]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/function.c
rtl.h (MEM_READONLY_P): Replace RTX_UNCHANGING_P.
[thirdparty/gcc.git] / gcc / function.c
CommitLineData
5e6908ea 1/* Expands front end tree to back end RTL for GCC.
af841dbd 2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
589fe865 3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
6f086dfc 4
1322177d 5This file is part of GCC.
6f086dfc 6
1322177d
LB
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
9Software Foundation; either version 2, or (at your option) any later
10version.
6f086dfc 11
1322177d
LB
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
6f086dfc
RS
16
17You should have received a copy of the GNU General Public License
1322177d
LB
18along with GCC; see the file COPYING. If not, write to the Free
19Software Foundation, 59 Temple Place - Suite 330, Boston, MA
2002111-1307, USA. */
6f086dfc 21
6f086dfc
RS
22/* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
26
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
30
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
8fff4fc1 34 not get a hard register. */
6f086dfc
RS
35
36#include "config.h"
670ee920 37#include "system.h"
4977bab6
ZW
38#include "coretypes.h"
39#include "tm.h"
6f086dfc
RS
40#include "rtl.h"
41#include "tree.h"
42#include "flags.h"
1ef08c63 43#include "except.h"
6f086dfc 44#include "function.h"
6f086dfc 45#include "expr.h"
c6b97fac 46#include "optabs.h"
e78d8e51 47#include "libfuncs.h"
6f086dfc
RS
48#include "regs.h"
49#include "hard-reg-set.h"
50#include "insn-config.h"
51#include "recog.h"
52#include "output.h"
bdac5f58 53#include "basic-block.h"
10f0ad3d 54#include "toplev.h"
e2500fed 55#include "hashtab.h"
87ff9c8e 56#include "ggc.h"
b1474bb7 57#include "tm_p.h"
c0e7830f 58#include "integrate.h"
7afff7cf 59#include "langhooks.h"
61f71b34 60#include "target.h"
623a66fa 61#include "cfglayout.h"
6f086dfc 62
d16790f2
JW
63#ifndef LOCAL_ALIGNMENT
64#define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
65#endif
66
95f3f59e
JDA
67#ifndef STACK_ALIGNMENT_NEEDED
68#define STACK_ALIGNMENT_NEEDED 1
69#endif
70
975f3818
RS
71#define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
72
293e3de4
RS
73/* Some systems use __main in a way incompatible with its use in gcc, in these
74 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
75 give the same symbol without quotes for an alternative entry point. You
0f41302f 76 must define both, or neither. */
293e3de4
RS
77#ifndef NAME__MAIN
78#define NAME__MAIN "__main"
293e3de4
RS
79#endif
80
6f086dfc
RS
81/* Round a value to the lowest integer less than it that is a multiple of
82 the required alignment. Avoid using division in case the value is
83 negative. Assume the alignment is a power of two. */
84#define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
85
86/* Similar, but round to the next highest integer that meets the
87 alignment. */
88#define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
89
54ff41b7
JW
90/* Nonzero if function being compiled doesn't contain any calls
91 (ignoring the prologue and epilogue). This is set prior to
92 local register allocation and is valid for the remaining
718fe406 93 compiler passes. */
54ff41b7
JW
94int current_function_is_leaf;
95
fdb8a883
JW
96/* Nonzero if function being compiled doesn't modify the stack pointer
97 (ignoring the prologue and epilogue). This is only valid after
718fe406 98 life_analysis has run. */
fdb8a883
JW
99int current_function_sp_is_unchanging;
100
54ff41b7
JW
101/* Nonzero if the function being compiled is a leaf function which only
102 uses leaf registers. This is valid after reload (specifically after
103 sched2) and is useful only if the port defines LEAF_REGISTERS. */
54ff41b7
JW
104int current_function_uses_only_leaf_regs;
105
6f086dfc 106/* Nonzero once virtual register instantiation has been done.
c39ada04
DD
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.c:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110int virtuals_instantiated;
6f086dfc 111
df696a75 112/* Assign unique numbers to labels generated for profiling, debugging, etc. */
17211ab5 113static GTY(()) int funcdef_no;
f6f315fe 114
414c4dc4
NC
115/* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
fa8db1f7 117struct machine_function * (*init_machine_status) (void);
46766466 118
b384405b 119/* The currently compiled function. */
01d939e8 120struct function *cfun = 0;
b384405b 121
5c7675e9 122/* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
e2500fed
GK
123static GTY(()) varray_type prologue;
124static GTY(()) varray_type epilogue;
0a1c58a2
JL
125
126/* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
127 in this function. */
e2500fed 128static GTY(()) varray_type sibcall_epilogue;
6f086dfc
RS
129\f
130/* In order to evaluate some expressions, such as function calls returning
131 structures in memory, we need to temporarily allocate stack locations.
132 We record each allocated temporary in the following structure.
133
134 Associated with each temporary slot is a nesting level. When we pop up
135 one level, all temporaries associated with the previous level are freed.
136 Normally, all temporaries are freed after the execution of the statement
137 in which they were created. However, if we are inside a ({...}) grouping,
138 the result may be in a temporary and hence must be preserved. If the
139 result could be in a temporary, we preserve it if we can determine which
140 one it is in. If we cannot determine which temporary may contain the
141 result, all temporaries are preserved. A temporary is preserved by
142 pretending it was allocated at the previous nesting level.
143
144 Automatic variables are also assigned temporary slots, at the nesting
145 level where they are defined. They are marked a "kept" so that
146 free_temp_slots will not free them. */
147
e2500fed 148struct temp_slot GTY(())
6f086dfc
RS
149{
150 /* Points to next temporary slot. */
151 struct temp_slot *next;
0aea6467
ZD
152 /* Points to previous temporary slot. */
153 struct temp_slot *prev;
154
0f41302f 155 /* The rtx to used to reference the slot. */
6f086dfc 156 rtx slot;
e5e76139
RK
157 /* The rtx used to represent the address if not the address of the
158 slot above. May be an EXPR_LIST if multiple addresses exist. */
159 rtx address;
718fe406 160 /* The alignment (in bits) of the slot. */
b5c02bff 161 unsigned int align;
6f086dfc 162 /* The size, in units, of the slot. */
e5e809f4 163 HOST_WIDE_INT size;
1da68f56
RK
164 /* The type of the object in the slot, or zero if it doesn't correspond
165 to a type. We use this to determine whether a slot can be reused.
166 It can be reused if objects of the type of the new slot will always
167 conflict with objects of the type of the old slot. */
168 tree type;
cc2902df 169 /* Nonzero if this temporary is currently in use. */
6f086dfc 170 char in_use;
cc2902df 171 /* Nonzero if this temporary has its address taken. */
a25d4ba2 172 char addr_taken;
6f086dfc
RS
173 /* Nesting level at which this slot is being used. */
174 int level;
cc2902df 175 /* Nonzero if this should survive a call to free_temp_slots. */
6f086dfc 176 int keep;
fc91b0d0
RK
177 /* The offset of the slot from the frame_pointer, including extra space
178 for alignment. This info is for combine_temp_slots. */
e5e809f4 179 HOST_WIDE_INT base_offset;
fc91b0d0
RK
180 /* The size of the slot, including extra space for alignment. This
181 info is for combine_temp_slots. */
e5e809f4 182 HOST_WIDE_INT full_size;
6f086dfc 183};
6f086dfc 184\f
e15679f8
RK
185/* Forward declarations. */
186
fa8db1f7
AJ
187static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
188 struct function *);
189static struct temp_slot *find_temp_slot_from_address (rtx);
fa8db1f7
AJ
190static void instantiate_decls (tree, int);
191static void instantiate_decls_1 (tree, int);
192static void instantiate_decl (rtx, HOST_WIDE_INT, int);
193static rtx instantiate_new_reg (rtx, HOST_WIDE_INT *);
194static int instantiate_virtual_regs_1 (rtx *, rtx, int);
fa8db1f7
AJ
195static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
196static void pad_below (struct args_size *, enum machine_mode, tree);
fa8db1f7
AJ
197static void reorder_blocks_1 (rtx, tree, varray_type *);
198static void reorder_fix_fragments (tree);
fa8db1f7
AJ
199static int all_blocks (tree, tree *);
200static tree *get_block_vector (tree, int *);
201extern tree debug_find_var_in_block_tree (tree, tree);
1f52178b 202/* We always define `record_insns' even if it's not used so that we
ec97b83a 203 can always export `prologue_epilogue_contains'. */
fa8db1f7
AJ
204static void record_insns (rtx, varray_type *) ATTRIBUTE_UNUSED;
205static int contains (rtx, varray_type);
73ef99fb 206#ifdef HAVE_return
fa8db1f7 207static void emit_return_into_block (basic_block, rtx);
73ef99fb 208#endif
3258e996 209#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
fa8db1f7 210static rtx keep_stack_depressed (rtx);
7393c642 211#endif
3a70d621 212static void prepare_function_start (tree);
fa8db1f7
AJ
213static void do_clobber_return_reg (rtx, void *);
214static void do_use_return_reg (rtx, void *);
215static void instantiate_virtual_regs_lossage (rtx);
4c4d143a 216static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
c20bf1f3 217\f
6f086dfc 218/* Pointer to chain of `struct function' for containing functions. */
1be4cd1f 219struct function *outer_function_chain;
6f086dfc
RS
220
221/* Given a function decl for a containing function,
222 return the `struct function' for it. */
223
224struct function *
fa8db1f7 225find_function_data (tree decl)
6f086dfc
RS
226{
227 struct function *p;
e5e809f4 228
eb3ae3e1 229 for (p = outer_function_chain; p; p = p->outer)
6f086dfc
RS
230 if (p->decl == decl)
231 return p;
e5e809f4 232
6f086dfc
RS
233 abort ();
234}
235
236/* Save the current context for compilation of a nested function.
8c5666b4 237 This is called from language-specific code. The caller should use
b03e38e1 238 the enter_nested langhook to save any language-specific state,
8c5666b4
BS
239 since this function knows only about language-independent
240 variables. */
6f086dfc
RS
241
242void
fa8db1f7 243push_function_context_to (tree context)
6f086dfc 244{
eb3ae3e1 245 struct function *p;
36edd3cc
BS
246
247 if (context)
248 {
eb3ae3e1
ZW
249 if (context == current_function_decl)
250 cfun->contains_functions = 1;
251 else
252 {
253 struct function *containing = find_function_data (context);
254 containing->contains_functions = 1;
255 }
36edd3cc 256 }
b384405b 257
01d939e8 258 if (cfun == 0)
b384405b 259 init_dummy_function_start ();
01d939e8 260 p = cfun;
6f086dfc 261
eb3ae3e1 262 p->outer = outer_function_chain;
6f086dfc 263 outer_function_chain = p;
6f086dfc 264
ae2bcd98 265 lang_hooks.function.enter_nested (p);
b384405b 266
01d939e8 267 cfun = 0;
6f086dfc
RS
268}
269
e4a4639e 270void
fa8db1f7 271push_function_context (void)
e4a4639e 272{
a0dabda5 273 push_function_context_to (current_function_decl);
e4a4639e
JM
274}
275
6f086dfc
RS
276/* Restore the last saved context, at the end of a nested function.
277 This function is called from language-specific code. */
278
279void
fa8db1f7 280pop_function_context_from (tree context ATTRIBUTE_UNUSED)
6f086dfc
RS
281{
282 struct function *p = outer_function_chain;
283
01d939e8 284 cfun = p;
eb3ae3e1 285 outer_function_chain = p->outer;
6f086dfc 286
6f086dfc 287 current_function_decl = p->decl;
7cbc7b0c 288 reg_renumber = 0;
6f086dfc 289
6f086dfc 290 restore_emit_status (p);
6f086dfc 291
ae2bcd98 292 lang_hooks.function.leave_nested (p);
46766466 293
6f086dfc 294 /* Reset variables that have known state during rtx generation. */
6f086dfc 295 virtuals_instantiated = 0;
1b3d8f8a 296 generating_concat_p = 1;
6f086dfc 297}
e4a4639e 298
36edd3cc 299void
fa8db1f7 300pop_function_context (void)
e4a4639e 301{
a0dabda5 302 pop_function_context_from (current_function_decl);
e4a4639e 303}
e2ecd91c 304
fa51b01b
RH
305/* Clear out all parts of the state in F that can safely be discarded
306 after the function has been parsed, but not compiled, to let
307 garbage collection reclaim the memory. */
308
309void
fa8db1f7 310free_after_parsing (struct function *f)
fa51b01b
RH
311{
312 /* f->expr->forced_labels is used by code generation. */
313 /* f->emit->regno_reg_rtx is used by code generation. */
314 /* f->varasm is used by code generation. */
315 /* f->eh->eh_return_stub_label is used by code generation. */
316
ae2bcd98 317 lang_hooks.function.final (f);
fa51b01b
RH
318}
319
e2ecd91c
BS
320/* Clear out all parts of the state in F that can safely be discarded
321 after the function has been compiled, to let garbage collection
0a8a198c 322 reclaim the memory. */
21cd906e 323
e2ecd91c 324void
fa8db1f7 325free_after_compilation (struct function *f)
e2ecd91c 326{
e2500fed
GK
327 f->eh = NULL;
328 f->expr = NULL;
329 f->emit = NULL;
330 f->varasm = NULL;
331 f->machine = NULL;
fa51b01b 332
0aea6467
ZD
333 f->x_avail_temp_slots = NULL;
334 f->x_used_temp_slots = NULL;
fa51b01b
RH
335 f->arg_offset_rtx = NULL;
336 f->return_rtx = NULL;
337 f->internal_arg_pointer = NULL;
fa51b01b 338 f->x_nonlocal_goto_handler_labels = NULL;
fa51b01b 339 f->x_return_label = NULL;
6e3077c6 340 f->x_naked_return_label = NULL;
fa51b01b 341 f->x_stack_slot_list = NULL;
fa51b01b
RH
342 f->x_tail_recursion_reentry = NULL;
343 f->x_arg_pointer_save_area = NULL;
fa51b01b 344 f->x_parm_birth_insn = NULL;
fa51b01b
RH
345 f->original_arg_vector = NULL;
346 f->original_decl_initial = NULL;
fa51b01b 347 f->epilogue_delay_list = NULL;
e2ecd91c 348}
6f086dfc
RS
349\f
350/* Allocate fixed slots in the stack frame of the current function. */
351
49ad7cfa
BS
352/* Return size needed for stack frame based on slots so far allocated in
353 function F.
c795bca9 354 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
6f086dfc
RS
355 the caller may have to do that. */
356
8af5168b 357HOST_WIDE_INT
fa8db1f7 358get_func_frame_size (struct function *f)
6f086dfc
RS
359{
360#ifdef FRAME_GROWS_DOWNWARD
49ad7cfa 361 return -f->x_frame_offset;
6f086dfc 362#else
49ad7cfa 363 return f->x_frame_offset;
6f086dfc
RS
364#endif
365}
366
49ad7cfa
BS
367/* Return size needed for stack frame based on slots so far allocated.
368 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
369 the caller may have to do that. */
370HOST_WIDE_INT
fa8db1f7 371get_frame_size (void)
49ad7cfa 372{
01d939e8 373 return get_func_frame_size (cfun);
49ad7cfa
BS
374}
375
6f086dfc
RS
376/* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
377 with machine mode MODE.
718fe406 378
6f086dfc
RS
379 ALIGN controls the amount of alignment for the address of the slot:
380 0 means according to MODE,
381 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
cfa29a4c 382 -2 means use BITS_PER_UNIT,
6f086dfc
RS
383 positive specifies alignment boundary in bits.
384
e2ecd91c 385 We do not round to stack_boundary here.
6f086dfc 386
e2ecd91c
BS
387 FUNCTION specifies the function to allocate in. */
388
389static rtx
fa8db1f7
AJ
390assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
391 struct function *function)
6f086dfc 392{
b3694847 393 rtx x, addr;
6f086dfc 394 int bigend_correction = 0;
95899b34 395 unsigned int alignment;
58dbcf05 396 int frame_off, frame_alignment, frame_phase;
6f086dfc
RS
397
398 if (align == 0)
399 {
d16790f2
JW
400 tree type;
401
6f086dfc 402 if (mode == BLKmode)
d16790f2 403 alignment = BIGGEST_ALIGNMENT;
dbab7b72 404 else
718fe406 405 alignment = GET_MODE_ALIGNMENT (mode);
d16790f2
JW
406
407 /* Allow the target to (possibly) increase the alignment of this
408 stack slot. */
ae2bcd98 409 type = lang_hooks.types.type_for_mode (mode, 0);
d16790f2
JW
410 if (type)
411 alignment = LOCAL_ALIGNMENT (type, alignment);
412
413 alignment /= BITS_PER_UNIT;
6f086dfc
RS
414 }
415 else if (align == -1)
416 {
417 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
418 size = CEIL_ROUND (size, alignment);
419 }
cfa29a4c
EB
420 else if (align == -2)
421 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
6f086dfc
RS
422 else
423 alignment = align / BITS_PER_UNIT;
424
1474e303 425#ifdef FRAME_GROWS_DOWNWARD
e2ecd91c 426 function->x_frame_offset -= size;
1474e303
JL
427#endif
428
a0871656
JH
429 /* Ignore alignment we can't do with expected alignment of the boundary. */
430 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
431 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
432
433 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
434 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
435
58dbcf05
AH
436 /* Calculate how many bytes the start of local variables is off from
437 stack alignment. */
438 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
439 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
440 frame_phase = frame_off ? frame_alignment - frame_off : 0;
441
95f3f59e
JDA
442 /* Round the frame offset to the specified alignment. The default is
443 to always honor requests to align the stack but a port may choose to
444 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
445 if (STACK_ALIGNMENT_NEEDED
446 || mode != BLKmode
447 || size != 0)
448 {
449 /* We must be careful here, since FRAME_OFFSET might be negative and
450 division with a negative dividend isn't as well defined as we might
451 like. So we instead assume that ALIGNMENT is a power of two and
452 use logical operations which are unambiguous. */
6f086dfc 453#ifdef FRAME_GROWS_DOWNWARD
95f3f59e 454 function->x_frame_offset
e140e27d
RH
455 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
456 (unsigned HOST_WIDE_INT) alignment)
95f3f59e 457 + frame_phase);
6f086dfc 458#else
95f3f59e 459 function->x_frame_offset
e140e27d
RH
460 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
461 (unsigned HOST_WIDE_INT) alignment)
95f3f59e 462 + frame_phase);
6f086dfc 463#endif
95f3f59e 464 }
6f086dfc
RS
465
466 /* On a big-endian machine, if we are allocating more space than we will use,
467 use the least significant bytes of those that are allocated. */
f76b9db2 468 if (BYTES_BIG_ENDIAN && mode != BLKmode)
6f086dfc 469 bigend_correction = size - GET_MODE_SIZE (mode);
6f086dfc 470
6f086dfc
RS
471 /* If we have already instantiated virtual registers, return the actual
472 address relative to the frame pointer. */
01d939e8 473 if (function == cfun && virtuals_instantiated)
6f086dfc 474 addr = plus_constant (frame_pointer_rtx,
c41536f5 475 trunc_int_for_mode
6f086dfc 476 (frame_offset + bigend_correction
c41536f5 477 + STARTING_FRAME_OFFSET, Pmode));
6f086dfc
RS
478 else
479 addr = plus_constant (virtual_stack_vars_rtx,
c41536f5
AO
480 trunc_int_for_mode
481 (function->x_frame_offset + bigend_correction,
482 Pmode));
6f086dfc
RS
483
484#ifndef FRAME_GROWS_DOWNWARD
e2ecd91c 485 function->x_frame_offset += size;
6f086dfc
RS
486#endif
487
38a448ca 488 x = gen_rtx_MEM (mode, addr);
6f086dfc 489
e2ecd91c
BS
490 function->x_stack_slot_list
491 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
492
6f086dfc
RS
493 return x;
494}
495
e2ecd91c
BS
496/* Wrapper around assign_stack_local_1; assign a local stack slot for the
497 current function. */
3bdf5ad1 498
e2ecd91c 499rtx
fa8db1f7 500assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
6f086dfc 501{
01d939e8 502 return assign_stack_local_1 (mode, size, align, cfun);
6f086dfc 503}
0aea6467
ZD
504
505\f
506/* Removes temporary slot TEMP from LIST. */
507
508static void
509cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
510{
511 if (temp->next)
512 temp->next->prev = temp->prev;
513 if (temp->prev)
514 temp->prev->next = temp->next;
515 else
516 *list = temp->next;
517
518 temp->prev = temp->next = NULL;
519}
520
521/* Inserts temporary slot TEMP to LIST. */
522
523static void
524insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
525{
526 temp->next = *list;
527 if (*list)
528 (*list)->prev = temp;
529 temp->prev = NULL;
530 *list = temp;
531}
532
533/* Returns the list of used temp slots at LEVEL. */
534
535static struct temp_slot **
536temp_slots_at_level (int level)
537{
538 level++;
539
540 if (!used_temp_slots)
541 VARRAY_GENERIC_PTR_INIT (used_temp_slots, 3, "used_temp_slots");
542
543 while (level >= (int) VARRAY_ACTIVE_SIZE (used_temp_slots))
544 VARRAY_PUSH_GENERIC_PTR (used_temp_slots, NULL);
545
546 return (struct temp_slot **) &VARRAY_GENERIC_PTR (used_temp_slots, level);
547}
548
549/* Returns the maximal temporary slot level. */
550
551static int
552max_slot_level (void)
553{
554 if (!used_temp_slots)
555 return -1;
556
557 return VARRAY_ACTIVE_SIZE (used_temp_slots) - 1;
558}
559
560/* Moves temporary slot TEMP to LEVEL. */
561
562static void
563move_slot_to_level (struct temp_slot *temp, int level)
564{
565 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
566 insert_slot_to_list (temp, temp_slots_at_level (level));
567 temp->level = level;
568}
569
570/* Make temporary slot TEMP available. */
571
572static void
573make_slot_available (struct temp_slot *temp)
574{
575 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
576 insert_slot_to_list (temp, &avail_temp_slots);
577 temp->in_use = 0;
578 temp->level = -1;
579}
6f086dfc
RS
580\f
581/* Allocate a temporary stack slot and record it for possible later
582 reuse.
583
584 MODE is the machine mode to be given to the returned rtx.
585
586 SIZE is the size in units of the space required. We do no rounding here
587 since assign_stack_local will do any required rounding.
588
d93d4205
MS
589 KEEP is 1 if this slot is to be retained after a call to
590 free_temp_slots. Automatic variables for a block are allocated
7efcb746
PB
591 with this flag. KEEP values of 2 or 3 were needed respectively
592 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
593 or for SAVE_EXPRs, but they are now unused and will abort.
a4c6502a
MM
594
595 TYPE is the type that will be used for the stack slot. */
6f086dfc 596
a06ef755 597rtx
fa8db1f7
AJ
598assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size, int keep,
599 tree type)
6f086dfc 600{
74e2819c 601 unsigned int align;
0aea6467 602 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
faa964e5 603 rtx slot;
6f086dfc 604
303ec2aa
RK
605 /* If SIZE is -1 it means that somebody tried to allocate a temporary
606 of a variable size. */
607 if (size == -1)
608 abort ();
609
7efcb746
PB
610 /* These are now unused. */
611 if (keep > 1)
612 abort ();
613
d16790f2
JW
614 if (mode == BLKmode)
615 align = BIGGEST_ALIGNMENT;
dbab7b72
JH
616 else
617 align = GET_MODE_ALIGNMENT (mode);
6f086dfc 618
d16790f2 619 if (! type)
ae2bcd98 620 type = lang_hooks.types.type_for_mode (mode, 0);
3bdf5ad1 621
d16790f2
JW
622 if (type)
623 align = LOCAL_ALIGNMENT (type, align);
624
625 /* Try to find an available, already-allocated temporary of the proper
626 mode which meets the size and alignment requirements. Choose the
627 smallest one with the closest alignment. */
0aea6467
ZD
628 for (p = avail_temp_slots; p; p = p->next)
629 {
630 if (p->align >= align && p->size >= size && GET_MODE (p->slot) == mode
631 && objects_must_conflict_p (p->type, type)
632 && (best_p == 0 || best_p->size > p->size
633 || (best_p->size == p->size && best_p->align > p->align)))
634 {
635 if (p->align == align && p->size == size)
636 {
637 selected = p;
638 cut_slot_from_list (selected, &avail_temp_slots);
639 best_p = 0;
640 break;
641 }
642 best_p = p;
643 }
644 }
6f086dfc
RS
645
646 /* Make our best, if any, the one to use. */
647 if (best_p)
a45035b6 648 {
0aea6467
ZD
649 selected = best_p;
650 cut_slot_from_list (selected, &avail_temp_slots);
651
a45035b6
JW
652 /* If there are enough aligned bytes left over, make them into a new
653 temp_slot so that the extra bytes don't get wasted. Do this only
654 for BLKmode slots, so that we can be sure of the alignment. */
3bdf5ad1 655 if (GET_MODE (best_p->slot) == BLKmode)
a45035b6 656 {
d16790f2 657 int alignment = best_p->align / BITS_PER_UNIT;
e5e809f4 658 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
a45035b6
JW
659
660 if (best_p->size - rounded_size >= alignment)
661 {
703ad42b 662 p = ggc_alloc (sizeof (struct temp_slot));
a25d4ba2 663 p->in_use = p->addr_taken = 0;
a45035b6 664 p->size = best_p->size - rounded_size;
307d8cd6
RK
665 p->base_offset = best_p->base_offset + rounded_size;
666 p->full_size = best_p->full_size - rounded_size;
38a448ca
RH
667 p->slot = gen_rtx_MEM (BLKmode,
668 plus_constant (XEXP (best_p->slot, 0),
669 rounded_size));
d16790f2 670 p->align = best_p->align;
e5e76139 671 p->address = 0;
1da68f56 672 p->type = best_p->type;
0aea6467 673 insert_slot_to_list (p, &avail_temp_slots);
a45035b6 674
38a448ca
RH
675 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
676 stack_slot_list);
a45035b6
JW
677
678 best_p->size = rounded_size;
291dde90 679 best_p->full_size = rounded_size;
a45035b6
JW
680 }
681 }
a45035b6 682 }
718fe406 683
6f086dfc 684 /* If we still didn't find one, make a new temporary. */
0aea6467 685 if (selected == 0)
6f086dfc 686 {
e5e809f4
JL
687 HOST_WIDE_INT frame_offset_old = frame_offset;
688
703ad42b 689 p = ggc_alloc (sizeof (struct temp_slot));
e5e809f4 690
c87a0a39
JL
691 /* We are passing an explicit alignment request to assign_stack_local.
