SOURCE_LOCATION (func),
234 "total size of local objects too large");
26d04e5f 235 return TRUE;
236 }
237
238 return FALSE;
239}
240
ad33891d 241/* Return stack slot alignment in bits for TYPE and MODE. */
242
243static unsigned int
3754d046 244get_stack_local_alignment (tree type, machine_mode mode)
ad33891d 245{
246 unsigned int alignment;
247
248 if (mode == BLKmode)
249 alignment = BIGGEST_ALIGNMENT;
250 else
251 alignment = GET_MODE_ALIGNMENT (mode);
252
253 /* Allow the frond-end to (possibly) increase the alignment of this
254 stack slot. */
255 if (! type)
256 type = lang_hooks.types.type_for_mode (mode, 0);
257
258 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
259}
260
43165fe4 261/* Determine whether it is possible to fit a stack slot of size SIZE and
262 alignment ALIGNMENT into an area in the stack frame that starts at
263 frame offset START and has a length of LENGTH. If so, store the frame
264 offset to be used for the stack slot in *POFFSET and return true;
265 return false otherwise. This function will extend the frame size when
266 given a start/length pair that lies at the end of the frame. */
267
268static bool
269try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
270 HOST_WIDE_INT size, unsigned int alignment,
271 HOST_WIDE_INT *poffset)
272{
273 HOST_WIDE_INT this_frame_offset;
274 int frame_off, frame_alignment, frame_phase;
275
276 /* Calculate how many bytes the start of local variables is off from
277 stack alignment. */
278 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
279 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
280 frame_phase = frame_off ? frame_alignment - frame_off : 0;
281
282 /* Round the frame offset to the specified alignment. */
283
284 /* We must be careful here, since FRAME_OFFSET might be negative and
285 division with a negative dividend isn't as well defined as we might
286 like. So we instead assume that ALIGNMENT is a power of two and
287 use logical operations which are unambiguous. */
288 if (FRAME_GROWS_DOWNWARD)
289 this_frame_offset
290 = (FLOOR_ROUND (start + length - size - frame_phase,
291 (unsigned HOST_WIDE_INT) alignment)
292 + frame_phase);
293 else
294 this_frame_offset
295 = (CEIL_ROUND (start - frame_phase,
296 (unsigned HOST_WIDE_INT) alignment)
297 + frame_phase);
298
299 /* See if it fits. If this space is at the edge of the frame,
300 consider extending the frame to make it fit. Our caller relies on
301 this when allocating a new slot. */
302 if (frame_offset == start && this_frame_offset < frame_offset)
303 frame_offset = this_frame_offset;
304 else if (this_frame_offset < start)
305 return false;
306 else if (start + length == frame_offset
307 && this_frame_offset + size > start + length)
308 frame_offset = this_frame_offset + size;
309 else if (this_frame_offset + size > start + length)
310 return false;
311
312 *poffset = this_frame_offset;
313 return true;
314}
315
316/* Create a new frame_space structure describing free space in the stack
317 frame beginning at START and ending at END, and chain it into the
318 function's frame_space_list. */
319
320static void
321add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
322{
25a27413 323 struct frame_space *space = ggc_alloc<frame_space> ();
43165fe4 324 space->next = crtl->frame_space_list;
325 crtl->frame_space_list = space;
326 space->start = start;
327 space->length = end - start;
328}
329
897b77d6 330/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
331 with machine mode MODE.
06ebc183 332
897b77d6 333 ALIGN controls the amount of alignment for the address of the slot:
334 0 means according to MODE,
335 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
c20b6803 336 -2 means use BITS_PER_UNIT,
897b77d6 337 positive specifies alignment boundary in bits.
338
943d8723 339 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
340 alignment and ASLK_RECORD_PAD bit set if we should remember
341 extra space we allocated for alignment purposes. When we are
342 called from assign_stack_temp_for_type, it is not set so we don't
343 track the same stack slot in two independent lists.
27a7a23a 344
b079a207 345 We do not round to stack_boundary here. */
897b77d6 346
b079a207 347rtx
3754d046 348assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
943d8723 349 int align, int kind)
897b77d6 350{
19cb6b50 351 rtx x, addr;
897b77d6 352 int bigend_correction = 0;
286887d9 353 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
ad33891d 354 unsigned int alignment, alignment_in_bits;
897b77d6 355
356 if (align == 0)
357 {
ad33891d 358 alignment = get_stack_local_alignment (NULL, mode);
9bd87fd2 359 alignment /= BITS_PER_UNIT;
897b77d6 360 }
361 else if (align == -1)
362 {
363 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
364 size = CEIL_ROUND (size, alignment);
365 }
c20b6803 366 else if (align == -2)
367 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
897b77d6 368 else
369 alignment = align / BITS_PER_UNIT;
370
27a7a23a 371 alignment_in_bits = alignment * BITS_PER_UNIT;
372
27a7a23a 373 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
374 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
375 {
376 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
377 alignment = alignment_in_bits / BITS_PER_UNIT;
378 }
a79cb8e9 379
27a7a23a 380 if (SUPPORTS_STACK_ALIGNMENT)
381 {
382 if (crtl->stack_alignment_estimated < alignment_in_bits)
383 {
384 if (!crtl->stack_realign_processed)
385 crtl->stack_alignment_estimated = alignment_in_bits;
386 else
387 {
388 /* If stack is realigned and stack alignment value
389 hasn't been finalized, it is OK not to increase
390 stack_alignment_estimated. The bigger alignment
391 requirement is recorded in stack_alignment_needed
392 below. */
393 gcc_assert (!crtl->stack_realign_finalized);
394 if (!crtl->stack_realign_needed)
395 {
396 /* It is OK to reduce the alignment as long as the
397 requested size is 0 or the estimated stack
398 alignment >= mode alignment. */
943d8723 399 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
27a7a23a 400 || size == 0
401 || (crtl->stack_alignment_estimated
402 >= GET_MODE_ALIGNMENT (mode)));
403 alignment_in_bits = crtl->stack_alignment_estimated;
404 alignment = alignment_in_bits / BITS_PER_UNIT;
405 }
406 }
407 }
408 }
ad33891d 409
410 if (crtl->stack_alignment_needed < alignment_in_bits)
411 crtl->stack_alignment_needed = alignment_in_bits;
bd9c33a8 412 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
413 crtl->max_used_stack_slot_alignment = alignment_in_bits;
a79cb8e9 414
43165fe4 415 if (mode != BLKmode || size != 0)
416 {
943d8723 417 if (kind & ASLK_RECORD_PAD)
43165fe4 418 {
943d8723 419 struct frame_space **psp;
420
421 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
422 {
423 struct frame_space *space = *psp;
424 if (!try_fit_stack_local (space->start, space->length, size,
425 alignment, &slot_offset))
426 continue;
427 *psp = space->next;
428 if (slot_offset > space->start)
429 add_frame_space (space->start, slot_offset);
430 if (slot_offset + size < space->start + space->length)
431 add_frame_space (slot_offset + size,
432 space->start + space->length);
433 goto found_space;
434 }
43165fe4 435 }
436 }
437 else if (!STACK_ALIGNMENT_NEEDED)
438 {
439 slot_offset = frame_offset;
440 goto found_space;
441 }
442
443 old_frame_offset = frame_offset;
444
445 if (FRAME_GROWS_DOWNWARD)
446 {
447 frame_offset -= size;
448 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
9f843b44 449
943d8723 450 if (kind & ASLK_RECORD_PAD)
451 {
452 if (slot_offset > frame_offset)
453 add_frame_space (frame_offset, slot_offset);
454 if (slot_offset + size < old_frame_offset)
455 add_frame_space (slot_offset + size, old_frame_offset);
456 }
43165fe4 457 }
458 else
256f9b65 459 {
43165fe4 460 frame_offset += size;
461 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
462
943d8723 463 if (kind & ASLK_RECORD_PAD)
464 {
465 if (slot_offset > old_frame_offset)
466 add_frame_space (old_frame_offset, slot_offset);
467 if (slot_offset + size < frame_offset)
468 add_frame_space (slot_offset + size, frame_offset);
469 }
256f9b65 470 }
897b77d6 471
43165fe4 472 found_space:
897b77d6 473 /* On a big-endian machine, if we are allocating more space than we will use,
474 use the least significant bytes of those that are allocated. */
1c088911 475 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
897b77d6 476 bigend_correction = size - GET_MODE_SIZE (mode);
897b77d6 477
897b77d6 478 /* If we have already instantiated virtual registers, return the actual
479 address relative to the frame pointer. */
b079a207 480 if (virtuals_instantiated)
29c05e22 481 addr = plus_constant (Pmode, frame_pointer_rtx,
eb21abb2 482 trunc_int_for_mode
43165fe4 483 (slot_offset + bigend_correction
eb21abb2 484 + STARTING_FRAME_OFFSET, Pmode));
897b77d6 485 else
29c05e22 486 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
eb21abb2 487 trunc_int_for_mode
43165fe4 488 (slot_offset + bigend_correction,
eb21abb2 489 Pmode));
897b77d6 490
941522d6 491 x = gen_rtx_MEM (mode, addr);
ad33891d 492 set_mem_align (x, alignment_in_bits);
43283c91 493 MEM_NOTRAP_P (x) = 1;
897b77d6 494
b079a207 495 stack_slot_list
496 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
26df1c5e 497
b079a207 498 if (frame_offset_overflow (frame_offset, current_function_decl))
499 frame_offset = 0;
55abba5b 500
897b77d6 501 return x;
502}
27a7a23a 503
504/* Wrap up assign_stack_local_1 with last parameter as false. */
505
506rtx
3754d046 507assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
27a7a23a 508{
943d8723 509 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
27a7a23a 510}
a6629703 511\f
fef299ce 512/* In order to evaluate some expressions, such as function calls returning
513 structures in memory, we need to temporarily allocate stack locations.
514 We record each allocated temporary in the following structure.
515
516 Associated with each temporary slot is a nesting level. When we pop up
517 one level, all temporaries associated with the previous level are freed.
518 Normally, all temporaries are freed after the execution of the statement
519 in which they were created. However, if we are inside a ({...}) grouping,
520 the result may be in a temporary and hence must be preserved. If the
521 result could be in a temporary, we preserve it if we can determine which
522 one it is in. If we cannot determine which temporary may contain the
523 result, all temporaries are preserved. A temporary is preserved by
0ab48139 524 pretending it was allocated at the previous nesting level. */
fef299ce 525
fb1e4f4a 526struct GTY(()) temp_slot {
fef299ce 527 /* Points to next temporary slot. */
528 struct temp_slot *next;
529 /* Points to previous temporary slot. */
530 struct temp_slot *prev;
531 /* The rtx to used to reference the slot. */
532 rtx slot;
fef299ce 533 /* The size, in units, of the slot. */
534 HOST_WIDE_INT size;
535 /* The type of the object in the slot, or zero if it doesn't correspond
536 to a type. We use this to determine whether a slot can be reused.
537 It can be reused if objects of the type of the new slot will always
538 conflict with objects of the type of the old slot. */
539 tree type;
0ac758f7 540 /* The alignment (in bits) of the slot. */
541 unsigned int align;
fef299ce 542 /* Nonzero if this temporary is currently in use. */
543 char in_use;
fef299ce 544 /* Nesting level at which this slot is being used. */
545 int level;
fef299ce 546 /* The offset of the slot from the frame_pointer, including extra space
547 for alignment. This info is for combine_temp_slots. */
548 HOST_WIDE_INT base_offset;
549 /* The size of the slot, including extra space for alignment. This
550 info is for combine_temp_slots. */
551 HOST_WIDE_INT full_size;
552};
553
2ef51f0e 554/* Entry for the below hash table. */
555struct GTY((for_user)) temp_slot_address_entry {
fef299ce 556 hashval_t hash;
557 rtx address;
558 struct temp_slot *temp_slot;
559};
560
2ef51f0e 561struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
562{
563 static hashval_t hash (temp_slot_address_entry *);
564 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
565};
566
567/* A table of addresses that represent a stack slot. The table is a mapping
568 from address RTXen to a temp slot. */
569static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
570static size_t n_temp_slots_in_use;
571
a6629703 572/* Removes temporary slot TEMP from LIST. */
573
574static void
575cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
576{
577 if (temp->next)
578 temp->next->prev = temp->prev;
579 if (temp->prev)
580 temp->prev->next = temp->next;
581 else
582 *list = temp->next;
583
584 temp->prev = temp->next = NULL;
585}
586
587/* Inserts temporary slot TEMP to LIST. */
588
589static void
590insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
591{
592 temp->next = *list;
593 if (*list)
594 (*list)->prev = temp;
595 temp->prev = NULL;
596 *list = temp;
597}
598
599/* Returns the list of used temp slots at LEVEL. */
600
601static struct temp_slot **
602temp_slots_at_level (int level)
603{
f1f41a6c 604 if (level >= (int) vec_safe_length (used_temp_slots))
605 vec_safe_grow_cleared (used_temp_slots, level + 1);
a6629703 606
f1f41a6c 607 return &(*used_temp_slots)[level];
a6629703 608}
609
610/* Returns the maximal temporary slot level. */
611
612static int
613max_slot_level (void)
614{
615 if (!used_temp_slots)
616 return -1;
617
f1f41a6c 618 return used_temp_slots->length () - 1;
a6629703 619}
620
621/* Moves temporary slot TEMP to LEVEL. */
622
623static void
624move_slot_to_level (struct temp_slot *temp, int level)
625{
626 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
627 insert_slot_to_list (temp, temp_slots_at_level (level));
628 temp->level = level;
629}
630
631/* Make temporary slot TEMP available. */
632
633static void
634make_slot_available (struct temp_slot *temp)
635{
636 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
637 insert_slot_to_list (temp, &avail_temp_slots);
638 temp->in_use = 0;
639 temp->level = -1;
fc3c948c 640 n_temp_slots_in_use--;
a6629703 641}
fef299ce 642
643/* Compute the hash value for an address -> temp slot mapping.
644 The value is cached on the mapping entry. */
645static hashval_t
646temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
647{
648 int do_not_record = 0;
649 return hash_rtx (t->address, GET_MODE (t->address),
650 &do_not_record, NULL, false);
651}
652
653/* Return the hash value for an address -> temp slot mapping. */
2ef51f0e 654hashval_t
655temp_address_hasher::hash (temp_slot_address_entry *t)
fef299ce 656{
fef299ce 657 return t->hash;
658}
659
660/* Compare two address -> temp slot mapping entries. */
2ef51f0e 661bool
662temp_address_hasher::equal (temp_slot_address_entry *t1,
663 temp_slot_address_entry *t2)
fef299ce 664{
fef299ce 665 return exp_equiv_p (t1->address, t2->address, 0, true);
666}
667
668/* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
669static void
670insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
671{
25a27413 672 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
fef299ce 673 t->address = address;
674 t->temp_slot = temp_slot;
675 t->hash = temp_slot_address_compute_hash (t);
2ef51f0e 676 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
fef299ce 677}
678
679/* Remove an address -> temp slot mapping entry if the temp slot is
680 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
2ef51f0e 681int
682remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
fef299ce 683{
2ef51f0e 684 const struct temp_slot_address_entry *t = *slot;
fef299ce 685 if (! t->temp_slot->in_use)
2ef51f0e 686 temp_slot_address_table->clear_slot (slot);
fef299ce 687 return 1;
688}
689
690/* Remove all mappings of addresses to unused temp slots. */
691static void
692remove_unused_temp_slot_addresses (void)
693{
fc3c948c 694 /* Use quicker clearing if there aren't any active temp slots. */
695 if (n_temp_slots_in_use)
2ef51f0e 696 temp_slot_address_table->traverse
697 <void *, remove_unused_temp_slot_addresses_1> (NULL);
fc3c948c 698 else
2ef51f0e 699 temp_slot_address_table->empty ();
fef299ce 700}
701
702/* Find the temp slot corresponding to the object at address X. */
703
704static struct temp_slot *
705find_temp_slot_from_address (rtx x)
706{
707 struct temp_slot *p;
708 struct temp_slot_address_entry tmp, *t;
709
710 /* First try the easy way:
711 See if X exists in the address -> temp slot mapping. */
712 tmp.address = x;
713 tmp.temp_slot = NULL;
714 tmp.hash = temp_slot_address_compute_hash (&tmp);
2ef51f0e 715 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
fef299ce 716 if (t)
717 return t->temp_slot;
718
719 /* If we have a sum involving a register, see if it points to a temp
720 slot. */
721 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
722 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
723 return p;
724 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
725 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
726 return p;
727
728 /* Last resort: Address is a virtual stack var address. */
729 if (GET_CODE (x) == PLUS
730 && XEXP (x, 0) == virtual_stack_vars_rtx
971ba038 731 && CONST_INT_P (XEXP (x, 1)))
fef299ce 732 {
733 int i;
734 for (i = max_slot_level (); i >= 0; i--)
735 for (p = *temp_slots_at_level (i); p; p = p->next)
736 {
737 if (INTVAL (XEXP (x, 1)) >= p->base_offset
738 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
739 return p;
740 }
741 }
742
743 return NULL;
744}
897b77d6 745\f
746/* Allocate a temporary stack slot and record it for possible later
747 reuse.
748
749 MODE is the machine mode to be given to the returned rtx.
750
751 SIZE is the size in units of the space required. We do no rounding here
752 since assign_stack_local will do any required rounding.
753
59241190 754 TYPE is the type that will be used for the stack slot. */
897b77d6 755
2b96c5f6 756rtx
3754d046 757assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
0ab48139 758 tree type)
897b77d6 759{
d3e10bed 760 unsigned int align;
a6629703 761 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
84be287d 762 rtx slot;
897b77d6 763
babc13fa 764 /* If SIZE is -1 it means that somebody tried to allocate a temporary
765 of a variable size. */
fdada98f 766 gcc_assert (size != -1);
babc13fa 767
ad33891d 768 align = get_stack_local_alignment (type, mode);
9bd87fd2 769
770 /* Try to find an available, already-allocated temporary of the proper
771 mode which meets the size and alignment requirements. Choose the
867eb367 772 smallest one with the closest alignment.
48e1416a 773
867eb367 774 If assign_stack_temp is called outside of the tree->rtl expansion,
775 we cannot reuse the stack slots (that may still refer to
776 VIRTUAL_STACK_VARS_REGNUM). */
777 if (!virtuals_instantiated)
a6629703 778 {
867eb367 779 for (p = avail_temp_slots; p; p = p->next)
a6629703 780 {
867eb367 781 if (p->align >= align && p->size >= size
782 && GET_MODE (p->slot) == mode
783 && objects_must_conflict_p (p->type, type)
784 && (best_p == 0 || best_p->size > p->size
785 || (best_p->size == p->size && best_p->align > p->align)))
a6629703 786 {
867eb367 787 if (p->align == align && p->size == size)
788 {
789 selected = p;
790 cut_slot_from_list (selected, &avail_temp_slots);
791 best_p = 0;
792 break;
793 }
794 best_p = p;
a6629703 795 }
a6629703 796 }
797 }
897b77d6 798
799 /* Make our best, if any, the one to use. */
800 if (best_p)
49d3d726 801 {
a6629703 802 selected = best_p;
803 cut_slot_from_list (selected, &avail_temp_slots);
804
49d3d726 805 /* If there are enough aligned bytes left over, make them into a new
806 temp_slot so that the extra bytes don't get wasted. Do this only
807 for BLKmode slots, so that we can be sure of the alignment. */
f7c44134 808 if (GET_MODE (best_p->slot) == BLKmode)
49d3d726 809 {
9bd87fd2 810 int alignment = best_p->align / BITS_PER_UNIT;
997d68fe 811 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
49d3d726 812
813 if (best_p->size - rounded_size >= alignment)
814 {
25a27413 815 p = ggc_alloc<temp_slot> ();
0ab48139 816 p->in_use = 0;
49d3d726 817 p->size = best_p->size - rounded_size;
e8a637a3 818 p->base_offset = best_p->base_offset + rounded_size;
819 p->full_size = best_p->full_size - rounded_size;
43283c91 820 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
9bd87fd2 821 p->align = best_p->align;
387bc205 822 p->type = best_p->type;
a6629703 823 insert_slot_to_list (p, &avail_temp_slots);
49d3d726 824
941522d6 825 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
826 stack_slot_list);
49d3d726 827
828 best_p->size = rounded_size;
5ea3c815 829 best_p->full_size = rounded_size;
49d3d726 830 }
831 }
49d3d726 832 }
06ebc183 833
897b77d6 834 /* If we still didn't find one, make a new temporary. */
a6629703 835 if (selected == 0)
897b77d6 836 {
997d68fe 837 HOST_WIDE_INT frame_offset_old = frame_offset;
838
25a27413 839 p = ggc_alloc<temp_slot> ();
997d68fe 840
d61726bc 841 /* We are passing an explicit alignment request to assign_stack_local.
842 One side effect of that is assign_stack_local will not round SIZE
843 to ensure the frame offset remains suitably aligned.
844
845 So for requests which depended on the rounding of SIZE, we go ahead
846 and round it now. We also make sure ALIGNMENT is at least
847 BIGGEST_ALIGNMENT. */
fdada98f 848 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
943d8723 849 p->slot = assign_stack_local_1 (mode,
850 (mode == BLKmode
851 ? CEIL_ROUND (size,
852 (int) align
853 / BITS_PER_UNIT)
854 : size),
855 align, 0);
9bd87fd2 856
857 p->align = align;
997d68fe 858
ef4d68c5 859 /* The following slot size computation is necessary because we don't
860 know the actual size of the temporary slot until assign_stack_local
861 has performed all the frame alignment and size rounding for the
d53be447 862 requested temporary. Note that extra space added for alignment
863 can be either above or below this stack slot depending on which
864 way the frame grows. We include the extra space if and only if it
865 is above this slot. */
d28d5017 866 if (FRAME_GROWS_DOWNWARD)
867 p->size = frame_offset_old - frame_offset;
868 else
869 p->size = size;
997d68fe 870
d53be447 871 /* Now define the fields used by combine_temp_slots. */
d28d5017 872 if (FRAME_GROWS_DOWNWARD)
873 {
874 p->base_offset = frame_offset;
875 p->full_size = frame_offset_old - frame_offset;
876 }
877 else
878 {
879 p->base_offset = frame_offset_old;
880 p->full_size = frame_offset - frame_offset_old;
881 }
a6629703 882
883 selected = p;
897b77d6 884 }
885
a6629703 886 p = selected;
897b77d6 887 p->in_use = 1;
387bc205 888 p->type = type;
fcb807f8 889 p->level = temp_slot_level;
fc3c948c 890 n_temp_slots_in_use++;
21c867df 891
a6629703 892 pp = temp_slots_at_level (p->level);
893 insert_slot_to_list (p, pp);
fef299ce 894 insert_temp_slot_address (XEXP (p->slot, 0), p);
84be287d 895
896 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
897 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
898 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
f7c44134 899
387bc205 900 /* If we know the alias set for the memory that will be used, use
901 it. If there's no TYPE, then we don't know anything about the
902 alias set for the memory. */
84be287d 903 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
904 set_mem_align (slot, align);
387bc205 905
6312a35e 906 /* If a type is specified, set the relevant flags. */
f7c44134 907 if (type != 0)
402f6a9e 908 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
43283c91 909 MEM_NOTRAP_P (slot) = 1;
f7c44134 910
84be287d 911 return slot;
897b77d6 912}
9bd87fd2 913
914/* Allocate a temporary stack slot and record it for possible later
0ab48139 915 reuse. First two arguments are same as in preceding function. */
9bd87fd2 916
917rtx
3754d046 918assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
9bd87fd2 919{
0ab48139 920 return assign_stack_temp_for_type (mode, size, NULL_TREE);
9bd87fd2 921}
ad6d0e80 922\f
567c22a9 923/* Assign a temporary.
924 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
925 and so that should be used in error messages. In either case, we
926 allocate of the given type.
9c457457 927 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
30dd806d 928 it is 0 if a register is OK.
929 DONT_PROMOTE is 1 if we should not promote values in register
930 to wider modes. */
9c457457 931
932rtx
0ab48139 933assign_temp (tree type_or_decl, int memory_required,
de1b648b 934 int dont_promote ATTRIBUTE_UNUSED)
9c457457 935{
567c22a9 936 tree type, decl;
3754d046 937 machine_mode mode;
7752d341 938#ifdef PROMOTE_MODE
567c22a9 939 int unsignedp;
940#endif
941
942 if (DECL_P (type_or_decl))
943 decl = type_or_decl, type = TREE_TYPE (decl);
944 else
945 decl = NULL, type = type_or_decl;
946
947 mode = TYPE_MODE (type);
7752d341 948#ifdef PROMOTE_MODE
78a8ed03 949 unsignedp = TYPE_UNSIGNED (type);
aeb6d7ef 950#endif
ad6d0e80 951
9c457457 952 if (mode == BLKmode || memory_required)
953 {
997d68fe 954 HOST_WIDE_INT size = int_size_in_bytes (type);
9c457457 955 rtx tmp;
956
779a20c8 957 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
958 problems with allocating the stack space. */
959 if (size == 0)
960 size = 1;
961
9c457457 962 /* Unfortunately, we don't yet know how to allocate variable-sized
150edb07 963 temporaries. However, sometimes we can find a fixed upper limit on
964 the size, so try that instead. */
965 else if (size == -1)
966 size = max_int_size_in_bytes (type);
8c3216ae 967
567c22a9 968 /* The size of the temporary may be too large to fit into an integer. */
969 /* ??? Not sure this should happen except for user silliness, so limit
60d903f5 970 this to things that aren't compiler-generated temporaries. The
89f18f73 971 rest of the time we'll die in assign_stack_temp_for_type. */
567c22a9 972 if (decl && size == -1
973 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
974 {
3cf8b391 975 error ("size of variable %q+D is too large", decl);
567c22a9 976 size = 1;
977 }
978
0ab48139 979 tmp = assign_stack_temp_for_type (mode, size, type);
9c457457 980 return tmp;
981 }
ad6d0e80 982
7752d341 983#ifdef PROMOTE_MODE
30dd806d 984 if (! dont_promote)
3b2411a8 985 mode = promote_mode (type, mode, &unsignedp);
9c457457 986#endif
ad6d0e80 987
9c457457 988 return gen_reg_rtx (mode);
989}
ad6d0e80 990\f
49d3d726 991/* Combine temporary stack slots which are adjacent on the stack.
992
993 This allows for better use of already allocated stack space. This is only
994 done for BLKmode slots because we can be sure that we won't have alignment
995 problems in this case. */
996
3f0895d3 997static void
de1b648b 998combine_temp_slots (void)
49d3d726 999{
a6629703 1000 struct temp_slot *p, *q, *next, *next_q;
997d68fe 1001 int num_slots;
1002
59241190 1003 /* We can't combine slots, because the information about which slot
1004 is in which alias set will be lost. */
1005 if (flag_strict_aliasing)
1006 return;
1007
06ebc183 1008 /* If there are a lot of temp slots, don't do anything unless
cb0ccc1e 1009 high levels of optimization. */
997d68fe 1010 if (! flag_expensive_optimizations)
a6629703 1011 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
997d68fe 1012 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1013 return;
49d3d726 1014
a6629703 1015 for (p = avail_temp_slots; p; p = next)
ccf0a5eb 1016 {
1017 int delete_p = 0;
997d68fe 1018
a6629703 1019 next = p->next;
1020
1021 if (GET_MODE (p->slot) != BLKmode)
1022 continue;
1023
1024 for (q = p->next; q; q = next_q)
ccf0a5eb 1025 {
a6629703 1026 int delete_q = 0;
1027
1028 next_q = q->next;
1029
1030 if (GET_MODE (q->slot) != BLKmode)
1031 continue;
1032
1033 if (p->base_offset + p->full_size == q->base_offset)
1034 {
1035 /* Q comes after P; combine Q into P. */
1036 p->size += q->size;
1037 p->full_size += q->full_size;
1038 delete_q = 1;
1039 }
1040 else if (q->base_offset + q->full_size == p->base_offset)
1041 {
1042 /* P comes after Q; combine P into Q. */
1043 q->size += p->size;
1044 q->full_size += p->full_size;
1045 delete_p = 1;
1046 break;
1047 }
1048 if (delete_q)
1049 cut_slot_from_list (q, &avail_temp_slots);
ccf0a5eb 1050 }
a6629703 1051
1052 /* Either delete P or advance past it. */
1053 if (delete_p)
1054 cut_slot_from_list (p, &avail_temp_slots);
ccf0a5eb 1055 }
49d3d726 1056}
897b77d6 1057\f
f4e36c33 1058/* Indicate that NEW_RTX is an alternate way of referring to the temp
1059 slot that previously was known by OLD_RTX. */
64e90dae 1060
1061void
f4e36c33 1062update_temp_slot_address (rtx old_rtx, rtx new_rtx)
64e90dae 1063{
155b05dc 1064 struct temp_slot *p;
64e90dae 1065
f4e36c33 1066 if (rtx_equal_p (old_rtx, new_rtx))
64e90dae 1067 return;
155b05dc 1068
f4e36c33 1069 p = find_temp_slot_from_address (old_rtx);
155b05dc 1070
f4e36c33 1071 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1072 NEW_RTX is a register, see if one operand of the PLUS is a
1073 temporary location. If so, NEW_RTX points into it. Otherwise,
1074 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1075 in common between them. If so, try a recursive call on those
1076 values. */
155b05dc 1077 if (p == 0)
1078 {
f4e36c33 1079 if (GET_CODE (old_rtx) != PLUS)
8911b943 1080 return;
1081
f4e36c33 1082 if (REG_P (new_rtx))
8911b943 1083 {
f4e36c33 1084 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1085 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
8911b943 1086 return;
1087 }
f4e36c33 1088 else if (GET_CODE (new_rtx) != PLUS)
155b05dc 1089 return;
1090
f4e36c33 1091 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1092 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1093 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1094 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1095 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1096 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1097 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1098 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
155b05dc 1099
1100 return;
1101 }
1102
06ebc183 1103 /* Otherwise add an alias for the temp's address. */
fef299ce 1104 insert_temp_slot_address (new_rtx, p);
64e90dae 1105}
1106
30f413ae 1107/* If X could be a reference to a temporary slot, mark that slot as
1108 belonging to the to one level higher than the current level. If X
1109 matched one of our slots, just mark that one. Otherwise, we can't
0ab48139 1110 easily predict which it is, so upgrade all of them.
