]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/fwprop.c
* config/mips/mips.c (mips_final_postscan_insn): Modify call
[thirdparty/gcc.git] / gcc / fwprop.c
CommitLineData
42a3a38b 1/* RTL-based forward propagation pass for GNU compiler.
fbd26352 2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
42a3a38b 3 Contributed by Paolo Bonzini and Steven Bosscher.
4
5This file is part of GCC.
6
7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
42a3a38b 10version.
11
12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
16
17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
42a3a38b 20
21#include "config.h"
22#include "system.h"
23#include "coretypes.h"
9ef16211 24#include "backend.h"
7c29e30e 25#include "target.h"
9ef16211 26#include "rtl.h"
7c29e30e 27#include "predict.h"
9ef16211 28#include "df.h"
ad7b10a2 29#include "memmodel.h"
42a3a38b 30#include "tm_p.h"
42a3a38b 31#include "insn-config.h"
7c29e30e 32#include "emit-rtl.h"
42a3a38b 33#include "recog.h"
7c29e30e 34
35#include "sparseset.h"
94ea8568 36#include "cfgrtl.h"
37#include "cfgcleanup.h"
42a3a38b 38#include "cfgloop.h"
39#include "tree-pass.h"
2355a966 40#include "domwalk.h"
e32f8fb9 41#include "rtl-iter.h"
42a3a38b 42
43
44/* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
48
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
53
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
59
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
66
67 can be simplified to the much simpler
68
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
71
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
77
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
81
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
85
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
88
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
93
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
99
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
103
2355a966 104 where the first two insns are now dead.
105
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
42a3a38b 115
116
42a3a38b 117static int num_changes;
118
f1f41a6c 119static vec<df_ref> use_def_ref;
120static vec<df_ref> reg_defs;
121static vec<df_ref> reg_defs_stack;
e0bd4156 122
e2056c37 123/* The maximum number of propagations that are still allowed. If we do
124 more propagations than originally we had uses, we must have ended up
125 in a propagation loop, as in PR79405. Until the algorithm fwprop
126 uses can obviously not get into such loops we need a workaround like
127 this. */
128static int propagations_left;
129
426e6c73 130/* The MD bitmaps are trimmed to include only live registers to cut
131 memory usage on testcases like insn-recog.c. Track live registers
132 in the basic block and do not perform forward propagation if the
133 destination is a dead pseudo occurring in a note. */
134static bitmap local_md;
135static bitmap local_lr;
e0bd4156 136
137/* Return the only def in USE's use-def chain, or NULL if there is
138 more than one def in the chain. */
139
140static inline df_ref
141get_def_for_use (df_ref use)
142{
f1f41a6c 143 return use_def_ref[DF_REF_ID (use)];
e0bd4156 144}
145
146
2355a966 147/* Update the reg_defs vector with non-partial definitions in DEF_REC.
148 TOP_FLAG says which artificials uses should be used, when DEF_REC
149 is an artificial def vector. LOCAL_MD is modified as after a
150 df_md_simulate_* function; we do more or less the same processing
151 done there, so we do not use those functions. */
152
153#define DF_MD_GEN_FLAGS \
154 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
e0bd4156 155
2355a966 156static void
ddc2d0e3 157process_defs (df_ref def, int top_flag)
e0bd4156 158{
ddc2d0e3 159 for (; def; def = DF_REF_NEXT_LOC (def))
2355a966 160 {
f1f41a6c 161 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
2355a966 162 unsigned int dregno;
e0bd4156 163
2355a966 164 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
165 continue;
e0bd4156 166
2355a966 167 dregno = DF_REF_REGNO (def);
168 if (curr_def)
f1f41a6c 169 reg_defs_stack.safe_push (curr_def);
2355a966 170 else
171 {
172 /* Do not store anything if "transitioning" from NULL to NULL. But
173 otherwise, push a special entry on the stack to tell the
174 leave_block callback that the entry in reg_defs was NULL. */
175 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
176 ;
177 else
f1f41a6c 178 reg_defs_stack.safe_push (def);
2355a966 179 }
180
181 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
182 {
183 bitmap_set_bit (local_md, dregno);
f1f41a6c 184 reg_defs[dregno] = NULL;
2355a966 185 }
186 else
187 {
188 bitmap_clear_bit (local_md, dregno);
f1f41a6c 189 reg_defs[dregno] = def;
2355a966 190 }
e0bd4156 191 }
e0bd4156 192}
193
194
195/* Fill the use_def_ref vector with values for the uses in USE_REC,
2355a966 196 taking reaching definitions info from LOCAL_MD and REG_DEFS.
197 TOP_FLAG says which artificials uses should be used, when USE_REC
198 is an artificial use vector. */
e0bd4156 199
200static void
ddc2d0e3 201process_uses (df_ref use, int top_flag)
e0bd4156 202{
ddc2d0e3 203 for (; use; use = DF_REF_NEXT_LOC (use))
2355a966 204 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
e0bd4156 205 {
2355a966 206 unsigned int uregno = DF_REF_REGNO (use);
f1f41a6c 207 if (reg_defs[uregno]
426e6c73 208 && !bitmap_bit_p (local_md, uregno)
209 && bitmap_bit_p (local_lr, uregno))
f1f41a6c 210 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
2355a966 211 }
212}
213
54c91640 214class single_def_use_dom_walker : public dom_walker
215{
216public:
217 single_def_use_dom_walker (cdi_direction direction)
218 : dom_walker (direction) {}
96752458 219 virtual edge before_dom_children (basic_block);
54c91640 220 virtual void after_dom_children (basic_block);
221};
222
96752458 223edge
54c91640 224single_def_use_dom_walker::before_dom_children (basic_block bb)
2355a966 225{
2355a966 226 int bb_index = bb->index;
426e6c73 227 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
228 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
dea92746 229 rtx_insn *insn;
2355a966 230
f53d14b1 231 bitmap_copy (local_md, &md_bb_info->in);
232 bitmap_copy (local_lr, &lr_bb_info->in);
2355a966 233
234 /* Push a marker for the leave_block callback. */
f1f41a6c 235 reg_defs_stack.safe_push (NULL);
2355a966 236
426e6c73 237 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
238 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
330ce56e 239
240 /* We don't call df_simulate_initialize_forwards, as it may overestimate
241 the live registers if there are unused artificial defs. We prefer
242 liveness to be underestimated. */
2355a966 243
244 FOR_BB_INSNS (bb, insn)
245 if (INSN_P (insn))
246 {
247 unsigned int uid = INSN_UID (insn);
426e6c73 248 process_uses (DF_INSN_UID_USES (uid), 0);