692 One side effect of that is assign_stack_local will not round SIZE
693 to ensure the frame offset remains suitably aligned.
694
695 So for requests which depended on the rounding of SIZE, we go ahead
696 and round it now. We also make sure ALIGNMENT is at least
697 BIGGEST_ALIGNMENT. */
010529e5 698 if (mode == BLKmode && align < BIGGEST_ALIGNMENT)
c4f2c499 699 abort ();
6f67a30d 700 p->slot = assign_stack_local (mode,
010529e5 701 (mode == BLKmode
fc555370 702 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
010529e5 703 : size),
6f67a30d 704 align);
d16790f2
JW
705
706 p->align = align;
e5e809f4 707
b2a80c0d
DE
708 /* The following slot size computation is necessary because we don't
709 know the actual size of the temporary slot until assign_stack_local
710 has performed all the frame alignment and size rounding for the
fc91b0d0
RK
711 requested temporary. Note that extra space added for alignment
712 can be either above or below this stack slot depending on which
713 way the frame grows. We include the extra space if and only if it
714 is above this slot. */
b2a80c0d
DE
715#ifdef FRAME_GROWS_DOWNWARD
716 p->size = frame_offset_old - frame_offset;
717#else
fc91b0d0
RK
718 p->size = size;
719#endif
e5e809f4 720
fc91b0d0
RK
721 /* Now define the fields used by combine_temp_slots. */
722#ifdef FRAME_GROWS_DOWNWARD
723 p->base_offset = frame_offset;
724 p->full_size = frame_offset_old - frame_offset;
725#else
726 p->base_offset = frame_offset_old;
727 p->full_size = frame_offset - frame_offset_old;
b2a80c0d 728#endif
e5e76139 729 p->address = 0;
0aea6467
ZD
730
731 selected = p;
6f086dfc
RS
732 }
733
0aea6467 734 p = selected;
6f086dfc 735 p->in_use = 1;
a25d4ba2 736 p->addr_taken = 0;
1da68f56 737 p->type = type;
7efcb746
PB
738 p->level = temp_slot_level;
739 p->keep = keep;
1995f267 740
0aea6467
ZD
741 pp = temp_slots_at_level (p->level);
742 insert_slot_to_list (p, pp);
faa964e5
UW
743
744 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
745 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
746 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
3bdf5ad1 747
1da68f56
RK
748 /* If we know the alias set for the memory that will be used, use
749 it. If there's no TYPE, then we don't know anything about the
750 alias set for the memory. */
faa964e5
UW
751 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
752 set_mem_align (slot, align);
1da68f56 753
30f7a378 754 /* If a type is specified, set the relevant flags. */
3bdf5ad1 755 if (type != 0)
1da68f56 756 {
faa964e5
UW
757 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
758 MEM_SET_IN_STRUCT_P (slot, AGGREGATE_TYPE_P (type));
1da68f56 759 }
3bdf5ad1 760
faa964e5 761 return slot;
6f086dfc 762}
d16790f2
JW
763
764/* Allocate a temporary stack slot and record it for possible later
765 reuse. First three arguments are same as in preceding function. */
766
767rtx
fa8db1f7 768assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
d16790f2
JW
769{
770 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
771}
638141a6 772\f
9432c136
EB
773/* Assign a temporary.
774 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
775 and so that should be used in error messages. In either case, we
776 allocate of the given type.
230f21b4
PB
777 KEEP is as for assign_stack_temp.
778 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
b55d9ff8
RK
779 it is 0 if a register is OK.
780 DONT_PROMOTE is 1 if we should not promote values in register
781 to wider modes. */
230f21b4
PB
782
783rtx
fa8db1f7
AJ
784assign_temp (tree type_or_decl, int keep, int memory_required,
785 int dont_promote ATTRIBUTE_UNUSED)
230f21b4 786{
9432c136
EB
787 tree type, decl;
788 enum machine_mode mode;
9e1622ed 789#ifdef PROMOTE_MODE
9432c136
EB
790 int unsignedp;
791#endif
792
793 if (DECL_P (type_or_decl))
794 decl = type_or_decl, type = TREE_TYPE (decl);
795 else
796 decl = NULL, type = type_or_decl;
797
798 mode = TYPE_MODE (type);
9e1622ed 799#ifdef PROMOTE_MODE
8df83eae 800 unsignedp = TYPE_UNSIGNED (type);
0ce8a59c 801#endif
638141a6 802
230f21b4
PB
803 if (mode == BLKmode || memory_required)
804 {
e5e809f4 805 HOST_WIDE_INT size = int_size_in_bytes (type);
e30bb772 806 tree size_tree;
230f21b4
PB
807 rtx tmp;
808
44affdae
JH
809 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
810 problems with allocating the stack space. */
811 if (size == 0)
812 size = 1;
813
230f21b4
PB
814 /* Unfortunately, we don't yet know how to allocate variable-sized
815 temporaries. However, sometimes we have a fixed upper limit on
816 the size (which is stored in TYPE_ARRAY_MAX_SIZE) and can use that
0f41302f 817 instead. This is the case for Chill variable-sized strings. */
230f21b4
PB
818 if (size == -1 && TREE_CODE (type) == ARRAY_TYPE
819 && TYPE_ARRAY_MAX_SIZE (type) != NULL_TREE
3bdf5ad1
RK
820 && host_integerp (TYPE_ARRAY_MAX_SIZE (type), 1))
821 size = tree_low_cst (TYPE_ARRAY_MAX_SIZE (type), 1);
230f21b4 822
e30bb772
RK
823 /* If we still haven't been able to get a size, see if the language
824 can compute a maximum size. */
825 if (size == -1
8963a517 826 && (size_tree = lang_hooks.types.max_size (type)) != 0
e30bb772
RK
827 && host_integerp (size_tree, 1))
828 size = tree_low_cst (size_tree, 1);
829
9432c136
EB
830 /* The size of the temporary may be too large to fit into an integer. */
831 /* ??? Not sure this should happen except for user silliness, so limit
797a6ac1 832 this to things that aren't compiler-generated temporaries. The
9432c136
EB
833 rest of the time we'll abort in assign_stack_temp_for_type. */
834 if (decl && size == -1
835 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
836 {
ddd2d57e 837 error ("%Jsize of variable '%D' is too large", decl, decl);
9432c136
EB
838 size = 1;
839 }
840
d16790f2 841 tmp = assign_stack_temp_for_type (mode, size, keep, type);
230f21b4
PB
842 return tmp;
843 }
638141a6 844
9e1622ed 845#ifdef PROMOTE_MODE
b55d9ff8
RK
846 if (! dont_promote)
847 mode = promote_mode (type, mode, &unsignedp, 0);
230f21b4 848#endif
638141a6 849
230f21b4
PB
850 return gen_reg_rtx (mode);
851}
638141a6 852\f
a45035b6
JW
853/* Combine temporary stack slots which are adjacent on the stack.
854
855 This allows for better use of already allocated stack space. This is only
856 done for BLKmode slots because we can be sure that we won't have alignment
857 problems in this case. */
858
859void
fa8db1f7 860combine_temp_slots (void)
a45035b6 861{
0aea6467 862 struct temp_slot *p, *q, *next, *next_q;
e5e809f4
JL
863 int num_slots;
864
a4c6502a
MM
865 /* We can't combine slots, because the information about which slot
866 is in which alias set will be lost. */
867 if (flag_strict_aliasing)
868 return;
869
718fe406 870 /* If there are a lot of temp slots, don't do anything unless
d6a7951f 871 high levels of optimization. */
e5e809f4 872 if (! flag_expensive_optimizations)
0aea6467 873 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
e5e809f4
JL
874 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
875 return;
a45035b6 876
0aea6467 877 for (p = avail_temp_slots; p; p = next)
e9b7093a
RS
878 {
879 int delete_p = 0;
e5e809f4 880
0aea6467
ZD
881 next = p->next;
882
883 if (GET_MODE (p->slot) != BLKmode)
884 continue;
885
886 for (q = p->next; q; q = next_q)
e9b7093a 887 {
0aea6467
ZD
888 int delete_q = 0;
889
890 next_q = q->next;
891
892 if (GET_MODE (q->slot) != BLKmode)
893 continue;
894
895 if (p->base_offset + p->full_size == q->base_offset)
896 {
897 /* Q comes after P; combine Q into P. */
898 p->size += q->size;
899 p->full_size += q->full_size;
900 delete_q = 1;
901 }
902 else if (q->base_offset + q->full_size == p->base_offset)
903 {
904 /* P comes after Q; combine P into Q. */
905 q->size += p->size;
906 q->full_size += p->full_size;
907 delete_p = 1;
908 break;
909 }
910 if (delete_q)
911 cut_slot_from_list (q, &avail_temp_slots);
e9b7093a 912 }
0aea6467
ZD
913
914 /* Either delete P or advance past it. */
915 if (delete_p)
916 cut_slot_from_list (p, &avail_temp_slots);
e9b7093a 917 }
a45035b6 918}
6f086dfc 919\f
e5e76139
RK
920/* Find the temp slot corresponding to the object at address X. */
921
922static struct temp_slot *
fa8db1f7 923find_temp_slot_from_address (rtx x)
e5e76139
RK
924{
925 struct temp_slot *p;
926 rtx next;
0aea6467 927 int i;
e5e76139 928
0aea6467
ZD
929 for (i = max_slot_level (); i >= 0; i--)
930 for (p = *temp_slots_at_level (i); p; p = p->next)
931 {
932 if (XEXP (p->slot, 0) == x
933 || p->address == x
934 || (GET_CODE (x) == PLUS
935 && XEXP (x, 0) == virtual_stack_vars_rtx
936 && GET_CODE (XEXP (x, 1)) == CONST_INT
937 && INTVAL (XEXP (x, 1)) >= p->base_offset
938 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
939 return p;
940
941 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
942 for (next = p->address; next; next = XEXP (next, 1))
943 if (XEXP (next, 0) == x)
944 return p;
945 }
e5e76139 946
14a774a9
RK
947 /* If we have a sum involving a register, see if it points to a temp
948 slot. */
f8cfc6aa 949 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
14a774a9
RK
950 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
951 return p;
f8cfc6aa 952 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
14a774a9
RK
953 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
954 return p;
955
e5e76139
RK
956 return 0;
957}
718fe406 958
9faa82d8 959/* Indicate that NEW is an alternate way of referring to the temp slot
e5e809f4 960 that previously was known by OLD. */
e5e76139
RK
961
962void
fa8db1f7 963update_temp_slot_address (rtx old, rtx new)
e5e76139 964{
14a774a9 965 struct temp_slot *p;
e5e76139 966
14a774a9 967 if (rtx_equal_p (old, new))
e5e76139 968 return;
14a774a9
RK
969
970 p = find_temp_slot_from_address (old);
971
700f19f0
RK
972 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
973 is a register, see if one operand of the PLUS is a temporary
974 location. If so, NEW points into it. Otherwise, if both OLD and
975 NEW are a PLUS and if there is a register in common between them.
976 If so, try a recursive call on those values. */
14a774a9
RK
977 if (p == 0)
978 {
700f19f0
RK
979 if (GET_CODE (old) != PLUS)
980 return;
981
f8cfc6aa 982 if (REG_P (new))
700f19f0
RK
983 {
984 update_temp_slot_address (XEXP (old, 0), new);
985 update_temp_slot_address (XEXP (old, 1), new);
986 return;
987 }
988 else if (GET_CODE (new) != PLUS)
14a774a9
RK
989 return;
990
991 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
992 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
993 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
994 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
995 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
996 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
997 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
998 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
999
1000 return;
1001 }
1002
718fe406 1003 /* Otherwise add an alias for the temp's address. */
e5e76139
RK
1004 else if (p->address == 0)
1005 p->address = new;
1006 else
1007 {
1008 if (GET_CODE (p->address) != EXPR_LIST)
38a448ca 1009 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
e5e76139 1010
38a448ca 1011 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
e5e76139
RK
1012 }
1013}
1014
a25d4ba2 1015/* If X could be a reference to a temporary slot, mark the fact that its
9faa82d8 1016 address was taken. */
a25d4ba2
RK
1017
1018void
fa8db1f7 1019mark_temp_addr_taken (rtx x)
a25d4ba2
RK
1020{
1021 struct temp_slot *p;
1022
1023 if (x == 0)
1024 return;
1025
1026 /* If X is not in memory or is at a constant address, it cannot be in
1027 a temporary slot. */
3c0cb5de 1028 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
a25d4ba2
RK
1029 return;
1030
1031 p = find_temp_slot_from_address (XEXP (x, 0));
1032 if (p != 0)
1033 p->addr_taken = 1;
1034}
1035
9cca6a99
MS
1036/* If X could be a reference to a temporary slot, mark that slot as
1037 belonging to the to one level higher than the current level. If X
1038 matched one of our slots, just mark that one. Otherwise, we can't
1039 easily predict which it is, so upgrade all of them. Kept slots
1040 need not be touched.
6f086dfc
RS
1041
1042 This is called when an ({...}) construct occurs and a statement
1043 returns a value in memory. */
1044
1045void
fa8db1f7 1046preserve_temp_slots (rtx x)
6f086dfc 1047{
0aea6467 1048 struct temp_slot *p = 0, *next;
6f086dfc 1049
73620b82
RK
1050 /* If there is no result, we still might have some objects whose address
1051 were taken, so we need to make sure they stay around. */
e3a77161 1052 if (x == 0)
73620b82 1053 {
0aea6467
ZD
1054 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1055 {
1056 next = p->next;
1057
1058 if (p->addr_taken)
1059 move_slot_to_level (p, temp_slot_level - 1);
1060 }
73620b82 1061
8fff4fc1
RH
1062 return;
1063 }
f7b6d104 1064
8fff4fc1
RH
1065 /* If X is a register that is being used as a pointer, see if we have
1066 a temporary slot we know it points to. To be consistent with
1067 the code below, we really should preserve all non-kept slots
1068 if we can't find a match, but that seems to be much too costly. */
1069 if (REG_P (x) && REG_POINTER (x))
1070 p = find_temp_slot_from_address (x);
f7b6d104 1071
8fff4fc1
RH
1072 /* If X is not in memory or is at a constant address, it cannot be in
1073 a temporary slot, but it can contain something whose address was
1074 taken. */
1075 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1076 {
1077 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1078 {
1079 next = p->next;
b5bd3b3c 1080
8fff4fc1
RH
1081 if (p->addr_taken)
1082 move_slot_to_level (p, temp_slot_level - 1);
e9a25f70 1083 }
c5c76735 1084
8fff4fc1
RH
1085 return;
1086 }
1087
1088 /* First see if we can find a match. */
1089 if (p == 0)
1090 p = find_temp_slot_from_address (XEXP (x, 0));
1091
1092 if (p != 0)
1093 {
1094 /* Move everything at our level whose address was taken to our new
1095 level in case we used its address. */
1096 struct temp_slot *q;
1097
1098 if (p->level == temp_slot_level)
fbdfe39c 1099 {
8fff4fc1 1100 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
8b04083b 1101 {
8fff4fc1 1102 next = q->next;
8b04083b 1103
8fff4fc1
RH
1104 if (p != q && q->addr_taken)
1105 move_slot_to_level (q, temp_slot_level - 1);
8b04083b 1106 }
8fff4fc1
RH
1107
1108 move_slot_to_level (p, temp_slot_level - 1);
1109 p->addr_taken = 0;
fbdfe39c 1110 }
8fff4fc1 1111 return;
f7b6d104 1112 }
e9a25f70 1113
8fff4fc1
RH
1114 /* Otherwise, preserve all non-kept slots at this level. */
1115 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
e9a25f70 1116 {
8fff4fc1 1117 next = p->next;
fe9b4957 1118
8fff4fc1
RH
1119 if (!p->keep)
1120 move_slot_to_level (p, temp_slot_level - 1);
1121 }
fe9b4957
MM
1122}
1123
8fff4fc1
RH
1124/* Free all temporaries used so far. This is normally called at the
1125 end of generating code for a statement. */
fe9b4957 1126
8fff4fc1
RH
1127void
1128free_temp_slots (void)
fe9b4957 1129{
8fff4fc1 1130 struct temp_slot *p, *next;
fe9b4957 1131
8fff4fc1
RH
1132 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1133 {
1134 next = p->next;
fe9b4957 1135
8fff4fc1
RH
1136 if (!p->keep)
1137 make_slot_available (p);
1138 }
fe9b4957 1139
8fff4fc1
RH
1140 combine_temp_slots ();
1141}
fe9b4957 1142
8fff4fc1 1143/* Push deeper into the nesting level for stack temporaries. */
fe9b4957 1144
8fff4fc1
RH
1145void
1146push_temp_slots (void)
fe9b4957 1147{
8fff4fc1 1148 temp_slot_level++;
fe9b4957
MM
1149}
1150
8fff4fc1
RH
1151/* Pop a temporary nesting level. All slots in use in the current level
1152 are freed. */
fe9b4957 1153
8fff4fc1
RH
1154void
1155pop_temp_slots (void)
fe9b4957 1156{
8fff4fc1 1157 struct temp_slot *p, *next;
fe9b4957 1158
8fff4fc1
RH
1159 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1160 {
1161 next = p->next;
1162 make_slot_available (p);
1163 }
e9a25f70 1164
8fff4fc1 1165 combine_temp_slots ();
b987f237 1166
8fff4fc1 1167 temp_slot_level--;
8c36698e
NC
1168}
1169
8fff4fc1 1170/* Initialize temporary slots. */
e9a25f70
JL
1171
1172void
8fff4fc1 1173init_temp_slots (void)
e9a25f70 1174{
8fff4fc1
RH
1175 /* We have not allocated any temporaries yet. */
1176 avail_temp_slots = 0;
1177 used_temp_slots = 0;
1178 temp_slot_level = 0;
8fff4fc1
RH
1179}
1180\f
1181/* These routines are responsible for converting virtual register references
1182 to the actual hard register references once RTL generation is complete.
718fe406 1183
8fff4fc1
RH
1184 The following four variables are used for communication between the
1185 routines. They contain the offsets of the virtual registers from their
1186 respective hard registers. */
fe9b4957 1187
8fff4fc1
RH
1188static int in_arg_offset;
1189static int var_offset;
1190static int dynamic_offset;
1191static int out_arg_offset;
1192static int cfa_offset;
8a5275eb 1193
8fff4fc1
RH
1194/* In most machines, the stack pointer register is equivalent to the bottom
1195 of the stack. */
718fe406 1196
8fff4fc1
RH
1197#ifndef STACK_POINTER_OFFSET
1198#define STACK_POINTER_OFFSET 0
1199#endif
8c36698e 1200
8fff4fc1
RH
1201/* If not defined, pick an appropriate default for the offset of dynamically
1202 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1203 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
fe9b4957 1204
8fff4fc1 1205#ifndef STACK_DYNAMIC_OFFSET
8a5275eb 1206
8fff4fc1
RH
1207/* The bottom of the stack points to the actual arguments. If
1208 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1209 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1210 stack space for register parameters is not pushed by the caller, but
1211 rather part of the fixed stack areas and hence not included in
1212 `current_function_outgoing_args_size'. Nevertheless, we must allow
1213 for it when allocating stack dynamic objects. */
8a5275eb 1214
8fff4fc1
RH
1215#if defined(REG_PARM_STACK_SPACE) && ! defined(OUTGOING_REG_PARM_STACK_SPACE)
1216#define STACK_DYNAMIC_OFFSET(FNDECL) \
1217((ACCUMULATE_OUTGOING_ARGS \
1218 ? (current_function_outgoing_args_size + REG_PARM_STACK_SPACE (FNDECL)) : 0)\
1219 + (STACK_POINTER_OFFSET)) \
4fa48eae 1220
8fff4fc1
RH
1221#else
1222#define STACK_DYNAMIC_OFFSET(FNDECL) \
1223((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1224 + (STACK_POINTER_OFFSET))
1225#endif
1226#endif
4fa48eae 1227
8fff4fc1 1228/* On most machines, the CFA coincides with the first incoming parm. */
4fa48eae 1229
8fff4fc1
RH
1230#ifndef ARG_POINTER_CFA_OFFSET
1231#define ARG_POINTER_CFA_OFFSET(FNDECL) FIRST_PARM_OFFSET (FNDECL)
1232#endif
4fa48eae 1233
659e47fb 1234\f
6f086dfc
RS
1235/* Pass through the INSNS of function FNDECL and convert virtual register
1236 references to hard register references. */
1237
1238void
fd743bc1 1239instantiate_virtual_regs (void)
6f086dfc
RS
1240{
1241 rtx insn;
1242
1243 /* Compute the offsets to use for this function. */
fd743bc1 1244 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
6f086dfc 1245 var_offset = STARTING_FRAME_OFFSET;
fd743bc1 1246 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
6f086dfc 1247 out_arg_offset = STACK_POINTER_OFFSET;
fd743bc1 1248 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
6f086dfc
RS
1249
1250 /* Scan all variables and parameters of this function. For each that is
1251 in memory, instantiate all virtual registers if the result is a valid
1252 address. If not, we do it later. That will handle most uses of virtual
1253 regs on many machines. */
fd743bc1 1254 instantiate_decls (current_function_decl, 1);
6f086dfc
RS
1255
1256 /* Initialize recognition, indicating that volatile is OK. */
1257 init_recog ();
1258
1259 /* Scan through all the insns, instantiating every virtual register still
1260 present. */
fd743bc1 1261 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6f086dfc
RS
1262 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1263 || GET_CODE (insn) == CALL_INSN)
1264 {
1265 instantiate_virtual_regs_1 (&PATTERN (insn), insn, 1);
5dc96d60
JH
1266 if (INSN_DELETED_P (insn))
1267 continue;
5f4f0e22 1268 instantiate_virtual_regs_1 (&REG_NOTES (insn), NULL_RTX, 0);
87c61e2d
JL
1269 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1270 if (GET_CODE (insn) == CALL_INSN)
1271 instantiate_virtual_regs_1 (&CALL_INSN_FUNCTION_USAGE (insn),
1272 NULL_RTX, 0);
f90e4dea
JH
1273
1274 /* Past this point all ASM statements should match. Verify that
1275 to avoid failures later in the compilation process. */
1276 if (asm_noperands (PATTERN (insn)) >= 0
1277 && ! check_asm_operands (PATTERN (insn)))
1278 instantiate_virtual_regs_lossage (insn);
6f086dfc
RS
1279 }
1280
1281 /* Now instantiate the remaining register equivalences for debugging info.
1282 These will not be valid addresses. */
fd743bc1 1283 instantiate_decls (current_function_decl, 0);
6f086dfc
RS
1284
1285 /* Indicate that, from now on, assign_stack_local should use
1286 frame_pointer_rtx. */
1287 virtuals_instantiated = 1;
1288}
1289
1290/* Scan all decls in FNDECL (both variables and parameters) and instantiate
1291 all virtual registers in their DECL_RTL's.
1292
1293 If VALID_ONLY, do this only if the resulting address is still valid.
1294 Otherwise, always do it. */
1295
1296static void
fa8db1f7 1297instantiate_decls (tree fndecl, int valid_only)
6f086dfc
RS
1298{
1299 tree decl;
1300
6f086dfc
RS
1301 /* Process all parameters of the function. */
1302 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1303 {
e5e809f4 1304 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (decl));
ae0ed63a 1305 HOST_WIDE_INT size_rtl;
e5e809f4 1306
718fe406 1307 instantiate_decl (DECL_RTL (decl), size, valid_only);
ce717ce4
JW
1308
1309 /* If the parameter was promoted, then the incoming RTL mode may be
1310 larger than the declared type size. We must use the larger of
1311 the two sizes. */
ae0ed63a
JM
1312 size_rtl = GET_MODE_SIZE (GET_MODE (DECL_INCOMING_RTL (decl)));
1313 size = MAX (size_rtl, size);
ce717ce4 1314 instantiate_decl (DECL_INCOMING_RTL (decl), size, valid_only);
6f086dfc
RS
1315 }
1316
0f41302f 1317 /* Now process all variables defined in the function or its subblocks. */
6f086dfc 1318 instantiate_decls_1 (DECL_INITIAL (fndecl), valid_only);
6f086dfc
RS
1319}
1320
1321/* Subroutine of instantiate_decls: Process all decls in the given
1322 BLOCK node and all its subblocks. */
1323
1324static void
fa8db1f7 1325instantiate_decls_1 (tree let, int valid_only)
6f086dfc
RS
1326{
1327 tree t;
1328
1329 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
19e7881c 1330 if (DECL_RTL_SET_P (t))
797a6ac1 1331 instantiate_decl (DECL_RTL (t),
19e7881c
MM
1332 int_size_in_bytes (TREE_TYPE (t)),
1333 valid_only);
6f086dfc
RS
1334
1335 /* Process all subblocks. */
1336 for (t = BLOCK_SUBBLOCKS (let); t; t = TREE_CHAIN (t))
1337 instantiate_decls_1 (t, valid_only);
1338}
5a73491b 1339
8008b228 1340/* Subroutine of the preceding procedures: Given RTL representing a
5a73491b
RK
1341 decl and the size of the object, do any instantiation required.
1342
cc2902df 1343 If VALID_ONLY is nonzero, it means that the RTL should only be
5a73491b
RK
1344 changed if the new address is valid. */
1345
1346static void
fa8db1f7 1347instantiate_decl (rtx x, HOST_WIDE_INT size, int valid_only)
5a73491b
RK
1348{
1349 enum machine_mode mode;
1350 rtx addr;
1351
1352 /* If this is not a MEM, no need to do anything. Similarly if the
1353 address is a constant or a register that is not a virtual register. */
1354
3c0cb5de 1355 if (x == 0 || !MEM_P (x))
5a73491b
RK
1356 return;
1357
1358 addr = XEXP (x, 0);
1359 if (CONSTANT_P (addr)
f8cfc6aa 1360 || (REG_P (addr)
5a73491b
RK
1361 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1362 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1363 return;
1364
1365 /* If we should only do this if the address is valid, copy the address.
