]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gcse.c
[Ada] Remove Determine_License
[thirdparty/gcc.git] / gcc / gcse.c
CommitLineData
e45425ec 1/* Partial redundancy elimination / Hoisting for RTL.
8d9254fc 2 Copyright (C) 1997-2020 Free Software Foundation, Inc.
7506f491 3
1322177d 4This file is part of GCC.
7506f491 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
7506f491 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
7506f491
DE
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
7506f491
DE
19
20/* TODO
21 - reordering of memory allocation and freeing to be more space efficient
b11f0116
BC
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
7506f491
DE
24*/
25
26/* References searched while implementing this.
7506f491
DE
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
7506f491
DE
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
7506f491
DE
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
f4e584dc
JL
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
a42cd965
AM
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
f4e584dc
JL
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
7506f491
DE
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133*/
134
135#include "config.h"
50b2596f 136#include "system.h"
4977bab6 137#include "coretypes.h"
c7131fb2 138#include "backend.h"
957060b5 139#include "target.h"
c7131fb2 140#include "rtl.h"
957060b5
AM
141#include "tree.h"
142#include "predict.h"
c7131fb2 143#include "df.h"
4d0cdd0c 144#include "memmodel.h"
6baf1cc8 145#include "tm_p.h"
957060b5 146#include "insn-config.h"
0777c850 147#include "print-rtl.h"
7506f491 148#include "regs.h"
b11f0116 149#include "ira.h"
7506f491 150#include "recog.h"
957060b5 151#include "diagnostic-core.h"
60393bbc
AM
152#include "cfgrtl.h"
153#include "cfganal.h"
154#include "lcm.h"
155#include "cfgcleanup.h"
589005ff 156#include "expr.h"
d128effb 157#include "intl.h"
ef330312 158#include "tree-pass.h"
6fb5fa3c 159#include "dbgcnt.h"
7c6811fe 160#include "gcse.h"
af3eb110 161#include "gcse-common.h"
a4dfaad2 162#include "function-abi.h"
4fa31c2a 163
f4e584dc 164/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
4cad6dba 165 are a superset of those done by classic GCSE.
7506f491 166
e45425ec
SB
167 Two passes of copy/constant propagation are done around PRE or hoisting
168 because the first one enables more GCSE and the second one helps to clean
169 up the copies that PRE and HOIST create. This is needed more for PRE than
170 for HOIST because code hoisting will try to use an existing register
171 containing the common subexpression rather than create a new one. This is
172 harder to do for PRE because of the code motion (which HOIST doesn't do).
7506f491
DE
173
174 Expressions we are interested in GCSE-ing are of the form
175 (set (pseudo-reg) (expression)).
176 Function want_to_gcse_p says what these are.
177
4cad6dba 178 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
3906a4a1 179 This allows PRE to hoist expressions that are expressed in multiple insns,
4cad6dba
SB
180 such as complex address calculations (e.g. for PIC code, or loads with a
181 high part and a low part).
3906a4a1 182
7506f491 183 PRE handles moving invariant expressions out of loops (by treating them as
f4e584dc 184 partially redundant).
7506f491 185
7506f491
DE
186 **********************
187
188 We used to support multiple passes but there are diminishing returns in
189 doing so. The first pass usually makes 90% of the changes that are doable.
190 A second pass can make a few more changes made possible by the first pass.
191 Experiments show any further passes don't make enough changes to justify
192 the expense.
193
194 A study of spec92 using an unlimited number of passes:
195 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
196 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
197 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
198
199 It was found doing copy propagation between each pass enables further
200 substitutions.
201
3906a4a1
SB
202 This study was done before expressions in REG_EQUAL notes were added as
203 candidate expressions for optimization, and before the GIMPLE optimizers
204 were added. Probably, multiple passes is even less efficient now than
205 at the time when the study was conducted.
206
7506f491 207 PRE is quite expensive in complicated functions because the DFA can take
3906a4a1 208 a while to converge. Hence we only perform one pass.
7506f491
DE
209
210 **********************
211
212 The steps for PRE are:
213
214 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
215
216 2) Perform the data flow analysis for PRE.
217
218 3) Delete the redundant instructions
219
220 4) Insert the required copies [if any] that make the partially
221 redundant instructions fully redundant.
222
223 5) For other reaching expressions, insert an instruction to copy the value
224 to a newly created pseudo that will reach the redundant instruction.
225
226 The deletion is done first so that when we do insertions we
227 know which pseudo reg to use.
228
229 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
230 argue it is not. The number of iterations for the algorithm to converge
231 is typically 2-4 so I don't view it as that expensive (relatively speaking).
232
4cad6dba 233 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
7506f491
DE
234 we create. To make an expression reach the place where it's redundant,
235 the result of the expression is copied to a new register, and the redundant
236 expression is deleted by replacing it with this new register. Classic GCSE
237 doesn't have this problem as much as it computes the reaching defs of
a3c28ba2
KH
238 each register in each block and thus can try to use an existing
239 register. */
7506f491
DE
240\f
241/* GCSE global vars. */
242
7c6811fe
RS
243struct target_gcse default_target_gcse;
244#if SWITCHABLE_TARGET
245struct target_gcse *this_target_gcse = &default_target_gcse;
246#endif
247
5f39ad47
SB
248/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
249int flag_rerun_cse_after_global_opts;
f4e584dc 250
7506f491
DE
251/* An obstack for our working variables. */
252static struct obstack gcse_obstack;
253
7506f491
DE
254/* Hash table of expressions. */
255
11478306 256struct gcse_expr
7506f491 257{
43c8a043 258 /* The expression. */
7506f491
DE
259 rtx expr;
260 /* Index in the available expression bitmaps. */
261 int bitmap_index;
262 /* Next entry with the same hash. */
11478306 263 struct gcse_expr *next_same_hash;
7506f491
DE
264 /* List of anticipatable occurrences in basic blocks in the function.
265 An "anticipatable occurrence" is one that is the first occurrence in the
f4e584dc
JL
266 basic block, the operands are not modified in the basic block prior
267 to the occurrence and the output is not used between the start of
268 the block and the occurrence. */
11478306 269 struct gcse_occr *antic_occr;
7506f491
DE
270 /* List of available occurrence in basic blocks in the function.
271 An "available occurrence" is one that is the last occurrence in the
272 basic block and the operands are not modified by following statements in
273 the basic block [including this insn]. */
11478306 274 struct gcse_occr *avail_occr;
7506f491
DE
275 /* Non-null if the computation is PRE redundant.
276 The value is the newly created pseudo-reg to record a copy of the
277 expression in all the places that reach the redundant copy. */
278 rtx reaching_reg;
20160347
MK
279 /* Maximum distance in instructions this expression can travel.
280 We avoid moving simple expressions for more than a few instructions
281 to keep register pressure under control.
282 A value of "0" removes restrictions on how far the expression can
283 travel. */
ec7f796e 284 HOST_WIDE_INT max_distance;
7506f491
DE
285};
286
287/* Occurrence of an expression.
288 There is one per basic block. If a pattern appears more than once the
289 last appearance is used [or first for anticipatable expressions]. */
290
11478306 291struct gcse_occr
7506f491
DE
292{
293 /* Next occurrence of this expression. */
11478306 294 struct gcse_occr *next;
7506f491 295 /* The insn that computes the expression. */
cf92a178 296 rtx_insn *insn;
cc2902df 297 /* Nonzero if this [anticipatable] occurrence has been deleted. */
7506f491 298 char deleted_p;
cc2902df 299 /* Nonzero if this [available] occurrence has been copied to
7506f491
DE
300 reaching_reg. */
301 /* ??? This is mutually exclusive with deleted_p, so they could share
302 the same byte. */
303 char copied_p;
304};
305
11478306 306typedef struct gcse_occr *occr_t;
cad9aa15 307
e45425ec 308/* Expression hash tables.
7506f491
DE
309 Each hash table is an array of buckets.
310 ??? It is known that if it were an array of entries, structure elements
311 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
312 not clear whether in the final analysis a sufficient amount of memory would
313 be saved as the size of the available expression bitmaps would be larger
314 [one could build a mapping table without holes afterwards though].
c4c81601 315 Someday I'll perform the computation and figure it out. */
7506f491 316
11478306 317struct gcse_hash_table_d
02280659
ZD
318{
319 /* The table itself.
320 This is an array of `expr_hash_table_size' elements. */
11478306 321 struct gcse_expr **table;
02280659
ZD
322
323 /* Size of the hash table, in elements. */
324 unsigned int size;
2e653e39 325
02280659
ZD
326 /* Number of hash table elements. */
327 unsigned int n_elems;
02280659 328};
c4c81601 329
02280659 330/* Expression hash table. */
11478306 331static struct gcse_hash_table_d expr_hash_table;
02280659 332
a13d4ebf 333/* This is a list of expressions which are MEMs and will be used by load
589005ff 334 or store motion.
43c8a043
EB
335 Load motion tracks MEMs which aren't killed by anything except itself,
336 i.e. loads and stores to a single location.
589005ff 337 We can then allow movement of these MEM refs with a little special
a13d4ebf
AM
338 allowance. (all stores copy the same value to the reaching reg used
339 for the loads). This means all values used to store into memory must have
43c8a043 340 no side effects so we can re-issue the setter value. */
a13d4ebf
AM
341
342struct ls_expr
343{
11478306 344 struct gcse_expr * expr; /* Gcse expression reference for LM. */
a13d4ebf 345 rtx pattern; /* Pattern of this mem. */
47a3dae1 346 rtx pattern_regs; /* List of registers mentioned by the mem. */
0777c850 347 vec<rtx_insn *> stores; /* INSN list of stores seen. */
a13d4ebf
AM
348 struct ls_expr * next; /* Next in the list. */
349 int invalid; /* Invalid for some reason. */
350 int index; /* If it maps to a bitmap index. */
b58b21d5 351 unsigned int hash_index; /* Index when in a hash table. */
a13d4ebf
AM
352 rtx reaching_reg; /* Register to use when re-writing. */
353};
354
355/* Head of the list of load/store memory refs. */
356static struct ls_expr * pre_ldst_mems = NULL;
357
8d67ee55 358struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
4a8fb1a1 359{
4a8fb1a1 360 typedef value_type compare_type;
67f58944
TS
361 static inline hashval_t hash (const ls_expr *);
362 static inline bool equal (const ls_expr *, const ls_expr *);
4a8fb1a1
LC
363};
364
365/* Hashtable helpers. */
366inline hashval_t
67f58944 367pre_ldst_expr_hasher::hash (const ls_expr *x)
4a8fb1a1
LC
368{
369 int do_not_record_p = 0;
370 return
371 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
372}
373
374static int expr_equiv_p (const_rtx, const_rtx);
375
376inline bool
67f58944
TS
377pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
378 const ls_expr *ptr2)
4a8fb1a1
LC
379{
380 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
381}
382
9727e468 383/* Hashtable for the load/store memory refs. */
c203e8a7 384static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
9727e468 385
7506f491
DE
386/* Bitmap containing one bit for each register in the program.
387 Used when performing GCSE to track which registers have been set since
388 the start of the basic block. */
73991d6a 389static regset reg_set_bitmap;
7506f491 390
a13d4ebf
AM
391/* Array, indexed by basic block number for a list of insns which modify
392 memory within that block. */
e26d1bb2 393static vec<rtx_insn *> *modify_mem_list;
0516f6fe 394static bitmap modify_mem_list_set;
a13d4ebf 395
6ce1edcf
NF
396/* This array parallels modify_mem_list, except that it stores MEMs
397 being set and their canonicalized memory addresses. */
9771b263 398static vec<modify_pair> *canon_modify_mem_list;
0516f6fe 399
aa47fcfa
JL
400/* Bitmap indexed by block numbers to record which blocks contain
401 function calls. */
402static bitmap blocks_with_calls;
403
7506f491
DE
404/* Various variables for statistics gathering. */
405
406/* Memory used in a pass.
407 This isn't intended to be absolutely precise. Its intent is only
408 to keep an eye on memory usage. */
409static int bytes_used;
c4c81601 410
7506f491
DE
411/* GCSE substitutions made. */
412static int gcse_subst_count;
413/* Number of copy instructions created. */
414static int gcse_create_count;
7506f491 415\f
20160347
MK
416/* Doing code hoisting. */
417static bool doing_code_hoisting_p = false;
418\f
e83f4801 419/* For available exprs */
df35c271 420static sbitmap *ae_kill;
7506f491 421\f
b11f0116
BC
422/* Data stored for each basic block. */
423struct bb_data
424{
425 /* Maximal register pressure inside basic block for given register class
426 (defined only for the pressure classes). */
427 int max_reg_pressure[N_REG_CLASSES];
4b8181c5
BC
428 /* Recorded register pressure of basic block before trying to hoist
429 an expression. Will be used to restore the register pressure
430 if the expression should not be hoisted. */
431 int old_pressure;
432 /* Recorded register live_in info of basic block during code hoisting
433 process. BACKUP is used to record live_in info before trying to
434 hoist an expression, and will be used to restore LIVE_IN if the
435 expression should not be hoisted. */
436 bitmap live_in, backup;
b11f0116
BC
437};
438
439#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
440
441static basic_block curr_bb;
442
443/* Current register pressure for each pressure class. */
444static int curr_reg_pressure[N_REG_CLASSES];
445\f
446
1d088dee 447static void compute_can_copy (void);
9fe15a12
KG
448static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
449static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
703ad42b 450static void *gcse_alloc (unsigned long);
eb232f4e 451static void alloc_gcse_mem (void);
1d088dee 452static void free_gcse_mem (void);
11478306
JH
453static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
454static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
455static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
456static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
cf92a178
DM
457static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
458static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
459static int oprs_available_p (const_rtx, const rtx_insn *);
ef4bddc2 460static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
ec7f796e 461 HOST_WIDE_INT, struct gcse_hash_table_d *);
ef4bddc2 462static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
170065c9 463static void record_last_reg_set_info (rtx_insn *, int);
e26d1bb2 464static void record_last_mem_set_info (rtx_insn *);
7bc980e1 465static void record_last_set_info (rtx, const_rtx, void *);
11478306
JH
466static void compute_hash_table (struct gcse_hash_table_d *);
467static void alloc_hash_table (struct gcse_hash_table_d *);
468static void free_hash_table (struct gcse_hash_table_d *);
469static void compute_hash_table_work (struct gcse_hash_table_d *);
470static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
1d088dee 471static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
11478306 472 struct gcse_hash_table_d *);
7bc980e1 473static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
ed7a4b4b 474static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
1d088dee
AJ
475static void alloc_pre_mem (int, int);
476static void free_pre_mem (void);
43c8a043 477static struct edge_list *compute_pre_data (void);
11478306 478static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
1d088dee 479 basic_block);
11478306
JH
480static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
481static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
1d088dee
AJ
482static void pre_insert_copies (void);
483static int pre_delete (void);
43c8a043 484static int pre_gcse (struct edge_list *);
5f39ad47 485static int one_pre_gcse_pass (void);
170065c9 486static void add_label_notes (rtx, rtx_insn *);
1d088dee
AJ
487static void alloc_code_hoist_mem (int, int);
488static void free_code_hoist_mem (void);
489static void compute_code_hoist_vbeinout (void);
490static void compute_code_hoist_data (void);
ec7f796e
ML
491static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
492 basic_block,
493 sbitmap, HOST_WIDE_INT, int *,
494 enum reg_class,
cf92a178 495 int *, bitmap, rtx_insn *);
5f39ad47 496static int hoist_code (void);
4b8181c5 497static enum reg_class get_regno_pressure_class (int regno, int *nregs);
cf92a178 498static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
1d088dee 499static int one_code_hoisting_pass (void);
11478306
JH
500static rtx_insn *process_insert_insn (struct gcse_expr *);
501static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
502static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
1d088dee
AJ
503 basic_block, char *);
504static struct ls_expr * ldst_entry (rtx);
505static void free_ldst_entry (struct ls_expr *);
43c8a043 506static void free_ld_motion_mems (void);
1d088dee
AJ
507static void print_ldst_list (FILE *);
508static struct ls_expr * find_rtx_in_ldst (rtx);
ed7a4b4b 509static int simple_mem (const_rtx);
1d088dee
AJ
510static void invalidate_any_buried_refs (rtx);
511static void compute_ld_motion_mems (void);
512static void trim_ld_motion_mems (void);
11478306 513static void update_ld_motion_stores (struct gcse_expr *);
1d088dee
AJ
514static void clear_modify_mem_tables (void);
515static void free_modify_mem_tables (void);
1b4572a8
KG
516
517#define GNEW(T) ((T *) gmalloc (sizeof (T)))
518#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
519
520#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
521#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
1b4572a8
KG
522
523#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
524#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
1b4572a8
KG
525
526#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
527#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
7506f491 528\f
7506f491
DE
529/* Misc. utilities. */
530
7c6811fe
RS
531#define can_copy \
532 (this_target_gcse->x_can_copy)
533#define can_copy_init_p \
534 (this_target_gcse->x_can_copy_init_p)
773eae39 535
7506f491
DE
536/* Compute which modes support reg/reg copy operations. */
537
538static void
1d088dee 539compute_can_copy (void)
7506f491
DE
540{
541 int i;
50b2596f 542#ifndef AVOID_CCMODE_COPIES
21afc57d
TS
543 rtx reg;
544 rtx_insn *insn;
50b2596f 545#endif
773eae39 546 memset (can_copy, 0, NUM_MACHINE_MODES);
7506f491
DE
547
548 start_sequence ();
549 for (i = 0; i < NUM_MACHINE_MODES; i++)
c4c81601
RK
550 if (GET_MODE_CLASS (i) == MODE_CC)
551 {
7506f491 552#ifdef AVOID_CCMODE_COPIES
773eae39 553 can_copy[i] = 0;
7506f491 554#else
ef4bddc2 555 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
f7df4a84 556 insn = emit_insn (gen_rtx_SET (reg, reg));
9714cf43 557 if (recog (PATTERN (insn), insn, NULL) >= 0)
773eae39 558 can_copy[i] = 1;
7506f491 559#endif
c4c81601 560 }
141b5810 561 else
773eae39 562 can_copy[i] = 1;
c4c81601 563
7506f491 564 end_sequence ();
7506f491 565}
773eae39
EB
566
567/* Returns whether the mode supports reg/reg copy operations. */
568
569bool
ef4bddc2 570can_copy_p (machine_mode mode)
773eae39 571{
773eae39
EB
572 if (! can_copy_init_p)
573 {
574 compute_can_copy ();
575 can_copy_init_p = true;
576 }
577
578 return can_copy[mode] != 0;
579}
7506f491
DE
580\f
581/* Cover function to xmalloc to record bytes allocated. */
582
703ad42b 583static void *
4ac11022 584gmalloc (size_t size)
7506f491
DE
585{
586 bytes_used += size;
587 return xmalloc (size);
588}
589
9fe15a12
KG
590/* Cover function to xcalloc to record bytes allocated. */
591
592static void *
593gcalloc (size_t nelem, size_t elsize)
594{
595 bytes_used += nelem * elsize;
596 return xcalloc (nelem, elsize);
597}
598
77bbd421 599/* Cover function to obstack_alloc. */
7506f491 600
703ad42b 601static void *
1d088dee 602gcse_alloc (unsigned long size)
7506f491 603{
77bbd421 604 bytes_used += size;
703ad42b 605 return obstack_alloc (&gcse_obstack, size);
7506f491
DE
606}
607
4a81774c 608/* Allocate memory for the reg/memory set tracking tables.