249 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
250 process_defs (DF_INSN_UID_DEFS (uid), 0);
251 df_simulate_one_insn_forwards (bb, insn, local_lr);
e0bd4156 252 }
2355a966 253
426e6c73 254 process_uses (df_get_artificial_uses (bb_index), 0);
255 process_defs (df_get_artificial_defs (bb_index), 0);
96752458 256
257 return NULL;
2355a966 258}
259
260/* Pop the definitions created in this basic block when leaving its
261 dominated parts. */
262
54c91640 263void
264single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2355a966 265{
266 df_ref saved_def;
f1f41a6c 267 while ((saved_def = reg_defs_stack.pop ()) != NULL)
2355a966 268 {
269 unsigned int dregno = DF_REF_REGNO (saved_def);
270
271 /* See also process_defs. */
f1f41a6c 272 if (saved_def == reg_defs[dregno])
273 reg_defs[dregno] = NULL;
2355a966 274 else
f1f41a6c 275 reg_defs[dregno] = saved_def;
2355a966 276 }
e0bd4156 277}
278
279
2355a966 280/* Build a vector holding the reaching definitions of uses reached by a
281 single dominating definition. */
e0bd4156 282
283static void
284build_single_def_use_links (void)
285{
2355a966 286 /* We use the multiple definitions problem to compute our restricted
287 use-def chains. */
e0bd4156 288 df_set_flags (DF_EQ_NOTES);
2355a966 289 df_md_add_problem ();
426e6c73 290 df_note_add_problem ();
e0bd4156 291 df_analyze ();
292 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
293
f1f41a6c 294 use_def_ref.create (DF_USES_TABLE_SIZE ());
295 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
e0bd4156 296
f1f41a6c 297 reg_defs.create (max_reg_num ());
298 reg_defs.safe_grow_cleared (max_reg_num ());
e0bd4156 299
a28770e1 300 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
2355a966 301 local_md = BITMAP_ALLOC (NULL);
426e6c73 302 local_lr = BITMAP_ALLOC (NULL);
2355a966 303
304 /* Walk the dominator tree looking for single reaching definitions
305 dominating the uses. This is similar to how SSA form is built. */
54c91640 306 single_def_use_dom_walker (CDI_DOMINATORS)
307 .walk (cfun->cfg->x_entry_block_ptr);
2355a966 308
426e6c73 309 BITMAP_FREE (local_lr);
2355a966 310 BITMAP_FREE (local_md);
f1f41a6c 311 reg_defs.release ();
312 reg_defs_stack.release ();
e0bd4156 313}
2355a966 314
42a3a38b 315\f
316/* Do not try to replace constant addresses or addresses of local and
317 argument slots. These MEM expressions are made only once and inserted
318 in many instructions, as well as being used to control symbol table
319 output. It is not safe to clobber them.
320
321 There are some uncommon cases where the address is already in a register
322 for some reason, but we cannot take advantage of that because we have
323 no easy way to unshare the MEM. In addition, looking up all stack
324 addresses is costly. */
325
326static bool
327can_simplify_addr (rtx addr)
328{
329 rtx reg;
330
331 if (CONSTANT_ADDRESS_P (addr))
332 return false;
333
334 if (GET_CODE (addr) == PLUS)
335 reg = XEXP (addr, 0);
336 else
337 reg = addr;
338
339 return (!REG_P (reg)
340 || (REGNO (reg) != FRAME_POINTER_REGNUM
341 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
342 && REGNO (reg) != ARG_POINTER_REGNUM));
343}
344
345/* Returns a canonical version of X for the address, from the point of view,
346 that all multiplications are represented as MULT instead of the multiply
347 by a power of 2 being represented as ASHIFT.
348
349 Every ASHIFT we find has been made by simplify_gen_binary and was not
350 there before, so it is not shared. So we can do this in place. */
351
352static void
353canonicalize_address (rtx x)
354{
355 for (;;)
356 switch (GET_CODE (x))
357 {
358 case ASHIFT:
971ba038 359 if (CONST_INT_P (XEXP (x, 1))
332d11bd 360 && INTVAL (XEXP (x, 1)) < GET_MODE_UNIT_BITSIZE (GET_MODE (x))
361 && INTVAL (XEXP (x, 1)) >= 0)
42a3a38b 362 {
363 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
364 PUT_CODE (x, MULT);
edc19fd0 365 XEXP (x, 1) = gen_int_mode (HOST_WIDE_INT_1 << shift,
42a3a38b 366 GET_MODE (x));
367 }
368
369 x = XEXP (x, 0);
370 break;
371
372 case PLUS:
373 if (GET_CODE (XEXP (x, 0)) == PLUS
374 || GET_CODE (XEXP (x, 0)) == ASHIFT
375 || GET_CODE (XEXP (x, 0)) == CONST)
376 canonicalize_address (XEXP (x, 0));
377
378 x = XEXP (x, 1);
379 break;
380
381 case CONST:
382 x = XEXP (x, 0);
383 break;
384
385 default:
386 return;
387 }
388}
389
390/* OLD is a memory address. Return whether it is good to use NEW instead,
391 for a memory access in the given MODE. */
392
393static bool
3754d046 394should_replace_address (rtx old_rtx, rtx new_rtx, machine_mode mode,
bd1a81f7 395 addr_space_t as, bool speed)
42a3a38b 396{
397 int gain;
398
bd1a81f7 399 if (rtx_equal_p (old_rtx, new_rtx)
400 || !memory_address_addr_space_p (mode, new_rtx, as))
42a3a38b 401 return false;
402
403 /* Copy propagation is always ok. */
9ce37fa7 404 if (REG_P (old_rtx) && REG_P (new_rtx))
42a3a38b 405 return true;
406
407 /* Prefer the new address if it is less expensive. */
bd1a81f7 408 gain = (address_cost (old_rtx, mode, as, speed)
409 - address_cost (new_rtx, mode, as, speed));
42a3a38b 410
411 /* If the addresses have equivalent cost, prefer the new address
7013e87c 412 if it has the highest `set_src_cost'. That has the potential of
42a3a38b 413 eliminating the most insns without additional costs, and it
414 is the same that cse.c used to do. */
415 if (gain == 0)
5ae4887d 416 gain = (set_src_cost (new_rtx, VOIDmode, speed)
417 - set_src_cost (old_rtx, VOIDmode, speed));
42a3a38b 418
419 return (gain > 0);
420}
421
f8f13645 422
423/* Flags for the last parameter of propagate_rtx_1. */
424
425enum {
426 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
427 if it is false, propagate_rtx_1 returns false if, for at least
428 one occurrence OLD, it failed to collapse the result to a constant.
429 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
430 collapse to zero if replacing (reg:M B) with (reg:M A).
431
432 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
433 propagate_rtx_1 just tries to make cheaper and valid memory
434 addresses. */
435 PR_CAN_APPEAR = 1,
436
437 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
438 outside memory addresses. This is needed because propagate_rtx_1 does
439 not do any analysis on memory; thus it is very conservative and in general
440 it will fail if non-read-only MEMs are found in the source expression.
441
442 PR_HANDLE_MEM is set when the source of the propagation was not
443 another MEM. Then, it is safe not to treat non-read-only MEMs as
444 ``opaque'' objects. */
f529eb25 445 PR_HANDLE_MEM = 2,
446
447 /* Set when costs should be optimized for speed. */
448 PR_OPTIMIZE_FOR_SPEED = 4
f8f13645 449};
450
451
42a3a38b 452/* Replace all occurrences of OLD in *PX with NEW and try to simplify the
453 resulting expression. Replace *PX with a new RTL expression if an
454 occurrence of OLD was found.