1366 We need to do this so we can undo any changes that might make the
1367 address invalid. This copy is unfortunate, but probably can't be
1368 avoided. */
1369
1370 if (valid_only)
1371 addr = copy_rtx (addr);
1372
1373 instantiate_virtual_regs_1 (&addr, NULL_RTX, 0);
1374
770ae6cc 1375 if (valid_only && size >= 0)
87ce34d6 1376 {
770ae6cc
RK
1377 unsigned HOST_WIDE_INT decl_size = size;
1378
87ce34d6
JW
1379 /* Now verify that the resulting address is valid for every integer or
1380 floating-point mode up to and including SIZE bytes long. We do this
1381 since the object might be accessed in any mode and frame addresses
1382 are shared. */
1383
1384 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
770ae6cc 1385 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
87ce34d6
JW
1386 mode = GET_MODE_WIDER_MODE (mode))
1387 if (! memory_address_p (mode, addr))
1388 return;
5a73491b 1389
87ce34d6 1390 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT);
770ae6cc 1391 mode != VOIDmode && GET_MODE_SIZE (mode) <= decl_size;
87ce34d6
JW
1392 mode = GET_MODE_WIDER_MODE (mode))
1393 if (! memory_address_p (mode, addr))
1394 return;
1395 }
5a73491b 1396
87ce34d6
JW
1397 /* Put back the address now that we have updated it and we either know
1398 it is valid or we don't care whether it is valid. */
5a73491b
RK
1399
1400 XEXP (x, 0) = addr;
1401}
6f086dfc 1402\f
d1405722 1403/* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
d6a7951f 1404 is a virtual register, return the equivalent hard register and set the
d1405722
RK
1405 offset indirectly through the pointer. Otherwise, return 0. */
1406
1407static rtx
fa8db1f7 1408instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
d1405722
RK
1409{
1410 rtx new;
1411 HOST_WIDE_INT offset;
1412
1413 if (x == virtual_incoming_args_rtx)
1414 new = arg_pointer_rtx, offset = in_arg_offset;
1415 else if (x == virtual_stack_vars_rtx)
1416 new = frame_pointer_rtx, offset = var_offset;
1417 else if (x == virtual_stack_dynamic_rtx)
1418 new = stack_pointer_rtx, offset = dynamic_offset;
1419 else if (x == virtual_outgoing_args_rtx)
1420 new = stack_pointer_rtx, offset = out_arg_offset;
1421 else if (x == virtual_cfa_rtx)
1422 new = arg_pointer_rtx, offset = cfa_offset;
1423 else
1424 return 0;
1425
1426 *poffset = offset;
1427 return new;
1428}
1429\f
5dc96d60
JH
1430
1431/* Called when instantiate_virtual_regs has failed to update the instruction.
1432 Usually this means that non-matching instruction has been emit, however for
1433 asm statements it may be the problem in the constraints. */
1434static void
fa8db1f7 1435instantiate_virtual_regs_lossage (rtx insn)
5dc96d60
JH
1436{
1437 if (asm_noperands (PATTERN (insn)) >= 0)
1438 {
1439 error_for_asm (insn, "impossible constraint in `asm'");
1440 delete_insn (insn);
1441 }
1442 else
1443 abort ();
1444}
6f086dfc
RS
1445/* Given a pointer to a piece of rtx and an optional pointer to the
1446 containing object, instantiate any virtual registers present in it.
1447
1448 If EXTRA_INSNS, we always do the replacement and generate
1449 any extra insns before OBJECT. If it zero, we do nothing if replacement
1450 is not valid.
1451
1452 Return 1 if we either had nothing to do or if we were able to do the
718fe406 1453 needed replacement. Return 0 otherwise; we only return zero if
6f086dfc
RS
1454 EXTRA_INSNS is zero.
1455
1456 We first try some simple transformations to avoid the creation of extra
1457 pseudos. */
1458
1459static int
fa8db1f7 1460instantiate_virtual_regs_1 (rtx *loc, rtx object, int extra_insns)
6f086dfc
RS
1461{
1462 rtx x;
1463 RTX_CODE code;
1464 rtx new = 0;
07444f1d 1465 HOST_WIDE_INT offset = 0;
6f086dfc
RS
1466 rtx temp;
1467 rtx seq;
1468 int i, j;
6f7d635c 1469 const char *fmt;
6f086dfc
RS
1470
1471 /* Re-start here to avoid recursion in common cases. */
1472 restart:
1473
1474 x = *loc;
1475 if (x == 0)
1476 return 1;
1477
5dc96d60
JH
1478 /* We may have detected and deleted invalid asm statements. */
1479 if (object && INSN_P (object) && INSN_DELETED_P (object))
1480 return 1;
1481
6f086dfc
RS
1482 code = GET_CODE (x);
1483
1484 /* Check for some special cases. */
1485 switch (code)
1486 {
1487 case CONST_INT:
1488 case CONST_DOUBLE:
69ef87e2 1489 case CONST_VECTOR:
6f086dfc
RS
1490 case CONST:
1491 case SYMBOL_REF:
1492 case CODE_LABEL:
1493 case PC:
1494 case CC0:
1495 case ASM_INPUT:
1496 case ADDR_VEC:
1497 case ADDR_DIFF_VEC:
1498 case RETURN:
1499 return 1;
1500
1501 case SET:
1502 /* We are allowed to set the virtual registers. This means that
38e01259 1503 the actual register should receive the source minus the
6f086dfc
RS
1504 appropriate offset. This is used, for example, in the handling
1505 of non-local gotos. */
d1405722 1506 if ((new = instantiate_new_reg (SET_DEST (x), &offset)) != 0)
6f086dfc 1507 {
14a774a9
RK
1508 rtx src = SET_SRC (x);
1509
d1405722
RK
1510 /* We are setting the register, not using it, so the relevant
1511 offset is the negative of the offset to use were we using
1512 the register. */
1513 offset = - offset;
14a774a9
RK
1514 instantiate_virtual_regs_1 (&src, NULL_RTX, 0);
1515
6f086dfc
RS
1516 /* The only valid sources here are PLUS or REG. Just do
1517 the simplest possible thing to handle them. */
f8cfc6aa 1518 if (!REG_P (src) && GET_CODE (src) != PLUS)
5dc96d60
JH
1519 {
1520 instantiate_virtual_regs_lossage (object);
1521 return 1;
1522 }
6f086dfc
RS
1523
1524 start_sequence ();
f8cfc6aa 1525 if (!REG_P (src))
14a774a9 1526 temp = force_operand (src, NULL_RTX);
6f086dfc 1527 else
14a774a9 1528 temp = src;
5f4f0e22 1529 temp = force_operand (plus_constant (temp, offset), NULL_RTX);
6f086dfc
RS
1530 seq = get_insns ();
1531 end_sequence ();
1532
2f937369 1533 emit_insn_before (seq, object);
6f086dfc
RS
1534 SET_DEST (x) = new;
1535
e9a25f70 1536 if (! validate_change (object, &SET_SRC (x), temp, 0)
6f086dfc 1537 || ! extra_insns)
5dc96d60 1538 instantiate_virtual_regs_lossage (object);
6f086dfc
RS
1539
1540 return 1;
1541 }
1542
1543 instantiate_virtual_regs_1 (&SET_DEST (x), object, extra_insns);
1544 loc = &SET_SRC (x);
1545 goto restart;
1546
1547 case PLUS:
1548 /* Handle special case of virtual register plus constant. */
1549 if (CONSTANT_P (XEXP (x, 1)))
1550 {
b1f82ccf 1551 rtx old, new_offset;
6f086dfc
RS
1552
1553 /* Check for (plus (plus VIRT foo) (const_int)) first. */
1554 if (GET_CODE (XEXP (x, 0)) == PLUS)
1555 {
d1405722
RK
1556 if ((new = instantiate_new_reg (XEXP (XEXP (x, 0), 0), &offset)))
1557 {
1558 instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 1), object,
1559 extra_insns);
1560 new = gen_rtx_PLUS (Pmode, new, XEXP (XEXP (x, 0), 1));
1561 }
6f086dfc
RS
1562 else
1563 {
1564 loc = &XEXP (x, 0);
1565 goto restart;
1566 }
6f086dfc
RS
1567 }
1568
d1405722
RK
1569#ifdef POINTERS_EXTEND_UNSIGNED
1570 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1571 we can commute the PLUS and SUBREG because pointers into the
1572 frame are well-behaved. */
1573 else if (GET_CODE (XEXP (x, 0)) == SUBREG && GET_MODE (x) == ptr_mode
1574 && GET_CODE (XEXP (x, 1)) == CONST_INT
1575 && 0 != (new
1576 = instantiate_new_reg (SUBREG_REG (XEXP (x, 0)),
1577 &offset))
1578 && validate_change (object, loc,
1579 plus_constant (gen_lowpart (ptr_mode,
1580 new),
1581 offset
1582 + INTVAL (XEXP (x, 1))),
1583 0))
1584 return 1;
1585#endif
1586 else if ((new = instantiate_new_reg (XEXP (x, 0), &offset)) == 0)
6f086dfc
RS
1587 {
1588 /* We know the second operand is a constant. Unless the
1589 first operand is a REG (which has been already checked),
1590 it needs to be checked. */
f8cfc6aa 1591 if (!REG_P (XEXP (x, 0)))
6f086dfc
RS
1592 {
1593 loc = &XEXP (x, 0);
1594 goto restart;
1595 }
1596 return 1;
1597 }
1598
b1f82ccf 1599 new_offset = plus_constant (XEXP (x, 1), offset);
6f086dfc 1600
b1f82ccf
DE
1601 /* If the new constant is zero, try to replace the sum with just
1602 the register. */
1603 if (new_offset == const0_rtx
1604 && validate_change (object, loc, new, 0))
6f086dfc
RS
1605 return 1;
1606
b1f82ccf
DE
1607 /* Next try to replace the register and new offset.
1608 There are two changes to validate here and we can't assume that
1609 in the case of old offset equals new just changing the register
1610 will yield a valid insn. In the interests of a little efficiency,
1611 however, we only call validate change once (we don't queue up the
0f41302f 1612 changes and then call apply_change_group). */
b1f82ccf
DE
1613
1614 old = XEXP (x, 0);
1615 if (offset == 0
1616 ? ! validate_change (object, &XEXP (x, 0), new, 0)
1617 : (XEXP (x, 0) = new,
1618 ! validate_change (object, &XEXP (x, 1), new_offset, 0)))
6f086dfc
RS
1619 {
1620 if (! extra_insns)
1621 {
1622 XEXP (x, 0) = old;
1623 return 0;
1624 }
1625
1626 /* Otherwise copy the new constant into a register and replace
1627 constant with that register. */
1628 temp = gen_reg_rtx (Pmode);
b1f82ccf 1629 XEXP (x, 0) = new;
6f086dfc 1630 if (validate_change (object, &XEXP (x, 1), temp, 0))
b1f82ccf 1631 emit_insn_before (gen_move_insn (temp, new_offset), object);
6f086dfc
RS
1632 else
1633 {
1634 /* If that didn't work, replace this expression with a
1635 register containing the sum. */
1636
6f086dfc 1637 XEXP (x, 0) = old;
38a448ca 1638 new = gen_rtx_PLUS (Pmode, new, new_offset);
6f086dfc
RS
1639
1640 start_sequence ();
5f4f0e22 1641 temp = force_operand (new, NULL_RTX);
6f086dfc
RS
1642 seq = get_insns ();
1643 end_sequence ();
1644
2f937369 1645 emit_insn_before (seq, object);
6f086dfc
RS
1646 if (! validate_change (object, loc, temp, 0)
1647 && ! validate_replace_rtx (x, temp, object))
5dc96d60
JH
1648 {
1649 instantiate_virtual_regs_lossage (object);
1650 return 1;
1651 }
6f086dfc
RS
1652 }
1653 }
1654
1655 return 1;
1656 }
1657
1658 /* Fall through to generic two-operand expression case. */
1659 case EXPR_LIST:
1660 case CALL:
1661 case COMPARE:
1662 case MINUS:
1663 case MULT:
1664 case DIV: case UDIV:
1665 case MOD: case UMOD:
1666 case AND: case IOR: case XOR:
45620ed4
RK
1667 case ROTATERT: case ROTATE:
1668 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
6f086dfc
RS
1669 case NE: case EQ:
1670 case GE: case GT: case GEU: case GTU:
1671 case LE: case LT: case LEU: case LTU:
1672 if (XEXP (x, 1) && ! CONSTANT_P (XEXP (x, 1)))
1673 instantiate_virtual_regs_1 (&XEXP (x, 1), object, extra_insns);
1674 loc = &XEXP (x, 0);
1675 goto restart;
1676
1677 case MEM:
1678 /* Most cases of MEM that convert to valid addresses have already been
4fd796bb 1679 handled by our scan of decls. The only special handling we
6f086dfc 1680 need here is to make a copy of the rtx to ensure it isn't being
718fe406 1681 shared if we have to change it to a pseudo.
6f086dfc
RS
1682
1683 If the rtx is a simple reference to an address via a virtual register,
1684 it can potentially be shared. In such cases, first try to make it
1685 a valid address, which can also be shared. Otherwise, copy it and
718fe406 1686 proceed normally.
6f086dfc
RS
1687
1688 First check for common cases that need no processing. These are
1689 usually due to instantiation already being done on a previous instance
1690 of a shared rtx. */
1691
1692 temp = XEXP (x, 0);
1693 if (CONSTANT_ADDRESS_P (temp)
1694#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1695 || temp == arg_pointer_rtx
b37f453b
DE
1696#endif
1697#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1698 || temp == hard_frame_pointer_rtx
6f086dfc
RS
1699#endif
1700 || temp == frame_pointer_rtx)
1701 return 1;
1702
1703 if (GET_CODE (temp) == PLUS
1704 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1705 && (XEXP (temp, 0) == frame_pointer_rtx
b37f453b
DE
1706#if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1707 || XEXP (temp, 0) == hard_frame_pointer_rtx
1708#endif
6f086dfc
RS
1709#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1710 || XEXP (temp, 0) == arg_pointer_rtx
1711#endif
1712 ))
1713 return 1;
1714
1715 if (temp == virtual_stack_vars_rtx
1716 || temp == virtual_incoming_args_rtx
1717 || (GET_CODE (temp) == PLUS
1718 && CONSTANT_ADDRESS_P (XEXP (temp, 1))
1719 && (XEXP (temp, 0) == virtual_stack_vars_rtx
1720 || XEXP (temp, 0) == virtual_incoming_args_rtx)))
1721 {
1722 /* This MEM may be shared. If the substitution can be done without
1723 the need to generate new pseudos, we want to do it in place
1724 so all copies of the shared rtx benefit. The call below will
1725 only make substitutions if the resulting address is still
1726 valid.
1727
1728 Note that we cannot pass X as the object in the recursive call
1729 since the insn being processed may not allow all valid
6461be14
RS
1730 addresses. However, if we were not passed on object, we can
1731 only modify X without copying it if X will have a valid
1732 address.
6f086dfc 1733
6461be14
RS
1734 ??? Also note that this can still lose if OBJECT is an insn that
1735 has less restrictions on an address that some other insn.
1736 In that case, we will modify the shared address. This case
4fd796bb
RK
1737 doesn't seem very likely, though. One case where this could
1738 happen is in the case of a USE or CLOBBER reference, but we
1739 take care of that below. */
6461be14
RS
1740
1741 if (instantiate_virtual_regs_1 (&XEXP (x, 0),
1742 object ? object : x, 0))
6f086dfc
RS
1743 return 1;
1744
1745 /* Otherwise make a copy and process that copy. We copy the entire
1746 RTL expression since it might be a PLUS which could also be
1747 shared. */
1748 *loc = x = copy_rtx (x);
1749 }
1750
1751 /* Fall through to generic unary operation case. */
21b8482a 1752 case PREFETCH:
6f086dfc
RS
1753 case SUBREG:
1754 case STRICT_LOW_PART:
1755 case NEG: case NOT:
1756 case PRE_DEC: case PRE_INC: case POST_DEC: case POST_INC:
1757 case SIGN_EXTEND: case ZERO_EXTEND:
1758 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
1759 case FLOAT: case FIX:
1760 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
1761 case ABS:
1762 case SQRT:
1763 case FFS:
2928cd7a
RH
1764 case CLZ: case CTZ:
1765 case POPCOUNT: case PARITY:
6f086dfc
RS
1766 /* These case either have just one operand or we know that we need not
1767 check the rest of the operands. */
1768 loc = &XEXP (x, 0);
1769 goto restart;
1770
4fd796bb
RK
1771 case USE:
1772 case CLOBBER:
1773 /* If the operand is a MEM, see if the change is a valid MEM. If not,
1774 go ahead and make the invalid one, but do it to a copy. For a REG,
718fe406 1775 just make the recursive call, since there's no chance of a problem. */
4fd796bb 1776
3c0cb5de 1777 if ((MEM_P (XEXP (x, 0))
4fd796bb
RK
1778 && instantiate_virtual_regs_1 (&XEXP (XEXP (x, 0), 0), XEXP (x, 0),
1779 0))
f8cfc6aa 1780 || (REG_P (XEXP (x, 0))
7694ce35 1781 && instantiate_virtual_regs_1 (&XEXP (x, 0), object, 0)))
4fd796bb
RK
1782 return 1;
1783
1784 XEXP (x, 0) = copy_rtx (XEXP (x, 0));
1785 loc = &XEXP (x, 0);
1786 goto restart;
1787
6f086dfc
RS
1788 case REG:
1789 /* Try to replace with a PLUS. If that doesn't work, compute the sum
1790 in front of this insn and substitute the temporary. */
d1405722 1791 if ((new = instantiate_new_reg (x, &offset)) != 0)
6f086dfc
RS
1792 {
1793 temp = plus_constant (new, offset);
1794 if (!validate_change (object, loc, temp, 0))
1795 {
1796 if (! extra_insns)
1797 return 0;
1798
1799 start_sequence ();
5f4f0e22 1800 temp = force_operand (temp, NULL_RTX);
6f086dfc
RS
1801 seq = get_insns ();
1802 end_sequence ();
1803
2f937369 1804 emit_insn_before (seq, object);
6f086dfc
RS
1805 if (! validate_change (object, loc, temp, 0)
1806 && ! validate_replace_rtx (x, temp, object))
5dc96d60 1807 instantiate_virtual_regs_lossage (object);
6f086dfc
RS
1808 }
1809 }
1810
1811 return 1;
e9a25f70 1812
e9a25f70
JL
1813 default:
1814 break;
6f086dfc
RS
1815 }
1816
1817 /* Scan all subexpressions. */
1818 fmt = GET_RTX_FORMAT (code);
1819 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1820 if (*fmt == 'e')
1821 {
1822 if (!instantiate_virtual_regs_1 (&XEXP (x, i), object, extra_insns))
1823 return 0;
1824 }
1825 else if (*fmt == 'E')
1826 for (j = 0; j < XVECLEN (x, i); j++)
1827 if (! instantiate_virtual_regs_1 (&XVECEXP (x, i, j), object,
1828 extra_insns))
1829 return 0;
1830
1831 return 1;
1832}
1833\f
d181c154
RS
1834/* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1835 This means a type for which function calls must pass an address to the
1836 function or get an address back from the function.
1837 EXP may be a type node or an expression (whose type is tested). */
6f086dfc
RS
1838
1839int
61f71b34 1840aggregate_value_p (tree exp, tree fntype)
6f086dfc 1841{
9d790a4f
RS
1842 int i, regno, nregs;
1843 rtx reg;
2f939d94
TP
1844
1845 tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
d181c154 1846
61f71b34
DD
1847 if (fntype)
1848 switch (TREE_CODE (fntype))
1849 {
1850 case CALL_EXPR:
1851 fntype = get_callee_fndecl (fntype);
1852 fntype = fntype ? TREE_TYPE (fntype) : 0;
1853 break;
1854 case FUNCTION_DECL:
1855 fntype = TREE_TYPE (fntype);
1856 break;
1857 case FUNCTION_TYPE:
1858 case METHOD_TYPE:
1859 break;
1860 case IDENTIFIER_NODE:
1861 fntype = 0;
1862 break;
1863 default:
1864 /* We don't expect other rtl types here. */
1865 abort();
1866 }
1867
d7bf8ada
MM
1868 if (TREE_CODE (type) == VOID_TYPE)
1869 return 0;
cc77ae10
JM
1870 /* If the front end has decided that this needs to be passed by
1871 reference, do so. */
1872 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1873 && DECL_BY_REFERENCE (exp))
1874 return 1;
61f71b34 1875 if (targetm.calls.return_in_memory (type, fntype))
6f086dfc 1876 return 1;
956d6950 1877 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
49a2e5b2
DE
1878 and thus can't be returned in registers. */
1879 if (TREE_ADDRESSABLE (type))
1880 return 1;
05e3bdb9 1881 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
6f086dfc 1882 return 1;
9d790a4f
RS
1883 /* Make sure we have suitable call-clobbered regs to return
1884 the value in; if not, we must return it in memory. */
4dc07bd7 1885 reg = hard_function_value (type, 0, 0);
e71f7aa5
JW
1886
1887 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1888 it is OK. */
f8cfc6aa 1889 if (!REG_P (reg))
e71f7aa5
JW
1890 return 0;
1891
9d790a4f 1892 regno = REGNO (reg);
66fd46b6 1893 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
9d790a4f
RS
1894 for (i = 0; i < nregs; i++)
1895 if (! call_used_regs[regno + i])
1896 return 1;
6f086dfc
RS
1897 return 0;
1898}
1899\f
8fff4fc1
RH
1900/* Return true if we should assign DECL a pseudo register; false if it
1901 should live on the local stack. */
1902
1903bool
1904use_register_for_decl (tree decl)
1905{
1906 /* Honor volatile. */
1907 if (TREE_SIDE_EFFECTS (decl))
1908 return false;
1909
1910 /* Honor addressability. */
1911 if (TREE_ADDRESSABLE (decl))
1912 return false;
1913
1914 /* Only register-like things go in registers. */
1915 if (DECL_MODE (decl) == BLKmode)
1916 return false;
1917
1918 /* If -ffloat-store specified, don't put explicit float variables
1919 into registers. */
1920 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1921 propagates values across these stores, and it probably shouldn't. */
1922 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1923 return false;
1924
1925 /* Compiler-generated temporaries can always go in registers. */
1926 if (DECL_ARTIFICIAL (decl))
1927 return true;
1928
1929#ifdef NON_SAVING_SETJMP
1930 /* Protect variables not declared "register" from setjmp. */
1931 if (NON_SAVING_SETJMP
1932 && current_function_calls_setjmp
1933 && !DECL_REGISTER (decl))
1934 return false;
1935#endif
1936
1937 return (optimize || DECL_REGISTER (decl));
1938}
1939
0976078c
RH
1940/* Return true if TYPE should be passed by invisible reference. */
1941
1942bool
8cd5a4e0
RH
1943pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1944 tree type, bool named_arg)
0976078c
RH
1945{
1946 if (type)
1947 {
1948 /* If this type contains non-trivial constructors, then it is
1949 forbidden for the middle-end to create any new copies. */
1950 if (TREE_ADDRESSABLE (type))
1951 return true;
1952
d58247a3
RH
1953 /* GCC post 3.4 passes *all* variable sized types by reference. */
1954 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
0976078c
RH
1955 return true;
1956 }
1957
8cd5a4e0 1958 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
0976078c
RH
1959}
1960
6071dc7f
RH
1961/* Structures to communicate between the subroutines of assign_parms.
1962 The first holds data persistent across all parameters, the second
1963 is cleared out for each parameter. */
6f086dfc 1964
6071dc7f 1965struct assign_parm_data_all
6f086dfc 1966{
6f086dfc 1967 CUMULATIVE_ARGS args_so_far;
6f086dfc 1968 struct args_size stack_args_size;
6071dc7f
RH
1969 tree function_result_decl;
1970 tree orig_fnargs;
1971 rtx conversion_insns;
1972 HOST_WIDE_INT pretend_args_size;
1973 HOST_WIDE_INT extra_pretend_bytes;
1974 int reg_parm_stack_space;
1975};
6f086dfc 1976
6071dc7f
RH
1977struct assign_parm_data_one
1978{
1979 tree nominal_type;
1980 tree passed_type;
1981 rtx entry_parm;
1982 rtx stack_parm;
1983 enum machine_mode nominal_mode;
1984 enum machine_mode passed_mode;
1985 enum machine_mode promoted_mode;
1986 struct locate_and_pad_arg_data locate;
1987 int partial;
1988 BOOL_BITFIELD named_arg : 1;
1989 BOOL_BITFIELD last_named : 1;
1990 BOOL_BITFIELD passed_pointer : 1;
1991 BOOL_BITFIELD on_stack : 1;
1992 BOOL_BITFIELD loaded_in_reg : 1;
1993};
ebb904cb 1994
6071dc7f 1995/* A subroutine of assign_parms. Initialize ALL. */
6f086dfc 1996
6071dc7f
RH
1997static void
1998assign_parms_initialize_all (struct assign_parm_data_all *all)
1999{
2000 tree fntype;
6f086dfc 2001
6071dc7f
RH
2002 memset (all, 0, sizeof (*all));
2003
2004 fntype = TREE_TYPE (current_function_decl);
2005
2006#ifdef INIT_CUMULATIVE_INCOMING_ARGS
2007 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
2008#else
2009 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
2010 current_function_decl, -1);
2011#endif
2012
2013#ifdef REG_PARM_STACK_SPACE
2014 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
2015#endif
2016}
6f086dfc 2017
6071dc7f
RH
2018/* If ARGS contains entries with complex types, split the entry into two
2019 entries of the component type. Return a new list of substitutions are
2020 needed, else the old list. */
2021
2022static tree
2023split_complex_args (tree args)
2024{
2025 tree p;
2026
2027 /* Before allocating memory, check for the common case of no complex. */
2028 for (p = args; p; p = TREE_CHAIN (p))
2029 {
2030 tree type = TREE_TYPE (p);
2031 if (TREE_CODE (type) == COMPLEX_TYPE
2032 && targetm.calls.split_complex_arg (type))
2033 goto found;
2034 }
2035 return args;
2036
2037 found:
2038 args = copy_list (args);
2039
2040 for (p = args; p; p = TREE_CHAIN (p))
2041 {
2042 tree type = TREE_TYPE (p);
2043 if (TREE_CODE (type) == COMPLEX_TYPE
2044 && targetm.calls.split_complex_arg (type))
2045 {
2046 tree decl;
2047 tree subtype = TREE_TYPE (type);
2048
2049 /* Rewrite the PARM_DECL's type with its component. */
2050 TREE_TYPE (p) = subtype;
2051 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2052 DECL_MODE (p) = VOIDmode;
2053 DECL_SIZE (p) = NULL;
2054 DECL_SIZE_UNIT (p) = NULL;
2055 layout_decl (p, 0);
2056
2057 /* Build a second synthetic decl. */
2058 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2059 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2060 layout_decl (decl, 0);
2061
2062 /* Splice it in; skip the new decl. */
2063 TREE_CHAIN (decl) = TREE_CHAIN (p);
2064 TREE_CHAIN (p) = decl;
2065 p = decl;
2066 }
2067 }
2068
2069 return args;
2070}
2071
2072/* A subroutine of assign_parms. Adjust the parameter list to incorporate
2073 the hidden struct return argument, and (abi willing) complex args.
