]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gcse.c
PR c++/89705 - ICE with reference binding with conversion function.
[thirdparty/gcc.git] / gcc / gcse.c
CommitLineData
07abdb66 1/* Partial redundancy elimination / Hoisting for RTL.
fbd26352 2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
18aa2adf 3
f12b58b3 4This file is part of GCC.
18aa2adf 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
18aa2adf 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
18aa2adf 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
18aa2adf 19
20/* TODO
21 - reordering of memory allocation and freeing to be more space efficient
1ec78e16 22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
18aa2adf 24*/
25
26/* References searched while implementing this.
18aa2adf 27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
18aa2adf 40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
18aa2adf 59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
ef0d57a0 114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
7bcd381b 118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
ef0d57a0 122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
18aa2adf 131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133*/
134
135#include "config.h"
ebd9163c 136#include "system.h"
805e22b2 137#include "coretypes.h"
9ef16211 138#include "backend.h"
7c29e30e 139#include "target.h"
9ef16211 140#include "rtl.h"
7c29e30e 141#include "tree.h"
142#include "predict.h"
9ef16211 143#include "df.h"
ad7b10a2 144#include "memmodel.h"
7953c610 145#include "tm_p.h"
7c29e30e 146#include "insn-config.h"
d30c5be2 147#include "print-rtl.h"
18aa2adf 148#include "regs.h"
1ec78e16 149#include "ira.h"
18aa2adf 150#include "recog.h"
7c29e30e 151#include "diagnostic-core.h"
94ea8568 152#include "cfgrtl.h"
153#include "cfganal.h"
154#include "lcm.h"
155#include "cfgcleanup.h"
3cfec666 156#include "expr.h"
9159979b 157#include "params.h"
c8a8ab0f 158#include "intl.h"
77fce4cd 159#include "tree-pass.h"
3072d30e 160#include "dbgcnt.h"
049d15fc 161#include "gcse.h"
d2ac64b1 162#include "gcse-common.h"
4059f3f0 163
ef0d57a0 164/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
05476866 165 are a superset of those done by classic GCSE.
18aa2adf 166
07abdb66 167 Two passes of copy/constant propagation are done around PRE or hoisting
168 because the first one enables more GCSE and the second one helps to clean
169 up the copies that PRE and HOIST create. This is needed more for PRE than
170 for HOIST because code hoisting will try to use an existing register
171 containing the common subexpression rather than create a new one. This is
172 harder to do for PRE because of the code motion (which HOIST doesn't do).
18aa2adf 173
174 Expressions we are interested in GCSE-ing are of the form
175 (set (pseudo-reg) (expression)).
176 Function want_to_gcse_p says what these are.
177
05476866 178 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
d45a307d 179 This allows PRE to hoist expressions that are expressed in multiple insns,
05476866 180 such as complex address calculations (e.g. for PIC code, or loads with a
181 high part and a low part).
d45a307d 182
18aa2adf 183 PRE handles moving invariant expressions out of loops (by treating them as
ef0d57a0 184 partially redundant).
18aa2adf 185
18aa2adf 186 **********************
187
188 We used to support multiple passes but there are diminishing returns in
189 doing so. The first pass usually makes 90% of the changes that are doable.
190 A second pass can make a few more changes made possible by the first pass.
191 Experiments show any further passes don't make enough changes to justify
192 the expense.
193
194 A study of spec92 using an unlimited number of passes:
195 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
196 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
197 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
198
199 It was found doing copy propagation between each pass enables further
200 substitutions.
201
d45a307d 202 This study was done before expressions in REG_EQUAL notes were added as
203 candidate expressions for optimization, and before the GIMPLE optimizers
204 were added. Probably, multiple passes is even less efficient now than
205 at the time when the study was conducted.
206
18aa2adf 207 PRE is quite expensive in complicated functions because the DFA can take
d45a307d 208 a while to converge. Hence we only perform one pass.
18aa2adf 209
210 **********************
211
212 The steps for PRE are:
213
214 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
215
216 2) Perform the data flow analysis for PRE.
217
218 3) Delete the redundant instructions
219
220 4) Insert the required copies [if any] that make the partially
221 redundant instructions fully redundant.
222
223 5) For other reaching expressions, insert an instruction to copy the value
224 to a newly created pseudo that will reach the redundant instruction.
225
226 The deletion is done first so that when we do insertions we
227 know which pseudo reg to use.
228
229 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
230 argue it is not. The number of iterations for the algorithm to converge
231 is typically 2-4 so I don't view it as that expensive (relatively speaking).
232
05476866 233 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
18aa2adf 234 we create. To make an expression reach the place where it's redundant,
235 the result of the expression is copied to a new register, and the redundant
236 expression is deleted by replacing it with this new register. Classic GCSE
237 doesn't have this problem as much as it computes the reaching defs of
04a40f24 238 each register in each block and thus can try to use an existing
239 register. */
18aa2adf 240\f
241/* GCSE global vars. */
242
049d15fc 243struct target_gcse default_target_gcse;
244#if SWITCHABLE_TARGET
245struct target_gcse *this_target_gcse = &default_target_gcse;
246#endif
247
d743aba2 248/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
249int flag_rerun_cse_after_global_opts;
ef0d57a0 250
18aa2adf 251/* An obstack for our working variables. */
252static struct obstack gcse_obstack;
253
18aa2adf 254/* Hash table of expressions. */
255
9908fe4d 256struct gcse_expr
18aa2adf 257{
bc8197c0 258 /* The expression. */
18aa2adf 259 rtx expr;
260 /* Index in the available expression bitmaps. */
261 int bitmap_index;
262 /* Next entry with the same hash. */
9908fe4d 263 struct gcse_expr *next_same_hash;
18aa2adf 264 /* List of anticipatable occurrences in basic blocks in the function.
265 An "anticipatable occurrence" is one that is the first occurrence in the
ef0d57a0 266 basic block, the operands are not modified in the basic block prior
267 to the occurrence and the output is not used between the start of
268 the block and the occurrence. */
9908fe4d 269 struct gcse_occr *antic_occr;
18aa2adf 270 /* List of available occurrence in basic blocks in the function.
271 An "available occurrence" is one that is the last occurrence in the
272 basic block and the operands are not modified by following statements in
273 the basic block [including this insn]. */
9908fe4d 274 struct gcse_occr *avail_occr;
18aa2adf 275 /* Non-null if the computation is PRE redundant.
276 The value is the newly created pseudo-reg to record a copy of the
277 expression in all the places that reach the redundant copy. */
278 rtx reaching_reg;
8b38b150 279 /* Maximum distance in instructions this expression can travel.
280 We avoid moving simple expressions for more than a few instructions
281 to keep register pressure under control.
282 A value of "0" removes restrictions on how far the expression can
283 travel. */
7125d9ac 284 HOST_WIDE_INT max_distance;
18aa2adf 285};
286
287/* Occurrence of an expression.
288 There is one per basic block. If a pattern appears more than once the
289 last appearance is used [or first for anticipatable expressions]. */
290
9908fe4d 291struct gcse_occr
18aa2adf 292{
293 /* Next occurrence of this expression. */
9908fe4d 294 struct gcse_occr *next;
18aa2adf 295 /* The insn that computes the expression. */
526d7387 296 rtx_insn *insn;
6ef828f9 297 /* Nonzero if this [anticipatable] occurrence has been deleted. */
18aa2adf 298 char deleted_p;
6ef828f9 299 /* Nonzero if this [available] occurrence has been copied to
18aa2adf 300 reaching_reg. */
301 /* ??? This is mutually exclusive with deleted_p, so they could share
302 the same byte. */
303 char copied_p;
304};
305
9908fe4d 306typedef struct gcse_occr *occr_t;
c0939130 307
07abdb66 308/* Expression hash tables.
18aa2adf 309 Each hash table is an array of buckets.
310 ??? It is known that if it were an array of entries, structure elements
311 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
312 not clear whether in the final analysis a sufficient amount of memory would
313 be saved as the size of the available expression bitmaps would be larger
314 [one could build a mapping table without holes afterwards though].
2c084240 315 Someday I'll perform the computation and figure it out. */
18aa2adf 316
9908fe4d 317struct gcse_hash_table_d
27cfe3f1 318{
319 /* The table itself.
320 This is an array of `expr_hash_table_size' elements. */
9908fe4d 321 struct gcse_expr **table;
27cfe3f1 322
323 /* Size of the hash table, in elements. */
324 unsigned int size;
a08b57af 325
27cfe3f1 326 /* Number of hash table elements. */
327 unsigned int n_elems;
27cfe3f1 328};
2c084240 329
27cfe3f1 330/* Expression hash table. */
9908fe4d 331static struct gcse_hash_table_d expr_hash_table;
27cfe3f1 332
8e802be9 333/* This is a list of expressions which are MEMs and will be used by load
3cfec666 334 or store motion.
bc8197c0 335 Load motion tracks MEMs which aren't killed by anything except itself,
336 i.e. loads and stores to a single location.
3cfec666 337 We can then allow movement of these MEM refs with a little special
8e802be9 338 allowance. (all stores copy the same value to the reaching reg used
339 for the loads). This means all values used to store into memory must have
bc8197c0 340 no side effects so we can re-issue the setter value. */
8e802be9 341
342struct ls_expr
343{
9908fe4d 344 struct gcse_expr * expr; /* Gcse expression reference for LM. */
8e802be9 345 rtx pattern; /* Pattern of this mem. */
64928ee5 346 rtx pattern_regs; /* List of registers mentioned by the mem. */
d30c5be2 347 vec<rtx_insn *> stores; /* INSN list of stores seen. */
8e802be9 348 struct ls_expr * next; /* Next in the list. */
349 int invalid; /* Invalid for some reason. */
350 int index; /* If it maps to a bitmap index. */
69333952 351 unsigned int hash_index; /* Index when in a hash table. */
8e802be9 352 rtx reaching_reg; /* Register to use when re-writing. */
353};
354
355/* Head of the list of load/store memory refs. */
356static struct ls_expr * pre_ldst_mems = NULL;
357
770ff93b 358struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
d9dd21a8 359{
d9dd21a8 360 typedef value_type compare_type;
9969c043 361 static inline hashval_t hash (const ls_expr *);
362 static inline bool equal (const ls_expr *, const ls_expr *);
d9dd21a8 363};
364
365/* Hashtable helpers. */
366inline hashval_t
9969c043 367pre_ldst_expr_hasher::hash (const ls_expr *x)
d9dd21a8 368{
369 int do_not_record_p = 0;
370 return
371 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
372}
373
374static int expr_equiv_p (const_rtx, const_rtx);
375
376inline bool
9969c043 377pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
378 const ls_expr *ptr2)
d9dd21a8 379{
380 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
381}
382
0d707271 383/* Hashtable for the load/store memory refs. */
c1f445d2 384static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
0d707271 385
18aa2adf 386/* Bitmap containing one bit for each register in the program.