455
42a3a38b 456 This is only a wrapper around simplify-rtx.c: do not add any pattern
457 matching code here. (The sole exception is the handling of LO_SUM, but
458 that is because there is no simplify_gen_* function for LO_SUM). */
459
460static bool
9ce37fa7 461propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
42a3a38b 462{
463 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
464 enum rtx_code code = GET_CODE (x);
3754d046 465 machine_mode mode = GET_MODE (x);
466 machine_mode op_mode;
f8f13645 467 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
42a3a38b 468 bool valid_ops = true;
469
f8f13645 470 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
471 {
472 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
473 they have side effects or not). */
474 *px = (side_effects_p (x)
475 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
476 : gen_rtx_SCRATCH (GET_MODE (x)));
477 return false;
478 }
42a3a38b 479
f8f13645 480 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
481 address, and we are *not* inside one. */
9ce37fa7 482 if (x == old_rtx)
42a3a38b 483 {
9ce37fa7 484 *px = new_rtx;
42a3a38b 485 return can_appear;
486 }
487
f8f13645 488 /* If this is an expression, try recursive substitution. */
42a3a38b 489 switch (GET_RTX_CLASS (code))
490 {
491 case RTX_UNARY:
492 op0 = XEXP (x, 0);
493 op_mode = GET_MODE (op0);
9ce37fa7 494 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
42a3a38b 495 if (op0 == XEXP (x, 0))
496 return true;
497 tem = simplify_gen_unary (code, mode, op0, op_mode);
498 break;
499
500 case RTX_BIN_ARITH:
501 case RTX_COMM_ARITH:
502 op0 = XEXP (x, 0);
503 op1 = XEXP (x, 1);
9ce37fa7 504 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
505 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
42a3a38b 506 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
507 return true;
508 tem = simplify_gen_binary (code, mode, op0, op1);
509 break;
510
511 case RTX_COMPARE:
512 case RTX_COMM_COMPARE:
513 op0 = XEXP (x, 0);
514 op1 = XEXP (x, 1);
515 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
9ce37fa7 516 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
517 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
42a3a38b 518 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
519 return true;
520 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
521 break;
522
523 case RTX_TERNARY:
524 case RTX_BITFIELD_OPS:
525 op0 = XEXP (x, 0);
526 op1 = XEXP (x, 1);
527 op2 = XEXP (x, 2);
528 op_mode = GET_MODE (op0);
9ce37fa7 529 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
530 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
531 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
42a3a38b 532 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
533 return true;
534 if (op_mode == VOIDmode)
535 op_mode = GET_MODE (op0);
536 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
537 break;
538
539 case RTX_EXTRA:
540 /* The only case we try to handle is a SUBREG. */
541 if (code == SUBREG)
542 {
543 op0 = XEXP (x, 0);
9ce37fa7 544 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
42a3a38b 545 if (op0 == XEXP (x, 0))
546 return true;
547 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
548 SUBREG_BYTE (x));
549 }
550 break;
551
552 case RTX_OBJ:
9ce37fa7 553 if (code == MEM && x != new_rtx)
42a3a38b 554 {
555 rtx new_op0;
556 op0 = XEXP (x, 0);
557
558 /* There are some addresses that we cannot work on. */
559 if (!can_simplify_addr (op0))
560 return true;
561
562 op0 = new_op0 = targetm.delegitimize_address (op0);
9ce37fa7 563 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
f8f13645 564 flags | PR_CAN_APPEAR);
42a3a38b 565
566 /* Dismiss transformation that we do not want to carry on. */
567 if (!valid_ops
568 || new_op0 == op0
deb3d513 569 || !(GET_MODE (new_op0) == GET_MODE (op0)
570 || GET_MODE (new_op0) == VOIDmode))
42a3a38b 571 return true;
572
573 canonicalize_address (new_op0);
574
575 /* Copy propagations are always ok. Otherwise check the costs. */
9ce37fa7 576 if (!(REG_P (old_rtx) && REG_P (new_rtx))
f529eb25 577 && !should_replace_address (op0, new_op0, GET_MODE (x),
bd1a81f7 578 MEM_ADDR_SPACE (x),
f529eb25 579 flags & PR_OPTIMIZE_FOR_SPEED))
42a3a38b 580 return true;
581
582 tem = replace_equiv_address_nv (x, new_op0);
583 }
584
585 else if (code == LO_SUM)
586 {
587 op0 = XEXP (x, 0);
588 op1 = XEXP (x, 1);
589
590 /* The only simplification we do attempts to remove references to op0
591 or make it constant -- in both cases, op0's invalidity will not
592 make the result invalid. */
9ce37fa7 593 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
594 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
42a3a38b 595 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
596 return true;
597
598 /* (lo_sum (high x) x) -> x */
599 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
600 tem = op1;
601 else
602 tem = gen_rtx_LO_SUM (mode, op0, op1);
603
604 /* OP1 is likely not a legitimate address, otherwise there would have
605 been no LO_SUM. We want it to disappear if it is invalid, return
606 false in that case. */
607 return memory_address_p (mode, tem);
608 }
609
610 else if (code == REG)
611 {
9ce37fa7 612 if (rtx_equal_p (x, old_rtx))
42a3a38b 613 {
9ce37fa7 614 *px = new_rtx;
42a3a38b 615 return can_appear;
616 }
617 }
618 break;
619
620 default:
621 break;
622 }
623
624 /* No change, no trouble. */
625 if (tem == NULL_RTX)
626 return true;
627
628 *px = tem;
629
9aece49e 630 /* Allow replacements that simplify operations on a vector or complex
631 value to a component. The most prominent case is
632 (subreg ([vec_]concat ...)). */
633 if (REG_P (tem) && !HARD_REGISTER_P (tem)
634 && (VECTOR_MODE_P (GET_MODE (new_rtx))
635 || COMPLEX_MODE_P (GET_MODE (new_rtx)))
636 && GET_MODE (tem) == GET_MODE_INNER (GET_MODE (new_rtx)))
637 return true;
638
42a3a38b 639 /* The replacement we made so far is valid, if all of the recursive
640 replacements were valid, or we could simplify everything to
641 a constant. */
642 return valid_ops || can_appear || CONSTANT_P (tem);
643}
644
f8f13645 645
e32f8fb9 646/* Return true if X constains a non-constant mem. */
f8f13645 647
e32f8fb9 648static bool
649varying_mem_p (const_rtx x)
f8f13645 650{
e32f8fb9 651 subrtx_iterator::array_type array;
652 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
653 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
654 return true;
655 return false;
f8f13645 656}
657
658
42a3a38b 659/* Replace all occurrences of OLD in X with NEW and try to simplify the
fa7637bd 660 resulting expression (in mode MODE). Return a new expression if it is
42a3a38b 661 a constant, otherwise X.