897b77d6 1111
1112 This is called when an ({...}) construct occurs and a statement
1113 returns a value in memory. */
1114
1115void
de1b648b 1116preserve_temp_slots (rtx x)
897b77d6 1117{
a6629703 1118 struct temp_slot *p = 0, *next;
897b77d6 1119
c7c7590a 1120 if (x == 0)
0ab48139 1121 return;
41969bd3 1122
e8825bb0 1123 /* If X is a register that is being used as a pointer, see if we have
0ab48139 1124 a temporary slot we know it points to. */
e8825bb0 1125 if (REG_P (x) && REG_POINTER (x))
1126 p = find_temp_slot_from_address (x);
41969bd3 1127
e8825bb0 1128 /* If X is not in memory or is at a constant address, it cannot be in
0ab48139 1129 a temporary slot. */
e8825bb0 1130 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
0ab48139 1131 return;
e8825bb0 1132
1133 /* First see if we can find a match. */
1134 if (p == 0)
1135 p = find_temp_slot_from_address (XEXP (x, 0));
1136
1137 if (p != 0)
1138 {
e8825bb0 1139 if (p->level == temp_slot_level)
0ab48139 1140 move_slot_to_level (p, temp_slot_level - 1);
e8825bb0 1141 return;
41969bd3 1142 }
0dbd1c74 1143
e8825bb0 1144 /* Otherwise, preserve all non-kept slots at this level. */
1145 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
0dbd1c74 1146 {
e8825bb0 1147 next = p->next;
0ab48139 1148 move_slot_to_level (p, temp_slot_level - 1);
e8825bb0 1149 }
c925694c 1150}
1151
e8825bb0 1152/* Free all temporaries used so far. This is normally called at the
1153 end of generating code for a statement. */
c925694c 1154
e8825bb0 1155void
1156free_temp_slots (void)
c925694c 1157{
e8825bb0 1158 struct temp_slot *p, *next;
a4da9a83 1159 bool some_available = false;
c925694c 1160
e8825bb0 1161 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1162 {
1163 next = p->next;
0ab48139 1164 make_slot_available (p);
1165 some_available = true;
e8825bb0 1166 }
c925694c 1167
a4da9a83 1168 if (some_available)
1169 {
1170 remove_unused_temp_slot_addresses ();
1171 combine_temp_slots ();
1172 }
e8825bb0 1173}
c925694c 1174
e8825bb0 1175/* Push deeper into the nesting level for stack temporaries. */
c925694c 1176
e8825bb0 1177void
1178push_temp_slots (void)
c925694c 1179{
e8825bb0 1180 temp_slot_level++;
c925694c 1181}
1182
e8825bb0 1183/* Pop a temporary nesting level. All slots in use in the current level
1184 are freed. */
c925694c 1185
e8825bb0 1186void
1187pop_temp_slots (void)
c925694c 1188{
0ab48139 1189 free_temp_slots ();
e8825bb0 1190 temp_slot_level--;
bf5a43e2 1191}
1192
e8825bb0 1193/* Initialize temporary slots. */
0dbd1c74 1194
1195void
e8825bb0 1196init_temp_slots (void)
0dbd1c74 1197{
e8825bb0 1198 /* We have not allocated any temporaries yet. */
1199 avail_temp_slots = 0;
f1f41a6c 1200 vec_alloc (used_temp_slots, 0);
e8825bb0 1201 temp_slot_level = 0;
fc3c948c 1202 n_temp_slots_in_use = 0;
fef299ce 1203
1204 /* Set up the table to map addresses to temp slots. */
1205 if (! temp_slot_address_table)
2ef51f0e 1206 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
fef299ce 1207 else
2ef51f0e 1208 temp_slot_address_table->empty ();
e8825bb0 1209}
1210\f
ea1760a3 1211/* Functions and data structures to keep track of the values hard regs
1212 had at the start of the function. */
1213
1214/* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1215 and has_hard_reg_initial_val.. */
1216typedef struct GTY(()) initial_value_pair {
1217 rtx hard_reg;
1218 rtx pseudo;
1219} initial_value_pair;
1220/* ??? This could be a VEC but there is currently no way to define an
1221 opaque VEC type. This could be worked around by defining struct
1222 initial_value_pair in function.h. */
1223typedef struct GTY(()) initial_value_struct {
1224 int num_entries;
1225 int max_entries;
1226 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1227} initial_value_struct;
1228
1229/* If a pseudo represents an initial hard reg (or expression), return
1230 it, else return NULL_RTX. */
1231
1232rtx
1233get_hard_reg_initial_reg (rtx reg)
1234{
1235 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1236 int i;
1237
1238 if (ivs == 0)
1239 return NULL_RTX;
1240
1241 for (i = 0; i < ivs->num_entries; i++)
1242 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1243 return ivs->entries[i].hard_reg;
1244
1245 return NULL_RTX;
1246}
1247
1248/* Make sure that there's a pseudo register of mode MODE that stores the
1249 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1250
1251rtx
3754d046 1252get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
ea1760a3 1253{
1254 struct initial_value_struct *ivs;
1255 rtx rv;
1256
1257 rv = has_hard_reg_initial_val (mode, regno);
1258 if (rv)
1259 return rv;
1260
1261 ivs = crtl->hard_reg_initial_vals;
1262 if (ivs == 0)
1263 {
25a27413 1264 ivs = ggc_alloc<initial_value_struct> ();
ea1760a3 1265 ivs->num_entries = 0;
1266 ivs->max_entries = 5;
25a27413 1267 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
ea1760a3 1268 crtl->hard_reg_initial_vals = ivs;
1269 }
1270
1271 if (ivs->num_entries >= ivs->max_entries)
1272 {
1273 ivs->max_entries += 5;
1274 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1275 ivs->max_entries);
1276 }
1277
1278 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1279 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1280
1281 return ivs->entries[ivs->num_entries++].pseudo;
1282}
1283
1284/* See if get_hard_reg_initial_val has been used to create a pseudo
1285 for the initial value of hard register REGNO in mode MODE. Return
1286 the associated pseudo if so, otherwise return NULL. */
1287
1288rtx
3754d046 1289has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
ea1760a3 1290{
1291 struct initial_value_struct *ivs;
1292 int i;
1293
1294 ivs = crtl->hard_reg_initial_vals;
1295 if (ivs != 0)
1296 for (i = 0; i < ivs->num_entries; i++)
1297 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1298 && REGNO (ivs->entries[i].hard_reg) == regno)
1299 return ivs->entries[i].pseudo;
1300
1301 return NULL_RTX;
1302}
1303
1304unsigned int
1305emit_initial_value_sets (void)
1306{
1307 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1308 int i;
8bb2625b 1309 rtx_insn *seq;
ea1760a3 1310
1311 if (ivs == 0)
1312 return 0;
1313
1314 start_sequence ();
1315 for (i = 0; i < ivs->num_entries; i++)
1316 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1317 seq = get_insns ();
1318 end_sequence ();
1319
1320 emit_insn_at_entry (seq);
1321 return 0;
1322}
1323
1324/* Return the hardreg-pseudoreg initial values pair entry I and
1325 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1326bool
1327initial_value_entry (int i, rtx *hreg, rtx *preg)
1328{
1329 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1330 if (!ivs || i >= ivs->num_entries)
1331 return false;
1332
1333 *hreg = ivs->entries[i].hard_reg;
1334 *preg = ivs->entries[i].pseudo;
1335 return true;
1336}
1337\f
e8825bb0 1338/* These routines are responsible for converting virtual register references
1339 to the actual hard register references once RTL generation is complete.
06ebc183 1340
e8825bb0 1341 The following four variables are used for communication between the
1342 routines. They contain the offsets of the virtual registers from their
1343 respective hard registers. */
c925694c 1344
e8825bb0 1345static int in_arg_offset;
1346static int var_offset;
1347static int dynamic_offset;
1348static int out_arg_offset;
1349static int cfa_offset;
a8636638 1350
e8825bb0 1351/* In most machines, the stack pointer register is equivalent to the bottom
1352 of the stack. */
06ebc183 1353
e8825bb0 1354#ifndef STACK_POINTER_OFFSET
1355#define STACK_POINTER_OFFSET 0
1356#endif
bf5a43e2 1357
02114c95 1358#if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1359#define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1360#endif
1361
e8825bb0 1362/* If not defined, pick an appropriate default for the offset of dynamically
1363 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
02114c95 1364 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
c925694c 1365
e8825bb0 1366#ifndef STACK_DYNAMIC_OFFSET
a8636638 1367
e8825bb0 1368/* The bottom of the stack points to the actual arguments. If
1369 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1370 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1371 stack space for register parameters is not pushed by the caller, but
1372 rather part of the fixed stack areas and hence not included in
abe32cce 1373 `crtl->outgoing_args_size'. Nevertheless, we must allow
e8825bb0 1374 for it when allocating stack dynamic objects. */
a8636638 1375
02114c95 1376#ifdef INCOMING_REG_PARM_STACK_SPACE
e8825bb0 1377#define STACK_DYNAMIC_OFFSET(FNDECL) \
1378((ACCUMULATE_OUTGOING_ARGS \
abe32cce 1379 ? (crtl->outgoing_args_size \
22c61100 1380 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
02114c95 1381 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
63c68695 1382 : 0) + (STACK_POINTER_OFFSET))
e8825bb0 1383#else
1384#define STACK_DYNAMIC_OFFSET(FNDECL) \
abe32cce 1385((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
e8825bb0 1386 + (STACK_POINTER_OFFSET))
1387#endif
1388#endif
f678883b 1389
e3d5af87 1390\f
f15c4004 1391/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1392 is a virtual register, return the equivalent hard register and set the
1393 offset indirectly through the pointer. Otherwise, return 0. */
897b77d6 1394
f15c4004 1395static rtx
1396instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
897b77d6 1397{
f4e36c33 1398 rtx new_rtx;
f15c4004 1399 HOST_WIDE_INT offset;
897b77d6 1400
f15c4004 1401 if (x == virtual_incoming_args_rtx)
27a7a23a 1402 {
f6754469 1403 if (stack_realign_drap)
27a7a23a 1404 {
f6754469 1405 /* Replace virtual_incoming_args_rtx with internal arg
1406 pointer if DRAP is used to realign stack. */
f4e36c33 1407 new_rtx = crtl->args.internal_arg_pointer;
27a7a23a 1408 offset = 0;
1409 }
1410 else
f4e36c33 1411 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
27a7a23a 1412 }
f15c4004 1413 else if (x == virtual_stack_vars_rtx)
f4e36c33 1414 new_rtx = frame_pointer_rtx, offset = var_offset;
f15c4004 1415 else if (x == virtual_stack_dynamic_rtx)
f4e36c33 1416 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
f15c4004 1417 else if (x == virtual_outgoing_args_rtx)
f4e36c33 1418 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
f15c4004 1419 else if (x == virtual_cfa_rtx)
da72c083 1420 {
1421#ifdef FRAME_POINTER_CFA_OFFSET
f4e36c33 1422 new_rtx = frame_pointer_rtx;
da72c083 1423#else
f4e36c33 1424 new_rtx = arg_pointer_rtx;
da72c083 1425#endif
1426 offset = cfa_offset;
1427 }
60778e62 1428 else if (x == virtual_preferred_stack_boundary_rtx)
1429 {
1430 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1431 offset = 0;
1432 }
f15c4004 1433 else
1434 return NULL_RTX;
897b77d6 1435
f15c4004 1436 *poffset = offset;
f4e36c33 1437 return new_rtx;
897b77d6 1438}
1439
2d184b77 1440/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1441 registers present inside of *LOC. The expression is simplified,
1442 as much as possible, but is not to be considered "valid" in any sense
1443 implied by the target. Return true if any change is made. */
897b77d6 1444
2d184b77 1445static bool
1446instantiate_virtual_regs_in_rtx (rtx *loc)
897b77d6 1447{
2d184b77 1448 if (!*loc)
1449 return false;
1450 bool changed = false;
1451 subrtx_ptr_iterator::array_type array;
1452 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
897b77d6 1453 {
2d184b77 1454 rtx *loc = *iter;
1455 if (rtx x = *loc)
f15c4004 1456 {
2d184b77 1457 rtx new_rtx;
1458 HOST_WIDE_INT offset;
1459 switch (GET_CODE (x))
1460 {
1461 case REG:
1462 new_rtx = instantiate_new_reg (x, &offset);
1463 if (new_rtx)
1464 {
1465 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1466 changed = true;
1467 }
1468 iter.skip_subrtxes ();
1469 break;
f15c4004 1470
2d184b77 1471 case PLUS:
1472 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1473 if (new_rtx)
1474 {
1475 XEXP (x, 0) = new_rtx;
1476 *loc = plus_constant (GET_MODE (x), x, offset, true);
1477 changed = true;
1478 iter.skip_subrtxes ();
1479 break;
1480 }
997d68fe 1481
2d184b77 1482 /* FIXME -- from old code */
1483 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1484 we can commute the PLUS and SUBREG because pointers into the
1485 frame are well-behaved. */
1486 break;
5970b26a 1487
2d184b77 1488 default:
1489 break;
1490 }
1491 }
897b77d6 1492 }
2d184b77 1493 return changed;
897b77d6 1494}
1495
f15c4004 1496/* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1497 matches the predicate for insn CODE operand OPERAND. */
897b77d6 1498
f15c4004 1499static int
1500safe_insn_predicate (int code, int operand, rtx x)
897b77d6 1501{
39c56a89 1502 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
f15c4004 1503}
6d0423b8 1504
f15c4004 1505/* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1506 registers present inside of insn. The result will be a valid insn. */
6d0423b8 1507
1508static void
8bb2625b 1509instantiate_virtual_regs_in_insn (rtx_insn *insn)
6d0423b8 1510{
f15c4004 1511 HOST_WIDE_INT offset;
1512 int insn_code, i;
27ca6129 1513 bool any_change = false;
8bb2625b 1514 rtx set, new_rtx, x;
1515 rtx_insn *seq;
00dfb616 1516
f15c4004 1517 /* There are some special cases to be handled first. */
1518 set = single_set (insn);
1519 if (set)
00dfb616 1520 {
f15c4004 1521 /* We're allowed to assign to a virtual register. This is interpreted
1522 to mean that the underlying register gets assigned the inverse
1523 transformation. This is used, for example, in the handling of
1524 non-local gotos. */
f4e36c33 1525 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1526 if (new_rtx)
f15c4004 1527 {
1528 start_sequence ();
00dfb616 1529
2d184b77 1530 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
f4e36c33 1531 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
5d5ee71f 1532 gen_int_mode (-offset, GET_MODE (new_rtx)));
f4e36c33 1533 x = force_operand (x, new_rtx);
1534 if (x != new_rtx)
1535 emit_move_insn (new_rtx, x);
6d0423b8 1536
f15c4004 1537 seq = get_insns ();
1538 end_sequence ();
6d0423b8 1539
f15c4004 1540 emit_insn_before (seq, insn);
1541 delete_insn (insn);
1542 return;
1543 }
6d0423b8 1544
f15c4004 1545 /* Handle a straight copy from a virtual register by generating a
1546 new add insn. The difference between this and falling through
1547 to the generic case is avoiding a new pseudo and eliminating a
1548 move insn in the initial rtl stream. */
f4e36c33 1549 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1550 if (new_rtx && offset != 0
f15c4004 1551 && REG_P (SET_DEST (set))
1552 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1553 {
1554 start_sequence ();
6d0423b8 1555
0359f9f5 1556 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1557 gen_int_mode (offset,
1558 GET_MODE (SET_DEST (set))),
1559 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
f15c4004 1560 if (x != SET_DEST (set))
1561 emit_move_insn (SET_DEST (set), x);
02e7a332 1562
f15c4004 1563 seq = get_insns ();
1564 end_sequence ();
e3f529ab 1565
f15c4004 1566 emit_insn_before (seq, insn);
1567 delete_insn (insn);
e3f529ab 1568 return;
f15c4004 1569 }
6d0423b8 1570
f15c4004 1571 extract_insn (insn);
27ca6129 1572 insn_code = INSN_CODE (insn);
6d0423b8 1573
f15c4004 1574 /* Handle a plus involving a virtual register by determining if the
1575 operands remain valid if they're modified in place. */
1576 if (GET_CODE (SET_SRC (set)) == PLUS
1577 && recog_data.n_operands >= 3
1578 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1579 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
971ba038 1580 && CONST_INT_P (recog_data.operand[2])
f4e36c33 1581 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
f15c4004 1582 {
1583 offset += INTVAL (recog_data.operand[2]);
6d0423b8 1584
f15c4004 1585 /* If the sum is zero, then replace with a plain move. */
27ca6129 1586 if (offset == 0
1587 && REG_P (SET_DEST (set))
1588 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
f15c4004 1589 {
1590 start_sequence ();
f4e36c33 1591 emit_move_insn (SET_DEST (set), new_rtx);
f15c4004 1592 seq = get_insns ();
1593 end_sequence ();
bc17f7a4 1594
f15c4004 1595 emit_insn_before (seq, insn);
1596 delete_insn (insn);
1597 return;
1598 }
bc17f7a4 1599
f15c4004 1600 x = gen_int_mode (offset, recog_data.operand_mode[2]);
f15c4004 1601
1602 /* Using validate_change and apply_change_group here leaves
1603 recog_data in an invalid state. Since we know exactly what
1604 we want to check, do those two by hand. */
f4e36c33 1605 if (safe_insn_predicate (insn_code, 1, new_rtx)
f15c4004 1606 && safe_insn_predicate (insn_code, 2, x))
1607 {
f4e36c33 1608 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
f15c4004 1609 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1610 any_change = true;
27ca6129 1611
1612 /* Fall through into the regular operand fixup loop in
1613 order to take care of operands other than 1 and 2. */
f15c4004 1614 }
1615 }
1616 }
bc17f7a4 1617 else
27ca6129 1618 {
1619 extract_insn (insn);
1620 insn_code = INSN_CODE (insn);
1621 }
dd79abfb 1622
f15c4004 1623 /* In the general case, we expect virtual registers to appear only in
1624 operands, and then only as either bare registers or inside memories. */
1625 for (i = 0; i < recog_data.n_operands; ++i)
1626 {
1627 x = recog_data.operand[i];
1628 switch (GET_CODE (x))
1629 {
1630 case MEM:
1631 {
1632 rtx addr = XEXP (x, 0);
f15c4004 1633
2d184b77 1634 if (!instantiate_virtual_regs_in_rtx (&addr))
f15c4004 1635 continue;
1636
1637 start_sequence ();
5cc04e45 1638 x = replace_equiv_address (x, addr, true);
7e507322 1639 /* It may happen that the address with the virtual reg
1640 was valid (e.g. based on the virtual stack reg, which might
1641 be acceptable to the predicates with all offsets), whereas
1642 the address now isn't anymore, for instance when the address
1643 is still offsetted, but the base reg isn't virtual-stack-reg
1644 anymore. Below we would do a force_reg on the whole operand,
1645 but this insn might actually only accept memory. Hence,
1646 before doing that last resort, try to reload the address into
1647 a register, so this operand stays a MEM. */
1648 if (!safe_insn_predicate (insn_code, i, x))
1649 {
1650 addr = force_reg (GET_MODE (addr), addr);
5cc04e45 1651 x = replace_equiv_address (x, addr, true);
7e507322 1652 }
f15c4004 1653 seq = get_insns ();
1654 end_sequence ();
1655 if (seq)
1656 emit_insn_before (seq, insn);
1657 }
1658 break;
1659
1660 case REG:
f4e36c33 1661 new_rtx = instantiate_new_reg (x, &offset);
1662 if (new_rtx == NULL)
f15c4004 1663 continue;
1664 if (offset == 0)
f4e36c33 1665 x = new_rtx;
f15c4004 1666 else
1667 {
1668 start_sequence ();
897b77d6 1669
f15c4004 1670 /* Careful, special mode predicates may have stuff in
1671 insn_data[insn_code].operand[i].mode that isn't useful
1672 to us for computing a new value. */
1673 /* ??? Recognize address_operand and/or "p" constraints
1674 to see if (plus new offset) is a valid before we put
1675 this through expand_simple_binop. */
f4e36c33 1676 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
0359f9f5 1677 gen_int_mode (offset, GET_MODE (x)),
1678 NULL_RTX, 1, OPTAB_LIB_WIDEN);
f15c4004 1679 seq = get_insns ();
1680 end_sequence ();
1681 emit_insn_before (seq, insn);
1682 }
1683 break;
897b77d6 1684
f15c4004 1685 case SUBREG:
f4e36c33 1686 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1687 if (new_rtx == NULL)
f15c4004 1688 continue;
1689 if (offset != 0)
1690 {
1691 start_sequence ();
0359f9f5 1692 new_rtx = expand_simple_binop
1693 (GET_MODE (new_rtx), PLUS, new_rtx,
1694 gen_int_mode (offset, GET_MODE (new_rtx)),
1695 NULL_RTX, 1, OPTAB_LIB_WIDEN);
f15c4004 1696 seq = get_insns ();
1697 end_sequence ();
1698 emit_insn_before (seq, insn);
1699 }
f4e36c33 1700 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1701 GET_MODE (new_rtx), SUBREG_BYTE (x));
024f0a8a 1702 gcc_assert (x);
f15c4004 1703 break;
897b77d6 1704
f15c4004 1705 default:
1706 continue;
1707 }
897b77d6 1708
f15c4004 1709 /* At this point, X contains the new value for the operand.
1710 Validate the new value vs the insn predicate. Note that
1711 asm insns will have insn_code -1 here. */
1712 if (!safe_insn_predicate (insn_code, i, x))
c5159852 1713 {
1714 start_sequence ();
83b6c9db 1715 if (REG_P (x))
1716 {
1717 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1718 x = copy_to_reg (x);
1719 }
1720 else
1721 x = force_reg (insn_data[insn_code].operand[i].mode, x);
c5159852 1722 seq = get_insns ();
1723 end_sequence ();
1724 if (seq)
1725 emit_insn_before (seq, insn);
1726 }
897b77d6 1727
f15c4004 1728 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1729 any_change = true;
1730 }
897b77d6 1731
f15c4004 1732 if (any_change)
1733 {
1734 /* Propagate operand changes into the duplicates. */
1735 for (i = 0; i < recog_data.n_dups; ++i)
1736 *recog_data.dup_loc[i]
cdf37bc1 1737 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
dd79abfb 1738
f15c4004 1739 /* Force re-recognition of the instruction for validation. */
1740 INSN_CODE (insn) = -1;
1741 }
897b77d6 1742
f15c4004 1743 if (asm_noperands (PATTERN (insn)) >= 0)
897b77d6 1744 {
f15c4004 1745 if (!check_asm_operands (PATTERN (insn)))
897b77d6 1746 {
f15c4004 1747 error_for_asm (insn, "impossible constraint in %<asm%>");
33a7b2d7 1748 /* For asm goto, instead of fixing up all the edges
1749 just clear the template and clear input operands
1750 (asm goto doesn't have any output operands). */
1751 if (JUMP_P (insn))
1752 {
1753 rtx asm_op = extract_asm_operands (PATTERN (insn));
1754 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1755 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1756 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1757 }
1758 else
1759 delete_insn (insn);
f15c4004 1760 }
1761 }
1762 else
1763 {
1764 if (recog_memoized (insn) < 0)
1765 fatal_insn_not_found (insn);
1766 }
1767}
155b05dc 1768
f15c4004 1769/* Subroutine of instantiate_decls. Given RTL representing a decl,
1770 do any instantiation required. */
155b05dc 1771
bc5e6ea1 1772void
1773instantiate_decl_rtl (rtx x)
f15c4004 1774{
1775 rtx addr;
897b77d6 1776
f15c4004 1777 if (x == 0)
1778 return;
897b77d6 1779
f15c4004 1780 /* If this is a CONCAT, recurse for the pieces. */
1781 if (GET_CODE (x) == CONCAT)
1782 {
bc5e6ea1 1783 instantiate_decl_rtl (XEXP (x, 0));
1784 instantiate_decl_rtl (XEXP (x, 1));
f15c4004 1785 return;
1786 }
897b77d6 1787
f15c4004 1788 /* If this is not a MEM, no need to do anything. Similarly if the
1789 address is a constant or a register that is not a virtual register. */
1790 if (!MEM_P (x))
1791 return;
897b77d6 1792
f15c4004 1793 addr = XEXP (x, 0);
1794 if (CONSTANT_P (addr)
1795 || (REG_P (addr)
1796 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1797 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1798 return;
897b77d6 1799
2d184b77 1800 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
f15c4004 1801}
897b77d6 1802
9338678e 1803/* Helper for instantiate_decls called via walk_tree: Process all decls
1804 in the given DECL_VALUE_EXPR. */
1805
1806static tree
1807instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1808{
1809 tree t = *tp;
75a70cf9 1810 if (! EXPR_P (t))
9338678e 1811 {
1812 *walk_subtrees = 0;
95b985e5 1813 if (DECL_P (t))
1814 {
1815 if (DECL_RTL_SET_P (t))
1816 instantiate_decl_rtl (DECL_RTL (t));
1817 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1818 && DECL_INCOMING_RTL (t))
1819 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1820 if ((TREE_CODE (t) == VAR_DECL
1821 || TREE_CODE (t) == RESULT_DECL)
1822 && DECL_HAS_VALUE_EXPR_P (t))
1823 {
1824 tree v = DECL_VALUE_EXPR (t);
1825 walk_tree (&v, instantiate_expr, NULL, NULL);
1826 }
1827 }
9338678e 1828 }
1829 return NULL;
1830}
1831
f15c4004 1832/* Subroutine of instantiate_decls: Process all decls in the given
1833 BLOCK node and all its subblocks. */
897b77d6 1834
f15c4004 1835static void
1836instantiate_decls_1 (tree let)
1837{
1838 tree t;
897b77d6 1839
1767a056 1840 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
9338678e 1841 {
1842 if (DECL_RTL_SET_P (t))
bc5e6ea1 1843 instantiate_decl_rtl (DECL_RTL (t));
9338678e 1844 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1845 {
1846 tree v = DECL_VALUE_EXPR (t);
1847 walk_tree (&v, instantiate_expr, NULL, NULL);
1848 }
1849 }
897b77d6 1850
f15c4004 1851 /* Process all subblocks. */
93110716 1852 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
f15c4004 1853 instantiate_decls_1 (t);
1854}
897b77d6 1855
f15c4004 1856/* Scan all decls in FNDECL (both variables and parameters) and instantiate
1857 all virtual registers in their DECL_RTL's. */
897b77d6 1858
f15c4004 1859static void
1860instantiate_decls (tree fndecl)
1861{
2ab2ce89 1862 tree decl;
1863 unsigned ix;
897b77d6 1864
f15c4004 1865 /* Process all parameters of the function. */
1767a056 1866 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
f15c4004 1867 {
bc5e6ea1 1868 instantiate_decl_rtl (DECL_RTL (decl));
1869 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
9338678e 1870 if (DECL_HAS_VALUE_EXPR_P (decl))
1871 {
1872 tree v = DECL_VALUE_EXPR (decl);
1873 walk_tree (&v, instantiate_expr, NULL, NULL);
1874 }
f15c4004 1875 }
a51c8974 1876
95b985e5 1877 if ((decl = DECL_RESULT (fndecl))
1878 && TREE_CODE (decl) == RESULT_DECL)
1879 {
1880 if (DECL_RTL_SET_P (decl))
1881 instantiate_decl_rtl (DECL_RTL (decl));
1882 if (DECL_HAS_VALUE_EXPR_P (decl))
1883 {
1884 tree v = DECL_VALUE_EXPR (decl);
1885 walk_tree (&v, instantiate_expr, NULL, NULL);
1886 }
1887 }
1888
eac967db 1889 /* Process the saved static chain if it exists. */
1890 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1891 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1892 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1893
f15c4004 1894 /* Now process all variables defined in the function or its subblocks. */
1895 instantiate_decls_1 (DECL_INITIAL (fndecl));
78fa9ba7 1896
2ab2ce89 1897 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1898 if (DECL_RTL_SET_P (decl))
1899 instantiate_decl_rtl (DECL_RTL (decl));
f1f41a6c 1900 vec_free (cfun->local_decls);
f15c4004 1901}
897b77d6 1902
f15c4004 1903/* Pass through the INSNS of function FNDECL and convert virtual register
1904 references to hard register references. */
897b77d6 1905
2a1990e9 1906static unsigned int
f15c4004 1907instantiate_virtual_regs (void)
1908{
8bb2625b 1909 rtx_insn *insn;
897b77d6 1910
f15c4004 1911 /* Compute the offsets to use for this function. */
1912 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1913 var_offset = STARTING_FRAME_OFFSET;
1914 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1915 out_arg_offset = STACK_POINTER_OFFSET;
da72c083 1916#ifdef FRAME_POINTER_CFA_OFFSET
1917 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1918#else
f15c4004 1919 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
da72c083 1920#endif
0dbd1c74 1921
f15c4004 1922 /* Initialize recognition, indicating that volatile is OK. */
1923 init_recog ();
897b77d6 1924
f15c4004 1925 /* Scan through all the insns, instantiating every virtual register still
1926 present. */
ca8a2945 1927 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1928 if (INSN_P (insn))
1929 {
1930 /* These patterns in the instruction stream can never be recognized.