2074 Return the new parameter list. */
2075
2076static tree
2077assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2078{
2079 tree fndecl = current_function_decl;
2080 tree fntype = TREE_TYPE (fndecl);
2081 tree fnargs = DECL_ARGUMENTS (fndecl);
6f086dfc
RS
2082
2083 /* If struct value address is treated as the first argument, make it so. */
61f71b34 2084 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
6f086dfc 2085 && ! current_function_returns_pcc_struct
61f71b34 2086 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
6f086dfc 2087 {
f9f29478 2088 tree type = build_pointer_type (TREE_TYPE (fntype));
6071dc7f 2089 tree decl;
6f086dfc 2090
6071dc7f
RH
2091 decl = build_decl (PARM_DECL, NULL_TREE, type);
2092 DECL_ARG_TYPE (decl) = type;
2093 DECL_ARTIFICIAL (decl) = 1;
6f086dfc 2094
6071dc7f
RH
2095 TREE_CHAIN (decl) = fnargs;
2096 fnargs = decl;
2097 all->function_result_decl = decl;
6f086dfc 2098 }
718fe406 2099
6071dc7f 2100 all->orig_fnargs = fnargs;
ded9bf77 2101
42ba5130
RH
2102 /* If the target wants to split complex arguments into scalars, do so. */
2103 if (targetm.calls.split_complex_arg)
ded9bf77
AH
2104 fnargs = split_complex_args (fnargs);
2105
6071dc7f
RH
2106 return fnargs;
2107}
e7949876 2108
6071dc7f
RH
2109/* A subroutine of assign_parms. Examine PARM and pull out type and mode
2110 data for the parameter. Incorporate ABI specifics such as pass-by-
2111 reference and type promotion. */
6f086dfc 2112
6071dc7f
RH
2113static void
2114assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2115 struct assign_parm_data_one *data)
2116{
2117 tree nominal_type, passed_type;
2118 enum machine_mode nominal_mode, passed_mode, promoted_mode;
6f086dfc 2119
6071dc7f
RH
2120 memset (data, 0, sizeof (*data));
2121
2122 /* Set LAST_NAMED if this is last named arg before last anonymous args. */
2123 if (current_function_stdarg)
6f086dfc 2124 {
6071dc7f
RH
2125 tree tem;
2126 for (tem = TREE_CHAIN (parm); tem; tem = TREE_CHAIN (tem))
2127 if (DECL_NAME (tem))
2128 break;
2129 if (tem == 0)
2130 data->last_named = true;
2131 }
108b7d3d 2132
6071dc7f
RH
2133 /* Set NAMED_ARG if this arg should be treated as a named arg. For
2134 most machines, if this is a varargs/stdarg function, then we treat
2135 the last named arg as if it were anonymous too. */
2136 if (targetm.calls.strict_argument_naming (&all->args_so_far))
2137 data->named_arg = 1;
2138 else
2139 data->named_arg = !data->last_named;
2140
2141 nominal_type = TREE_TYPE (parm);
2142 passed_type = DECL_ARG_TYPE (parm);
2143
2144 /* Look out for errors propagating this far. Also, if the parameter's
2145 type is void then its value doesn't matter. */
2146 if (TREE_TYPE (parm) == error_mark_node
2147 /* This can happen after weird syntax errors
2148 or if an enum type is defined among the parms. */
2149 || TREE_CODE (parm) != PARM_DECL
2150 || passed_type == NULL
2151 || VOID_TYPE_P (nominal_type))
2152 {
2153 nominal_type = passed_type = void_type_node;
2154 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2155 goto egress;
2156 }
108b7d3d 2157
6071dc7f
RH
2158 /* Find mode of arg as it is passed, and mode of arg as it should be
2159 during execution of this function. */
2160 passed_mode = TYPE_MODE (passed_type);
2161 nominal_mode = TYPE_MODE (nominal_type);
2162
2163 /* If the parm is to be passed as a transparent union, use the type of
2164 the first field for the tests below. We have already verified that
2165 the modes are the same. */
2166 if (DECL_TRANSPARENT_UNION (parm)
2167 || (TREE_CODE (passed_type) == UNION_TYPE
2168 && TYPE_TRANSPARENT_UNION (passed_type)))
2169 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2170
0976078c
RH
2171 /* See if this arg was passed by invisible reference. */
2172 if (pass_by_reference (&all->args_so_far, passed_mode,
2173 passed_type, data->named_arg))
6071dc7f
RH
2174 {
2175 passed_type = nominal_type = build_pointer_type (passed_type);
2176 data->passed_pointer = true;
2177 passed_mode = nominal_mode = Pmode;
2178 }
6f086dfc 2179
6071dc7f
RH
2180 /* Find mode as it is passed by the ABI. */
2181 promoted_mode = passed_mode;
2182 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2183 {
2184 int unsignedp = TYPE_UNSIGNED (passed_type);
2185 promoted_mode = promote_mode (passed_type, promoted_mode,
2186 &unsignedp, 1);
2187 }
6f086dfc 2188
6071dc7f
RH
2189 egress:
2190 data->nominal_type = nominal_type;
2191 data->passed_type = passed_type;
2192 data->nominal_mode = nominal_mode;
2193 data->passed_mode = passed_mode;
2194 data->promoted_mode = promoted_mode;
2195}
16bae307 2196
6071dc7f 2197/* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
6f086dfc 2198
6071dc7f
RH
2199static void
2200assign_parms_setup_varargs (struct assign_parm_data_all *all,
2201 struct assign_parm_data_one *data, bool no_rtl)
2202{
2203 int varargs_pretend_bytes = 0;
2204
2205 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2206 data->promoted_mode,
2207 data->passed_type,
2208 &varargs_pretend_bytes, no_rtl);
2209
2210 /* If the back-end has requested extra stack space, record how much is
2211 needed. Do not change pretend_args_size otherwise since it may be
2212 nonzero from an earlier partial argument. */
2213 if (varargs_pretend_bytes > 0)
2214 all->pretend_args_size = varargs_pretend_bytes;
2215}
a53e14c0 2216
6071dc7f
RH
2217/* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2218 the incoming location of the current parameter. */
2219
2220static void
2221assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2222 struct assign_parm_data_one *data)
2223{
2224 HOST_WIDE_INT pretend_bytes = 0;
2225 rtx entry_parm;
2226 bool in_regs;
2227
2228 if (data->promoted_mode == VOIDmode)
2229 {
2230 data->entry_parm = data->stack_parm = const0_rtx;
2231 return;
2232 }
a53e14c0 2233
6f086dfc 2234#ifdef FUNCTION_INCOMING_ARG
6071dc7f
RH
2235 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2236 data->passed_type, data->named_arg);
6f086dfc 2237#else
6071dc7f
RH
2238 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2239 data->passed_type, data->named_arg);
6f086dfc
RS
2240#endif
2241
6071dc7f
RH
2242 if (entry_parm == 0)
2243 data->promoted_mode = data->passed_mode;
6f086dfc 2244
6071dc7f
RH
2245 /* Determine parm's home in the stack, in case it arrives in the stack
2246 or we should pretend it did. Compute the stack position and rtx where
2247 the argument arrives and its size.
6f086dfc 2248
6071dc7f
RH
2249 There is one complexity here: If this was a parameter that would
2250 have been passed in registers, but wasn't only because it is
2251 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2252 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2253 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2254 as it was the previous time. */
2255 in_regs = entry_parm != 0;
6f086dfc 2256#ifdef STACK_PARMS_IN_REG_PARM_AREA
6071dc7f 2257 in_regs = true;
e7949876 2258#endif
6071dc7f
RH
2259 if (!in_regs && !data->named_arg)
2260 {
2261 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
e7949876 2262 {
6071dc7f 2263 rtx tem;
6f086dfc 2264#ifdef FUNCTION_INCOMING_ARG
6071dc7f
RH
2265 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2266 data->passed_type, true);
6f086dfc 2267#else
6071dc7f
RH
2268 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2269 data->passed_type, true);
6f086dfc 2270#endif
6071dc7f 2271 in_regs = tem != NULL;
e7949876 2272 }
6071dc7f 2273 }
e7949876 2274
6071dc7f
RH
2275 /* If this parameter was passed both in registers and in the stack, use
2276 the copy on the stack. */
fe984136
RH
2277 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2278 data->passed_type))
6071dc7f 2279 entry_parm = 0;
e7949876 2280
6071dc7f
RH
2281 if (entry_parm)
2282 {
2283 int partial;
2284
2285 partial = FUNCTION_ARG_PARTIAL_NREGS (all->args_so_far,
2286 data->promoted_mode,
2287 data->passed_type,
2288 data->named_arg);
2289 data->partial = partial;
2290
2291 /* The caller might already have allocated stack space for the
2292 register parameters. */
2293 if (partial != 0 && all->reg_parm_stack_space == 0)
975f3818 2294 {
6071dc7f
RH
2295 /* Part of this argument is passed in registers and part
2296 is passed on the stack. Ask the prologue code to extend
2297 the stack part so that we can recreate the full value.
2298
2299 PRETEND_BYTES is the size of the registers we need to store.
2300 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2301 stack space that the prologue should allocate.
2302
2303 Internally, gcc assumes that the argument pointer is aligned
2304 to STACK_BOUNDARY bits. This is used both for alignment
2305 optimizations (see init_emit) and to locate arguments that are
2306 aligned to more than PARM_BOUNDARY bits. We must preserve this
2307 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2308 a stack boundary. */
2309
2310 /* We assume at most one partial arg, and it must be the first
2311 argument on the stack. */
2312 if (all->extra_pretend_bytes || all->pretend_args_size)
2313 abort ();
2314
2315 pretend_bytes = partial * UNITS_PER_WORD;
2316 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2317
2318 /* We want to align relative to the actual stack pointer, so
2319 don't include this in the stack size until later. */
2320 all->extra_pretend_bytes = all->pretend_args_size;
975f3818 2321 }
6071dc7f 2322 }
e7949876 2323
6071dc7f
RH
2324 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2325 entry_parm ? data->partial : 0, current_function_decl,
2326 &all->stack_args_size, &data->locate);
6f086dfc 2327
6071dc7f
RH
2328 /* Adjust offsets to include the pretend args. */
2329 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2330 data->locate.slot_offset.constant += pretend_bytes;
2331 data->locate.offset.constant += pretend_bytes;
ebca59c3 2332
6071dc7f
RH
2333 data->entry_parm = entry_parm;
2334}
6f086dfc 2335
6071dc7f
RH
2336/* A subroutine of assign_parms. If there is actually space on the stack
2337 for this parm, count it in stack_args_size and return true. */
6f086dfc 2338
6071dc7f
RH
2339static bool
2340assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2341 struct assign_parm_data_one *data)
2342{
2343 /* Trivially true if we've no incomming register. */
2344 if (data->entry_parm == NULL)
2345 ;
2346 /* Also true if we're partially in registers and partially not,
2347 since we've arranged to drop the entire argument on the stack. */
2348 else if (data->partial != 0)
2349 ;
2350 /* Also true if the target says that it's passed in both registers
2351 and on the stack. */
2352 else if (GET_CODE (data->entry_parm) == PARALLEL
2353 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2354 ;
2355 /* Also true if the target says that there's stack allocated for
2356 all register parameters. */
2357 else if (all->reg_parm_stack_space > 0)
2358 ;
2359 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2360 else
2361 return false;
6f086dfc 2362
6071dc7f
RH
2363 all->stack_args_size.constant += data->locate.size.constant;
2364 if (data->locate.size.var)
2365 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
718fe406 2366
6071dc7f
RH
2367 return true;
2368}
0d1416c6 2369
6071dc7f
RH
2370/* A subroutine of assign_parms. Given that this parameter is allocated
2371 stack space by the ABI, find it. */
6f086dfc 2372
6071dc7f
RH
2373static void
2374assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2375{
2376 rtx offset_rtx, stack_parm;
2377 unsigned int align, boundary;
6f086dfc 2378
6071dc7f
RH
2379 /* If we're passing this arg using a reg, make its stack home the
2380 aligned stack slot. */
2381 if (data->entry_parm)
2382 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2383 else
2384 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2385
2386 stack_parm = current_function_internal_arg_pointer;
2387 if (offset_rtx != const0_rtx)
2388 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2389 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2390
2391 set_mem_attributes (stack_parm, parm, 1);
2392
2393 boundary = FUNCTION_ARG_BOUNDARY (data->promoted_mode, data->passed_type);
2394 align = 0;
2395
2396 /* If we're padding upward, we know that the alignment of the slot
2397 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2398 intentionally forcing upward padding. Otherwise we have to come
2399 up with a guess at the alignment based on OFFSET_RTX. */
2400 if (data->locate.where_pad == upward || data->entry_parm)
2401 align = boundary;
2402 else if (GET_CODE (offset_rtx) == CONST_INT)
2403 {
2404 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2405 align = align & -align;
2406 }
2407 if (align > 0)
2408 set_mem_align (stack_parm, align);
2409
2410 if (data->entry_parm)
2411 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2412
2413 data->stack_parm = stack_parm;
2414}
2415
2416/* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2417 always valid and contiguous. */
2418
2419static void
2420assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2421{
2422 rtx entry_parm = data->entry_parm;
2423 rtx stack_parm = data->stack_parm;
2424
2425 /* If this parm was passed part in regs and part in memory, pretend it
2426 arrived entirely in memory by pushing the register-part onto the stack.
2427 In the special case of a DImode or DFmode that is split, we could put
2428 it together in a pseudoreg directly, but for now that's not worth
2429 bothering with. */
2430 if (data->partial != 0)
2431 {
2432 /* Handle calls that pass values in multiple non-contiguous
2433 locations. The Irix 6 ABI has examples of this. */
2434 if (GET_CODE (entry_parm) == PARALLEL)
2435 emit_group_store (validize_mem (stack_parm), entry_parm,
2436 data->passed_type,
2437 int_size_in_bytes (data->passed_type));
6f086dfc 2438 else
6071dc7f
RH
2439 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2440 data->partial);
6f086dfc 2441
6071dc7f
RH
2442 entry_parm = stack_parm;
2443 }
6f086dfc 2444
6071dc7f
RH
2445 /* If we didn't decide this parm came in a register, by default it came
2446 on the stack. */
2447 else if (entry_parm == NULL)
2448 entry_parm = stack_parm;
2449
2450 /* When an argument is passed in multiple locations, we can't make use
2451 of this information, but we can save some copying if the whole argument
2452 is passed in a single register. */
2453 else if (GET_CODE (entry_parm) == PARALLEL
2454 && data->nominal_mode != BLKmode
2455 && data->passed_mode != BLKmode)
2456 {
2457 size_t i, len = XVECLEN (entry_parm, 0);
2458
2459 for (i = 0; i < len; i++)
2460 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2461 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2462 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2463 == data->passed_mode)
2464 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2465 {
2466 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2467 break;
2468 }
2469 }
e68a6ce1 2470
6071dc7f
RH
2471 data->entry_parm = entry_parm;
2472}
6f086dfc 2473
6071dc7f
RH
2474/* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2475 always valid and properly aligned. */
6f086dfc 2476
6f086dfc 2477
6071dc7f
RH
2478static void
2479assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2480{
2481 rtx stack_parm = data->stack_parm;
2482
2483 /* If we can't trust the parm stack slot to be aligned enough for its
2484 ultimate type, don't use that slot after entry. We'll make another
2485 stack slot, if we need one. */
2486 if (STRICT_ALIGNMENT && stack_parm
2487 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2488 stack_parm = NULL;
2489
2490 /* If parm was passed in memory, and we need to convert it on entry,
2491 don't store it back in that same slot. */
2492 else if (data->entry_parm == stack_parm
2493 && data->nominal_mode != BLKmode
2494 && data->nominal_mode != data->passed_mode)
2495 stack_parm = NULL;
2496
2497 data->stack_parm = stack_parm;
2498}
a0506b54 2499
6071dc7f
RH
2500/* A subroutine of assign_parms. Return true if the current parameter
2501 should be stored as a BLKmode in the current frame. */
2502
2503static bool
2504assign_parm_setup_block_p (struct assign_parm_data_one *data)
2505{
2506 if (data->nominal_mode == BLKmode)
2507 return true;
2508 if (GET_CODE (data->entry_parm) == PARALLEL)
2509 return true;
531547e9 2510
6e985040 2511#ifdef BLOCK_REG_PADDING
6071dc7f
RH
2512 if (data->locate.where_pad == (BYTES_BIG_ENDIAN ? upward : downward)
2513 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD)
2514 return true;
6e985040 2515#endif
6071dc7f
RH
2516
2517 return false;
2518}
2519
2520/* A subroutine of assign_parms. Arrange for the parameter to be
2521 present and valid in DATA->STACK_RTL. */
2522
2523static void
2524assign_parm_setup_block (tree parm, struct assign_parm_data_one *data)
2525{
2526 rtx entry_parm = data->entry_parm;
2527 rtx stack_parm = data->stack_parm;
2528
2529 /* If we've a non-block object that's nevertheless passed in parts,
2530 reconstitute it in register operations rather than on the stack. */
2531 if (GET_CODE (entry_parm) == PARALLEL
2532 && data->nominal_mode != BLKmode
2533 && XVECLEN (entry_parm, 0) > 1
2534 && optimize)
2535 {
2536 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2537
2538 emit_group_store (parmreg, entry_parm, data->nominal_type,
2539 int_size_in_bytes (data->nominal_type));
2540 SET_DECL_RTL (parm, parmreg);
2541 return;
2542 }
2543
2544 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2545 calls that pass values in multiple non-contiguous locations. */
2546 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2547 {
2548 HOST_WIDE_INT size = int_size_in_bytes (data->passed_type);
2549 HOST_WIDE_INT size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2550 rtx mem;
2551
2552 /* Note that we will be storing an integral number of words.
2553 So we have to be careful to ensure that we allocate an
2554 integral number of words. We do this below in the
2555 assign_stack_local if space was not allocated in the argument
2556 list. If it was, this will not work if PARM_BOUNDARY is not
2557 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2558 if it becomes a problem. Exception is when BLKmode arrives
2559 with arguments not conforming to word_mode. */
2560
2561 if (stack_parm == 0)
6f086dfc 2562 {
6071dc7f
RH
2563 stack_parm = assign_stack_local (BLKmode, size_stored, 0);
2564 data->stack_parm = stack_parm;
2565 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2566 set_mem_attributes (stack_parm, parm, 1);
2567 }
2568 else if (GET_CODE (entry_parm) == PARALLEL)
2569 ;
2570 else if (size != 0 && PARM_BOUNDARY % BITS_PER_WORD != 0)
2571 abort ();
6f086dfc 2572
6071dc7f 2573 mem = validize_mem (stack_parm);
c6b97fac 2574
6071dc7f
RH
2575 /* Handle values in multiple non-contiguous locations. */
2576 if (GET_CODE (entry_parm) == PARALLEL)
2577 emit_group_store (mem, entry_parm, data->passed_type, size);
c6b97fac 2578
6071dc7f
RH
2579 else if (size == 0)
2580 ;
5c07bd7a 2581
6071dc7f
RH
2582 /* If SIZE is that of a mode no bigger than a word, just use
2583 that mode's store operation. */
2584 else if (size <= UNITS_PER_WORD)
2585 {
2586 enum machine_mode mode
2587 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
c6b97fac 2588
6071dc7f 2589 if (mode != BLKmode
6e985040 2590#ifdef BLOCK_REG_PADDING
6071dc7f
RH
2591 && (size == UNITS_PER_WORD
2592 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2593 != (BYTES_BIG_ENDIAN ? upward : downward)))
6e985040 2594#endif
6071dc7f
RH
2595 )
2596 {
2597 rtx reg = gen_rtx_REG (mode, REGNO (entry_parm));
2598 emit_move_insn (change_address (mem, mode, 0), reg);
2599 }
c6b97fac 2600
6071dc7f
RH
2601 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2602 machine must be aligned to the left before storing
2603 to memory. Note that the previous test doesn't
2604 handle all cases (e.g. SIZE == 3). */
2605 else if (size != UNITS_PER_WORD
6e985040 2606#ifdef BLOCK_REG_PADDING
6071dc7f
RH
2607 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2608 == downward)
6e985040 2609#else
6071dc7f 2610 && BYTES_BIG_ENDIAN
6e985040 2611#endif
6071dc7f
RH
2612 )
2613 {
2614 rtx tem, x;
2615 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2616 rtx reg = gen_rtx_REG (word_mode, REGNO (data->entry_parm));
2617
09b52670 2618 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
4a90aeeb
NS
2619 build_int_cst (NULL_TREE, by, 0),
2620 NULL_RTX, 1);
6071dc7f
RH
2621 tem = change_address (mem, word_mode, 0);
2622 emit_move_insn (tem, x);
6f086dfc 2623 }
6071dc7f
RH
2624 else
2625 move_block_from_reg (REGNO (data->entry_parm), mem,
2626 size_stored / UNITS_PER_WORD);
6f086dfc 2627 }
6071dc7f
RH
2628 else
2629 move_block_from_reg (REGNO (data->entry_parm), mem,
2630 size_stored / UNITS_PER_WORD);
2631 }
2632
2633 SET_DECL_RTL (parm, stack_parm);
2634}
2635
2636/* A subroutine of assign_parms. Allocate a pseudo to hold the current
2637 parameter. Get it there. Perform all ABI specified conversions. */
2638
2639static void
2640assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2641 struct assign_parm_data_one *data)
2642{
2643 rtx parmreg;
2644 enum machine_mode promoted_nominal_mode;
2645 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2646 bool did_conversion = false;
2647
2648 /* Store the parm in a pseudoregister during the function, but we may
2649 need to do it in a wider mode. */
2650
2651 promoted_nominal_mode
2652 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 0);
2653
2654 parmreg = gen_reg_rtx (promoted_nominal_mode);
2655
2656 if (!DECL_ARTIFICIAL (parm))
2657 mark_user_reg (parmreg);
2658
2659 /* If this was an item that we received a pointer to,
2660 set DECL_RTL appropriately. */
2661 if (data->passed_pointer)
2662 {
2663 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2664 set_mem_attributes (x, parm, 1);
2665 SET_DECL_RTL (parm, x);
2666 }
2667 else
389fdba0 2668 SET_DECL_RTL (parm, parmreg);
6071dc7f
RH
2669
2670 /* Copy the value into the register. */
2671 if (data->nominal_mode != data->passed_mode
2672 || promoted_nominal_mode != data->promoted_mode)
2673 {
2674 int save_tree_used;
2675
2676 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2677 mode, by the caller. We now have to convert it to
2678 NOMINAL_MODE, if different. However, PARMREG may be in
2679 a different mode than NOMINAL_MODE if it is being stored
2680 promoted.
2681
2682 If ENTRY_PARM is a hard register, it might be in a register
2683 not valid for operating in its mode (e.g., an odd-numbered
2684 register for a DFmode). In that case, moves are the only
2685 thing valid, so we can't do a convert from there. This
2686 occurs when the calling sequence allow such misaligned
2687 usages.
2688
2689 In addition, the conversion may involve a call, which could
2690 clobber parameters which haven't been copied to pseudo
2691 registers yet. Therefore, we must first copy the parm to
2692 a pseudo reg here, and save the conversion until after all
2693 parameters have been moved. */
2694
2695 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2696
2697 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2698
2699 push_to_sequence (all->conversion_insns);
2700 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2701
2702 if (GET_CODE (tempreg) == SUBREG
2703 && GET_MODE (tempreg) == data->nominal_mode
2704 && REG_P (SUBREG_REG (tempreg))
2705 && data->nominal_mode == data->passed_mode
2706 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2707 && GET_MODE_SIZE (GET_MODE (tempreg))
2708 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
6f086dfc 2709 {
6071dc7f
RH
2710 /* The argument is already sign/zero extended, so note it
2711 into the subreg. */
2712 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2713 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2714 }
00d8a4c1 2715
6071dc7f
RH
2716 /* TREE_USED gets set erroneously during expand_assignment. */
2717 save_tree_used = TREE_USED (parm);
2718 expand_assignment (parm, make_tree (data->nominal_type, tempreg), 0);
2719 TREE_USED (parm) = save_tree_used;
2720 all->conversion_insns = get_insns ();
2721 end_sequence ();
00d8a4c1 2722
6071dc7f
RH
2723 did_conversion = true;
2724 }
2725 else
2726 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2727
2728 /* If we were passed a pointer but the actual value can safely live
2729 in a register, put it in one. */
2730 if (data->passed_pointer
2731 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2732 /* If by-reference argument was promoted, demote it. */
2733 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2734 || use_register_for_decl (parm)))
2735 {
2736 /* We can't use nominal_mode, because it will have been set to
2737 Pmode above. We must use the actual mode of the parm. */
2738 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2739 mark_user_reg (parmreg);
cd5b3469 2740
6071dc7f
RH
2741 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2742 {
2743 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2744 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2745
2746 push_to_sequence (all->conversion_insns);
2747 emit_move_insn (tempreg, DECL_RTL (parm));
2748 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2749 emit_move_insn (parmreg, tempreg);
2750 all->conversion_insns = get_insns();
2751 end_sequence ();
6f086dfc 2752
6071dc7f
RH
2753 did_conversion = true;
2754 }
2755 else
2756 emit_move_insn (parmreg, DECL_RTL (parm));
6f086dfc 2757
6071dc7f 2758 SET_DECL_RTL (parm, parmreg);
797a6ac1 2759
6071dc7f
RH
2760 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2761 now the parm. */
2762 data->stack_parm = NULL;
2763 }
ddef6bc7 2764
6071dc7f
RH
2765 /* If we are passed an arg by reference and it is our responsibility
2766 to make a copy, do it now.