7506f491
DE
609 This is called at the start of each pass. */
610
611static void
eb232f4e 612alloc_gcse_mem (void)
7506f491 613{
7506f491 614 /* Allocate vars to track sets of regs. */
7a8cba34 615 reg_set_bitmap = ALLOC_REG_SET (NULL);
7506f491 616
a13d4ebf 617 /* Allocate array to keep a list of insns which modify memory in each
9771b263
DN
618 basic block. The two typedefs are needed to work around the
619 pre-processor limitation with template types in macro arguments. */
e26d1bb2 620 typedef vec<rtx_insn *> vec_rtx_heap;
9771b263 621 typedef vec<modify_pair> vec_modify_pair_heap;
8b1c6fd7
DM
622 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
623 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
624 last_basic_block_for_fn (cfun));
8bdbfff5
NS
625 modify_mem_list_set = BITMAP_ALLOC (NULL);
626 blocks_with_calls = BITMAP_ALLOC (NULL);
7506f491
DE
627}
628
629/* Free memory allocated by alloc_gcse_mem. */
630
631static void
1d088dee 632free_gcse_mem (void)
7506f491 633{
d5b8da97
SB
634 FREE_REG_SET (reg_set_bitmap);
635
73991d6a 636 free_modify_mem_tables ();
8bdbfff5
NS
637 BITMAP_FREE (modify_mem_list_set);
638 BITMAP_FREE (blocks_with_calls);
7506f491 639}
b5ce41ff
JL
640\f
641/* Compute the local properties of each recorded expression.
c4c81601
RK
642
643 Local properties are those that are defined by the block, irrespective of
644 other blocks.
b5ce41ff
JL
645
646 An expression is transparent in a block if its operands are not modified
647 in the block.
648
649 An expression is computed (locally available) in a block if it is computed
650 at least once and expression would contain the same value if the
651 computation was moved to the end of the block.
652
653 An expression is locally anticipatable in a block if it is computed at
654 least once and expression would contain the same value if the computation
655 was moved to the beginning of the block.
656
e45425ec 657 We call this routine for pre and code hoisting. They all compute
c4c81601 658 basically the same information and thus can easily share this code.
7506f491 659
c4c81601
RK
660 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
661 properties. If NULL, then it is not necessary to compute or record that
662 particular property.
b5ce41ff 663
e45425ec 664 TABLE controls which hash table to look at. */
589005ff 665
b5ce41ff 666static void
7b1b4aed 667compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
11478306 668 struct gcse_hash_table_d *table)
b5ce41ff 669{
02280659 670 unsigned int i;
589005ff 671
b5ce41ff
JL
672 /* Initialize any bitmaps that were passed in. */
673 if (transp)
695ab36a 674 {
8b1c6fd7 675 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
695ab36a 676 }
c4c81601 677
b5ce41ff 678 if (comp)
8b1c6fd7 679 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
b5ce41ff 680 if (antloc)
8b1c6fd7 681 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
b5ce41ff 682
02280659 683 for (i = 0; i < table->size; i++)
7506f491 684 {
11478306 685 struct gcse_expr *expr;
b5ce41ff 686
02280659 687 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
b5ce41ff 688 {
b5ce41ff 689 int indx = expr->bitmap_index;
11478306 690 struct gcse_occr *occr;
b5ce41ff
JL
691
692 /* The expression is transparent in this block if it is not killed.
693 We start by assuming all are transparent [none are killed], and
694 then reset the bits for those that are. */
b5ce41ff 695 if (transp)
af3eb110
JL
696 compute_transp (expr->expr, indx, transp,
697 blocks_with_calls,
698 modify_mem_list_set,
699 canon_modify_mem_list);
b5ce41ff
JL
700
701 /* The occurrences recorded in antic_occr are exactly those that
cc2902df 702 we want to set to nonzero in ANTLOC. */
b5ce41ff 703 if (antloc)
c4c81601
RK
704 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
705 {
d7c028c0 706 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 707
c4c81601
RK
708 /* While we're scanning the table, this is a good place to
709 initialize this. */
710 occr->deleted_p = 0;
711 }
b5ce41ff
JL
712
713 /* The occurrences recorded in avail_occr are exactly those that
cc2902df 714 we want to set to nonzero in COMP. */
b5ce41ff 715 if (comp)
c4c81601
RK
716 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
717 {
d7c028c0 718 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 719
c4c81601
RK
720 /* While we're scanning the table, this is a good place to
721 initialize this. */
722 occr->copied_p = 0;
723 }
b5ce41ff
JL
724
725 /* While we're scanning the table, this is a good place to
726 initialize this. */
727 expr->reaching_reg = 0;
728 }
7506f491 729 }
7506f491
DE
730}
731\f
7506f491
DE
732/* Hash table support. */
733
80c29cc4
RZ
734struct reg_avail_info
735{
e0082a72 736 basic_block last_bb;
80c29cc4
RZ
737 int first_set;
738 int last_set;
739};
740
741static struct reg_avail_info *reg_avail_info;
e0082a72 742static basic_block current_bb;
7506f491 743
fb0c0a12
RK
744/* See whether X, the source of a set, is something we want to consider for
745 GCSE. */
7506f491
DE
746
747static int
ec7f796e 748want_to_gcse_p (rtx x, machine_mode mode, HOST_WIDE_INT *max_distance_ptr)
7506f491 749{
3d8504ac
RS
750#ifdef STACK_REGS
751 /* On register stack architectures, don't GCSE constants from the
752 constant pool, as the benefits are often swamped by the overhead
753 of shuffling the register stack between basic blocks. */
754 if (IS_STACK_MODE (GET_MODE (x)))
755 x = avoid_constant_pool_reference (x);
756#endif
757
20160347
MK
758 /* GCSE'ing constants:
759
760 We do not specifically distinguish between constant and non-constant
5e8f01f4 761 expressions in PRE and Hoist. We use set_src_cost below to limit
20160347
MK
762 the maximum distance simple expressions can travel.
763
764 Nevertheless, constants are much easier to GCSE, and, hence,
765 it is easy to overdo the optimizations. Usually, excessive PRE and
766 Hoisting of constant leads to increased register pressure.
767
768 RA can deal with this by rematerialing some of the constants.
769 Therefore, it is important that the back-end generates sets of constants
770 in a way that allows reload rematerialize them under high register
771 pressure, i.e., a pseudo register with REG_EQUAL to constant
772 is set only once. Failing to do so will result in IRA/reload
773 spilling such constants under high register pressure instead of
774 rematerializing them. */
775
c4c81601 776 switch (GET_CODE (x))
7506f491
DE
777 {
778 case REG:
779 case SUBREG:
20160347
MK
780 case CALL:
781 return 0;
782
d8116890 783 CASE_CONST_ANY:
20160347
MK
784 if (!doing_code_hoisting_p)
785 /* Do not PRE constants. */
786 return 0;
787
788 /* FALLTHRU */
7506f491
DE
789
790 default:
20160347
MK
791 if (doing_code_hoisting_p)
792 /* PRE doesn't implement max_distance restriction. */
793 {
794 int cost;
a261ee49 795 HOST_WIDE_INT max_distance;
20160347
MK
796
797 gcc_assert (!optimize_function_for_speed_p (cfun)
798 && optimize_function_for_size_p (cfun));
e548c9df 799 cost = set_src_cost (x, mode, 0);
20160347 800
028d4092 801 if (cost < COSTS_N_INSNS (param_gcse_unrestricted_cost))
20160347 802 {
a261ee49 803 max_distance
028d4092 804 = ((HOST_WIDE_INT)param_gcse_cost_distance_ratio * cost) / 10;
20160347
MK
805 if (max_distance == 0)
806 return 0;
807
808 gcc_assert (max_distance > 0);
809 }
810 else
811 max_distance = 0;
812
813 if (max_distance_ptr)
814 *max_distance_ptr = max_distance;
815 }
816
0683fd27 817 return can_assign_to_reg_without_clobbers_p (x, mode);
7506f491 818 }
1707bafa
RS
819}
820
df35c271 821/* Used internally by can_assign_to_reg_without_clobbers_p. */
1707bafa 822
cf92a178 823static GTY(()) rtx_insn *test_insn;
1707bafa 824
0683fd27
KT
825/* Return true if we can assign X to a pseudo register of mode MODE
826 such that the resulting insn does not result in clobbering a hard
827 register as a side-effect.
ec0a1343
JB
828
829 Additionally, if the target requires it, check that the resulting insn
830 can be copied. If it cannot, this means that X is special and probably
831 has hidden side-effects we don't want to mess with.
832
df35c271
SB
833 This function is typically used by code motion passes, to verify
834 that it is safe to insert an insn without worrying about clobbering
835 maybe live hard regs. */
1707bafa 836
df35c271 837bool
0683fd27 838can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
1707bafa
RS
839{
840 int num_clobbers = 0;
841 int icode;
0dbaf51e 842 bool can_assign = false;
7506f491 843
fb0c0a12 844 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
0683fd27 845 if (general_operand (x, mode))
fb0c0a12
RK
846 return 1;
847 else if (GET_MODE (x) == VOIDmode)
848 return 0;
849
850 /* Otherwise, check if we can make a valid insn from it. First initialize
851 our test insn if we haven't already. */
852 if (test_insn == 0)
853 {
854 test_insn
f7df4a84 855 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
fb0c0a12
RK
856 FIRST_PSEUDO_REGISTER * 2),
857 const0_rtx));
0f82e5c9 858 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
0dbaf51e 859 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
fb0c0a12
RK
860 }
861
862 /* Now make an insn like the one we would make when GCSE'ing and see if
863 valid. */
0683fd27 864 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
fb0c0a12 865 SET_SRC (PATTERN (test_insn)) = x;
b8698a0f 866
ec0a1343 867 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
b8698a0f 868
0dbaf51e
SB
869 /* If the test insn is valid and doesn't need clobbers, and the target also
870 has no objections, we're good. */
871 if (icode >= 0
872 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
873 && ! (targetm.cannot_copy_insn_p
874 && targetm.cannot_copy_insn_p (test_insn)))
875 can_assign = true;
b8698a0f 876
0dbaf51e
SB
877 /* Make sure test_insn doesn't have any pointers into GC space. */
878 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
b8698a0f 879
0dbaf51e 880 return can_assign;
7506f491
DE
881}
882
cc2902df 883/* Return nonzero if the operands of expression X are unchanged from the
7506f491
DE
884 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
885 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
886
887static int
cf92a178 888oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
7506f491 889{
c4c81601 890 int i, j;
7506f491 891 enum rtx_code code;
6f7d635c 892 const char *fmt;
7506f491 893
7506f491
DE
894 if (x == 0)
895 return 1;
896
897 code = GET_CODE (x);
898 switch (code)
899 {
900 case REG:
80c29cc4
RZ
901 {
902 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
903
904 if (info->last_bb != current_bb)
905 return 1;
589005ff 906 if (avail_p)
4a81774c 907 return info->last_set < DF_INSN_LUID (insn);
80c29cc4 908 else
4a81774c 909 return info->first_set >= DF_INSN_LUID (insn);
80c29cc4 910 }
7506f491
DE
911
912 case MEM:
85c0f02d
SB
913 if (! flag_gcse_lm
914 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
915 x, avail_p))
a13d4ebf 916 return 0;
7506f491 917 else
c4c81601 918 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
7506f491
DE
919
920 case PRE_DEC:
921 case PRE_INC:
922 case POST_DEC:
923 case POST_INC:
4b983fdc
RH
924 case PRE_MODIFY:
925 case POST_MODIFY:
7506f491
DE
926 return 0;
927
928 case PC:
929 case CC0: /*FIXME*/
930 case CONST:
d8116890 931 CASE_CONST_ANY:
7506f491
DE
932 case SYMBOL_REF:
933 case LABEL_REF:
934 case ADDR_VEC:
935 case ADDR_DIFF_VEC:
936 return 1;
937
938 default:
939 break;
940 }
941
c4c81601 942 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
943 {
944 if (fmt[i] == 'e')
945 {
c4c81601
RK
946 /* If we are about to do the last recursive call needed at this
947 level, change it into iteration. This function is called enough
948 to be worth it. */
7506f491 949 if (i == 0)
c4c81601
RK
950 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
951
952 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
7506f491
DE
953 return 0;
954 }
955 else if (fmt[i] == 'E')
c4c81601
RK
956 for (j = 0; j < XVECLEN (x, i); j++)
957 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
958 return 0;
7506f491
DE
959 }
960
961 return 1;
962}
963
43c8a043 964/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
a13d4ebf 965
43c8a043
EB
966struct mem_conflict_info
967{
968 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
969 see if a memory store conflicts with this memory load. */
970 const_rtx mem;
a13d4ebf 971
43c8a043
EB
972 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
973 references. */
974 bool conflict;
975};
976
977/* DEST is the output of an instruction. If it is a memory reference and
978 possibly conflicts with the load found in DATA, then communicate this
979 information back through DATA. */
a13d4ebf
AM
980
981static void
7bc980e1 982mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
43c8a043 983 void *data)
a13d4ebf 984{
43c8a043
EB
985 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
986
a13d4ebf
AM
987 while (GET_CODE (dest) == SUBREG
988 || GET_CODE (dest) == ZERO_EXTRACT
a13d4ebf
AM
989 || GET_CODE (dest) == STRICT_LOW_PART)
990 dest = XEXP (dest, 0);
991
992 /* If DEST is not a MEM, then it will not conflict with the load. Note
993 that function calls are assumed to clobber memory, but are handled
994 elsewhere. */
7b1b4aed 995 if (! MEM_P (dest))
a13d4ebf 996 return;
aaa4ca30 997
a13d4ebf 998 /* If we are setting a MEM in our list of specially recognized MEMs,
589005ff 999 don't mark as killed this time. */
43c8a043 1000 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
a13d4ebf
AM
1001 {
1002 if (!find_rtx_in_ldst (dest))
43c8a043 1003 mci->conflict = true;
a13d4ebf
AM
1004 return;
1005 }
aaa4ca30 1006
53d9622b 1007 if (true_dependence (dest, GET_MODE (dest), mci->mem))
43c8a043 1008 mci->conflict = true;
a13d4ebf
AM
1009}
1010
1011/* Return nonzero if the expression in X (a memory reference) is killed
4a81774c 1012 in block BB before or after the insn with the LUID in UID_LIMIT.
a13d4ebf
AM
1013 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1014 before UID_LIMIT.
1015
1016 To check the entire block, set UID_LIMIT to max_uid + 1 and
1017 AVAIL_P to 0. */
1018
1019static int
43c8a043
EB
1020load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1021 int avail_p)
a13d4ebf 1022{
e26d1bb2
DM
1023 vec<rtx_insn *> list = modify_mem_list[bb->index];
1024 rtx_insn *setter;
6409abe3 1025 unsigned ix;
16c5b95d
MH
1026
1027 /* If this is a readonly then we aren't going to be changing it. */
1028 if (MEM_READONLY_P (x))
1029 return 0;
1030
9771b263 1031 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
a13d4ebf 1032 {
43c8a043
EB
1033 struct mem_conflict_info mci;
1034
a13d4ebf
AM
1035 /* Ignore entries in the list that do not apply. */
1036 if ((avail_p
6409abe3 1037 && DF_INSN_LUID (setter) < uid_limit)
a13d4ebf 1038 || (! avail_p
6409abe3
NF
1039 && DF_INSN_LUID (setter) > uid_limit))
1040 continue;
a13d4ebf
AM
1041
1042 /* If SETTER is a call everything is clobbered. Note that calls
1043 to pure functions are never put on the list, so we need not
1044 worry about them. */
7b1b4aed 1045 if (CALL_P (setter))
a13d4ebf
AM
1046 return 1;
1047
1048 /* SETTER must be an INSN of some kind that sets memory. Call
43c8a043
EB
1049 note_stores to examine each hunk of memory that is modified. */
1050 mci.mem = x;
1051 mci.conflict = false;
e8448ba5 1052 note_stores (setter, mems_conflict_for_gcse_p, &mci);
43c8a043 1053 if (mci.conflict)
a13d4ebf 1054 return 1;
a13d4ebf
AM
1055 }
1056 return 0;
1057}
1058
cc2902df 1059/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1060 the start of INSN's basic block up to but not including INSN. */
1061
1062static int
cf92a178 1063oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
7506f491
DE
1064{
1065 return oprs_unchanged_p (x, insn, 0);
1066}
1067
cc2902df 1068/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1069 INSN to the end of INSN's basic block. */
1070
1071static int
cf92a178 1072oprs_available_p (const_rtx x, const rtx_insn *insn)
7506f491
DE
1073{
1074 return oprs_unchanged_p (x, insn, 1);
1075}
1076
1077/* Hash expression X.
c4c81601
RK
1078
1079 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1080 indicating if a volatile operand is found or if the expression contains
b58b21d5 1081 something we don't want to insert in the table. HASH_TABLE_SIZE is
0516f6fe 1082 the current size of the hash table to be probed. */
7506f491
DE
1083
1084static unsigned int
ef4bddc2 1085hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
b58b21d5 1086 int hash_table_size)
7506f491
DE
1087{
1088 unsigned int hash;
1089
1090 *do_not_record_p = 0;
1091
43c8a043 1092 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
7506f491
DE
1093 return hash % hash_table_size;
1094}
172890a2 1095
0516f6fe 1096/* Return nonzero if exp1 is equivalent to exp2. */
7506f491
DE
1097
1098static int
ed7a4b4b 1099expr_equiv_p (const_rtx x, const_rtx y)
7506f491 1100{
0516f6fe 1101 return exp_equiv_p (x, y, 0, true);
7506f491
DE
1102}
1103
02280659 1104/* Insert expression X in INSN in the hash TABLE.
7506f491
DE
1105 If it is already present, record it as the last occurrence in INSN's
1106 basic block.
1107
1108 MODE is the mode of the value X is being stored into.
1109 It is only used if X is a CONST_INT.
1110
cc2902df 1111 ANTIC_P is nonzero if X is an anticipatable expression.
20160347
MK
1112 AVAIL_P is nonzero if X is an available expression.
1113
1114 MAX_DISTANCE is the maximum distance in instructions this expression can
1115 be moved. */
7506f491
DE
1116
1117static void
ef4bddc2 1118insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
cf92a178 1119 int antic_p,
ec7f796e
ML
1120 int avail_p, HOST_WIDE_INT max_distance,
1121 struct gcse_hash_table_d *table)
7506f491
DE
1122{
1123 int found, do_not_record_p;
1124 unsigned int hash;
11478306
JH
1125 struct gcse_expr *cur_expr, *last_expr = NULL;
1126 struct gcse_occr *antic_occr, *avail_occr;
7506f491 1127
02280659 1128 hash = hash_expr (x, mode, &do_not_record_p, table->size);
7506f491
DE
1129
1130 /* Do not insert expression in table if it contains volatile operands,
1131 or if hash_expr determines the expression is something we don't want
1132 to or can't handle. */
1133 if (do_not_record_p)
1134 return;
1135
02280659 1136 cur_expr = table->table[hash];
7506f491
DE
1137 found = 0;
1138
01512446 1139 while (cur_expr && (found = expr_equiv_p (cur_expr->expr, x)) == 0)
7506f491
DE
1140 {
1141 /* If the expression isn't found, save a pointer to the end of
1142 the list. */
1143 last_expr = cur_expr;
1144 cur_expr = cur_expr->next_same_hash;
1145 }
1146
1147 if (! found)
1148 {
11478306
JH
1149 cur_expr = GOBNEW (struct gcse_expr);
1150 bytes_used += sizeof (struct gcse_expr);
02280659 1151 if (table->table[hash] == NULL)
c4c81601 1152 /* This is the first pattern that hashed to this index. */
02280659 1153 table->table[hash] = cur_expr;
7506f491 1154 else
c4c81601
RK
1155 /* Add EXPR to end of this hash chain. */
1156 last_expr->next_same_hash = cur_expr;
1157
589005ff 1158 /* Set the fields of the expr element. */
7506f491 1159 cur_expr->expr = x;
02280659 1160 cur_expr->bitmap_index = table->n_elems++;
7506f491
DE
1161 cur_expr->next_same_hash = NULL;
1162 cur_expr->antic_occr = NULL;
1163 cur_expr->avail_occr = NULL;
20160347
MK
1164 gcc_assert (max_distance >= 0);
1165 cur_expr->max_distance = max_distance;
7506f491 1166 }
20160347
MK
1167 else
1168 gcc_assert (cur_expr->max_distance == max_distance);
7506f491
DE
1169
1170 /* Now record the occurrence(s). */
7506f491
DE
1171 if (antic_p)
1172 {
1173 antic_occr = cur_expr->antic_occr;
1174
b0de17ef
SB
1175 if (antic_occr
1176 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
b6e47ceb 1177 antic_occr = NULL;
7506f491
DE
1178
1179 if (antic_occr)
c4c81601
RK
1180 /* Found another instance of the expression in the same basic block.