1931 Fortunately, they shouldn't contain virtual registers either. */
91f71fa3 1932 if (GET_CODE (PATTERN (insn)) == USE
ca8a2945 1933 || GET_CODE (PATTERN (insn)) == CLOBBER
ca8a2945 1934 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1935 continue;
1936 else if (DEBUG_INSN_P (insn))
2d184b77 1937 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
ca8a2945 1938 else
1939 instantiate_virtual_regs_in_insn (insn);
201f6961 1940
dd1286fb 1941 if (insn->deleted ())
ca8a2945 1942 continue;
d304b9e1 1943
2d184b77 1944 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
201f6961 1945
ca8a2945 1946 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1947 if (CALL_P (insn))
2d184b77 1948 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
ca8a2945 1949 }
897b77d6 1950
f15c4004 1951 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1952 instantiate_decls (current_function_decl);
1953
bc5e6ea1 1954 targetm.instantiate_decls ();
1955
f15c4004 1956 /* Indicate that, from now on, assign_stack_local should use
1957 frame_pointer_rtx. */
1958 virtuals_instantiated = 1;
990495a7 1959
2a1990e9 1960 return 0;
897b77d6 1961}
77fce4cd 1962
cbe8bda8 1963namespace {
1964
1965const pass_data pass_data_instantiate_virtual_regs =
1966{
1967 RTL_PASS, /* type */
1968 "vregs", /* name */
1969 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 1970 TV_NONE, /* tv_id */
1971 0, /* properties_required */
1972 0, /* properties_provided */
1973 0, /* properties_destroyed */
1974 0, /* todo_flags_start */
1975 0, /* todo_flags_finish */
77fce4cd 1976};
1977
cbe8bda8 1978class pass_instantiate_virtual_regs : public rtl_opt_pass
1979{
1980public:
9af5ce0c 1981 pass_instantiate_virtual_regs (gcc::context *ctxt)
1982 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
cbe8bda8 1983 {}
1984
1985 /* opt_pass methods: */
65b0537f 1986 virtual unsigned int execute (function *)
1987 {
1988 return instantiate_virtual_regs ();
1989 }
cbe8bda8 1990
1991}; // class pass_instantiate_virtual_regs
1992
1993} // anon namespace
1994
1995rtl_opt_pass *
1996make_pass_instantiate_virtual_regs (gcc::context *ctxt)
1997{
1998 return new pass_instantiate_virtual_regs (ctxt);
1999}
2000
897b77d6 2001\f
8f48fc81 2002/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2003 This means a type for which function calls must pass an address to the
2004 function or get an address back from the function.
2005 EXP may be a type node or an expression (whose type is tested). */
897b77d6 2006
2007int
fb80456a 2008aggregate_value_p (const_tree exp, const_tree fntype)
897b77d6 2009{
4cd5bb61 2010 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
d5c7cfd2 2011 int i, regno, nregs;
2012 rtx reg;
9308e976 2013
45550790 2014 if (fntype)
2015 switch (TREE_CODE (fntype))
2016 {
2017 case CALL_EXPR:
4cd5bb61 2018 {
2019 tree fndecl = get_callee_fndecl (fntype);
2020 fntype = (fndecl
2021 ? TREE_TYPE (fndecl)
2022 : TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype))));
2023 }
45550790 2024 break;
2025 case FUNCTION_DECL:
4cd5bb61 2026 fntype = TREE_TYPE (fntype);
45550790 2027 break;
2028 case FUNCTION_TYPE:
2029 case METHOD_TYPE:
2030 break;
2031 case IDENTIFIER_NODE:
4cd5bb61 2032 fntype = NULL_TREE;
45550790 2033 break;
2034 default:
4cd5bb61 2035 /* We don't expect other tree types here. */
fdada98f 2036 gcc_unreachable ();
45550790 2037 }
2038
4cd5bb61 2039 if (VOID_TYPE_P (type))
2c8db4fe 2040 return 0;
6f18455e 2041
8df5a43d 2042 /* If a record should be passed the same as its first (and only) member
2043 don't pass it as an aggregate. */
2044 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2045 return aggregate_value_p (first_field (type), fntype);
2046
806e4c12 2047 /* If the front end has decided that this needs to be passed by
2048 reference, do so. */
2049 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2050 && DECL_BY_REFERENCE (exp))
2051 return 1;
6f18455e 2052
4cd5bb61 2053 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2054 if (fntype && TREE_ADDRESSABLE (fntype))
6f18455e 2055 return 1;
48e1416a 2056
ad87de1e 2057 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
79f1a380 2058 and thus can't be returned in registers. */
2059 if (TREE_ADDRESSABLE (type))
2060 return 1;
4cd5bb61 2061
727a13df 2062 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
897b77d6 2063 return 1;
4cd5bb61 2064
2065 if (targetm.calls.return_in_memory (type, fntype))
2066 return 1;
2067
d5c7cfd2 2068 /* Make sure we have suitable call-clobbered regs to return
2069 the value in; if not, we must return it in memory. */
46b3ff29 2070 reg = hard_function_value (type, 0, fntype, 0);
84d69b33 2071
2072 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2073 it is OK. */
8ad4c111 2074 if (!REG_P (reg))
84d69b33 2075 return 0;
2076
d5c7cfd2 2077 regno = REGNO (reg);
67d6c12b 2078 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
d5c7cfd2 2079 for (i = 0; i < nregs; i++)
2080 if (! call_used_regs[regno + i])
2081 return 1;
4cd5bb61 2082
897b77d6 2083 return 0;
2084}
2085\f
e8825bb0 2086/* Return true if we should assign DECL a pseudo register; false if it
2087 should live on the local stack. */
2088
2089bool
b7bf20db 2090use_register_for_decl (const_tree decl)
e8825bb0 2091{
9af5ce0c 2092 if (!targetm.calls.allocate_stack_slots_for_args ())
658e203c 2093 return true;
48e1416a 2094
e8825bb0 2095 /* Honor volatile. */
2096 if (TREE_SIDE_EFFECTS (decl))
2097 return false;
2098
2099 /* Honor addressability. */
2100 if (TREE_ADDRESSABLE (decl))
2101 return false;
2102
2103 /* Only register-like things go in registers. */
2104 if (DECL_MODE (decl) == BLKmode)
2105 return false;
2106
2107 /* If -ffloat-store specified, don't put explicit float variables
2108 into registers. */
2109 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2110 propagates values across these stores, and it probably shouldn't. */
2111 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2112 return false;
2113
553acd9c 2114 /* If we're not interested in tracking debugging information for
2115 this decl, then we can certainly put it in a register. */
2116 if (DECL_IGNORED_P (decl))
e8825bb0 2117 return true;
2118
f24ccada 2119 if (optimize)
2120 return true;
2121
2122 if (!DECL_REGISTER (decl))
2123 return false;
2124
2125 switch (TREE_CODE (TREE_TYPE (decl)))
2126 {
2127 case RECORD_TYPE:
2128 case UNION_TYPE:
2129 case QUAL_UNION_TYPE:
2130 /* When not optimizing, disregard register keyword for variables with
2131 types containing methods, otherwise the methods won't be callable
2132 from the debugger. */
2133 if (TYPE_METHODS (TREE_TYPE (decl)))
2134 return false;
2135 break;
2136 default:
2137 break;
2138 }
2139
2140 return true;
e8825bb0 2141}
2142
cc9b8628 2143/* Return true if TYPE should be passed by invisible reference. */
2144
2145bool
3754d046 2146pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
b981d932 2147 tree type, bool named_arg)
cc9b8628 2148{
2149 if (type)
2150 {
2151 /* If this type contains non-trivial constructors, then it is
2152 forbidden for the middle-end to create any new copies. */
2153 if (TREE_ADDRESSABLE (type))
2154 return true;
2155
39cd001a 2156 /* GCC post 3.4 passes *all* variable sized types by reference. */
2157 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
cc9b8628 2158 return true;
8df5a43d 2159
2160 /* If a record type should be passed the same as its first (and only)
2161 member, use the type and mode of that member. */
2162 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2163 {
2164 type = TREE_TYPE (first_field (type));
2165 mode = TYPE_MODE (type);
2166 }
cc9b8628 2167 }
2168
39cba157 2169 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2170 type, named_arg);
cc9b8628 2171}
2172
13f08ee7 2173/* Return true if TYPE, which is passed by reference, should be callee
2174 copied instead of caller copied. */
2175
2176bool
3754d046 2177reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
13f08ee7 2178 tree type, bool named_arg)
2179{
2180 if (type && TREE_ADDRESSABLE (type))
2181 return false;
39cba157 2182 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2183 named_arg);
13f08ee7 2184}
2185
35a569c6 2186/* Structures to communicate between the subroutines of assign_parms.
2187 The first holds data persistent across all parameters, the second
2188 is cleared out for each parameter. */
897b77d6 2189
35a569c6 2190struct assign_parm_data_all
897b77d6 2191{
39cba157 2192 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2193 should become a job of the target or otherwise encapsulated. */
2194 CUMULATIVE_ARGS args_so_far_v;
2195 cumulative_args_t args_so_far;
897b77d6 2196 struct args_size stack_args_size;
35a569c6 2197 tree function_result_decl;
2198 tree orig_fnargs;
c363cb8c 2199 rtx_insn *first_conversion_insn;
2200 rtx_insn *last_conversion_insn;
35a569c6 2201 HOST_WIDE_INT pretend_args_size;
2202 HOST_WIDE_INT extra_pretend_bytes;
2203 int reg_parm_stack_space;
2204};
897b77d6 2205
35a569c6 2206struct assign_parm_data_one
2207{
2208 tree nominal_type;
2209 tree passed_type;
2210 rtx entry_parm;
2211 rtx stack_parm;
3754d046 2212 machine_mode nominal_mode;
2213 machine_mode passed_mode;
2214 machine_mode promoted_mode;
35a569c6 2215 struct locate_and_pad_arg_data locate;
2216 int partial;
2217 BOOL_BITFIELD named_arg : 1;
35a569c6 2218 BOOL_BITFIELD passed_pointer : 1;
2219 BOOL_BITFIELD on_stack : 1;
2220 BOOL_BITFIELD loaded_in_reg : 1;
2221};
eb749d77 2222
35a569c6 2223/* A subroutine of assign_parms. Initialize ALL. */
897b77d6 2224
35a569c6 2225static void
2226assign_parms_initialize_all (struct assign_parm_data_all *all)
2227{
132d5071 2228 tree fntype ATTRIBUTE_UNUSED;
897b77d6 2229
35a569c6 2230 memset (all, 0, sizeof (*all));
2231
2232 fntype = TREE_TYPE (current_function_decl);
2233
2234#ifdef INIT_CUMULATIVE_INCOMING_ARGS
39cba157 2235 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
35a569c6 2236#else
39cba157 2237 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
35a569c6 2238 current_function_decl, -1);
2239#endif
39cba157 2240 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
35a569c6 2241
02114c95 2242#ifdef INCOMING_REG_PARM_STACK_SPACE
2243 all->reg_parm_stack_space
2244 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
35a569c6 2245#endif
2246}
897b77d6 2247
35a569c6 2248/* If ARGS contains entries with complex types, split the entry into two
2249 entries of the component type. Return a new list of substitutions are
2250 needed, else the old list. */
2251
3e992c41 2252static void
f1f41a6c 2253split_complex_args (vec<tree> *args)
35a569c6 2254{
3e992c41 2255 unsigned i;
35a569c6 2256 tree p;
2257
f1f41a6c 2258 FOR_EACH_VEC_ELT (*args, i, p)
35a569c6 2259 {
2260 tree type = TREE_TYPE (p);
2261 if (TREE_CODE (type) == COMPLEX_TYPE
2262 && targetm.calls.split_complex_arg (type))
2263 {
2264 tree decl;
2265 tree subtype = TREE_TYPE (type);
e6427ef0 2266 bool addressable = TREE_ADDRESSABLE (p);
35a569c6 2267
2268 /* Rewrite the PARM_DECL's type with its component. */
3e992c41 2269 p = copy_node (p);
35a569c6 2270 TREE_TYPE (p) = subtype;
2271 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2272 DECL_MODE (p) = VOIDmode;
2273 DECL_SIZE (p) = NULL;
2274 DECL_SIZE_UNIT (p) = NULL;
e6427ef0 2275 /* If this arg must go in memory, put it in a pseudo here.
2276 We can't allow it to go in memory as per normal parms,
2277 because the usual place might not have the imag part
2278 adjacent to the real part. */
2279 DECL_ARTIFICIAL (p) = addressable;
2280 DECL_IGNORED_P (p) = addressable;
2281 TREE_ADDRESSABLE (p) = 0;
35a569c6 2282 layout_decl (p, 0);
f1f41a6c 2283 (*args)[i] = p;
35a569c6 2284
2285 /* Build a second synthetic decl. */
e60a6f7b 2286 decl = build_decl (EXPR_LOCATION (p),
2287 PARM_DECL, NULL_TREE, subtype);
35a569c6 2288 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
e6427ef0 2289 DECL_ARTIFICIAL (decl) = addressable;
2290 DECL_IGNORED_P (decl) = addressable;
35a569c6 2291 layout_decl (decl, 0);
f1f41a6c 2292 args->safe_insert (++i, decl);
35a569c6 2293 }
2294 }
35a569c6 2295}
2296
2297/* A subroutine of assign_parms. Adjust the parameter list to incorporate
2298 the hidden struct return argument, and (abi willing) complex args.
2299 Return the new parameter list. */
2300
f1f41a6c 2301static vec<tree>
35a569c6 2302assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2303{
2304 tree fndecl = current_function_decl;
2305 tree fntype = TREE_TYPE (fndecl);
1e094109 2306 vec<tree> fnargs = vNULL;
3e992c41 2307 tree arg;
2308
1767a056 2309 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
f1f41a6c 2310 fnargs.safe_push (arg);
3e992c41 2311
2312 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
897b77d6 2313
2314 /* If struct value address is treated as the first argument, make it so. */
45550790 2315 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
18d50ae6 2316 && ! cfun->returns_pcc_struct
45550790 2317 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
897b77d6 2318 {
3ff448ca 2319 tree type = build_pointer_type (TREE_TYPE (fntype));
35a569c6 2320 tree decl;
897b77d6 2321
e60a6f7b 2322 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
4d5b4e6a 2323 PARM_DECL, get_identifier (".result_ptr"), type);
35a569c6 2324 DECL_ARG_TYPE (decl) = type;
2325 DECL_ARTIFICIAL (decl) = 1;
4d5b4e6a 2326 DECL_NAMELESS (decl) = 1;
2327 TREE_CONSTANT (decl) = 1;
897b77d6 2328
1767a056 2329 DECL_CHAIN (decl) = all->orig_fnargs;
3e992c41 2330 all->orig_fnargs = decl;
f1f41a6c 2331 fnargs.safe_insert (0, decl);
3e992c41 2332
35a569c6 2333 all->function_result_decl = decl;
897b77d6 2334 }
06ebc183 2335
92d40bc4 2336 /* If the target wants to split complex arguments into scalars, do so. */
2337 if (targetm.calls.split_complex_arg)
3e992c41 2338 split_complex_args (&fnargs);
915e81b8 2339
35a569c6 2340 return fnargs;
2341}
241399f6 2342
35a569c6 2343/* A subroutine of assign_parms. Examine PARM and pull out type and mode
2344 data for the parameter. Incorporate ABI specifics such as pass-by-
2345 reference and type promotion. */
897b77d6 2346
35a569c6 2347static void
2348assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2349 struct assign_parm_data_one *data)
2350{
2351 tree nominal_type, passed_type;
3754d046 2352 machine_mode nominal_mode, passed_mode, promoted_mode;
3b2411a8 2353 int unsignedp;
897b77d6 2354
35a569c6 2355 memset (data, 0, sizeof (*data));
2356
f0b5f617 2357 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
18d50ae6 2358 if (!cfun->stdarg)
f0b5f617 2359 data->named_arg = 1; /* No variadic parms. */
1767a056 2360 else if (DECL_CHAIN (parm))
f0b5f617 2361 data->named_arg = 1; /* Not the last non-variadic parm. */
39cba157 2362 else if (targetm.calls.strict_argument_naming (all->args_so_far))
f0b5f617 2363 data->named_arg = 1; /* Only variadic ones are unnamed. */
35a569c6 2364 else
f0b5f617 2365 data->named_arg = 0; /* Treat as variadic. */
35a569c6 2366
2367 nominal_type = TREE_TYPE (parm);
2368 passed_type = DECL_ARG_TYPE (parm);
2369
2370 /* Look out for errors propagating this far. Also, if the parameter's
2371 type is void then its value doesn't matter. */
2372 if (TREE_TYPE (parm) == error_mark_node
2373 /* This can happen after weird syntax errors
2374 or if an enum type is defined among the parms. */
2375 || TREE_CODE (parm) != PARM_DECL
2376 || passed_type == NULL
2377 || VOID_TYPE_P (nominal_type))
2378 {
2379 nominal_type = passed_type = void_type_node;
2380 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2381 goto egress;
2382 }
d06f5fba 2383
35a569c6 2384 /* Find mode of arg as it is passed, and mode of arg as it should be
2385 during execution of this function. */
2386 passed_mode = TYPE_MODE (passed_type);
2387 nominal_mode = TYPE_MODE (nominal_type);
2388
8df5a43d 2389 /* If the parm is to be passed as a transparent union or record, use the
2390 type of the first field for the tests below. We have already verified
2391 that the modes are the same. */
2392 if ((TREE_CODE (passed_type) == UNION_TYPE
2393 || TREE_CODE (passed_type) == RECORD_TYPE)
2394 && TYPE_TRANSPARENT_AGGR (passed_type))
2395 passed_type = TREE_TYPE (first_field (passed_type));
35a569c6 2396
cc9b8628 2397 /* See if this arg was passed by invisible reference. */
39cba157 2398 if (pass_by_reference (&all->args_so_far_v, passed_mode,
cc9b8628 2399 passed_type, data->named_arg))
35a569c6 2400 {
2401 passed_type = nominal_type = build_pointer_type (passed_type);
2402 data->passed_pointer = true;
25178032 2403 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
35a569c6 2404 }
897b77d6 2405
35a569c6 2406 /* Find mode as it is passed by the ABI. */
3b2411a8 2407 unsignedp = TYPE_UNSIGNED (passed_type);
2408 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2409 TREE_TYPE (current_function_decl), 0);
897b77d6 2410
35a569c6 2411 egress:
2412 data->nominal_type = nominal_type;
2413 data->passed_type = passed_type;
2414 data->nominal_mode = nominal_mode;
2415 data->passed_mode = passed_mode;
2416 data->promoted_mode = promoted_mode;
2417}
24ec33e7 2418
35a569c6 2419/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
897b77d6 2420
35a569c6 2421static void
2422assign_parms_setup_varargs (struct assign_parm_data_all *all,
2423 struct assign_parm_data_one *data, bool no_rtl)
2424{
2425 int varargs_pretend_bytes = 0;
2426
39cba157 2427 targetm.calls.setup_incoming_varargs (all->args_so_far,
35a569c6 2428 data->promoted_mode,
2429 data->passed_type,
2430 &varargs_pretend_bytes, no_rtl);
2431
2432 /* If the back-end has requested extra stack space, record how much is
2433 needed. Do not change pretend_args_size otherwise since it may be
2434 nonzero from an earlier partial argument. */
2435 if (varargs_pretend_bytes > 0)
2436 all->pretend_args_size = varargs_pretend_bytes;
2437}
7e8dfb30 2438
35a569c6 2439/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2440 the incoming location of the current parameter. */
2441
2442static void
2443assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2444 struct assign_parm_data_one *data)
2445{
2446 HOST_WIDE_INT pretend_bytes = 0;
2447 rtx entry_parm;
2448 bool in_regs;
2449
2450 if (data->promoted_mode == VOIDmode)
2451 {
2452 data->entry_parm = data->stack_parm = const0_rtx;
2453 return;
2454 }
7e8dfb30 2455
39cba157 2456 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
f387af4f 2457 data->promoted_mode,
2458 data->passed_type,
2459 data->named_arg);
897b77d6 2460
35a569c6 2461 if (entry_parm == 0)
2462 data->promoted_mode = data->passed_mode;
897b77d6 2463
35a569c6 2464 /* Determine parm's home in the stack, in case it arrives in the stack
2465 or we should pretend it did. Compute the stack position and rtx where
2466 the argument arrives and its size.
897b77d6 2467
35a569c6 2468 There is one complexity here: If this was a parameter that would
2469 have been passed in registers, but wasn't only because it is
2470 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2471 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2472 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2473 as it was the previous time. */
2474 in_regs = entry_parm != 0;
897b77d6 2475#ifdef STACK_PARMS_IN_REG_PARM_AREA
35a569c6 2476 in_regs = true;
241399f6 2477#endif
35a569c6 2478 if (!in_regs && !data->named_arg)
2479 {
39cba157 2480 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
241399f6 2481 {
35a569c6 2482 rtx tem;
39cba157 2483 tem = targetm.calls.function_incoming_arg (all->args_so_far,
f387af4f 2484 data->promoted_mode,
2485 data->passed_type, true);
35a569c6 2486 in_regs = tem != NULL;
241399f6 2487 }
35a569c6 2488 }
241399f6 2489
35a569c6 2490 /* If this parameter was passed both in registers and in the stack, use
2491 the copy on the stack. */
0336f0f0 2492 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2493 data->passed_type))
35a569c6 2494 entry_parm = 0;
241399f6 2495
35a569c6 2496 if (entry_parm)
2497 {
2498 int partial;
2499
39cba157 2500 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
f054eb3c 2501 data->promoted_mode,
2502 data->passed_type,
2503 data->named_arg);
35a569c6 2504 data->partial = partial;
2505
2506 /* The caller might already have allocated stack space for the
2507 register parameters. */
2508 if (partial != 0 && all->reg_parm_stack_space == 0)
1cd50c9a 2509 {
35a569c6 2510 /* Part of this argument is passed in registers and part
2511 is passed on the stack. Ask the prologue code to extend
2512 the stack part so that we can recreate the full value.
2513
2514 PRETEND_BYTES is the size of the registers we need to store.
2515 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2516 stack space that the prologue should allocate.
2517
2518 Internally, gcc assumes that the argument pointer is aligned
2519 to STACK_BOUNDARY bits. This is used both for alignment
2520 optimizations (see init_emit) and to locate arguments that are
2521 aligned to more than PARM_BOUNDARY bits. We must preserve this
2522 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2523 a stack boundary. */
2524
2525 /* We assume at most one partial arg, and it must be the first
2526 argument on the stack. */
fdada98f 2527 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
35a569c6 2528
f054eb3c 2529 pretend_bytes = partial;
35a569c6 2530 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2531
2532 /* We want to align relative to the actual stack pointer, so
2533 don't include this in the stack size until later. */
2534 all->extra_pretend_bytes = all->pretend_args_size;
1cd50c9a 2535 }
35a569c6 2536 }
241399f6 2537
35a569c6 2538 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2e090bf6 2539 all->reg_parm_stack_space,
35a569c6 2540 entry_parm ? data->partial : 0, current_function_decl,
2541 &all->stack_args_size, &data->locate);
897b77d6 2542
c6586120 2543 /* Update parm_stack_boundary if this parameter is passed in the
2544 stack. */
2545 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2546 crtl->parm_stack_boundary = data->locate.boundary;
2547
35a569c6 2548 /* Adjust offsets to include the pretend args. */
2549 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2550 data->locate.slot_offset.constant += pretend_bytes;
2551 data->locate.offset.constant += pretend_bytes;
27664a4b 2552
35a569c6 2553 data->entry_parm = entry_parm;
2554}
897b77d6 2555
35a569c6 2556/* A subroutine of assign_parms. If there is actually space on the stack
2557 for this parm, count it in stack_args_size and return true. */
897b77d6 2558
35a569c6 2559static bool
2560assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2561 struct assign_parm_data_one *data)
2562{
a133d57d 2563 /* Trivially true if we've no incoming register. */
35a569c6 2564 if (data->entry_parm == NULL)
2565 ;
2566 /* Also true if we're partially in registers and partially not,
2567 since we've arranged to drop the entire argument on the stack. */
2568 else if (data->partial != 0)
2569 ;
2570 /* Also true if the target says that it's passed in both registers
2571 and on the stack. */
2572 else if (GET_CODE (data->entry_parm) == PARALLEL
2573 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2574 ;
2575 /* Also true if the target says that there's stack allocated for
2576 all register parameters. */
2577 else if (all->reg_parm_stack_space > 0)
2578 ;
2579 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2580 else
2581 return false;
897b77d6 2582
35a569c6 2583 all->stack_args_size.constant += data->locate.size.constant;
2584 if (data->locate.size.var)
2585 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
06ebc183 2586
35a569c6 2587 return true;
2588}
bffcf014 2589
35a569c6 2590/* A subroutine of assign_parms. Given that this parameter is allocated
2591 stack space by the ABI, find it. */
897b77d6 2592
35a569c6 2593static void
2594assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2595{
2596 rtx offset_rtx, stack_parm;
2597 unsigned int align, boundary;
897b77d6 2598
35a569c6 2599 /* If we're passing this arg using a reg, make its stack home the
2600 aligned stack slot. */
2601 if (data->entry_parm)
2602 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2603 else
2604 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2605
abe32cce 2606 stack_parm = crtl->args.internal_arg_pointer;
35a569c6 2607 if (offset_rtx != const0_rtx)
2608 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2609 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2610
d92e3973 2611 if (!data->passed_pointer)
7aeb4db5 2612 {
d92e3973 2613 set_mem_attributes (stack_parm, parm, 1);
2614 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2615 while promoted mode's size is needed. */
2616 if (data->promoted_mode != BLKmode
2617 && data->promoted_mode != DECL_MODE (parm))
7aeb4db5 2618 {
5b2a69fa 2619 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
da443c27 2620 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
d92e3973 2621 {
2622 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2623 data->promoted_mode);
2624 if (offset)
da443c27 2625 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
d92e3973 2626 }
7aeb4db5 2627 }
2628 }
35a569c6 2629
c5dc0c32 2630 boundary = data->locate.boundary;
2631 align = BITS_PER_UNIT;
35a569c6 2632
2633 /* If we're padding upward, we know that the alignment of the slot
bd99ba64 2634 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
35a569c6 2635 intentionally forcing upward padding. Otherwise we have to come
2636 up with a guess at the alignment based on OFFSET_RTX. */
c5dc0c32 2637 if (data->locate.where_pad != downward || data->entry_parm)
35a569c6 2638 align = boundary;
971ba038 2639 else if (CONST_INT_P (offset_rtx))
35a569c6 2640 {
2641 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2642 align = align & -align;
2643 }
c5dc0c32 2644 set_mem_align (stack_parm, align);
35a569c6 2645
2646 if (data->entry_parm)
2647 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2648
2649 data->stack_parm = stack_parm;
2650}
2651
2652/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2653 always valid and contiguous. */
2654
2655static void
2656assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2657{
2658 rtx entry_parm = data->entry_parm;
2659 rtx stack_parm = data->stack_parm;
2660
2661 /* If this parm was passed part in regs and part in memory, pretend it
2662 arrived entirely in memory by pushing the register-part onto the stack.