2767 PASSED_TYPE and PASSED mode now refer to the pointer, not the
2768 original argument, so we must recreate them in the call to
2769 FUNCTION_ARG_CALLEE_COPIES. */
2770 /* ??? Later add code to handle the case that if the argument isn't
2771 modified, don't do the copy. */
2772
b6448565 2773 else if (data->passed_pointer)
6071dc7f 2774 {
b6448565
RH
2775 tree type = TREE_TYPE (data->passed_type);
2776
2777 if (FUNCTION_ARG_CALLEE_COPIES (all->args_so_far, TYPE_MODE (type),
2778 type, data->named_arg)
2779 && !TREE_ADDRESSABLE (type))
2780 {
2781 rtx copy;
137a2a7b 2782
b6448565
RH
2783 /* This sequence may involve a library call perhaps clobbering
2784 registers that haven't been copied to pseudos yet. */
137a2a7b 2785
b6448565 2786 push_to_sequence (all->conversion_insns);
137a2a7b 2787
b6448565
RH
2788 if (!COMPLETE_TYPE_P (type)
2789 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2790 {
2791 /* This is a variable sized object. */
2792 copy = allocate_dynamic_stack_space (expr_size (parm), NULL_RTX,
2793 TYPE_ALIGN (type));
2794 copy = gen_rtx_MEM (BLKmode, copy);
2795 }
2796 else
2797 copy = assign_stack_temp (TYPE_MODE (type),
2798 int_size_in_bytes (type), 1);
2799 set_mem_attributes (copy, parm, 1);
6071dc7f 2800
b6448565
RH
2801 store_expr (parm, copy, 0);
2802 emit_move_insn (parmreg, XEXP (copy, 0));
2803 all->conversion_insns = get_insns ();
2804 end_sequence ();
6071dc7f 2805
b6448565
RH
2806 did_conversion = true;
2807 }
6071dc7f 2808 }
74bd77a8 2809
6071dc7f
RH
2810 /* Mark the register as eliminable if we did no conversion and it was
2811 copied from memory at a fixed offset, and the arg pointer was not
2812 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2813 offset formed an invalid address, such memory-equivalences as we
2814 make here would screw up life analysis for it. */
2815 if (data->nominal_mode == data->passed_mode
2816 && !did_conversion
2817 && data->stack_parm != 0
2818 && MEM_P (data->stack_parm)
2819 && data->locate.offset.var == 0
2820 && reg_mentioned_p (virtual_incoming_args_rtx,
2821 XEXP (data->stack_parm, 0)))
2822 {
2823 rtx linsn = get_last_insn ();
2824 rtx sinsn, set;
a03caf76 2825
6071dc7f
RH
2826 /* Mark complex types separately. */
2827 if (GET_CODE (parmreg) == CONCAT)
2828 {
2829 enum machine_mode submode
2830 = GET_MODE_INNER (GET_MODE (parmreg));
2831 int regnor = REGNO (gen_realpart (submode, parmreg));
2832 int regnoi = REGNO (gen_imagpart (submode, parmreg));
2833 rtx stackr = gen_realpart (submode, data->stack_parm);
2834 rtx stacki = gen_imagpart (submode, data->stack_parm);
2835
2836 /* Scan backwards for the set of the real and
2837 imaginary parts. */
2838 for (sinsn = linsn; sinsn != 0;
2839 sinsn = prev_nonnote_insn (sinsn))
2840 {
2841 set = single_set (sinsn);
2842 if (set == 0)
2843 continue;
2844
2845 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2846 REG_NOTES (sinsn)
2847 = gen_rtx_EXPR_LIST (REG_EQUIV, stacki,
2848 REG_NOTES (sinsn));
2849 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2850 REG_NOTES (sinsn)
2851 = gen_rtx_EXPR_LIST (REG_EQUIV, stackr,
2852 REG_NOTES (sinsn));
a03caf76 2853 }
6071dc7f
RH
2854 }
2855 else if ((set = single_set (linsn)) != 0
2856 && SET_DEST (set) == parmreg)
2857 REG_NOTES (linsn)
2858 = gen_rtx_EXPR_LIST (REG_EQUIV,
2859 data->stack_parm, REG_NOTES (linsn));
2860 }
2861
2862 /* For pointer data type, suggest pointer register. */
2863 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2864 mark_reg_pointer (parmreg,
2865 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2866}
2867
2868/* A subroutine of assign_parms. Allocate stack space to hold the current
2869 parameter. Get it there. Perform all ABI specified conversions. */
2870
2871static void
2872assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2873 struct assign_parm_data_one *data)
2874{
2875 /* Value must be stored in the stack slot STACK_PARM during function
2876 execution. */
2877
2878 if (data->promoted_mode != data->nominal_mode)
2879 {
2880 /* Conversion is required. */
2881 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
6f086dfc 2882
6071dc7f
RH
2883 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2884
2885 push_to_sequence (all->conversion_insns);
2886 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2887 TYPE_UNSIGNED (TREE_TYPE (parm)));
2888
2889 if (data->stack_parm)
2890 /* ??? This may need a big-endian conversion on sparc64. */
2891 data->stack_parm
2892 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2893
2894 all->conversion_insns = get_insns ();
2895 end_sequence ();
2896 }
2897
2898 if (data->entry_parm != data->stack_parm)
2899 {
2900 if (data->stack_parm == 0)
2901 {
2902 data->stack_parm
2903 = assign_stack_local (GET_MODE (data->entry_parm),
2904 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2905 0);
2906 set_mem_attributes (data->stack_parm, parm, 1);
6f086dfc 2907 }
6071dc7f
RH
2908
2909 if (data->promoted_mode != data->nominal_mode)
6f086dfc 2910 {
6071dc7f
RH
2911 push_to_sequence (all->conversion_insns);
2912 emit_move_insn (validize_mem (data->stack_parm),
2913 validize_mem (data->entry_parm));
2914 all->conversion_insns = get_insns ();
2915 end_sequence ();
2916 }
2917 else
2918 emit_move_insn (validize_mem (data->stack_parm),
2919 validize_mem (data->entry_parm));
2920 }
6f086dfc 2921
6071dc7f
RH
2922 SET_DECL_RTL (parm, data->stack_parm);
2923}
3412b298 2924
6071dc7f
RH
2925/* A subroutine of assign_parms. If the ABI splits complex arguments, then
2926 undo the frobbing that we did in assign_parms_augmented_arg_list. */
86f8eff3 2927
6071dc7f
RH
2928static void
2929assign_parms_unsplit_complex (tree orig_fnargs, tree fnargs)
2930{
2931 tree parm;
f4ef873c 2932
6071dc7f
RH
2933 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2934 {
2935 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2936 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2937 {
2938 rtx tmp, real, imag;
2939 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
6f086dfc 2940
6071dc7f
RH
2941 real = DECL_RTL (fnargs);
2942 imag = DECL_RTL (TREE_CHAIN (fnargs));
2943 if (inner != GET_MODE (real))
6f086dfc 2944 {
6071dc7f
RH
2945 real = gen_lowpart_SUBREG (inner, real);
2946 imag = gen_lowpart_SUBREG (inner, imag);
2947 }
2948 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2949 SET_DECL_RTL (parm, tmp);
7e41ffa2 2950
6071dc7f
RH
2951 real = DECL_INCOMING_RTL (fnargs);
2952 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2953 if (inner != GET_MODE (real))
2954 {
2955 real = gen_lowpart_SUBREG (inner, real);
2956 imag = gen_lowpart_SUBREG (inner, imag);
6f086dfc 2957 }
6071dc7f
RH
2958 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2959 set_decl_incoming_rtl (parm, tmp);
2960 fnargs = TREE_CHAIN (fnargs);
2961 }
2962 else
2963 {
2964 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2965 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs));
6f086dfc 2966
6071dc7f
RH
2967 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2968 instead of the copy of decl, i.e. FNARGS. */
2969 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2970 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
6f086dfc 2971 }
6071dc7f
RH
2972
2973 fnargs = TREE_CHAIN (fnargs);
6f086dfc 2974 }
6071dc7f
RH
2975}
2976
2977/* Assign RTL expressions to the function's parameters. This may involve
2978 copying them into registers and using those registers as the DECL_RTL. */
2979
2980void
2981assign_parms (tree fndecl)
2982{
2983 struct assign_parm_data_all all;
2984 tree fnargs, parm;
2985 rtx internal_arg_pointer;
2986 int varargs_setup = 0;
6f086dfc 2987
6071dc7f
RH
2988 /* If the reg that the virtual arg pointer will be translated into is
2989 not a fixed reg or is the stack pointer, make a copy of the virtual
2990 arg pointer, and address parms via the copy. The frame pointer is
2991 considered fixed even though it is not marked as such.
2992
2993 The second time through, simply use ap to avoid generating rtx. */
2994
2995 if ((ARG_POINTER_REGNUM == STACK_POINTER_REGNUM
2996 || ! (fixed_regs[ARG_POINTER_REGNUM]
2997 || ARG_POINTER_REGNUM == FRAME_POINTER_REGNUM)))
2998 internal_arg_pointer = copy_to_reg (virtual_incoming_args_rtx);
2999 else
3000 internal_arg_pointer = virtual_incoming_args_rtx;
3001 current_function_internal_arg_pointer = internal_arg_pointer;
3002
3003 assign_parms_initialize_all (&all);
3004 fnargs = assign_parms_augmented_arg_list (&all);
3005
3006 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
ded9bf77 3007 {
6071dc7f
RH
3008 struct assign_parm_data_one data;
3009
3010 /* Extract the type of PARM; adjust it according to ABI. */
3011 assign_parm_find_data_types (&all, parm, &data);
3012
3013 /* Early out for errors and void parameters. */
3014 if (data.passed_mode == VOIDmode)
ded9bf77 3015 {
6071dc7f
RH
3016 SET_DECL_RTL (parm, const0_rtx);
3017 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3018 continue;
3019 }
196c42cd 3020
6071dc7f
RH
3021 /* Handle stdargs. LAST_NAMED is a slight mis-nomer; it's also true
3022 for the unnamed dummy argument following the last named argument.
3023 See ABI silliness wrt strict_argument_naming and NAMED_ARG. So
3024 we only want to do this when we get to the actual last named
3025 argument, which will be the first time LAST_NAMED gets set. */
3026 if (data.last_named && !varargs_setup)
3027 {
3028 varargs_setup = true;
3029 assign_parms_setup_varargs (&all, &data, false);
3030 }
196c42cd 3031
6071dc7f
RH
3032 /* Find out where the parameter arrives in this function. */
3033 assign_parm_find_entry_rtl (&all, &data);
3034
3035 /* Find out where stack space for this parameter might be. */
3036 if (assign_parm_is_stack_parm (&all, &data))
3037 {
3038 assign_parm_find_stack_rtl (parm, &data);
3039 assign_parm_adjust_entry_rtl (&data);
ded9bf77 3040 }
6071dc7f
RH
3041
3042 /* Record permanently how this parm was passed. */
3043 set_decl_incoming_rtl (parm, data.entry_parm);
3044
3045 /* Update info on where next arg arrives in registers. */
3046 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3047 data.passed_type, data.named_arg);
3048
3049 assign_parm_adjust_stack_rtl (&data);
3050
3051 if (assign_parm_setup_block_p (&data))
3052 assign_parm_setup_block (parm, &data);
3053 else if (data.passed_pointer || use_register_for_decl (parm))
3054 assign_parm_setup_reg (&all, parm, &data);
3055 else
3056 assign_parm_setup_stack (&all, parm, &data);
ded9bf77
AH
3057 }
3058
6071dc7f
RH
3059 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3060 assign_parms_unsplit_complex (all.orig_fnargs, fnargs);
3061
3412b298
JW
3062 /* Output all parameter conversion instructions (possibly including calls)
3063 now that all parameters have been copied out of hard registers. */
6071dc7f 3064 emit_insn (all.conversion_insns);
3412b298 3065
b36a8cc2
OH
3066 /* If we are receiving a struct value address as the first argument, set up
3067 the RTL for the function result. As this might require code to convert
3068 the transmitted address to Pmode, we do this here to ensure that possible
3069 preliminary conversions of the address have been emitted already. */
6071dc7f 3070 if (all.function_result_decl)
b36a8cc2 3071 {
6071dc7f
RH
3072 tree result = DECL_RESULT (current_function_decl);
3073 rtx addr = DECL_RTL (all.function_result_decl);
b36a8cc2 3074 rtx x;
fa8db1f7 3075
cc77ae10
JM
3076 if (DECL_BY_REFERENCE (result))
3077 x = addr;
3078 else
3079 {
3080 addr = convert_memory_address (Pmode, addr);
3081 x = gen_rtx_MEM (DECL_MODE (result), addr);
3082 set_mem_attributes (x, result, 1);
3083 }
b36a8cc2
OH
3084 SET_DECL_RTL (result, x);
3085 }
3086
53c428d0 3087 /* We have aligned all the args, so add space for the pretend args. */
6071dc7f
RH
3088 current_function_pretend_args_size = all.pretend_args_size;
3089 all.stack_args_size.constant += all.extra_pretend_bytes;
3090 current_function_args_size = all.stack_args_size.constant;
6f086dfc
RS
3091
3092 /* Adjust function incoming argument size for alignment and
3093 minimum length. */
3094
3095#ifdef REG_PARM_STACK_SPACE
3096 current_function_args_size = MAX (current_function_args_size,
3097 REG_PARM_STACK_SPACE (fndecl));
6f90e075 3098#endif
6f086dfc 3099
4433e339
RH
3100 current_function_args_size
3101 = ((current_function_args_size + STACK_BYTES - 1)
3102 / STACK_BYTES) * STACK_BYTES;
4433e339 3103
6f086dfc
RS
3104#ifdef ARGS_GROW_DOWNWARD
3105 current_function_arg_offset_rtx
477eff96 3106 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
6071dc7f
RH
3107 : expand_expr (size_diffop (all.stack_args_size.var,
3108 size_int (-all.stack_args_size.constant)),
a57263bc 3109 NULL_RTX, VOIDmode, 0));
6f086dfc 3110#else
6071dc7f 3111 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
6f086dfc
RS
3112#endif
3113
3114 /* See how many bytes, if any, of its args a function should try to pop
3115 on return. */
3116
64e6d9cc 3117 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
6f086dfc
RS
3118 current_function_args_size);
3119
3b69d50e
RK
3120 /* For stdarg.h function, save info about
3121 regs and stack space used by the named args. */
6f086dfc 3122
6071dc7f 3123 current_function_args_info = all.args_so_far;
6f086dfc
RS
3124
3125 /* Set the rtx used for the function return value. Put this in its
3126 own variable so any optimizers that need this information don't have
3127 to include tree.h. Do this here so it gets done when an inlined
3128 function gets output. */
3129
19e7881c
MM
3130 current_function_return_rtx
3131 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3132 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
ce5e43d0
JJ
3133
3134 /* If scalar return value was computed in a pseudo-reg, or was a named
3135 return value that got dumped to the stack, copy that to the hard
3136 return register. */
3137 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3138 {
3139 tree decl_result = DECL_RESULT (fndecl);
3140 rtx decl_rtl = DECL_RTL (decl_result);
3141
3142 if (REG_P (decl_rtl)
3143 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3144 : DECL_REGISTER (decl_result))
3145 {
3146 rtx real_decl_rtl;
3147
3148#ifdef FUNCTION_OUTGOING_VALUE
3149 real_decl_rtl = FUNCTION_OUTGOING_VALUE (TREE_TYPE (decl_result),
3150 fndecl);
3151#else
3152 real_decl_rtl = FUNCTION_VALUE (TREE_TYPE (decl_result),
3153 fndecl);
3154#endif
3155 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3156 /* The delay slot scheduler assumes that current_function_return_rtx
3157 holds the hard register containing the return value, not a
3158 temporary pseudo. */
3159 current_function_return_rtx = real_decl_rtl;
3160 }
3161 }
6f086dfc
RS
3162}
3163\f
75dc3319
RK
3164/* Indicate whether REGNO is an incoming argument to the current function
3165 that was promoted to a wider mode. If so, return the RTX for the
3166 register (to get its mode). PMODE and PUNSIGNEDP are set to the mode
3167 that REGNO is promoted from and whether the promotion was signed or
3168 unsigned. */
3169
75dc3319 3170rtx
fa8db1f7 3171promoted_input_arg (unsigned int regno, enum machine_mode *pmode, int *punsignedp)
75dc3319
RK
3172{
3173 tree arg;
3174
3175 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
3176 arg = TREE_CHAIN (arg))
f8cfc6aa 3177 if (REG_P (DECL_INCOMING_RTL (arg))
621061f4
RK
3178 && REGNO (DECL_INCOMING_RTL (arg)) == regno
3179 && TYPE_MODE (DECL_ARG_TYPE (arg)) == TYPE_MODE (TREE_TYPE (arg)))
75dc3319
RK
3180 {
3181 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg));
8df83eae 3182 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (arg));
75dc3319 3183
a5a52dbc 3184 mode = promote_mode (TREE_TYPE (arg), mode, &unsignedp, 1);
75dc3319
RK
3185 if (mode == GET_MODE (DECL_INCOMING_RTL (arg))
3186 && mode != DECL_MODE (arg))
3187 {
3188 *pmode = DECL_MODE (arg);
3189 *punsignedp = unsignedp;
3190 return DECL_INCOMING_RTL (arg);
3191 }
3192 }
3193
3194 return 0;
3195}
3196
75dc3319 3197\f
6f086dfc
RS
3198/* Compute the size and offset from the start of the stacked arguments for a
3199 parm passed in mode PASSED_MODE and with type TYPE.
3200
3201 INITIAL_OFFSET_PTR points to the current offset into the stacked
3202 arguments.
3203
e7949876
AM
3204 The starting offset and size for this parm are returned in
3205 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3206 nonzero, the offset is that of stack slot, which is returned in
3207 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3208 padding required from the initial offset ptr to the stack slot.
6f086dfc 3209
cc2902df 3210 IN_REGS is nonzero if the argument will be passed in registers. It will
6f086dfc
RS
3211 never be set if REG_PARM_STACK_SPACE is not defined.
3212
3213 FNDECL is the function in which the argument was defined.
3214
3215 There are two types of rounding that are done. The first, controlled by
3216 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3217 list to be aligned to the specific boundary (in bits). This rounding
3218 affects the initial and starting offsets, but not the argument size.
3219
3220 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3221 optionally rounds the size of the parm to PARM_BOUNDARY. The
3222 initial offset is not affected by this rounding, while the size always
3223 is and the starting offset may be. */
3224
e7949876
AM
3225/* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3226 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
6f086dfc 3227 callers pass in the total size of args so far as
e7949876 3228 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
6f086dfc 3229
6f086dfc 3230void
fa8db1f7
AJ
3231locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3232 int partial, tree fndecl ATTRIBUTE_UNUSED,
3233 struct args_size *initial_offset_ptr,
3234 struct locate_and_pad_arg_data *locate)
6f086dfc 3235{
e7949876
AM
3236 tree sizetree;
3237 enum direction where_pad;
3238 int boundary;
3239 int reg_parm_stack_space = 0;
3240 int part_size_in_regs;
6f086dfc
RS
3241
3242#ifdef REG_PARM_STACK_SPACE
e7949876 3243 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
e7949876 3244
6f086dfc
RS
3245 /* If we have found a stack parm before we reach the end of the
3246 area reserved for registers, skip that area. */
3247 if (! in_regs)
3248 {
6f086dfc
RS
3249 if (reg_parm_stack_space > 0)
3250 {
3251 if (initial_offset_ptr->var)
3252 {
3253 initial_offset_ptr->var
3254 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
fed3cef0 3255 ssize_int (reg_parm_stack_space));
6f086dfc
RS
3256 initial_offset_ptr->constant = 0;
3257 }
3258 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3259 initial_offset_ptr->constant = reg_parm_stack_space;
3260 }
3261 }
3262#endif /* REG_PARM_STACK_SPACE */
3263
e7949876
AM
3264 part_size_in_regs = 0;
3265 if (reg_parm_stack_space == 0)
3266 part_size_in_regs = ((partial * UNITS_PER_WORD)
3267 / (PARM_BOUNDARY / BITS_PER_UNIT)
3268 * (PARM_BOUNDARY / BITS_PER_UNIT));
3269
3270 sizetree
3271 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3272 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3273 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
6e985040 3274 locate->where_pad = where_pad;
6f086dfc
RS
3275
3276#ifdef ARGS_GROW_DOWNWARD
e7949876 3277 locate->slot_offset.constant = -initial_offset_ptr->constant;
6f086dfc 3278 if (initial_offset_ptr->var)
e7949876
AM
3279 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3280 initial_offset_ptr->var);
9dff28ab 3281
e7949876
AM
3282 {
3283 tree s2 = sizetree;
3284 if (where_pad != none
3285 && (!host_integerp (sizetree, 1)
3286 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3287 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3288 SUB_PARM_SIZE (locate->slot_offset, s2);
3289 }
3290
3291 locate->slot_offset.constant += part_size_in_regs;
9dff28ab
JDA
3292
3293 if (!in_regs
3294#ifdef REG_PARM_STACK_SPACE
3295 || REG_PARM_STACK_SPACE (fndecl) > 0
3296#endif
3297 )
e7949876
AM
3298 pad_to_arg_alignment (&locate->slot_offset, boundary,
3299 &locate->alignment_pad);
9dff28ab 3300
e7949876
AM
3301 locate->size.constant = (-initial_offset_ptr->constant
3302 - locate->slot_offset.constant);
6f086dfc 3303 if (initial_offset_ptr->var)
e7949876
AM
3304 locate->size.var = size_binop (MINUS_EXPR,
3305 size_binop (MINUS_EXPR,
3306 ssize_int (0),
3307 initial_offset_ptr->var),
3308 locate->slot_offset.var);
3309
3310 /* Pad_below needs the pre-rounded size to know how much to pad
3311 below. */
3312 locate->offset = locate->slot_offset;
3313 if (where_pad == downward)
3314 pad_below (&locate->offset, passed_mode, sizetree);
9dff28ab 3315
6f086dfc 3316#else /* !ARGS_GROW_DOWNWARD */
832ea3b3
FS
3317 if (!in_regs
3318#ifdef REG_PARM_STACK_SPACE
3319 || REG_PARM_STACK_SPACE (fndecl) > 0
3320#endif
3321 )
e7949876
AM
3322 pad_to_arg_alignment (initial_offset_ptr, boundary,
3323 &locate->alignment_pad);
3324 locate->slot_offset = *initial_offset_ptr;
6f086dfc
RS
3325
3326#ifdef PUSH_ROUNDING
3327 if (passed_mode != BLKmode)
3328 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3329#endif
3330
d4b0a7a0
DE
3331 /* Pad_below needs the pre-rounded size to know how much to pad below
3332 so this must be done before rounding up. */
e7949876
AM
3333 locate->offset = locate->slot_offset;
3334 if (where_pad == downward)
3335 pad_below (&locate->offset, passed_mode, sizetree);
d4b0a7a0 3336
6f086dfc 3337 if (where_pad != none
1468899d
RK
3338 && (!host_integerp (sizetree, 1)
3339 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
6f086dfc
RS
3340 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3341
e7949876
AM
3342 ADD_PARM_SIZE (locate->size, sizetree);
3343
3344 locate->size.constant -= part_size_in_regs;
6f086dfc
RS
3345#endif /* ARGS_GROW_DOWNWARD */
3346}
3347
e16c591a
RS
3348/* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3349 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3350
6f086dfc 3351static void
fa8db1f7
AJ
3352pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3353 struct args_size *alignment_pad)
6f086dfc 3354{
a544cfd2
KG
3355 tree save_var = NULL_TREE;
3356 HOST_WIDE_INT save_constant = 0;
a751cd5b 3357 int boundary_in_bytes = boundary / BITS_PER_UNIT;
a594a19c
GK
3358 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3359
3360#ifdef SPARC_STACK_BOUNDARY_HACK
3361 /* The sparc port has a bug. It sometimes claims a STACK_BOUNDARY
3362 higher than the real alignment of %sp. However, when it does this,
3363 the alignment of %sp+STACK_POINTER_OFFSET will be STACK_BOUNDARY.
3364 This is a temporary hack while the sparc port is fixed. */
3365 if (SPARC_STACK_BOUNDARY_HACK)
3366 sp_offset = 0;
3367#endif
4fc026cd 3368
9399d5c6 3369 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
4fc026cd
CM
3370 {
3371 save_var = offset_ptr->var;
3372 save_constant = offset_ptr->constant;
3373 }
3374
3375 alignment_pad->var = NULL_TREE;
3376 alignment_pad->constant = 0;
4fc026cd 3377
6f086dfc
RS
3378 if (boundary > BITS_PER_UNIT)
3379 {
3380 if (offset_ptr->var)
3381 {
a594a19c
GK
3382 tree sp_offset_tree = ssize_int (sp_offset);
3383 tree offset = size_binop (PLUS_EXPR,
3384 ARGS_SIZE_TREE (*offset_ptr),
3385 sp_offset_tree);
6f086dfc 3386#ifdef ARGS_GROW_DOWNWARD
a594a19c 3387 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
6f086dfc 3388#else
a594a19c 3389 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
6f086dfc 3390#endif
a594a19c
GK
3391
3392 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
e7949876
AM
3393 /* ARGS_SIZE_TREE includes constant term. */
3394 offset_ptr->constant = 0;
dd3f0101
KH
3395 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3396 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
fed3cef0 3397 save_var);
6f086dfc
RS
3398 }
3399 else
718fe406 3400 {
a594a19c 3401 offset_ptr->constant = -sp_offset +
6f086dfc 3402#ifdef ARGS_GROW_DOWNWARD
a594a19c 3403 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
6f086dfc 3404#else
a594a19c 3405 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
6f086dfc 3406#endif
718fe406
KH
3407 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3408 alignment_pad->constant = offset_ptr->constant - save_constant;
3409 }
6f086dfc
RS
3410 }
3411}
3412
3413static void
fa8db1f7 3414pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
6f086dfc
RS
3415{
3416 if (passed_mode != BLKmode)
3417 {
3418 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3419 offset_ptr->constant
3420 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3421 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3422 - GET_MODE_SIZE (passed_mode));
3423 }
3424 else
3425 {
3426 if (TREE_CODE (sizetree) != INTEGER_CST
3427 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3428 {
3429 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3430 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3431 /* Add it in. */
3432 ADD_PARM_SIZE (*offset_ptr, s2);
3433 SUB_PARM_SIZE (*offset_ptr, sizetree);
3434 }
3435 }
3436}
6f086dfc
RS
3437\f
3438/* Walk the tree of blocks describing the binding levels within a function
6de9cd9a 3439 and warn about variables the might be killed by setjmp or vfork.