1181 Prefer the currently recorded one. We want the first one in the
1182 block and the block is scanned from start to end. */
1183 ; /* nothing to do */
7506f491
DE
1184 else
1185 {
1186 /* First occurrence of this expression in this basic block. */
11478306
JH
1187 antic_occr = GOBNEW (struct gcse_occr);
1188 bytes_used += sizeof (struct gcse_occr);
7506f491 1189 antic_occr->insn = insn;
b6e47ceb 1190 antic_occr->next = cur_expr->antic_occr;
f9957958 1191 antic_occr->deleted_p = 0;
b6e47ceb 1192 cur_expr->antic_occr = antic_occr;
7506f491
DE
1193 }
1194 }
1195
1196 if (avail_p)
1197 {
1198 avail_occr = cur_expr->avail_occr;
1199
b0de17ef
SB
1200 if (avail_occr
1201 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
7506f491 1202 {
b6e47ceb
JL
1203 /* Found another instance of the expression in the same basic block.
1204 Prefer this occurrence to the currently recorded one. We want
1205 the last one in the block and the block is scanned from start
1206 to end. */
1207 avail_occr->insn = insn;
7506f491 1208 }
7506f491
DE
1209 else
1210 {
1211 /* First occurrence of this expression in this basic block. */
11478306
JH
1212 avail_occr = GOBNEW (struct gcse_occr);
1213 bytes_used += sizeof (struct gcse_occr);
7506f491 1214 avail_occr->insn = insn;
b6e47ceb 1215 avail_occr->next = cur_expr->avail_occr;
f9957958 1216 avail_occr->deleted_p = 0;
b6e47ceb 1217 cur_expr->avail_occr = avail_occr;
7506f491
DE
1218 }
1219 }
1220}
1221
43c8a043 1222/* Scan SET present in INSN and add an entry to the hash TABLE. */
7506f491
DE
1223
1224static void
11478306 1225hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
7506f491 1226{
43c8a043
EB
1227 rtx src = SET_SRC (set);
1228 rtx dest = SET_DEST (set);
172890a2 1229 rtx note;
7506f491 1230
6e72d1e9 1231 if (GET_CODE (src) == CALL)
02280659 1232 hash_scan_call (src, insn, table);
7506f491 1233
7b1b4aed 1234 else if (REG_P (dest))
7506f491 1235 {
172890a2 1236 unsigned int regno = REGNO (dest);
ec7f796e 1237 HOST_WIDE_INT max_distance = 0;
7506f491 1238
29470771
SB
1239 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1240
90631280
PB
1241 This allows us to do a single GCSE pass and still eliminate
1242 redundant constants, addresses or other expressions that are
29470771
SB
1243 constructed with multiple instructions.
1244
e45425ec 1245 However, keep the original SRC if INSN is a simple reg-reg move.
29470771
SB
1246 In this case, there will almost always be a REG_EQUAL note on the
1247 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1248 for INSN, we miss copy propagation opportunities and we perform the
1249 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1250 do more than one PRE GCSE pass.
1251
fa10beec 1252 Note that this does not impede profitable constant propagations. We
29470771 1253 "look through" reg-reg sets in lookup_avail_set. */
90631280
PB
1254 note = find_reg_equal_equiv_note (insn);
1255 if (note != 0
29470771
SB
1256 && REG_NOTE_KIND (note) == REG_EQUAL
1257 && !REG_P (src)
e548c9df 1258 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
f7df4a84 1259 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
172890a2 1260
7506f491 1261 /* Only record sets of pseudo-regs in the hash table. */
e45425ec 1262 if (regno >= FIRST_PSEUDO_REGISTER
7506f491 1263 /* Don't GCSE something if we can't do a reg/reg copy. */
773eae39 1264 && can_copy_p (GET_MODE (dest))
068473ec 1265 /* GCSE commonly inserts instruction after the insn. We can't
1d65f45c
RH
1266 do that easily for EH edges so disable GCSE on these for now. */
1267 /* ??? We can now easily create new EH landing pads at the
1268 gimple level, for splitting edges; there's no reason we
1269 can't do the same thing at the rtl level. */
1270 && !can_throw_internal (insn)
7506f491 1271 /* Is SET_SRC something we want to gcse? */
e548c9df 1272 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
172890a2 1273 /* Don't CSE a nop. */
43c8a043 1274 && ! set_noop_p (set)
43e72072
JJ
1275 /* Don't GCSE if it has attached REG_EQUIV note.
1276 At this point this only function parameters should have
1277 REG_EQUIV notes and if the argument slot is used somewhere
a1f300c0 1278 explicitly, it means address of parameter has been taken,
43e72072 1279 so we should not extend the lifetime of the pseudo. */
90631280 1280 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
7506f491
DE
1281 {
1282 /* An expression is not anticipatable if its operands are
52d76e11 1283 modified before this insn or if this is not the only SET in
6fb5fa3c
DB
1284 this insn. The latter condition does not have to mean that
1285 SRC itself is not anticipatable, but we just will not be
1286 able to handle code motion of insns with multiple sets. */
1287 int antic_p = oprs_anticipatable_p (src, insn)
1288 && !multiple_sets (insn);
7506f491 1289 /* An expression is not available if its operands are
eb296bd9
GK
1290 subsequently modified, including this insn. It's also not
1291 available if this is a branch, because we can't insert
1292 a set after the branch. */
1293 int avail_p = (oprs_available_p (src, insn)
1294 && ! JUMP_P (insn));
c4c81601 1295
20160347
MK
1296 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1297 max_distance, table);
7506f491 1298 }
7506f491 1299 }
d91edf86 1300 /* In case of store we want to consider the memory value as available in
f5f2e3cd
MH
1301 the REG stored in that memory. This makes it possible to remove
1302 redundant loads from due to stores to the same location. */
7b1b4aed 1303 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
e548c9df
AM
1304 {
1305 unsigned int regno = REGNO (src);
ec7f796e 1306 HOST_WIDE_INT max_distance = 0;
e548c9df
AM
1307
1308 /* Only record sets of pseudo-regs in the hash table. */
1309 if (regno >= FIRST_PSEUDO_REGISTER
1310 /* Don't GCSE something if we can't do a reg/reg copy. */
1311 && can_copy_p (GET_MODE (src))
1312 /* GCSE commonly inserts instruction after the insn. We can't
1313 do that easily for EH edges so disable GCSE on these for now. */
1314 && !can_throw_internal (insn)
1315 /* Is SET_DEST something we want to gcse? */
1316 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1317 /* Don't CSE a nop. */
1318 && ! set_noop_p (set)
1319 /* Don't GCSE if it has attached REG_EQUIV note.
1320 At this point this only function parameters should have
1321 REG_EQUIV notes and if the argument slot is used somewhere
1322 explicitly, it means address of parameter has been taken,
1323 so we should not extend the lifetime of the pseudo. */
1324 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1325 || ! MEM_P (XEXP (note, 0))))
1326 {
1327 /* Stores are never anticipatable. */
1328 int antic_p = 0;
1329 /* An expression is not available if its operands are
1330 subsequently modified, including this insn. It's also not
1331 available if this is a branch, because we can't insert
1332 a set after the branch. */
1333 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1334
1335 /* Record the memory expression (DEST) in the hash table. */
1336 insert_expr_in_table (dest, GET_MODE (dest), insn,
1337 antic_p, avail_p, max_distance, table);
1338 }
1339 }
7506f491
DE
1340}
1341
1342static void
cf92a178 1343hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
11478306 1344 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1345{
1346 /* Currently nothing to do. */
1347}
1348
1349static void
cf92a178 1350hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
11478306 1351 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1352{
1353 /* Currently nothing to do. */
1354}
1355
43c8a043 1356/* Process INSN and add hash table entries as appropriate. */
7506f491
DE
1357
1358static void
11478306 1359hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
7506f491
DE
1360{
1361 rtx pat = PATTERN (insn);
c4c81601 1362 int i;
7506f491
DE
1363
1364 /* Pick out the sets of INSN and for other forms of instructions record
1365 what's been modified. */
1366
172890a2 1367 if (GET_CODE (pat) == SET)
02280659 1368 hash_scan_set (pat, insn, table);
43c8a043
EB
1369
1370 else if (GET_CODE (pat) == CLOBBER)
1371 hash_scan_clobber (pat, insn, table);
1372
1373 else if (GET_CODE (pat) == CALL)
1374 hash_scan_call (pat, insn, table);
1375
7506f491 1376 else if (GET_CODE (pat) == PARALLEL)
c4c81601
RK
1377 for (i = 0; i < XVECLEN (pat, 0); i++)
1378 {
1379 rtx x = XVECEXP (pat, 0, i);
7506f491 1380
c4c81601 1381 if (GET_CODE (x) == SET)
02280659 1382 hash_scan_set (x, insn, table);
c4c81601 1383 else if (GET_CODE (x) == CLOBBER)
02280659 1384 hash_scan_clobber (x, insn, table);
6e72d1e9 1385 else if (GET_CODE (x) == CALL)
02280659 1386 hash_scan_call (x, insn, table);
c4c81601 1387 }
7506f491
DE
1388}
1389
43c8a043
EB
1390/* Dump the hash table TABLE to file FILE under the name NAME. */
1391
7506f491 1392static void
11478306 1393dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
7506f491
DE
1394{
1395 int i;
1396 /* Flattened out table, so it's printed in proper order. */
11478306 1397 struct gcse_expr **flat_table;
4da896b2 1398 unsigned int *hash_val;
11478306 1399 struct gcse_expr *expr;
4da896b2 1400
11478306 1401 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1b4572a8 1402 hash_val = XNEWVEC (unsigned int, table->n_elems);
7506f491 1403
02280659
ZD
1404 for (i = 0; i < (int) table->size; i++)
1405 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
c4c81601
RK
1406 {
1407 flat_table[expr->bitmap_index] = expr;
1408 hash_val[expr->bitmap_index] = i;
1409 }
7506f491
DE
1410
1411 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
02280659 1412 name, table->size, table->n_elems);
7506f491 1413
02280659 1414 for (i = 0; i < (int) table->n_elems; i++)
21318741
RK
1415 if (flat_table[i] != 0)
1416 {
a0ac9e5a 1417 expr = flat_table[i];
ec7f796e
ML
1418 fprintf (file, "Index %d (hash value %d; max distance "
1419 HOST_WIDE_INT_PRINT_DEC ")\n ",
20160347 1420 expr->bitmap_index, hash_val[i], expr->max_distance);
a0ac9e5a 1421 print_rtl (file, expr->expr);
21318741
RK
1422 fprintf (file, "\n");
1423 }
7506f491
DE
1424
1425 fprintf (file, "\n");
4da896b2 1426
4da896b2
MM
1427 free (flat_table);
1428 free (hash_val);
7506f491
DE
1429}
1430
1431/* Record register first/last/block set information for REGNO in INSN.
c4c81601 1432
80c29cc4 1433 first_set records the first place in the block where the register
7506f491 1434 is set and is used to compute "anticipatability".
c4c81601 1435
80c29cc4 1436 last_set records the last place in the block where the register
7506f491 1437 is set and is used to compute "availability".
c4c81601 1438
80c29cc4 1439 last_bb records the block for which first_set and last_set are
4a81774c 1440 valid, as a quick test to invalidate them. */
7506f491
DE
1441
1442static void
170065c9 1443record_last_reg_set_info (rtx_insn *insn, int regno)
7506f491 1444{
80c29cc4 1445 struct reg_avail_info *info = &reg_avail_info[regno];
4a81774c 1446 int luid = DF_INSN_LUID (insn);
c4c81601 1447
4a81774c 1448 info->last_set = luid;
80c29cc4
RZ
1449 if (info->last_bb != current_bb)
1450 {
1451 info->last_bb = current_bb;
4a81774c 1452 info->first_set = luid;
80c29cc4 1453 }
7506f491
DE
1454}
1455
a13d4ebf
AM
1456/* Record memory modification information for INSN. We do not actually care
1457 about the memory location(s) that are set, or even how they are set (consider
1458 a CALL_INSN). We merely need to record which insns modify memory. */
7506f491
DE
1459
1460static void
e26d1bb2 1461record_last_mem_set_info (rtx_insn *insn)
7506f491 1462{
85c0f02d
SB
1463 if (! flag_gcse_lm)
1464 return;
0fe854a7 1465
af3eb110
JL
1466 record_last_mem_set_info_common (insn, modify_mem_list,
1467 canon_modify_mem_list,
1468 modify_mem_list_set,
1469 blocks_with_calls);
7506f491
DE
1470}
1471
7506f491 1472/* Called from compute_hash_table via note_stores to handle one
84832317
MM
1473 SET or CLOBBER in an insn. DATA is really the instruction in which
1474 the SET is taking place. */
7506f491
DE
1475
1476static void
7bc980e1 1477record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
7506f491 1478{
e26d1bb2 1479 rtx_insn *last_set_insn = (rtx_insn *) data;
84832317 1480
7506f491
DE
1481 if (GET_CODE (dest) == SUBREG)
1482 dest = SUBREG_REG (dest);
1483
7b1b4aed 1484 if (REG_P (dest))
7506f491 1485 record_last_reg_set_info (last_set_insn, REGNO (dest));
7b1b4aed 1486 else if (MEM_P (dest)
7506f491
DE
1487 /* Ignore pushes, they clobber nothing. */
1488 && ! push_operand (dest, GET_MODE (dest)))
1489 record_last_mem_set_info (last_set_insn);
1490}
1491
e45425ec 1492/* Top level function to create an expression hash table.
7506f491
DE
1493
1494 Expression entries are placed in the hash table if
1495 - they are of the form (set (pseudo-reg) src),
1496 - src is something we want to perform GCSE on,
1497 - none of the operands are subsequently modified in the block
1498
7506f491
DE
1499 Currently src must be a pseudo-reg or a const_int.
1500
02280659 1501 TABLE is the table computed. */
7506f491
DE
1502
1503static void
11478306 1504compute_hash_table_work (struct gcse_hash_table_d *table)
7506f491 1505{
5f39ad47 1506 int i;
7506f491 1507
a13d4ebf 1508 /* re-Cache any INSN_LIST nodes we have allocated. */
73991d6a 1509 clear_modify_mem_tables ();
7506f491 1510 /* Some working arrays used to track first and last set in each block. */
5f39ad47 1511 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
80c29cc4 1512
5f39ad47 1513 for (i = 0; i < max_reg_num (); ++i)
e0082a72 1514 reg_avail_info[i].last_bb = NULL;
7506f491 1515
11cd3bed 1516 FOR_EACH_BB_FN (current_bb, cfun)
7506f491 1517 {
cf92a178 1518 rtx_insn *insn;
770ae6cc 1519 unsigned int regno;
7506f491
DE
1520
1521 /* First pass over the instructions records information used to
4a81774c 1522 determine when registers and memory are first and last set. */
eb232f4e 1523 FOR_BB_INSNS (current_bb, insn)
7506f491 1524 {
a344c9f1 1525 if (!NONDEBUG_INSN_P (insn))
7506f491
DE
1526 continue;
1527
7b1b4aed 1528 if (CALL_P (insn))
7506f491 1529 {
c7fb4c7a 1530 hard_reg_set_iterator hrsi;
a4dfaad2
RS
1531
1532 /* We don't track modes of hard registers, so we need
1533 to be conservative and assume that partial kills
1534 are full kills. */
1535 HARD_REG_SET callee_clobbers
1536 = insn_callee_abi (insn).full_and_partial_reg_clobbers ();
1537 EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, regno, hrsi)
c7fb4c7a 1538 record_last_reg_set_info (insn, regno);
c4c81601 1539
3bab7385
RB
1540 if (! RTL_CONST_OR_PURE_CALL_P (insn)
1541 || RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
e45425ec 1542 record_last_mem_set_info (insn);
7506f491
DE
1543 }
1544
e8448ba5 1545 note_stores (insn, record_last_set_info, insn);
7506f491
DE
1546 }
1547
1548 /* The next pass builds the hash table. */
eb232f4e 1549 FOR_BB_INSNS (current_bb, insn)
a344c9f1 1550 if (NONDEBUG_INSN_P (insn))
4a8cae83 1551 hash_scan_insn (insn, table);
7506f491
DE
1552 }
1553
80c29cc4
RZ
1554 free (reg_avail_info);
1555 reg_avail_info = NULL;
7506f491
DE
1556}
1557
02280659 1558/* Allocate space for the set/expr hash TABLE.
e45425ec 1559 It is used to determine the number of buckets to use. */
7506f491
DE
1560
1561static void
11478306 1562alloc_hash_table (struct gcse_hash_table_d *table)
7506f491
DE
1563{
1564 int n;
1565
b5b8b0ac
AO
1566 n = get_max_insn_count ();
1567
1568 table->size = n / 4;
02280659
ZD
1569 if (table->size < 11)
1570 table->size = 11;
c4c81601 1571
7506f491
DE
1572 /* Attempt to maintain efficient use of hash table.