387 Used when performing GCSE to track which registers have been set since
388 the start of the basic block. */
7fb47f9f 389static regset reg_set_bitmap;
18aa2adf 390
8e802be9 391/* Array, indexed by basic block number for a list of insns which modify
392 memory within that block. */
e050de51 393static vec<rtx_insn *> *modify_mem_list;
78d140c9 394static bitmap modify_mem_list_set;
8e802be9 395
57c8e46c 396/* This array parallels modify_mem_list, except that it stores MEMs
397 being set and their canonicalized memory addresses. */
f1f41a6c 398static vec<modify_pair> *canon_modify_mem_list;
78d140c9 399
f55d2721 400/* Bitmap indexed by block numbers to record which blocks contain
401 function calls. */
402static bitmap blocks_with_calls;
403
18aa2adf 404/* Various variables for statistics gathering. */
405
406/* Memory used in a pass.
407 This isn't intended to be absolutely precise. Its intent is only
408 to keep an eye on memory usage. */
409static int bytes_used;
2c084240 410
18aa2adf 411/* GCSE substitutions made. */
412static int gcse_subst_count;
413/* Number of copy instructions created. */
414static int gcse_create_count;
18aa2adf 415\f
8b38b150 416/* Doing code hoisting. */
417static bool doing_code_hoisting_p = false;
418\f
0ca684f3 419/* For available exprs */
4b673aa1 420static sbitmap *ae_kill;
18aa2adf 421\f
1ec78e16 422/* Data stored for each basic block. */
423struct bb_data
424{
425 /* Maximal register pressure inside basic block for given register class
426 (defined only for the pressure classes). */
427 int max_reg_pressure[N_REG_CLASSES];
ded17066 428 /* Recorded register pressure of basic block before trying to hoist
429 an expression. Will be used to restore the register pressure
430 if the expression should not be hoisted. */
431 int old_pressure;
432 /* Recorded register live_in info of basic block during code hoisting
433 process. BACKUP is used to record live_in info before trying to
434 hoist an expression, and will be used to restore LIVE_IN if the
435 expression should not be hoisted. */
436 bitmap live_in, backup;
1ec78e16 437};
438
439#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
440
441static basic_block curr_bb;
442
443/* Current register pressure for each pressure class. */
444static int curr_reg_pressure[N_REG_CLASSES];
445\f
446
952f0048 447static void compute_can_copy (void);
2f800191 448static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
449static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
f0af5a88 450static void *gcse_alloc (unsigned long);
defc8016 451static void alloc_gcse_mem (void);
952f0048 452static void free_gcse_mem (void);
9908fe4d 453static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
454static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
455static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
456static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
526d7387 457static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
458static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
459static int oprs_available_p (const_rtx, const rtx_insn *);
3754d046 460static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
7125d9ac 461 HOST_WIDE_INT, struct gcse_hash_table_d *);
3754d046 462static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
84b4ae13 463static void record_last_reg_set_info (rtx_insn *, int);
e050de51 464static void record_last_mem_set_info (rtx_insn *);
81a410b1 465static void record_last_set_info (rtx, const_rtx, void *);
9908fe4d 466static void compute_hash_table (struct gcse_hash_table_d *);
467static void alloc_hash_table (struct gcse_hash_table_d *);
468static void free_hash_table (struct gcse_hash_table_d *);
469static void compute_hash_table_work (struct gcse_hash_table_d *);
470static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
952f0048 471static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
9908fe4d 472 struct gcse_hash_table_d *);
81a410b1 473static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
7ecb5bb2 474static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
952f0048 475static void alloc_pre_mem (int, int);
476static void free_pre_mem (void);
bc8197c0 477static struct edge_list *compute_pre_data (void);
9908fe4d 478static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
952f0048 479 basic_block);
9908fe4d 480static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
481static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
952f0048 482static void pre_insert_copies (void);
483static int pre_delete (void);
bc8197c0 484static int pre_gcse (struct edge_list *);
d743aba2 485static int one_pre_gcse_pass (void);
84b4ae13 486static void add_label_notes (rtx, rtx_insn *);
952f0048 487static void alloc_code_hoist_mem (int, int);
488static void free_code_hoist_mem (void);
489static void compute_code_hoist_vbeinout (void);
490static void compute_code_hoist_data (void);
7125d9ac 491static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
492 basic_block,
493 sbitmap, HOST_WIDE_INT, int *,
494 enum reg_class,
526d7387 495 int *, bitmap, rtx_insn *);
d743aba2 496static int hoist_code (void);
ded17066 497static enum reg_class get_regno_pressure_class (int regno, int *nregs);
526d7387 498static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
952f0048 499static int one_code_hoisting_pass (void);
9908fe4d 500static rtx_insn *process_insert_insn (struct gcse_expr *);
501static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
502static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
952f0048 503 basic_block, char *);
504static struct ls_expr * ldst_entry (rtx);
505static void free_ldst_entry (struct ls_expr *);
bc8197c0 506static void free_ld_motion_mems (void);
952f0048 507static void print_ldst_list (FILE *);
508static struct ls_expr * find_rtx_in_ldst (rtx);
7ecb5bb2 509static int simple_mem (const_rtx);
952f0048 510static void invalidate_any_buried_refs (rtx);
511static void compute_ld_motion_mems (void);
512static void trim_ld_motion_mems (void);
9908fe4d 513static void update_ld_motion_stores (struct gcse_expr *);
952f0048 514static void clear_modify_mem_tables (void);
515static void free_modify_mem_tables (void);
2457c754 516
517#define GNEW(T) ((T *) gmalloc (sizeof (T)))
518#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
519
520#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
521#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
2457c754 522
523#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
524#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
2457c754 525
526#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
527#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
18aa2adf 528\f
18aa2adf 529/* Misc. utilities. */
530
049d15fc 531#define can_copy \
532 (this_target_gcse->x_can_copy)
533#define can_copy_init_p \
534 (this_target_gcse->x_can_copy_init_p)
3d055936 535
18aa2adf 536/* Compute which modes support reg/reg copy operations. */
537
538static void
952f0048 539compute_can_copy (void)
18aa2adf 540{
541 int i;
ebd9163c 542#ifndef AVOID_CCMODE_COPIES
bf79ca12 543 rtx reg;
544 rtx_insn *insn;
ebd9163c 545#endif
3d055936 546 memset (can_copy, 0, NUM_MACHINE_MODES);
18aa2adf 547
548 start_sequence ();
549 for (i = 0; i < NUM_MACHINE_MODES; i++)
2c084240 550 if (GET_MODE_CLASS (i) == MODE_CC)
551 {
18aa2adf 552#ifdef AVOID_CCMODE_COPIES
3d055936 553 can_copy[i] = 0;
18aa2adf 554#else
3754d046 555 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
d1f9b275 556 insn = emit_insn (gen_rtx_SET (reg, reg));
4679ade3 557 if (recog (PATTERN (insn), insn, NULL) >= 0)
3d055936 558 can_copy[i] = 1;
18aa2adf 559#endif
2c084240 560 }
72f3466e 561 else
3d055936 562 can_copy[i] = 1;
2c084240 563
18aa2adf 564 end_sequence ();
18aa2adf 565}
3d055936 566
567/* Returns whether the mode supports reg/reg copy operations. */
568
569bool
3754d046 570can_copy_p (machine_mode mode)
3d055936 571{
3d055936 572 if (! can_copy_init_p)
573 {
574 compute_can_copy ();
575 can_copy_init_p = true;
576 }
577
578 return can_copy[mode] != 0;
579}
18aa2adf 580\f
581/* Cover function to xmalloc to record bytes allocated. */
582
f0af5a88 583static void *
a41493eb 584gmalloc (size_t size)
18aa2adf 585{
586 bytes_used += size;
587 return xmalloc (size);
588}
589
2f800191 590/* Cover function to xcalloc to record bytes allocated. */
591
592static void *
593gcalloc (size_t nelem, size_t elsize)
594{
595 bytes_used += nelem * elsize;
596 return xcalloc (nelem, elsize);
597}
598
7cdd3716 599/* Cover function to obstack_alloc. */
18aa2adf 600
f0af5a88 601static void *
952f0048 602gcse_alloc (unsigned long size)
18aa2adf 603{
7cdd3716 604 bytes_used += size;
f0af5a88 605 return obstack_alloc (&gcse_obstack, size);
18aa2adf 606}
607
2e81afe5 608/* Allocate memory for the reg/memory set tracking tables.
18aa2adf 609 This is called at the start of each pass. */
610
611static void
defc8016 612alloc_gcse_mem (void)
18aa2adf 613{
18aa2adf 614 /* Allocate vars to track sets of regs. */
0f71a633 615 reg_set_bitmap = ALLOC_REG_SET (NULL);
18aa2adf 616
8e802be9 617 /* Allocate array to keep a list of insns which modify memory in each
f1f41a6c 618 basic block. The two typedefs are needed to work around the
619 pre-processor limitation with template types in macro arguments. */
e050de51 620 typedef vec<rtx_insn *> vec_rtx_heap;
f1f41a6c 621 typedef vec<modify_pair> vec_modify_pair_heap;
fe672ac0 622 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
623 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
624 last_basic_block_for_fn (cfun));
27335ffd 625 modify_mem_list_set = BITMAP_ALLOC (NULL);
626 blocks_with_calls = BITMAP_ALLOC (NULL);
18aa2adf 627}
628
629/* Free memory allocated by alloc_gcse_mem. */
630
631static void
952f0048 632free_gcse_mem (void)
18aa2adf 633{
98076867 634 FREE_REG_SET (reg_set_bitmap);
635
7fb47f9f 636 free_modify_mem_tables ();
27335ffd 637 BITMAP_FREE (modify_mem_list_set);
638 BITMAP_FREE (blocks_with_calls);
18aa2adf 639}
c7a3eccf 640\f
641/* Compute the local properties of each recorded expression.
2c084240 642
643 Local properties are those that are defined by the block, irrespective of
644 other blocks.
c7a3eccf 645
646 An expression is transparent in a block if its operands are not modified
647 in the block.
648
649 An expression is computed (locally available) in a block if it is computed
650 at least once and expression would contain the same value if the
651 computation was moved to the end of the block.