662
663 Simplifications where occurrences of NEW collapse to a constant are always
664 accepted. All simplifications are accepted if NEW is a pseudo too.
665 Otherwise, we accept simplifications that have a lower or equal cost. */
666
667static rtx
3754d046 668propagate_rtx (rtx x, machine_mode mode, rtx old_rtx, rtx new_rtx,
f529eb25 669 bool speed)
42a3a38b 670{
671 rtx tem;
672 bool collapsed;
f8f13645 673 int flags;
42a3a38b 674
9ce37fa7 675 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
42a3a38b 676 return NULL_RTX;
677
f8f13645 678 flags = 0;
03ad17bf 679 if (REG_P (new_rtx)
680 || CONSTANT_P (new_rtx)
681 || (GET_CODE (new_rtx) == SUBREG
682 && REG_P (SUBREG_REG (new_rtx))
5eba2107 683 && !paradoxical_subreg_p (new_rtx)))
f8f13645 684 flags |= PR_CAN_APPEAR;
e32f8fb9 685 if (!varying_mem_p (new_rtx))
f8f13645 686 flags |= PR_HANDLE_MEM;
42a3a38b 687
f529eb25 688 if (speed)
689 flags |= PR_OPTIMIZE_FOR_SPEED;
690
42a3a38b 691 tem = x;
9ce37fa7 692 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
42a3a38b 693 if (tem == x || !collapsed)
694 return NULL_RTX;
695
696 /* gen_lowpart_common will not be able to process VOIDmode entities other
697 than CONST_INTs. */
971ba038 698 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
42a3a38b 699 return NULL_RTX;
700
701 if (GET_MODE (tem) == VOIDmode)
702 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
703 else
704 gcc_assert (GET_MODE (tem) == mode);
705
706 return tem;
707}
708
709
710\f
711
712/* Return true if the register from reference REF is killed
713 between FROM to (but not including) TO. */
714
3072d30e 715static bool
51e49a15 716local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
42a3a38b 717{
51e49a15 718 rtx_insn *insn;
42a3a38b 719
720 for (insn = from; insn != to; insn = NEXT_INSN (insn))
721 {
be10bb5a 722 df_ref def;
42a3a38b 723 if (!INSN_P (insn))
724 continue;
725
be10bb5a 726 FOR_EACH_INSN_DEF (def, insn)
727 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
728 return true;
42a3a38b 729 }
730 return false;
731}
732
733
d5af3898 734/* Check if USE is killed between DEF_INSN and TARGET_INSN. This would
735 require full computation of available expressions; we check only a few
736 restricted conditions:
737 - if the reg in USE has only one definition, go ahead;
738 - in the same basic block, we check for no definitions killing the use;
739 - if TARGET_INSN's basic block has DEF_INSN's basic block as its sole
740 predecessor, we check if the use is killed after DEF_INSN or before
42a3a38b 741 TARGET_INSN insn, in their respective basic blocks. */
d5af3898 742
42a3a38b 743static bool
dea92746 744use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
42a3a38b 745{
a39fe687 746 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
747 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
42a3a38b 748 int regno;
ed6e85ae 749 df_ref def;
42a3a38b 750
2355a966 751 /* We used to have a def reaching a use that is _before_ the def,
752 with the def not dominating the use even though the use and def
753 are in the same basic block, when a register may be used
754 uninitialized in a loop. This should not happen anymore since
755 we do not use reaching definitions, but still we test for such
756 cases and assume that DEF is not available. */
a39fe687 757 if (def_bb == target_bb
3072d30e 758 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
a39fe687 759 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
760 return true;
761
42a3a38b 762 /* Check if the reg in USE has only one definition. We already
1a665a74 763 know that this definition reaches use, or we wouldn't be here.
764 However, this is invalid for hard registers because if they are
765 live at the beginning of the function it does not mean that we
d5af3898 766 have an uninitialized access. And we have to check for the case
767 where a register may be used uninitialized in a loop as above. */
42a3a38b 768 regno = DF_REF_REGNO (use);
3072d30e 769 def = DF_REG_DEF_CHAIN (regno);
1a665a74 770 if (def
ed6e85ae 771 && DF_REF_NEXT_REG (def) == NULL
d5af3898 772 && regno >= FIRST_PSEUDO_REGISTER
773 && (BLOCK_FOR_INSN (DF_REF_INSN (def)) == def_bb
774 ? DF_INSN_LUID (DF_REF_INSN (def)) < DF_INSN_LUID (def_insn)
775 : dominated_by_p (CDI_DOMINATORS,
776 def_bb, BLOCK_FOR_INSN (DF_REF_INSN (def)))))
42a3a38b 777 return false;
778
a39fe687 779 /* Check locally if we are in the same basic block. */
42a3a38b 780 if (def_bb == target_bb)
a39fe687 781 return local_ref_killed_between_p (use, def_insn, target_insn);
42a3a38b 782
783 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
784 if (single_pred_p (target_bb)
785 && single_pred (target_bb) == def_bb)
786 {
ed6e85ae 787 df_ref x;
42a3a38b 788
789 /* See if USE is killed between DEF_INSN and the last insn in the
790 basic block containing DEF_INSN. */
3072d30e 791 x = df_bb_regno_last_def_find (def_bb, regno);
158b6cc9 792 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
42a3a38b 793 return true;
794
795 /* See if USE is killed between TARGET_INSN and the first insn in the
796 basic block containing TARGET_INSN. */
3072d30e 797 x = df_bb_regno_first_def_find (target_bb, regno);
158b6cc9 798 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
42a3a38b 799 return true;
800
801 return false;
802 }
803
804 /* Otherwise assume the worst case. */
805 return true;
806}
807
808
42a3a38b 809/* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
810 would require full computation of available expressions;
811 we check only restricted conditions, see use_killed_between. */
812static bool
dea92746 813all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
42a3a38b 814{
be10bb5a 815 df_ref use;
158b6cc9 816 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
42a3a38b 817 rtx def_set = single_set (def_insn);
dea92746 818 rtx_insn *next;
42a3a38b 819
820 gcc_assert (def_set);
821
822 /* If target_insn comes right after def_insn, which is very common
29b2949c 823 for addresses, we can use a quicker test. Ignore debug insns
824 other than target insns for this. */
825 next = NEXT_INSN (def_insn);
826 while (next && next != target_insn && DEBUG_INSN_P (next))
827 next = NEXT_INSN (next);
828 if (next == target_insn && REG_P (SET_DEST (def_set)))
42a3a38b 829 {
830 rtx def_reg = SET_DEST (def_set);
831
832 /* If the insn uses the reg that it defines, the substitution is
833 invalid. */
be10bb5a 834 FOR_EACH_INSN_INFO_USE (use, insn_info)
835 if (rtx_equal_p (DF_REF_REG (use), def_reg))
836 return false;
837 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
838 if (rtx_equal_p (DF_REF_REG (use), def_reg))
839 return false;
42a3a38b 840 }
841 else
842 {
c4b594c1 843 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
844
42a3a38b 845 /* Look at all the uses of DEF_INSN, and see if they are not
846 killed between DEF_INSN and TARGET_INSN. */
be10bb5a 847 FOR_EACH_INSN_INFO_USE (use, insn_info)
3072d30e 848 {
c4b594c1 849 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
850 return false;
3072d30e 851 if (use_killed_between (use, def_insn, target_insn))
852 return false;
853 }
be10bb5a 854 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
3072d30e 855 {
c4b594c1 856 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
857 return false;
3072d30e 858 if (use_killed_between (use, def_insn, target_insn))
859 return false;
860 }
42a3a38b 861 }
862
f8f13645 863 return true;
42a3a38b 864}
865
866\f
4ffe0526 867static df_ref *active_defs;
4ffe0526 868static sparseset active_defs_check;
42a3a38b 869
4ffe0526 870/* Fill the ACTIVE_DEFS array with the use->def link for the registers
871 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
872 too, for checking purposes. */
42a3a38b 873
4ffe0526 874static void
ddc2d0e3 875register_active_defs (df_ref use)
42a3a38b 876{
ddc2d0e3 877 for (; use; use = DF_REF_NEXT_LOC (use))
42a3a38b 878 {
4ffe0526 879 df_ref def = get_def_for_use (use);
880 int regno = DF_REF_REGNO (use);
42a3a38b 881
382ecba7 882 if (flag_checking)
883 sparseset_set_bit (active_defs_check, regno);
4ffe0526 884 active_defs[regno] = def;
885 }
42a3a38b 886}
887
42a3a38b 888
4ffe0526 889/* Build the use->def links that we use to update the dataflow info
890 for new uses. Note that building the links is very cheap and if
891 it were done earlier, they could be used to rule out invalid
892 propagations (in addition to what is done in all_uses_available_at).