1573 Making it an odd number is simplest for now.
1574 ??? Later take some measurements. */
02280659 1575 table->size |= 1;
11478306
JH
1576 n = table->size * sizeof (struct gcse_expr *);
1577 table->table = GNEWVAR (struct gcse_expr *, n);
7506f491
DE
1578}
1579
02280659 1580/* Free things allocated by alloc_hash_table. */
7506f491
DE
1581
1582static void
11478306 1583free_hash_table (struct gcse_hash_table_d *table)
7506f491 1584{
02280659 1585 free (table->table);
7506f491
DE
1586}
1587
e45425ec 1588/* Compute the expression hash table TABLE. */
7506f491
DE
1589
1590static void
11478306 1591compute_hash_table (struct gcse_hash_table_d *table)
7506f491
DE
1592{
1593 /* Initialize count of number of entries in hash table. */
02280659 1594 table->n_elems = 0;
11478306 1595 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
7506f491 1596
02280659 1597 compute_hash_table_work (table);
7506f491
DE
1598}
1599\f
1600/* Expression tracking support. */
1601
e45425ec
SB
1602/* Clear canon_modify_mem_list and modify_mem_list tables. */
1603static void
1604clear_modify_mem_tables (void)
0e3f0221 1605{
e45425ec
SB
1606 unsigned i;
1607 bitmap_iterator bi;
0e3f0221 1608
e45425ec 1609 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
0e3f0221 1610 {
9771b263
DN
1611 modify_mem_list[i].release ();
1612 canon_modify_mem_list[i].release ();
0e3f0221 1613 }
e45425ec
SB
1614 bitmap_clear (modify_mem_list_set);
1615 bitmap_clear (blocks_with_calls);
0e3f0221
RS
1616}
1617
e45425ec 1618/* Release memory used by modify_mem_list_set. */
0e3f0221 1619
e45425ec
SB
1620static void
1621free_modify_mem_tables (void)
e129b3f9 1622{
e45425ec
SB
1623 clear_modify_mem_tables ();
1624 free (modify_mem_list);
1625 free (canon_modify_mem_list);
1626 modify_mem_list = 0;
1627 canon_modify_mem_list = 0;
e129b3f9 1628}
e45425ec 1629\f
a65f3558 1630/* Compute PRE+LCM working variables. */
7506f491
DE
1631
1632/* Local properties of expressions. */
43c8a043 1633
7506f491 1634/* Nonzero for expressions that are transparent in the block. */
a65f3558 1635static sbitmap *transp;
7506f491 1636
a65f3558
JL
1637/* Nonzero for expressions that are computed (available) in the block. */
1638static sbitmap *comp;
7506f491 1639
a65f3558
JL
1640/* Nonzero for expressions that are locally anticipatable in the block. */
1641static sbitmap *antloc;
7506f491 1642
a65f3558
JL
1643/* Nonzero for expressions where this block is an optimal computation
1644 point. */
1645static sbitmap *pre_optimal;
5c35539b 1646
a65f3558
JL
1647/* Nonzero for expressions which are redundant in a particular block. */
1648static sbitmap *pre_redundant;
7506f491 1649
a42cd965
AM
1650/* Nonzero for expressions which should be inserted on a specific edge. */
1651static sbitmap *pre_insert_map;
1652
1653/* Nonzero for expressions which should be deleted in a specific block. */
1654static sbitmap *pre_delete_map;
1655
a65f3558 1656/* Allocate vars used for PRE analysis. */
7506f491
DE
1657
1658static void
1d088dee 1659alloc_pre_mem (int n_blocks, int n_exprs)
7506f491 1660{
a65f3558
JL
1661 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1662 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1663 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5faf03ae 1664
a42cd965
AM
1665 pre_optimal = NULL;
1666 pre_redundant = NULL;
1667 pre_insert_map = NULL;
1668 pre_delete_map = NULL;
a42cd965 1669 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
c4c81601 1670
a42cd965 1671 /* pre_insert and pre_delete are allocated later. */
7506f491
DE
1672}
1673
a65f3558 1674/* Free vars used for PRE analysis. */
7506f491
DE
1675
1676static void
1d088dee 1677free_pre_mem (void)
7506f491 1678{
5a660bff
DB
1679 sbitmap_vector_free (transp);
1680 sbitmap_vector_free (comp);
bd3675fc
JL
1681
1682 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
7506f491 1683
a42cd965 1684 if (pre_optimal)
5a660bff 1685 sbitmap_vector_free (pre_optimal);
a42cd965 1686 if (pre_redundant)
5a660bff 1687 sbitmap_vector_free (pre_redundant);
a42cd965 1688 if (pre_insert_map)
5a660bff 1689 sbitmap_vector_free (pre_insert_map);
a42cd965 1690 if (pre_delete_map)
5a660bff 1691 sbitmap_vector_free (pre_delete_map);
a42cd965 1692
bd3675fc 1693 transp = comp = NULL;
a42cd965 1694 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
7506f491
DE
1695}
1696
9b774782
JL
1697/* Remove certain expressions from anticipatable and transparent
1698 sets of basic blocks that have incoming abnormal edge.
1699 For PRE remove potentially trapping expressions to avoid placing
1700 them on abnormal edges. For hoisting remove memory references that
1701 can be clobbered by calls. */
7506f491
DE
1702
1703static void
9b774782 1704prune_expressions (bool pre_p)
7506f491 1705{
11478306 1706 struct gcse_expr *expr;
b614171e 1707 unsigned int ui;
9b774782 1708 basic_block bb;
c66e8ae9 1709
7ba9e72d 1710 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
f61e445a 1711 bitmap_clear (prune_exprs);
02280659 1712 for (ui = 0; ui < expr_hash_table.size; ui++)
b614171e 1713 {
43c8a043 1714 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
9b774782
JL
1715 {
1716 /* Note potentially trapping expressions. */
43c8a043 1717 if (may_trap_p (expr->expr))
9b774782 1718 {
d7c028c0 1719 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1720 continue;
1721 }
b614171e 1722
d80c6d02 1723 if (!pre_p && contains_mem_rtx_p (expr->expr))
9b774782
JL
1724 /* Note memory references that can be clobbered by a call.
1725 We do not split abnormal edges in hoisting, so would
1726 a memory reference get hoisted along an abnormal edge,
1727 it would be placed /before/ the call. Therefore, only
1728 constant memory references can be hoisted along abnormal
1729 edges. */
1730 {
d80c6d02
JL
1731 rtx x = expr->expr;
1732
1733 /* Common cases where we might find the MEM which may allow us
1734 to avoid pruning the expression. */
1735 while (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1736 x = XEXP (x, 0);
1737
1738 /* If we found the MEM, go ahead and look at it to see if it has
1739 properties that allow us to avoid pruning its expression out
1740 of the tables. */
1741 if (MEM_P (x))
1742 {
1743 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1744 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
1745 continue;
1746
1747 if (MEM_READONLY_P (x)
1748 && !MEM_VOLATILE_P (x)
1749 && MEM_NOTRAP_P (x))
1750 /* Constant memory reference, e.g., a PIC address. */
1751 continue;
1752 }
9b774782
JL
1753
1754 /* ??? Optimally, we would use interprocedural alias
1755 analysis to determine if this mem is actually killed
1756 by this call. */
1757
d7c028c0 1758 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1759 }
1760 }
1761 }
c66e8ae9 1762
11cd3bed 1763 FOR_EACH_BB_FN (bb, cfun)
c66e8ae9 1764 {
b614171e 1765 edge e;
628f6a4e 1766 edge_iterator ei;
b614171e
MM
1767
1768 /* If the current block is the destination of an abnormal edge, we
9b774782
JL
1769 kill all trapping (for PRE) and memory (for hoist) expressions
1770 because we won't be able to properly place the instruction on
1771 the edge. So make them neither anticipatable nor transparent.
1772 This is fairly conservative.
1773
1774 ??? For hoisting it may be necessary to check for set-and-jump
1775 instructions here, not just for abnormal edges. The general problem
1776 is that when an expression cannot not be placed right at the end of
1777 a basic block we should account for any side-effects of a subsequent
1778 jump instructions that could clobber the expression. It would
1779 be best to implement this check along the lines of
b11f0116 1780 should_hoist_expr_to_dom where the target block is already known
9b774782
JL
1781 and, hence, there's no need to conservatively prune expressions on
1782 "intermediate" set-and-jump instructions. */
628f6a4e 1783 FOR_EACH_EDGE (e, ei, bb->preds)
9b774782
JL
1784 if ((e->flags & EDGE_ABNORMAL)
1785 && (pre_p || CALL_P (BB_END (e->src))))
b614171e 1786 {
f61e445a 1787 bitmap_and_compl (antloc[bb->index],
9b774782 1788 antloc[bb->index], prune_exprs);
f61e445a 1789 bitmap_and_compl (transp[bb->index],
9b774782 1790 transp[bb->index], prune_exprs);
b614171e
MM
1791 break;
1792 }
9b774782 1793 }
9b774782
JL
1794}
1795
29fa95ed
JL
1796/* It may be necessary to insert a large number of insns on edges to
1797 make the existing occurrences of expressions fully redundant. This
1798 routine examines the set of insertions and deletions and if the ratio
1799 of insertions to deletions is too high for a particular expression, then
1800 the expression is removed from the insertion/deletion sets.
1801
1802 N_ELEMS is the number of elements in the hash table. */
1803
1804static void
1805prune_insertions_deletions (int n_elems)
1806{
1807 sbitmap_iterator sbi;
29fa95ed
JL
1808
1809 /* We always use I to iterate over blocks/edges and J to iterate over
1810 expressions. */
1811 unsigned int i, j;
1812
1813 /* Counts for the number of times an expression needs to be inserted and
1814 number of times an expression can be removed as a result. */
1815 int *insertions = GCNEWVEC (int, n_elems);
1816 int *deletions = GCNEWVEC (int, n_elems);
1817
1818 /* Set of expressions which require too many insertions relative to
1819 the number of deletions achieved. We will prune these out of the
1820 insertion/deletion sets. */
7ba9e72d 1821 auto_sbitmap prune_exprs (n_elems);
f61e445a 1822 bitmap_clear (prune_exprs);
29fa95ed
JL
1823
1824 /* Iterate over the edges counting the number of times each expression
1825 needs to be inserted. */
dc936fb2 1826 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
29fa95ed 1827 {
d4ac4ce2 1828 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
29fa95ed
JL
1829 insertions[j]++;
1830 }
1831
1832 /* Similarly for deletions, but those occur in blocks rather than on
1833 edges. */
8b1c6fd7 1834 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
29fa95ed 1835 {
d4ac4ce2 1836 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
29fa95ed
JL
1837 deletions[j]++;
1838 }
1839
1840 /* Now that we have accurate counts, iterate over the elements in the
1841 hash table and see if any need too many insertions relative to the
1842 number of evaluations that can be removed. If so, mark them in
1843 PRUNE_EXPRS. */
1844 for (j = 0; j < (unsigned) n_elems; j++)
1845 if (deletions[j]
028d4092 1846 && (insertions[j] / deletions[j]) > param_max_gcse_insertion_ratio)
d7c028c0 1847 bitmap_set_bit (prune_exprs, j);
29fa95ed
JL
1848
1849 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
d4ac4ce2 1850 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
29fa95ed 1851 {
dc936fb2 1852 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
d7c028c0 1853 bitmap_clear_bit (pre_insert_map[i], j);
29fa95ed 1854
8b1c6fd7 1855 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
d7c028c0 1856 bitmap_clear_bit (pre_delete_map[i], j);
29fa95ed
JL
1857 }
1858
29fa95ed
JL
1859 free (insertions);
1860 free (deletions);
1861}
1862
9b774782 1863/* Top level routine to do the dataflow analysis needed by PRE. */
b614171e 1864
43c8a043 1865static struct edge_list *
9b774782
JL
1866compute_pre_data (void)
1867{
43c8a043 1868 struct edge_list *edge_list;
9b774782
JL
1869 basic_block bb;
1870
1871 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1872 prune_expressions (true);
8b1c6fd7 1873 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
9b774782
JL
1874
1875 /* Compute ae_kill for each basic block using:
1876
1877 ~(TRANSP | COMP)
1878 */
1879
11cd3bed 1880 FOR_EACH_BB_FN (bb, cfun)
9b774782 1881 {
f61e445a
LC
1882 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1883 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
c66e8ae9
JL
1884 }
1885
10d22567 1886 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
a42cd965 1887 ae_kill, &pre_insert_map, &pre_delete_map);
5a660bff 1888 sbitmap_vector_free (antloc);
bd3675fc 1889 antloc = NULL;
5a660bff 1890 sbitmap_vector_free (ae_kill);
589005ff 1891 ae_kill = NULL;
29fa95ed
JL
1892
1893 prune_insertions_deletions (expr_hash_table.n_elems);
43c8a043
EB
1894
1895 return edge_list;
7506f491
DE
1896}
1897\f
1898/* PRE utilities */
1899
cc2902df 1900/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
a65f3558 1901 block BB.
7506f491
DE
1902
1903 VISITED is a pointer to a working buffer for tracking which BB's have
1904 been visited. It is NULL for the top-level call.
1905
1906 We treat reaching expressions that go through blocks containing the same
1907 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1908 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1909 2 as not reaching. The intent is to improve the probability of finding
1910 only one reaching expression and to reduce register lifetimes by picking
1911 the closest such expression. */
1912
1913static int
11478306 1914pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
43c8a043 1915 basic_block bb, char *visited)
7506f491 1916{
36349f8b 1917 edge pred;
628f6a4e 1918 edge_iterator ei;
b8698a0f 1919
628f6a4e 1920 FOR_EACH_EDGE (pred, ei, bb->preds)
7506f491 1921 {
e2d2ed72 1922 basic_block pred_bb = pred->src;
7506f491 1923
fefa31b5 1924 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
7506f491 1925 /* Has predecessor has already been visited? */
0b17ab2f 1926 || visited[pred_bb->index])
c4c81601
RK
1927 ;/* Nothing to do. */
1928
7506f491 1929 /* Does this predecessor generate this expression? */
d7c028c0 1930 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
7506f491
DE
1931 {
1932 /* Is this the occurrence we're looking for?
1933 Note that there's only one generating occurrence per block
1934 so we just need to check the block number. */
a65f3558 1935 if (occr_bb == pred_bb)
7506f491 1936 return 1;
c4c81601 1937
0b17ab2f 1938 visited[pred_bb->index] = 1;
7506f491
DE
1939 }
1940 /* Ignore this predecessor if it kills the expression. */
d7c028c0 1941 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
0b17ab2f 1942 visited[pred_bb->index] = 1;
c4c81601 1943
7506f491
DE
1944 /* Neither gen nor kill. */
1945 else
ac7c5af5 1946 {
0b17ab2f 1947 visited[pred_bb->index] = 1;
89e606c9 1948 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
7506f491 1949 return 1;
ac7c5af5 1950 }
7506f491
DE
1951 }
1952
1953 /* All paths have been checked. */
1954 return 0;
1955}
283a2545
RL
1956
1957/* The wrapper for pre_expr_reaches_here_work that ensures that any
dc297297 1958 memory allocated for that function is returned. */
283a2545
RL
1959
1960static int
11478306 1961pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
283a2545
RL
1962{
1963 int rval;
8b1c6fd7 1964 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
283a2545 1965
8e42ace1 1966 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
283a2545
RL
1967
1968 free (visited);
c4c81601 1969 return rval;
283a2545 1970}
7506f491 1971\f
53f2f08b 1972/* Generate RTL to copy an EXP to REG and return it. */
a42cd965 1973
53f2f08b
UB
1974rtx_insn *
1975prepare_copy_insn (rtx reg, rtx exp)
a42cd965 1976{
cf92a178 1977 rtx_insn *pat;
a42cd965
AM
1978
1979 start_sequence ();
fb0c0a12
RK
1980
1981 /* If the expression is something that's an operand, like a constant,
1982 just copy it to a register. */
1983 if (general_operand (exp, GET_MODE (reg)))
1984 emit_move_insn (reg, exp);
1985
1986 /* Otherwise, make a new insn to compute this expression and make sure the
43c8a043 1987 insn will be recognized (this also adds any needed CLOBBERs). */
282899df
NS
1988 else
1989 {
f7df4a84 1990 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
282899df 1991
57ac4c34 1992 if (insn_invalid_p (insn, false))
2f021b67 1993 gcc_unreachable ();
282899df 1994 }
b8698a0f 1995
2f937369 1996 pat = get_insns ();
a42cd965
AM
1997 end_sequence ();
1998
1999 return pat;
2000}
589005ff 2001
53f2f08b
UB
2002/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2003
2004static rtx_insn *
2005process_insert_insn (struct gcse_expr *expr)
2006{
2007 rtx reg = expr->reaching_reg;
2008 /* Copy the expression to make sure we don't have any sharing issues. */
2009 rtx exp = copy_rtx (expr->expr);
2010
2011 return prepare_copy_insn (reg, exp);
2012}
2013
a65f3558
JL
2014/* Add EXPR to the end of basic block BB.
2015
eae7938e 2016 This is used by both the PRE and code hoisting. */
7506f491
DE
2017
2018static void
11478306 2019insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
7506f491 2020{
dc01c3d1 2021 rtx_insn *insn = BB_END (bb);
cf92a178 2022 rtx_insn *new_insn;
7506f491
DE
2023 rtx reg = expr->reaching_reg;
2024 int regno = REGNO (reg);
cf92a178 2025 rtx_insn *pat, *pat_end;
7506f491 2026
a42cd965 2027 pat = process_insert_insn (expr);
282899df 2028 gcc_assert (pat && INSN_P (pat));
2f937369
DM
2029
2030 pat_end = pat;
2031 while (NEXT_INSN (pat_end) != NULL_RTX)
2032 pat_end = NEXT_INSN (pat_end);
7506f491
DE
2033
2034 /* If the last insn is a jump, insert EXPR in front [taking care to
4d6922ee 2035 handle cc0, etc. properly]. Similarly we need to care trapping
068473ec 2036 instructions in presence of non-call exceptions. */
7506f491 2037
7b1b4aed 2038 if (JUMP_P (insn)
4b4bf941 2039 || (NONJUMP_INSN_P (insn)
c5cbcccf
ZD
2040 && (!single_succ_p (bb)
2041 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
7506f491 2042 {
7506f491
DE
2043 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2044 if cc0 isn't set. */
618f4073 2045 if (HAVE_cc0)
7506f491 2046 {
618f4073
TS
2047 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2048 if (note)
2049 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2050 else
2051 {
2052 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2053 if (maybe_cc0_setter
2054 && INSN_P (maybe_cc0_setter)
2055 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2056 insn = maybe_cc0_setter;
2057 }
7506f491 2058 }
618f4073 2059
7506f491 2060 /* FIXME: What if something in cc0/jump uses value set in new insn? */
6fb5fa3c 2061 new_insn = emit_insn_before_noloc (pat, insn, bb);
3947e2f9 2062 }
c4c81601 2063
3947e2f9
RH
2064 /* Likewise if the last insn is a call, as will happen in the presence
2065 of exception handling. */
7b1b4aed 2066 else if (CALL_P (insn)
c5cbcccf
ZD
2067 && (!single_succ_p (bb)
2068 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3947e2f9 2069 {
42db504c
SB
2070 /* Keeping in mind targets with small register classes and parameters
2071 in registers, we search backward and place the instructions before
2072 the first parameter is loaded. Do this for everyone for consistency
eae7938e 2073 and a presumption that we'll get better code elsewhere as well. */
3947e2f9
RH
2074
2075 /* Since different machines initialize their parameter registers
2076 in different orders, assume nothing. Collect the set of all
2077 parameter registers. */
a813c111 2078 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3947e2f9 2079
b1d26727
JL
2080 /* If we found all the parameter loads, then we want to insert
2081 before the first parameter load.
2082
2083 If we did not find all the parameter loads, then we might have
2084 stopped on the head of the block, which could be a CODE_LABEL.