6f086dfc
RS
3440 This is done after calling flow_analysis and before global_alloc
3441 clobbers the pseudo-regs to hard regs. */
3442
3443void
6de9cd9a 3444setjmp_vars_warning (tree block)
6f086dfc 3445{
b3694847 3446 tree decl, sub;
6de9cd9a 3447
6f086dfc
RS
3448 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3449 {
6de9cd9a 3450 if (TREE_CODE (decl) == VAR_DECL
bc41842b 3451 && DECL_RTL_SET_P (decl)
f8cfc6aa 3452 && REG_P (DECL_RTL (decl))
6f086dfc 3453 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
ddd2d57e
RH
3454 warning ("%Jvariable '%D' might be clobbered by `longjmp' or `vfork'",
3455 decl, decl);
6f086dfc 3456 }
6de9cd9a 3457
6f086dfc 3458 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = TREE_CHAIN (sub))
6de9cd9a 3459 setjmp_vars_warning (sub);
6f086dfc
RS
3460}
3461
6de9cd9a 3462/* Do the appropriate part of setjmp_vars_warning
6f086dfc
RS
3463 but for arguments instead of local variables. */
3464
3465void
fa8db1f7 3466setjmp_args_warning (void)
6f086dfc 3467{
b3694847 3468 tree decl;
6f086dfc
RS
3469 for (decl = DECL_ARGUMENTS (current_function_decl);
3470 decl; decl = TREE_CHAIN (decl))
3471 if (DECL_RTL (decl) != 0
f8cfc6aa 3472 && REG_P (DECL_RTL (decl))
6f086dfc 3473 && regno_clobbered_at_setjmp (REGNO (DECL_RTL (decl))))
ddd2d57e
RH
3474 warning ("%Jargument '%D' might be clobbered by `longjmp' or `vfork'",
3475 decl, decl);
6f086dfc
RS
3476}
3477
6f086dfc 3478\f
a20612aa
RH
3479/* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3480 and create duplicate blocks. */
3481/* ??? Need an option to either create block fragments or to create
3482 abstract origin duplicates of a source block. It really depends
3483 on what optimization has been performed. */
467456d0 3484
116eebd6 3485void
fa8db1f7 3486reorder_blocks (void)
467456d0 3487{
116eebd6 3488 tree block = DECL_INITIAL (current_function_decl);
18c038b9 3489 varray_type block_stack;
467456d0 3490
1a4450c7 3491 if (block == NULL_TREE)
116eebd6 3492 return;
fc289cd1 3493
18c038b9
MM
3494 VARRAY_TREE_INIT (block_stack, 10, "block_stack");
3495
a20612aa 3496 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
6de9cd9a 3497 clear_block_marks (block);
a20612aa 3498
116eebd6
MM
3499 /* Prune the old trees away, so that they don't get in the way. */
3500 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3501 BLOCK_CHAIN (block) = NULL_TREE;
fc289cd1 3502
a20612aa 3503 /* Recreate the block tree from the note nesting. */
116eebd6 3504 reorder_blocks_1 (get_insns (), block, &block_stack);
718fe406 3505 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
18c038b9 3506
a20612aa
RH
3507 /* Remove deleted blocks from the block fragment chains. */
3508 reorder_fix_fragments (block);
467456d0
RS
3509}
3510
a20612aa 3511/* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
0a1c58a2 3512
6de9cd9a
DN
3513void
3514clear_block_marks (tree block)
cc1fe44f 3515{
a20612aa 3516 while (block)
cc1fe44f 3517 {
a20612aa 3518 TREE_ASM_WRITTEN (block) = 0;
6de9cd9a 3519 clear_block_marks (BLOCK_SUBBLOCKS (block));
a20612aa 3520 block = BLOCK_CHAIN (block);
cc1fe44f
DD
3521 }
3522}
3523
0a1c58a2 3524static void
fa8db1f7 3525reorder_blocks_1 (rtx insns, tree current_block, varray_type *p_block_stack)
0a1c58a2
JL
3526{
3527 rtx insn;
3528
3529 for (insn = insns; insn; insn = NEXT_INSN (insn))
3530 {
4b4bf941 3531 if (NOTE_P (insn))
0a1c58a2
JL
3532 {
3533 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
3534 {
3535 tree block = NOTE_BLOCK (insn);
a20612aa
RH
3536
3537 /* If we have seen this block before, that means it now
3538 spans multiple address regions. Create a new fragment. */
0a1c58a2
JL
3539 if (TREE_ASM_WRITTEN (block))
3540 {
a20612aa
RH
3541 tree new_block = copy_node (block);
3542 tree origin;
3543
3544 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3545 ? BLOCK_FRAGMENT_ORIGIN (block)
3546 : block);
3547 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3548 BLOCK_FRAGMENT_CHAIN (new_block)
3549 = BLOCK_FRAGMENT_CHAIN (origin);
3550 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3551
3552 NOTE_BLOCK (insn) = new_block;
3553 block = new_block;
0a1c58a2 3554 }
a20612aa 3555
0a1c58a2
JL
3556 BLOCK_SUBBLOCKS (block) = 0;
3557 TREE_ASM_WRITTEN (block) = 1;
339a28b9
ZW
3558 /* When there's only one block for the entire function,
3559 current_block == block and we mustn't do this, it
3560 will cause infinite recursion. */
3561 if (block != current_block)
3562 {
3563 BLOCK_SUPERCONTEXT (block) = current_block;
3564 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3565 BLOCK_SUBBLOCKS (current_block) = block;
3566 current_block = block;
3567 }
0a1c58a2
JL
3568 VARRAY_PUSH_TREE (*p_block_stack, block);
3569 }
3570 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
3571 {
3572 NOTE_BLOCK (insn) = VARRAY_TOP_TREE (*p_block_stack);
3573 VARRAY_POP (*p_block_stack);
3574 BLOCK_SUBBLOCKS (current_block)
3575 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3576 current_block = BLOCK_SUPERCONTEXT (current_block);
3577 }
3578 }
0a1c58a2
JL
3579 }
3580}
3581
a20612aa
RH
3582/* Rationalize BLOCK_FRAGMENT_ORIGIN. If an origin block no longer
3583 appears in the block tree, select one of the fragments to become
3584 the new origin block. */
3585
3586static void
fa8db1f7 3587reorder_fix_fragments (tree block)
a20612aa
RH
3588{
3589 while (block)
3590 {
3591 tree dup_origin = BLOCK_FRAGMENT_ORIGIN (block);
3592 tree new_origin = NULL_TREE;
3593
3594 if (dup_origin)
3595 {
3596 if (! TREE_ASM_WRITTEN (dup_origin))
3597 {
3598 new_origin = BLOCK_FRAGMENT_CHAIN (dup_origin);
797a6ac1 3599
a20612aa
RH
3600 /* Find the first of the remaining fragments. There must
3601 be at least one -- the current block. */
3602 while (! TREE_ASM_WRITTEN (new_origin))
3603 new_origin = BLOCK_FRAGMENT_CHAIN (new_origin);
3604 BLOCK_FRAGMENT_ORIGIN (new_origin) = NULL_TREE;
3605 }
3606 }
3607 else if (! dup_origin)
3608 new_origin = block;
3609
3610 /* Re-root the rest of the fragments to the new origin. In the
3611 case that DUP_ORIGIN was null, that means BLOCK was the origin
3612 of a chain of fragments and we want to remove those fragments
3613 that didn't make it to the output. */
3614 if (new_origin)
3615 {
3616 tree *pp = &BLOCK_FRAGMENT_CHAIN (new_origin);
3617 tree chain = *pp;
3618
3619 while (chain)
3620 {
3621 if (TREE_ASM_WRITTEN (chain))
3622 {
3623 BLOCK_FRAGMENT_ORIGIN (chain) = new_origin;
3624 *pp = chain;
3625 pp = &BLOCK_FRAGMENT_CHAIN (chain);
3626 }
3627 chain = BLOCK_FRAGMENT_CHAIN (chain);
3628 }
3629 *pp = NULL_TREE;
3630 }
3631
3632 reorder_fix_fragments (BLOCK_SUBBLOCKS (block));
3633 block = BLOCK_CHAIN (block);
3634 }
3635}
3636
467456d0
RS
3637/* Reverse the order of elements in the chain T of blocks,
3638 and return the new head of the chain (old last element). */
3639
6de9cd9a 3640tree
fa8db1f7 3641blocks_nreverse (tree t)
467456d0 3642{
b3694847 3643 tree prev = 0, decl, next;
467456d0
RS
3644 for (decl = t; decl; decl = next)
3645 {
3646 next = BLOCK_CHAIN (decl);
3647 BLOCK_CHAIN (decl) = prev;
3648 prev = decl;
3649 }
3650 return prev;
3651}
3652
18c038b9
MM
3653/* Count the subblocks of the list starting with BLOCK. If VECTOR is
3654 non-NULL, list them all into VECTOR, in a depth-first preorder
3655 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
b2a59b15 3656 blocks. */
467456d0
RS
3657
3658static int
fa8db1f7 3659all_blocks (tree block, tree *vector)
467456d0 3660{
b2a59b15
MS
3661 int n_blocks = 0;
3662
a84efb51
JO
3663 while (block)
3664 {
3665 TREE_ASM_WRITTEN (block) = 0;
b2a59b15 3666
a84efb51
JO
3667 /* Record this block. */
3668 if (vector)
3669 vector[n_blocks] = block;
b2a59b15 3670
a84efb51 3671 ++n_blocks;
718fe406 3672
a84efb51
JO
3673 /* Record the subblocks, and their subblocks... */
3674 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3675 vector ? vector + n_blocks : 0);
3676 block = BLOCK_CHAIN (block);
3677 }
467456d0
RS
3678
3679 return n_blocks;
3680}
18c038b9
MM
3681
3682/* Return a vector containing all the blocks rooted at BLOCK. The
3683 number of elements in the vector is stored in N_BLOCKS_P. The
3684 vector is dynamically allocated; it is the caller's responsibility
3685 to call `free' on the pointer returned. */
718fe406 3686
18c038b9 3687static tree *
fa8db1f7 3688get_block_vector (tree block, int *n_blocks_p)
18c038b9
MM
3689{
3690 tree *block_vector;
3691
3692 *n_blocks_p = all_blocks (block, NULL);
703ad42b 3693 block_vector = xmalloc (*n_blocks_p * sizeof (tree));
18c038b9
MM
3694 all_blocks (block, block_vector);
3695
3696 return block_vector;
3697}
3698
f83b236e 3699static GTY(()) int next_block_index = 2;
18c038b9
MM
3700
3701/* Set BLOCK_NUMBER for all the blocks in FN. */
3702
3703void
fa8db1f7 3704number_blocks (tree fn)
18c038b9
MM
3705{
3706 int i;
3707 int n_blocks;
3708 tree *block_vector;
3709
3710 /* For SDB and XCOFF debugging output, we start numbering the blocks
3711 from 1 within each function, rather than keeping a running
3712 count. */
3713#if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
b0e3a658
RK
3714 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3715 next_block_index = 1;
18c038b9
MM
3716#endif
3717
3718 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3719
3720 /* The top-level BLOCK isn't numbered at all. */
3721 for (i = 1; i < n_blocks; ++i)
3722 /* We number the blocks from two. */
3723 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3724
3725 free (block_vector);
3726
3727 return;
3728}
df8992f8
RH
3729
3730/* If VAR is present in a subblock of BLOCK, return the subblock. */
3731
3732tree
fa8db1f7 3733debug_find_var_in_block_tree (tree var, tree block)
df8992f8
RH
3734{
3735 tree t;
3736
3737 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3738 if (t == var)
3739 return block;
3740
3741 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3742 {
3743 tree ret = debug_find_var_in_block_tree (var, t);
3744 if (ret)
3745 return ret;
3746 }
3747
3748 return NULL_TREE;
3749}
467456d0 3750\f
3a70d621
RH
3751/* Allocate a function structure for FNDECL and set its contents
3752 to the defaults. */
7a80cf9a 3753
3a70d621
RH
3754void
3755allocate_struct_function (tree fndecl)
6f086dfc 3756{
3a70d621 3757 tree result;
6de9cd9a 3758 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
6f086dfc 3759
3a70d621 3760 cfun = ggc_alloc_cleared (sizeof (struct function));
b384405b 3761
3a70d621
RH
3762 cfun->stack_alignment_needed = STACK_BOUNDARY;
3763 cfun->preferred_stack_boundary = STACK_BOUNDARY;
6f086dfc 3764
3a70d621 3765 current_function_funcdef_no = funcdef_no++;
6f086dfc 3766
3a70d621 3767 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
6f086dfc 3768
3a70d621 3769 init_eh_for_function ();
6f086dfc 3770
ae2bcd98 3771 lang_hooks.function.init (cfun);
3a70d621
RH
3772 if (init_machine_status)
3773 cfun->machine = (*init_machine_status) ();
e2ecd91c 3774
3a70d621
RH
3775 if (fndecl == NULL)
3776 return;
a0871656 3777
1da326c3 3778 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3a70d621 3779 cfun->decl = fndecl;
6f086dfc 3780
3a70d621 3781 result = DECL_RESULT (fndecl);
61f71b34 3782 if (aggregate_value_p (result, fndecl))
3a70d621
RH
3783 {
3784#ifdef PCC_STATIC_STRUCT_RETURN
3785 current_function_returns_pcc_struct = 1;
3786#endif
3787 current_function_returns_struct = 1;
3788 }
6f086dfc 3789
3a70d621 3790 current_function_returns_pointer = POINTER_TYPE_P (TREE_TYPE (result));
6f086dfc 3791
6de9cd9a
DN
3792 current_function_stdarg
3793 = (fntype
3794 && TYPE_ARG_TYPES (fntype) != 0
3795 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3796 != void_type_node));
3a70d621 3797}
6f086dfc 3798
3a70d621 3799/* Reset cfun, and other non-struct-function variables to defaults as
2067c116 3800 appropriate for emitting rtl at the start of a function. */
6f086dfc 3801
3a70d621
RH
3802static void
3803prepare_function_start (tree fndecl)
3804{
1da326c3
SB
3805 if (fndecl && DECL_STRUCT_FUNCTION (fndecl))
3806 cfun = DECL_STRUCT_FUNCTION (fndecl);
3a70d621
RH
3807 else
3808 allocate_struct_function (fndecl);
0de456a5
JH
3809 init_emit ();
3810 init_varasm_status (cfun);
3811 init_expr ();
6f086dfc 3812
3a70d621 3813 cse_not_expected = ! optimize;
6f086dfc 3814
3a70d621
RH
3815 /* Caller save not needed yet. */
3816 caller_save_needed = 0;
6f086dfc 3817
3a70d621
RH
3818 /* We haven't done register allocation yet. */
3819 reg_renumber = 0;
6f086dfc 3820
b384405b
BS
3821 /* Indicate that we have not instantiated virtual registers yet. */
3822 virtuals_instantiated = 0;
3823
1b3d8f8a
GK
3824 /* Indicate that we want CONCATs now. */
3825 generating_concat_p = 1;
3826
b384405b
BS
3827 /* Indicate we have no need of a frame pointer yet. */
3828 frame_pointer_needed = 0;
b384405b
BS
3829}
3830
3831/* Initialize the rtl expansion mechanism so that we can do simple things
3832 like generate sequences. This is used to provide a context during global
3833 initialization of some passes. */
3834void
fa8db1f7 3835init_dummy_function_start (void)
b384405b 3836{
3a70d621 3837 prepare_function_start (NULL);
b384405b
BS
3838}
3839
3840/* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3841 and initialize static variables for generating RTL for the statements
3842 of the function. */
3843
3844void
fa8db1f7 3845init_function_start (tree subr)
b384405b 3846{
3a70d621 3847 prepare_function_start (subr);
b384405b 3848
ee6b0296
NS
3849 /* Prevent ever trying to delete the first instruction of a
3850 function. Also tell final how to output a linenum before the
3851 function prologue. Note linenums could be missing, e.g. when
3852 compiling a Java .class file. */
3c20847b 3853 if (! DECL_IS_BUILTIN (subr))
f31686a3 3854 emit_line_note (DECL_SOURCE_LOCATION (subr));
6f086dfc
RS
3855
3856 /* Make sure first insn is a note even if we don't want linenums.
3857 This makes sure the first insn will never be deleted.
3858 Also, final expects a note to appear there. */
2e040219 3859 emit_note (NOTE_INSN_DELETED);
6f086dfc 3860
6f086dfc
RS
3861 /* Warn if this value is an aggregate type,
3862 regardless of which calling convention we are using for it. */
3863 if (warn_aggregate_return
05e3bdb9 3864 && AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
6f086dfc 3865 warning ("function returns an aggregate");
49ad7cfa 3866}
5c7675e9 3867
49ad7cfa
BS
3868/* Make sure all values used by the optimization passes have sane
3869 defaults. */
3870void
fa8db1f7 3871init_function_for_compilation (void)
49ad7cfa
BS
3872{
3873 reg_renumber = 0;
0a1c58a2 3874
5c7675e9 3875 /* No prologue/epilogue insns yet. */
0a1c58a2
JL
3876 VARRAY_GROW (prologue, 0);
3877 VARRAY_GROW (epilogue, 0);
3878 VARRAY_GROW (sibcall_epilogue, 0);
6f086dfc
RS
3879}
3880
6f086dfc
RS
3881/* Expand a call to __main at the beginning of a possible main function. */
3882
e2fd1d94
JM
3883#if defined(INIT_SECTION_ASM_OP) && !defined(INVOKE__main)
3884#undef HAS_INIT_SECTION
3885#define HAS_INIT_SECTION
3886#endif
3887
6f086dfc 3888void
fa8db1f7 3889expand_main_function (void)
6f086dfc 3890{
1d482056
RH
3891#ifdef FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN
3892 if (FORCE_PREFERRED_STACK_BOUNDARY_IN_MAIN)
3893 {
3894 int align = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
8a723db2 3895 rtx tmp, seq;
1d482056 3896
8a723db2 3897 start_sequence ();
ef89d648 3898 /* Forcibly align the stack. */
1d482056 3899#ifdef STACK_GROWS_DOWNWARD
ef89d648
ZW
3900 tmp = expand_simple_binop (Pmode, AND, stack_pointer_rtx, GEN_INT(-align),
3901 stack_pointer_rtx, 1, OPTAB_WIDEN);
1d482056 3902#else
ef89d648
ZW
3903 tmp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3904 GEN_INT (align - 1), NULL_RTX, 1, OPTAB_WIDEN);
3905 tmp = expand_simple_binop (Pmode, AND, tmp, GEN_INT (-align),
3906 stack_pointer_rtx, 1, OPTAB_WIDEN);
1d482056
RH
3907#endif
3908 if (tmp != stack_pointer_rtx)
3909 emit_move_insn (stack_pointer_rtx, tmp);
797a6ac1 3910
1d482056
RH
3911 /* Enlist allocate_dynamic_stack_space to pick up the pieces. */
3912 tmp = force_reg (Pmode, const0_rtx);
3913 allocate_dynamic_stack_space (tmp, NULL_RTX, BIGGEST_ALIGNMENT);
2f937369 3914 seq = get_insns ();
8a723db2
DD
3915 end_sequence ();
3916
3917 for (tmp = get_last_insn (); tmp; tmp = PREV_INSN (tmp))
3918 if (NOTE_P (tmp) && NOTE_LINE_NUMBER (tmp) == NOTE_INSN_FUNCTION_BEG)
3919 break;
3920 if (tmp)
3921 emit_insn_before (seq, tmp);
3922 else
3923 emit_insn (seq);
1d482056
RH
3924 }
3925#endif
3926
3927#ifndef HAS_INIT_SECTION
68d28100 3928 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
1d482056 3929#endif
6f086dfc
RS
3930}
3931\f
1f731749
MM
3932/* The PENDING_SIZES represent the sizes of variable-sized types.
3933 Create RTL for the various sizes now (using temporary variables),
3934 so that we can refer to the sizes from the RTL we are generating
3935 for the current function. The PENDING_SIZES are a TREE_LIST. The
3936 TREE_VALUE of each node is a SAVE_EXPR. */
3937
3938void
fa8db1f7 3939expand_pending_sizes (tree pending_sizes)
1f731749
MM
3940{
3941 tree tem;
3942
3943 /* Evaluate now the sizes of any types declared among the arguments. */
3944 for (tem = pending_sizes; tem; tem = TREE_CHAIN (tem))
ad76cef8 3945 expand_expr (TREE_VALUE (tem), const0_rtx, VOIDmode, 0);
1f731749
MM
3946}
3947
6f086dfc
RS
3948/* Start the RTL for a new function, and set variables used for
3949 emitting RTL.
3950 SUBR is the FUNCTION_DECL node.
3951 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
3952 the function's parameters, which must be run at any return statement. */
3953
3954void
b79c5284 3955expand_function_start (tree subr)
6f086dfc 3956{
6f086dfc
RS
3957 /* Make sure volatile mem refs aren't considered
3958 valid operands of arithmetic insns. */
3959 init_recog_no_volatile ();
3960
70f4f91c
WC
3961 current_function_profile
3962 = (profile_flag
3963 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
3964
a157febd
GK
3965 current_function_limit_stack
3966 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
3967
52a11cbf
RH
3968 /* Make the label for return statements to jump to. Do not special
3969 case machines with special return instructions -- they will be
3970 handled later during jump, ifcvt, or epilogue creation. */
6f086dfc 3971 return_label = gen_label_rtx ();
6f086dfc
RS
3972
3973 /* Initialize rtx used to return the value. */
3974 /* Do this before assign_parms so that we copy the struct value address
3975 before any library calls that assign parms might generate. */
3976
3977 /* Decide whether to return the value in memory or in a register. */
61f71b34 3978 if (aggregate_value_p (DECL_RESULT (subr), subr))
6f086dfc
RS
3979 {
3980 /* Returning something that won't go in a register. */
b3694847 3981 rtx value_address = 0;
6f086dfc
RS
3982
3983#ifdef PCC_STATIC_STRUCT_RETURN
3984 if (current_function_returns_pcc_struct)
3985 {
3986 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
3987 value_address = assemble_static_space (size);
3988 }
3989 else
3990#endif
3991 {
61f71b34 3992 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 1);
6f086dfc
RS
3993 /* Expect to be passed the address of a place to store the value.
3994 If it is passed as an argument, assign_parms will take care of
3995 it. */
61f71b34 3996 if (sv)
6f086dfc
RS
3997 {
3998 value_address = gen_reg_rtx (Pmode);
61f71b34 3999 emit_move_insn (value_address, sv);
6f086dfc
RS
4000 }
4001 }
4002 if (value_address)
ccdecf58 4003 {
01c98570
JM
4004 rtx x = value_address;
4005 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4006 {
4007 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4008 set_mem_attributes (x, DECL_RESULT (subr), 1);
4009 }
abde42f7 4010 SET_DECL_RTL (DECL_RESULT (subr), x);
ccdecf58 4011 }
6f086dfc
RS
4012 }
4013 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4014 /* If return mode is void, this decl rtl should not be used. */
19e7881c 4015 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
d5bf1143 4016 else
a53e14c0 4017 {
d5bf1143
RH
4018 /* Compute the return values into a pseudo reg, which we will copy
4019 into the true return register after the cleanups are done. */
db3c0315
MM
4020
4021 /* In order to figure out what mode to use for the pseudo, we
4022 figure out what the mode of the eventual return register will
4023 actually be, and use that. */
4024 rtx hard_reg
4025 = hard_function_value (TREE_TYPE (DECL_RESULT (subr)),
4026 subr, 1);
4027
80a480ca 4028 /* Structures that are returned in registers are not aggregate_value_p,
084a1106
JDA
4029 so we may see a PARALLEL or a REG. */
4030 if (REG_P (hard_reg))
4031 SET_DECL_RTL (DECL_RESULT (subr), gen_reg_rtx (GET_MODE (hard_reg)));
4032 else if (GET_CODE (hard_reg) == PARALLEL)
4033 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
80a480ca 4034 else
084a1106 4035 abort ();
a53e14c0 4036
084a1106
JDA
4037 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4038 result to the real return register(s). */
4039 DECL_REGISTER (DECL_RESULT (subr)) = 1;
a53e14c0 4040 }
6f086dfc
RS
4041
4042 /* Initialize rtx for parameters and local variables.
4043 In some cases this requires emitting insns. */
0d1416c6 4044 assign_parms (subr);
6f086dfc 4045
6de9cd9a
DN
4046 /* If function gets a static chain arg, store it. */
4047 if (cfun->static_chain_decl)
4048 {
7e140280
RH
4049 tree parm = cfun->static_chain_decl;
4050 rtx local = gen_reg_rtx (Pmode);
4051
4052 set_decl_incoming_rtl (parm, static_chain_incoming_rtx);
4053 SET_DECL_RTL (parm, local);
7e140280 4054 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
6de9cd9a 4055
7e140280 4056 emit_move_insn (local, static_chain_incoming_rtx);
6de9cd9a
DN
4057 }
4058
4059 /* If the function receives a non-local goto, then store the
4060 bits we need to restore the frame pointer. */
4061 if (cfun->nonlocal_goto_save_area)
4062 {
4063 tree t_save;
4064 rtx r_save;
4065
4066 /* ??? We need to do this save early. Unfortunately here is
4067 before the frame variable gets declared. Help out... */
4068 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4069
3244e67d
RS
4070 t_save = build4 (ARRAY_REF, ptr_type_node,
4071 cfun->nonlocal_goto_save_area,
4072 integer_zero_node, NULL_TREE, NULL_TREE);
6de9cd9a 4073 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5e89a381 4074 r_save = convert_memory_address (Pmode, r_save);
f0c51a1e 4075
6de9cd9a
DN
4076 emit_move_insn (r_save, virtual_stack_vars_rtx);
4077 update_nonlocal_goto_save_area ();
4078 }
f0c51a1e 4079
6f086dfc
RS
4080 /* The following was moved from init_function_start.