2663 In the special case of a DImode or DFmode that is split, we could put
2664 it together in a pseudoreg directly, but for now that's not worth
2665 bothering with. */
2666 if (data->partial != 0)
2667 {
2668 /* Handle calls that pass values in multiple non-contiguous
2669 locations. The Irix 6 ABI has examples of this. */
2670 if (GET_CODE (entry_parm) == PARALLEL)
d2b9158b 2671 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
48e1416a 2672 data->passed_type,
35a569c6 2673 int_size_in_bytes (data->passed_type));
897b77d6 2674 else
f054eb3c 2675 {
2676 gcc_assert (data->partial % UNITS_PER_WORD == 0);
d2b9158b 2677 move_block_from_reg (REGNO (entry_parm),
2678 validize_mem (copy_rtx (stack_parm)),
f054eb3c 2679 data->partial / UNITS_PER_WORD);
2680 }
897b77d6 2681
35a569c6 2682 entry_parm = stack_parm;
2683 }
897b77d6 2684
35a569c6 2685 /* If we didn't decide this parm came in a register, by default it came
2686 on the stack. */
2687 else if (entry_parm == NULL)
2688 entry_parm = stack_parm;
2689
2690 /* When an argument is passed in multiple locations, we can't make use
2691 of this information, but we can save some copying if the whole argument
2692 is passed in a single register. */
2693 else if (GET_CODE (entry_parm) == PARALLEL
2694 && data->nominal_mode != BLKmode
2695 && data->passed_mode != BLKmode)
2696 {
2697 size_t i, len = XVECLEN (entry_parm, 0);
2698
2699 for (i = 0; i < len; i++)
2700 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2701 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2702 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2703 == data->passed_mode)
2704 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2705 {
2706 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2707 break;
2708 }
2709 }
4d6c855d 2710
35a569c6 2711 data->entry_parm = entry_parm;
2712}
897b77d6 2713
77c0eeb4 2714/* A subroutine of assign_parms. Reconstitute any values which were
2715 passed in multiple registers and would fit in a single register. */
2716
2717static void
2718assign_parm_remove_parallels (struct assign_parm_data_one *data)
2719{
2720 rtx entry_parm = data->entry_parm;
2721
2722 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2723 This can be done with register operations rather than on the
2724 stack, even if we will store the reconstituted parameter on the
2725 stack later. */
1cf0636a 2726 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
77c0eeb4 2727 {
2728 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
77b80ffd 2729 emit_group_store (parmreg, entry_parm, data->passed_type,
77c0eeb4 2730 GET_MODE_SIZE (GET_MODE (entry_parm)));
2731 entry_parm = parmreg;
2732 }
2733
2734 data->entry_parm = entry_parm;
2735}
2736
35a569c6 2737/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2738 always valid and properly aligned. */
897b77d6 2739
35a569c6 2740static void
2741assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2742{
2743 rtx stack_parm = data->stack_parm;
2744
2745 /* If we can't trust the parm stack slot to be aligned enough for its
2746 ultimate type, don't use that slot after entry. We'll make another
2747 stack slot, if we need one. */
c5dc0c32 2748 if (stack_parm
2749 && ((STRICT_ALIGNMENT
2750 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2751 || (data->nominal_type
2752 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2753 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
35a569c6 2754 stack_parm = NULL;
2755
2756 /* If parm was passed in memory, and we need to convert it on entry,
2757 don't store it back in that same slot. */
2758 else if (data->entry_parm == stack_parm
2759 && data->nominal_mode != BLKmode
2760 && data->nominal_mode != data->passed_mode)
2761 stack_parm = NULL;
2762
f1a0edff 2763 /* If stack protection is in effect for this function, don't leave any
2764 pointers in their passed stack slots. */
edb7afe8 2765 else if (crtl->stack_protect_guard
f1a0edff 2766 && (flag_stack_protect == 2
2767 || data->passed_pointer
2768 || POINTER_TYPE_P (data->nominal_type)))
2769 stack_parm = NULL;
2770
35a569c6 2771 data->stack_parm = stack_parm;
2772}
90b076ea 2773
35a569c6 2774/* A subroutine of assign_parms. Return true if the current parameter
2775 should be stored as a BLKmode in the current frame. */
2776
2777static bool
2778assign_parm_setup_block_p (struct assign_parm_data_one *data)
2779{
2780 if (data->nominal_mode == BLKmode)
2781 return true;
1cf0636a 2782 if (GET_MODE (data->entry_parm) == BLKmode)
2783 return true;
a2509aaa 2784
5f4cd670 2785#ifdef BLOCK_REG_PADDING
ed4b0b75 2786 /* Only assign_parm_setup_block knows how to deal with register arguments
2787 that are padded at the least significant end. */
2788 if (REG_P (data->entry_parm)
2789 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2790 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2791 == (BYTES_BIG_ENDIAN ? upward : downward)))
35a569c6 2792 return true;
5f4cd670 2793#endif
35a569c6 2794
2795 return false;
2796}
2797
48e1416a 2798/* A subroutine of assign_parms. Arrange for the parameter to be
35a569c6 2799 present and valid in DATA->STACK_RTL. */
2800
2801static void
e2ff5c1b 2802assign_parm_setup_block (struct assign_parm_data_all *all,
2803 tree parm, struct assign_parm_data_one *data)
35a569c6 2804{
2805 rtx entry_parm = data->entry_parm;
2806 rtx stack_parm = data->stack_parm;
c5dc0c32 2807 HOST_WIDE_INT size;
2808 HOST_WIDE_INT size_stored;
35a569c6 2809
e2ff5c1b 2810 if (GET_CODE (entry_parm) == PARALLEL)
2811 entry_parm = emit_group_move_into_temps (entry_parm);
2812
c5dc0c32 2813 size = int_size_in_bytes (data->passed_type);
2814 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2815 if (stack_parm == 0)
2816 {
3a1c59da 2817 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
c5dc0c32 2818 stack_parm = assign_stack_local (BLKmode, size_stored,
3a1c59da 2819 DECL_ALIGN (parm));
c5dc0c32 2820 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2821 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2822 set_mem_attributes (stack_parm, parm, 1);
2823 }
2824
35a569c6 2825 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2826 calls that pass values in multiple non-contiguous locations. */
2827 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2828 {
35a569c6 2829 rtx mem;
2830
2831 /* Note that we will be storing an integral number of words.
2832 So we have to be careful to ensure that we allocate an
c5dc0c32 2833 integral number of words. We do this above when we call
35a569c6 2834 assign_stack_local if space was not allocated in the argument
2835 list. If it was, this will not work if PARM_BOUNDARY is not
2836 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2837 if it becomes a problem. Exception is when BLKmode arrives
2838 with arguments not conforming to word_mode. */
2839
c5dc0c32 2840 if (data->stack_parm == 0)
2841 ;
35a569c6 2842 else if (GET_CODE (entry_parm) == PARALLEL)
2843 ;
fdada98f 2844 else
2845 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
897b77d6 2846
d2b9158b 2847 mem = validize_mem (copy_rtx (stack_parm));
530178a9 2848
35a569c6 2849 /* Handle values in multiple non-contiguous locations. */
2850 if (GET_CODE (entry_parm) == PARALLEL)
e2ff5c1b 2851 {
28bf151d 2852 push_to_sequence2 (all->first_conversion_insn,
2853 all->last_conversion_insn);
e2ff5c1b 2854 emit_group_store (mem, entry_parm, data->passed_type, size);
28bf151d 2855 all->first_conversion_insn = get_insns ();
2856 all->last_conversion_insn = get_last_insn ();
e2ff5c1b 2857 end_sequence ();
2858 }
530178a9 2859
35a569c6 2860 else if (size == 0)
2861 ;
dd6fed02 2862
35a569c6 2863 /* If SIZE is that of a mode no bigger than a word, just use
2864 that mode's store operation. */
2865 else if (size <= UNITS_PER_WORD)
2866 {
3754d046 2867 machine_mode mode
35a569c6 2868 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
530178a9 2869
35a569c6 2870 if (mode != BLKmode
5f4cd670 2871#ifdef BLOCK_REG_PADDING
35a569c6 2872 && (size == UNITS_PER_WORD
2873 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2874 != (BYTES_BIG_ENDIAN ? upward : downward)))
5f4cd670 2875#endif
35a569c6 2876 )
2877 {
2973927c 2878 rtx reg;
2879
2880 /* We are really truncating a word_mode value containing
2881 SIZE bytes into a value of mode MODE. If such an
2882 operation requires no actual instructions, we can refer
2883 to the value directly in mode MODE, otherwise we must
2884 start with the register in word_mode and explicitly
2885 convert it. */
2886 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2887 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2888 else
2889 {
2890 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2891 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2892 }
35a569c6 2893 emit_move_insn (change_address (mem, mode, 0), reg);
2894 }
530178a9 2895
35a569c6 2896 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2897 machine must be aligned to the left before storing
2898 to memory. Note that the previous test doesn't
2899 handle all cases (e.g. SIZE == 3). */
2900 else if (size != UNITS_PER_WORD
5f4cd670 2901#ifdef BLOCK_REG_PADDING
35a569c6 2902 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2903 == downward)
5f4cd670 2904#else
35a569c6 2905 && BYTES_BIG_ENDIAN
5f4cd670 2906#endif
35a569c6 2907 )
2908 {
2909 rtx tem, x;
2910 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
e1b9bbec 2911 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
35a569c6 2912
f5ff0b21 2913 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
35a569c6 2914 tem = change_address (mem, word_mode, 0);
2915 emit_move_insn (tem, x);
897b77d6 2916 }
35a569c6 2917 else
e2ff5c1b 2918 move_block_from_reg (REGNO (entry_parm), mem,
35a569c6 2919 size_stored / UNITS_PER_WORD);
897b77d6 2920 }
35a569c6 2921 else
e2ff5c1b 2922 move_block_from_reg (REGNO (entry_parm), mem,
35a569c6 2923 size_stored / UNITS_PER_WORD);
2924 }
c5dc0c32 2925 else if (data->stack_parm == 0)
2926 {
28bf151d 2927 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
c5dc0c32 2928 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2929 BLOCK_OP_NORMAL);
28bf151d 2930 all->first_conversion_insn = get_insns ();
2931 all->last_conversion_insn = get_last_insn ();
c5dc0c32 2932 end_sequence ();
2933 }
35a569c6 2934
c5dc0c32 2935 data->stack_parm = stack_parm;
35a569c6 2936 SET_DECL_RTL (parm, stack_parm);
2937}
2938
2939/* A subroutine of assign_parms. Allocate a pseudo to hold the current
2940 parameter. Get it there. Perform all ABI specified conversions. */
2941
2942static void
2943assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2944 struct assign_parm_data_one *data)
2945{
f3e93fd1 2946 rtx parmreg, validated_mem;
2947 rtx equiv_stack_parm;
3754d046 2948 machine_mode promoted_nominal_mode;
35a569c6 2949 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2950 bool did_conversion = false;
f3e93fd1 2951 bool need_conversion, moved;
35a569c6 2952
2953 /* Store the parm in a pseudoregister during the function, but we may
c879dbcf 2954 need to do it in a wider mode. Using 2 here makes the result
2955 consistent with promote_decl_mode and thus expand_expr_real_1. */
35a569c6 2956 promoted_nominal_mode
3b2411a8 2957 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
c879dbcf 2958 TREE_TYPE (current_function_decl), 2);
35a569c6 2959
2960 parmreg = gen_reg_rtx (promoted_nominal_mode);
2961
2962 if (!DECL_ARTIFICIAL (parm))
2963 mark_user_reg (parmreg);
2964
2965 /* If this was an item that we received a pointer to,
2966 set DECL_RTL appropriately. */
2967 if (data->passed_pointer)
2968 {
2969 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2970 set_mem_attributes (x, parm, 1);
2971 SET_DECL_RTL (parm, x);
2972 }
2973 else
b04fab2a 2974 SET_DECL_RTL (parm, parmreg);
35a569c6 2975
77c0eeb4 2976 assign_parm_remove_parallels (data);
2977
c879dbcf 2978 /* Copy the value into the register, thus bridging between
2979 assign_parm_find_data_types and expand_expr_real_1. */
35a569c6 2980
f3e93fd1 2981 equiv_stack_parm = data->stack_parm;
d2b9158b 2982 validated_mem = validize_mem (copy_rtx (data->entry_parm));
f3e93fd1 2983
2984 need_conversion = (data->nominal_mode != data->passed_mode
2985 || promoted_nominal_mode != data->promoted_mode);
2986 moved = false;
2987
3939ef08 2988 if (need_conversion
2989 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
2990 && data->nominal_mode == data->passed_mode
2991 && data->nominal_mode == GET_MODE (data->entry_parm))
f3e93fd1 2992 {
35a569c6 2993 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2994 mode, by the caller. We now have to convert it to
2995 NOMINAL_MODE, if different. However, PARMREG may be in
2996 a different mode than NOMINAL_MODE if it is being stored
2997 promoted.
2998
2999 If ENTRY_PARM is a hard register, it might be in a register
3000 not valid for operating in its mode (e.g., an odd-numbered
3001 register for a DFmode). In that case, moves are the only
3002 thing valid, so we can't do a convert from there. This
3003 occurs when the calling sequence allow such misaligned
3004 usages.
3005
3006 In addition, the conversion may involve a call, which could
3007 clobber parameters which haven't been copied to pseudo
f3e93fd1 3008 registers yet.
3009
3010 First, we try to emit an insn which performs the necessary
3011 conversion. We verify that this insn does not clobber any
3012 hard registers. */
3013
3014 enum insn_code icode;
3015 rtx op0, op1;
3016
3017 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3018 unsignedp);
3019
3020 op0 = parmreg;
3021 op1 = validated_mem;
3022 if (icode != CODE_FOR_nothing
39c56a89 3023 && insn_operand_matches (icode, 0, op0)
3024 && insn_operand_matches (icode, 1, op1))
f3e93fd1 3025 {
3026 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
91a55c11 3027 rtx_insn *insn, *insns;
3028 rtx t = op1;
f3e93fd1 3029 HARD_REG_SET hardregs;
3030
3031 start_sequence ();
30790040 3032 /* If op1 is a hard register that is likely spilled, first
3033 force it into a pseudo, otherwise combiner might extend
3034 its lifetime too much. */
3035 if (GET_CODE (t) == SUBREG)
3036 t = SUBREG_REG (t);
3037 if (REG_P (t)
3038 && HARD_REGISTER_P (t)
3039 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3040 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3041 {
3042 t = gen_reg_rtx (GET_MODE (op1));
3043 emit_move_insn (t, op1);
3044 }
3045 else
3046 t = op1;
eb10ade7 3047 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3048 data->passed_mode, unsignedp);
3049 emit_insn (pat);
f3e93fd1 3050 insns = get_insns ();
3051
3052 moved = true;
3053 CLEAR_HARD_REG_SET (hardregs);
3054 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3055 {
3056 if (INSN_P (insn))
3057 note_stores (PATTERN (insn), record_hard_reg_sets,
3058 &hardregs);
3059 if (!hard_reg_set_empty_p (hardregs))
3060 moved = false;
3061 }
3062
3063 end_sequence ();
3064
3065 if (moved)
3066 {
3067 emit_insn (insns);
3939ef08 3068 if (equiv_stack_parm != NULL_RTX)
3069 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3070 equiv_stack_parm);
f3e93fd1 3071 }
3072 }
3073 }
3074
3075 if (moved)
3076 /* Nothing to do. */
3077 ;
3078 else if (need_conversion)
3079 {
3080 /* We did not have an insn to convert directly, or the sequence
3081 generated appeared unsafe. We must first copy the parm to a
3082 pseudo reg, and save the conversion until after all
35a569c6 3083 parameters have been moved. */
3084
f3e93fd1 3085 int save_tree_used;
35a569c6 3086 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3087
f3e93fd1 3088 emit_move_insn (tempreg, validated_mem);
35a569c6 3089
28bf151d 3090 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
35a569c6 3091 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3092
3093 if (GET_CODE (tempreg) == SUBREG
3094 && GET_MODE (tempreg) == data->nominal_mode
3095 && REG_P (SUBREG_REG (tempreg))
3096 && data->nominal_mode == data->passed_mode
3097 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3098 && GET_MODE_SIZE (GET_MODE (tempreg))
3099 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
897b77d6 3100 {
35a569c6 3101 /* The argument is already sign/zero extended, so note it
3102 into the subreg. */
3103 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
e8629f9e 3104 SUBREG_PROMOTED_SET (tempreg, unsignedp);
35a569c6 3105 }
19e03a68 3106
35a569c6 3107 /* TREE_USED gets set erroneously during expand_assignment. */
3108 save_tree_used = TREE_USED (parm);
5b5037b3 3109 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
35a569c6 3110 TREE_USED (parm) = save_tree_used;
28bf151d 3111 all->first_conversion_insn = get_insns ();
3112 all->last_conversion_insn = get_last_insn ();
35a569c6 3113 end_sequence ();
19e03a68 3114
35a569c6 3115 did_conversion = true;
3116 }
3117 else
f3e93fd1 3118 emit_move_insn (parmreg, validated_mem);
35a569c6 3119
3120 /* If we were passed a pointer but the actual value can safely live
cad0d474 3121 in a register, retrieve it and use it directly. */
3122 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
35a569c6 3123 {
3124 /* We can't use nominal_mode, because it will have been set to
3125 Pmode above. We must use the actual mode of the parm. */
cad0d474 3126 if (use_register_for_decl (parm))
3127 {
3128 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3129 mark_user_reg (parmreg);
3130 }
3131 else
3132 {
3133 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3134 TYPE_MODE (TREE_TYPE (parm)),
3135 TYPE_ALIGN (TREE_TYPE (parm)));
3136 parmreg
3137 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3138 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3139 align);
3140 set_mem_attributes (parmreg, parm, 1);
3141 }
8815f4da 3142
35a569c6 3143 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3144 {
3145 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3146 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3147
28bf151d 3148 push_to_sequence2 (all->first_conversion_insn,
3149 all->last_conversion_insn);
35a569c6 3150 emit_move_insn (tempreg, DECL_RTL (parm));
3151 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3152 emit_move_insn (parmreg, tempreg);
28bf151d 3153 all->first_conversion_insn = get_insns ();
3154 all->last_conversion_insn = get_last_insn ();
35a569c6 3155 end_sequence ();
897b77d6 3156
35a569c6 3157 did_conversion = true;
3158 }
3159 else
3160 emit_move_insn (parmreg, DECL_RTL (parm));
897b77d6 3161
35a569c6 3162 SET_DECL_RTL (parm, parmreg);
60d903f5 3163
35a569c6 3164 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3165 now the parm. */
3166 data->stack_parm = NULL;
3167 }
701e46d0 3168
35a569c6 3169 /* Mark the register as eliminable if we did no conversion and it was
3170 copied from memory at a fixed offset, and the arg pointer was not
3171 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3172 offset formed an invalid address, such memory-equivalences as we
3173 make here would screw up life analysis for it. */
3174 if (data->nominal_mode == data->passed_mode
3175 && !did_conversion
3176 && data->stack_parm != 0
3177 && MEM_P (data->stack_parm)
3178 && data->locate.offset.var == 0
3179 && reg_mentioned_p (virtual_incoming_args_rtx,
3180 XEXP (data->stack_parm, 0)))
3181 {
8bb2625b 3182 rtx_insn *linsn = get_last_insn ();
3183 rtx_insn *sinsn;
3184 rtx set;
5f85a240 3185
35a569c6 3186 /* Mark complex types separately. */
3187 if (GET_CODE (parmreg) == CONCAT)
3188 {
3754d046 3189 machine_mode submode
35a569c6 3190 = GET_MODE_INNER (GET_MODE (parmreg));
de17a47b 3191 int regnor = REGNO (XEXP (parmreg, 0));
3192 int regnoi = REGNO (XEXP (parmreg, 1));
3193 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3194 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3195 GET_MODE_SIZE (submode));
35a569c6 3196
3197 /* Scan backwards for the set of the real and
3198 imaginary parts. */
3199 for (sinsn = linsn; sinsn != 0;
3200 sinsn = prev_nonnote_insn (sinsn))
3201 {
3202 set = single_set (sinsn);
3203 if (set == 0)
3204 continue;
3205
3206 if (SET_DEST (set) == regno_reg_rtx [regnoi])
750a330e 3207 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
35a569c6 3208 else if (SET_DEST (set) == regno_reg_rtx [regnor])
750a330e 3209 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
5f85a240 3210 }
35a569c6 3211 }
41cf444a 3212 else
3213 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
35a569c6 3214 }
3215
3216 /* For pointer data type, suggest pointer register. */
3217 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3218 mark_reg_pointer (parmreg,
3219 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3220}
3221
3222/* A subroutine of assign_parms. Allocate stack space to hold the current
3223 parameter. Get it there. Perform all ABI specified conversions. */
3224
3225static void
3226assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3227 struct assign_parm_data_one *data)
3228{
3229 /* Value must be stored in the stack slot STACK_PARM during function
3230 execution. */
c5dc0c32 3231 bool to_conversion = false;
35a569c6 3232
77c0eeb4 3233 assign_parm_remove_parallels (data);
3234
35a569c6 3235 if (data->promoted_mode != data->nominal_mode)
3236 {
3237 /* Conversion is required. */
3238 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
897b77d6 3239
d2b9158b 3240 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
35a569c6 3241
28bf151d 3242 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
c5dc0c32 3243 to_conversion = true;
3244
35a569c6 3245 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3246 TYPE_UNSIGNED (TREE_TYPE (parm)));
3247
3248 if (data->stack_parm)
738ab6f5 3249 {
3250 int offset = subreg_lowpart_offset (data->nominal_mode,
3251 GET_MODE (data->stack_parm));
3252 /* ??? This may need a big-endian conversion on sparc64. */
3253 data->stack_parm
3254 = adjust_address (data->stack_parm, data->nominal_mode, 0);
da443c27 3255 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
738ab6f5 3256 set_mem_offset (data->stack_parm,
da443c27 3257 MEM_OFFSET (data->stack_parm) + offset);
738ab6f5 3258 }
35a569c6 3259 }
3260
3261 if (data->entry_parm != data->stack_parm)
3262 {
c5dc0c32 3263 rtx src, dest;
3264
35a569c6 3265 if (data->stack_parm == 0)
3266 {
c9b50df7 3267 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3268 GET_MODE (data->entry_parm),
3269 TYPE_ALIGN (data->passed_type));
35a569c6 3270 data->stack_parm
3271 = assign_stack_local (GET_MODE (data->entry_parm),
3272 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
c9b50df7 3273 align);
35a569c6 3274 set_mem_attributes (data->stack_parm, parm, 1);
897b77d6 3275 }
35a569c6 3276
d2b9158b 3277 dest = validize_mem (copy_rtx (data->stack_parm));
3278 src = validize_mem (copy_rtx (data->entry_parm));
c5dc0c32 3279
3280 if (MEM_P (src))
897b77d6 3281 {
c5dc0c32 3282 /* Use a block move to handle potentially misaligned entry_parm. */
3283 if (!to_conversion)
28bf151d 3284 push_to_sequence2 (all->first_conversion_insn,
3285 all->last_conversion_insn);
c5dc0c32 3286 to_conversion = true;
3287
3288 emit_block_move (dest, src,
3289 GEN_INT (int_size_in_bytes (data->passed_type)),
3290 BLOCK_OP_NORMAL);
35a569c6 3291 }
3292 else
c5dc0c32 3293 emit_move_insn (dest, src);
3294 }
3295
3296 if (to_conversion)
3297 {
28bf151d 3298 all->first_conversion_insn = get_insns ();
3299 all->last_conversion_insn = get_last_insn ();
c5dc0c32 3300 end_sequence ();
35a569c6 3301 }
897b77d6 3302
35a569c6 3303 SET_DECL_RTL (parm, data->stack_parm);
3304}
b8f621ce 3305
35a569c6 3306/* A subroutine of assign_parms. If the ABI splits complex arguments, then
3307 undo the frobbing that we did in assign_parms_augmented_arg_list. */
006be676 3308
35a569c6 3309static void
3e992c41 3310assign_parms_unsplit_complex (struct assign_parm_data_all *all,
f1f41a6c 3311 vec<tree> fnargs)
35a569c6 3312{
3313 tree parm;
e6427ef0 3314 tree orig_fnargs = all->orig_fnargs;
3e992c41 3315 unsigned i = 0;
e513d163 3316
3e992c41 3317 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
35a569c6 3318 {
3319 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3320 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3321 {
3322 rtx tmp, real, imag;
3754d046 3323 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
897b77d6 3324
f1f41a6c 3325 real = DECL_RTL (fnargs[i]);
3326 imag = DECL_RTL (fnargs[i + 1]);
35a569c6 3327 if (inner != GET_MODE (real))
897b77d6 3328 {
35a569c6 3329 real = gen_lowpart_SUBREG (inner, real);
3330 imag = gen_lowpart_SUBREG (inner, imag);
3331 }
e6427ef0 3332
3333 if (TREE_ADDRESSABLE (parm))
3334 {
3335 rtx rmem, imem;
3336 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
c9b50df7 3337 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3338 DECL_MODE (parm),
3339 TYPE_ALIGN (TREE_TYPE (parm)));
e6427ef0 3340
3341 /* split_complex_arg put the real and imag parts in
3342 pseudos. Move them to memory. */
c9b50df7 3343 tmp = assign_stack_local (DECL_MODE (parm), size, align);
e6427ef0 3344 set_mem_attributes (tmp, parm, 1);
3345 rmem = adjust_address_nv (tmp, inner, 0);
3346 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
28bf151d 3347 push_to_sequence2 (all->first_conversion_insn,
3348 all->last_conversion_insn);
e6427ef0 3349 emit_move_insn (rmem, real);
3350 emit_move_insn (imem, imag);
28bf151d 3351 all->first_conversion_insn = get_insns ();
3352 all->last_conversion_insn = get_last_insn ();
e6427ef0 3353 end_sequence ();
3354 }
3355 else
3356 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
35a569c6 3357 SET_DECL_RTL (parm, tmp);
08531d36 3358
f1f41a6c 3359 real = DECL_INCOMING_RTL (fnargs[i]);
3360 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
35a569c6 3361 if (inner != GET_MODE (real))
3362 {
3363 real = gen_lowpart_SUBREG (inner, real);
3364 imag = gen_lowpart_SUBREG (inner, imag);
897b77d6 3365 }
35a569c6 3366 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
d91cf567 3367 set_decl_incoming_rtl (parm, tmp, false);
3e992c41 3368 i++;
897b77d6 3369 }
897b77d6 3370 }
35a569c6 3371}
3372
3373/* Assign RTL expressions to the function's parameters. This may involve
3374 copying them into registers and using those registers as the DECL_RTL. */
3375
3f0895d3 3376static void
35a569c6 3377assign_parms (tree fndecl)
3378{
3379 struct assign_parm_data_all all;
3e992c41 3380 tree parm;
f1f41a6c 3381 vec<tree> fnargs;
3e992c41 3382 unsigned i;
897b77d6 3383
abe32cce 3384 crtl->args.internal_arg_pointer
567925e3 3385 = targetm.calls.internal_arg_pointer ();
35a569c6 3386
3387 assign_parms_initialize_all (&all);
3388 fnargs = assign_parms_augmented_arg_list (&all);
3389
f1f41a6c 3390 FOR_EACH_VEC_ELT (fnargs, i, parm)
915e81b8 3391 {
35a569c6 3392 struct assign_parm_data_one data;
3393
3394 /* Extract the type of PARM; adjust it according to ABI. */
3395 assign_parm_find_data_types (&all, parm, &data);
3396
3397 /* Early out for errors and void parameters. */
3398 if (data.passed_mode == VOIDmode)
915e81b8 3399 {
35a569c6 3400 SET_DECL_RTL (parm, const0_rtx);
3401 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3402 continue;
3403 }
1b4f3c7d 3404
27a7a23a 3405 /* Estimate stack alignment from parameter alignment. */
3406 if (SUPPORTS_STACK_ALIGNMENT)
3407 {
bd99ba64 3408 unsigned int align
3409 = targetm.calls.function_arg_boundary (data.promoted_mode,
3410 data.passed_type);
8645d3e7 3411 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3412 align);
27a7a23a 3413 if (TYPE_ALIGN (data.nominal_type) > align)
8645d3e7 3414 align = MINIMUM_ALIGNMENT (data.nominal_type,
3415 TYPE_MODE (data.nominal_type),
3416 TYPE_ALIGN (data.nominal_type));
27a7a23a 3417 if (crtl->stack_alignment_estimated < align)
3418 {
3419 gcc_assert (!crtl->stack_realign_processed);
3420 crtl->stack_alignment_estimated = align;
3421 }
3422 }
48e1416a 3423
1767a056 3424 if (cfun->stdarg && !DECL_CHAIN (parm))
e2704f58 3425 assign_parms_setup_varargs (&all, &data, false);
1b4f3c7d 3426
35a569c6 3427 /* Find out where the parameter arrives in this function. */
3428 assign_parm_find_entry_rtl (&all, &data);
3429
3430 /* Find out where stack space for this parameter might be. */
3431 if (assign_parm_is_stack_parm (&all, &data))
3432 {
3433 assign_parm_find_stack_rtl (parm, &data);
3434 assign_parm_adjust_entry_rtl (&data);
915e81b8 3435 }
35a569c6 3436
3437 /* Record permanently how this parm was passed. */
56fe7223 3438 if (data.passed_pointer)
3439 {
3440 rtx incoming_rtl
3441 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3442 data.entry_parm);
3443 set_decl_incoming_rtl (parm, incoming_rtl, true);
3444 }
3445 else
3446 set_decl_incoming_rtl (parm, data.entry_parm, false);
35a569c6 3447
3448 /* Update info on where next arg arrives in registers. */
39cba157 3449 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
f387af4f 3450 data.passed_type, data.named_arg);
35a569c6 3451
3452 assign_parm_adjust_stack_rtl (&data);
3453
3454 if (assign_parm_setup_block_p (&data))
e2ff5c1b 3455 assign_parm_setup_block (&all, parm, &data);
35a569c6 3456 else if (data.passed_pointer || use_register_for_decl (parm))
3457 assign_parm_setup_reg (&all, parm, &data);
3458 else
3459 assign_parm_setup_stack (&all, parm, &data);
915e81b8 3460 }
3461
3e992c41 3462 if (targetm.calls.split_complex_arg)
e6427ef0 3463 assign_parms_unsplit_complex (&all, fnargs);
35a569c6 3464
f1f41a6c 3465 fnargs.release ();
3e992c41 3466
a9d8ab38 3467 /* Initialize pic_offset_table_rtx with a pseudo register
3468 if required. */
3469 if (targetm.use_pseudo_pic_reg ())
3470 pic_offset_table_rtx = gen_reg_rtx (Pmode);
3471
b8f621ce 3472 /* Output all parameter conversion instructions (possibly including calls)
3473 now that all parameters have been copied out of hard registers. */
28bf151d 3474 emit_insn (all.first_conversion_insn);
b8f621ce 3475
27a7a23a 3476 /* Estimate reload stack alignment from scalar return mode. */
3477 if (SUPPORTS_STACK_ALIGNMENT)
3478 {
3479 if (DECL_RESULT (fndecl))
3480 {
3481 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3754d046 3482 machine_mode mode = TYPE_MODE (type);
27a7a23a 3483
3484 if (mode != BLKmode
3485 && mode != VOIDmode
3486 && !AGGREGATE_TYPE_P (type))
3487 {
3488 unsigned int align = GET_MODE_ALIGNMENT (mode);
3489 if (crtl->stack_alignment_estimated < align)
3490 {
3491 gcc_assert (!crtl->stack_realign_processed);
3492 crtl->stack_alignment_estimated = align;
3493 }
3494 }
48e1416a 3495 }
27a7a23a 3496 }
3497
ba133423 3498 /* If we are receiving a struct value address as the first argument, set up
3499 the RTL for the function result. As this might require code to convert
3500 the transmitted address to Pmode, we do this here to ensure that possible
3501 preliminary conversions of the address have been emitted already. */
35a569c6 3502 if (all.function_result_decl)
ba133423 3503 {
35a569c6 3504 tree result = DECL_RESULT (current_function_decl);
3505 rtx addr = DECL_RTL (all.function_result_decl);
ba133423 3506 rtx x;
de1b648b 3507
806e4c12 3508 if (DECL_BY_REFERENCE (result))
4d5b4e6a 3509 {
3510 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3511 x = addr;
3512 }
806e4c12 3513 else
3514 {
4d5b4e6a 3515 SET_DECL_VALUE_EXPR (result,
3516 build1 (INDIRECT_REF, TREE_TYPE (result),
3517 all.function_result_decl));
806e4c12 3518 addr = convert_memory_address (Pmode, addr);
3519 x = gen_rtx_MEM (DECL_MODE (result), addr);
3520 set_mem_attributes (x, result, 1);
3521 }
4d5b4e6a 3522
3523 DECL_HAS_VALUE_EXPR_P (result) = 1;
3524
ba133423 3525 SET_DECL_RTL (result, x);
3526 }
3527
b0cdd2bb 3528 /* We have aligned all the args, so add space for the pretend args. */
abe32cce 3529 crtl->args.pretend_args_size = all.pretend_args_size;
35a569c6 3530 all.stack_args_size.constant += all.extra_pretend_bytes;
abe32cce 3531 crtl->args.size = all.stack_args_size.constant;
897b77d6 3532
3533 /* Adjust function incoming argument size for alignment and
3534 minimum length. */
3535
2e090bf6 3536 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
abe32cce 3537 crtl->args.size = CEIL_ROUND (crtl->args.size,
26be63dd 3538 PARM_BOUNDARY / BITS_PER_UNIT);
8967ddf7 3539
897b77d6 3540#ifdef ARGS_GROW_DOWNWARD
abe32cce 3541 crtl->args.arg_offset_rtx
470f4908 3542 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
35a569c6 3543 : expand_expr (size_diffop (all.stack_args_size.var,
3544 size_int (-all.stack_args_size.constant)),
b9c74b4d 3545 NULL_RTX, VOIDmode, EXPAND_NORMAL));
897b77d6 3546#else
abe32cce 3547 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
897b77d6 3548#endif
3549
3550 /* See how many bytes, if any, of its args a function should try to pop
3551 on return. */
3552
f5bc28da 3553 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3554 TREE_TYPE (fndecl),
3555 crtl->args.size);
897b77d6 3556
ec195bc4 3557 /* For stdarg.h function, save info about
3558 regs and stack space used by the named args. */
897b77d6 3559
39cba157 3560 crtl->args.info = all.args_so_far_v;
897b77d6 3561
3562 /* Set the rtx used for the function return value. Put this in its
3563 own variable so any optimizers that need this information don't have
3564 to include tree.h. Do this here so it gets done when an inlined
3565 function gets output. */
3566
abe32cce 3567 crtl->return_rtx
0e8e37b2 3568 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3569 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
8839b7f1 3570
3571 /* If scalar return value was computed in a pseudo-reg, or was a named
3572 return value that got dumped to the stack, copy that to the hard
3573 return register. */
3574 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3575 {
3576 tree decl_result = DECL_RESULT (fndecl);
3577 rtx decl_rtl = DECL_RTL (decl_result);
3578
3579 if (REG_P (decl_rtl)
3580 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3581 : DECL_REGISTER (decl_result))
3582 {
3583 rtx real_decl_rtl;
3584
46b3ff29 3585 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3586 fndecl, true);
8839b7f1 3587 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
abe32cce 3588 /* The delay slot scheduler assumes that crtl->return_rtx
8839b7f1 3589 holds the hard register containing the return value, not a
3590 temporary pseudo. */
abe32cce 3591 crtl->return_rtx = real_decl_rtl;
8839b7f1 3592 }
3593 }
897b77d6 3594}
6b275368 3595
3596/* A subroutine of gimplify_parameters, invoked via walk_tree.