652
653 An expression is locally anticipatable in a block if it is computed at
654 least once and expression would contain the same value if the computation
655 was moved to the beginning of the block.
656
07abdb66 657 We call this routine for pre and code hoisting. They all compute
2c084240 658 basically the same information and thus can easily share this code.
18aa2adf 659
2c084240 660 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
661 properties. If NULL, then it is not necessary to compute or record that
662 particular property.
c7a3eccf 663
07abdb66 664 TABLE controls which hash table to look at. */
3cfec666 665
c7a3eccf 666static void
b9f02dbb 667compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
9908fe4d 668 struct gcse_hash_table_d *table)
c7a3eccf 669{
27cfe3f1 670 unsigned int i;
3cfec666 671
c7a3eccf 672 /* Initialize any bitmaps that were passed in. */
673 if (transp)
3d5c627e 674 {
fe672ac0 675 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
3d5c627e 676 }
2c084240 677
c7a3eccf 678 if (comp)
fe672ac0 679 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
c7a3eccf 680 if (antloc)
fe672ac0 681 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
c7a3eccf 682
27cfe3f1 683 for (i = 0; i < table->size; i++)
18aa2adf 684 {
9908fe4d 685 struct gcse_expr *expr;
c7a3eccf 686
27cfe3f1 687 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
c7a3eccf 688 {
c7a3eccf 689 int indx = expr->bitmap_index;
9908fe4d 690 struct gcse_occr *occr;
c7a3eccf 691
692 /* The expression is transparent in this block if it is not killed.
693 We start by assuming all are transparent [none are killed], and
694 then reset the bits for those that are. */
c7a3eccf 695 if (transp)
d2ac64b1 696 compute_transp (expr->expr, indx, transp,
697 blocks_with_calls,
698 modify_mem_list_set,
699 canon_modify_mem_list);
c7a3eccf 700
701 /* The occurrences recorded in antic_occr are exactly those that
6ef828f9 702 we want to set to nonzero in ANTLOC. */
c7a3eccf 703 if (antloc)
2c084240 704 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
705 {
08b7917c 706 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
c7a3eccf 707
2c084240 708 /* While we're scanning the table, this is a good place to
709 initialize this. */
710 occr->deleted_p = 0;
711 }
c7a3eccf 712
713 /* The occurrences recorded in avail_occr are exactly those that
6ef828f9 714 we want to set to nonzero in COMP. */
c7a3eccf 715 if (comp)
2c084240 716 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
717 {
08b7917c 718 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
c7a3eccf 719
2c084240 720 /* While we're scanning the table, this is a good place to
721 initialize this. */
722 occr->copied_p = 0;
723 }
c7a3eccf 724
725 /* While we're scanning the table, this is a good place to
726 initialize this. */
727 expr->reaching_reg = 0;
728 }
18aa2adf 729 }
18aa2adf 730}
731\f
18aa2adf 732/* Hash table support. */
733
eac13465 734struct reg_avail_info
735{
4c26117a 736 basic_block last_bb;
eac13465 737 int first_set;
738 int last_set;
739};
740
741static struct reg_avail_info *reg_avail_info;
4c26117a 742static basic_block current_bb;
18aa2adf 743
06e2144a 744/* See whether X, the source of a set, is something we want to consider for
745 GCSE. */
18aa2adf 746
747static int
7125d9ac 748want_to_gcse_p (rtx x, machine_mode mode, HOST_WIDE_INT *max_distance_ptr)
18aa2adf 749{
e207fd7a 750#ifdef STACK_REGS
751 /* On register stack architectures, don't GCSE constants from the
752 constant pool, as the benefits are often swamped by the overhead
753 of shuffling the register stack between basic blocks. */
754 if (IS_STACK_MODE (GET_MODE (x)))
755 x = avoid_constant_pool_reference (x);
756#endif
757
8b38b150 758 /* GCSE'ing constants:
759
760 We do not specifically distinguish between constant and non-constant
7013e87c 761 expressions in PRE and Hoist. We use set_src_cost below to limit
8b38b150 762 the maximum distance simple expressions can travel.
763
764 Nevertheless, constants are much easier to GCSE, and, hence,
765 it is easy to overdo the optimizations. Usually, excessive PRE and
766 Hoisting of constant leads to increased register pressure.
767
768 RA can deal with this by rematerialing some of the constants.
769 Therefore, it is important that the back-end generates sets of constants
770 in a way that allows reload rematerialize them under high register
771 pressure, i.e., a pseudo register with REG_EQUAL to constant
772 is set only once. Failing to do so will result in IRA/reload
773 spilling such constants under high register pressure instead of
774 rematerializing them. */
775
2c084240 776 switch (GET_CODE (x))
18aa2adf 777 {
778 case REG:
779 case SUBREG:
8b38b150 780 case CALL:
781 return 0;
782
0349edce 783 CASE_CONST_ANY:
8b38b150 784 if (!doing_code_hoisting_p)
785 /* Do not PRE constants. */
786 return 0;
787
788 /* FALLTHRU */
18aa2adf 789
790 default:
8b38b150 791 if (doing_code_hoisting_p)
792 /* PRE doesn't implement max_distance restriction. */
793 {
794 int cost;
46418b43 795 HOST_WIDE_INT max_distance;
8b38b150 796
797 gcc_assert (!optimize_function_for_speed_p (cfun)
798 && optimize_function_for_size_p (cfun));
5ae4887d 799 cost = set_src_cost (x, mode, 0);
8b38b150 800
801 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
802 {
46418b43 803 max_distance
804 = ((HOST_WIDE_INT)GCSE_COST_DISTANCE_RATIO * cost) / 10;
8b38b150 805 if (max_distance == 0)
806 return 0;
807
808 gcc_assert (max_distance > 0);
809 }
810 else
811 max_distance = 0;
812
813 if (max_distance_ptr)
814 *max_distance_ptr = max_distance;
815 }
816
9c9680b5 817 return can_assign_to_reg_without_clobbers_p (x, mode);
18aa2adf 818 }
69dbb666 819}
820
4b673aa1 821/* Used internally by can_assign_to_reg_without_clobbers_p. */
69dbb666 822
526d7387 823static GTY(()) rtx_insn *test_insn;
69dbb666 824
9c9680b5 825/* Return true if we can assign X to a pseudo register of mode MODE
826 such that the resulting insn does not result in clobbering a hard
827 register as a side-effect.
2b86a75a 828
829 Additionally, if the target requires it, check that the resulting insn
830 can be copied. If it cannot, this means that X is special and probably
831 has hidden side-effects we don't want to mess with.
832
4b673aa1 833 This function is typically used by code motion passes, to verify
834 that it is safe to insert an insn without worrying about clobbering
835 maybe live hard regs. */
69dbb666 836
4b673aa1 837bool
9c9680b5 838can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
69dbb666 839{
840 int num_clobbers = 0;
841 int icode;
e899b9f2 842 bool can_assign = false;
18aa2adf 843
06e2144a 844 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
9c9680b5 845 if (general_operand (x, mode))
06e2144a 846 return 1;
847 else if (GET_MODE (x) == VOIDmode)
848 return 0;
849
850 /* Otherwise, check if we can make a valid insn from it. First initialize
851 our test insn if we haven't already. */
852 if (test_insn == 0)
853 {
854 test_insn
d1f9b275 855 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
06e2144a 856 FIRST_PSEUDO_REGISTER * 2),
857 const0_rtx));
4a57a2e8 858 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
e899b9f2 859 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
06e2144a 860 }
861
862 /* Now make an insn like the one we would make when GCSE'ing and see if
863 valid. */
9c9680b5 864 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
06e2144a 865 SET_SRC (PATTERN (test_insn)) = x;
48e1416a 866
2b86a75a 867 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
48e1416a 868
e899b9f2 869 /* If the test insn is valid and doesn't need clobbers, and the target also
870 has no objections, we're good. */
871 if (icode >= 0
872 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
873 && ! (targetm.cannot_copy_insn_p
874 && targetm.cannot_copy_insn_p (test_insn)))
875 can_assign = true;
48e1416a 876
e899b9f2 877 /* Make sure test_insn doesn't have any pointers into GC space. */
878 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
48e1416a 879
e899b9f2 880 return can_assign;
18aa2adf 881}
882
6ef828f9 883/* Return nonzero if the operands of expression X are unchanged from the
18aa2adf 884 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
885 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
886
887static int
526d7387 888oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
18aa2adf 889{
2c084240 890 int i, j;
18aa2adf 891 enum rtx_code code;
d2ca078f 892 const char *fmt;
18aa2adf 893
18aa2adf 894 if (x == 0)
895 return 1;
896
897 code = GET_CODE (x);
898 switch (code)
899 {
900 case REG:
eac13465 901 {
902 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
903
904 if (info->last_bb != current_bb)
905 return 1;
3cfec666 906 if (avail_p)
2e81afe5 907 return info->last_set < DF_INSN_LUID (insn);
eac13465 908 else
2e81afe5 909 return info->first_set >= DF_INSN_LUID (insn);
eac13465 910 }
18aa2adf 911
912 case MEM:
37495d69 913 if (! flag_gcse_lm
914 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
915 x, avail_p))
8e802be9 916 return 0;
18aa2adf 917 else
2c084240 918 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
18aa2adf 919
920 case PRE_DEC:
921 case PRE_INC:
922 case POST_DEC:
923 case POST_INC:
40988080 924 case PRE_MODIFY:
925 case POST_MODIFY:
18aa2adf 926 return 0;
927
928 case PC:
929 case CC0: /*FIXME*/
930 case CONST:
0349edce 931 CASE_CONST_ANY:
18aa2adf 932 case SYMBOL_REF:
933 case LABEL_REF:
934 case ADDR_VEC:
935 case ADDR_DIFF_VEC:
936 return 1;
937
938 default:
939 break;
940 }
941
2c084240 942 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
18aa2adf 943 {
944 if (fmt[i] == 'e')
945 {
2c084240 946 /* If we are about to do the last recursive call needed at this
947 level, change it into iteration. This function is called enough
948 to be worth it. */
18aa2adf 949 if (i == 0)
2c084240 950 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
951
952 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
18aa2adf 953 return 0;
954 }
955 else if (fmt[i] == 'E')
2c084240 956 for (j = 0; j < XVECLEN (x, i); j++)
957 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
958 return 0;
18aa2adf 959 }
960
961 return 1;
962}
963
bc8197c0 964/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
8e802be9 965
bc8197c0 966struct mem_conflict_info
967{
968 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
969 see if a memory store conflicts with this memory load. */
970 const_rtx mem;
8e802be9 971
bc8197c0 972 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
973 references. */
974 bool conflict;
975};
976
977/* DEST is the output of an instruction. If it is a memory reference and
978 possibly conflicts with the load found in DATA, then communicate this
979 information back through DATA. */
8e802be9 980
981static void
81a410b1 982mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
bc8197c0 983 void *data)
8e802be9 984{
bc8197c0 985 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
986
8e802be9 987 while (GET_CODE (dest) == SUBREG
988 || GET_CODE (dest) == ZERO_EXTRACT
8e802be9 989 || GET_CODE (dest) == STRICT_LOW_PART)
990 dest = XEXP (dest, 0);
991
992 /* If DEST is not a MEM, then it will not conflict with the load. Note
993 that function calls are assumed to clobber memory, but are handled
994 elsewhere. */
b9f02dbb 995 if (! MEM_P (dest))
8e802be9 996 return;
7a676a9f 997
8e802be9 998 /* If we are setting a MEM in our list of specially recognized MEMs,
3cfec666 999 don't mark as killed this time. */
bc8197c0 1000 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
8e802be9 1001 {
1002 if (!find_rtx_in_ldst (dest))
bc8197c0 1003 mci->conflict = true;
8e802be9 1004 return;
1005 }
7a676a9f 1006
376a287d 1007 if (true_dependence (dest, GET_MODE (dest), mci->mem))
bc8197c0 1008 mci->conflict = true;
8e802be9 1009}
1010
1011/* Return nonzero if the expression in X (a memory reference) is killed
2e81afe5 1012 in block BB before or after the insn with the LUID in UID_LIMIT.