4081 The move is supposed to make sdb output more accurate. */
4082 /* Indicate the beginning of the function body,
4083 as opposed to parm setup. */
2e040219 4084 emit_note (NOTE_INSN_FUNCTION_BEG);
6f086dfc 4085
4b4bf941 4086 if (!NOTE_P (get_last_insn ()))
2e040219 4087 emit_note (NOTE_INSN_DELETED);
6f086dfc
RS
4088 parm_birth_insn = get_last_insn ();
4089
70f4f91c 4090 if (current_function_profile)
f6f315fe 4091 {
f6f315fe 4092#ifdef PROFILE_HOOK
df696a75 4093 PROFILE_HOOK (current_function_funcdef_no);
411707f4 4094#endif
f6f315fe 4095 }
411707f4 4096
6f086dfc
RS
4097 /* After the display initializations is where the tail-recursion label
4098 should go, if we end up needing one. Ensure we have a NOTE here
4099 since some things (like trampolines) get placed before this. */
2e040219 4100 tail_recursion_reentry = emit_note (NOTE_INSN_DELETED);
6f086dfc
RS
4101
4102 /* Evaluate now the sizes of any types declared among the arguments. */
1f731749 4103 expand_pending_sizes (nreverse (get_pending_sizes ()));
6f086dfc
RS
4104
4105 /* Make sure there is a line number after the function entry setup code. */
4106 force_next_line_note ();
4107}
4108\f
49ad7cfa
BS
4109/* Undo the effects of init_dummy_function_start. */
4110void
fa8db1f7 4111expand_dummy_function_end (void)
49ad7cfa
BS
4112{
4113 /* End any sequences that failed to be closed due to syntax errors. */
4114 while (in_sequence_p ())
4115 end_sequence ();
4116
4117 /* Outside function body, can't compute type's actual size
4118 until next function's body starts. */
fa51b01b 4119
01d939e8
BS
4120 free_after_parsing (cfun);
4121 free_after_compilation (cfun);
01d939e8 4122 cfun = 0;
49ad7cfa
BS
4123}
4124
c13fde05
RH
4125/* Call DOIT for each hard register used as a return value from
4126 the current function. */
bd695e1e
RH
4127
4128void
fa8db1f7 4129diddle_return_value (void (*doit) (rtx, void *), void *arg)
bd695e1e 4130{
c13fde05
RH
4131 rtx outgoing = current_function_return_rtx;
4132
4133 if (! outgoing)
4134 return;
bd695e1e 4135
f8cfc6aa 4136 if (REG_P (outgoing))
c13fde05
RH
4137 (*doit) (outgoing, arg);
4138 else if (GET_CODE (outgoing) == PARALLEL)
4139 {
4140 int i;
bd695e1e 4141
c13fde05
RH
4142 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4143 {
4144 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4145
f8cfc6aa 4146 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
c13fde05 4147 (*doit) (x, arg);
bd695e1e
RH
4148 }
4149 }
4150}
4151
c13fde05 4152static void
fa8db1f7 4153do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
c13fde05
RH
4154{
4155 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4156}
4157
4158void
fa8db1f7 4159clobber_return_register (void)
c13fde05
RH
4160{
4161 diddle_return_value (do_clobber_return_reg, NULL);
9c65bbf4
JH
4162
4163 /* In case we do use pseudo to return value, clobber it too. */
4164 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4165 {
4166 tree decl_result = DECL_RESULT (current_function_decl);
4167 rtx decl_rtl = DECL_RTL (decl_result);
4168 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4169 {
4170 do_clobber_return_reg (decl_rtl, NULL);
4171 }
4172 }
c13fde05
RH
4173}
4174
4175static void
fa8db1f7 4176do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
c13fde05
RH
4177{
4178 emit_insn (gen_rtx_USE (VOIDmode, reg));
4179}
4180
4181void
fa8db1f7 4182use_return_register (void)
c13fde05
RH
4183{
4184 diddle_return_value (do_use_return_reg, NULL);
4185}
4186
902edd36
JH
4187/* Possibly warn about unused parameters. */
4188void
4189do_warn_unused_parameter (tree fn)
4190{
4191 tree decl;
4192
4193 for (decl = DECL_ARGUMENTS (fn);
4194 decl; decl = TREE_CHAIN (decl))
4195 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4196 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl))
4197 warning ("%Junused parameter '%D'", decl, decl);
4198}
4199
e2500fed
GK
4200static GTY(()) rtx initial_trampoline;
4201
71c0e7fc 4202/* Generate RTL for the end of the current function. */
6f086dfc
RS
4203
4204void
fa8db1f7 4205expand_function_end (void)
6f086dfc 4206{
932f0847 4207 rtx clobber_after;
6f086dfc 4208
964be02f
RH
4209 /* If arg_pointer_save_area was referenced only from a nested
4210 function, we will not have initialized it yet. Do that now. */
4211 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4212 get_arg_pointer_save_area (cfun);
4213
11044f66
RK
4214 /* If we are doing stack checking and this function makes calls,
4215 do a stack probe at the start of the function to ensure we have enough
4216 space for another stack frame. */
4217 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4218 {
4219 rtx insn, seq;
4220
4221 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4b4bf941 4222 if (CALL_P (insn))
11044f66
RK
4223 {
4224 start_sequence ();
4225 probe_stack_range (STACK_CHECK_PROTECT,
4226 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4227 seq = get_insns ();
4228 end_sequence ();
2f937369 4229 emit_insn_before (seq, tail_recursion_reentry);
11044f66
RK
4230 break;
4231 }
4232 }
4233
902edd36
JH
4234 /* Possibly warn about unused parameters.
4235 When frontend does unit-at-a-time, the warning is already
4236 issued at finalization time. */
4237 if (warn_unused_parameter
4238 && !lang_hooks.callgraph.expand_function)
4239 do_warn_unused_parameter (current_function_decl);
6f086dfc 4240
6f086dfc
RS
4241 /* End any sequences that failed to be closed due to syntax errors. */
4242 while (in_sequence_p ())
5f4f0e22 4243 end_sequence ();
6f086dfc 4244
6f086dfc
RS
4245 clear_pending_stack_adjust ();
4246 do_pending_stack_adjust ();
4247
ffad84cd
AH
4248 /* @@@ This is a kludge. We want to ensure that instructions that
4249 may trap are not moved into the epilogue by scheduling, because
4250 we don't always emit unwind information for the epilogue.
4251 However, not all machine descriptions define a blockage insn, so
4252 emit an ASM_INPUT to act as one. */
4253 if (flag_non_call_exceptions)
4254 emit_insn (gen_rtx_ASM_INPUT (VOIDmode, ""));
4255
6f086dfc
RS
4256 /* Mark the end of the function body.
4257 If control reaches this insn, the function can drop through
4258 without returning a value. */
2e040219 4259 emit_note (NOTE_INSN_FUNCTION_END);
6f086dfc 4260
82e415a3
DE
4261 /* Must mark the last line number note in the function, so that the test
4262 coverage code can avoid counting the last line twice. This just tells
4263 the code to ignore the immediately following line note, since there
4264 already exists a copy of this note somewhere above. This line number
4265 note is still needed for debugging though, so we can't delete it. */
4266 if (flag_test_coverage)
2e040219 4267 emit_note (NOTE_INSN_REPEATED_LINE_NUMBER);
82e415a3 4268
6f086dfc
RS
4269 /* Output a linenumber for the end of the function.
4270 SDB depends on this. */
0cea056b
NS
4271 force_next_line_note ();
4272 emit_line_note (input_location);
6f086dfc 4273
fbffc70a 4274 /* Before the return label (if any), clobber the return
a1f300c0 4275 registers so that they are not propagated live to the rest of
fbffc70a
GK
4276 the function. This can only happen with functions that drop
4277 through; if there had been a return statement, there would
932f0847
JH
4278 have either been a return rtx, or a jump to the return label.
4279
4280 We delay actual code generation after the current_function_value_rtx
4281 is computed. */
4282 clobber_after = get_last_insn ();
fbffc70a 4283
6f086dfc
RS
4284 /* Output the label for the actual return from the function,
4285 if one is expected. This happens either because a function epilogue
4286 is used instead of a return instruction, or because a return was done
4287 with a goto in order to run local cleanups, or because of pcc-style
4288 structure returning. */
6f086dfc 4289 if (return_label)
fbffc70a 4290 emit_label (return_label);
6f086dfc 4291
52a11cbf
RH
4292 /* Let except.c know where it should emit the call to unregister
4293 the function context for sjlj exceptions. */
4294 if (flag_exceptions && USING_SJLJ_EXCEPTIONS)
4295 sjlj_emit_function_exit_after (get_last_insn ());
4296
6f086dfc
RS
4297 /* If we had calls to alloca, and this machine needs
4298 an accurate stack pointer to exit the function,
4299 insert some code to save and restore the stack pointer. */
9d05bbce
KH
4300 if (! EXIT_IGNORE_STACK
4301 && current_function_calls_alloca)
4302 {
4303 rtx tem = 0;
59257ff7 4304
9d05bbce
KH
4305 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4306 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4307 }
6f086dfc 4308
3e4eac3f
RH
4309 /* If scalar return value was computed in a pseudo-reg, or was a named
4310 return value that got dumped to the stack, copy that to the hard
4311 return register. */
19e7881c 4312 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
6f086dfc 4313 {
3e4eac3f
RH
4314 tree decl_result = DECL_RESULT (current_function_decl);
4315 rtx decl_rtl = DECL_RTL (decl_result);
4316
4317 if (REG_P (decl_rtl)
4318 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4319 : DECL_REGISTER (decl_result))
4320 {
ce5e43d0 4321 rtx real_decl_rtl = current_function_return_rtx;
6f086dfc 4322
ce5e43d0
JJ
4323 /* This should be set in assign_parms. */
4324 if (! REG_FUNCTION_VALUE_P (real_decl_rtl))
4325 abort ();
3e4eac3f
RH
4326
4327 /* If this is a BLKmode structure being returned in registers,
4328 then use the mode computed in expand_return. Note that if
797a6ac1 4329 decl_rtl is memory, then its mode may have been changed,
3e4eac3f
RH
4330 but that current_function_return_rtx has not. */
4331 if (GET_MODE (real_decl_rtl) == BLKmode)
ce5e43d0 4332 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
3e4eac3f
RH
4333
4334 /* If a named return value dumped decl_return to memory, then
797a6ac1 4335 we may need to re-do the PROMOTE_MODE signed/unsigned
3e4eac3f
RH
4336 extension. */
4337 if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4338 {
8df83eae 4339 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
3e4eac3f 4340
61f71b34
DD
4341 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4342 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4343 &unsignedp, 1);
3e4eac3f
RH
4344
4345 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4346 }
aa570f54 4347 else if (GET_CODE (real_decl_rtl) == PARALLEL)
084a1106
JDA
4348 {
4349 /* If expand_function_start has created a PARALLEL for decl_rtl,
4350 move the result to the real return registers. Otherwise, do
4351 a group load from decl_rtl for a named return. */
4352 if (GET_CODE (decl_rtl) == PARALLEL)
4353 emit_group_move (real_decl_rtl, decl_rtl);
4354 else
4355 emit_group_load (real_decl_rtl, decl_rtl,
6e985040 4356 TREE_TYPE (decl_result),
084a1106
JDA
4357 int_size_in_bytes (TREE_TYPE (decl_result)));
4358 }
3e4eac3f
RH
4359 else
4360 emit_move_insn (real_decl_rtl, decl_rtl);
3e4eac3f 4361 }
6f086dfc
RS
4362 }
4363
4364 /* If returning a structure, arrange to return the address of the value
4365 in a place where debuggers expect to find it.
4366
4367 If returning a structure PCC style,
4368 the caller also depends on this value.
4369 And current_function_returns_pcc_struct is not necessarily set. */
4370 if (current_function_returns_struct
4371 || current_function_returns_pcc_struct)
4372 {
cc77ae10 4373 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
6f086dfc 4374 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
cc77ae10
JM
4375 rtx outgoing;
4376
4377 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4378 type = TREE_TYPE (type);
4379 else
4380 value_address = XEXP (value_address, 0);
4381
6f086dfc 4382#ifdef FUNCTION_OUTGOING_VALUE
cc77ae10
JM
4383 outgoing = FUNCTION_OUTGOING_VALUE (build_pointer_type (type),
4384 current_function_decl);
6f086dfc 4385#else
cc77ae10
JM
4386 outgoing = FUNCTION_VALUE (build_pointer_type (type),
4387 current_function_decl);
4388#endif
6f086dfc
RS
4389
4390 /* Mark this as a function return value so integrate will delete the
4391 assignment and USE below when inlining this function. */
4392 REG_FUNCTION_VALUE_P (outgoing) = 1;
4393
d1608933 4394 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5ae6cd0d
MM
4395 value_address = convert_memory_address (GET_MODE (outgoing),
4396 value_address);
d1608933 4397
6f086dfc 4398 emit_move_insn (outgoing, value_address);
d1608933
RK
4399
4400 /* Show return register used to hold result (in this case the address
4401 of the result. */
4402 current_function_return_rtx = outgoing;
6f086dfc
RS
4403 }
4404
52a11cbf
RH
4405 /* If this is an implementation of throw, do what's necessary to
4406 communicate between __builtin_eh_return and the epilogue. */
4407 expand_eh_return ();
4408
932f0847
JH
4409 /* Emit the actual code to clobber return register. */
4410 {
4411 rtx seq, after;
797a6ac1 4412
932f0847
JH
4413 start_sequence ();
4414 clobber_return_register ();
2f937369 4415 seq = get_insns ();
932f0847
JH
4416 end_sequence ();
4417
4418 after = emit_insn_after (seq, clobber_after);
932f0847
JH
4419 }
4420
6e3077c6
EB
4421 /* Output the label for the naked return from the function, if one is
4422 expected. This is currently used only by __builtin_return. */
4423 if (naked_return_label)
4424 emit_label (naked_return_label);
4425
c13fde05
RH
4426 /* ??? This should no longer be necessary since stupid is no longer with
4427 us, but there are some parts of the compiler (eg reload_combine, and
4428 sh mach_dep_reorg) that still try and compute their own lifetime info
4429 instead of using the general framework. */
4430 use_return_register ();
6f086dfc 4431}
278ed218
RH
4432
4433rtx
fa8db1f7 4434get_arg_pointer_save_area (struct function *f)
278ed218
RH
4435{
4436 rtx ret = f->x_arg_pointer_save_area;
4437
4438 if (! ret)
4439 {
278ed218
RH
4440 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4441 f->x_arg_pointer_save_area = ret;
964be02f
RH
4442 }
4443
4444 if (f == cfun && ! f->arg_pointer_save_area_init)
4445 {
4446 rtx seq;
278ed218 4447
797a6ac1 4448 /* Save the arg pointer at the beginning of the function. The
964be02f 4449 generated stack slot may not be a valid memory address, so we
278ed218
RH
4450 have to check it and fix it if necessary. */
4451 start_sequence ();
4452 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
2f937369 4453 seq = get_insns ();
278ed218
RH
4454 end_sequence ();
4455
964be02f
RH
4456 push_topmost_sequence ();
4457 emit_insn_after (seq, get_insns ());
4458 pop_topmost_sequence ();
278ed218
RH
4459 }
4460
4461 return ret;
4462}
bdac5f58 4463\f
2f937369
DM
4464/* Extend a vector that records the INSN_UIDs of INSNS
4465 (a list of one or more insns). */
bdac5f58 4466
0a1c58a2 4467static void
fa8db1f7 4468record_insns (rtx insns, varray_type *vecp)
bdac5f58 4469{
2f937369
DM
4470 int i, len;
4471 rtx tmp;
0a1c58a2 4472
2f937369
DM
4473 tmp = insns;
4474 len = 0;
4475 while (tmp != NULL_RTX)
4476 {
4477 len++;
4478 tmp = NEXT_INSN (tmp);
bdac5f58 4479 }
2f937369
DM
4480
4481 i = VARRAY_SIZE (*vecp);
4482 VARRAY_GROW (*vecp, i + len);
4483 tmp = insns;
4484 while (tmp != NULL_RTX)
bdac5f58 4485 {
2f937369
DM
4486 VARRAY_INT (*vecp, i) = INSN_UID (tmp);
4487 i++;
4488 tmp = NEXT_INSN (tmp);
bdac5f58 4489 }
bdac5f58
TW
4490}
4491
589fe865 4492/* Set the locator of the insn chain starting at INSN to LOC. */
0435312e 4493static void
fa8db1f7 4494set_insn_locators (rtx insn, int loc)
0435312e
JH
4495{
4496 while (insn != NULL_RTX)
4497 {
4498 if (INSN_P (insn))
4499 INSN_LOCATOR (insn) = loc;
4500 insn = NEXT_INSN (insn);
4501 }
4502}
4503
2f937369
DM
4504/* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4505 be running after reorg, SEQUENCE rtl is possible. */
bdac5f58 4506
10914065 4507static int
fa8db1f7 4508contains (rtx insn, varray_type vec)
bdac5f58 4509{
b3694847 4510 int i, j;
bdac5f58 4511
4b4bf941 4512 if (NONJUMP_INSN_P (insn)
bdac5f58
TW
4513 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4514 {
10914065 4515 int count = 0;
bdac5f58 4516 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
0a1c58a2
JL
4517 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4518 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i)) == VARRAY_INT (vec, j))
10914065
TW
4519 count++;
4520 return count;
bdac5f58
TW
4521 }
4522 else
4523 {
0a1c58a2
JL
4524 for (j = VARRAY_SIZE (vec) - 1; j >= 0; --j)
4525 if (INSN_UID (insn) == VARRAY_INT (vec, j))
10914065 4526 return 1;
bdac5f58
TW
4527 }
4528 return 0;
4529}
5c7675e9
RH
4530
4531int
fa8db1f7 4532prologue_epilogue_contains (rtx insn)
5c7675e9 4533{
0a1c58a2 4534 if (contains (insn, prologue))
5c7675e9 4535 return 1;
0a1c58a2 4536 if (contains (insn, epilogue))
5c7675e9
RH
4537 return 1;
4538 return 0;
4539}
bdac5f58 4540
0a1c58a2 4541int
fa8db1f7 4542sibcall_epilogue_contains (rtx insn)
0a1c58a2
JL
4543{
4544 if (sibcall_epilogue)
4545 return contains (insn, sibcall_epilogue);
4546 return 0;
4547}
4548
73ef99fb 4549#ifdef HAVE_return
69732dcb
RH
4550/* Insert gen_return at the end of block BB. This also means updating
4551 block_for_insn appropriately. */
4552
4553static void
fa8db1f7 4554emit_return_into_block (basic_block bb, rtx line_note)
69732dcb 4555{
a813c111 4556 emit_jump_insn_after (gen_return (), BB_END (bb));
86c82654 4557 if (line_note)
a813c111 4558 emit_note_copy_after (line_note, PREV_INSN (BB_END (bb)));
69732dcb 4559}
73ef99fb 4560#endif /* HAVE_return */
69732dcb 4561
3258e996
RK
4562#if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4563
4564/* These functions convert the epilogue into a variant that does not modify the
4565 stack pointer. This is used in cases where a function returns an object
d6a7951f 4566 whose size is not known until it is computed. The called function leaves the
3258e996
RK
4567 object on the stack, leaves the stack depressed, and returns a pointer to
4568 the object.
4569
4570 What we need to do is track all modifications and references to the stack
4571 pointer, deleting the modifications and changing the references to point to
4572 the location the stack pointer would have pointed to had the modifications
4573 taken place.
4574
4575 These functions need to be portable so we need to make as few assumptions
4576 about the epilogue as we can. However, the epilogue basically contains
4577 three things: instructions to reset the stack pointer, instructions to
4578 reload registers, possibly including the frame pointer, and an
4579 instruction to return to the caller.
4580
4581 If we can't be sure of what a relevant epilogue insn is doing, we abort.
4582 We also make no attempt to validate the insns we make since if they are
4583 invalid, we probably can't do anything valid. The intent is that these
4584 routines get "smarter" as more and more machines start to use them and
4585 they try operating on different epilogues.
4586
4587 We use the following structure to track what the part of the epilogue that
4588 we've already processed has done. We keep two copies of the SP equivalence,
4589 one for use during the insn we are processing and one for use in the next
4590 insn. The difference is because one part of a PARALLEL may adjust SP
4591 and the other may use it. */
4592
4593struct epi_info
4594{
4595 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4596 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
3ef42a0c 4597 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
3258e996
RK
4598 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4599 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4600 should be set to once we no longer need
4601 its value. */
f285d67b
RK
4602 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4603 for registers. */
3258e996
RK
4604};
4605
fa8db1f7 4606static void handle_epilogue_set (rtx, struct epi_info *);
80fcc7bc 4607static void update_epilogue_consts (rtx, rtx, void *);
fa8db1f7 4608static void emit_equiv_load (struct epi_info *);
7393c642 4609
2f937369
DM
4610/* Modify INSN, a list of one or more insns that is part of the epilogue, to
4611 no modifications to the stack pointer. Return the new list of insns. */
7393c642 4612
3258e996 4613static rtx
fa8db1f7 4614keep_stack_depressed (rtx insns)
7393c642 4615{
2f937369 4616 int j;
3258e996 4617 struct epi_info info;
2f937369 4618 rtx insn, next;
7393c642 4619
f285d67b 4620 /* If the epilogue is just a single instruction, it must be OK as is. */
2f937369
DM
4621 if (NEXT_INSN (insns) == NULL_RTX)
4622 return insns;
7393c642 4623
3258e996
RK
4624 /* Otherwise, start a sequence, initialize the information we have, and
4625 process all the insns we were given. */
4626 start_sequence ();
4627
4628 info.sp_equiv_reg = stack_pointer_rtx;
4629 info.sp_offset = 0;
4630 info.equiv_reg_src = 0;
7393c642 4631
f285d67b
RK
4632 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4633 info.const_equiv[j] = 0;
4634
2f937369
DM
4635 insn = insns;
4636 next = NULL_RTX;
4637 while (insn != NULL_RTX)
7393c642 4638 {
2f937369 4639 next = NEXT_INSN (insn);
7393c642 4640
3258e996
RK
4641 if (!INSN_P (insn))
4642 {
4643 add_insn (insn);
2f937369 4644 insn = next;
3258e996
RK
4645 continue;
4646 }
7393c642 4647
3258e996
RK
4648 /* If this insn references the register that SP is equivalent to and
4649 we have a pending load to that register, we must force out the load
4650 first and then indicate we no longer know what SP's equivalent is. */
4651 if (info.equiv_reg_src != 0
4652 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
7393c642 4653 {
3258e996
RK
4654 emit_equiv_load (&info);
4655 info.sp_equiv_reg = 0;
4656 }
7393c642 4657
3258e996
RK
4658 info.new_sp_equiv_reg = info.sp_equiv_reg;
4659 info.new_sp_offset = info.sp_offset;
7393c642 4660
3258e996
RK
4661 /* If this is a (RETURN) and the return address is on the stack,
4662 update the address and change to an indirect jump. */
4663 if (GET_CODE (PATTERN (insn)) == RETURN
4664 || (GET_CODE (PATTERN (insn)) == PARALLEL
4665 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4666 {
4667 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4668 rtx base = 0;
4669 HOST_WIDE_INT offset = 0;
4670 rtx jump_insn, jump_set;
4671
4672 /* If the return address is in a register, we can emit the insn
4673 unchanged. Otherwise, it must be a MEM and we see what the
4674 base register and offset are. In any case, we have to emit any
4675 pending load to the equivalent reg of SP, if any. */
f8cfc6aa 4676 if (REG_P (retaddr))
3258e996
RK
4677 {
4678 emit_equiv_load (&info);
4679 add_insn (insn);
2f937369 4680 insn = next;
3258e996
RK
4681 continue;
4682 }
3c0cb5de 4683 else if (MEM_P (retaddr)
f8cfc6aa 4684 && REG_P (XEXP (retaddr, 0)))
3258e996 4685 base = gen_rtx_REG (Pmode, REGNO (XEXP (retaddr, 0))), offset = 0;
3c0cb5de 4686 else if (MEM_P (retaddr)
3258e996 4687 && GET_CODE (XEXP (retaddr, 0)) == PLUS
f8cfc6aa 4688 && REG_P (XEXP (XEXP (retaddr, 0), 0))
3258e996
RK
4689 && GET_CODE (XEXP (XEXP (retaddr, 0), 1)) == CONST_INT)
4690 {
4691 base = gen_rtx_REG (Pmode, REGNO (XEXP (XEXP (retaddr, 0), 0)));
4692 offset = INTVAL (XEXP (XEXP (retaddr, 0), 1));
4693 }
7393c642 4694 else
3258e996
RK
4695 abort ();
4696
4697 /* If the base of the location containing the return pointer
4698 is SP, we must update it with the replacement address. Otherwise,
4699 just build the necessary MEM. */
4700 retaddr = plus_constant (base, offset);
4701 if (base == stack_pointer_rtx)
4702 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4703 plus_constant (info.sp_equiv_reg,
4704 info.sp_offset));
4705
4706 retaddr = gen_rtx_MEM (Pmode, retaddr);
4707
4708 /* If there is a pending load to the equivalent register for SP
4709 and we reference that register, we must load our address into
4710 a scratch register and then do that load. */
4711 if (info.equiv_reg_src
4712 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4713 {
4714 unsigned int regno;
4715 rtx reg;
4716
4717 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4718 if (HARD_REGNO_MODE_OK (regno, Pmode)
53b6fb26
RK
4719 && !fixed_regs[regno]
4720 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
b5ed05aa
RK
4721 && !REGNO_REG_SET_P (EXIT_BLOCK_PTR->global_live_at_start,
4722 regno)
4723 && !refers_to_regno_p (regno,
66fd46b6
JH
4724 regno + hard_regno_nregs[regno]
4725 [Pmode],
f285d67b
RK
4726 info.equiv_reg_src, NULL)
4727 && info.const_equiv[regno] == 0)
3258e996
RK
4728 break;
4729
4730 if (regno == FIRST_PSEUDO_REGISTER)
4731 abort ();
7393c642 4732
3258e996
RK
4733 reg = gen_rtx_REG (Pmode, regno);
4734 emit_move_insn (reg, retaddr);
4735 retaddr = reg;
4736 }
4737
4738 emit_equiv_load (&info);
4739 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4740
4741 /* Show the SET in the above insn is a RETURN. */
4742 jump_set = single_set (jump_insn);
4743 if (jump_set == 0)
4744 abort ();
4745 else
4746 SET_IS_RETURN_P (jump_set) = 1;
7393c642 4747 }
3258e996
RK
4748
4749 /* If SP is not mentioned in the pattern and its equivalent register, if
4750 any, is not modified, just emit it. Otherwise, if neither is set,
4751 replace the reference to SP and emit the insn. If none of those are
4752 true, handle each SET individually. */
4753 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4754 && (info.sp_equiv_reg == stack_pointer_rtx
4755 || !reg_set_p (info.sp_equiv_reg, insn)))
4756 add_insn (insn);
4757 else if (! reg_set_p (stack_pointer_rtx, insn)
4758 && (info.sp_equiv_reg == stack_pointer_rtx
4759 || !reg_set_p (info.sp_equiv_reg, insn)))
7393c642 4760 {
3258e996
RK
4761 if (! validate_replace_rtx (stack_pointer_rtx,
4762 plus_constant (info.sp_equiv_reg,
4763 info.sp_offset),
4764 insn))
7393c642
RK
4765 abort ();
4766
3258e996
RK
4767 add_insn (insn);
4768 }
4769 else if (GET_CODE (PATTERN (insn)) == SET)
4770 handle_epilogue_set (PATTERN (insn), &info);
4771 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4772 {
4773 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4774 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4775 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4776 }
4777 else
4778 add_insn (insn);
4779
4780 info.sp_equiv_reg = info.new_sp_equiv_reg;
4781 info.sp_offset = info.new_sp_offset;
2f937369 4782
f285d67b
RK
4783 /* Now update any constants this insn sets. */
4784 note_stores (PATTERN (insn), update_epilogue_consts, &info);
2f937369 4785 insn = next;
3258e996
RK
4786 }
4787
2f937369 4788 insns = get_insns ();
3258e996 4789 end_sequence ();
2f937369 4790 return insns;
3258e996
RK
4791}
4792
d6a7951f 4793/* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
3258e996 4794 structure that contains information about what we've seen so far. We
797a6ac1 4795 process this SET by either updating that data or by emitting one or
3258e996
RK
4796 more insns. */
4797
4798static void
fa8db1f7 4799handle_epilogue_set (rtx set, struct epi_info *p)
3258e996
RK
4800{
4801 /* First handle the case where we are setting SP. Record what it is being
4802 set from. If unknown, abort. */
4803 if (reg_set_p (stack_pointer_rtx, set))
4804 {
4805 if (SET_DEST (set) != stack_pointer_rtx)
4806 abort ();
4807
f285d67b 4808 if (GET_CODE (SET_SRC (set)) == PLUS)
3258e996
RK
4809 {
4810 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
f285d67b
RK
4811 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
4812 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
f8cfc6aa 4813 else if (REG_P (XEXP (SET_SRC (set), 1))
f285d67b
RK
4814 && REGNO (XEXP (SET_SRC (set), 1)) < FIRST_PSEUDO_REGISTER
4815 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))] != 0)
4816 p->new_sp_offset
4817 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
4818 else
4819 abort ();
7393c642 4820 }
3258e996
RK
4821 else
4822 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
4823
4824 /* If we are adjusting SP, we adjust from the old data. */
4825 if (p->new_sp_equiv_reg == stack_pointer_rtx)
4826 {
4827 p->new_sp_equiv_reg = p->sp_equiv_reg;
4828 p->new_sp_offset += p->sp_offset;
4829 }
4830
f8cfc6aa 4831 if (p->new_sp_equiv_reg == 0 || !REG_P (p->new_sp_equiv_reg))
3258e996
RK
4832 abort ();
4833
4834 return;
4835 }
4836
4837 /* Next handle the case where we are setting SP's equivalent register.