3597 For all seen types, gimplify their sizes. */
3598
3599static tree
3600gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3601{
3602 tree t = *tp;
3603
3604 *walk_subtrees = 0;
3605 if (TYPE_P (t))
3606 {
3607 if (POINTER_TYPE_P (t))
3608 *walk_subtrees = 1;
bc97b18f 3609 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3610 && !TYPE_SIZES_GIMPLIFIED (t))
6b275368 3611 {
75a70cf9 3612 gimplify_type_sizes (t, (gimple_seq *) data);
6b275368 3613 *walk_subtrees = 1;
3614 }
3615 }
3616
3617 return NULL;
3618}
3619
3620/* Gimplify the parameter list for current_function_decl. This involves
3621 evaluating SAVE_EXPRs of variable sized parameters and generating code
75a70cf9 3622 to implement callee-copies reference parameters. Returns a sequence of
3623 statements to add to the beginning of the function. */
6b275368 3624
75a70cf9 3625gimple_seq
6b275368 3626gimplify_parameters (void)
3627{
3628 struct assign_parm_data_all all;
3e992c41 3629 tree parm;
75a70cf9 3630 gimple_seq stmts = NULL;
f1f41a6c 3631 vec<tree> fnargs;
3e992c41 3632 unsigned i;
6b275368 3633
3634 assign_parms_initialize_all (&all);
3635 fnargs = assign_parms_augmented_arg_list (&all);
3636
f1f41a6c 3637 FOR_EACH_VEC_ELT (fnargs, i, parm)
6b275368 3638 {
3639 struct assign_parm_data_one data;
3640
3641 /* Extract the type of PARM; adjust it according to ABI. */
3642 assign_parm_find_data_types (&all, parm, &data);
3643
3644 /* Early out for errors and void parameters. */
3645 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3646 continue;
3647
3648 /* Update info on where next arg arrives in registers. */
39cba157 3649 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
f387af4f 3650 data.passed_type, data.named_arg);
6b275368 3651
3652 /* ??? Once upon a time variable_size stuffed parameter list
3653 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3654 turned out to be less than manageable in the gimple world.
3655 Now we have to hunt them down ourselves. */
3656 walk_tree_without_duplicates (&data.passed_type,
3657 gimplify_parm_type, &stmts);
3658
4852b829 3659 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
6b275368 3660 {
3661 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3662 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3663 }
3664
3665 if (data.passed_pointer)
3666 {
3667 tree type = TREE_TYPE (data.passed_type);
39cba157 3668 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
6b275368 3669 type, data.named_arg))
3670 {
3671 tree local, t;
3672
4852b829 3673 /* For constant-sized objects, this is trivial; for
6b275368 3674 variable-sized objects, we have to play games. */
4852b829 3675 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3676 && !(flag_stack_check == GENERIC_STACK_CHECK
3677 && compare_tree_int (DECL_SIZE_UNIT (parm),
3678 STACK_CHECK_MAX_VAR_SIZE) > 0))
6b275368 3679 {
63e6b59a 3680 local = create_tmp_var (type, get_name (parm));
6b275368 3681 DECL_IGNORED_P (local) = 0;
ab349ddd 3682 /* If PARM was addressable, move that flag over
3683 to the local copy, as its address will be taken,
5a715a82 3684 not the PARMs. Keep the parms address taken
3685 as we'll query that flag during gimplification. */
ab349ddd 3686 if (TREE_ADDRESSABLE (parm))
5a715a82 3687 TREE_ADDRESSABLE (local) = 1;
63e6b59a 3688 else if (TREE_CODE (type) == COMPLEX_TYPE
3689 || TREE_CODE (type) == VECTOR_TYPE)
3690 DECL_GIMPLE_REG_P (local) = 1;
6b275368 3691 }
3692 else
3693 {
c2f47e15 3694 tree ptr_type, addr;
6b275368 3695
3696 ptr_type = build_pointer_type (type);
599548a7 3697 addr = create_tmp_reg (ptr_type, get_name (parm));
6b275368 3698 DECL_IGNORED_P (addr) = 0;
3699 local = build_fold_indirect_ref (addr);
3700
b9a16870 3701 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
4f986f8b 3702 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
581bf1c2 3703 size_int (DECL_ALIGN (parm)));
3704
990495a7 3705 /* The call has been built for a variable-sized object. */
a882d754 3706 CALL_ALLOCA_FOR_VAR_P (t) = 1;
6b275368 3707 t = fold_convert (ptr_type, t);
75a70cf9 3708 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
6b275368 3709 gimplify_and_add (t, &stmts);
3710 }
3711
75a70cf9 3712 gimplify_assign (local, parm, &stmts);
6b275368 3713
75fa4f82 3714 SET_DECL_VALUE_EXPR (parm, local);
3715 DECL_HAS_VALUE_EXPR_P (parm) = 1;
6b275368 3716 }
3717 }
3718 }
3719
f1f41a6c 3720 fnargs.release ();
3e992c41 3721
6b275368 3722 return stmts;
3723}
96b1130a 3724\f
897b77d6 3725/* Compute the size and offset from the start of the stacked arguments for a
3726 parm passed in mode PASSED_MODE and with type TYPE.
3727
3728 INITIAL_OFFSET_PTR points to the current offset into the stacked
3729 arguments.
3730
241399f6 3731 The starting offset and size for this parm are returned in
3732 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3733 nonzero, the offset is that of stack slot, which is returned in
3734 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3735 padding required from the initial offset ptr to the stack slot.
897b77d6 3736
6ef828f9 3737 IN_REGS is nonzero if the argument will be passed in registers. It will
897b77d6 3738 never be set if REG_PARM_STACK_SPACE is not defined.
3739
2e090bf6 3740 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3741 for arguments which are passed in registers.
3742
897b77d6 3743 FNDECL is the function in which the argument was defined.
3744
3745 There are two types of rounding that are done. The first, controlled by
bd99ba64 3746 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3747 argument list to be aligned to the specific boundary (in bits). This
3748 rounding affects the initial and starting offsets, but not the argument
3749 size.
897b77d6 3750
3751 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3752 optionally rounds the size of the parm to PARM_BOUNDARY. The
3753 initial offset is not affected by this rounding, while the size always
3754 is and the starting offset may be. */
3755
241399f6 3756/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3757 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
897b77d6 3758 callers pass in the total size of args so far as
241399f6 3759 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
897b77d6 3760
897b77d6 3761void
3754d046 3762locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
2e090bf6 3763 int reg_parm_stack_space, int partial,
3764 tree fndecl ATTRIBUTE_UNUSED,
de1b648b 3765 struct args_size *initial_offset_ptr,
3766 struct locate_and_pad_arg_data *locate)
897b77d6 3767{
241399f6 3768 tree sizetree;
3769 enum direction where_pad;
17bfc2bc 3770 unsigned int boundary, round_boundary;
241399f6 3771 int part_size_in_regs;
897b77d6 3772
897b77d6 3773 /* If we have found a stack parm before we reach the end of the
3774 area reserved for registers, skip that area. */
3775 if (! in_regs)
3776 {
897b77d6 3777 if (reg_parm_stack_space > 0)
3778 {
3779 if (initial_offset_ptr->var)
3780 {
3781 initial_offset_ptr->var
3782 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
902de8ed 3783 ssize_int (reg_parm_stack_space));
897b77d6 3784 initial_offset_ptr->constant = 0;
3785 }
3786 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3787 initial_offset_ptr->constant = reg_parm_stack_space;
3788 }
3789 }
897b77d6 3790
f054eb3c 3791 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
241399f6 3792
3793 sizetree
3794 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3795 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
bd99ba64 3796 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
17bfc2bc 3797 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
3798 type);
5f4cd670 3799 locate->where_pad = where_pad;
27a7a23a 3800
3801 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
3802 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
3803 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
3804
c5dc0c32 3805 locate->boundary = boundary;
897b77d6 3806
27a7a23a 3807 if (SUPPORTS_STACK_ALIGNMENT)
3808 {
3809 /* stack_alignment_estimated can't change after stack has been
3810 realigned. */
3811 if (crtl->stack_alignment_estimated < boundary)
3812 {
3813 if (!crtl->stack_realign_processed)
3814 crtl->stack_alignment_estimated = boundary;
3815 else
3816 {
3817 /* If stack is realigned and stack alignment value
3818 hasn't been finalized, it is OK not to increase
3819 stack_alignment_estimated. The bigger alignment
3820 requirement is recorded in stack_alignment_needed
3821 below. */
3822 gcc_assert (!crtl->stack_realign_finalized
3823 && crtl->stack_realign_needed);
3824 }
3825 }
3826 }
3827
90ab54b2 3828 /* Remember if the outgoing parameter requires extra alignment on the
3829 calling function side. */
edb7afe8 3830 if (crtl->stack_alignment_needed < boundary)
3831 crtl->stack_alignment_needed = boundary;
27a7a23a 3832 if (crtl->preferred_stack_boundary < boundary)
3833 crtl->preferred_stack_boundary = boundary;
90ab54b2 3834
897b77d6 3835#ifdef ARGS_GROW_DOWNWARD
241399f6 3836 locate->slot_offset.constant = -initial_offset_ptr->constant;
897b77d6 3837 if (initial_offset_ptr->var)
241399f6 3838 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3839 initial_offset_ptr->var);
ac965869 3840
241399f6 3841 {
3842 tree s2 = sizetree;
3843 if (where_pad != none
cd4547bf 3844 && (!tree_fits_uhwi_p (sizetree)
6a0712d4 3845 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
17bfc2bc 3846 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
241399f6 3847 SUB_PARM_SIZE (locate->slot_offset, s2);
3848 }
3849
3850 locate->slot_offset.constant += part_size_in_regs;
ac965869 3851
2e090bf6 3852 if (!in_regs || reg_parm_stack_space > 0)
241399f6 3853 pad_to_arg_alignment (&locate->slot_offset, boundary,
3854 &locate->alignment_pad);
ac965869 3855
241399f6 3856 locate->size.constant = (-initial_offset_ptr->constant
3857 - locate->slot_offset.constant);
897b77d6 3858 if (initial_offset_ptr->var)
241399f6 3859 locate->size.var = size_binop (MINUS_EXPR,
3860 size_binop (MINUS_EXPR,
3861 ssize_int (0),
3862 initial_offset_ptr->var),
3863 locate->slot_offset.var);
3864
3865 /* Pad_below needs the pre-rounded size to know how much to pad
3866 below. */
3867 locate->offset = locate->slot_offset;
3868 if (where_pad == downward)
3869 pad_below (&locate->offset, passed_mode, sizetree);
ac965869 3870
897b77d6 3871#else /* !ARGS_GROW_DOWNWARD */
2e090bf6 3872 if (!in_regs || reg_parm_stack_space > 0)
241399f6 3873 pad_to_arg_alignment (initial_offset_ptr, boundary,
3874 &locate->alignment_pad);
3875 locate->slot_offset = *initial_offset_ptr;
897b77d6 3876
3877#ifdef PUSH_ROUNDING
3878 if (passed_mode != BLKmode)
3879 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3880#endif
3881
82f48b55 3882 /* Pad_below needs the pre-rounded size to know how much to pad below
3883 so this must be done before rounding up. */
241399f6 3884 locate->offset = locate->slot_offset;
3885 if (where_pad == downward)
3886 pad_below (&locate->offset, passed_mode, sizetree);
82f48b55 3887
897b77d6 3888 if (where_pad != none
cd4547bf 3889 && (!tree_fits_uhwi_p (sizetree)
6a0712d4 3890 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
17bfc2bc 3891 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
897b77d6 3892
241399f6 3893 ADD_PARM_SIZE (locate->size, sizetree);
3894
3895 locate->size.constant -= part_size_in_regs;
897b77d6 3896#endif /* ARGS_GROW_DOWNWARD */
b704e80f 3897
3898#ifdef FUNCTION_ARG_OFFSET
3899 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
3900#endif
897b77d6 3901}
3902
ba585215 3903/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3904 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3905
897b77d6 3906static void
de1b648b 3907pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3908 struct args_size *alignment_pad)
897b77d6 3909{
ef2c4a29 3910 tree save_var = NULL_TREE;
3911 HOST_WIDE_INT save_constant = 0;
5cf5baa2 3912 int boundary_in_bytes = boundary / BITS_PER_UNIT;
891a1732 3913 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3914
3915#ifdef SPARC_STACK_BOUNDARY_HACK
1aecae7f 3916 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3917 the real alignment of %sp. However, when it does this, the
3918 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
891a1732 3919 if (SPARC_STACK_BOUNDARY_HACK)
3920 sp_offset = 0;
3921#endif
9d855d2f 3922
b3f75873 3923 if (boundary > PARM_BOUNDARY)
9d855d2f 3924 {
3925 save_var = offset_ptr->var;
3926 save_constant = offset_ptr->constant;
3927 }
3928
3929 alignment_pad->var = NULL_TREE;
3930 alignment_pad->constant = 0;
9d855d2f 3931
897b77d6 3932 if (boundary > BITS_PER_UNIT)
3933 {
3934 if (offset_ptr->var)
3935 {
891a1732 3936 tree sp_offset_tree = ssize_int (sp_offset);
3937 tree offset = size_binop (PLUS_EXPR,
3938 ARGS_SIZE_TREE (*offset_ptr),
3939 sp_offset_tree);
897b77d6 3940#ifdef ARGS_GROW_DOWNWARD
891a1732 3941 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
897b77d6 3942#else
891a1732 3943 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
897b77d6 3944#endif
891a1732 3945
3946 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
241399f6 3947 /* ARGS_SIZE_TREE includes constant term. */
3948 offset_ptr->constant = 0;
b3f75873 3949 if (boundary > PARM_BOUNDARY)
d3371fcd 3950 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
902de8ed 3951 save_var);
897b77d6 3952 }
3953 else
06ebc183 3954 {
891a1732 3955 offset_ptr->constant = -sp_offset +
897b77d6 3956#ifdef ARGS_GROW_DOWNWARD
891a1732 3957 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
897b77d6 3958#else
891a1732 3959 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
897b77d6 3960#endif
b3f75873 3961 if (boundary > PARM_BOUNDARY)
06ebc183 3962 alignment_pad->constant = offset_ptr->constant - save_constant;
3963 }
897b77d6 3964 }
3965}
3966
3967static void
3754d046 3968pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
897b77d6 3969{
3970 if (passed_mode != BLKmode)
3971 {
3972 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3973 offset_ptr->constant
3974 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3975 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3976 - GET_MODE_SIZE (passed_mode));
3977 }
3978 else
3979 {
3980 if (TREE_CODE (sizetree) != INTEGER_CST
3981 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3982 {
3983 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3984 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3985 /* Add it in. */
3986 ADD_PARM_SIZE (*offset_ptr, s2);
3987 SUB_PARM_SIZE (*offset_ptr, sizetree);
3988 }
3989 }
3990}
897b77d6 3991\f
897b77d6 3992
3072d30e 3993/* True if register REGNO was alive at a place where `setjmp' was
3994 called and was set more than once or is an argument. Such regs may
3995 be clobbered by `longjmp'. */
3996
3997static bool
3998regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3999{
4000 /* There appear to be cases where some local vars never reach the
4001 backend but have bogus regnos. */
4002 if (regno >= max_reg_num ())
4003 return false;
4004
4005 return ((REG_N_SETS (regno) > 1
34154e27 4006 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4007 regno))
3072d30e 4008 && REGNO_REG_SET_P (setjmp_crosses, regno));
4009}
4010
4011/* Walk the tree of blocks describing the binding levels within a
4012 function and warn about variables the might be killed by setjmp or
4013 vfork. This is done after calling flow_analysis before register
4014 allocation since that will clobber the pseudo-regs to hard
4015 regs. */
4016
4017static void
4018setjmp_vars_warning (bitmap setjmp_crosses, tree block)
897b77d6 4019{
19cb6b50 4020 tree decl, sub;
4ee9c684 4021
1767a056 4022 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
897b77d6 4023 {
4ee9c684 4024 if (TREE_CODE (decl) == VAR_DECL
49bf95f0 4025 && DECL_RTL_SET_P (decl)
8ad4c111 4026 && REG_P (DECL_RTL (decl))
3072d30e 4027 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
48e1416a 4028 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
0d438110 4029 " %<longjmp%> or %<vfork%>", decl);
897b77d6 4030 }
4ee9c684 4031
93110716 4032 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3072d30e 4033 setjmp_vars_warning (setjmp_crosses, sub);
897b77d6 4034}
4035
4ee9c684 4036/* Do the appropriate part of setjmp_vars_warning
897b77d6 4037 but for arguments instead of local variables. */
4038
3072d30e 4039static void
4040setjmp_args_warning (bitmap setjmp_crosses)
897b77d6 4041{
19cb6b50 4042 tree decl;
897b77d6 4043 for (decl = DECL_ARGUMENTS (current_function_decl);
1767a056 4044 decl; decl = DECL_CHAIN (decl))
897b77d6 4045 if (DECL_RTL (decl) != 0
8ad4c111 4046 && REG_P (DECL_RTL (decl))
3072d30e 4047 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
48e1416a 4048 warning (OPT_Wclobbered,
0d438110 4049 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3cf8b391 4050 decl);
897b77d6 4051}
4052
3072d30e 4053/* Generate warning messages for variables live across setjmp. */
4054
48e1416a 4055void
3072d30e 4056generate_setjmp_warnings (void)
4057{
4058 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4059
a28770e1 4060 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
3072d30e 4061 || bitmap_empty_p (setjmp_crosses))
4062 return;
4063
4064 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4065 setjmp_args_warning (setjmp_crosses);
4066}
4067
897b77d6 4068\f
d6263c49 4069/* Reverse the order of elements in the fragment chain T of blocks,
665611e7 4070 and return the new head of the chain (old last element).
4071 In addition to that clear BLOCK_SAME_RANGE flags when needed
4072 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4073 its super fragment origin. */
d6263c49 4074
4075static tree
4076block_fragments_nreverse (tree t)
4077{
665611e7 4078 tree prev = 0, block, next, prev_super = 0;
4079 tree super = BLOCK_SUPERCONTEXT (t);
4080 if (BLOCK_FRAGMENT_ORIGIN (super))
4081 super = BLOCK_FRAGMENT_ORIGIN (super);
d6263c49 4082 for (block = t; block; block = next)
4083 {
4084 next = BLOCK_FRAGMENT_CHAIN (block);
4085 BLOCK_FRAGMENT_CHAIN (block) = prev;
665611e7 4086 if ((prev && !BLOCK_SAME_RANGE (prev))
4087 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4088 != prev_super))
4089 BLOCK_SAME_RANGE (block) = 0;
4090 prev_super = BLOCK_SUPERCONTEXT (block);
4091 BLOCK_SUPERCONTEXT (block) = super;
d6263c49 4092 prev = block;
4093 }
665611e7 4094 t = BLOCK_FRAGMENT_ORIGIN (t);
4095 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4096 != prev_super)
4097 BLOCK_SAME_RANGE (t) = 0;
4098 BLOCK_SUPERCONTEXT (t) = super;
d6263c49 4099 return prev;
4100}
4101
4102/* Reverse the order of elements in the chain T of blocks,
4103 and return the new head of the chain (old last element).