2085 If we inserted before the CODE_LABEL, then we would be putting
2086 the insn in the wrong basic block. In that case, put the insn
b5229628 2087 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
7b1b4aed 2088 while (LABEL_P (insn)
589ca5cb 2089 || NOTE_INSN_BASIC_BLOCK_P (insn))
b5229628 2090 insn = NEXT_INSN (insn);
c4c81601 2091
6fb5fa3c 2092 new_insn = emit_insn_before_noloc (pat, insn, bb);
7506f491
DE
2093 }
2094 else
6fb5fa3c 2095 new_insn = emit_insn_after_noloc (pat, insn, bb);
7506f491 2096
2f937369 2097 while (1)
a65f3558 2098 {
2f937369 2099 if (INSN_P (pat))
4a81774c 2100 add_label_notes (PATTERN (pat), new_insn);
2f937369
DM
2101 if (pat == pat_end)
2102 break;
2103 pat = NEXT_INSN (pat);
a65f3558 2104 }
3947e2f9 2105
7506f491
DE
2106 gcse_create_count++;
2107
10d22567 2108 if (dump_file)
7506f491 2109 {
10d22567 2110 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
0b17ab2f 2111 bb->index, INSN_UID (new_insn));
10d22567 2112 fprintf (dump_file, "copying expression %d to reg %d\n",
c4c81601 2113 expr->bitmap_index, regno);
7506f491
DE
2114 }
2115}
2116
a42cd965
AM
2117/* Insert partially redundant expressions on edges in the CFG to make
2118 the expressions fully redundant. */
7506f491 2119
a42cd965 2120static int
11478306 2121pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
7506f491 2122{
c4c81601 2123 int e, i, j, num_edges, set_size, did_insert = 0;
a65f3558
JL
2124 sbitmap *inserted;
2125
a42cd965
AM
2126 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2127 if it reaches any of the deleted expressions. */
7506f491 2128
a42cd965
AM
2129 set_size = pre_insert_map[0]->size;
2130 num_edges = NUM_EDGES (edge_list);
02280659 2131 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
f61e445a 2132 bitmap_vector_clear (inserted, num_edges);
7506f491 2133
a42cd965 2134 for (e = 0; e < num_edges; e++)
7506f491
DE
2135 {
2136 int indx;
e2d2ed72 2137 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
a65f3558 2138
a65f3558 2139 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
7506f491 2140 {
a42cd965 2141 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
7506f491 2142
43c8a043
EB
2143 for (j = indx;
2144 insert && j < (int) expr_hash_table.n_elems;
2145 j++, insert >>= 1)
c4c81601
RK
2146 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2147 {
11478306
JH
2148 struct gcse_expr *expr = index_map[j];
2149 struct gcse_occr *occr;
a65f3558 2150
ff7cc307 2151 /* Now look at each deleted occurrence of this expression. */
c4c81601
RK
2152 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2153 {
2154 if (! occr->deleted_p)
2155 continue;
2156
3f117656 2157 /* Insert this expression on this edge if it would
ff7cc307 2158 reach the deleted occurrence in BB. */
d7c028c0 2159 if (!bitmap_bit_p (inserted[e], j))
c4c81601 2160 {
cf92a178 2161 rtx_insn *insn;
c4c81601
RK
2162 edge eg = INDEX_EDGE (edge_list, e);
2163
2164 /* We can't insert anything on an abnormal and
2165 critical edge, so we insert the insn at the end of
2166 the previous block. There are several alternatives
2167 detailed in Morgans book P277 (sec 10.5) for
2168 handling this situation. This one is easiest for
2169 now. */
2170
b16aa8a5 2171 if (eg->flags & EDGE_ABNORMAL)
eae7938e 2172 insert_insn_end_basic_block (index_map[j], bb);
c4c81601
RK
2173 else
2174 {
2175 insn = process_insert_insn (index_map[j]);
2176 insert_insn_on_edge (insn, eg);
2177 }
2178
10d22567 2179 if (dump_file)
c4c81601 2180 {
5f39ad47 2181 fprintf (dump_file, "PRE: edge (%d,%d), ",
0b17ab2f
RH
2182 bb->index,
2183 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
10d22567 2184 fprintf (dump_file, "copy expression %d\n",
c4c81601
RK
2185 expr->bitmap_index);
2186 }
2187
a13d4ebf 2188 update_ld_motion_stores (expr);
d7c028c0 2189 bitmap_set_bit (inserted[e], j);
c4c81601
RK
2190 did_insert = 1;
2191 gcse_create_count++;
2192 }
2193 }
2194 }
7506f491
DE
2195 }
2196 }
5faf03ae 2197
5a660bff 2198 sbitmap_vector_free (inserted);
a42cd965 2199 return did_insert;
7506f491
DE
2200}
2201
073089a7 2202/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
b885908b
MH
2203 Given "old_reg <- expr" (INSN), instead of adding after it
2204 reaching_reg <- old_reg
2205 it's better to do the following:
2206 reaching_reg <- expr
2207 old_reg <- reaching_reg
2208 because this way copy propagation can discover additional PRE
f5f2e3cd
MH
2209 opportunities. But if this fails, we try the old way.
2210 When "expr" is a store, i.e.
2211 given "MEM <- old_reg", instead of adding after it
2212 reaching_reg <- old_reg
2213 it's better to add it before as follows:
2214 reaching_reg <- old_reg
2215 MEM <- reaching_reg. */
7506f491
DE
2216
2217static void
11478306 2218pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
7506f491
DE
2219{
2220 rtx reg = expr->reaching_reg;
2221 int regno = REGNO (reg);
2222 int indx = expr->bitmap_index;
073089a7 2223 rtx pat = PATTERN (insn);
1476d1bd
MM
2224 rtx set, first_set;
2225 rtx_insn *new_insn;
b885908b 2226 rtx old_reg;
073089a7 2227 int i;
7506f491 2228
073089a7 2229 /* This block matches the logic in hash_scan_insn. */
282899df 2230 switch (GET_CODE (pat))
073089a7 2231 {
282899df
NS
2232 case SET:
2233 set = pat;
2234 break;
2235
2236 case PARALLEL:
073089a7
RS
2237 /* Search through the parallel looking for the set whose
2238 source was the expression that we're interested in. */
64068ca2 2239 first_set = NULL_RTX;
073089a7
RS
2240 set = NULL_RTX;
2241 for (i = 0; i < XVECLEN (pat, 0); i++)
2242 {
2243 rtx x = XVECEXP (pat, 0, i);
64068ca2 2244 if (GET_CODE (x) == SET)
073089a7 2245 {
64068ca2
RS
2246 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2247 may not find an equivalent expression, but in this
2248 case the PARALLEL will have a single set. */
2249 if (first_set == NULL_RTX)
2250 first_set = x;
2251 if (expr_equiv_p (SET_SRC (x), expr->expr))
2252 {
2253 set = x;
2254 break;
2255 }
073089a7
RS
2256 }
2257 }
64068ca2
RS
2258
2259 gcc_assert (first_set);
2260 if (set == NULL_RTX)
2261 set = first_set;
282899df
NS
2262 break;
2263
2264 default:
2265 gcc_unreachable ();
073089a7 2266 }
c4c81601 2267
7b1b4aed 2268 if (REG_P (SET_DEST (set)))
073089a7 2269 {
f5f2e3cd
MH
2270 old_reg = SET_DEST (set);
2271 /* Check if we can modify the set destination in the original insn. */
2272 if (validate_change (insn, &SET_DEST (set), reg, 0))
2273 {
2274 new_insn = gen_move_insn (old_reg, reg);
2275 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd
MH
2276 }
2277 else
2278 {
2279 new_insn = gen_move_insn (reg, old_reg);
2280 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd 2281 }
073089a7 2282 }
f5f2e3cd 2283 else /* This is possible only in case of a store to memory. */
073089a7 2284 {
f5f2e3cd 2285 old_reg = SET_SRC (set);
073089a7 2286 new_insn = gen_move_insn (reg, old_reg);
f5f2e3cd
MH
2287
2288 /* Check if we can modify the set source in the original insn. */
2289 if (validate_change (insn, &SET_SRC (set), reg, 0))
2290 new_insn = emit_insn_before (new_insn, insn);
2291 else
2292 new_insn = emit_insn_after (new_insn, insn);
073089a7 2293 }
7506f491
DE
2294
2295 gcse_create_count++;
2296
10d22567
ZD
2297 if (dump_file)
2298 fprintf (dump_file,
a42cd965 2299 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
b0de17ef 2300 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
a42cd965 2301 INSN_UID (insn), regno);
7506f491
DE
2302}
2303
2304/* Copy available expressions that reach the redundant expression
2305 to `reaching_reg'. */
2306
2307static void
1d088dee 2308pre_insert_copies (void)
7506f491 2309{
f5f2e3cd 2310 unsigned int i, added_copy;
11478306
JH
2311 struct gcse_expr *expr;
2312 struct gcse_occr *occr;
2313 struct gcse_occr *avail;
a65f3558 2314
7506f491
DE
2315 /* For each available expression in the table, copy the result to
2316 `reaching_reg' if the expression reaches a deleted one.
2317
2318 ??? The current algorithm is rather brute force.
2319 Need to do some profiling. */
2320
02280659 2321 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2322 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2323 {
2324 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2325 we don't want to insert a copy here because the expression may not
2326 really be redundant. So only insert an insn if the expression was
2327 deleted. This test also avoids further processing if the
2328 expression wasn't deleted anywhere. */
2329 if (expr->reaching_reg == NULL)
2330 continue;
7b1b4aed 2331
f5f2e3cd 2332 /* Set when we add a copy for that expression. */
7b1b4aed 2333 added_copy = 0;
c4c81601
RK
2334
2335 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2336 {
2337 if (! occr->deleted_p)
2338 continue;
7506f491 2339
c4c81601
RK
2340 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2341 {
cf92a178 2342 rtx_insn *insn = avail->insn;
7506f491 2343
c4c81601
RK
2344 /* No need to handle this one if handled already. */
2345 if (avail->copied_p)
2346 continue;
7506f491 2347
c4c81601 2348 /* Don't handle this one if it's a redundant one. */
4654c0cf 2349 if (insn->deleted ())
c4c81601 2350 continue;
7506f491 2351
c4c81601 2352 /* Or if the expression doesn't reach the deleted one. */
589005ff 2353 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
e2d2ed72
AM
2354 expr,
2355 BLOCK_FOR_INSN (occr->insn)))
c4c81601 2356 continue;
7506f491 2357
f5f2e3cd
MH
2358 added_copy = 1;
2359
c4c81601
RK
2360 /* Copy the result of avail to reaching_reg. */
2361 pre_insert_copy_insn (expr, insn);
2362 avail->copied_p = 1;
2363 }
2364 }
f5f2e3cd 2365
7b1b4aed 2366 if (added_copy)
f5f2e3cd 2367 update_ld_motion_stores (expr);
c4c81601 2368 }
7506f491
DE
2369}
2370
b6808818
JDA
2371struct set_data
2372{
cf92a178 2373 rtx_insn *insn;
b6808818
JDA
2374 const_rtx set;
2375 int nsets;
2376};
2377
2378/* Increment number of sets and record set in DATA. */
2379
2380static void
2381record_set_data (rtx dest, const_rtx set, void *data)
2382{
2383 struct set_data *s = (struct set_data *)data;
2384
2385 if (GET_CODE (set) == SET)
2386 {
2387 /* We allow insns having multiple sets, where all but one are
2388 dead as single set insns. In the common case only a single
2389 set is present, so we want to avoid checking for REG_UNUSED
2390 notes unless necessary. */
2391 if (s->nsets == 1
2392 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2393 && !side_effects_p (s->set))
2394 s->nsets = 0;
2395
2396 if (!s->nsets)
2397 {
2398 /* Record this set. */
2399 s->nsets += 1;
2400 s->set = set;
2401 }
2402 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2403 || side_effects_p (set))
2404 s->nsets += 1;
2405 }
2406}
2407
2408static const_rtx
cf92a178 2409single_set_gcse (rtx_insn *insn)
b6808818
JDA
2410{
2411 struct set_data s;
2412 rtx pattern;
2413
2414 gcc_assert (INSN_P (insn));
2415
2416 /* Optimize common case. */
2417 pattern = PATTERN (insn);
2418 if (GET_CODE (pattern) == SET)
2419 return pattern;
2420
2421 s.insn = insn;
2422 s.nsets = 0;
e8448ba5 2423 note_pattern_stores (pattern, record_set_data, &s);
b6808818
JDA
2424
2425 /* Considered invariant insns have exactly one set. */
2426 gcc_assert (s.nsets == 1);
2427 return s.set;
2428}
2429
10d1bb36
JH
2430/* Emit move from SRC to DEST noting the equivalence with expression computed
2431 in INSN. */
43c8a043 2432
e67d1102 2433static rtx_insn *
cf92a178 2434gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
10d1bb36 2435{
e8a54173 2436 rtx_insn *new_rtx;
b6808818
JDA
2437 const_rtx set = single_set_gcse (insn);
2438 rtx set2;
10d1bb36 2439 rtx note;
dca3da7a 2440 rtx eqv = NULL_RTX;
10d1bb36
JH
2441
2442 /* This should never fail since we're creating a reg->reg copy
2443 we've verified to be valid. */
2444
60564289 2445 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
285464d0 2446
dca3da7a
SB
2447 /* Note the equivalence for local CSE pass. Take the note from the old
2448 set if there was one. Otherwise record the SET_SRC from the old set
2449 unless DEST is also an operand of the SET_SRC. */
60564289 2450 set2 = single_set (new_rtx);
6bdb8dd6 2451 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
60564289 2452 return new_rtx;
10d1bb36
JH
2453 if ((note = find_reg_equal_equiv_note (insn)))
2454 eqv = XEXP (note, 0);
dca3da7a
SB
2455 else if (! REG_P (dest)
2456 || ! reg_mentioned_p (dest, SET_SRC (set)))
10d1bb36
JH
2457 eqv = SET_SRC (set);
2458
dca3da7a
SB
2459 if (eqv != NULL_RTX)
2460 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
10d1bb36 2461
60564289 2462 return new_rtx;
10d1bb36
JH
2463}
2464
7506f491 2465/* Delete redundant computations.
7506f491
DE
2466 Deletion is done by changing the insn to copy the `reaching_reg' of
2467 the expression into the result of the SET. It is left to later passes
337405fd 2468 to propagate the copy or eliminate it.
7506f491 2469
43c8a043 2470 Return nonzero if a change is made. */
7506f491
DE
2471
2472static int
1d088dee 2473pre_delete (void)
7506f491 2474{
2e653e39 2475 unsigned int i;
63bc1d05 2476 int changed;
11478306
JH
2477 struct gcse_expr *expr;
2478 struct gcse_occr *occr;
a65f3558 2479
7506f491 2480 changed = 0;
02280659 2481 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2482 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2483 {
2484 int indx = expr->bitmap_index;
7506f491 2485
43c8a043 2486 /* We only need to search antic_occr since we require ANTLOC != 0. */
c4c81601
RK
2487 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2488 {
cf92a178 2489 rtx_insn *insn = occr->insn;
c4c81601 2490 rtx set;
e2d2ed72 2491 basic_block bb = BLOCK_FOR_INSN (insn);
7506f491 2492
073089a7 2493 /* We only delete insns that have a single_set. */
d7c028c0 2494 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
6fb5fa3c
DB
2495 && (set = single_set (insn)) != 0
2496 && dbg_cnt (pre_insn))
c4c81601 2497 {
c4c81601
RK
2498 /* Create a pseudo-reg to store the result of reaching
2499 expressions into. Get the mode for the new pseudo from
2500 the mode of the original destination pseudo. */
2501 if (expr->reaching_reg == NULL)
46b71b03 2502 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
c4c81601 2503
43c8a043 2504 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
10d1bb36
JH
2505 delete_insn (insn);
2506 occr->deleted_p = 1;
10d1bb36
JH
2507 changed = 1;
2508 gcse_subst_count++;
7506f491 2509
10d22567 2510 if (dump_file)
c4c81601 2511 {
10d22567 2512 fprintf (dump_file,
c4c81601
RK
2513 "PRE: redundant insn %d (expression %d) in ",
2514 INSN_UID (insn), indx);
10d22567 2515 fprintf (dump_file, "bb %d, reaching reg is %d\n",
0b17ab2f 2516 bb->index, REGNO (expr->reaching_reg));
c4c81601
RK
2517 }
2518 }
2519 }
2520 }
7506f491
DE
2521
2522 return changed;
2523}
2524
2525/* Perform GCSE optimizations using PRE.
2526 This is called by one_pre_gcse_pass after all the dataflow analysis
2527 has been done.
2528
c4c81601
RK
2529 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2530 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2531 Compiler Design and Implementation.
7506f491 2532
c4c81601
RK
2533 ??? A new pseudo reg is created to hold the reaching expression. The nice
2534 thing about the classical approach is that it would try to use an existing
2535 reg. If the register can't be adequately optimized [i.e. we introduce
2536 reload problems], one could add a pass here to propagate the new register
2537 through the block.
7506f491 2538
c4c81601
RK
2539 ??? We don't handle single sets in PARALLELs because we're [currently] not
2540 able to copy the rest of the parallel when we insert copies to create full
2541 redundancies from partial redundancies. However, there's no reason why we
2542 can't handle PARALLELs in the cases where there are no partial
7506f491
DE
2543 redundancies. */
2544
2545static int
43c8a043 2546pre_gcse (struct edge_list *edge_list)
7506f491 2547{
2e653e39
RK
2548 unsigned int i;
2549 int did_insert, changed;
11478306
JH
2550 struct gcse_expr **index_map;
2551 struct gcse_expr *expr;
7506f491
DE
2552
2553 /* Compute a mapping from expression number (`bitmap_index') to
2554 hash table entry. */
2555
11478306 2556 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
02280659 2557 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2558 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 2559 index_map[expr->bitmap_index] = expr;
7506f491 2560
7506f491
DE
2561 /* Delete the redundant insns first so that
2562 - we know what register to use for the new insns and for the other
2563 ones with reaching expressions
2564 - we know which insns are redundant when we go to create copies */
c4c81601 2565
7506f491 2566 changed = pre_delete ();
a42cd965 2567 did_insert = pre_edge_insert (edge_list, index_map);
c4c81601 2568
7506f491 2569 /* In other places with reaching expressions, copy the expression to the
a42cd965 2570 specially allocated pseudo-reg that reaches the redundant expr. */
7506f491 2571 pre_insert_copies ();
a42cd965
AM
2572 if (did_insert)
2573 {
2574 commit_edge_insertions ();
2575 changed = 1;
2576 }
7506f491 2577
283a2545 2578 free (index_map);
7506f491
DE
2579 return changed;
2580}
2581
2582/* Top level routine to perform one PRE GCSE pass.