893 I'm not doing this yet, though. */
894
895static void
dea92746 896update_df_init (rtx_insn *def_insn, rtx_insn *insn)
42a3a38b 897{
382ecba7 898 if (flag_checking)
899 sparseset_clear (active_defs_check);
4ffe0526 900 register_active_defs (DF_INSN_USES (def_insn));
901 register_active_defs (DF_INSN_USES (insn));
902 register_active_defs (DF_INSN_EQ_USES (insn));
903}
42a3a38b 904
42a3a38b 905
4ffe0526 906/* Update the USE_DEF_REF array for the given use, using the active definitions
907 in the ACTIVE_DEFS array to match pseudos to their def. */
42a3a38b 908
4ffe0526 909static inline void
ddc2d0e3 910update_uses (df_ref use)
42a3a38b 911{
ddc2d0e3 912 for (; use; use = DF_REF_NEXT_LOC (use))
42a3a38b 913 {
4ffe0526 914 int regno = DF_REF_REGNO (use);
42a3a38b 915
4ffe0526 916 /* Set up the use-def chain. */
f1f41a6c 917 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
918 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
42a3a38b 919
376f7257 920 if (flag_checking)
921 gcc_assert (sparseset_bit_p (active_defs_check, regno));
f1f41a6c 922 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
4ffe0526 923 }
924}
42a3a38b 925
4ffe0526 926
927/* Update the USE_DEF_REF array for the uses in INSN. Only update note
928 uses if NOTES_ONLY is true. */
929
930static void
dea92746 931update_df (rtx_insn *insn, rtx note)
4ffe0526 932{
933 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
934
935 if (note)
936 {
937 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
938 df_notes_rescan (insn);
939 }
940 else
941 {
942 df_uses_create (&PATTERN (insn), insn, 0);
943 df_insn_rescan (insn);
944 update_uses (DF_INSN_INFO_USES (insn_info));
42a3a38b 945 }
4ffe0526 946
947 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
42a3a38b 948}
949
950
951/* Try substituting NEW into LOC, which originated from forward propagation
952 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
953 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
954 new insn is not recognized. Return whether the substitution was
955 performed. */
956
957static bool
dea92746 958try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
959 bool set_reg_equal)
42a3a38b 960{
dea92746 961 rtx_insn *insn = DF_REF_INSN (use);
91bd874e 962 rtx set = single_set (insn);
4ffe0526 963 rtx note = NULL_RTX;
f529eb25 964 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
f92bd2dd 965 int old_cost = 0;
91bd874e 966 bool ok;
42a3a38b 967
4ffe0526 968 update_df_init (def_insn, insn);
969
f92bd2dd 970 /* forward_propagate_subreg may be operating on an instruction with
971 multiple sets. If so, assume the cost of the new instruction is
972 not greater than the old one. */
973 if (set)
5ae4887d 974 old_cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
42a3a38b 975 if (dump_file)
976 {
977 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
978 print_inline_rtx (dump_file, *loc, 2);
979 fprintf (dump_file, "\n with ");
9ce37fa7 980 print_inline_rtx (dump_file, new_rtx, 2);
42a3a38b 981 fprintf (dump_file, "\n");
982 }
983
9ce37fa7 984 validate_unshare_change (insn, loc, new_rtx, true);
91bd874e 985 if (!verify_changes (0))
986 {
987 if (dump_file)
988 fprintf (dump_file, "Changes to insn %d not recognized\n",
989 INSN_UID (insn));
990 ok = false;
991 }
992
f4d72632 993 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
f92bd2dd 994 && set
5ae4887d 995 && (set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed)
996 > old_cost))
91bd874e 997 {
998 if (dump_file)
999 fprintf (dump_file, "Changes to insn %d not profitable\n",
1000 INSN_UID (insn));
1001 ok = false;
1002 }
1003
1004 else
42a3a38b 1005 {
42a3a38b 1006 if (dump_file)
1007 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
91bd874e 1008 ok = true;
1009 }
1010
1011 if (ok)
1012 {
1013 confirm_change_group ();
1014 num_changes++;
42a3a38b 1015 }
1016 else
1017 {
91bd874e 1018 cancel_changes (0);
42a3a38b 1019
dec9a6b8 1020 /* Can also record a simplified value in a REG_EQUAL note,
1e5b92fa 1021 making a new one if one does not already exist. */
1022 if (set_reg_equal)
42a3a38b 1023 {
3ac399da 1024 /* If there are any paradoxical SUBREGs, don't add REG_EQUAL note,
1025 because the bits in there can be anything and so might not
1026 match the REG_EQUAL note content. See PR70574. */
1027 subrtx_var_iterator::array_type array;
1028 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
1029 {
1030 rtx x = *iter;
1031 if (SUBREG_P (x) && paradoxical_subreg_p (x))
1032 {
1033 set_reg_equal = false;
1034 break;
1035 }
1036 }
42a3a38b 1037
3ac399da 1038 if (set_reg_equal)
1039 {
1040 if (dump_file)
1041 fprintf (dump_file, " Setting REG_EQUAL note\n");
1042
1043 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1044 }
42a3a38b 1045 }
42a3a38b 1046 }
91bd874e 1047
4ffe0526 1048 if ((ok || note) && !CONSTANT_P (new_rtx))
1049 update_df (insn, note);
1050
91bd874e 1051 return ok;
42a3a38b 1052}
1053
42ed3b17 1054/* For the given single_set INSN, containing SRC known to be a
1055 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1056 is redundant due to the register being set by a LOAD_EXTEND_OP
1057 load from memory. */
1058
1059static bool
dea92746 1060free_load_extend (rtx src, rtx_insn *insn)
f92bd2dd 1061{
42ed3b17 1062 rtx reg;
be10bb5a 1063 df_ref def, use;
42ed3b17 1064
1065 reg = XEXP (src, 0);
e73fe78f 1066 if (load_extend_op (GET_MODE (reg)) != GET_CODE (src))
42ed3b17 1067 return false;
f92bd2dd 1068
be10bb5a 1069 FOR_EACH_INSN_USE (use, insn)