4104 Also do the same on subblocks and reverse the order of elements
4105 in BLOCK_FRAGMENT_CHAIN as well. */
4106
4107static tree
4108blocks_nreverse_all (tree t)
4109{
4110 tree prev = 0, block, next;
4111 for (block = t; block; block = next)
4112 {
4113 next = BLOCK_CHAIN (block);
4114 BLOCK_CHAIN (block) = prev;
d6263c49 4115 if (BLOCK_FRAGMENT_CHAIN (block)
4116 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
665611e7 4117 {
4118 BLOCK_FRAGMENT_CHAIN (block)
4119 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4120 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4121 BLOCK_SAME_RANGE (block) = 0;
4122 }
4123 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
d6263c49 4124 prev = block;
4125 }
4126 return prev;
4127}
4128
4129
a36145ca 4130/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4131 and create duplicate blocks. */
4132/* ??? Need an option to either create block fragments or to create
4133 abstract origin duplicates of a source block. It really depends
4134 on what optimization has been performed. */
11b373ff 4135
f1ab82be 4136void
de1b648b 4137reorder_blocks (void)
11b373ff 4138{
f1ab82be 4139 tree block = DECL_INITIAL (current_function_decl);
11b373ff 4140
0c45344e 4141 if (block == NULL_TREE)
f1ab82be 4142 return;
9d819987 4143
4997014d 4144 auto_vec<tree, 10> block_stack;
5846cb0f 4145
a36145ca 4146 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4ee9c684 4147 clear_block_marks (block);
a36145ca 4148
f1ab82be 4149 /* Prune the old trees away, so that they don't get in the way. */
4150 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4151 BLOCK_CHAIN (block) = NULL_TREE;
9d819987 4152
a36145ca 4153 /* Recreate the block tree from the note nesting. */
f1ab82be 4154 reorder_blocks_1 (get_insns (), block, &block_stack);
d6263c49 4155 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
11b373ff 4156}
4157
a36145ca 4158/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
60ecc450 4159
4ee9c684 4160void
4161clear_block_marks (tree block)
5e960ca9 4162{
a36145ca 4163 while (block)
5e960ca9 4164 {
a36145ca 4165 TREE_ASM_WRITTEN (block) = 0;
4ee9c684 4166 clear_block_marks (BLOCK_SUBBLOCKS (block));
a36145ca 4167 block = BLOCK_CHAIN (block);
5e960ca9 4168 }
4169}
4170
60ecc450 4171static void
8bb2625b 4172reorder_blocks_1 (rtx_insn *insns, tree current_block,
4173 vec<tree> *p_block_stack)
60ecc450 4174{
8bb2625b 4175 rtx_insn *insn;
665611e7 4176 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
60ecc450 4177
4178 for (insn = insns; insn; insn = NEXT_INSN (insn))
4179 {
6d7dc5b9 4180 if (NOTE_P (insn))
60ecc450 4181 {
ad4583d9 4182 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
60ecc450 4183 {
4184 tree block = NOTE_BLOCK (insn);
70392493 4185 tree origin;
4186
d6263c49 4187 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4188 origin = block;
a36145ca 4189
665611e7 4190 if (prev_end)
4191 BLOCK_SAME_RANGE (prev_end) = 0;
4192 prev_end = NULL_TREE;
4193
a36145ca 4194 /* If we have seen this block before, that means it now
4195 spans multiple address regions. Create a new fragment. */
60ecc450 4196 if (TREE_ASM_WRITTEN (block))
4197 {
a36145ca 4198 tree new_block = copy_node (block);
a36145ca 4199
665611e7 4200 BLOCK_SAME_RANGE (new_block) = 0;
a36145ca 4201 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4202 BLOCK_FRAGMENT_CHAIN (new_block)
4203 = BLOCK_FRAGMENT_CHAIN (origin);
4204 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4205
4206 NOTE_BLOCK (insn) = new_block;
4207 block = new_block;
60ecc450 4208 }
a36145ca 4209
665611e7 4210 if (prev_beg == current_block && prev_beg)
4211 BLOCK_SAME_RANGE (block) = 1;
4212
4213 prev_beg = origin;
4214
60ecc450 4215 BLOCK_SUBBLOCKS (block) = 0;
4216 TREE_ASM_WRITTEN (block) = 1;
31ddae9f 4217 /* When there's only one block for the entire function,
4218 current_block == block and we mustn't do this, it
4219 will cause infinite recursion. */
4220 if (block != current_block)
4221 {
665611e7 4222 tree super;
70392493 4223 if (block != origin)
665611e7 4224 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4225 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4226 (origin))
4227 == current_block);
f1f41a6c 4228 if (p_block_stack->is_empty ())
665611e7 4229 super = current_block;
4230 else
4231 {
f1f41a6c 4232 super = p_block_stack->last ();
665611e7 4233 gcc_assert (super == current_block
4234 || BLOCK_FRAGMENT_ORIGIN (super)
4235 == current_block);
4236 }
4237 BLOCK_SUPERCONTEXT (block) = super;
31ddae9f 4238 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4239 BLOCK_SUBBLOCKS (current_block) = block;
70392493 4240 current_block = origin;
31ddae9f 4241 }
f1f41a6c 4242 p_block_stack->safe_push (block);
60ecc450 4243 }
ad4583d9 4244 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
60ecc450 4245 {
f1f41a6c 4246 NOTE_BLOCK (insn) = p_block_stack->pop ();
60ecc450 4247 current_block = BLOCK_SUPERCONTEXT (current_block);
665611e7 4248 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4249 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4250 prev_beg = NULL_TREE;
4251 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4252 ? NOTE_BLOCK (insn) : NULL_TREE;
60ecc450 4253 }
4254 }
665611e7 4255 else
4256 {
4257 prev_beg = NULL_TREE;
4258 if (prev_end)
4259 BLOCK_SAME_RANGE (prev_end) = 0;
4260 prev_end = NULL_TREE;
4261 }
60ecc450 4262 }
4263}
4264
11b373ff 4265/* Reverse the order of elements in the chain T of blocks,
4266 and return the new head of the chain (old last element). */
4267
4ee9c684 4268tree
de1b648b 4269blocks_nreverse (tree t)
11b373ff 4270{
d6263c49 4271 tree prev = 0, block, next;
4272 for (block = t; block; block = next)
11b373ff 4273 {
d6263c49 4274 next = BLOCK_CHAIN (block);
4275 BLOCK_CHAIN (block) = prev;
4276 prev = block;
11b373ff 4277 }
4278 return prev;
4279}
4280
2149d019 4281/* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4282 by modifying the last node in chain 1 to point to chain 2. */
4283
4284tree
4285block_chainon (tree op1, tree op2)
4286{
4287 tree t1;
4288
4289 if (!op1)
4290 return op2;
4291 if (!op2)
4292 return op1;
4293
4294 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4295 continue;
4296 BLOCK_CHAIN (t1) = op2;
4297
4298#ifdef ENABLE_TREE_CHECKING
4299 {
4300 tree t2;
4301 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4302 gcc_assert (t2 != t1);
4303 }
4304#endif
4305
4306 return op1;
4307}
4308
5846cb0f 4309/* Count the subblocks of the list starting with BLOCK. If VECTOR is
4310 non-NULL, list them all into VECTOR, in a depth-first preorder
4311 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
396bfb69 4312 blocks. */
11b373ff 4313
4314static int
de1b648b 4315all_blocks (tree block, tree *vector)
11b373ff 4316{
396bfb69 4317 int n_blocks = 0;
4318
874a9b8d 4319 while (block)
4320 {
4321 TREE_ASM_WRITTEN (block) = 0;
396bfb69 4322
874a9b8d 4323 /* Record this block. */
4324 if (vector)
4325 vector[n_blocks] = block;
396bfb69 4326
874a9b8d 4327 ++n_blocks;
06ebc183 4328
874a9b8d 4329 /* Record the subblocks, and their subblocks... */
4330 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4331 vector ? vector + n_blocks : 0);
4332 block = BLOCK_CHAIN (block);
4333 }
11b373ff 4334
4335 return n_blocks;
4336}
5846cb0f 4337
4338/* Return a vector containing all the blocks rooted at BLOCK. The
4339 number of elements in the vector is stored in N_BLOCKS_P. The
4340 vector is dynamically allocated; it is the caller's responsibility
4341 to call `free' on the pointer returned. */
06ebc183 4342
5846cb0f 4343static tree *
de1b648b 4344get_block_vector (tree block, int *n_blocks_p)
5846cb0f 4345{
4346 tree *block_vector;
4347
4348 *n_blocks_p = all_blocks (block, NULL);
4c36ffe6 4349 block_vector = XNEWVEC (tree, *n_blocks_p);
5846cb0f 4350 all_blocks (block, block_vector);
4351
4352 return block_vector;
4353}
4354
177c2ebc 4355static GTY(()) int next_block_index = 2;
5846cb0f 4356
4357/* Set BLOCK_NUMBER for all the blocks in FN. */
4358
4359void
de1b648b 4360number_blocks (tree fn)
5846cb0f 4361{
4362 int i;
4363 int n_blocks;
4364 tree *block_vector;
4365
4366 /* For SDB and XCOFF debugging output, we start numbering the blocks
4367 from 1 within each function, rather than keeping a running
4368 count. */
4369#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
0eb76379 4370 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4371 next_block_index = 1;
5846cb0f 4372#endif
4373
4374 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4375
4376 /* The top-level BLOCK isn't numbered at all. */
4377 for (i = 1; i < n_blocks; ++i)
4378 /* We number the blocks from two. */
4379 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4380
4381 free (block_vector);
4382
4383 return;
4384}
baa8dec7 4385
4386/* If VAR is present in a subblock of BLOCK, return the subblock. */
4387
4b987fac 4388DEBUG_FUNCTION tree
de1b648b 4389debug_find_var_in_block_tree (tree var, tree block)
baa8dec7 4390{
4391 tree t;
4392
4393 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4394 if (t == var)
4395 return block;
4396
4397 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4398 {
4399 tree ret = debug_find_var_in_block_tree (var, t);
4400 if (ret)
4401 return ret;
4402 }
4403
4404 return NULL_TREE;
4405}
11b373ff 4406\f
87d4aa85 4407/* Keep track of whether we're in a dummy function context. If we are,
4408 we don't want to invoke the set_current_function hook, because we'll
4409 get into trouble if the hook calls target_reinit () recursively or
4410 when the initial initialization is not yet complete. */
4411
4412static bool in_dummy_function;
4413
46f8e3b0 4414/* Invoke the target hook when setting cfun. Update the optimization options
4415 if the function uses different options than the default. */
87d4aa85 4416
4417static void
4418invoke_set_current_function_hook (tree fndecl)
4419{
4420 if (!in_dummy_function)
46f8e3b0 4421 {
4422 tree opts = ((fndecl)
4423 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4424 : optimization_default_node);
4425
4426 if (!opts)
4427 opts = optimization_default_node;
4428
4429 /* Change optimization options if needed. */
4430 if (optimization_current_node != opts)
4431 {
4432 optimization_current_node = opts;
2c5d2e39 4433 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
46f8e3b0 4434 }
4435
6eaab580 4436 targetm.set_current_function (fndecl);
9d3fa937 4437 this_fn_optabs = this_target_optabs;
08c7d04b 4438
9d3fa937 4439 if (opts != optimization_default_node)
08c7d04b 4440 {
9d3fa937 4441 init_tree_optimization_optabs (opts);
4442 if (TREE_OPTIMIZATION_OPTABS (opts))
4443 this_fn_optabs = (struct target_optabs *)
4444 TREE_OPTIMIZATION_OPTABS (opts);
08c7d04b 4445 }
46f8e3b0 4446 }
87d4aa85 4447}
4448
4449/* cfun should never be set directly; use this function. */
4450
4451void
4452set_cfun (struct function *new_cfun)
4453{
4454 if (cfun != new_cfun)
4455 {
4456 cfun = new_cfun;
4457 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4458 }
4459}
4460
87d4aa85 4461/* Initialized with NOGC, making this poisonous to the garbage collector. */
4462
f1f41a6c 4463static vec<function_p> cfun_stack;
87d4aa85 4464
9078126c 4465/* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4466 current_function_decl accordingly. */
87d4aa85 4467
4468void
4469push_cfun (struct function *new_cfun)
4470{
9078126c 4471 gcc_assert ((!cfun && !current_function_decl)
4472 || (cfun && current_function_decl == cfun->decl));
f1f41a6c 4473 cfun_stack.safe_push (cfun);
9078126c 4474 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
87d4aa85 4475 set_cfun (new_cfun);
4476}
4477
9078126c 4478/* Pop cfun from the stack. Also set current_function_decl accordingly. */
87d4aa85 4479
4480void
4481pop_cfun (void)
4482{
f1f41a6c 4483 struct function *new_cfun = cfun_stack.pop ();
9078126c 4484 /* When in_dummy_function, we do have a cfun but current_function_decl is
4485 NULL. We also allow pushing NULL cfun and subsequently changing
4486 current_function_decl to something else and have both restored by
4487 pop_cfun. */
4488 gcc_checking_assert (in_dummy_function
4489 || !cfun
4490 || current_function_decl == cfun->decl);
3c9dcda1 4491 set_cfun (new_cfun);
9078126c 4492 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
87d4aa85 4493}
a3adcd4a 4494
4495/* Return value of funcdef and increase it. */
4496int
48e1416a 4497get_next_funcdef_no (void)
a3adcd4a 4498{
4499 return funcdef_no++;
4500}
4501
1ad3e14c 4502/* Return value of funcdef. */
4503int
4504get_last_funcdef_no (void)
4505{
4506 return funcdef_no;
4507}
4508
ecc82929 4509/* Allocate a function structure for FNDECL and set its contents
87d4aa85 4510 to the defaults. Set cfun to the newly-allocated object.
4511 Some of the helper functions invoked during initialization assume
4512 that cfun has already been set. Therefore, assign the new object
4513 directly into cfun and invoke the back end hook explicitly at the
4514 very end, rather than initializing a temporary and calling set_cfun
4515 on it.
80f2ef47 4516
4517 ABSTRACT_P is true if this is a function that will never be seen by
4518 the middle-end. Such functions are front-end concepts (like C++
4519 function templates) that do not correspond directly to functions
4520 placed in object files. */
942cc45f 4521
ecc82929 4522void
80f2ef47 4523allocate_struct_function (tree fndecl, bool abstract_p)
897b77d6 4524{
4ee9c684 4525 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
897b77d6 4526
25a27413 4527 cfun = ggc_cleared_alloc<function> ();
304c5bf1 4528
ecc82929 4529 init_eh_for_function ();
897b77d6 4530
ecc82929 4531 if (init_machine_status)
4532 cfun->machine = (*init_machine_status) ();
26df1c5e 4533
d3feb168 4534#ifdef OVERRIDE_ABI_FORMAT
4535 OVERRIDE_ABI_FORMAT (fndecl);
4536#endif
4537
22c61100 4538 if (fndecl != NULL_TREE)
ecc82929 4539 {
87d4aa85 4540 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4541 cfun->decl = fndecl;
285aabd1 4542 current_function_funcdef_no = get_next_funcdef_no ();
a956a7a6 4543 }
4544
4545 invoke_set_current_function_hook (fndecl);
87d4aa85 4546
a956a7a6 4547 if (fndecl != NULL_TREE)
4548 {
4549 tree result = DECL_RESULT (fndecl);
80f2ef47 4550 if (!abstract_p && aggregate_value_p (result, fndecl))
87d4aa85 4551 {
ecc82929 4552#ifdef PCC_STATIC_STRUCT_RETURN
18d50ae6 4553 cfun->returns_pcc_struct = 1;
ecc82929 4554#endif
18d50ae6 4555 cfun->returns_struct = 1;
87d4aa85 4556 }
4557
257d99c3 4558 cfun->stdarg = stdarg_p (fntype);
48e1416a 4559
87d4aa85 4560 /* Assume all registers in stdarg functions need to be saved. */
4561 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4562 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
cbeb677e 4563
4564 /* ??? This could be set on a per-function basis by the front-end
4565 but is this worth the hassle? */
4566 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
c4c3cd53 4567 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4f6f9d05 4568
4569 if (!profile_flag && !flag_instrument_function_entry_exit)
4570 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
ecc82929 4571 }
87d4aa85 4572}
4573
4574/* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4575 instead of just setting it. */
a6c787e5 4576
87d4aa85 4577void
4578push_struct_function (tree fndecl)
4579{
9078126c 4580 /* When in_dummy_function we might be in the middle of a pop_cfun and
4581 current_function_decl and cfun may not match. */
4582 gcc_assert (in_dummy_function
4583 || (!cfun && !current_function_decl)
4584 || (cfun && current_function_decl == cfun->decl));
f1f41a6c 4585 cfun_stack.safe_push (cfun);
9078126c 4586 current_function_decl = fndecl;
80f2ef47 4587 allocate_struct_function (fndecl, false);
ecc82929 4588}
897b77d6 4589
cbeb677e 4590/* Reset crtl and other non-struct-function variables to defaults as
f024691d 4591 appropriate for emitting rtl at the start of a function. */
897b77d6 4592
ecc82929 4593static void
87d4aa85 4594prepare_function_start (void)
ecc82929 4595{
fd6ffb7c 4596 gcc_assert (!crtl->emit.x_last_insn);
fef299ce 4597 init_temp_slots ();
957211e4 4598 init_emit ();
b079a207 4599 init_varasm_status ();
957211e4 4600 init_expr ();
7dfb44a0 4601 default_rtl_profile ();
897b77d6 4602
8c0dd614 4603 if (flag_stack_usage_info)
990495a7 4604 {
25a27413 4605 cfun->su = ggc_cleared_alloc<stack_usage> ();
990495a7 4606 cfun->su->static_stack_size = -1;
4607 }
4608
ecc82929 4609 cse_not_expected = ! optimize;
897b77d6 4610
ecc82929 4611 /* Caller save not needed yet. */
4612 caller_save_needed = 0;
897b77d6 4613
ecc82929 4614 /* We haven't done register allocation yet. */
4615 reg_renumber = 0;
897b77d6 4616
304c5bf1 4617 /* Indicate that we have not instantiated virtual registers yet. */
4618 virtuals_instantiated = 0;
4619
316bc009 4620 /* Indicate that we want CONCATs now. */
4621 generating_concat_p = 1;
4622
304c5bf1 4623 /* Indicate we have no need of a frame pointer yet. */
4624 frame_pointer_needed = 0;
304c5bf1 4625}
4626
4627/* Initialize the rtl expansion mechanism so that we can do simple things
4628 like generate sequences. This is used to provide a context during global
87d4aa85 4629 initialization of some passes. You must call expand_dummy_function_end
4630 to exit this context. */
4631
304c5bf1 4632void
de1b648b 4633init_dummy_function_start (void)
304c5bf1 4634{
87d4aa85 4635 gcc_assert (!in_dummy_function);
4636 in_dummy_function = true;
4637 push_struct_function (NULL_TREE);
4638 prepare_function_start ();
304c5bf1 4639}
4640
4641/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4642 and initialize static variables for generating RTL for the statements
4643 of the function. */
4644
4645void
de1b648b 4646init_function_start (tree subr)
304c5bf1 4647{
87d4aa85 4648 if (subr && DECL_STRUCT_FUNCTION (subr))
4649 set_cfun (DECL_STRUCT_FUNCTION (subr));
4650 else
80f2ef47 4651 allocate_struct_function (subr, false);
e0ff5636 4652
4653 /* Initialize backend, if needed. */
4654 initialize_rtl ();
4655
87d4aa85 4656 prepare_function_start ();
756dcd13 4657 decide_function_section (subr);
304c5bf1 4658
897b77d6 4659 /* Warn if this value is an aggregate type,
4660 regardless of which calling convention we are using for it. */
efb9d9ee 4661 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4662 warning (OPT_Waggregate_return, "function returns an aggregate");
0a893c29 4663}
a590d94d 4664
f1a0edff 4665/* Expand code to verify the stack_protect_guard. This is invoked at
4666 the end of a function to be protected. */
4667
4668#ifndef HAVE_stack_protect_test
bbd33557 4669# define HAVE_stack_protect_test 0
4670# define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
f1a0edff 4671#endif
4672
71d89928 4673void
f1a0edff 4674stack_protect_epilogue (void)
4675{
4676 tree guard_decl = targetm.stack_protect_guard ();
79f6a8ed 4677 rtx_code_label *label = gen_label_rtx ();
f1a0edff 4678 rtx x, y, tmp;
4679
d2a99f05 4680 x = expand_normal (crtl->stack_protect_guard);
4681 y = expand_normal (guard_decl);
f1a0edff 4682
4683 /* Allow the target to compare Y with X without leaking either into
4684 a register. */
c69ec07d 4685 switch ((int) (HAVE_stack_protect_test != 0))
f1a0edff 4686 {
4687 case 1:
419bcc46 4688 tmp = gen_stack_protect_test (x, y, label);
f1a0edff 4689 if (tmp)
4690 {
4691 emit_insn (tmp);
f1a0edff 4692 break;
4693 }
4694 /* FALLTHRU */
4695
4696 default:
4697 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4698 break;
4699 }
4700
4701 /* The noreturn predictor has been moved to the tree level. The rtl-level
4702 predictors estimate this branch about 20%, which isn't enough to get
4703 things moved out of line. Since this is the only extant case of adding
4704 a noreturn function at the rtl level, it doesn't seem worth doing ought
4705 except adding the prediction by hand. */
4706 tmp = get_last_insn ();
4707 if (JUMP_P (tmp))
ee5f6585 4708 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
f1a0edff 4709
5a13cc45 4710 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4711 free_temp_slots ();
f1a0edff 4712 emit_label (label);
4713}
4714\f
897b77d6 4715/* Start the RTL for a new function, and set variables used for
4716 emitting RTL.
4717 SUBR is the FUNCTION_DECL node.
4718 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4719 the function's parameters, which must be run at any return statement. */
4720
4721void
82aa4bd5 4722expand_function_start (tree subr)
897b77d6 4723{
897b77d6 4724 /* Make sure volatile mem refs aren't considered
4725 valid operands of arithmetic insns. */
4726 init_recog_no_volatile ();
4727
18d50ae6 4728 crtl->profile
7811c823 4729 = (profile_flag
4730 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4731
18d50ae6 4732 crtl->limit_stack
8f8ac140 4733 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4734
df4b504c 4735 /* Make the label for return statements to jump to. Do not special
4736 case machines with special return instructions -- they will be
4737 handled later during jump, ifcvt, or epilogue creation. */
897b77d6 4738 return_label = gen_label_rtx ();
897b77d6 4739
4740 /* Initialize rtx used to return the value. */
4741 /* Do this before assign_parms so that we copy the struct value address
4742 before any library calls that assign parms might generate. */
4743
4744 /* Decide whether to return the value in memory or in a register. */
45550790 4745 if (aggregate_value_p (DECL_RESULT (subr), subr))
897b77d6 4746 {
4747 /* Returning something that won't go in a register. */
19cb6b50 4748 rtx value_address = 0;
897b77d6 4749
4750#ifdef PCC_STATIC_STRUCT_RETURN
18d50ae6 4751 if (cfun->returns_pcc_struct)
897b77d6 4752 {
4753 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4754 value_address = assemble_static_space (size);
4755 }
4756 else
4757#endif
4758 {
d8c09ceb 4759 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
897b77d6 4760 /* Expect to be passed the address of a place to store the value.
4761 If it is passed as an argument, assign_parms will take care of
4762 it. */
45550790 4763 if (sv)
897b77d6 4764 {
4765 value_address = gen_reg_rtx (Pmode);
45550790 4766 emit_move_insn (value_address, sv);
897b77d6 4767 }
4768 }
4769 if (value_address)
ce88c7f0 4770 {
648c102e 4771 rtx x = value_address;
4772 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4773 {
4774 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4775 set_mem_attributes (x, DECL_RESULT (subr), 1);
4776 }
d05cd611 4777 SET_DECL_RTL (DECL_RESULT (subr), x);
ce88c7f0 4778 }
897b77d6 4779 }
4780 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4781 /* If return mode is void, this decl rtl should not be used. */
0e8e37b2 4782 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
7ab29b28 4783 else
7e8dfb30 4784 {
7ab29b28 4785 /* Compute the return values into a pseudo reg, which we will copy
4786 into the true return register after the cleanups are done. */
05d18e8b 4787 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4788 if (TYPE_MODE (return_type) != BLKmode
4789 && targetm.calls.return_in_msb (return_type))
4790 /* expand_function_end will insert the appropriate padding in
4791 this case. Use the return value's natural (unpadded) mode
4792 within the function proper. */
4793 SET_DECL_RTL (DECL_RESULT (subr),
4794 gen_reg_rtx (TYPE_MODE (return_type)));
92f708ec 4795 else
fdada98f 4796 {
05d18e8b 4797 /* In order to figure out what mode to use for the pseudo, we
4798 figure out what the mode of the eventual return register will
4799 actually be, and use that. */
46b3ff29 4800 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
05d18e8b 4801
4802 /* Structures that are returned in registers are not
4803 aggregate_value_p, so we may see a PARALLEL or a REG. */
4804 if (REG_P (hard_reg))
4805 SET_DECL_RTL (DECL_RESULT (subr),
4806 gen_reg_rtx (GET_MODE (hard_reg)));
4807 else
4808 {
4809 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4810 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4811 }
fdada98f 4812 }
7e8dfb30 4813
b566e2e5 4814 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4815 result to the real return register(s). */
4816 DECL_REGISTER (DECL_RESULT (subr)) = 1;
7e8dfb30 4817 }
897b77d6 4818
4819 /* Initialize rtx for parameters and local variables.
4820 In some cases this requires emitting insns. */
bffcf014 4821 assign_parms (subr);
897b77d6 4822
4ee9c684 4823 /* If function gets a static chain arg, store it. */
4824 if (cfun->static_chain_decl)
4825 {
3efaa21f 4826 tree parm = cfun->static_chain_decl;
82c7907c 4827 rtx local, chain, insn;
3efaa21f 4828
82c7907c 4829 local = gen_reg_rtx (Pmode);
4830 chain = targetm.calls.static_chain (current_function_decl, true);
4831
4832 set_decl_incoming_rtl (parm, chain, false);
3efaa21f 4833 SET_DECL_RTL (parm, local);
3efaa21f 4834 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4ee9c684 4835
82c7907c 4836 insn = emit_move_insn (local, chain);
4837
4838 /* Mark the register as eliminable, similar to parameters. */
4839 if (MEM_P (chain)
4840 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
41cf444a 4841 set_dst_reg_note (insn, REG_EQUIV, chain, local);
eac967db 4842
4843 /* If we aren't optimizing, save the static chain onto the stack. */
4844 if (!optimize)
4845 {
4846 tree saved_static_chain_decl
4847 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
4848 DECL_NAME (parm), TREE_TYPE (parm));
4849 rtx saved_static_chain_rtx
4850 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
4851 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
4852 emit_move_insn (saved_static_chain_rtx, chain);
4853 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
4854 DECL_HAS_VALUE_EXPR_P (parm) = 1;
4855 }
4ee9c684 4856 }
4857
4858 /* If the function receives a non-local goto, then store the
4859 bits we need to restore the frame pointer. */
4860 if (cfun->nonlocal_goto_save_area)
4861 {
4862 tree t_save;
4863 rtx r_save;
4864
1a105fae 4865 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
7843e4bc 4866 gcc_assert (DECL_RTL_SET_P (var));
4ee9c684 4867
21dc8b2b 4868 t_save = build4 (ARRAY_REF,
4869 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
b55f9493 4870 cfun->nonlocal_goto_save_area,
4871 integer_zero_node, NULL_TREE, NULL_TREE);
4ee9c684 4872 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
21dc8b2b 4873 gcc_assert (GET_MODE (r_save) == Pmode);
50c48f9b 4874
6a5dfe57 4875 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
4ee9c684 4876 update_nonlocal_goto_save_area ();
4877 }
50c48f9b 4878
897b77d6 4879 /* The following was moved from init_function_start.