2583
cc2902df 2584 Return nonzero if a change was made. */
7506f491
DE
2585
2586static int
5f39ad47 2587one_pre_gcse_pass (void)
7506f491
DE
2588{
2589 int changed = 0;
2590
2591 gcse_subst_count = 0;
2592 gcse_create_count = 0;
2593
5f39ad47 2594 /* Return if there's nothing to do, or it is too expensive. */
0cae8d31 2595 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
87d8dd6c 2596 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
5f39ad47
SB
2597 return 0;
2598
2599 /* We need alias. */
2600 init_alias_analysis ();
2601
2602 bytes_used = 0;
2603 gcc_obstack_init (&gcse_obstack);
2604 alloc_gcse_mem ();
2605
e45425ec 2606 alloc_hash_table (&expr_hash_table);
a42cd965 2607 add_noreturn_fake_exit_edges ();
a13d4ebf
AM
2608 if (flag_gcse_lm)
2609 compute_ld_motion_mems ();
2610
02280659 2611 compute_hash_table (&expr_hash_table);
43c8a043
EB
2612 if (flag_gcse_lm)
2613 trim_ld_motion_mems ();
10d22567
ZD
2614 if (dump_file)
2615 dump_hash_table (dump_file, "Expression", &expr_hash_table);
c4c81601 2616
02280659 2617 if (expr_hash_table.n_elems > 0)
7506f491 2618 {
43c8a043 2619 struct edge_list *edge_list;
8b1c6fd7 2620 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
43c8a043
EB
2621 edge_list = compute_pre_data ();
2622 changed |= pre_gcse (edge_list);
a42cd965 2623 free_edge_list (edge_list);
7506f491
DE
2624 free_pre_mem ();
2625 }
c4c81601 2626
43c8a043
EB
2627 if (flag_gcse_lm)
2628 free_ld_motion_mems ();
6809cbf9 2629 remove_fake_exit_edges ();
02280659 2630 free_hash_table (&expr_hash_table);
7506f491 2631
5f39ad47
SB
2632 free_gcse_mem ();
2633 obstack_free (&gcse_obstack, NULL);
2634
2635 /* We are finished with alias. */
2636 end_alias_analysis ();
2637
10d22567 2638 if (dump_file)
7506f491 2639 {
5f39ad47 2640 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
0cae8d31
DM
2641 current_function_name (), n_basic_blocks_for_fn (cfun),
2642 bytes_used);
10d22567 2643 fprintf (dump_file, "%d substs, %d insns created\n",
c4c81601 2644 gcse_subst_count, gcse_create_count);
7506f491
DE
2645 }
2646
2647 return changed;
2648}
aeb2f500 2649\f
cf7c4aa6
HPN
2650/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2651 to INSN. If such notes are added to an insn which references a
2652 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2653 that note, because the following loop optimization pass requires
2654 them. */
aeb2f500 2655
aeb2f500
JW
2656/* ??? If there was a jump optimization pass after gcse and before loop,
2657 then we would not need to do this here, because jump would add the
cf7c4aa6 2658 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
aeb2f500
JW
2659
2660static void
170065c9 2661add_label_notes (rtx x, rtx_insn *insn)
aeb2f500
JW
2662{
2663 enum rtx_code code = GET_CODE (x);
2664 int i, j;
6f7d635c 2665 const char *fmt;
aeb2f500
JW
2666
2667 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2668 {
6b3603c2 2669 /* This code used to ignore labels that referred to dispatch tables to
e0bb17a8 2670 avoid flow generating (slightly) worse code.
6b3603c2 2671
ac7c5af5
JL
2672 We no longer ignore such label references (see LABEL_REF handling in
2673 mark_jump_label for additional information). */
c4c81601 2674
cb2f563b
HPN
2675 /* There's no reason for current users to emit jump-insns with
2676 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2677 notes. */
2678 gcc_assert (!JUMP_P (insn));
04a121a7 2679 add_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x));
65c5f2a6 2680
04a121a7
TS
2681 if (LABEL_P (label_ref_label (x)))
2682 LABEL_NUSES (label_ref_label (x))++;
cb2f563b 2683
aeb2f500
JW
2684 return;
2685 }
2686
c4c81601 2687 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
aeb2f500
JW
2688 {
2689 if (fmt[i] == 'e')
2690 add_label_notes (XEXP (x, i), insn);
2691 else if (fmt[i] == 'E')
2692 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2693 add_label_notes (XVECEXP (x, i, j), insn);
2694 }
2695}
a65f3558 2696
bb457bd9
JL
2697/* Code Hoisting variables and subroutines. */
2698
2699/* Very busy expressions. */
2700static sbitmap *hoist_vbein;
2701static sbitmap *hoist_vbeout;
2702
bb457bd9 2703/* ??? We could compute post dominators and run this algorithm in
68e82b83 2704 reverse to perform tail merging, doing so would probably be
bb457bd9
JL
2705 more effective than the tail merging code in jump.c.
2706
2707 It's unclear if tail merging could be run in parallel with
2708 code hoisting. It would be nice. */
2709
2710/* Allocate vars used for code hoisting analysis. */
2711
2712static void
1d088dee 2713alloc_code_hoist_mem (int n_blocks, int n_exprs)
bb457bd9
JL
2714{
2715 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2716 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2717 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2718
2719 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2720 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
bb457bd9
JL
2721}
2722
2723/* Free vars used for code hoisting analysis. */
2724
2725static void
1d088dee 2726free_code_hoist_mem (void)
bb457bd9 2727{
5a660bff
DB
2728 sbitmap_vector_free (antloc);
2729 sbitmap_vector_free (transp);
2730 sbitmap_vector_free (comp);
bb457bd9 2731
5a660bff
DB
2732 sbitmap_vector_free (hoist_vbein);
2733 sbitmap_vector_free (hoist_vbeout);
bb457bd9 2734
d47cc544 2735 free_dominance_info (CDI_DOMINATORS);
bb457bd9
JL
2736}
2737
2738/* Compute the very busy expressions at entry/exit from each block.
2739
2740 An expression is very busy if all paths from a given point
2741 compute the expression. */
2742
2743static void
1d088dee 2744compute_code_hoist_vbeinout (void)
bb457bd9 2745{
e0082a72
ZD
2746 int changed, passes;
2747 basic_block bb;
bb457bd9 2748
8b1c6fd7
DM
2749 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2750 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
bb457bd9
JL
2751
2752 passes = 0;
2753 changed = 1;
c4c81601 2754
bb457bd9
JL
2755 while (changed)
2756 {
2757 changed = 0;
c4c81601 2758
bb457bd9
JL
2759 /* We scan the blocks in the reverse order to speed up
2760 the convergence. */
4f42035e 2761 FOR_EACH_BB_REVERSE_FN (bb, cfun)
bb457bd9 2762 {
fefa31b5 2763 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
ce4c0015 2764 {
d7c028c0
LC
2765 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2766 hoist_vbein, bb);
ce4c0015
MK
2767
2768 /* Include expressions in VBEout that are calculated
2769 in BB and available at its end. */
f61e445a 2770 bitmap_ior (hoist_vbeout[bb->index],
ce4c0015
MK
2771 hoist_vbeout[bb->index], comp[bb->index]);
2772 }
f8423fea 2773
f61e445a 2774 changed |= bitmap_or_and (hoist_vbein[bb->index],
f8423fea
SB
2775 antloc[bb->index],
2776 hoist_vbeout[bb->index],
2777 transp[bb->index]);
bb457bd9 2778 }
c4c81601 2779
bb457bd9
JL
2780 passes++;
2781 }
2782
10d22567 2783 if (dump_file)
cad9aa15
MK
2784 {
2785 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2786
11cd3bed 2787 FOR_EACH_BB_FN (bb, cfun)
cad9aa15
MK
2788 {
2789 fprintf (dump_file, "vbein (%d): ", bb->index);
f61e445a 2790 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
cad9aa15 2791 fprintf (dump_file, "vbeout(%d): ", bb->index);
f61e445a 2792 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
cad9aa15
MK
2793 }
2794 }
bb457bd9
JL
2795}
2796
2797/* Top level routine to do the dataflow analysis needed by code hoisting. */
2798
2799static void
1d088dee 2800compute_code_hoist_data (void)
bb457bd9 2801{
02280659 2802 compute_local_properties (transp, comp, antloc, &expr_hash_table);
9b774782 2803 prune_expressions (false);
bb457bd9 2804 compute_code_hoist_vbeinout ();
d47cc544 2805 calculate_dominance_info (CDI_DOMINATORS);
10d22567
ZD
2806 if (dump_file)
2807 fprintf (dump_file, "\n");
bb457bd9
JL
2808}
2809
4b8181c5
BC
2810/* Update register pressure for BB when hoisting an expression from
2811 instruction FROM, if live ranges of inputs are shrunk. Also
2812 maintain live_in information if live range of register referred
2813 in FROM is shrunk.
2814
2815 Return 0 if register pressure doesn't change, otherwise return
2816 the number by which register pressure is decreased.
2817
2818 NOTE: Register pressure won't be increased in this function. */
2819
2820static int
cf92a178 2821update_bb_reg_pressure (basic_block bb, rtx_insn *from)
4b8181c5 2822{
cf92a178
DM
2823 rtx dreg;
2824 rtx_insn *insn;
4b8181c5 2825 basic_block succ_bb;
bfac633a 2826 df_ref use, op_ref;
4b8181c5
BC
2827 edge succ;
2828 edge_iterator ei;
2829 int decreased_pressure = 0;
2830 int nregs;
2831 enum reg_class pressure_class;
bfac633a
RS
2832
2833 FOR_EACH_INSN_USE (use, from)
4b8181c5 2834 {
bfac633a 2835 dreg = DF_REF_REAL_REG (use);
4b8181c5
BC
2836 /* The live range of register is shrunk only if it isn't:
2837 1. referred on any path from the end of this block to EXIT, or
2838 2. referred by insns other than FROM in this block. */
2839 FOR_EACH_EDGE (succ, ei, bb->succs)
2840 {
2841 succ_bb = succ->dest;
fefa31b5 2842 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4b8181c5
BC
2843 continue;
2844
2845 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2846 break;
2847 }
2848 if (succ != NULL)
2849 continue;
2850
2851 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2852 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2853 {
2854 if (!DF_REF_INSN_INFO (op_ref))
2855 continue;
2856
2857 insn = DF_REF_INSN (op_ref);
2858 if (BLOCK_FOR_INSN (insn) == bb
2859 && NONDEBUG_INSN_P (insn) && insn != from)
2860 break;
2861 }
2862
2863 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2864 /* Decrease register pressure and update live_in information for
2865 this block. */
2866 if (!op_ref && pressure_class != NO_REGS)
2867 {
2868 decreased_pressure += nregs;
2869 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2870 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2871 }
2872 }
2873 return decreased_pressure;
2874}
2875
b11f0116
BC
2876/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2877 flow graph, if it can reach BB unimpared. Stop the search if the
2878 expression would need to be moved more than DISTANCE instructions.
2879
2880 DISTANCE is the number of instructions through which EXPR can be
2881 hoisted up in flow graph.
2882
2883 BB_SIZE points to an array which contains the number of instructions
2884 for each basic block.
2885
2886 PRESSURE_CLASS and NREGS are register class and number of hard registers
2887 for storing EXPR.
2888
2889 HOISTED_BBS points to a bitmap indicating basic blocks through which
2890 EXPR is hoisted.
bb457bd9 2891
4b8181c5
BC
2892 FROM is the instruction from which EXPR is hoisted.
2893
bb457bd9
JL
2894 It's unclear exactly what Muchnick meant by "unimpared". It seems
2895 to me that the expression must either be computed or transparent in
2896 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2897 would allow the expression to be hoisted out of loops, even if
2898 the expression wasn't a loop invariant.
2899
2900 Contrast this to reachability for PRE where an expression is
2901 considered reachable if *any* path reaches instead of *all*
2902 paths. */
2903
2904static int
11478306 2905should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
ec7f796e
ML
2906 basic_block bb, sbitmap visited,
2907 HOST_WIDE_INT distance,
b11f0116 2908 int *bb_size, enum reg_class pressure_class,
cf92a178 2909 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
bb457bd9 2910{
b11f0116 2911 unsigned int i;
bb457bd9 2912 edge pred;
628f6a4e 2913 edge_iterator ei;
b11f0116 2914 sbitmap_iterator sbi;
283a2545 2915 int visited_allocated_locally = 0;
4b8181c5 2916 int decreased_pressure = 0;
589005ff 2917
4b8181c5
BC
2918 if (flag_ira_hoist_pressure)
2919 {
2920 /* Record old information of basic block BB when it is visited
2921 at the first time. */
2922 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2923 {
2924 struct bb_data *data = BB_DATA (bb);
2925 bitmap_copy (data->backup, data->live_in);
2926 data->old_pressure = data->max_reg_pressure[pressure_class];
2927 }
2928 decreased_pressure = update_bb_reg_pressure (bb, from);
2929 }
20160347
MK
2930 /* Terminate the search if distance, for which EXPR is allowed to move,
2931 is exhausted. */
2932 if (distance > 0)
2933 {
4b8181c5
BC
2934 if (flag_ira_hoist_pressure)
2935 {
2936 /* Prefer to hoist EXPR if register pressure is decreased. */
2937 if (decreased_pressure > *nregs)
2938 distance += bb_size[bb->index];
2939 /* Let EXPR be hoisted through basic block at no cost if one
2940 of following conditions is satisfied:
2941
2942 1. The basic block has low register pressure.
2943 2. Register pressure won't be increases after hoisting EXPR.
2944
2945 Constant expressions is handled conservatively, because
2946 hoisting constant expression aggressively results in worse
2947 code. This decision is made by the observation of CSiBE
2948 on ARM target, while it has no obvious effect on other
2949 targets like x86, x86_64, mips and powerpc. */
2950 else if (CONST_INT_P (expr->expr)
2951 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2952 >= ira_class_hard_regs_num[pressure_class]
2953 && decreased_pressure < *nregs))
2954 distance -= bb_size[bb->index];
2955 }
2956 else
b11f0116 2957 distance -= bb_size[bb->index];
20160347
MK
2958
2959 if (distance <= 0)
2960 return 0;
2961 }
2962 else
2963 gcc_assert (distance == 0);
bb457bd9
JL
2964
2965 if (visited == NULL)
2966 {
8e42ace1 2967 visited_allocated_locally = 1;
8b1c6fd7 2968 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 2969 bitmap_clear (visited);
bb457bd9
JL
2970 }
2971
628f6a4e 2972 FOR_EACH_EDGE (pred, ei, bb->preds)
bb457bd9 2973 {
e2d2ed72 2974 basic_block pred_bb = pred->src;
bb457bd9 2975
fefa31b5 2976 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
bb457bd9 2977 break;
f305679f
JH
2978 else if (pred_bb == expr_bb)
2979 continue;
d7c028c0 2980 else if (bitmap_bit_p (visited, pred_bb->index))
bb457bd9 2981 continue;
d7c028c0 2982 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
bb457bd9
JL
2983 break;
2984 /* Not killed. */
2985 else
2986 {
d7c028c0 2987 bitmap_set_bit (visited, pred_bb->index);
b11f0116
BC
2988 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2989 visited, distance, bb_size,
4b8181c5
BC
2990 pressure_class, nregs,
2991 hoisted_bbs, from))
bb457bd9
JL
2992 break;
2993 }
2994 }
589005ff 2995 if (visited_allocated_locally)
b11f0116
BC
2996 {
2997 /* If EXPR can be hoisted to expr_bb, record basic blocks through
4b8181c5 2998 which EXPR is hoisted in hoisted_bbs. */
b11f0116
BC
2999 if (flag_ira_hoist_pressure && !pred)
3000 {
4b8181c5
BC
3001 /* Record the basic block from which EXPR is hoisted. */
3002 bitmap_set_bit (visited, bb->index);
d4ac4ce2 3003 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
4b8181c5 3004 bitmap_set_bit (hoisted_bbs, i);
b11f0116
BC
3005 }
3006 sbitmap_free (visited);
3007 }
c4c81601 3008
bb457bd9
JL
3009 return (pred == NULL);
3010}
3011\f
073a8998 3012/* Find occurrence in BB. */
43c8a043 3013
11478306
JH
3014static struct gcse_occr *
3015find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
20160347
MK
3016{
3017 /* Find the right occurrence of this expression. */
3018 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3019 occr = occr->next;
3020
3021 return occr;
3022}
3023
b11f0116
BC
3024/* Actually perform code hoisting.
3025
3026 The code hoisting pass can hoist multiple computations of the same
3027 expression along dominated path to a dominating basic block, like
3028 from b2/b3 to b1 as depicted below:
3029
3030 b1 ------
3031 /\ |
3032 / \ |
3033 bx by distance
3034 / \ |
3035 / \ |
3036 b2 b3 ------
3037
3038 Unfortunately code hoisting generally extends the live range of an
3039 output pseudo register, which increases register pressure and hurts
3040 register allocation. To address this issue, an attribute MAX_DISTANCE
3041 is computed and attached to each expression. The attribute is computed
3042 from rtx cost of the corresponding expression and it's used to control
3043 how long the expression can be hoisted up in flow graph. As the
3044 expression is hoisted up in flow graph, GCC decreases its DISTANCE
4b8181c5
BC
3045 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3046 register pressure if live ranges of inputs are shrunk.
b11f0116
BC
3047
3048 Option "-fira-hoist-pressure" implements register pressure directed
3049 hoist based on upper method. The rationale is:
3050 1. Calculate register pressure for each basic block by reusing IRA
3051 facility.
3052 2. When expression is hoisted through one basic block, GCC checks
4b8181c5
BC
3053 the change of live ranges for inputs/output. The basic block's
3054 register pressure will be increased because of extended live
3055 range of output. However, register pressure will be decreased
3056 if the live ranges of inputs are shrunk.
3057 3. After knowing how hoisting affects register pressure, GCC prefers
3058 to hoist the expression if it can decrease register pressure, by
3059 increasing DISTANCE of the corresponding expression.
3060 4. If hoisting the expression increases register pressure, GCC checks
3061 register pressure of the basic block and decrease DISTANCE only if
3062 the register pressure is high. In other words, expression will be
3063 hoisted through at no cost if the basic block has low register
3064 pressure.