1070 if (!DF_REF_IS_ARTIFICIAL (use)
1071 && DF_REF_TYPE (use) == DF_REF_REG_USE
1072 && DF_REF_REG (use) == reg)
1073 break;
42ed3b17 1074 if (!use)
1075 return false;
1076
1077 def = get_def_for_use (use);
1078 if (!def)
1079 return false;
1080
1081 if (DF_REF_IS_ARTIFICIAL (def))
1082 return false;
1083
1084 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1085 {
1086 rtx patt = PATTERN (DF_REF_INSN (def));
1087
1088 if (GET_CODE (patt) == SET
1089 && GET_CODE (SET_SRC (patt)) == MEM
1090 && rtx_equal_p (SET_DEST (patt), reg))
1091 return true;
f92bd2dd 1092 }
42ed3b17 1093 return false;
f92bd2dd 1094}
f92bd2dd 1095
1096/* If USE is a subreg, see if it can be replaced by a pseudo. */
42a3a38b 1097
1098static bool
dea92746 1099forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
42a3a38b 1100{
1101 rtx use_reg = DF_REF_REG (use);
dea92746 1102 rtx_insn *use_insn;
1103 rtx src;
4c53345c 1104 scalar_int_mode int_use_mode, src_mode;
42a3a38b 1105
f92bd2dd 1106 /* Only consider subregs... */
3754d046 1107 machine_mode use_mode = GET_MODE (use_reg);
42a3a38b 1108 if (GET_CODE (use_reg) != SUBREG
f92bd2dd 1109 || !REG_P (SET_DEST (def_set)))
42a3a38b 1110 return false;
1111
d0257d43 1112 if (paradoxical_subreg_p (use_reg))
f92bd2dd 1113 {
1114 /* If this is a paradoxical SUBREG, we have no idea what value the
1115 extra bits would have. However, if the operand is equivalent to
1116 a SUBREG whose operand is the same as our mode, and all the modes
1117 are within a word, we can just use the inner operand because
1118 these SUBREGs just say how to treat the register. */
1119 use_insn = DF_REF_INSN (use);
1120 src = SET_SRC (def_set);
1121 if (GET_CODE (src) == SUBREG
1122 && REG_P (SUBREG_REG (src))
3014ed2c 1123 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
f92bd2dd 1124 && GET_MODE (SUBREG_REG (src)) == use_mode
1125 && subreg_lowpart_p (src)
1126 && all_uses_available_at (def_insn, use_insn))
1127 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1128 def_insn, false);
1129 }
1130
1131 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1132 is the low part of the reg being extended then just use the inner
1133 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
7947d89c 1134 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1135 or due to the operation being a no-op when applied to registers.
1136 For example, if we have:
1137
1138 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1139 B: (... (subreg:SI (reg:DI X)) ...)
1140
1141 and mode_rep_extended says that Y is already sign-extended,
1142 the backend will typically allow A to be combined with the
1143 definition of Y or, failing that, allow A to be deleted after
1144 reload through register tying. Introducing more uses of Y
1145 prevents both optimisations. */
4c53345c 1146 else if (is_a <scalar_int_mode> (use_mode, &int_use_mode)
1147 && subreg_lowpart_p (use_reg))
f92bd2dd 1148 {
f92bd2dd 1149 use_insn = DF_REF_INSN (use);
1150 src = SET_SRC (def_set);
1151 if ((GET_CODE (src) == ZERO_EXTEND
1152 || GET_CODE (src) == SIGN_EXTEND)
4c53345c 1153 && is_a <scalar_int_mode> (GET_MODE (src), &src_mode)
f92bd2dd 1154 && REG_P (XEXP (src, 0))
3014ed2c 1155 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
f92bd2dd 1156 && GET_MODE (XEXP (src, 0)) == use_mode
42ed3b17 1157 && !free_load_extend (src, def_insn)
4c53345c 1158 && (targetm.mode_rep_extended (int_use_mode, src_mode)
7947d89c 1159 != (int) GET_CODE (src))
f92bd2dd 1160 && all_uses_available_at (def_insn, use_insn))
1161 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1162 def_insn, false);
1163 }
1164
1165 return false;
42a3a38b 1166}
1167
abe2d6dd 1168/* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1169
1170static bool
dea92746 1171forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
abe2d6dd 1172{
dea92746 1173 rtx_insn *use_insn = DF_REF_INSN (use);
1174 rtx src, use_pat, asm_operands, new_rtx, *loc;
abe2d6dd 1175 int speed_p, i;
ddc2d0e3 1176 df_ref uses;
abe2d6dd 1177
1178 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1179
1180 src = SET_SRC (def_set);
1181 use_pat = PATTERN (use_insn);
1182
1183 /* In __asm don't replace if src might need more registers than
1184 reg, as that could increase register pressure on the __asm. */
ddc2d0e3 1185 uses = DF_INSN_USES (def_insn);
1186 if (uses && DF_REF_NEXT_LOC (uses))
abe2d6dd 1187 return false;
1188
4ffe0526 1189 update_df_init (def_insn, use_insn);
abe2d6dd 1190 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1191 asm_operands = NULL_RTX;
1192 switch (GET_CODE (use_pat))
1193 {
1194 case ASM_OPERANDS:
1195 asm_operands = use_pat;
1196 break;
1197 case SET:
1198 if (MEM_P (SET_DEST (use_pat)))
1199 {
1200 loc = &SET_DEST (use_pat);
1201 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1202 if (new_rtx)
1203 validate_unshare_change (use_insn, loc, new_rtx, true);
1204 }
1205 asm_operands = SET_SRC (use_pat);
1206 break;
1207 case PARALLEL:
1208 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1209 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1210 {
1211 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1212 {
1213 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1214 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1215 src, speed_p);
1216 if (new_rtx)
1217 validate_unshare_change (use_insn, loc, new_rtx, true);
1218 }
1219 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1220 }
1221 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1222 asm_operands = XVECEXP (use_pat, 0, i);