4838 If we already have a value to set it to, abort. We could update, but
f189c7ca
RK
4839 there seems little point in handling that case. Note that we have
4840 to allow for the case where we are setting the register set in
4841 the previous part of a PARALLEL inside a single insn. But use the
f285d67b
RK
4842 old offset for any updates within this insn. We must allow for the case
4843 where the register is being set in a different (usually wider) mode than
4844 Pmode). */
f189c7ca 4845 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
3258e996 4846 {
f285d67b 4847 if (p->equiv_reg_src != 0
f8cfc6aa
JQ
4848 || !REG_P (p->new_sp_equiv_reg)
4849 || !REG_P (SET_DEST (set))
f285d67b
RK
4850 || GET_MODE_BITSIZE (GET_MODE (SET_DEST (set))) > BITS_PER_WORD
4851 || REGNO (p->new_sp_equiv_reg) != REGNO (SET_DEST (set)))
3258e996
RK
4852 abort ();
4853 else
4854 p->equiv_reg_src
4855 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4856 plus_constant (p->sp_equiv_reg,
4857 p->sp_offset));
4858 }
4859
4860 /* Otherwise, replace any references to SP in the insn to its new value
4861 and emit the insn. */
4862 else
4863 {
4864 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
4865 plus_constant (p->sp_equiv_reg,
4866 p->sp_offset));
4867 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
4868 plus_constant (p->sp_equiv_reg,
4869 p->sp_offset));
4870 emit_insn (set);
7393c642
RK
4871 }
4872}
3258e996 4873
f285d67b
RK
4874/* Update the tracking information for registers set to constants. */
4875
4876static void
4877update_epilogue_consts (rtx dest, rtx x, void *data)
4878{
4879 struct epi_info *p = (struct epi_info *) data;
8fbc67c0 4880 rtx new;
f285d67b 4881
f8cfc6aa 4882 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
f285d67b 4883 return;
8fbc67c0
RK
4884
4885 /* If we are either clobbering a register or doing a partial set,
4886 show we don't know the value. */
4887 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
f285d67b 4888 p->const_equiv[REGNO (dest)] = 0;
8fbc67c0
RK
4889
4890 /* If we are setting it to a constant, record that constant. */
4891 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
f285d67b 4892 p->const_equiv[REGNO (dest)] = SET_SRC (x);
8fbc67c0
RK
4893
4894 /* If this is a binary operation between a register we have been tracking
4895 and a constant, see if we can compute a new constant value. */
ec8e098d 4896 else if (ARITHMETIC_P (SET_SRC (x))
f8cfc6aa 4897 && REG_P (XEXP (SET_SRC (x), 0))
8fbc67c0
RK
4898 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
4899 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
4900 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4901 && 0 != (new = simplify_binary_operation
4902 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
4903 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
4904 XEXP (SET_SRC (x), 1)))
4905 && GET_CODE (new) == CONST_INT)
4906 p->const_equiv[REGNO (dest)] = new;
4907
4908 /* Otherwise, we can't do anything with this value. */
4909 else
4910 p->const_equiv[REGNO (dest)] = 0;
f285d67b
RK
4911}
4912
3258e996
RK
4913/* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
4914
4915static void
fa8db1f7 4916emit_equiv_load (struct epi_info *p)
3258e996
RK
4917{
4918 if (p->equiv_reg_src != 0)
f285d67b
RK
4919 {
4920 rtx dest = p->sp_equiv_reg;
4921
4922 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
4923 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
4924 REGNO (p->sp_equiv_reg));
3258e996 4925
f285d67b
RK
4926 emit_move_insn (dest, p->equiv_reg_src);
4927 p->equiv_reg_src = 0;
4928 }
3258e996 4929}
7393c642
RK
4930#endif
4931
9faa82d8 4932/* Generate the prologue and epilogue RTL if the machine supports it. Thread
bdac5f58
TW
4933 this into place with notes indicating where the prologue ends and where
4934 the epilogue begins. Update the basic block information when possible. */
4935
4936void
fa8db1f7 4937thread_prologue_and_epilogue_insns (rtx f ATTRIBUTE_UNUSED)
bdac5f58 4938{
ca1117cc 4939 int inserted = 0;
19d3c25c 4940 edge e;
91ea4f8d 4941#if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
19d3c25c 4942 rtx seq;
91ea4f8d 4943#endif
ca1117cc
RH
4944#ifdef HAVE_prologue
4945 rtx prologue_end = NULL_RTX;
4946#endif
86c82654
RH
4947#if defined (HAVE_epilogue) || defined(HAVE_return)
4948 rtx epilogue_end = NULL_RTX;
4949#endif
e881bb1b 4950
bdac5f58
TW
4951#ifdef HAVE_prologue
4952 if (HAVE_prologue)
4953 {
e881bb1b 4954 start_sequence ();
718fe406 4955 seq = gen_prologue ();
e881bb1b 4956 emit_insn (seq);
bdac5f58
TW
4957
4958 /* Retain a map of the prologue insns. */
0a1c58a2 4959 record_insns (seq, &prologue);
2e040219 4960 prologue_end = emit_note (NOTE_INSN_PROLOGUE_END);
9185a8d5 4961
2f937369 4962 seq = get_insns ();
e881bb1b 4963 end_sequence ();
0435312e 4964 set_insn_locators (seq, prologue_locator);
e881bb1b 4965
d6a7951f 4966 /* Can't deal with multiple successors of the entry block
75540af0
JH
4967 at the moment. Function should always have at least one
4968 entry point. */
4969 if (!ENTRY_BLOCK_PTR->succ || ENTRY_BLOCK_PTR->succ->succ_next)
4970 abort ();
e881bb1b 4971
75540af0
JH
4972 insert_insn_on_edge (seq, ENTRY_BLOCK_PTR->succ);
4973 inserted = 1;
bdac5f58 4974 }
bdac5f58 4975#endif
bdac5f58 4976
19d3c25c
RH
4977 /* If the exit block has no non-fake predecessors, we don't need
4978 an epilogue. */
718fe406 4979 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
19d3c25c
RH
4980 if ((e->flags & EDGE_FAKE) == 0)
4981 break;
4982 if (e == NULL)
4983 goto epilogue_done;
4984
69732dcb
RH
4985#ifdef HAVE_return
4986 if (optimize && HAVE_return)
4987 {
4988 /* If we're allowed to generate a simple return instruction,
4989 then by definition we don't need a full epilogue. Examine
718fe406
KH
4990 the block that falls through to EXIT. If it does not
4991 contain any code, examine its predecessors and try to
69732dcb
RH
4992 emit (conditional) return instructions. */
4993
4994 basic_block last;
4995 edge e_next;
4996 rtx label;
4997
718fe406 4998 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
69732dcb
RH
4999 if (e->flags & EDGE_FALLTHRU)
5000 break;
5001 if (e == NULL)
5002 goto epilogue_done;
5003 last = e->src;
5004
5005 /* Verify that there are no active instructions in the last block. */
a813c111 5006 label = BB_END (last);
4b4bf941 5007 while (label && !LABEL_P (label))
69732dcb
RH
5008 {
5009 if (active_insn_p (label))
5010 break;
5011 label = PREV_INSN (label);
5012 }
5013
4b4bf941 5014 if (BB_HEAD (last) == label && LABEL_P (label))
69732dcb 5015 {
718fe406 5016 rtx epilogue_line_note = NULL_RTX;
86c82654
RH
5017
5018 /* Locate the line number associated with the closing brace,
5019 if we can find one. */
5020 for (seq = get_last_insn ();
5021 seq && ! active_insn_p (seq);
5022 seq = PREV_INSN (seq))
4b4bf941 5023 if (NOTE_P (seq) && NOTE_LINE_NUMBER (seq) > 0)
86c82654
RH
5024 {
5025 epilogue_line_note = seq;
5026 break;
5027 }
5028
718fe406 5029 for (e = last->pred; e; e = e_next)
69732dcb
RH
5030 {
5031 basic_block bb = e->src;
5032 rtx jump;
5033
5034 e_next = e->pred_next;
5035 if (bb == ENTRY_BLOCK_PTR)
5036 continue;
5037
a813c111 5038 jump = BB_END (bb);
4b4bf941 5039 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
69732dcb
RH
5040 continue;
5041
5042 /* If we have an unconditional jump, we can replace that
5043 with a simple return instruction. */
5044 if (simplejump_p (jump))
5045 {
86c82654 5046 emit_return_into_block (bb, epilogue_line_note);
53c17031 5047 delete_insn (jump);
69732dcb
RH
5048 }
5049
5050 /* If we have a conditional jump, we can try to replace
5051 that with a conditional return instruction. */
5052 else if (condjump_p (jump))
5053 {
47009d11 5054 if (! redirect_jump (jump, 0, 0))
69732dcb 5055 continue;
718fe406 5056
3a75e42e
CP
5057 /* If this block has only one successor, it both jumps
5058 and falls through to the fallthru block, so we can't
5059 delete the edge. */
718fe406
KH
5060 if (bb->succ->succ_next == NULL)
5061 continue;
69732dcb
RH
5062 }
5063 else
5064 continue;
5065
5066 /* Fix up the CFG for the successful change we just made. */
86c82654 5067 redirect_edge_succ (e, EXIT_BLOCK_PTR);
69732dcb 5068 }
69732dcb 5069
2dd8bc01
GK
5070 /* Emit a return insn for the exit fallthru block. Whether
5071 this is still reachable will be determined later. */
69732dcb 5072
a813c111 5073 emit_barrier_after (BB_END (last));
86c82654 5074 emit_return_into_block (last, epilogue_line_note);
a813c111 5075 epilogue_end = BB_END (last);
ab75d1f1 5076 last->succ->flags &= ~EDGE_FALLTHRU;
718fe406 5077 goto epilogue_done;
2dd8bc01 5078 }
69732dcb
RH
5079 }
5080#endif
623a66fa
R
5081 /* Find the edge that falls through to EXIT. Other edges may exist
5082 due to RETURN instructions, but those don't need epilogues.
5083 There really shouldn't be a mixture -- either all should have
5084 been converted or none, however... */
5085
5086 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
5087 if (e->flags & EDGE_FALLTHRU)
5088 break;
5089 if (e == NULL)
5090 goto epilogue_done;
5091
bdac5f58
TW
5092#ifdef HAVE_epilogue
5093 if (HAVE_epilogue)
5094 {
19d3c25c 5095 start_sequence ();
2e040219 5096 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
a78bdb38 5097
19d3c25c 5098 seq = gen_epilogue ();
7393c642 5099
3258e996
RK
5100#ifdef INCOMING_RETURN_ADDR_RTX
5101 /* If this function returns with the stack depressed and we can support
5102 it, massage the epilogue to actually do that. */
43db0363
RK
5103 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5104 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
3258e996
RK
5105 seq = keep_stack_depressed (seq);
5106#endif
7393c642 5107
19d3c25c 5108 emit_jump_insn (seq);
bdac5f58 5109
19d3c25c 5110 /* Retain a map of the epilogue insns. */
0a1c58a2 5111 record_insns (seq, &epilogue);
0435312e 5112 set_insn_locators (seq, epilogue_locator);
bdac5f58 5113
2f937369 5114 seq = get_insns ();
718fe406 5115 end_sequence ();
e881bb1b 5116
19d3c25c 5117 insert_insn_on_edge (seq, e);
ca1117cc 5118 inserted = 1;
bdac5f58 5119 }
623a66fa 5120 else
bdac5f58 5121#endif
623a66fa
R
5122 {
5123 basic_block cur_bb;
5124
5125 if (! next_active_insn (BB_END (e->src)))
5126 goto epilogue_done;
5127 /* We have a fall-through edge to the exit block, the source is not
5128 at the end of the function, and there will be an assembler epilogue
5129 at the end of the function.
5130 We can't use force_nonfallthru here, because that would try to
5131 use return. Inserting a jump 'by hand' is extremely messy, so
5132 we take advantage of cfg_layout_finalize using
5133 fixup_fallthru_exit_predecessor. */
35b6b437 5134 cfg_layout_initialize (0);
623a66fa
R
5135 FOR_EACH_BB (cur_bb)
5136 if (cur_bb->index >= 0 && cur_bb->next_bb->index >= 0)
5137 cur_bb->rbi->next = cur_bb->next_bb;
5138 cfg_layout_finalize ();
5139 }
19d3c25c 5140epilogue_done:
e881bb1b 5141
ca1117cc 5142 if (inserted)
e881bb1b 5143 commit_edge_insertions ();
0a1c58a2
JL
5144
5145#ifdef HAVE_sibcall_epilogue
5146 /* Emit sibling epilogues before any sibling call sites. */
718fe406 5147 for (e = EXIT_BLOCK_PTR->pred; e; e = e->pred_next)
0a1c58a2
JL
5148 {
5149 basic_block bb = e->src;
a813c111 5150 rtx insn = BB_END (bb);
0a1c58a2 5151 rtx i;
1b513b77 5152 rtx newinsn;
0a1c58a2 5153
4b4bf941 5154 if (!CALL_P (insn)
0a1c58a2
JL
5155 || ! SIBLING_CALL_P (insn))
5156 continue;
5157
5158 start_sequence ();
0af5c896
RE
5159 emit_insn (gen_sibcall_epilogue ());
5160 seq = get_insns ();
0a1c58a2
JL
5161 end_sequence ();
5162
2f937369
DM
5163 /* Retain a map of the epilogue insns. Used in life analysis to
5164 avoid getting rid of sibcall epilogue insns. Do this before we
5165 actually emit the sequence. */
5166 record_insns (seq, &sibcall_epilogue);
0435312e 5167 set_insn_locators (seq, epilogue_locator);
2f937369 5168
0a1c58a2 5169 i = PREV_INSN (insn);
1b513b77 5170 newinsn = emit_insn_before (seq, insn);
0a1c58a2
JL
5171 }
5172#endif
ca1117cc
RH
5173
5174#ifdef HAVE_prologue
589fe865 5175 /* This is probably all useless now that we use locators. */
ca1117cc
RH
5176 if (prologue_end)
5177 {
5178 rtx insn, prev;
5179
5180 /* GDB handles `break f' by setting a breakpoint on the first
30196c1f 5181 line note after the prologue. Which means (1) that if
ca1117cc 5182 there are line number notes before where we inserted the
30196c1f
RH
5183 prologue we should move them, and (2) we should generate a
5184 note before the end of the first basic block, if there isn't
016030fe
JH
5185 one already there.
5186
8d9afc4e 5187 ??? This behavior is completely broken when dealing with
016030fe
JH
5188 multiple entry functions. We simply place the note always
5189 into first basic block and let alternate entry points
5190 to be missed.
5191 */
ca1117cc 5192
718fe406 5193 for (insn = prologue_end; insn; insn = prev)
ca1117cc
RH
5194 {
5195 prev = PREV_INSN (insn);
4b4bf941 5196 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
ca1117cc
RH
5197 {
5198 /* Note that we cannot reorder the first insn in the
5199 chain, since rest_of_compilation relies on that
30196c1f 5200 remaining constant. */
ca1117cc 5201 if (prev == NULL)
30196c1f
RH
5202 break;
5203 reorder_insns (insn, insn, prologue_end);
ca1117cc
RH
5204 }
5205 }
5206
30196c1f 5207 /* Find the last line number note in the first block. */
a813c111 5208 for (insn = BB_END (ENTRY_BLOCK_PTR->next_bb);
016030fe 5209 insn != prologue_end && insn;
30196c1f 5210 insn = PREV_INSN (insn))
4b4bf941 5211 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
30196c1f
RH
5212 break;
5213
5214 /* If we didn't find one, make a copy of the first line number
5215 we run across. */
5216 if (! insn)
ca1117cc 5217 {
30196c1f
RH
5218 for (insn = next_active_insn (prologue_end);
5219 insn;
5220 insn = PREV_INSN (insn))
4b4bf941 5221 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
30196c1f 5222 {
5f2fc772 5223 emit_note_copy_after (insn, prologue_end);
30196c1f
RH
5224 break;
5225 }
ca1117cc
RH
5226 }
5227 }
5228#endif
86c82654
RH
5229#ifdef HAVE_epilogue
5230 if (epilogue_end)
5231 {
5232 rtx insn, next;
5233
5234 /* Similarly, move any line notes that appear after the epilogue.
ff7cc307 5235 There is no need, however, to be quite so anal about the existence
84c1fa24
UW
5236 of such a note. Also move the NOTE_INSN_FUNCTION_END and (possibly)
5237 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5238 info generation. */
718fe406 5239 for (insn = epilogue_end; insn; insn = next)
86c82654
RH
5240 {
5241 next = NEXT_INSN (insn);
4b4bf941 5242 if (NOTE_P (insn)
84c1fa24
UW
5243 && (NOTE_LINE_NUMBER (insn) > 0
5244 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG
5245 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_END))
86c82654
RH
5246 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5247 }
5248 }
5249#endif
bdac5f58
TW
5250}
5251
5252/* Reposition the prologue-end and epilogue-begin notes after instruction
5253 scheduling and delayed branch scheduling. */
5254
5255void
fa8db1f7 5256reposition_prologue_and_epilogue_notes (rtx f ATTRIBUTE_UNUSED)
bdac5f58
TW
5257{
5258#if defined (HAVE_prologue) || defined (HAVE_epilogue)
9f53e965 5259 rtx insn, last, note;
0a1c58a2
JL
5260 int len;
5261
5262 if ((len = VARRAY_SIZE (prologue)) > 0)
bdac5f58 5263 {
9f53e965 5264 last = 0, note = 0;
bdac5f58 5265
0a1c58a2
JL
5266 /* Scan from the beginning until we reach the last prologue insn.
5267 We apparently can't depend on basic_block_{head,end} after
5268 reorg has run. */
9f53e965 5269 for (insn = f; insn; insn = NEXT_INSN (insn))
bdac5f58 5270 {
4b4bf941 5271 if (NOTE_P (insn))
9392c110 5272 {
0a1c58a2
JL
5273 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
5274 note = insn;
5275 }
9f53e965 5276 else if (contains (insn, prologue))
0a1c58a2 5277 {
9f53e965
RH
5278 last = insn;
5279 if (--len == 0)
5280 break;
5281 }
5282 }
797a6ac1 5283
9f53e965
RH
5284 if (last)
5285 {
9f53e965
RH
5286 /* Find the prologue-end note if we haven't already, and
5287 move it to just after the last prologue insn. */
5288 if (note == 0)
5289 {
5290 for (note = last; (note = NEXT_INSN (note));)
4b4bf941 5291 if (NOTE_P (note)
9f53e965
RH
5292 && NOTE_LINE_NUMBER (note) == NOTE_INSN_PROLOGUE_END)
5293 break;
5294 }
c93b03c2 5295
9f53e965 5296 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
4b4bf941 5297 if (LABEL_P (last))
9f53e965
RH
5298 last = NEXT_INSN (last);
5299 reorder_insns (note, note, last);
bdac5f58 5300 }
0a1c58a2
JL
5301 }
5302
5303 if ((len = VARRAY_SIZE (epilogue)) > 0)
5304 {
9f53e965 5305 last = 0, note = 0;
bdac5f58 5306
0a1c58a2
JL
5307 /* Scan from the end until we reach the first epilogue insn.
5308 We apparently can't depend on basic_block_{head,end} after
5309 reorg has run. */
9f53e965 5310 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
bdac5f58 5311 {
4b4bf941 5312 if (NOTE_P (insn))
9392c110 5313 {
0a1c58a2
JL
5314 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_EPILOGUE_BEG)
5315 note = insn;
5316 }
9f53e965 5317 else if (contains (insn, epilogue))
0a1c58a2 5318 {
9f53e965
RH
5319 last = insn;
5320 if (--len == 0)
5321 break;
5322 }
5323 }
c93b03c2 5324
9f53e965
RH
5325 if (last)
5326 {
5327 /* Find the epilogue-begin note if we haven't already, and
5328 move it to just before the first epilogue insn. */
5329 if (note == 0)
5330 {
5331 for (note = insn; (note = PREV_INSN (note));)
4b4bf941 5332 if (NOTE_P (note)
9f53e965
RH
5333 && NOTE_LINE_NUMBER (note) == NOTE_INSN_EPILOGUE_BEG)
5334 break;
9392c110 5335 }
9f53e965
RH
5336
5337 if (PREV_INSN (last) != note)
5338 reorder_insns (note, note, PREV_INSN (last));
bdac5f58
TW
5339 }
5340 }
5341#endif /* HAVE_prologue or HAVE_epilogue */
5342}
87ff9c8e 5343
87ff9c8e
RH
5344/* Called once, at initialization, to initialize function.c. */
5345
5346void
fa8db1f7 5347init_function_once (void)
87ff9c8e 5348{
0a1c58a2
JL
5349 VARRAY_INT_INIT (prologue, 0, "prologue");
5350 VARRAY_INT_INIT (epilogue, 0, "epilogue");
5351 VARRAY_INT_INIT (sibcall_epilogue, 0, "sibcall_epilogue");
87ff9c8e 5352}
e2500fed 5353
6de9cd9a
DN
5354/* Resets insn_block_boundaries array. */
5355
5356void
5357reset_block_changes (void)
5358{
5359 VARRAY_TREE_INIT (cfun->ib_boundaries_block, 100, "ib_boundaries_block");
5360 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, NULL_TREE);
5361}
5362
5363/* Record the boundary for BLOCK. */
5364void
5365record_block_change (tree block)
5366{
5367 int i, n;
5368 tree last_block;
5369
5370 if (!block)
5371 return;
5372
5373 last_block = VARRAY_TOP_TREE (cfun->ib_boundaries_block);
5374 VARRAY_POP (cfun->ib_boundaries_block);
5375 n = get_max_uid ();
5376 for (i = VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block); i < n; i++)
5377 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, last_block);
5378
5379 VARRAY_PUSH_TREE (cfun->ib_boundaries_block, block);
5380}
5381
5382/* Finishes record of boundaries. */
5383void finalize_block_changes (void)
5384{
5385 record_block_change (DECL_INITIAL (current_function_decl));
5386}
5387
5388/* For INSN return the BLOCK it belongs to. */
5389void
5390check_block_change (rtx insn, tree *block)
5391{
5392 unsigned uid = INSN_UID (insn);
5393
5394 if (uid >= VARRAY_ACTIVE_SIZE (cfun->ib_boundaries_block))
5395 return;
5396
5397 *block = VARRAY_TREE (cfun->ib_boundaries_block, uid);
5398}
5399
5400/* Releases the ib_boundaries_block records. */
5401void
5402free_block_changes (void)
5403{
5404 cfun->ib_boundaries_block = NULL;
5405}
5406
faed5cc3
SB
5407/* Returns the name of the current function. */
5408const char *
5409current_function_name (void)
5410{
ae2bcd98 5411 return lang_hooks.decl_printable_name (cfun->decl, 2);
faed5cc3
SB
5412}
5413
e2500fed 5414#include "gt-function.h"