8e802be9 1013 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1014 before UID_LIMIT.
1015
1016 To check the entire block, set UID_LIMIT to max_uid + 1 and
1017 AVAIL_P to 0. */
1018
1019static int
bc8197c0 1020load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1021 int avail_p)
8e802be9 1022{
e050de51 1023 vec<rtx_insn *> list = modify_mem_list[bb->index];
1024 rtx_insn *setter;
577cca34 1025 unsigned ix;
a2658f4a 1026
1027 /* If this is a readonly then we aren't going to be changing it. */
1028 if (MEM_READONLY_P (x))
1029 return 0;
1030
f1f41a6c 1031 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
8e802be9 1032 {
bc8197c0 1033 struct mem_conflict_info mci;
1034
8e802be9 1035 /* Ignore entries in the list that do not apply. */
1036 if ((avail_p
577cca34 1037 && DF_INSN_LUID (setter) < uid_limit)
8e802be9 1038 || (! avail_p
577cca34 1039 && DF_INSN_LUID (setter) > uid_limit))
1040 continue;
8e802be9 1041
1042 /* If SETTER is a call everything is clobbered. Note that calls
1043 to pure functions are never put on the list, so we need not
1044 worry about them. */
b9f02dbb 1045 if (CALL_P (setter))
8e802be9 1046 return 1;
1047
1048 /* SETTER must be an INSN of some kind that sets memory. Call
bc8197c0 1049 note_stores to examine each hunk of memory that is modified. */
1050 mci.mem = x;
1051 mci.conflict = false;
1052 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1053 if (mci.conflict)
8e802be9 1054 return 1;
8e802be9 1055 }
1056 return 0;
1057}
1058
6ef828f9 1059/* Return nonzero if the operands of expression X are unchanged from
18aa2adf 1060 the start of INSN's basic block up to but not including INSN. */
1061
1062static int
526d7387 1063oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
18aa2adf 1064{
1065 return oprs_unchanged_p (x, insn, 0);
1066}
1067
6ef828f9 1068/* Return nonzero if the operands of expression X are unchanged from
18aa2adf 1069 INSN to the end of INSN's basic block. */
1070
1071static int
526d7387 1072oprs_available_p (const_rtx x, const rtx_insn *insn)
18aa2adf 1073{
1074 return oprs_unchanged_p (x, insn, 1);
1075}
1076
1077/* Hash expression X.
2c084240 1078
1079 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1080 indicating if a volatile operand is found or if the expression contains
69333952 1081 something we don't want to insert in the table. HASH_TABLE_SIZE is
78d140c9 1082 the current size of the hash table to be probed. */
18aa2adf 1083
1084static unsigned int
3754d046 1085hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
69333952 1086 int hash_table_size)
18aa2adf 1087{
1088 unsigned int hash;
1089
1090 *do_not_record_p = 0;
1091
bc8197c0 1092 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
18aa2adf 1093 return hash % hash_table_size;
1094}
1b80ba05 1095
78d140c9 1096/* Return nonzero if exp1 is equivalent to exp2. */
18aa2adf 1097
1098static int
7ecb5bb2 1099expr_equiv_p (const_rtx x, const_rtx y)
18aa2adf 1100{
78d140c9 1101 return exp_equiv_p (x, y, 0, true);
18aa2adf 1102}
1103
27cfe3f1 1104/* Insert expression X in INSN in the hash TABLE.
18aa2adf 1105 If it is already present, record it as the last occurrence in INSN's
1106 basic block.
1107
1108 MODE is the mode of the value X is being stored into.
1109 It is only used if X is a CONST_INT.
1110
6ef828f9 1111 ANTIC_P is nonzero if X is an anticipatable expression.
8b38b150 1112 AVAIL_P is nonzero if X is an available expression.
1113
1114 MAX_DISTANCE is the maximum distance in instructions this expression can
1115 be moved. */
18aa2adf 1116
1117static void
3754d046 1118insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
526d7387 1119 int antic_p,
7125d9ac 1120 int avail_p, HOST_WIDE_INT max_distance,
1121 struct gcse_hash_table_d *table)
18aa2adf 1122{
1123 int found, do_not_record_p;
1124 unsigned int hash;
9908fe4d 1125 struct gcse_expr *cur_expr, *last_expr = NULL;
1126 struct gcse_occr *antic_occr, *avail_occr;
18aa2adf 1127
27cfe3f1 1128 hash = hash_expr (x, mode, &do_not_record_p, table->size);
18aa2adf 1129
1130 /* Do not insert expression in table if it contains volatile operands,
1131 or if hash_expr determines the expression is something we don't want
1132 to or can't handle. */
1133 if (do_not_record_p)
1134 return;
1135
27cfe3f1 1136 cur_expr = table->table[hash];
18aa2adf 1137 found = 0;
1138
c9281ef8 1139 while (cur_expr && (found = expr_equiv_p (cur_expr->expr, x)) == 0)
18aa2adf 1140 {
1141 /* If the expression isn't found, save a pointer to the end of
1142 the list. */
1143 last_expr = cur_expr;
1144 cur_expr = cur_expr->next_same_hash;
1145 }
1146
1147 if (! found)
1148 {
9908fe4d 1149 cur_expr = GOBNEW (struct gcse_expr);
1150 bytes_used += sizeof (struct gcse_expr);
27cfe3f1 1151 if (table->table[hash] == NULL)
2c084240 1152 /* This is the first pattern that hashed to this index. */
27cfe3f1 1153 table->table[hash] = cur_expr;
18aa2adf 1154 else
2c084240 1155 /* Add EXPR to end of this hash chain. */
1156 last_expr->next_same_hash = cur_expr;
1157
3cfec666 1158 /* Set the fields of the expr element. */
18aa2adf 1159 cur_expr->expr = x;
27cfe3f1 1160 cur_expr->bitmap_index = table->n_elems++;
18aa2adf 1161 cur_expr->next_same_hash = NULL;
1162 cur_expr->antic_occr = NULL;
1163 cur_expr->avail_occr = NULL;
8b38b150 1164 gcc_assert (max_distance >= 0);
1165 cur_expr->max_distance = max_distance;
18aa2adf 1166 }
8b38b150 1167 else
1168 gcc_assert (cur_expr->max_distance == max_distance);
18aa2adf 1169
1170 /* Now record the occurrence(s). */
18aa2adf 1171 if (antic_p)
1172 {
1173 antic_occr = cur_expr->antic_occr;
1174
90bd219d 1175 if (antic_occr
1176 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
77780ba6 1177 antic_occr = NULL;
18aa2adf 1178
1179 if (antic_occr)
2c084240 1180 /* Found another instance of the expression in the same basic block.
1181 Prefer the currently recorded one. We want the first one in the
1182 block and the block is scanned from start to end. */
1183 ; /* nothing to do */
18aa2adf 1184 else
1185 {
1186 /* First occurrence of this expression in this basic block. */
9908fe4d 1187 antic_occr = GOBNEW (struct gcse_occr);
1188 bytes_used += sizeof (struct gcse_occr);
18aa2adf 1189 antic_occr->insn = insn;
77780ba6 1190 antic_occr->next = cur_expr->antic_occr;
839f8415 1191 antic_occr->deleted_p = 0;
77780ba6 1192 cur_expr->antic_occr = antic_occr;
18aa2adf 1193 }
1194 }
1195
1196 if (avail_p)
1197 {
1198 avail_occr = cur_expr->avail_occr;
1199
90bd219d 1200 if (avail_occr
1201 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
18aa2adf 1202 {
77780ba6 1203 /* Found another instance of the expression in the same basic block.
1204 Prefer this occurrence to the currently recorded one. We want
1205 the last one in the block and the block is scanned from start
1206 to end. */
1207 avail_occr->insn = insn;
18aa2adf 1208 }
18aa2adf 1209 else
1210 {
1211 /* First occurrence of this expression in this basic block. */
9908fe4d 1212 avail_occr = GOBNEW (struct gcse_occr);
1213 bytes_used += sizeof (struct gcse_occr);
18aa2adf 1214 avail_occr->insn = insn;
77780ba6 1215 avail_occr->next = cur_expr->avail_occr;
839f8415 1216 avail_occr->deleted_p = 0;
77780ba6 1217 cur_expr->avail_occr = avail_occr;
18aa2adf 1218 }
1219 }
1220}
1221
bc8197c0 1222/* Scan SET present in INSN and add an entry to the hash TABLE. */
18aa2adf 1223
1224static void
9908fe4d 1225hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
18aa2adf 1226{
bc8197c0 1227 rtx src = SET_SRC (set);
1228 rtx dest = SET_DEST (set);
1b80ba05 1229 rtx note;
18aa2adf 1230
19595145 1231 if (GET_CODE (src) == CALL)
27cfe3f1 1232 hash_scan_call (src, insn, table);
18aa2adf 1233
b9f02dbb 1234 else if (REG_P (dest))
18aa2adf 1235 {
1b80ba05 1236 unsigned int regno = REGNO (dest);
7125d9ac 1237 HOST_WIDE_INT max_distance = 0;
18aa2adf 1238
ad6cd748 1239 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1240
59254d98 1241 This allows us to do a single GCSE pass and still eliminate
1242 redundant constants, addresses or other expressions that are
ad6cd748 1243 constructed with multiple instructions.