1223 break;
1224 default:
1225 gcc_unreachable ();
1226 }
1227
1228 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1229 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1230 {
1231 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1232 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1233 if (new_rtx)
1234 validate_unshare_change (use_insn, loc, new_rtx, true);
1235 }
1236
1237 if (num_changes_pending () == 0 || !apply_change_group ())
1238 return false;
1239
4ffe0526 1240 update_df (use_insn, NULL);
abe2d6dd 1241 num_changes++;
1242 return true;
1243}
1244
42a3a38b 1245/* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1246 result. */
1247
1248static bool
dea92746 1249forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
42a3a38b 1250{
dea92746 1251 rtx_insn *use_insn = DF_REF_INSN (use);
42a3a38b 1252 rtx use_set = single_set (use_insn);
9ce37fa7 1253 rtx src, reg, new_rtx, *loc;
42a3a38b 1254 bool set_reg_equal;
3754d046 1255 machine_mode mode;
abe2d6dd 1256 int asm_use = -1;
1257
1258 if (INSN_CODE (use_insn) < 0)
1259 asm_use = asm_noperands (PATTERN (use_insn));
42a3a38b 1260
9845d120 1261 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
42a3a38b 1262 return false;
1263
1264 /* Do not propagate into PC, CC0, etc. */
abe2d6dd 1265 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
42a3a38b 1266 return false;
1267
1268 /* If def and use are subreg, check if they match. */
1269 reg = DF_REF_REG (use);
d2efb29d 1270 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1271 {
9edf7ea8 1272 if (maybe_ne (SUBREG_BYTE (SET_DEST (def_set)), SUBREG_BYTE (reg)))
d2efb29d 1273 return false;
1274 }
42a3a38b 1275 /* Check if the def had a subreg, but the use has the whole reg. */
d2efb29d 1276 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
42a3a38b 1277 return false;
42a3a38b 1278 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1279 previous case, the optimization is possible and often useful indeed. */
d2efb29d 1280 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
42a3a38b 1281 reg = SUBREG_REG (reg);
1282
d2efb29d 1283 /* Make sure that we can treat REG as having the same mode as the
1284 source of DEF_SET. */
1285 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1286 return false;
1287
42a3a38b 1288 /* Check if the substitution is valid (last, because it's the most
1289 expensive check!). */
1290 src = SET_SRC (def_set);
1291 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1292 return false;
1293
1294 /* Check if the def is loading something from the constant pool; in this
1295 case we would undo optimization such as compress_float_constant.
1296 Still, we can set a REG_EQUAL note. */
1297 if (MEM_P (src) && MEM_READONLY_P (src))
1298 {
1299 rtx x = avoid_constant_pool_reference (src);
abe2d6dd 1300 if (x != src && use_set)
42a3a38b 1301 {
1302 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
9ce37fa7 1303 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1304 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1305 if (old_rtx != new_rtx)
1306 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
42a3a38b 1307 }
1308 return false;
1309 }
1310
abe2d6dd 1311 if (asm_use >= 0)
1312 return forward_propagate_asm (use, def_insn, def_set, reg);
1313
42a3a38b 1314 /* Else try simplifying. */
1315
1316 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1317 {
1318 loc = &SET_DEST (use_set);
1319 set_reg_equal = false;
1320 }
9845d120 1321 else if (!use_set)
1322 {
1323 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1324 set_reg_equal = false;
1325 }
42a3a38b 1326 else
1327 {
1328 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1329 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1330 loc = &XEXP (note, 0);
1331 else
1332 loc = &SET_SRC (use_set);
3072d30e 1333
42a3a38b 1334 /* Do not replace an existing REG_EQUAL note if the insn is not
93d89886 1335 recognized. Either we're already replacing in the note, or we'll
1336 separately try plugging the definition in the note and simplifying.
44433d3b 1337 And only install a REQ_EQUAL note when the destination is a REG
1338 that isn't mentioned in USE_SET, as the note would be invalid
a24ec999 1339 otherwise. We also don't want to install a note if we are merely
1340 propagating a pseudo since verifying that this pseudo isn't dead
3ac399da 1341 is a pain; moreover such a note won't help anything.
1342 If the use is a paradoxical subreg, make sure we don't add a
1343 REG_EQUAL note for it, because it is not equivalent, it is one
1344 possible value for it, but we can't rely on it holding that value.
1345 See PR70574. */
a24ec999 1346 set_reg_equal = (note == NULL_RTX
1347 && REG_P (SET_DEST (use_set))
1348 && !REG_P (src)
1349 && !(GET_CODE (src) == SUBREG
1350 && REG_P (SUBREG_REG (src)))
1351 && !reg_mentioned_p (SET_DEST (use_set),
3ac399da 1352 SET_SRC (use_set))
1353 && !paradoxical_subreg_p (DF_REF_REG (use)));
42a3a38b 1354 }
1355
1356 if (GET_MODE (*loc) == VOIDmode)
1357 mode = GET_MODE (SET_DEST (use_set));
1358 else
1359 mode = GET_MODE (*loc);
1360
f529eb25 1361 new_rtx = propagate_rtx (*loc, mode, reg, src,
1362 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
3072d30e 1363
9ce37fa7 1364 if (!new_rtx)
42a3a38b 1365 return false;
1366
9ce37fa7 1367 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
42a3a38b 1368}
1369
1370
1371/* Given a use USE of an insn, if it has a single reaching
f9460785 1372 definition, try to forward propagate it into that insn.