4880 The move is supposed to make sdb output more accurate. */
4881 /* Indicate the beginning of the function body,
4882 as opposed to parm setup. */
31b97e8f 4883 emit_note (NOTE_INSN_FUNCTION_BEG);
897b77d6 4884
1edb3690 4885 gcc_assert (NOTE_P (get_last_insn ()));
4886
897b77d6 4887 parm_birth_insn = get_last_insn ();
4888
18d50ae6 4889 if (crtl->profile)
b8a21949 4890 {
b8a21949 4891#ifdef PROFILE_HOOK
4781f9b9 4892 PROFILE_HOOK (current_function_funcdef_no);
104d9861 4893#endif
b8a21949 4894 }
104d9861 4895
f8c438a1 4896 /* If we are doing generic stack checking, the probe should go here. */
4897 if (flag_stack_check == GENERIC_STACK_CHECK)
1edb3690 4898 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
897b77d6 4899}
4900\f
0a893c29 4901/* Undo the effects of init_dummy_function_start. */
4902void
de1b648b 4903expand_dummy_function_end (void)
0a893c29 4904{
87d4aa85 4905 gcc_assert (in_dummy_function);
4906
0a893c29 4907 /* End any sequences that failed to be closed due to syntax errors. */
4908 while (in_sequence_p ())
4909 end_sequence ();
4910
4911 /* Outside function body, can't compute type's actual size
4912 until next function's body starts. */
3c3bb268 4913
08513b52 4914 free_after_parsing (cfun);
4915 free_after_compilation (cfun);
87d4aa85 4916 pop_cfun ();
4917 in_dummy_function = false;
0a893c29 4918}
4919
2766437e 4920/* Call DOIT for each hard register used as a return value from
4921 the current function. */
631ef7ce 4922
4923void
de1b648b 4924diddle_return_value (void (*doit) (rtx, void *), void *arg)
631ef7ce 4925{
abe32cce 4926 rtx outgoing = crtl->return_rtx;
2766437e 4927
4928 if (! outgoing)
4929 return;
631ef7ce 4930
8ad4c111 4931 if (REG_P (outgoing))
2766437e 4932 (*doit) (outgoing, arg);
4933 else if (GET_CODE (outgoing) == PARALLEL)
4934 {
4935 int i;
631ef7ce 4936
2766437e 4937 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4938 {
4939 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4940
8ad4c111 4941 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
2766437e 4942 (*doit) (x, arg);
631ef7ce 4943 }
4944 }
4945}
4946
2766437e 4947static void
de1b648b 4948do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
2766437e 4949{
18b42941 4950 emit_clobber (reg);
2766437e 4951}
4952
4953void
de1b648b 4954clobber_return_register (void)
2766437e 4955{
4956 diddle_return_value (do_clobber_return_reg, NULL);
1b2c7cbd 4957
4958 /* In case we do use pseudo to return value, clobber it too. */
4959 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4960 {
4961 tree decl_result = DECL_RESULT (current_function_decl);
4962 rtx decl_rtl = DECL_RTL (decl_result);
4963 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4964 {
4965 do_clobber_return_reg (decl_rtl, NULL);
4966 }
4967 }
2766437e 4968}
4969
4970static void
de1b648b 4971do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
2766437e 4972{
18b42941 4973 emit_use (reg);
2766437e 4974}
4975
ab4605bf 4976static void
de1b648b 4977use_return_register (void)
2766437e 4978{
4979 diddle_return_value (do_use_return_reg, NULL);
4980}
4981
b69eb0ff 4982/* Possibly warn about unused parameters. */
4983void
4984do_warn_unused_parameter (tree fn)
4985{
4986 tree decl;
4987
4988 for (decl = DECL_ARGUMENTS (fn);
1767a056 4989 decl; decl = DECL_CHAIN (decl))
b69eb0ff 4990 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
76776e6d 4991 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4992 && !TREE_NO_WARNING (decl))
e8d0745d 4993 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
b69eb0ff 4994}
4995
0e80b01d 4996/* Set the location of the insn chain starting at INSN to LOC. */
4997
4998static void
4cd001d5 4999set_insn_locations (rtx_insn *insn, int loc)
0e80b01d 5000{
4cd001d5 5001 while (insn != NULL)
0e80b01d 5002 {
5003 if (INSN_P (insn))
5004 INSN_LOCATION (insn) = loc;
5005 insn = NEXT_INSN (insn);
5006 }
5007}
5008
6473f3f4 5009/* Generate RTL for the end of the current function. */
897b77d6 5010
5011void
de1b648b 5012expand_function_end (void)
897b77d6 5013{
9b56368f 5014 rtx clobber_after;
897b77d6 5015
2032b31d 5016 /* If arg_pointer_save_area was referenced only from a nested
5017 function, we will not have initialized it yet. Do that now. */
18d50ae6 5018 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
b079a207 5019 get_arg_pointer_save_area ();
2032b31d 5020
4852b829 5021 /* If we are doing generic stack checking and this function makes calls,
b22178d2 5022 do a stack probe at the start of the function to ensure we have enough
5023 space for another stack frame. */
4852b829 5024 if (flag_stack_check == GENERIC_STACK_CHECK)
b22178d2 5025 {
8bb2625b 5026 rtx_insn *insn, *seq;
b22178d2 5027
5028 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6d7dc5b9 5029 if (CALL_P (insn))
b22178d2 5030 {
d1b92264 5031 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
b22178d2 5032 start_sequence ();
d1b92264 5033 if (STACK_CHECK_MOVING_SP)
5034 anti_adjust_stack_and_probe (max_frame_size, true);
5035 else
5036 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
b22178d2 5037 seq = get_insns ();
5038 end_sequence ();
5169661d 5039 set_insn_locations (seq, prologue_location);
1edb3690 5040 emit_insn_before (seq, stack_check_probe_note);
b22178d2 5041 break;
5042 }
5043 }
5044
897b77d6 5045 /* End any sequences that failed to be closed due to syntax errors. */
5046 while (in_sequence_p ())
1bb04728 5047 end_sequence ();
897b77d6 5048
897b77d6 5049 clear_pending_stack_adjust ();
5050 do_pending_stack_adjust ();
5051
897b77d6 5052 /* Output a linenumber for the end of the function.
5053 SDB depends on this. */
5169661d 5054 set_curr_insn_location (input_location);
897b77d6 5055
b41180f5 5056 /* Before the return label (if any), clobber the return
3fb1e43b 5057 registers so that they are not propagated live to the rest of
b41180f5 5058 the function. This can only happen with functions that drop
5059 through; if there had been a return statement, there would
9b56368f 5060 have either been a return rtx, or a jump to the return label.
5061
5062 We delay actual code generation after the current_function_value_rtx
5063 is computed. */
5064 clobber_after = get_last_insn ();
b41180f5 5065
7861133f 5066 /* Output the label for the actual return from the function. */
5067 emit_label (return_label);
897b77d6 5068
218e3e4e 5069 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
a7e05170 5070 {
5071 /* Let except.c know where it should emit the call to unregister
5072 the function context for sjlj exceptions. */
5073 if (flag_exceptions)
5074 sjlj_emit_function_exit_after (get_last_insn ());
5075 }
3072d30e 5076 else
5077 {
5078 /* We want to ensure that instructions that may trap are not
5079 moved into the epilogue by scheduling, because we don't
5080 always emit unwind information for the epilogue. */
cbeb677e 5081 if (cfun->can_throw_non_call_exceptions)
3072d30e 5082 emit_insn (gen_blockage ());
5083 }
855f1e85 5084
80e467e2 5085 /* If this is an implementation of throw, do what's necessary to
5086 communicate between __builtin_eh_return and the epilogue. */
5087 expand_eh_return ();
5088
ae39498f 5089 /* If scalar return value was computed in a pseudo-reg, or was a named
5090 return value that got dumped to the stack, copy that to the hard
5091 return register. */
0e8e37b2 5092 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
897b77d6 5093 {
ae39498f 5094 tree decl_result = DECL_RESULT (current_function_decl);
5095 rtx decl_rtl = DECL_RTL (decl_result);
5096
5097 if (REG_P (decl_rtl)
5098 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5099 : DECL_REGISTER (decl_result))
5100 {
abe32cce 5101 rtx real_decl_rtl = crtl->return_rtx;
897b77d6 5102
8839b7f1 5103 /* This should be set in assign_parms. */
fdada98f 5104 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
ae39498f 5105
5106 /* If this is a BLKmode structure being returned in registers,
5107 then use the mode computed in expand_return. Note that if
60d903f5 5108 decl_rtl is memory, then its mode may have been changed,
abe32cce 5109 but that crtl->return_rtx has not. */
ae39498f 5110 if (GET_MODE (real_decl_rtl) == BLKmode)
8839b7f1 5111 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
ae39498f 5112
05d18e8b 5113 /* If a non-BLKmode return value should be padded at the least
5114 significant end of the register, shift it left by the appropriate
5115 amount. BLKmode results are handled using the group load/store
5116 machinery. */
5117 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
d8ef55fc 5118 && REG_P (real_decl_rtl)
05d18e8b 5119 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5120 {
5121 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5122 REGNO (real_decl_rtl)),
5123 decl_rtl);
5124 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5125 }
ae39498f 5126 /* If a named return value dumped decl_return to memory, then
60d903f5 5127 we may need to re-do the PROMOTE_MODE signed/unsigned
ae39498f 5128 extension. */
05d18e8b 5129 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
ae39498f 5130 {
78a8ed03 5131 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
3b2411a8 5132 promote_function_mode (TREE_TYPE (decl_result),
5133 GET_MODE (decl_rtl), &unsignedp,
5134 TREE_TYPE (current_function_decl), 1);
ae39498f 5135
5136 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5137 }
3395ec76 5138 else if (GET_CODE (real_decl_rtl) == PARALLEL)
b566e2e5 5139 {
5140 /* If expand_function_start has created a PARALLEL for decl_rtl,
5141 move the result to the real return registers. Otherwise, do
5142 a group load from decl_rtl for a named return. */
5143 if (GET_CODE (decl_rtl) == PARALLEL)
5144 emit_group_move (real_decl_rtl, decl_rtl);
5145 else
5146 emit_group_load (real_decl_rtl, decl_rtl,
5f4cd670 5147 TREE_TYPE (decl_result),
b566e2e5 5148 int_size_in_bytes (TREE_TYPE (decl_result)));
5149 }
80e467e2 5150 /* In the case of complex integer modes smaller than a word, we'll
5151 need to generate some non-trivial bitfield insertions. Do that
5152 on a pseudo and not the hard register. */
5153 else if (GET_CODE (decl_rtl) == CONCAT
5154 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5155 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5156 {
5157 int old_generating_concat_p;
5158 rtx tmp;
5159
5160 old_generating_concat_p = generating_concat_p;
5161 generating_concat_p = 0;
5162 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5163 generating_concat_p = old_generating_concat_p;
5164
5165 emit_move_insn (tmp, decl_rtl);
5166 emit_move_insn (real_decl_rtl, tmp);
5167 }
ae39498f 5168 else
5169 emit_move_insn (real_decl_rtl, decl_rtl);
ae39498f 5170 }
897b77d6 5171 }
5172
5173 /* If returning a structure, arrange to return the address of the value
5174 in a place where debuggers expect to find it.
5175
5176 If returning a structure PCC style,
5177 the caller also depends on this value.
18d50ae6 5178 And cfun->returns_pcc_struct is not necessarily set. */
5179 if (cfun->returns_struct
5180 || cfun->returns_pcc_struct)
897b77d6 5181 {
806e4c12 5182 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
897b77d6 5183 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
806e4c12 5184 rtx outgoing;
5185
5186 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5187 type = TREE_TYPE (type);
5188 else
5189 value_address = XEXP (value_address, 0);
5190
46b3ff29 5191 outgoing = targetm.calls.function_value (build_pointer_type (type),
5192 current_function_decl, true);
897b77d6 5193
5194 /* Mark this as a function return value so integrate will delete the
5195 assignment and USE below when inlining this function. */
5196 REG_FUNCTION_VALUE_P (outgoing) = 1;
5197
c54c9422 5198 /* The address may be ptr_mode and OUTGOING may be Pmode. */
85d654dd 5199 value_address = convert_memory_address (GET_MODE (outgoing),
5200 value_address);
c54c9422 5201
897b77d6 5202 emit_move_insn (outgoing, value_address);
c54c9422 5203
5204 /* Show return register used to hold result (in this case the address
5205 of the result. */
abe32cce 5206 crtl->return_rtx = outgoing;
897b77d6 5207 }
5208
04e7d9cb 5209 /* Emit the actual code to clobber return register. Don't emit
5210 it if clobber_after is a barrier, then the previous basic block
5211 certainly doesn't fall thru into the exit block. */
5212 if (!BARRIER_P (clobber_after))
5213 {
5214 rtx seq;
60d903f5 5215
04e7d9cb 5216 start_sequence ();
5217 clobber_return_register ();
5218 seq = get_insns ();
5219 end_sequence ();
9b56368f 5220
04e7d9cb 5221 emit_insn_after (seq, clobber_after);
5222 }
9b56368f 5223
01628e06 5224 /* Output the label for the naked return from the function. */
b2ee26d5 5225 if (naked_return_label)
5226 emit_label (naked_return_label);
62380d2d 5227
1b7fd1d9 5228 /* @@@ This is a kludge. We want to ensure that instructions that
5229 may trap are not moved into the epilogue by scheduling, because
d86df71c 5230 we don't always emit unwind information for the epilogue. */
cc7d6aed 5231 if (cfun->can_throw_non_call_exceptions
218e3e4e 5232 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
d86df71c 5233 emit_insn (gen_blockage ());
1b7fd1d9 5234
f1a0edff 5235 /* If stack protection is enabled for this function, check the guard. */
edb7afe8 5236 if (crtl->stack_protect_guard)
f1a0edff 5237 stack_protect_epilogue ();
5238
6a7492e8 5239 /* If we had calls to alloca, and this machine needs
5240 an accurate stack pointer to exit the function,
5241 insert some code to save and restore the stack pointer. */
5242 if (! EXIT_IGNORE_STACK
18d50ae6 5243 && cfun->calls_alloca)
6a7492e8 5244 {
e9c97615 5245 rtx tem = 0, seq;
6a7492e8 5246
e9c97615 5247 start_sequence ();
5248 emit_stack_save (SAVE_FUNCTION, &tem);
5249 seq = get_insns ();
5250 end_sequence ();
5251 emit_insn_before (seq, parm_birth_insn);
5252
5253 emit_stack_restore (SAVE_FUNCTION, tem);
6a7492e8 5254 }
5255
2766437e 5256 /* ??? This should no longer be necessary since stupid is no longer with
5257 us, but there are some parts of the compiler (eg reload_combine, and
5258 sh mach_dep_reorg) that still try and compute their own lifetime info
5259 instead of using the general framework. */
5260 use_return_register ();
897b77d6 5261}
05927e40 5262
5263rtx
b079a207 5264get_arg_pointer_save_area (void)
05927e40 5265{
b079a207 5266 rtx ret = arg_pointer_save_area;
05927e40 5267
5268 if (! ret)
5269 {
b079a207 5270 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5271 arg_pointer_save_area = ret;
2032b31d 5272 }
5273
18d50ae6 5274 if (! crtl->arg_pointer_save_area_init)
2032b31d 5275 {
5276 rtx seq;
05927e40 5277
60d903f5 5278 /* Save the arg pointer at the beginning of the function. The
2032b31d 5279 generated stack slot may not be a valid memory address, so we
05927e40 5280 have to check it and fix it if necessary. */
5281 start_sequence ();
d2b9158b 5282 emit_move_insn (validize_mem (copy_rtx (ret)),
27a7a23a 5283 crtl->args.internal_arg_pointer);
31d3e01c 5284 seq = get_insns ();
05927e40 5285 end_sequence ();
5286
2032b31d 5287 push_topmost_sequence ();
c838448c 5288 emit_insn_after (seq, entry_of_function ());
2032b31d 5289 pop_topmost_sequence ();
050f9ef1 5290
5291 crtl->arg_pointer_save_area_init = true;
05927e40 5292 }
5293
5294 return ret;
5295}
b2c5602e 5296\f
25e880b1 5297/* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5298 for the first time. */
b2c5602e 5299
60ecc450 5300static void
4cd001d5 5301record_insns (rtx_insn *insns, rtx end, htab_t *hashp)
b2c5602e 5302{
4cd001d5 5303 rtx_insn *tmp;
25e880b1 5304 htab_t hash = *hashp;
60ecc450 5305
25e880b1 5306 if (hash == NULL)
5307 *hashp = hash
5308 = htab_create_ggc (17, htab_hash_pointer, htab_eq_pointer, NULL);
5309
5310 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5311 {
5312 void **slot = htab_find_slot (hash, tmp, INSERT);
5313 gcc_assert (*slot == NULL);
5314 *slot = tmp;
5315 }
5316}
5317
1eefcaee 5318/* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5319 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5320 insn, then record COPY as well. */
25e880b1 5321
5322void
1eefcaee 5323maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
25e880b1 5324{
1eefcaee 5325 htab_t hash;
25e880b1 5326 void **slot;
5327
1eefcaee 5328 hash = epilogue_insn_hash;
5329 if (!hash || !htab_find (hash, insn))
5330 {
5331 hash = prologue_insn_hash;
5332 if (!hash || !htab_find (hash, insn))
5333 return;
5334 }
25e880b1 5335
1eefcaee 5336 slot = htab_find_slot (hash, copy, INSERT);
25e880b1 5337 gcc_assert (*slot == NULL);
5338 *slot = copy;
b2c5602e 5339}
5340
25e880b1 5341/* Determine if any INSNs in HASH are, or are part of, INSN. Because
5342 we can be running after reorg, SEQUENCE rtl is possible. */
b2c5602e 5343
25e880b1 5344static bool
5345contains (const_rtx insn, htab_t hash)
b2c5602e 5346{
25e880b1 5347 if (hash == NULL)
5348 return false;
b2c5602e 5349
25e880b1 5350 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
b2c5602e 5351 {
9e21f364 5352 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
25e880b1 5353 int i;
9e21f364 5354 for (i = seq->len () - 1; i >= 0; i--)
5355 if (htab_find (hash, seq->element (i)))
25e880b1 5356 return true;
5357 return false;
b2c5602e 5358 }
25e880b1 5359
5360 return htab_find (hash, insn) != NULL;
b2c5602e 5361}
a590d94d 5362
5363int
52d07779 5364prologue_epilogue_contains (const_rtx insn)
a590d94d 5365{
25e880b1 5366 if (contains (insn, prologue_insn_hash))
a590d94d 5367 return 1;
25e880b1 5368 if (contains (insn, epilogue_insn_hash))
a590d94d 5369 return 1;
5370 return 0;
5371}
b2c5602e 5372
bcf58f16 5373#ifdef HAVE_return
f2c8a251 5374/* Insert use of return register before the end of BB. */
5375
5376static void
5377emit_use_return_register_into_block (basic_block bb)
5378{
96129913 5379 rtx seq, insn;
f2c8a251 5380 start_sequence ();
5381 use_return_register ();
5382 seq = get_insns ();
5383 end_sequence ();
96129913 5384 insn = BB_END (bb);
5385#ifdef HAVE_cc0
5386 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5387 insn = prev_cc0_setter (insn);
5388#endif
5389 emit_insn_before (seq, insn);
f2c8a251 5390}
5391
1f021f97 5392
5393/* Create a return pattern, either simple_return or return, depending on
5394 simple_p. */
5395
5396static rtx
5397gen_return_pattern (bool simple_p)
5398{
5399#ifdef HAVE_simple_return
5400 return simple_p ? gen_simple_return () : gen_return ();
5401#else
5402 gcc_assert (!simple_p);
5403 return gen_return ();
5404#endif
5405}
5406
5407/* Insert an appropriate return pattern at the end of block BB. This
5408 also means updating block_for_insn appropriately. SIMPLE_P is
5409 the same as in gen_return_pattern and passed to it. */
2215ca0d 5410
c562205f 5411void
1f021f97 5412emit_return_into_block (bool simple_p, basic_block bb)
2215ca0d 5413{
1f021f97 5414 rtx jump, pat;
5415 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5416 pat = PATTERN (jump);
9cb2517e 5417 if (GET_CODE (pat) == PARALLEL)
5418 pat = XVECEXP (pat, 0, 0);
5419 gcc_assert (ANY_RETURN_P (pat));
5420 JUMP_LABEL (jump) = pat;
2215ca0d 5421}
1f021f97 5422#endif
2215ca0d 5423
31a53363 5424/* Set JUMP_LABEL for a return insn. */
5425
5426void
5427set_return_jump_label (rtx returnjump)
5428{
5429 rtx pat = PATTERN (returnjump);
5430 if (GET_CODE (pat) == PARALLEL)
5431 pat = XVECEXP (pat, 0, 0);
5432 if (ANY_RETURN_P (pat))
5433 JUMP_LABEL (returnjump) = pat;
5434 else
5435 JUMP_LABEL (returnjump) = ret_rtx;
5436}
5437
0a55d497 5438#if defined (HAVE_return) || defined (HAVE_simple_return)
5439/* Return true if there are any active insns between HEAD and TAIL. */
c562205f 5440bool
64e72baf 5441active_insn_between (rtx_insn *head, rtx_insn *tail)
cde48de6 5442{
0a55d497 5443 while (tail)
5444 {
5445 if (active_insn_p (tail))
5446 return true;
5447 if (tail == head)
5448 return false;
5449 tail = PREV_INSN (tail);
5450 }
5451 return false;
5452}
5453
5454/* LAST_BB is a block that exits, and empty of active instructions.
5455 Examine its predecessors for jumps that can be converted to
5456 (conditional) returns. */
c562205f 5457vec<edge>
0a55d497 5458convert_jumps_to_returns (basic_block last_bb, bool simple_p,
f1f41a6c 5459 vec<edge> unconverted ATTRIBUTE_UNUSED)
0a55d497 5460{
5461 int i;
5462 basic_block bb;
cde48de6 5463 rtx label;
0a55d497 5464 edge_iterator ei;
5465 edge e;
c2078b80 5466 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
cde48de6 5467
0a55d497 5468 FOR_EACH_EDGE (e, ei, last_bb->preds)
34154e27 5469 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
f1f41a6c 5470 src_bbs.quick_push (e->src);
0a55d497 5471
5472 label = BB_HEAD (last_bb);
5473
f1f41a6c 5474 FOR_EACH_VEC_ELT (src_bbs, i, bb)
cde48de6 5475 {
93ee8dfb 5476 rtx_insn *jump = BB_END (bb);
0a55d497 5477
5478 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5479 continue;
5480
5481 e = find_edge (bb, last_bb);
5482
5483 /* If we have an unconditional jump, we can replace that
5484 with a simple return instruction. */
5485 if (simplejump_p (jump))
5486 {
5487 /* The use of the return register might be present in the exit
5488 fallthru block. Either:
5489 - removing the use is safe, and we should remove the use in
5490 the exit fallthru block, or
5491 - removing the use is not safe, and we should add it here.
5492 For now, we conservatively choose the latter. Either of the
5493 2 helps in crossjumping. */
5494 emit_use_return_register_into_block (bb);
5495
5496 emit_return_into_block (simple_p, bb);
5497 delete_insn (jump);
5498 }
5499
5500 /* If we have a conditional jump branching to the last
5501 block, we can try to replace that with a conditional
5502 return instruction. */
5503 else if (condjump_p (jump))
5504 {
5505 rtx dest;
5506
5507 if (simple_p)
5508 dest = simple_return_rtx;
5509 else
5510 dest = ret_rtx;
5511 if (!redirect_jump (jump, dest, 0))
5512 {
5513#ifdef HAVE_simple_return
5514 if (simple_p)
5515 {
5516 if (dump_file)
5517 fprintf (dump_file,
5518 "Failed to redirect bb %d branch.\n", bb->index);
f1f41a6c 5519 unconverted.safe_push (e);
0a55d497 5520 }
5521#endif
5522 continue;
5523 }
5524
5525 /* See comment in simplejump_p case above. */
5526 emit_use_return_register_into_block (bb);
5527
5528 /* If this block has only one successor, it both jumps
5529 and falls through to the fallthru block, so we can't
5530 delete the edge. */
5531 if (single_succ_p (bb))
5532 continue;
5533 }
5534 else
5535 {
5536#ifdef HAVE_simple_return
5537 if (simple_p)
5538 {
5539 if (dump_file)
5540 fprintf (dump_file,
5541 "Failed to redirect bb %d branch.\n", bb->index);
f1f41a6c 5542 unconverted.safe_push (e);
0a55d497 5543 }
5544#endif
5545 continue;
5546 }
5547
5548 /* Fix up the CFG for the successful change we just made. */
34154e27 5549 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
ebb58a45 5550 e->flags &= ~EDGE_CROSSING;
cde48de6 5551 }
f1f41a6c 5552 src_bbs.release ();
0a55d497 5553 return unconverted;
cde48de6 5554}
5555
0a55d497 5556/* Emit a return insn for the exit fallthru block. */
c562205f 5557basic_block
0a55d497 5558emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5559{
5560 basic_block last_bb = exit_fallthru_edge->src;
5561
5562 if (JUMP_P (BB_END (last_bb)))
5563 {
5564 last_bb = split_edge (exit_fallthru_edge);
5565 exit_fallthru_edge = single_succ_edge (last_bb);
5566 }
5567 emit_barrier_after (BB_END (last_bb));
5568 emit_return_into_block (simple_p, last_bb);
5569 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5570 return last_bb;
5571}
5572#endif
5573
5574
c3418f42 5575/* Generate the prologue and epilogue RTL if the machine supports it. Thread
b2c5602e 5576 this into place with notes indicating where the prologue ends and where
1f021f97 5577 the epilogue begins. Update the basic block information when possible.
5578
5579 Notes on epilogue placement:
5580 There are several kinds of edges to the exit block:
5581 * a single fallthru edge from LAST_BB
5582 * possibly, edges from blocks containing sibcalls
5583 * possibly, fake edges from infinite loops
5584
5585 The epilogue is always emitted on the fallthru edge from the last basic
5586 block in the function, LAST_BB, into the exit block.
5587
5588 If LAST_BB is empty except for a label, it is the target of every
5589 other basic block in the function that ends in a return. If a
5590 target has a return or simple_return pattern (possibly with
5591 conditional variants), these basic blocks can be changed so that a
5592 return insn is emitted into them, and their target is adjusted to
5593 the real exit block.
5594
5595 Notes on shrink wrapping: We implement a fairly conservative
5596 version of shrink-wrapping rather than the textbook one. We only
5597 generate a single prologue and a single epilogue. This is
5598 sufficient to catch a number of interesting cases involving early
5599 exits.
5600
5601 First, we identify the blocks that require the prologue to occur before
5602 them. These are the ones that modify a call-saved register, or reference
5603 any of the stack or frame pointer registers. To simplify things, we then
5604 mark everything reachable from these blocks as also requiring a prologue.
5605 This takes care of loops automatically, and avoids the need to examine
5606 whether MEMs reference the frame, since it is sufficient to check for
5607 occurrences of the stack or frame pointer.
5608
5609 We then compute the set of blocks for which the need for a prologue
5610 is anticipatable (borrowing terminology from the shrink-wrapping
5611 description in Muchnick's book). These are the blocks which either
5612 require a prologue themselves, or those that have only successors
5613 where the prologue is anticipatable. The prologue needs to be
5614 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5615 is not. For the moment, we ensure that only one such edge exists.
5616
5617 The epilogue is placed as described above, but we make a
5618 distinction between inserting return and simple_return patterns
5619 when modifying other blocks that end in a return. Blocks that end
5620 in a sibcall omit the sibcall_epilogue if the block is not in
5621 ANTIC. */
b2c5602e 5622
3072d30e 5623static void
5624thread_prologue_and_epilogue_insns (void)
b2c5602e 5625{
48b14f50 5626 bool inserted;
1f021f97 5627#ifdef HAVE_simple_return
1e094109 5628 vec<edge> unconverted_simple_returns = vNULL;
0a55d497 5629 bitmap_head bb_flags;
1f021f97 5630#endif
5a7c3c87 5631 rtx_insn *returnjump;
5a7c3c87 5632 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
4cd001d5 5633 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
1f021f97 5634 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
cd665a06 5635 edge_iterator ei;
1f021f97 5636
5637 df_analyze ();
71caadc0 5638
34154e27 5639 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
48b14f50 5640
5641 inserted = false;
5a7c3c87 5642 epilogue_end = NULL;
5643 returnjump = NULL;
48b14f50 5644
5645 /* Can't deal with multiple successors of the entry block at the
5646 moment. Function should always have at least one entry
5647 point. */
34154e27 5648 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5649 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1f021f97 5650 orig_entry_edge = entry_edge;
5651
4cd001d5 5652 split_prologue_seq = NULL;
48b14f50 5653 if (flag_split_stack
5654 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5655 == NULL))
5656 {
5657#ifndef HAVE_split_stack_prologue
5658 gcc_unreachable ();
5659#else
5660 gcc_assert (HAVE_split_stack_prologue);
5661
5662 start_sequence ();
5663 emit_insn (gen_split_stack_prologue ());
1f021f97 5664 split_prologue_seq = get_insns ();
48b14f50 5665 end_sequence ();
5666
1f021f97 5667 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5169661d 5668 set_insn_locations (split_prologue_seq, prologue_location);
48b14f50 5669#endif
5670 }
5671
4cd001d5 5672 prologue_seq = NULL;
b2c5602e 5673#ifdef HAVE_prologue
5674 if (HAVE_prologue)
5675 {
71caadc0 5676 start_sequence ();
4cd001d5 5677 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
71caadc0 5678 emit_insn (seq);
b2c5602e 5679
48e1416a 5680 /* Insert an explicit USE for the frame pointer
3072d30e 5681 if the profiling is on and the frame pointer is required. */
18d50ae6 5682 if (crtl->profile && frame_pointer_needed)
18b42941 5683 emit_use (hard_frame_pointer_rtx);
3072d30e 5684
b2c5602e 5685 /* Retain a map of the prologue insns. */
25e880b1 5686 record_insns (seq, NULL, &prologue_insn_hash);
d86df71c 5687 emit_note (NOTE_INSN_PROLOGUE_END);
48e1416a 5688
d86df71c 5689 /* Ensure that instructions are not moved into the prologue when
5690 profiling is on. The call to the profiling routine can be
5691 emitted within the live range of a call-clobbered register. */
8637d6a2 5692 if (!targetm.profile_before_prologue () && crtl->profile)
d86df71c 5693 emit_insn (gen_blockage ());
3b934b09 5694
1f021f97 5695 prologue_seq = get_insns ();
71caadc0 5696 end_sequence ();
5169661d 5697 set_insn_locations (prologue_seq, prologue_location);
1f021f97 5698 }
5699#endif
71caadc0 5700
0a55d497 5701#ifdef HAVE_simple_return
1f021f97 5702 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5703
1f021f97 5704 /* Try to perform a kind of shrink-wrapping, making sure the
5705 prologue/epilogue is emitted only around those parts of the
5706 function that require it. */
5707
c562205f 5708 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
b2c5602e 5709#endif
b2c5602e 5710
1f021f97 5711 if (split_prologue_seq != NULL_RTX)
5712 {
4db91b33 5713 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
1f021f97 5714 inserted = true;
5715 }
5716 if (prologue_seq != NULL_RTX)
5717 {
5718 insert_insn_on_edge (prologue_seq, entry_edge);
5719 inserted = true;
5720 }
5721
777e249a 5722 /* If the exit block has no non-fake predecessors, we don't need
5723 an epilogue. */
34154e27 5724 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
777e249a 5725 if ((e->flags & EDGE_FAKE) == 0)
5726 break;
5727 if (e == NULL)
5728 goto epilogue_done;
5729
34154e27 5730 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
1f021f97 5731
34154e27 5732 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
0a55d497 5733
0a55d497 5734#ifdef HAVE_simple_return
5735 if (entry_edge != orig_entry_edge)
c562205f 5736 exit_fallthru_edge
5737 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5738 &unconverted_simple_returns,
5739 &returnjump);
1f021f97 5740#endif
0a55d497 5741#ifdef HAVE_return
5742 if (HAVE_return)
5743 {
5744 if (exit_fallthru_edge == NULL)
5745 goto epilogue_done;
2215ca0d 5746
0a55d497 5747 if (optimize)
5748 {
5749 basic_block last_bb = exit_fallthru_edge->src;
1f021f97 5750
0a55d497 5751 if (LABEL_P (BB_HEAD (last_bb))
5752 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
1e094109 5753 convert_jumps_to_returns (last_bb, false, vNULL);
0a55d497 5754
3c4ca362 5755 if (EDGE_COUNT (last_bb->preds) != 0
5756 && single_succ_p (last_bb))
1f021f97 5757 {
0a55d497 5758 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5759 epilogue_end = returnjump = BB_END (last_bb);
1f021f97 5760#ifdef HAVE_simple_return
0a55d497 5761 /* Emitting the return may add a basic block.