1244
07abdb66 1245 However, keep the original SRC if INSN is a simple reg-reg move.
ad6cd748 1246 In this case, there will almost always be a REG_EQUAL note on the
1247 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1248 for INSN, we miss copy propagation opportunities and we perform the
1249 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1250 do more than one PRE GCSE pass.
1251
f0b5f617 1252 Note that this does not impede profitable constant propagations. We
ad6cd748 1253 "look through" reg-reg sets in lookup_avail_set. */
59254d98 1254 note = find_reg_equal_equiv_note (insn);
1255 if (note != 0
ad6cd748 1256 && REG_NOTE_KIND (note) == REG_EQUAL
1257 && !REG_P (src)
5ae4887d 1258 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
d1f9b275 1259 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1b80ba05 1260
18aa2adf 1261 /* Only record sets of pseudo-regs in the hash table. */
07abdb66 1262 if (regno >= FIRST_PSEUDO_REGISTER
18aa2adf 1263 /* Don't GCSE something if we can't do a reg/reg copy. */
3d055936 1264 && can_copy_p (GET_MODE (dest))
17a54dac 1265 /* GCSE commonly inserts instruction after the insn. We can't
e38def9c 1266 do that easily for EH edges so disable GCSE on these for now. */
1267 /* ??? We can now easily create new EH landing pads at the
1268 gimple level, for splitting edges; there's no reason we
1269 can't do the same thing at the rtl level. */
1270 && !can_throw_internal (insn)
18aa2adf 1271 /* Is SET_SRC something we want to gcse? */
5ae4887d 1272 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1b80ba05 1273 /* Don't CSE a nop. */
bc8197c0 1274 && ! set_noop_p (set)
75f84104 1275 /* Don't GCSE if it has attached REG_EQUIV note.
1276 At this point this only function parameters should have
1277 REG_EQUIV notes and if the argument slot is used somewhere
3fb1e43b 1278 explicitly, it means address of parameter has been taken,
75f84104 1279 so we should not extend the lifetime of the pseudo. */
59254d98 1280 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
18aa2adf 1281 {
1282 /* An expression is not anticipatable if its operands are
232bbfff 1283 modified before this insn or if this is not the only SET in
3072d30e 1284 this insn. The latter condition does not have to mean that
1285 SRC itself is not anticipatable, but we just will not be
1286 able to handle code motion of insns with multiple sets. */
1287 int antic_p = oprs_anticipatable_p (src, insn)
1288 && !multiple_sets (insn);
18aa2adf 1289 /* An expression is not available if its operands are
f441a382 1290 subsequently modified, including this insn. It's also not
1291 available if this is a branch, because we can't insert
1292 a set after the branch. */
1293 int avail_p = (oprs_available_p (src, insn)
1294 && ! JUMP_P (insn));
2c084240 1295
8b38b150 1296 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1297 max_distance, table);
18aa2adf 1298 }
18aa2adf 1299 }
40e55fbb 1300 /* In case of store we want to consider the memory value as available in
5c47e414 1301 the REG stored in that memory. This makes it possible to remove
1302 redundant loads from due to stores to the same location. */
b9f02dbb 1303 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
5ae4887d 1304 {
1305 unsigned int regno = REGNO (src);
7125d9ac 1306 HOST_WIDE_INT max_distance = 0;
5ae4887d 1307
1308 /* Only record sets of pseudo-regs in the hash table. */
1309 if (regno >= FIRST_PSEUDO_REGISTER
1310 /* Don't GCSE something if we can't do a reg/reg copy. */
1311 && can_copy_p (GET_MODE (src))
1312 /* GCSE commonly inserts instruction after the insn. We can't
1313 do that easily for EH edges so disable GCSE on these for now. */
1314 && !can_throw_internal (insn)
1315 /* Is SET_DEST something we want to gcse? */
1316 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1317 /* Don't CSE a nop. */
1318 && ! set_noop_p (set)
1319 /* Don't GCSE if it has attached REG_EQUIV note.
1320 At this point this only function parameters should have
1321 REG_EQUIV notes and if the argument slot is used somewhere
1322 explicitly, it means address of parameter has been taken,
1323 so we should not extend the lifetime of the pseudo. */
1324 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1325 || ! MEM_P (XEXP (note, 0))))
1326 {
1327 /* Stores are never anticipatable. */
1328 int antic_p = 0;
1329 /* An expression is not available if its operands are
1330 subsequently modified, including this insn. It's also not
1331 available if this is a branch, because we can't insert
1332 a set after the branch. */
1333 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1334
1335 /* Record the memory expression (DEST) in the hash table. */
1336 insert_expr_in_table (dest, GET_MODE (dest), insn,
1337 antic_p, avail_p, max_distance, table);
1338 }
1339 }
18aa2adf 1340}
1341
1342static void
526d7387 1343hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
9908fe4d 1344 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
18aa2adf 1345{
1346 /* Currently nothing to do. */
1347}
1348
1349static void
526d7387 1350hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
9908fe4d 1351 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
18aa2adf 1352{
1353 /* Currently nothing to do. */
1354}
1355
bc8197c0 1356/* Process INSN and add hash table entries as appropriate. */
18aa2adf 1357
1358static void
9908fe4d 1359hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
18aa2adf 1360{
1361 rtx pat = PATTERN (insn);
2c084240 1362 int i;
18aa2adf 1363
1364 /* Pick out the sets of INSN and for other forms of instructions record
1365 what's been modified. */
1366
1b80ba05 1367 if (GET_CODE (pat) == SET)
27cfe3f1 1368 hash_scan_set (pat, insn, table);
bc8197c0 1369
1370 else if (GET_CODE (pat) == CLOBBER)
1371 hash_scan_clobber (pat, insn, table);
1372
1373 else if (GET_CODE (pat) == CALL)
1374 hash_scan_call (pat, insn, table);
1375
18aa2adf 1376 else if (GET_CODE (pat) == PARALLEL)
2c084240 1377 for (i = 0; i < XVECLEN (pat, 0); i++)
1378 {
1379 rtx x = XVECEXP (pat, 0, i);
18aa2adf 1380
2c084240 1381 if (GET_CODE (x) == SET)
27cfe3f1 1382 hash_scan_set (x, insn, table);
2c084240 1383 else if (GET_CODE (x) == CLOBBER)
27cfe3f1 1384 hash_scan_clobber (x, insn, table);
19595145 1385 else if (GET_CODE (x) == CALL)
27cfe3f1 1386 hash_scan_call (x, insn, table);
2c084240 1387 }
18aa2adf 1388}
1389
bc8197c0 1390/* Dump the hash table TABLE to file FILE under the name NAME. */
1391
18aa2adf 1392static void
9908fe4d 1393dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
18aa2adf 1394{
1395 int i;
1396 /* Flattened out table, so it's printed in proper order. */
9908fe4d 1397 struct gcse_expr **flat_table;
b9cf3f63 1398 unsigned int *hash_val;
9908fe4d 1399 struct gcse_expr *expr;
b9cf3f63 1400
9908fe4d 1401 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
2457c754 1402 hash_val = XNEWVEC (unsigned int, table->n_elems);
18aa2adf 1403
27cfe3f1 1404 for (i = 0; i < (int) table->size; i++)
1405 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
2c084240 1406 {
1407 flat_table[expr->bitmap_index] = expr;
1408 hash_val[expr->bitmap_index] = i;
1409 }
18aa2adf 1410
1411 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
27cfe3f1 1412 name, table->size, table->n_elems);
18aa2adf 1413
27cfe3f1 1414 for (i = 0; i < (int) table->n_elems; i++)
46fd7177 1415 if (flat_table[i] != 0)
1416 {
b16f1e6c 1417 expr = flat_table[i];
7125d9ac 1418 fprintf (file, "Index %d (hash value %d; max distance "
1419 HOST_WIDE_INT_PRINT_DEC ")\n ",
8b38b150 1420 expr->bitmap_index, hash_val[i], expr->max_distance);
b16f1e6c 1421 print_rtl (file, expr->expr);
46fd7177 1422 fprintf (file, "\n");
1423 }
18aa2adf 1424
1425 fprintf (file, "\n");
b9cf3f63 1426
b9cf3f63 1427 free (flat_table);
1428 free (hash_val);
18aa2adf 1429}
1430
1431/* Record register first/last/block set information for REGNO in INSN.
2c084240 1432
eac13465 1433 first_set records the first place in the block where the register
18aa2adf 1434 is set and is used to compute "anticipatability".
2c084240 1435
eac13465 1436 last_set records the last place in the block where the register
18aa2adf 1437 is set and is used to compute "availability".
2c084240 1438
eac13465 1439 last_bb records the block for which first_set and last_set are
2e81afe5 1440 valid, as a quick test to invalidate them. */
18aa2adf 1441
1442static void
84b4ae13 1443record_last_reg_set_info (rtx_insn *insn, int regno)
18aa2adf 1444{
eac13465 1445 struct reg_avail_info *info = &reg_avail_info[regno];
2e81afe5 1446 int luid = DF_INSN_LUID (insn);
2c084240 1447
2e81afe5 1448 info->last_set = luid;
eac13465 1449 if (info->last_bb != current_bb)
1450 {
1451 info->last_bb = current_bb;
2e81afe5 1452 info->first_set = luid;
eac13465 1453 }
18aa2adf 1454}
1455
8e802be9 1456/* Record memory modification information for INSN. We do not actually care
1457 about the memory location(s) that are set, or even how they are set (consider
1458 a CALL_INSN). We merely need to record which insns modify memory. */
18aa2adf 1459
1460static void
e050de51 1461record_last_mem_set_info (rtx_insn *insn)
18aa2adf 1462{
37495d69 1463 if (! flag_gcse_lm)
1464 return;
d7b592b0 1465
d2ac64b1 1466 record_last_mem_set_info_common (insn, modify_mem_list,
1467 canon_modify_mem_list,
1468 modify_mem_list_set,
1469 blocks_with_calls);
18aa2adf 1470}
1471
18aa2adf 1472/* Called from compute_hash_table via note_stores to handle one
ec8895d7 1473 SET or CLOBBER in an insn. DATA is really the instruction in which
1474 the SET is taking place. */
18aa2adf 1475
1476static void
81a410b1 1477record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
18aa2adf 1478{
e050de51 1479 rtx_insn *last_set_insn = (rtx_insn *) data;
ec8895d7 1480
18aa2adf 1481 if (GET_CODE (dest) == SUBREG)
1482 dest = SUBREG_REG (dest);
1483
b9f02dbb 1484 if (REG_P (dest))
18aa2adf 1485 record_last_reg_set_info (last_set_insn, REGNO (dest));
b9f02dbb 1486 else if (MEM_P (dest)
18aa2adf 1487 /* Ignore pushes, they clobber nothing. */
1488 && ! push_operand (dest, GET_MODE (dest)))
1489 record_last_mem_set_info (last_set_insn);
1490}
1491
07abdb66 1492/* Top level function to create an expression hash table.