1373 Return true if cfg cleanup will be needed. */
42a3a38b 1374
f9460785 1375static bool
ed6e85ae 1376forward_propagate_into (df_ref use)
42a3a38b 1377{
ed6e85ae 1378 df_ref def;
dea92746 1379 rtx_insn *def_insn, *use_insn;
1380 rtx def_set;
3072d30e 1381 rtx parent;
42a3a38b 1382
1383 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
f9460785 1384 return false;
3072d30e 1385 if (DF_REF_IS_ARTIFICIAL (use))
f9460785 1386 return false;
42a3a38b 1387
1388 /* Only consider uses that have a single definition. */
e0bd4156 1389 def = get_def_for_use (use);
1390 if (!def)
f9460785 1391 return false;
42a3a38b 1392 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
f9460785 1393 return false;
3072d30e 1394 if (DF_REF_IS_ARTIFICIAL (def))
f9460785 1395 return false;
42a3a38b 1396
243f24c5 1397 /* Do not propagate loop invariant definitions inside the loop. */
1398 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
f9460785 1399 return false;
42a3a38b 1400
1401 /* Check if the use is still present in the insn! */
1402 use_insn = DF_REF_INSN (use);
1403 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1404 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1405 else
1406 parent = PATTERN (use_insn);
1407
f533acbe 1408 if (!reg_mentioned_p (DF_REF_REG (use), parent))
f9460785 1409 return false;
42a3a38b 1410
1411 def_insn = DF_REF_INSN (def);
3072d30e 1412 if (multiple_sets (def_insn))
f9460785 1413 return false;
42a3a38b 1414 def_set = single_set (def_insn);
1415 if (!def_set)
f9460785 1416 return false;
42a3a38b 1417
1418 /* Only try one kind of propagation. If two are possible, we'll
1419 do it on the following iterations. */
f9460785 1420 if (forward_propagate_and_simplify (use, def_insn, def_set)
1421 || forward_propagate_subreg (use, def_insn, def_set))
1422 {
e2056c37 1423 propagations_left--;
1424
f9460785 1425 if (cfun->can_throw_non_call_exceptions
1426 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1427 && purge_dead_edges (DF_REF_BB (use)))
1428 return true;
1429 }
1430 return false;
42a3a38b 1431}
1432
1433\f
1434static void
1435fwprop_init (void)
1436{
1437 num_changes = 0;
a39fe687 1438 calculate_dominance_info (CDI_DOMINATORS);
42a3a38b 1439
1440 /* We do not always want to propagate into loops, so we have to find
9add6570 1441 loops and be careful about them. Avoid CFG modifications so that
1442 we don't have to update dominance information afterwards for
1443 build_single_def_use_links. */
1444 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
42a3a38b 1445
e0bd4156 1446 build_single_def_use_links ();
3072d30e 1447 df_set_flags (DF_DEFER_INSN_RESCAN);
4ffe0526 1448
1449 active_defs = XNEWVEC (df_ref, max_reg_num ());
382ecba7 1450 if (flag_checking)
1451 active_defs_check = sparseset_alloc (max_reg_num ());
e2056c37 1452
1453 propagations_left = DF_USES_TABLE_SIZE ();
42a3a38b 1454}
1455
1456static void
1457fwprop_done (void)
1458{
243f24c5 1459 loop_optimizer_finalize ();
3072d30e 1460
f1f41a6c 1461 use_def_ref.release ();
4ffe0526 1462 free (active_defs);
382ecba7 1463 if (flag_checking)
1464 sparseset_free (active_defs_check);
4ffe0526 1465
a39fe687 1466 free_dominance_info (CDI_DOMINATORS);
42a3a38b 1467 cleanup_cfg (0);
1468 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1469
1470 if (dump_file)
1471 fprintf (dump_file,
1472 "\nNumber of successful forward propagations: %d\n\n",
1473 num_changes);
1474}
1475
1476
42a3a38b 1477/* Main entry point. */
1478
1479static bool
1480gate_fwprop (void)
1481{
1482 return optimize > 0 && flag_forward_propagate;
1483}
1484
1485static unsigned int
1486fwprop (void)
1487{
1488 unsigned i;
1489
1490 fwprop_init ();
1491
4ffe0526 1492 /* Go through all the uses. df_uses_create will create new ones at the
42a3a38b 1493 end, and we'll go through them as well.
1494
1495 Do not forward propagate addresses into loops until after unrolling.
1496 CSE did so because it was able to fix its own mess, but we are not. */
1497
3072d30e 1498 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
42a3a38b 1499 {
e2056c37 1500 if (!propagations_left)
1501 break;
1502
ed6e85ae 1503 df_ref use = DF_USES_GET (i);
42a3a38b 1504 if (use)
243f24c5 1505 if (DF_REF_TYPE (use) == DF_REF_REG_USE
526548ea 1506 || DF_REF_BB (use)->loop_father == NULL
1507 /* The outer most loop is not really a loop. */
1508 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
88e5b92a 1509 forward_propagate_into (use);
42a3a38b 1510 }
1511
1512 fwprop_done ();
42a3a38b 1513 return 0;
1514}
1515
cbe8bda8 1516namespace {
1517
1518const pass_data pass_data_rtl_fwprop =
42a3a38b 1519{
cbe8bda8 1520 RTL_PASS, /* type */
1521 "fwprop1", /* name */
1522 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 1523 TV_FWPROP, /* tv_id */
1524 0, /* properties_required */
1525 0, /* properties_provided */
1526 0, /* properties_destroyed */
1527 0, /* todo_flags_start */
8b88439e 1528 TODO_df_finish, /* todo_flags_finish */
42a3a38b 1529};
1530
cbe8bda8 1531class pass_rtl_fwprop : public rtl_opt_pass
1532{
1533public:
9af5ce0c 1534 pass_rtl_fwprop (gcc::context *ctxt)
1535 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
cbe8bda8 1536 {}
1537
1538 /* opt_pass methods: */
31315c24 1539 virtual bool gate (function *) { return gate_fwprop (); }
65b0537f 1540 virtual unsigned int execute (function *) { return fwprop (); }
cbe8bda8 1541
1542}; // class pass_rtl_fwprop
1543
1544} // anon namespace
1545
1546rtl_opt_pass *
1547make_pass_rtl_fwprop (gcc::context *ctxt)
1548{
1549 return new pass_rtl_fwprop (ctxt);
1550}
1551
42a3a38b 1552static unsigned int
1553fwprop_addr (void)
1554{
1555 unsigned i;
f9460785 1556
42a3a38b 1557 fwprop_init ();
1558
4ffe0526 1559 /* Go through all the uses. df_uses_create will create new ones at the
42a3a38b 1560 end, and we'll go through them as well. */
3072d30e 1561 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
42a3a38b 1562 {
e2056c37 1563 if (!propagations_left)
1564 break;
1565
ed6e85ae 1566 df_ref use = DF_USES_GET (i);
42a3a38b 1567 if (use)
1568 if (DF_REF_TYPE (use) != DF_REF_REG_USE
526548ea 1569 && DF_REF_BB (use)->loop_father != NULL
1570 /* The outer most loop is not really a loop. */
1571 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
88e5b92a 1572 forward_propagate_into (use);
42a3a38b 1573 }
1574
1575 fwprop_done ();
42a3a38b 1576 return 0;
1577}
1578
cbe8bda8 1579namespace {
1580
1581const pass_data pass_data_rtl_fwprop_addr =
42a3a38b 1582{
cbe8bda8 1583 RTL_PASS, /* type */
1584 "fwprop2", /* name */
1585 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 1586 TV_FWPROP, /* tv_id */
1587 0, /* properties_required */
1588 0, /* properties_provided */
1589 0, /* properties_destroyed */
1590 0, /* todo_flags_start */
8b88439e 1591 TODO_df_finish, /* todo_flags_finish */
42a3a38b 1592};
cbe8bda8 1593
1594class pass_rtl_fwprop_addr : public rtl_opt_pass
1595{
1596public:
9af5ce0c 1597 pass_rtl_fwprop_addr (gcc::context *ctxt)
1598 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
cbe8bda8 1599 {}
1600
1601 /* opt_pass methods: */
31315c24 1602 virtual bool gate (function *) { return gate_fwprop (); }
65b0537f 1603 virtual unsigned int execute (function *) { return fwprop_addr (); }
cbe8bda8 1604
1605}; // class pass_rtl_fwprop_addr
1606
1607} // anon namespace
1608
1609rtl_opt_pass *
1610make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1611{
1612 return new pass_rtl_fwprop_addr (ctxt);
1613}