3065 5. Update register pressure information for basic blocks through
3066 which expression is hoisted. */
c4c81601 3067
5f39ad47 3068static int
1d088dee 3069hoist_code (void)
bb457bd9 3070{
e0082a72 3071 basic_block bb, dominated;
9771b263 3072 vec<basic_block> dom_tree_walk;
cad9aa15 3073 unsigned int dom_tree_walk_index;
9771b263 3074 vec<basic_block> domby;
b11f0116 3075 unsigned int i, j, k;
11478306
JH
3076 struct gcse_expr **index_map;
3077 struct gcse_expr *expr;
20160347
MK
3078 int *to_bb_head;
3079 int *bb_size;
5f39ad47 3080 int changed = 0;
b11f0116
BC
3081 struct bb_data *data;
3082 /* Basic blocks that have occurrences reachable from BB. */
3083 bitmap from_bbs;
3084 /* Basic blocks through which expr is hoisted. */
3085 bitmap hoisted_bbs = NULL;
3086 bitmap_iterator bi;
bb457bd9 3087
bb457bd9
JL
3088 /* Compute a mapping from expression number (`bitmap_index') to
3089 hash table entry. */
3090
11478306 3091 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
02280659 3092 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 3093 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 3094 index_map[expr->bitmap_index] = expr;
bb457bd9 3095
20160347
MK
3096 /* Calculate sizes of basic blocks and note how far
3097 each instruction is from the start of its block. We then use this
3098 data to restrict distance an expression can travel. */
3099
3100 to_bb_head = XCNEWVEC (int, get_max_uid ());
8b1c6fd7 3101 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
20160347 3102
11cd3bed 3103 FOR_EACH_BB_FN (bb, cfun)
20160347 3104 {
cf92a178 3105 rtx_insn *insn;
20160347
MK
3106 int to_head;
3107
20160347 3108 to_head = 0;
05b5ea34 3109 FOR_BB_INSNS (bb, insn)
20160347
MK
3110 {
3111 /* Don't count debug instructions to avoid them affecting
3112 decision choices. */
3113 if (NONDEBUG_INSN_P (insn))
3114 to_bb_head[INSN_UID (insn)] = to_head++;
20160347
MK
3115 }
3116
3117 bb_size[bb->index] = to_head;
3118 }
3119
fefa31b5
DM
3120 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3121 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3122 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
cad9aa15 3123
b11f0116
BC
3124 from_bbs = BITMAP_ALLOC (NULL);
3125 if (flag_ira_hoist_pressure)
3126 hoisted_bbs = BITMAP_ALLOC (NULL);
3127
cad9aa15 3128 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
fefa31b5 3129 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
cad9aa15 3130
bb457bd9
JL
3131 /* Walk over each basic block looking for potentially hoistable
3132 expressions, nothing gets hoisted from the entry block. */
9771b263 3133 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
bb457bd9 3134 {
028d4092
ML
3135 domby = get_dominated_to_depth (CDI_DOMINATORS, bb,
3136 param_max_hoist_depth);
cad9aa15 3137
9771b263 3138 if (domby.length () == 0)
cad9aa15 3139 continue;
bb457bd9
JL
3140
3141 /* Examine each expression that is very busy at the exit of this
3142 block. These are the potentially hoistable expressions. */
5829cc0f 3143 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
bb457bd9 3144 {
d7c028c0 3145 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
bb457bd9 3146 {
b11f0116
BC
3147 int nregs = 0;
3148 enum reg_class pressure_class = NO_REGS;
cad9aa15 3149 /* Current expression. */
11478306 3150 struct gcse_expr *expr = index_map[i];
073a8998 3151 /* Number of occurrences of EXPR that can be hoisted to BB. */
cad9aa15 3152 int hoistable = 0;
073a8998 3153 /* Occurrences reachable from BB. */
6e1aa848 3154 vec<occr_t> occrs_to_hoist = vNULL;
cad9aa15
MK
3155 /* We want to insert the expression into BB only once, so
3156 note when we've inserted it. */
3157 int insn_inserted_p;
3158 occr_t occr;
3159
ce4c0015 3160 /* If an expression is computed in BB and is available at end of
073a8998 3161 BB, hoist all occurrences dominated by BB to BB. */
d7c028c0 3162 if (bitmap_bit_p (comp[bb->index], i))
cad9aa15
MK
3163 {
3164 occr = find_occr_in_bb (expr->antic_occr, bb);
3165
3166 if (occr)
3167 {
073a8998 3168 /* An occurrence might've been already deleted
cad9aa15 3169 while processing a dominator of BB. */
2d36b47f 3170 if (!occr->deleted_p)
cad9aa15
MK
3171 {
3172 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3173 hoistable++;
3174 }
3175 }
3176 else
3177 hoistable++;
3178 }
ce4c0015 3179
bb457bd9
JL
3180 /* We've found a potentially hoistable expression, now
3181 we look at every block BB dominates to see if it
3182 computes the expression. */
9771b263 3183 FOR_EACH_VEC_ELT (domby, j, dominated)
bb457bd9 3184 {
ec7f796e 3185 HOST_WIDE_INT max_distance;
20160347 3186
bb457bd9 3187 /* Ignore self dominance. */
c635a1ec 3188 if (bb == dominated)
bb457bd9 3189 continue;
bb457bd9
JL
3190 /* We've found a dominated block, now see if it computes
3191 the busy expression and whether or not moving that
3192 expression to the "beginning" of that block is safe. */
d7c028c0 3193 if (!bitmap_bit_p (antloc[dominated->index], i))
bb457bd9
JL
3194 continue;
3195
cad9aa15
MK
3196 occr = find_occr_in_bb (expr->antic_occr, dominated);
3197 gcc_assert (occr);
20160347 3198
073a8998 3199 /* An occurrence might've been already deleted
cad9aa15
MK
3200 while processing a dominator of BB. */
3201 if (occr->deleted_p)
2d36b47f 3202 continue;
cad9aa15
MK
3203 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3204
3205 max_distance = expr->max_distance;
3206 if (max_distance > 0)
3207 /* Adjust MAX_DISTANCE to account for the fact that
3208 OCCR won't have to travel all of DOMINATED, but
3209 only part of it. */
3210 max_distance += (bb_size[dominated->index]
3211 - to_bb_head[INSN_UID (occr->insn)]);
20160347 3212
b11f0116
BC
3213 pressure_class = get_pressure_class_and_nregs (occr->insn,
3214 &nregs);
3215
3216 /* Note if the expression should be hoisted from the dominated
3217 block to BB if it can reach DOMINATED unimpared.
bb457bd9
JL
3218
3219 Keep track of how many times this expression is hoistable
3220 from a dominated block into BB. */
b11f0116
BC
3221 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3222 max_distance, bb_size,
3223 pressure_class, &nregs,
4b8181c5 3224 hoisted_bbs, occr->insn))
cad9aa15
MK
3225 {
3226 hoistable++;
9771b263 3227 occrs_to_hoist.safe_push (occr);
cad9aa15
MK
3228 bitmap_set_bit (from_bbs, dominated->index);
3229 }
bb457bd9
JL
3230 }
3231
ff7cc307 3232 /* If we found more than one hoistable occurrence of this
cad9aa15 3233 expression, then note it in the vector of expressions to
bb457bd9
JL
3234 hoist. It makes no sense to hoist things which are computed
3235 in only one BB, and doing so tends to pessimize register
3236 allocation. One could increase this value to try harder
3237 to avoid any possible code expansion due to register
3238 allocation issues; however experiments have shown that
3239 the vast majority of hoistable expressions are only movable
e0bb17a8 3240 from two successors, so raising this threshold is likely
bb457bd9 3241 to nullify any benefit we get from code hoisting. */
62a3f636 3242 if (hoistable > 1 && dbg_cnt (hoist_insn))
bb457bd9 3243 {
9771b263 3244 /* If (hoistable != vec::length), then there is
073a8998 3245 an occurrence of EXPR in BB itself. Don't waste
cad9aa15 3246 time looking for LCA in this case. */
9771b263 3247 if ((unsigned) hoistable == occrs_to_hoist.length ())
cad9aa15
MK
3248 {
3249 basic_block lca;
3250
3251 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3252 from_bbs);
3253 if (lca != bb)
073a8998 3254 /* Punt, it's better to hoist these occurrences to
cad9aa15 3255 LCA. */
9771b263 3256 occrs_to_hoist.release ();
cad9aa15 3257 }
bb457bd9 3258 }
cad9aa15 3259 else
688010ba 3260 /* Punt, no point hoisting a single occurrence. */
9771b263 3261 occrs_to_hoist.release ();
bb457bd9 3262
b11f0116 3263 if (flag_ira_hoist_pressure
9771b263 3264 && !occrs_to_hoist.is_empty ())
b11f0116 3265 {
4b8181c5
BC
3266 /* Increase register pressure of basic blocks to which
3267 expr is hoisted because of extended live range of
3268 output. */
b11f0116
BC
3269 data = BB_DATA (bb);
3270 data->max_reg_pressure[pressure_class] += nregs;
4b8181c5
BC
3271 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3272 {
06e28de2 3273 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
4b8181c5
BC
3274 data->max_reg_pressure[pressure_class] += nregs;
3275 }
b11f0116
BC
3276 }
3277 else if (flag_ira_hoist_pressure)
3278 {
4b8181c5
BC
3279 /* Restore register pressure and live_in info for basic
3280 blocks recorded in hoisted_bbs when expr will not be
3281 hoisted. */
b11f0116
BC
3282 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3283 {
06e28de2 3284 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
4b8181c5
BC
3285 bitmap_copy (data->live_in, data->backup);
3286 data->max_reg_pressure[pressure_class]
3287 = data->old_pressure;
b11f0116
BC
3288 }
3289 }
3290
3291 if (flag_ira_hoist_pressure)
3292 bitmap_clear (hoisted_bbs);
3293
cad9aa15 3294 insn_inserted_p = 0;
bb457bd9 3295
073a8998 3296 /* Walk through occurrences of I'th expressions we want
cad9aa15 3297 to hoist to BB and make the transformations. */
9771b263 3298 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
bb457bd9 3299 {
cf92a178 3300 rtx_insn *insn;
b6808818 3301 const_rtx set;
cad9aa15
MK
3302
3303 gcc_assert (!occr->deleted_p);
3304
3305 insn = occr->insn;
b6808818 3306 set = single_set_gcse (insn);
cad9aa15
MK
3307
3308 /* Create a pseudo-reg to store the result of reaching
3309 expressions into. Get the mode for the new pseudo
3310 from the mode of the original destination pseudo.
3311
3312 It is important to use new pseudos whenever we
3313 emit a set. This will allow reload to use
3314 rematerialization for such registers. */
3315 if (!insn_inserted_p)
3316 expr->reaching_reg
3317 = gen_reg_rtx_and_attrs (SET_DEST (set));
3318
43c8a043 3319 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
cad9aa15
MK
3320 insn);
3321 delete_insn (insn);
3322 occr->deleted_p = 1;
3323 changed = 1;
3324 gcse_subst_count++;
3325
3326 if (!insn_inserted_p)
bb457bd9 3327 {
cad9aa15
MK
3328 insert_insn_end_basic_block (expr, bb);
3329 insn_inserted_p = 1;
bb457bd9
JL
3330 }
3331 }
cad9aa15 3332
9771b263 3333 occrs_to_hoist.release ();
cad9aa15 3334 bitmap_clear (from_bbs);
bb457bd9
JL
3335 }
3336 }
9771b263 3337 domby.release ();
bb457bd9 3338 }
c4c81601 3339
9771b263 3340 dom_tree_walk.release ();
b11f0116
BC
3341 BITMAP_FREE (from_bbs);
3342 if (flag_ira_hoist_pressure)
3343 BITMAP_FREE (hoisted_bbs);
3344
20160347
MK
3345 free (bb_size);
3346 free (to_bb_head);
8e42ace1 3347 free (index_map);
5f39ad47
SB
3348
3349 return changed;
bb457bd9
JL
3350}
3351
b11f0116
BC
3352/* Return pressure class and number of needed hard registers (through
3353 *NREGS) of register REGNO. */
3354static enum reg_class
3355get_regno_pressure_class (int regno, int *nregs)
3356{
3357 if (regno >= FIRST_PSEUDO_REGISTER)
3358 {
3359 enum reg_class pressure_class;
3360
3361 pressure_class = reg_allocno_class (regno);
3362 pressure_class = ira_pressure_class_translate[pressure_class];
3363 *nregs
3364 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3365 return pressure_class;
3366 }
3367 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3368 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3369 {
3370 *nregs = 1;
3371 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3372 }
3373 else
3374 {
3375 *nregs = 0;
3376 return NO_REGS;
3377 }
3378}
3379
3380/* Return pressure class and number of hard registers (through *NREGS)
3381 for destination of INSN. */
3382static enum reg_class
cf92a178 3383get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
b11f0116
BC
3384{
3385 rtx reg;
3386 enum reg_class pressure_class;
b6808818 3387 const_rtx set = single_set_gcse (insn);
b11f0116 3388
b11f0116
BC
3389 reg = SET_DEST (set);
3390 if (GET_CODE (reg) == SUBREG)
3391 reg = SUBREG_REG (reg);
3392 if (MEM_P (reg))
3393 {
3394 *nregs = 0;
3395 pressure_class = NO_REGS;
3396 }
3397 else
3398 {
3399 gcc_assert (REG_P (reg));
3400 pressure_class = reg_allocno_class (REGNO (reg));
3401 pressure_class = ira_pressure_class_translate[pressure_class];
3402 *nregs
3403 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3404 }
3405 return pressure_class;
3406}
3407
3408/* Increase (if INCR_P) or decrease current register pressure for
3409 register REGNO. */
3410static void
3411change_pressure (int regno, bool incr_p)
3412{
3413 int nregs;
3414 enum reg_class pressure_class;
3415
3416 pressure_class = get_regno_pressure_class (regno, &nregs);
3417 if (! incr_p)
3418 curr_reg_pressure[pressure_class] -= nregs;
3419 else
3420 {
3421 curr_reg_pressure[pressure_class] += nregs;
3422 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3423 < curr_reg_pressure[pressure_class])
3424 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3425 = curr_reg_pressure[pressure_class];
3426 }
3427}
3428
3429/* Calculate register pressure for each basic block by walking insns
3430 from last to first. */
3431static void
3432calculate_bb_reg_pressure (void)
3433{
3434 int i;
3435 unsigned int j;
cf92a178 3436 rtx_insn *insn;
b11f0116
BC
3437 basic_block bb;
3438 bitmap curr_regs_live;
3439 bitmap_iterator bi;
3440
3441
8d49e7ef 3442 ira_setup_eliminable_regset ();
b11f0116 3443 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
11cd3bed 3444 FOR_EACH_BB_FN (bb, cfun)
b11f0116
BC
3445 {
3446 curr_bb = bb;
4b8181c5
BC
3447 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3448 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3449 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3450 bitmap_copy (curr_regs_live, df_get_live_out (bb));
b11f0116
BC
3451 for (i = 0; i < ira_pressure_classes_num; i++)
3452 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3453 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3454 change_pressure (j, true);
3455
3456 FOR_BB_INSNS_REVERSE (bb, insn)
3457 {
3458 rtx dreg;
3459 int regno;
bfac633a 3460 df_ref def, use;
b11f0116
BC
3461
3462 if (! NONDEBUG_INSN_P (insn))
3463 continue;
3464
bfac633a 3465 FOR_EACH_INSN_DEF (def, insn)
b11f0116 3466 {
bfac633a 3467 dreg = DF_REF_REAL_REG (def);
b11f0116
BC
3468 gcc_assert (REG_P (dreg));
3469 regno = REGNO (dreg);
bfac633a 3470 if (!(DF_REF_FLAGS (def)
b11f0116
BC
3471 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3472 {
3473 if (bitmap_clear_bit (curr_regs_live, regno))
3474 change_pressure (regno, false);
3475 }
3476 }
3477
bfac633a 3478 FOR_EACH_INSN_USE (use, insn)
b11f0116 3479 {
bfac633a 3480 dreg = DF_REF_REAL_REG (use);
b11f0116
BC
3481 gcc_assert (REG_P (dreg));
3482 regno = REGNO (dreg);
3483 if (bitmap_set_bit (curr_regs_live, regno))
3484 change_pressure (regno, true);
3485 }
3486 }
3487 }
3488 BITMAP_FREE (curr_regs_live);
3489
3490 if (dump_file == NULL)
3491 return;
3492
3493 fprintf (dump_file, "\nRegister Pressure: \n");
11cd3bed 3494 FOR_EACH_BB_FN (bb, cfun)
b11f0116
BC
3495 {
3496 fprintf (dump_file, " Basic block %d: \n", bb->index);
3497 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3498 {
3499 enum reg_class pressure_class;
3500
3501 pressure_class = ira_pressure_classes[i];
3502 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3503 continue;
3504
3505 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3506 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3507 }
3508 }
3509 fprintf (dump_file, "\n");
3510}
3511
bb457bd9
JL
3512/* Top level routine to perform one code hoisting (aka unification) pass
3513
cc2902df 3514 Return nonzero if a change was made. */
bb457bd9
JL
3515
3516static int
1d088dee 3517one_code_hoisting_pass (void)
bb457bd9
JL
3518{
3519 int changed = 0;
3520
5f39ad47
SB
3521 gcse_subst_count = 0;
3522 gcse_create_count = 0;
3523
3524 /* Return if there's nothing to do, or it is too expensive. */
0cae8d31 3525 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
87d8dd6c 3526 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
5f39ad47
SB
3527 return 0;
3528
20160347
MK
3529 doing_code_hoisting_p = true;
3530
b11f0116
BC
3531 /* Calculate register pressure for each basic block. */
3532 if (flag_ira_hoist_pressure)
3533 {
3534 regstat_init_n_sets_and_refs ();
3535 ira_set_pseudo_classes (false, dump_file);
3536 alloc_aux_for_blocks (sizeof (struct bb_data));
3537 calculate_bb_reg_pressure ();
3538 regstat_free_n_sets_and_refs ();
3539 }
3540
5f39ad47
SB
3541 /* We need alias. */
3542 init_alias_analysis ();
3543
3544 bytes_used = 0;
3545 gcc_obstack_init (&gcse_obstack);
3546 alloc_gcse_mem ();
3547
e45425ec 3548 alloc_hash_table (&expr_hash_table);
02280659 3549 compute_hash_table (&expr_hash_table);
10d22567
ZD
3550 if (dump_file)
3551 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
c4c81601 3552
02280659 3553 if (expr_hash_table.n_elems > 0)
bb457bd9 3554 {
8b1c6fd7
DM
3555 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3556 expr_hash_table.n_elems);
bb457bd9 3557 compute_code_hoist_data ();
5f39ad47 3558 changed = hoist_code ();
bb457bd9
JL
3559 free_code_hoist_mem ();
3560 }
c4c81601 3561
b11f0116
BC
3562 if (flag_ira_hoist_pressure)
3563 {
3564 free_aux_for_blocks ();
3565 free_reg_info ();
3566 }
02280659 3567 free_hash_table (&expr_hash_table);
5f39ad47
SB
3568 free_gcse_mem ();
3569 obstack_free (&gcse_obstack, NULL);
3570
3571 /* We are finished with alias. */
3572 end_alias_analysis ();
3573
3574 if (dump_file)
3575 {
3576 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
0cae8d31
DM
3577 current_function_name (), n_basic_blocks_for_fn (cfun),
3578 bytes_used);
5f39ad47
SB
3579 fprintf (dump_file, "%d substs, %d insns created\n",
3580 gcse_subst_count, gcse_create_count);
3581 }
bb457bd9 3582
20160347
MK
3583 doing_code_hoisting_p = false;
3584
bb457bd9
JL
3585 return changed;
3586}
a13d4ebf 3587\f
43c8a043
EB
3588/* Here we provide the things required to do store motion towards the exit.
3589 In order for this to be effective, gcse also needed to be taught how to
3590 move a load when it is killed only by a store to itself.
a13d4ebf
AM
3591
3592 int i;
3593 float a[10];
3594
3595 void foo(float scale)
3596 {
3597 for (i=0; i<10; i++)
3598 a[i] *= scale;
3599 }
3600
3601 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
589005ff
KH
3602 the load out since its live around the loop, and stored at the bottom
3603 of the loop.
a13d4ebf 3604
589005ff 3605 The 'Load Motion' referred to and implemented in this file is
43c8a043 3606 an enhancement to gcse which when using edge based LCM, recognizes
a13d4ebf
AM
3607 this situation and allows gcse to move the load out of the loop.