18aa2adf 1493
1494 Expression entries are placed in the hash table if
1495 - they are of the form (set (pseudo-reg) src),
1496 - src is something we want to perform GCSE on,
1497 - none of the operands are subsequently modified in the block
1498
18aa2adf 1499 Currently src must be a pseudo-reg or a const_int.
1500
27cfe3f1 1501 TABLE is the table computed. */
18aa2adf 1502
1503static void
9908fe4d 1504compute_hash_table_work (struct gcse_hash_table_d *table)
18aa2adf 1505{
d743aba2 1506 int i;
18aa2adf 1507
8e802be9 1508 /* re-Cache any INSN_LIST nodes we have allocated. */
7fb47f9f 1509 clear_modify_mem_tables ();
18aa2adf 1510 /* Some working arrays used to track first and last set in each block. */
d743aba2 1511 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
eac13465 1512
d743aba2 1513 for (i = 0; i < max_reg_num (); ++i)
4c26117a 1514 reg_avail_info[i].last_bb = NULL;
18aa2adf 1515
fc00614f 1516 FOR_EACH_BB_FN (current_bb, cfun)
18aa2adf 1517 {
526d7387 1518 rtx_insn *insn;
02e7a332 1519 unsigned int regno;
18aa2adf 1520
1521 /* First pass over the instructions records information used to
2e81afe5 1522 determine when registers and memory are first and last set. */
defc8016 1523 FOR_BB_INSNS (current_bb, insn)
18aa2adf 1524 {
da6f6776 1525 if (!NONDEBUG_INSN_P (insn))
18aa2adf 1526 continue;
1527
b9f02dbb 1528 if (CALL_P (insn))
18aa2adf 1529 {
24ec6636 1530 hard_reg_set_iterator hrsi;
1531 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1532 0, regno, hrsi)
1533 record_last_reg_set_info (insn, regno);
2c084240 1534
07abdb66 1535 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1536 record_last_mem_set_info (insn);
18aa2adf 1537 }
1538
ec8895d7 1539 note_stores (PATTERN (insn), record_last_set_info, insn);
18aa2adf 1540 }
1541
1542 /* The next pass builds the hash table. */
defc8016 1543 FOR_BB_INSNS (current_bb, insn)
da6f6776 1544 if (NONDEBUG_INSN_P (insn))
1e5b92fa 1545 hash_scan_insn (insn, table);
18aa2adf 1546 }
1547
eac13465 1548 free (reg_avail_info);
1549 reg_avail_info = NULL;
18aa2adf 1550}
1551
27cfe3f1 1552/* Allocate space for the set/expr hash TABLE.
07abdb66 1553 It is used to determine the number of buckets to use. */
18aa2adf 1554
1555static void
9908fe4d 1556alloc_hash_table (struct gcse_hash_table_d *table)
18aa2adf 1557{
1558 int n;
1559
9845d120 1560 n = get_max_insn_count ();
1561
1562 table->size = n / 4;
27cfe3f1 1563 if (table->size < 11)
1564 table->size = 11;
2c084240 1565
18aa2adf 1566 /* Attempt to maintain efficient use of hash table.
1567 Making it an odd number is simplest for now.
1568 ??? Later take some measurements. */
27cfe3f1 1569 table->size |= 1;
9908fe4d 1570 n = table->size * sizeof (struct gcse_expr *);
1571 table->table = GNEWVAR (struct gcse_expr *, n);
18aa2adf 1572}
1573
27cfe3f1 1574/* Free things allocated by alloc_hash_table. */
18aa2adf 1575
1576static void
9908fe4d 1577free_hash_table (struct gcse_hash_table_d *table)
18aa2adf 1578{
27cfe3f1 1579 free (table->table);
18aa2adf 1580}
1581
07abdb66 1582/* Compute the expression hash table TABLE. */
18aa2adf 1583
1584static void
9908fe4d 1585compute_hash_table (struct gcse_hash_table_d *table)
18aa2adf 1586{
1587 /* Initialize count of number of entries in hash table. */
27cfe3f1 1588 table->n_elems = 0;
9908fe4d 1589 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
18aa2adf 1590
27cfe3f1 1591 compute_hash_table_work (table);
18aa2adf 1592}
1593\f
1594/* Expression tracking support. */
1595
07abdb66 1596/* Clear canon_modify_mem_list and modify_mem_list tables. */
1597static void
1598clear_modify_mem_tables (void)
23e5207c 1599{
07abdb66 1600 unsigned i;
1601 bitmap_iterator bi;
23e5207c 1602
07abdb66 1603 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
23e5207c 1604 {
f1f41a6c 1605 modify_mem_list[i].release ();
1606 canon_modify_mem_list[i].release ();
23e5207c 1607 }
07abdb66 1608 bitmap_clear (modify_mem_list_set);
1609 bitmap_clear (blocks_with_calls);
23e5207c 1610}
1611
07abdb66 1612/* Release memory used by modify_mem_list_set. */
23e5207c 1613
07abdb66 1614static void
1615free_modify_mem_tables (void)
375b98af 1616{
07abdb66 1617 clear_modify_mem_tables ();
1618 free (modify_mem_list);
1619 free (canon_modify_mem_list);
1620 modify_mem_list = 0;
1621 canon_modify_mem_list = 0;
375b98af 1622}
07abdb66 1623\f
b3f3796c 1624/* Compute PRE+LCM working variables. */
18aa2adf 1625
1626/* Local properties of expressions. */
bc8197c0 1627
18aa2adf 1628/* Nonzero for expressions that are transparent in the block. */
b3f3796c 1629static sbitmap *transp;
18aa2adf 1630
b3f3796c 1631/* Nonzero for expressions that are computed (available) in the block. */
1632static sbitmap *comp;
18aa2adf 1633
b3f3796c 1634/* Nonzero for expressions that are locally anticipatable in the block. */
1635static sbitmap *antloc;
18aa2adf 1636
b3f3796c 1637/* Nonzero for expressions where this block is an optimal computation
1638 point. */
1639static sbitmap *pre_optimal;
7bdba5dd 1640
b3f3796c 1641/* Nonzero for expressions which are redundant in a particular block. */
1642static sbitmap *pre_redundant;
18aa2adf 1643
7bcd381b 1644/* Nonzero for expressions which should be inserted on a specific edge. */
1645static sbitmap *pre_insert_map;
1646
1647/* Nonzero for expressions which should be deleted in a specific block. */
1648static sbitmap *pre_delete_map;
1649
b3f3796c 1650/* Allocate vars used for PRE analysis. */
18aa2adf 1651
1652static void
952f0048 1653alloc_pre_mem (int n_blocks, int n_exprs)
18aa2adf 1654{
b3f3796c 1655 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1656 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1657 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
0388e90f 1658
7bcd381b 1659 pre_optimal = NULL;
1660 pre_redundant = NULL;
1661 pre_insert_map = NULL;
1662 pre_delete_map = NULL;
7bcd381b 1663 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
2c084240 1664
7bcd381b 1665 /* pre_insert and pre_delete are allocated later. */
18aa2adf 1666}
1667
b3f3796c 1668/* Free vars used for PRE analysis. */
18aa2adf 1669
1670static void
952f0048 1671free_pre_mem (void)
18aa2adf 1672{
cca23eb2 1673 sbitmap_vector_free (transp);
1674 sbitmap_vector_free (comp);
8123d49b 1675
1676 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
18aa2adf 1677
7bcd381b 1678 if (pre_optimal)
cca23eb2 1679 sbitmap_vector_free (pre_optimal);
7bcd381b 1680 if (pre_redundant)
cca23eb2 1681 sbitmap_vector_free (pre_redundant);
7bcd381b 1682 if (pre_insert_map)
cca23eb2 1683 sbitmap_vector_free (pre_insert_map);
7bcd381b 1684 if (pre_delete_map)
cca23eb2 1685 sbitmap_vector_free (pre_delete_map);
7bcd381b 1686
8123d49b 1687 transp = comp = NULL;
7bcd381b 1688 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
18aa2adf 1689}
1690
f151d0c6 1691/* Remove certain expressions from anticipatable and transparent
1692 sets of basic blocks that have incoming abnormal edge.
1693 For PRE remove potentially trapping expressions to avoid placing
1694 them on abnormal edges. For hoisting remove memory references that
1695 can be clobbered by calls. */
18aa2adf 1696
1697static void
f151d0c6 1698prune_expressions (bool pre_p)
18aa2adf 1699{
9908fe4d 1700 struct gcse_expr *expr;
e531b5f0 1701 unsigned int ui;
f151d0c6 1702 basic_block bb;
bafa5ac7 1703
3c6549f8 1704 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
53c5d9d4 1705 bitmap_clear (prune_exprs);
27cfe3f1 1706 for (ui = 0; ui < expr_hash_table.size; ui++)
e531b5f0 1707 {
bc8197c0 1708 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
f151d0c6 1709 {
1710 /* Note potentially trapping expressions. */
bc8197c0 1711 if (may_trap_p (expr->expr))
f151d0c6 1712 {
08b7917c 1713 bitmap_set_bit (prune_exprs, expr->bitmap_index);
f151d0c6 1714 continue;
1715 }
e531b5f0 1716
050ae453 1717 if (!pre_p && contains_mem_rtx_p (expr->expr))
f151d0c6 1718 /* Note memory references that can be clobbered by a call.