5762 Fix bb_flags for the added block. */
5763 if (last_bb != exit_fallthru_edge->src)
5764 bitmap_set_bit (&bb_flags, last_bb->index);
1f021f97 5765#endif
0a55d497 5766 goto epilogue_done;
2215ca0d 5767 }
ffb61627 5768 }
2215ca0d 5769 }
5770#endif
25e880b1 5771
5772 /* A small fib -- epilogue is not yet completed, but we wish to re-use
5773 this marker for the splits of EH_RETURN patterns, and nothing else
5774 uses the flag in the meantime. */
5775 epilogue_completed = 1;
5776
5777#ifdef HAVE_eh_return
5778 /* Find non-fallthru edges that end with EH_RETURN instructions. On
5779 some targets, these get split to a special version of the epilogue
5780 code. In order to be able to properly annotate these with unwind
5781 info, try to split them now. If we get a valid split, drop an
5782 EPILOGUE_BEG note and mark the insns as epilogue insns. */
34154e27 5783 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
25e880b1 5784 {
8bb2625b 5785 rtx_insn *prev, *last, *trial;
25e880b1 5786
5787 if (e->flags & EDGE_FALLTHRU)
5788 continue;
5789 last = BB_END (e->src);
5790 if (!eh_returnjump_p (last))
5791 continue;
5792
5793 prev = PREV_INSN (last);
5794 trial = try_split (PATTERN (last), last, 1);
5795 if (trial == last)
5796 continue;
5797
5798 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
5799 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
5800 }
5801#endif
5802
1f021f97 5803 /* If nothing falls through into the exit block, we don't need an
5804 epilogue. */
9bb8a4af 5805
1f021f97 5806 if (exit_fallthru_edge == NULL)
9bb8a4af 5807 goto epilogue_done;
5808
b2c5602e 5809#ifdef HAVE_epilogue
5810 if (HAVE_epilogue)
5811 {
777e249a 5812 start_sequence ();
31b97e8f 5813 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
4cd001d5 5814 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
11efe736 5815 if (seq)
5816 emit_jump_insn (seq);
b2c5602e 5817
777e249a 5818 /* Retain a map of the epilogue insns. */
25e880b1 5819 record_insns (seq, NULL, &epilogue_insn_hash);
5169661d 5820 set_insn_locations (seq, epilogue_location);
b2c5602e 5821
31d3e01c 5822 seq = get_insns ();
1f021f97 5823 returnjump = get_last_insn ();
06ebc183 5824 end_sequence ();
71caadc0 5825
1f021f97 5826 insert_insn_on_edge (seq, exit_fallthru_edge);
48b14f50 5827 inserted = true;
4115ac36 5828
5829 if (JUMP_P (returnjump))
31a53363 5830 set_return_jump_label (returnjump);
b2c5602e 5831 }
9bb8a4af 5832 else
b2c5602e 5833#endif
9bb8a4af 5834 {
5835 basic_block cur_bb;
5836
1f021f97 5837 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
9bb8a4af 5838 goto epilogue_done;
5839 /* We have a fall-through edge to the exit block, the source is not
5840 at the end of the function, and there will be an assembler epilogue
5841 at the end of the function.
5842 We can't use force_nonfallthru here, because that would try to
1f021f97 5843 use return. Inserting a jump 'by hand' is extremely messy, so
9bb8a4af 5844 we take advantage of cfg_layout_finalize using
1f021f97 5845 fixup_fallthru_exit_predecessor. */
d2ed6106 5846 cfg_layout_initialize (0);
fc00614f 5847 FOR_EACH_BB_FN (cur_bb, cfun)
4d2e5d52 5848 if (cur_bb->index >= NUM_FIXED_BLOCKS
5849 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
bc5f266a 5850 cur_bb->aux = cur_bb->next_bb;
9bb8a4af 5851 cfg_layout_finalize ();
5852 }
202bbc06 5853
777e249a 5854epilogue_done:
1f021f97 5855
c107ab96 5856 default_rtl_profile ();
71caadc0 5857
58d5b39c 5858 if (inserted)
e08b2eb8 5859 {
202bbc06 5860 sbitmap blocks;
5861
e08b2eb8 5862 commit_edge_insertions ();
5863
202bbc06 5864 /* Look for basic blocks within the prologue insns. */
fe672ac0 5865 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
53c5d9d4 5866 bitmap_clear (blocks);
08b7917c 5867 bitmap_set_bit (blocks, entry_edge->dest->index);
5868 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
202bbc06 5869 find_many_sub_basic_blocks (blocks);
5870 sbitmap_free (blocks);
5871
e08b2eb8 5872 /* The epilogue insns we inserted may cause the exit edge to no longer
5873 be fallthru. */
34154e27 5874 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
e08b2eb8 5875 {
5876 if (((e->flags & EDGE_FALLTHRU) != 0)
5877 && returnjump_p (BB_END (e->src)))
5878 e->flags &= ~EDGE_FALLTHRU;
5879 }
5880 }
60ecc450 5881
1f021f97 5882#ifdef HAVE_simple_return
c562205f 5883 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
5884 unconverted_simple_returns);
1f021f97 5885#endif
5886
60ecc450 5887#ifdef HAVE_sibcall_epilogue
5888 /* Emit sibling epilogues before any sibling call sites. */
34154e27 5889 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
5890 ei_safe_edge (ei));
5891 )
60ecc450 5892 {
5893 basic_block bb = e->src;
8bb2625b 5894 rtx_insn *insn = BB_END (bb);
1f021f97 5895 rtx ep_seq;
60ecc450 5896
6d7dc5b9 5897 if (!CALL_P (insn)
1f021f97 5898 || ! SIBLING_CALL_P (insn)
0a55d497 5899#ifdef HAVE_simple_return
1f021f97 5900 || (entry_edge != orig_entry_edge
0a55d497 5901 && !bitmap_bit_p (&bb_flags, bb->index))
5902#endif
5903 )
cd665a06 5904 {
5905 ei_next (&ei);
5906 continue;
5907 }
60ecc450 5908
1f021f97 5909 ep_seq = gen_sibcall_epilogue ();
5910 if (ep_seq)
5911 {
5912 start_sequence ();
5913 emit_note (NOTE_INSN_EPILOGUE_BEG);
5914 emit_insn (ep_seq);
4cd001d5 5915 rtx_insn *seq = get_insns ();
1f021f97 5916 end_sequence ();
60ecc450 5917
1f021f97 5918 /* Retain a map of the epilogue insns. Used in life analysis to
5919 avoid getting rid of sibcall epilogue insns. Do this before we
5920 actually emit the sequence. */
5921 record_insns (seq, NULL, &epilogue_insn_hash);
5169661d 5922 set_insn_locations (seq, epilogue_location);
31d3e01c 5923
1f021f97 5924 emit_insn_before (seq, insn);
5925 }
cd665a06 5926 ei_next (&ei);
60ecc450 5927 }
5928#endif
58d5b39c 5929
142e7d22 5930#ifdef HAVE_epilogue
5931 if (epilogue_end)
5932 {
5a7c3c87 5933 rtx_insn *insn, *next;
142e7d22 5934
5935 /* Similarly, move any line notes that appear after the epilogue.
424da949 5936 There is no need, however, to be quite so anal about the existence
737251e7 5937 of such a note. Also possibly move
dc8def52 5938 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5939 info generation. */
06ebc183 5940 for (insn = epilogue_end; insn; insn = next)
142e7d22 5941 {
5942 next = NEXT_INSN (insn);
48e1416a 5943 if (NOTE_P (insn)
ad4583d9 5944 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
142e7d22 5945 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5946 }
5947 }
5948#endif
3072d30e 5949
0a55d497 5950#ifdef HAVE_simple_return
1f021f97 5951 bitmap_clear (&bb_flags);
0a55d497 5952#endif
1f021f97 5953
3072d30e 5954 /* Threading the prologue and epilogue changes the artificial refs
5955 in the entry and exit blocks. */
5956 epilogue_completed = 1;
5957 df_update_entry_exit_and_calls ();
b2c5602e 5958}
5959
25e880b1 5960/* Reposition the prologue-end and epilogue-begin notes after
5961 instruction scheduling. */
b2c5602e 5962
5963void
3072d30e 5964reposition_prologue_and_epilogue_notes (void)
b2c5602e 5965{
25e880b1 5966#if defined (HAVE_prologue) || defined (HAVE_epilogue) \
5967 || defined (HAVE_sibcall_epilogue)
25e880b1 5968 /* Since the hash table is created on demand, the fact that it is
5969 non-null is a signal that it is non-empty. */
5970 if (prologue_insn_hash != NULL)
b2c5602e 5971 {
25e880b1 5972 size_t len = htab_elements (prologue_insn_hash);
8bb2625b 5973 rtx_insn *insn, *last = NULL, *note = NULL;
b2c5602e 5974
25e880b1 5975 /* Scan from the beginning until we reach the last prologue insn. */
5976 /* ??? While we do have the CFG intact, there are two problems:
5977 (1) The prologue can contain loops (typically probing the stack),
5978 which means that the end of the prologue isn't in the first bb.
5979 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
3072d30e 5980 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
b2c5602e 5981 {
6d7dc5b9 5982 if (NOTE_P (insn))
12d1c03c 5983 {
ad4583d9 5984 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
60ecc450 5985 note = insn;
5986 }
25e880b1 5987 else if (contains (insn, prologue_insn_hash))
60ecc450 5988 {
5c0913b4 5989 last = insn;
5990 if (--len == 0)
5991 break;
5992 }
5993 }
60d903f5 5994
5c0913b4 5995 if (last)
5996 {
25e880b1 5997 if (note == NULL)
5c0913b4 5998 {
25e880b1 5999 /* Scan forward looking for the PROLOGUE_END note. It should
6000 be right at the beginning of the block, possibly with other
6001 insn notes that got moved there. */
6002 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6003 {
6004 if (NOTE_P (note)
6005 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6006 break;
6007 }
5c0913b4 6008 }
2a588794 6009
5c0913b4 6010 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6d7dc5b9 6011 if (LABEL_P (last))
5c0913b4 6012 last = NEXT_INSN (last);
6013 reorder_insns (note, note, last);
b2c5602e 6014 }
60ecc450 6015 }
6016
25e880b1 6017 if (epilogue_insn_hash != NULL)
60ecc450 6018 {
25e880b1 6019 edge_iterator ei;
6020 edge e;
b2c5602e 6021
34154e27 6022 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
b2c5602e 6023 {
8bb2625b 6024 rtx_insn *insn, *first = NULL, *note = NULL;
c009a3ec 6025 basic_block bb = e->src;
2a588794 6026
c009a3ec 6027 /* Scan from the beginning until we reach the first epilogue insn. */
25e880b1 6028 FOR_BB_INSNS (bb, insn)
5c0913b4 6029 {
25e880b1 6030 if (NOTE_P (insn))
6031 {
6032 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6033 {
6034 note = insn;
c009a3ec 6035 if (first != NULL)
25e880b1 6036 break;
6037 }
6038 }
c009a3ec 6039 else if (first == NULL && contains (insn, epilogue_insn_hash))
25e880b1 6040 {
c009a3ec 6041 first = insn;
25e880b1 6042 if (note != NULL)
6043 break;
6044 }
12d1c03c 6045 }
c009a3ec 6046
6047 if (note)
6048 {
6049 /* If the function has a single basic block, and no real
48e1416a 6050 epilogue insns (e.g. sibcall with no cleanup), the
c009a3ec 6051 epilogue note can get scheduled before the prologue
6052 note. If we have frame related prologue insns, having
6053 them scanned during the epilogue will result in a crash.
6054 In this case re-order the epilogue note to just before
6055 the last insn in the block. */
6056 if (first == NULL)
6057 first = BB_END (bb);
6058
6059 if (PREV_INSN (first) != note)
6060 reorder_insns (note, note, PREV_INSN (first));
6061 }
b2c5602e 6062 }
6063 }
6064#endif /* HAVE_prologue or HAVE_epilogue */
6065}
a7b0c170 6066
9631926a 6067/* Returns the name of function declared by FNDECL. */
6068const char *
6069fndecl_name (tree fndecl)
6070{
6071 if (fndecl == NULL)
6072 return "(nofn)";
6073 return lang_hooks.decl_printable_name (fndecl, 2);
6074}
6075
4a020a8c 6076/* Returns the name of function FN. */
6077const char *
6078function_name (struct function *fn)
6079{
9631926a 6080 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6081 return fndecl_name (fndecl);
4a020a8c 6082}
6083
35901471 6084/* Returns the name of the current function. */
6085const char *
6086current_function_name (void)
6087{
4a020a8c 6088 return function_name (cfun);
35901471 6089}
77fce4cd 6090\f
6091
2a1990e9 6092static unsigned int
77fce4cd 6093rest_of_handle_check_leaf_regs (void)
6094{
6095#ifdef LEAF_REGISTERS
d5bf7b64 6096 crtl->uses_only_leaf_regs
77fce4cd 6097 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6098#endif
2a1990e9 6099 return 0;
77fce4cd 6100}
6101
35df6eb4 6102/* Insert a TYPE into the used types hash table of CFUN. */
1a4c44c5 6103
35df6eb4 6104static void
6105used_types_insert_helper (tree type, struct function *func)
f6e59711 6106{
35df6eb4 6107 if (type != NULL && func != NULL)
f6e59711 6108 {
f6e59711 6109 if (func->used_types_hash == NULL)
8f359205 6110 func->used_types_hash = hash_set<tree>::create_ggc (37);
6111
6112 func->used_types_hash->add (type);
f6e59711 6113 }
6114}
6115
35df6eb4 6116/* Given a type, insert it into the used hash table in cfun. */
6117void
6118used_types_insert (tree t)
6119{
6120 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
bd564c29 6121 if (TYPE_NAME (t))
6122 break;
6123 else
6124 t = TREE_TYPE (t);
26ee9e7a 6125 if (TREE_CODE (t) == ERROR_MARK)
6126 return;
bd564c29 6127 if (TYPE_NAME (t) == NULL_TREE
6128 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6129 t = TYPE_MAIN_VARIANT (t);
35df6eb4 6130 if (debug_info_level > DINFO_LEVEL_NONE)
1a4c44c5 6131 {
6132 if (cfun)
6133 used_types_insert_helper (t, cfun);
6134 else
f1f41a6c 6135 {
6136 /* So this might be a type referenced by a global variable.
6137 Record that type so that we can later decide to emit its
6138 debug information. */
6139 vec_safe_push (types_used_by_cur_var_decl, t);
6140 }
1a4c44c5 6141 }
6142}
6143
6144/* Helper to Hash a struct types_used_by_vars_entry. */
6145
6146static hashval_t
6147hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6148{
6149 gcc_assert (entry && entry->var_decl && entry->type);
6150
6151 return iterative_hash_object (entry->type,
6152 iterative_hash_object (entry->var_decl, 0));
6153}
6154
6155/* Hash function of the types_used_by_vars_entry hash table. */
6156
6157hashval_t
2ef51f0e 6158used_type_hasher::hash (types_used_by_vars_entry *entry)
1a4c44c5 6159{
1a4c44c5 6160 return hash_types_used_by_vars_entry (entry);
6161}
6162
6163/*Equality function of the types_used_by_vars_entry hash table. */
6164
2ef51f0e 6165bool
6166used_type_hasher::equal (types_used_by_vars_entry *e1,
6167 types_used_by_vars_entry *e2)
1a4c44c5 6168{
1a4c44c5 6169 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6170}
6171
6172/* Inserts an entry into the types_used_by_vars_hash hash table. */
6173
6174void
6175types_used_by_var_decl_insert (tree type, tree var_decl)
6176{
6177 if (type != NULL && var_decl != NULL)
6178 {
2ef51f0e 6179 types_used_by_vars_entry **slot;
1a4c44c5 6180 struct types_used_by_vars_entry e;
6181 e.var_decl = var_decl;
6182 e.type = type;
6183 if (types_used_by_vars_hash == NULL)
2ef51f0e 6184 types_used_by_vars_hash
6185 = hash_table<used_type_hasher>::create_ggc (37);
6186
6187 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
1a4c44c5 6188 if (*slot == NULL)
6189 {
6190 struct types_used_by_vars_entry *entry;
25a27413 6191 entry = ggc_alloc<types_used_by_vars_entry> ();
1a4c44c5 6192 entry->type = type;
6193 entry->var_decl = var_decl;
6194 *slot = entry;
6195 }
6196 }
35df6eb4 6197}
6198
cbe8bda8 6199namespace {
6200
6201const pass_data pass_data_leaf_regs =
6202{
6203 RTL_PASS, /* type */
6204 "*leaf_regs", /* name */
6205 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 6206 TV_NONE, /* tv_id */
6207 0, /* properties_required */
6208 0, /* properties_provided */
6209 0, /* properties_destroyed */
6210 0, /* todo_flags_start */
6211 0, /* todo_flags_finish */
77fce4cd 6212};
6213
cbe8bda8 6214class pass_leaf_regs : public rtl_opt_pass
6215{
6216public:
9af5ce0c 6217 pass_leaf_regs (gcc::context *ctxt)
6218 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
cbe8bda8 6219 {}
6220
6221 /* opt_pass methods: */
65b0537f 6222 virtual unsigned int execute (function *)
6223 {
6224 return rest_of_handle_check_leaf_regs ();
6225 }
cbe8bda8 6226
6227}; // class pass_leaf_regs
6228
6229} // anon namespace
6230
6231rtl_opt_pass *
6232make_pass_leaf_regs (gcc::context *ctxt)
6233{
6234 return new pass_leaf_regs (ctxt);
6235}
6236
3072d30e 6237static unsigned int
6238rest_of_handle_thread_prologue_and_epilogue (void)
6239{
6240 if (optimize)
6241 cleanup_cfg (CLEANUP_EXPENSIVE);
990495a7 6242
3072d30e 6243 /* On some machines, the prologue and epilogue code, or parts thereof,
6244 can be represented as RTL. Doing so lets us schedule insns between
6245 it and the rest of the code and also allows delayed branch
6246 scheduling to operate in the epilogue. */
3072d30e 6247 thread_prologue_and_epilogue_insns ();
990495a7 6248
6a5f2336 6249 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6250 see PR57320. */
6251 cleanup_cfg (0);
6252
990495a7 6253 /* The stack usage info is finalized during prologue expansion. */
8c0dd614 6254 if (flag_stack_usage_info)
990495a7 6255 output_stack_usage ();
6256
3072d30e 6257 return 0;
6258}
6259
cbe8bda8 6260namespace {
6261
6262const pass_data pass_data_thread_prologue_and_epilogue =
6263{
6264 RTL_PASS, /* type */
6265 "pro_and_epilogue", /* name */
6266 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 6267 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6268 0, /* properties_required */
6269 0, /* properties_provided */
6270 0, /* properties_destroyed */
8b88439e 6271 0, /* todo_flags_start */
6272 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
3072d30e 6273};
cbe8bda8 6274
6275class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6276{
6277public:
9af5ce0c 6278 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6279 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
cbe8bda8 6280 {}
6281
6282 /* opt_pass methods: */
65b0537f 6283 virtual unsigned int execute (function *)
6284 {
6285 return rest_of_handle_thread_prologue_and_epilogue ();
6286 }
cbe8bda8 6287
6288}; // class pass_thread_prologue_and_epilogue
6289
6290} // anon namespace
6291
6292rtl_opt_pass *
6293make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6294{
6295 return new pass_thread_prologue_and_epilogue (ctxt);
6296}
9dc6d5bb 6297\f
6298
6299/* This mini-pass fixes fall-out from SSA in asm statements that have
48e1416a 6300 in-out constraints. Say you start with
9dc6d5bb 6301
6302 orig = inout;
6303 asm ("": "+mr" (inout));
6304 use (orig);
6305
6306 which is transformed very early to use explicit output and match operands:
6307
6308 orig = inout;
6309 asm ("": "=mr" (inout) : "0" (inout));
6310 use (orig);
6311
6312 Or, after SSA and copyprop,
6313
6314 asm ("": "=mr" (inout_2) : "0" (inout_1));
6315 use (inout_1);
6316
6317 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6318 they represent two separate values, so they will get different pseudo
6319 registers during expansion. Then, since the two operands need to match
6320 per the constraints, but use different pseudo registers, reload can
6321 only register a reload for these operands. But reloads can only be
6322 satisfied by hardregs, not by memory, so we need a register for this
6323 reload, just because we are presented with non-matching operands.
6324 So, even though we allow memory for this operand, no memory can be
6325 used for it, just because the two operands don't match. This can
6326 cause reload failures on register-starved targets.
6327
6328 So it's a symptom of reload not being able to use memory for reloads
6329 or, alternatively it's also a symptom of both operands not coming into
6330 reload as matching (in which case the pseudo could go to memory just
6331 fine, as the alternative allows it, and no reload would be necessary).
6332 We fix the latter problem here, by transforming
6333
6334 asm ("": "=mr" (inout_2) : "0" (inout_1));
6335
6336 back to
6337
6338 inout_2 = inout_1;
6339 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6340
6341static void
8bb2625b 6342match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
9dc6d5bb 6343{
6344 int i;
6345 bool changed = false;
6346 rtx op = SET_SRC (p_sets[0]);
6347 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6348 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
2457c754 6349 bool *output_matched = XALLOCAVEC (bool, noutputs);
9dc6d5bb 6350
3f982e5a 6351 memset (output_matched, 0, noutputs * sizeof (bool));
9dc6d5bb 6352 for (i = 0; i < ninputs; i++)
6353 {
8bb2625b 6354 rtx input, output;
6355 rtx_insn *insns;
9dc6d5bb 6356 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6357 char *end;
d069e0d3 6358 int match, j;
9dc6d5bb 6359
fbcb9be4 6360 if (*constraint == '%')
6361 constraint++;
6362
9dc6d5bb 6363 match = strtoul (constraint, &end, 10);
6364 if (end == constraint)
6365 continue;
6366
6367 gcc_assert (match < noutputs);
6368 output = SET_DEST (p_sets[match]);
6369 input = RTVEC_ELT (inputs, i);
d069e0d3 6370 /* Only do the transformation for pseudos. */
6371 if (! REG_P (output)
6372 || rtx_equal_p (output, input)
9dc6d5bb 6373 || (GET_MODE (input) != VOIDmode
6374 && GET_MODE (input) != GET_MODE (output)))
6375 continue;
6376
d069e0d3 6377 /* We can't do anything if the output is also used as input,
6378 as we're going to overwrite it. */
6379 for (j = 0; j < ninputs; j++)
6380 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6381 break;
6382 if (j != ninputs)
6383 continue;
6384
3f982e5a 6385 /* Avoid changing the same input several times. For
6386 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6387 only change in once (to out1), rather than changing it
6388 first to out1 and afterwards to out2. */
6389 if (i > 0)
6390 {
6391 for (j = 0; j < noutputs; j++)
6392 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6393 break;
6394 if (j != noutputs)
6395 continue;
6396 }
6397 output_matched[match] = true;
6398
9dc6d5bb 6399 start_sequence ();
d069e0d3 6400 emit_move_insn (output, input);
9dc6d5bb 6401 insns = get_insns ();
6402 end_sequence ();
9dc6d5bb 6403 emit_insn_before (insns, insn);
d069e0d3 6404
6405 /* Now replace all mentions of the input with output. We can't
f0b5f617 6406 just replace the occurrence in inputs[i], as the register might
d069e0d3 6407 also be used in some other input (or even in an address of an
6408 output), which would mean possibly increasing the number of
6409 inputs by one (namely 'output' in addition), which might pose
6410 a too complicated problem for reload to solve. E.g. this situation:
6411
6412 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6413
c7684b8e 6414 Here 'input' is used in two occurrences as input (once for the
d069e0d3 6415 input operand, once for the address in the second output operand).
f0b5f617 6416 If we would replace only the occurrence of the input operand (to
d069e0d3 6417 make the matching) we would be left with this:
6418
6419 output = input
6420 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6421
6422 Now we suddenly have two different input values (containing the same
6423 value, but different pseudos) where we formerly had only one.
6424 With more complicated asms this might lead to reload failures
6425 which wouldn't have happen without this pass. So, iterate over
c7684b8e 6426 all operands and replace all occurrences of the register used. */
d069e0d3 6427 for (j = 0; j < noutputs; j++)
f211ad17 6428 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
d069e0d3 6429 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6430 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6431 input, output);
6432 for (j = 0; j < ninputs; j++)
6433 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6434 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6435 input, output);
6436
9dc6d5bb 6437 changed = true;
6438 }
6439
6440 if (changed)
6441 df_insn_rescan (insn);
6442}
6443
65b0537f 6444namespace {
6445
6446const pass_data pass_data_match_asm_constraints =
6447{
6448 RTL_PASS, /* type */
6449 "asmcons", /* name */
6450 OPTGROUP_NONE, /* optinfo_flags */
65b0537f 6451 TV_NONE, /* tv_id */
6452 0, /* properties_required */
6453 0, /* properties_provided */
6454 0, /* properties_destroyed */
6455 0, /* todo_flags_start */
6456 0, /* todo_flags_finish */
6457};
6458
6459class pass_match_asm_constraints : public rtl_opt_pass
6460{
6461public:
6462 pass_match_asm_constraints (gcc::context *ctxt)
6463 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6464 {}
6465
6466 /* opt_pass methods: */
6467 virtual unsigned int execute (function *);
6468
6469}; // class pass_match_asm_constraints
6470
6471unsigned
6472pass_match_asm_constraints::execute (function *fun)
9dc6d5bb 6473{
6474 basic_block bb;
8bb2625b 6475 rtx_insn *insn;
6476 rtx pat, *p_sets;
9dc6d5bb 6477 int noutputs;
6478
18d50ae6 6479 if (!crtl->has_asm_statement)
9dc6d5bb 6480 return 0;
6481
6482 df_set_flags (DF_DEFER_INSN_RESCAN);
65b0537f 6483 FOR_EACH_BB_FN (bb, fun)
9dc6d5bb 6484 {
6485 FOR_BB_INSNS (bb, insn)
6486 {
6487 if (!INSN_P (insn))
6488 continue;
6489
6490 pat = PATTERN (insn);
6491 if (GET_CODE (pat) == PARALLEL)
6492 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6493 else if (GET_CODE (pat) == SET)
6494 p_sets = &PATTERN (insn), noutputs = 1;
6495 else
6496 continue;
6497
6498 if (GET_CODE (*p_sets) == SET
6499 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6500 match_asm_constraints_1 (insn, p_sets, noutputs);
6501 }
6502 }
6503
6504 return TODO_df_finish;
6505}
6506
cbe8bda8 6507} // anon namespace
6508
6509rtl_opt_pass *
6510make_pass_match_asm_constraints (gcc::context *ctxt)
6511{
6512 return new pass_match_asm_constraints (ctxt);
6513}
6514
35901471 6515
1f3233d1 6516#include "gt-function.h"