3608
3609 Once gcse has hoisted the load, store motion can then push this
3610 load towards the exit, and we end up with no loads or stores of 'i'
3611 in the loop. */
3612
ff7cc307 3613/* This will search the ldst list for a matching expression. If it
a13d4ebf
AM
3614 doesn't find one, we create one and initialize it. */
3615
3616static struct ls_expr *
1d088dee 3617ldst_entry (rtx x)
a13d4ebf 3618{
b58b21d5 3619 int do_not_record_p = 0;
a13d4ebf 3620 struct ls_expr * ptr;
b58b21d5 3621 unsigned int hash;
4a8fb1a1 3622 ls_expr **slot;
9727e468 3623 struct ls_expr e;
a13d4ebf 3624
0516f6fe
SB
3625 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3626 NULL, /*have_reg_qty=*/false);
a13d4ebf 3627
9727e468 3628 e.pattern = x;
c203e8a7 3629 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
9727e468 3630 if (*slot)
4a8fb1a1 3631 return *slot;
b58b21d5 3632
5ed6ace5 3633 ptr = XNEW (struct ls_expr);
b58b21d5
RS
3634
3635 ptr->next = pre_ldst_mems;
3636 ptr->expr = NULL;
3637 ptr->pattern = x;
3638 ptr->pattern_regs = NULL_RTX;
0777c850 3639 ptr->stores.create (0);
b58b21d5
RS
3640 ptr->reaching_reg = NULL_RTX;
3641 ptr->invalid = 0;
3642 ptr->index = 0;
3643 ptr->hash_index = hash;
3644 pre_ldst_mems = ptr;
9727e468 3645 *slot = ptr;
589005ff 3646
a13d4ebf
AM
3647 return ptr;
3648}
3649
3650/* Free up an individual ldst entry. */
3651
589005ff 3652static void
1d088dee 3653free_ldst_entry (struct ls_expr * ptr)
a13d4ebf 3654{
0777c850 3655 ptr->stores.release ();
a13d4ebf
AM
3656
3657 free (ptr);
3658}
3659
3660/* Free up all memory associated with the ldst list. */
3661
3662static void
43c8a043 3663free_ld_motion_mems (void)
a13d4ebf 3664{
c203e8a7
TS
3665 delete pre_ldst_table;
3666 pre_ldst_table = NULL;
9727e468 3667
589005ff 3668 while (pre_ldst_mems)
a13d4ebf
AM
3669 {
3670 struct ls_expr * tmp = pre_ldst_mems;
3671
3672 pre_ldst_mems = pre_ldst_mems->next;
3673
3674 free_ldst_entry (tmp);
3675 }
3676
3677 pre_ldst_mems = NULL;
3678}
3679
3680/* Dump debugging info about the ldst list. */
3681
3682static void
1d088dee 3683print_ldst_list (FILE * file)
a13d4ebf
AM
3684{
3685 struct ls_expr * ptr;
3686
3687 fprintf (file, "LDST list: \n");
3688
43c8a043 3689 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
a13d4ebf
AM
3690 {
3691 fprintf (file, " Pattern (%3d): ", ptr->index);
3692
3693 print_rtl (file, ptr->pattern);
3694
a13d4ebf 3695 fprintf (file, "\n Stores : ");
0777c850 3696 print_rtx_insn_vec (file, ptr->stores);
a13d4ebf
AM
3697
3698 fprintf (file, "\n\n");
3699 }
3700
3701 fprintf (file, "\n");
3702}
3703
3704/* Returns 1 if X is in the list of ldst only expressions. */
3705
3706static struct ls_expr *
1d088dee 3707find_rtx_in_ldst (rtx x)
a13d4ebf 3708{
9727e468 3709 struct ls_expr e;
4a8fb1a1 3710 ls_expr **slot;
c203e8a7 3711 if (!pre_ldst_table)
6375779a 3712 return NULL;
9727e468 3713 e.pattern = x;
c203e8a7 3714 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
4a8fb1a1 3715 if (!slot || (*slot)->invalid)
9727e468 3716 return NULL;
4a8fb1a1 3717 return *slot;
a13d4ebf 3718}
a13d4ebf
AM
3719\f
3720/* Load Motion for loads which only kill themselves. */
3721
43c8a043
EB
3722/* Return true if x, a MEM, is a simple access with no side effects.
3723 These are the types of loads we consider for the ld_motion list,
3724 otherwise we let the usual aliasing take care of it. */
a13d4ebf 3725
589005ff 3726static int
ed7a4b4b 3727simple_mem (const_rtx x)
a13d4ebf 3728{
a13d4ebf
AM
3729 if (MEM_VOLATILE_P (x))
3730 return 0;
589005ff 3731
a13d4ebf
AM
3732 if (GET_MODE (x) == BLKmode)
3733 return 0;
aaa4ca30 3734
47a3dae1 3735 /* If we are handling exceptions, we must be careful with memory references
8f4f502f 3736 that may trap. If we are not, the behavior is undefined, so we may just
47a3dae1 3737 continue. */
8f4f502f 3738 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
98d3d336
RS
3739 return 0;
3740
47a3dae1
ZD
3741 if (side_effects_p (x))
3742 return 0;
589005ff 3743
47a3dae1
ZD
3744 /* Do not consider function arguments passed on stack. */
3745 if (reg_mentioned_p (stack_pointer_rtx, x))
3746 return 0;
3747
3748 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3749 return 0;
3750
3751 return 1;
a13d4ebf
AM
3752}
3753
589005ff
KH
3754/* Make sure there isn't a buried reference in this pattern anywhere.
3755 If there is, invalidate the entry for it since we're not capable
3756 of fixing it up just yet.. We have to be sure we know about ALL
a13d4ebf
AM
3757 loads since the aliasing code will allow all entries in the
3758 ld_motion list to not-alias itself. If we miss a load, we will get
589005ff 3759 the wrong value since gcse might common it and we won't know to
a13d4ebf
AM
3760 fix it up. */
3761
3762static void
1d088dee 3763invalidate_any_buried_refs (rtx x)
a13d4ebf
AM
3764{
3765 const char * fmt;
8e42ace1 3766 int i, j;
a13d4ebf
AM
3767 struct ls_expr * ptr;
3768
3769 /* Invalidate it in the list. */
7b1b4aed 3770 if (MEM_P (x) && simple_mem (x))
a13d4ebf
AM
3771 {
3772 ptr = ldst_entry (x);
3773 ptr->invalid = 1;
3774 }
3775
3776 /* Recursively process the insn. */
3777 fmt = GET_RTX_FORMAT (GET_CODE (x));
589005ff 3778
a13d4ebf
AM
3779 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3780 {
3781 if (fmt[i] == 'e')
3782 invalidate_any_buried_refs (XEXP (x, i));
3783 else if (fmt[i] == 'E')
3784 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3785 invalidate_any_buried_refs (XVECEXP (x, i, j));
3786 }
3787}
3788
4d3eb89a
HPN
3789/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3790 being defined as MEM loads and stores to symbols, with no side effects
3791 and no registers in the expression. For a MEM destination, we also
3792 check that the insn is still valid if we replace the destination with a
3793 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3794 which don't match this criteria, they are invalidated and trimmed out
3795 later. */
a13d4ebf 3796
589005ff 3797static void
1d088dee 3798compute_ld_motion_mems (void)
a13d4ebf
AM
3799{
3800 struct ls_expr * ptr;
e0082a72 3801 basic_block bb;
cf92a178 3802 rtx_insn *insn;
589005ff 3803
a13d4ebf 3804 pre_ldst_mems = NULL;
c203e8a7 3805 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
a13d4ebf 3806
11cd3bed 3807 FOR_EACH_BB_FN (bb, cfun)
a13d4ebf 3808 {
eb232f4e 3809 FOR_BB_INSNS (bb, insn)
a13d4ebf 3810 {
b5b8b0ac 3811 if (NONDEBUG_INSN_P (insn))
a13d4ebf
AM
3812 {
3813 if (GET_CODE (PATTERN (insn)) == SET)
3814 {
3815 rtx src = SET_SRC (PATTERN (insn));
3816 rtx dest = SET_DEST (PATTERN (insn));
3817
0bca04b8 3818 /* Check for a simple load. */
7b1b4aed 3819 if (MEM_P (src) && simple_mem (src))
a13d4ebf
AM
3820 {
3821 ptr = ldst_entry (src);
5c576429 3822 if (!REG_P (dest))
a13d4ebf
AM
3823 ptr->invalid = 1;
3824 }
3825 else
3826 {
3827 /* Make sure there isn't a buried load somewhere. */
3828 invalidate_any_buried_refs (src);
3829 }
589005ff 3830
0bca04b8
EB
3831 /* Check for a simple load through a REG_EQUAL note. */
3832 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3833 if (note
3834 && REG_NOTE_KIND (note) == REG_EQUAL
3835 && (src_eq = XEXP (note, 0))
2df013f3
JB
3836 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3837 invalidate_any_buried_refs (src_eq);
3838
a13d4ebf
AM
3839 /* Check for stores. Don't worry about aliased ones, they
3840 will block any movement we might do later. We only care
3841 about this exact pattern since those are the only
3842 circumstance that we will ignore the aliasing info. */
7b1b4aed 3843 if (MEM_P (dest) && simple_mem (dest))
a13d4ebf
AM
3844 {
3845 ptr = ldst_entry (dest);
0683fd27 3846 machine_mode src_mode = GET_MODE (src);
7b1b4aed 3847 if (! MEM_P (src)
4d3eb89a
HPN
3848 && GET_CODE (src) != ASM_OPERANDS
3849 /* Check for REG manually since want_to_gcse_p
3850 returns 0 for all REGs. */
0683fd27
KT
3851 && can_assign_to_reg_without_clobbers_p (src,
3852 src_mode))
0777c850 3853 ptr->stores.safe_push (insn);
a13d4ebf
AM
3854 else
3855 ptr->invalid = 1;
3856 }
3857 }
3858 else
0bca04b8
EB
3859 {
3860 /* Invalidate all MEMs in the pattern and... */
3861 invalidate_any_buried_refs (PATTERN (insn));
3862
3863 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3864 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3865 if (note
3866 && REG_NOTE_KIND (note) == REG_EQUAL
3867 && (src_eq = XEXP (note, 0)))
3868 invalidate_any_buried_refs (src_eq);
3869 }
a13d4ebf
AM
3870 }
3871 }
3872 }
3873}
3874
589005ff 3875/* Remove any references that have been either invalidated or are not in the
a13d4ebf
AM
3876 expression list for pre gcse. */
3877
3878static void
1d088dee 3879trim_ld_motion_mems (void)
a13d4ebf 3880{
b58b21d5
RS
3881 struct ls_expr * * last = & pre_ldst_mems;
3882 struct ls_expr * ptr = pre_ldst_mems;
a13d4ebf
AM
3883
3884 while (ptr != NULL)
3885 {
11478306 3886 struct gcse_expr * expr;
589005ff 3887
a13d4ebf 3888 /* Delete if entry has been made invalid. */
b58b21d5 3889 if (! ptr->invalid)
a13d4ebf 3890 {
a13d4ebf 3891 /* Delete if we cannot find this mem in the expression list. */
b58b21d5 3892 unsigned int hash = ptr->hash_index % expr_hash_table.size;
589005ff 3893
b58b21d5
RS
3894 for (expr = expr_hash_table.table[hash];
3895 expr != NULL;
3896 expr = expr->next_same_hash)
3897 if (expr_equiv_p (expr->expr, ptr->pattern))
3898 break;
a13d4ebf
AM
3899 }
3900 else
11478306 3901 expr = (struct gcse_expr *) 0;
b58b21d5
RS
3902
3903 if (expr)
a13d4ebf
AM
3904 {
3905 /* Set the expression field if we are keeping it. */
a13d4ebf 3906 ptr->expr = expr;
b58b21d5 3907 last = & ptr->next;
a13d4ebf
AM
3908 ptr = ptr->next;
3909 }
b58b21d5
RS
3910 else
3911 {
3912 *last = ptr->next;
c203e8a7 3913 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
b58b21d5
RS
3914 free_ldst_entry (ptr);
3915 ptr = * last;
3916 }
a13d4ebf
AM
3917 }
3918
3919 /* Show the world what we've found. */
10d22567
ZD
3920 if (dump_file && pre_ldst_mems != NULL)
3921 print_ldst_list (dump_file);
a13d4ebf
AM
3922}
3923
3924/* This routine will take an expression which we are replacing with
3925 a reaching register, and update any stores that are needed if
3926 that expression is in the ld_motion list. Stores are updated by
a98ebe2e 3927 copying their SRC to the reaching register, and then storing
a13d4ebf
AM
3928 the reaching register into the store location. These keeps the
3929 correct value in the reaching register for the loads. */
3930
3931static void
11478306 3932update_ld_motion_stores (struct gcse_expr * expr)
a13d4ebf
AM
3933{
3934 struct ls_expr * mem_ptr;
3935
3936 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3937 {
589005ff
KH
3938 /* We can try to find just the REACHED stores, but is shouldn't
3939 matter to set the reaching reg everywhere... some might be
a13d4ebf
AM
3940 dead and should be eliminated later. */
3941
4d3eb89a
HPN
3942 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3943 where reg is the reaching reg used in the load. We checked in
3944 compute_ld_motion_mems that we can replace (set mem expr) with
3945 (set reg expr) in that insn. */
0777c850
TS
3946 rtx_insn *insn;
3947 unsigned int i;
3948 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
a13d4ebf 3949 {
a13d4ebf
AM
3950 rtx pat = PATTERN (insn);
3951 rtx src = SET_SRC (pat);
3952 rtx reg = expr->reaching_reg;
a13d4ebf
AM
3953
3954 /* If we've already copied it, continue. */
3955 if (expr->reaching_reg == src)
3956 continue;
589005ff 3957
10d22567 3958 if (dump_file)
a13d4ebf 3959 {
10d22567 3960 fprintf (dump_file, "PRE: store updated with reaching reg ");
43c8a043 3961 print_rtl (dump_file, reg);
10d22567
ZD
3962 fprintf (dump_file, ":\n ");
3963 print_inline_rtx (dump_file, insn, 8);
3964 fprintf (dump_file, "\n");
a13d4ebf 3965 }
589005ff 3966
e67d1102 3967 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
038dc49a 3968 emit_insn_before (copy, insn);
a13d4ebf 3969 SET_SRC (pat) = reg;
6fb5fa3c 3970 df_insn_rescan (insn);
a13d4ebf
AM
3971
3972 /* un-recognize this pattern since it's probably different now. */
3973 INSN_CODE (insn) = -1;
3974 gcse_create_count++;
3975 }
3976 }
3977}
3978\f
df35c271
SB
3979/* Return true if the graph is too expensive to optimize. PASS is the
3980 optimization about to be performed. */
47a3dae1 3981
87d8dd6c
BL
3982bool
3983gcse_or_cprop_is_too_expensive (const char *pass)
df35c271 3984{
028d4092
ML
3985 int memory_request = (n_basic_blocks_for_fn (cfun)
3986 * SBITMAP_SET_SIZE (max_reg_num ())
3987 * sizeof (SBITMAP_ELT_TYPE));
87d8dd6c 3988
df35c271
SB
3989 /* Trying to perform global optimizations on flow graphs which have
3990 a high connectivity will take a long time and is unlikely to be
3991 particularly useful.
aaa4ca30 3992
df35c271
SB
3993 In normal circumstances a cfg should have about twice as many
3994 edges as blocks. But we do not want to punish small functions
3995 which have a couple switch statements. Rather than simply
3996 threshold the number of blocks, uses something with a more
3997 graceful degradation. */
dc936fb2 3998 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
df35c271
SB
3999 {
4000 warning (OPT_Wdisabled_optimization,
4001 "%s: %d basic blocks and %d edges/basic block",
0cae8d31 4002 pass, n_basic_blocks_for_fn (cfun),
dc936fb2 4003 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
a13d4ebf 4004
df35c271
SB
4005 return true;
4006 }
a13d4ebf 4007
e45425ec 4008 /* If allocating memory for the dataflow bitmaps would take up too much
df35c271 4009 storage it's better just to disable the optimization. */
028d4092 4010 if (memory_request > param_max_gcse_memory)
df35c271
SB
4011 {
4012 warning (OPT_Wdisabled_optimization,
a9c697b8
MS
4013 "%s: %d basic blocks and %d registers; "
4014 "increase %<--param max-gcse-memory%> above %d",
87d8dd6c
BL
4015 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
4016 memory_request);
a13d4ebf 4017
df35c271
SB
4018 return true;
4019 }
adfcce61 4020
df35c271 4021 return false;
01c43039 4022}
df35c271 4023\f
df35c271
SB
4024static unsigned int
4025execute_rtl_pre (void)
4026{
f2b01cfb 4027 int changed;
df35c271 4028 delete_unreachable_blocks ();
df35c271 4029 df_analyze ();
f2b01cfb
RG
4030 changed = one_pre_gcse_pass ();
4031 flag_rerun_cse_after_global_opts |= changed;
4032 if (changed)
4033 cleanup_cfg (0);
df35c271
SB
4034 return 0;
4035}
aaa4ca30 4036
df35c271
SB
4037static unsigned int
4038execute_rtl_hoist (void)
4039{
f2b01cfb 4040 int changed;
df35c271 4041 delete_unreachable_blocks ();
df35c271 4042 df_analyze ();
f2b01cfb
RG
4043 changed = one_code_hoisting_pass ();
4044 flag_rerun_cse_after_global_opts |= changed;
4045 if (changed)
4046 cleanup_cfg (0);
df35c271
SB
4047 return 0;
4048}
ef330312 4049
27a4cd48
DM
4050namespace {
4051
4052const pass_data pass_data_rtl_pre =
ef330312 4053{
27a4cd48
DM
4054 RTL_PASS, /* type */
4055 "rtl pre", /* name */
4056 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
4057 TV_PRE, /* tv_id */
4058 PROP_cfglayout, /* properties_required */
4059 0, /* properties_provided */
4060 0, /* properties_destroyed */
4061 0, /* todo_flags_start */
3bea341f 4062 TODO_df_finish, /* todo_flags_finish */
5f39ad47 4063};
ef330312 4064
27a4cd48
DM
4065class pass_rtl_pre : public rtl_opt_pass
4066{
4067public:
c3284718
RS
4068 pass_rtl_pre (gcc::context *ctxt)
4069 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
27a4cd48
DM
4070 {}
4071
4072 /* opt_pass methods: */
1a3d085c 4073 virtual bool gate (function *);
be55bfe6 4074 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
27a4cd48
DM
4075
4076}; // class pass_rtl_pre
4077
1a3d085c
TS
4078/* We do not construct an accurate cfg in functions which call
4079 setjmp, so none of these passes runs if the function calls
4080 setjmp.
4081 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4082
4083bool
4084pass_rtl_pre::gate (function *fun)
4085{
4086 return optimize > 0 && flag_gcse
4087 && !fun->calls_setjmp
4088 && optimize_function_for_speed_p (fun)
4089 && dbg_cnt (pre);
4090}
4091
27a4cd48
DM
4092} // anon namespace
4093
4094rtl_opt_pass *
4095make_pass_rtl_pre (gcc::context *ctxt)
4096{
4097 return new pass_rtl_pre (ctxt);
4098}
4099
4100namespace {
4101
4102const pass_data pass_data_rtl_hoist =
ef330312 4103{
27a4cd48
DM
4104 RTL_PASS, /* type */
4105 "hoist", /* name */
4106 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
4107 TV_HOIST, /* tv_id */
4108 PROP_cfglayout, /* properties_required */
4109 0, /* properties_provided */
4110 0, /* properties_destroyed */
4111 0, /* todo_flags_start */
3bea341f 4112 TODO_df_finish, /* todo_flags_finish */
ef330312
PB
4113};
4114
27a4cd48
DM
4115class pass_rtl_hoist : public rtl_opt_pass
4116{
4117public:
c3284718
RS
4118 pass_rtl_hoist (gcc::context *ctxt)
4119 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
27a4cd48
DM
4120 {}
4121
4122 /* opt_pass methods: */
1a3d085c 4123 virtual bool gate (function *);
be55bfe6 4124 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
27a4cd48
DM
4125
4126}; // class pass_rtl_hoist
4127
1a3d085c
TS
4128bool
4129pass_rtl_hoist::gate (function *)
4130{
4131 return optimize > 0 && flag_gcse
4132 && !cfun->calls_setjmp
4133 /* It does not make sense to run code hoisting unless we are optimizing
4134 for code size -- it rarely makes programs faster, and can make then
4135 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4136 && optimize_function_for_size_p (cfun)
4137 && dbg_cnt (hoist);
4138}
4139
27a4cd48
DM
4140} // anon namespace
4141
4142rtl_opt_pass *
4143make_pass_rtl_hoist (gcc::context *ctxt)
4144{
4145 return new pass_rtl_hoist (ctxt);
4146}
4147
3edf64aa
DM
4148/* Reset all state within gcse.c so that we can rerun the compiler
4149 within the same process. For use by toplev::finalize. */
4150
4151void
4152gcse_c_finalize (void)
4153{
4154 test_insn = NULL;
4155}
4156
e2500fed 4157#include "gt-gcse.h"