1719 We do not split abnormal edges in hoisting, so would
1720 a memory reference get hoisted along an abnormal edge,
1721 it would be placed /before/ the call. Therefore, only
1722 constant memory references can be hoisted along abnormal
1723 edges. */
1724 {
050ae453 1725 rtx x = expr->expr;
1726
1727 /* Common cases where we might find the MEM which may allow us
1728 to avoid pruning the expression. */
1729 while (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1730 x = XEXP (x, 0);
1731
1732 /* If we found the MEM, go ahead and look at it to see if it has
1733 properties that allow us to avoid pruning its expression out
1734 of the tables. */
1735 if (MEM_P (x))
1736 {
1737 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1738 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
1739 continue;
1740
1741 if (MEM_READONLY_P (x)
1742 && !MEM_VOLATILE_P (x)
1743 && MEM_NOTRAP_P (x))
1744 /* Constant memory reference, e.g., a PIC address. */
1745 continue;
1746 }
f151d0c6 1747
1748 /* ??? Optimally, we would use interprocedural alias
1749 analysis to determine if this mem is actually killed
1750 by this call. */
1751
08b7917c 1752 bitmap_set_bit (prune_exprs, expr->bitmap_index);
f151d0c6 1753 }
1754 }
1755 }
bafa5ac7 1756
fc00614f 1757 FOR_EACH_BB_FN (bb, cfun)
bafa5ac7 1758 {
e531b5f0 1759 edge e;
cd665a06 1760 edge_iterator ei;
e531b5f0 1761
1762 /* If the current block is the destination of an abnormal edge, we
f151d0c6 1763 kill all trapping (for PRE) and memory (for hoist) expressions
1764 because we won't be able to properly place the instruction on
1765 the edge. So make them neither anticipatable nor transparent.
1766 This is fairly conservative.
1767
1768 ??? For hoisting it may be necessary to check for set-and-jump
1769 instructions here, not just for abnormal edges. The general problem
1770 is that when an expression cannot not be placed right at the end of
1771 a basic block we should account for any side-effects of a subsequent
1772 jump instructions that could clobber the expression. It would
1773 be best to implement this check along the lines of
1ec78e16 1774 should_hoist_expr_to_dom where the target block is already known
f151d0c6 1775 and, hence, there's no need to conservatively prune expressions on
1776 "intermediate" set-and-jump instructions. */
cd665a06 1777 FOR_EACH_EDGE (e, ei, bb->preds)
f151d0c6 1778 if ((e->flags & EDGE_ABNORMAL)
1779 && (pre_p || CALL_P (BB_END (e->src))))
e531b5f0 1780 {
53c5d9d4 1781 bitmap_and_compl (antloc[bb->index],
f151d0c6 1782 antloc[bb->index], prune_exprs);
53c5d9d4 1783 bitmap_and_compl (transp[bb->index],
f151d0c6 1784 transp[bb->index], prune_exprs);
e531b5f0 1785 break;
1786 }
f151d0c6 1787 }
f151d0c6 1788}
1789
b89c219c 1790/* It may be necessary to insert a large number of insns on edges to
1791 make the existing occurrences of expressions fully redundant. This
1792 routine examines the set of insertions and deletions and if the ratio
1793 of insertions to deletions is too high for a particular expression, then
1794 the expression is removed from the insertion/deletion sets.
1795
1796 N_ELEMS is the number of elements in the hash table. */
1797
1798static void
1799prune_insertions_deletions (int n_elems)
1800{
1801 sbitmap_iterator sbi;
b89c219c 1802
1803 /* We always use I to iterate over blocks/edges and J to iterate over
1804 expressions. */
1805 unsigned int i, j;
1806
1807 /* Counts for the number of times an expression needs to be inserted and
1808 number of times an expression can be removed as a result. */
1809 int *insertions = GCNEWVEC (int, n_elems);
1810 int *deletions = GCNEWVEC (int, n_elems);
1811
1812 /* Set of expressions which require too many insertions relative to
1813 the number of deletions achieved. We will prune these out of the
1814 insertion/deletion sets. */
3c6549f8 1815 auto_sbitmap prune_exprs (n_elems);
53c5d9d4 1816 bitmap_clear (prune_exprs);
b89c219c 1817
1818 /* Iterate over the edges counting the number of times each expression
1819 needs to be inserted. */
f1955b22 1820 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
b89c219c 1821 {
0d211963 1822 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
b89c219c 1823 insertions[j]++;
1824 }
1825
1826 /* Similarly for deletions, but those occur in blocks rather than on
1827 edges. */
fe672ac0 1828 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
b89c219c 1829 {
0d211963 1830 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
b89c219c 1831 deletions[j]++;
1832 }
1833
1834 /* Now that we have accurate counts, iterate over the elements in the
1835 hash table and see if any need too many insertions relative to the
1836 number of evaluations that can be removed. If so, mark them in
1837 PRUNE_EXPRS. */
1838 for (j = 0; j < (unsigned) n_elems; j++)
1839 if (deletions[j]
1840 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
08b7917c 1841 bitmap_set_bit (prune_exprs, j);
b89c219c 1842
1843 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
0d211963 1844 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
b89c219c 1845 {
f1955b22 1846 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
08b7917c 1847 bitmap_clear_bit (pre_insert_map[i], j);
b89c219c 1848
fe672ac0 1849 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
08b7917c 1850 bitmap_clear_bit (pre_delete_map[i], j);
b89c219c 1851 }
1852
b89c219c 1853 free (insertions);
1854 free (deletions);
1855}
1856
f151d0c6 1857/* Top level routine to do the dataflow analysis needed by PRE. */
e531b5f0 1858
bc8197c0 1859static struct edge_list *
f151d0c6 1860compute_pre_data (void)
1861{
bc8197c0 1862 struct edge_list *edge_list;
f151d0c6 1863 basic_block bb;
1864
1865 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1866 prune_expressions (true);
fe672ac0 1867 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
f151d0c6 1868
1869 /* Compute ae_kill for each basic block using:
1870
1871 ~(TRANSP | COMP)
1872 */
1873
fc00614f 1874 FOR_EACH_BB_FN (bb, cfun)
f151d0c6 1875 {
53c5d9d4 1876 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1877 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
bafa5ac7 1878 }
1879
3f5be5f4 1880 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
7bcd381b 1881 ae_kill, &pre_insert_map, &pre_delete_map);
cca23eb2 1882 sbitmap_vector_free (antloc);
8123d49b 1883 antloc = NULL;
cca23eb2 1884 sbitmap_vector_free (ae_kill);
3cfec666 1885 ae_kill = NULL;
b89c219c 1886
1887 prune_insertions_deletions (expr_hash_table.n_elems);
bc8197c0 1888
1889 return edge_list;
18aa2adf 1890}
1891\f
1892/* PRE utilities */
1893
6ef828f9 1894/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
b3f3796c 1895 block BB.
18aa2adf 1896
1897 VISITED is a pointer to a working buffer for tracking which BB's have
1898 been visited. It is NULL for the top-level call.
1899
1900 We treat reaching expressions that go through blocks containing the same
1901 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1902 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1903 2 as not reaching. The intent is to improve the probability of finding
1904 only one reaching expression and to reduce register lifetimes by picking
1905 the closest such expression. */
1906
1907static int
9908fe4d 1908pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
bc8197c0 1909 basic_block bb, char *visited)
18aa2adf 1910{
cb7e28c3 1911 edge pred;
cd665a06 1912 edge_iterator ei;
48e1416a 1913
cd665a06 1914 FOR_EACH_EDGE (pred, ei, bb->preds)
18aa2adf 1915 {
8d4a53c7 1916 basic_block pred_bb = pred->src;
18aa2adf 1917
34154e27 1918 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
18aa2adf 1919 /* Has predecessor has already been visited? */
b3d6de89 1920 || visited[pred_bb->index])
2c084240 1921 ;/* Nothing to do. */
1922
18aa2adf 1923 /* Does this predecessor generate this expression? */
08b7917c 1924 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
18aa2adf 1925 {
1926 /* Is this the occurrence we're looking for?
1927 Note that there's only one generating occurrence per block
1928 so we just need to check the block number. */
b3f3796c 1929 if (occr_bb == pred_bb)
18aa2adf 1930 return 1;
2c084240 1931
b3d6de89 1932 visited[pred_bb->index] = 1;
18aa2adf 1933 }
1934 /* Ignore this predecessor if it kills the expression. */
08b7917c 1935 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
b3d6de89 1936 visited[pred_bb->index] = 1;
2c084240 1937
18aa2adf 1938 /* Neither gen nor kill. */
1939 else
b65b4f63 1940 {
b3d6de89 1941 visited[pred_bb->index] = 1;
048599b9 1942 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
18aa2adf 1943 return 1;
b65b4f63 1944 }
18aa2adf 1945 }
1946
1947 /* All paths have been checked. */
1948 return 0;
1949}
cd55d9d6 1950
1951/* The wrapper for pre_expr_reaches_here_work that ensures that any
aa40f561 1952 memory allocated for that function is returned. */
cd55d9d6 1953
1954static int
9908fe4d 1955pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
cd55d9d6 1956{
1957 int rval;
fe672ac0 1958 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
cd55d9d6 1959
387732c1 1960 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
cd55d9d6 1961
1962 free (visited);
2c084240 1963 return rval;
cd55d9d6 1964}
18aa2adf 1965\f
42202832 1966/* Generate RTL to copy an EXP to REG and return it. */
7bcd381b 1967
42202832 1968rtx_insn *
1969prepare_copy_insn (rtx reg, rtx exp)
7bcd381b 1970{
526d7387 1971 rtx_insn *pat;
7bcd381b 1972
1973 start_sequence ();
06e2144a 1974
1975 /* If the expression is something that's an operand, like a constant,
1976 just copy it to a register. */
1977 if (general_operand (exp, GET_MODE (reg)))
1978 emit_move_insn (reg, exp);
1979
1980 /* Otherwise, make a new insn to compute this expression and make sure the
bc8197c0 1981 insn will be recognized (this also adds any needed CLOBBERs). */
0d59b19d 1982 else
1983 {
d1f9b275 1984 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
0d59b19d 1985
dae9d0e7 1986 if (insn_invalid_p (insn, false))
0fa137b8 1987 gcc_unreachable ();
0d59b19d 1988 }
48e1416a 1989
31d3e01c 1990 pat = get_insns ();
7bcd381b 1991 end_sequence ();
1992
1993 return pat;
1994}
3cfec666 1995
42202832 1996/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1997
1998static rtx_insn *
1999process_insert_insn (struct gcse_expr *expr)
2000{
2001 rtx reg = expr->reaching_reg;
2002 /* Copy the expression to make sure we don't have any sharing issues. */
2003 rtx exp = copy_rtx (expr->expr);
2004
2005 return prepare_copy_insn (reg, exp);
2006}
2007
b3f3796c 2008/* Add EXPR to the end of basic block BB.
2009
36f52b0d 2010 This is used by both the PRE and code hoisting. */
18aa2adf 2011
2012static void
9908fe4d 2013insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
18aa2adf 2014{
4cd001d5 2015 rtx_insn *insn = BB_END (bb);
526d7387 2016 rtx_insn *new_insn;
18aa2adf 2017 rtx reg = expr->reaching_reg;
2018 int regno = REGNO (reg);
526d7387 2019 rtx_insn *pat, *pat_end;
18aa2adf 2020
7bcd381b 2021 pat = process_insert_insn (expr);
0d59b19d 2022 gcc_assert (pat && INSN_P (pat));
31d3e01c 2023
2024 pat_end = pat;
2025 while (NEXT_INSN (pat_end) != NULL_RTX)
2026 pat_end = NEXT_INSN (pat_end);
18aa2adf 2027
2028 /* If the last insn is a jump, insert EXPR in front [taking care to
917bbcab 2029 handle cc0, etc. properly]. Similarly we need to care trapping
17a54dac 2030 instructions in presence of non-call exceptions. */
18aa2adf 2031
b9f02dbb 2032 if (JUMP_P (insn)
6d7dc5b9 2033 || (NONJUMP_INSN_P (insn)
ea091dfd 2034 && (!single_succ_p (bb)
2035 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
18aa2adf 2036 {
18aa2adf 2037 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2038 if cc0 isn't set. */
693c9f42 2039 if (HAVE_cc0)
18aa2adf 2040 {
693c9f42 2041 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2042 if (note)
2043 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2044 else
2045 {
2046 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2047 if (maybe_cc0_setter
2048 && INSN_P (maybe_cc0_setter)
2049 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2050 insn = maybe_cc0_setter;
2051 }
18aa2adf 2052 }
693c9f42 2053
18aa2adf 2054 /* FIXME: What if something in cc0/jump uses value set in new insn? */
3072d30e 2055 new_insn = emit_insn_before_noloc (pat, insn, bb);
170e5c6c 2056 }
2c084240 2057
170e5c6c 2058 /* Likewise if the last insn is a call, as will happen in the presence
2059 of exception handling. */
b9f02dbb 2060 else if (CALL_P (insn)
ea091dfd 2061 && (!single_succ_p (bb)
2062 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
170e5c6c 2063 {
ed5527ca 2064 /* Keeping in mind targets with small register classes and parameters
2065 in registers, we search backward and place the instructions before
2066 the first parameter is loaded. Do this for everyone for consistency
36f52b0d 2067 and a presumption that we'll get better code elsewhere as well. */
170e5c6c 2068
2069 /* Since different machines initialize their parameter registers
2070 in different orders, assume nothing. Collect the set of all
2071 parameter registers. */
5496dbfc 2072 insn = find_first_parameter_load (insn, BB_HEAD (bb));
170e5c6c 2073
9fc37e9d 2074 /* If we found all the parameter loads, then we want to insert
2075 before the first parameter load.
2076
2077 If we did not find all the parameter loads, then we might have
2078 stopped on the head of the block, which could be a CODE_LABEL.
2079 If we inserted before the CODE_LABEL, then we would be putting
2080 the insn in the wrong basic block. In that case, put the insn
8b3dea0b 2081 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
b9f02dbb 2082 while (LABEL_P (insn)
83458610 2083 || NOTE_INSN_BASIC_BLOCK_P (insn))
8b3dea0b 2084 insn = NEXT_INSN (insn);
2c084240 2085
3072d30e 2086 new_insn = emit_insn_before_noloc (pat, insn, bb);
18aa2adf 2087 }
2088 else
3072d30e 2089 new_insn = emit_insn_after_noloc (pat, insn, bb);
18aa2adf 2090
31d3e01c 2091 while (1)
b3f3796c 2092 {
31d3e01c 2093 if (INSN_P (pat))
2e81afe5 2094 add_label_notes (PATTERN (pat), new_insn);
31d3e01c 2095 if (pat == pat_end)
2096 break;
2097 pat = NEXT_INSN (pat);
b3f3796c 2098 }
170e5c6c 2099
18aa2adf 2100 gcse_create_count++;
2101
3f5be5f4 2102 if (dump_file)
18aa2adf 2103 {
3f5be5f4 2104 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
b3d6de89 2105 bb->index, INSN_UID (new_insn));
3f5be5f4 2106 fprintf (dump_file, "copying expression %d to reg %d\n",
2c084240 2107 expr->bitmap_index, regno);
18aa2adf 2108 }
2109}
2110
7bcd381b 2111/* Insert partially redundant expressions on edges in the CFG to make
2112 the expressions fully redundant. */
18aa2adf 2113
7bcd381b 2114static int
9908fe4d 2115pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
18aa2adf 2116{
2c084240 2117 int e, i, j, num_edges, set_size, did_insert = 0;
b3f3796c 2118 sbitmap *inserted;
2119
7bcd381b 2120 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2121 if it reaches any of the deleted expressions. */
18aa2adf 2122
7bcd381b 2123 set_size = pre_insert_map[0]->size;
2124 num_edges = NUM_EDGES (edge_list);
27cfe3f1 2125 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
53c5d9d4 2126 bitmap_vector_clear (inserted, num_edges);
18aa2adf 2127
7bcd381b 2128 for (e = 0; e < num_edges; e++)
18aa2adf 2129 {
2130 int indx;
8d4a53c7 2131 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
b3f3796c 2132
b3f3796c 2133 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
18aa2adf 2134 {
7bcd381b 2135 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
18aa2adf 2136
bc8197c0 2137 for (j = indx;
2138 insert && j < (int) expr_hash_table.n_elems;
2139 j++, insert >>= 1)
2c084240 2140 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2141 {
9908fe4d 2142 struct gcse_expr *expr = index_map[j];
2143 struct gcse_occr *occr;
b3f3796c 2144
424da949 2145 /* Now look at each deleted occurrence of this expression. */
2c084240 2146 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2147 {
2148 if (! occr->deleted_p)
2149 continue;
2150
822e391f 2151 /* Insert this expression on this edge if it would
424da949 2152 reach the deleted occurrence in BB. */
08b7917c 2153 if (!bitmap_bit_p (inserted[e], j))
2c084240 2154 {
526d7387 2155 rtx_insn *insn;
2c084240 2156 edge eg = INDEX_EDGE (edge_list, e);
2157
2158 /* We can't insert anything on an abnormal and
2159 critical edge, so we insert the insn at the end of
2160 the previous block. There are several alternatives
2161 detailed in Morgans book P277 (sec 10.5) for
2162 handling this situation. This one is easiest for
2163 now. */
2164
164aece4 2165 if (eg->flags & EDGE_ABNORMAL)
36f52b0d 2166 insert_insn_end_basic_block (index_map[j], bb);
2c084240 2167 else
2168 {
2169 insn = process_insert_insn (index_map[j]);
2170 insert_insn_on_edge (insn, eg);
2171 }
2172
3f5be5f4 2173 if (dump_file)
2c084240 2174 {
d743aba2 2175 fprintf (dump_file, "PRE: edge (%d,%d), ",
b3d6de89 2176 bb->index,
2177 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
3f5be5f4 2178 fprintf (dump_file, "copy expression %d\n",
2c084240 2179 expr->bitmap_index);
2180 }
2181
8e802be9 2182 update_ld_motion_stores (expr);
08b7917c 2183 bitmap_set_bit (inserted[e], j);
2c084240 2184 did_insert = 1;
2185 gcse_create_count++;
2186 }
2187 }
2188 }
18aa2adf 2189 }
2190 }
0388e90f 2191
cca23eb2 2192 sbitmap_vector_free (inserted);
7bcd381b 2193 return did_insert;
18aa2adf 2194}
2195
53ee16e4 2196/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
9d344979 2197 Given "old_reg <- expr" (INSN), instead of adding after it
2198 reaching_reg <- old_reg
2199 it's better to do the following:
2200 reaching_reg <- expr
2201 old_reg <- reaching_reg
2202 because this way copy propagation can discover additional PRE
5c47e414 2203 opportunities. But if this fails, we try the old way.
2204 When "expr" is a store, i.e.
2205 given "MEM <- old_reg", instead of adding after it
2206 reaching_reg <- old_reg
2207 it's better to add it before as follows:
2208 reaching_reg <- old_reg
2209 MEM <- reaching_reg. */
18aa2adf 2210
2211static void
9908fe4d 2212pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
18aa2adf 2213{
2214 rtx reg = expr->reaching_reg;
2215 int regno = REGNO (reg);
2216 int indx = expr->bitmap_index;
53ee16e4 2217 rtx pat = PATTERN (insn);
f9a00e9e 2218 rtx set, first_set;
2219 rtx_insn *new_insn;
9d344979 2220 rtx old_reg;
53ee16e4 2221 int i;
18aa2adf 2222
53ee16e4 2223 /* This block matches the logic in hash_scan_insn. */
0d59b19d 2224 switch (GET_CODE (pat))
53ee16e4 2225 {
0d59b19d 2226 case SET:
2227 set = pat;
2228 break;
2229
2230 case PARALLEL:
53ee16e4 2231 /* Search through the parallel looking for the set whose
2232 source was the expression that we're interested in. */
00ce82e3 2233 first_set = NULL_RTX;
53ee16e4 2234 set = NULL_RTX;
2235 for (i = 0; i < XVECLEN (pat, 0); i++)
2236 {
2237 rtx x = XVECEXP (pat, 0, i);
00ce82e3 2238 if (GET_CODE (x) == SET)
53ee16e4 2239 {
00ce82e3 2240 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2241 may not find an equivalent expression, but in this
2242 case the PARALLEL will have a single set. */
2243 if (first_set == NULL_RTX)
2244 first_set = x;
2245 if (expr_equiv_p (SET_SRC (x), expr->expr))
2246 {
2247 set = x;
2248 break;
2249 }
53ee16e4 2250 }
2251 }
00ce82e3 2252
2253 gcc_assert (first_set);
2254 if (set == NULL_RTX)
2255 set = first_set;
0d59b19d 2256 break;
2257
2258 default:
2259 gcc_unreachable ();
53ee16e4 2260 }
2c084240 2261
b9f02dbb 2262 if (REG_P (SET_DEST (set)))
53ee16e4 2263 {
5c47e414 2264 old_reg = SET_DEST (set);
2265 /* Check if we can modify the set destination in the original insn. */
2266 if (validate_change (insn, &SET_DEST (set), reg, 0))
2267 {
2268 new_insn = gen_move_insn (old_reg, reg);
2269 new_insn = emit_insn_after (new_insn, insn);
5c47e414 2270 }
2271 else
2272 {
2273 new_insn = gen_move_insn (reg, old_reg);
2274 new_insn = emit_insn_after (new_insn, insn);
5c47e414 2275 }
53ee16e4 2276 }
5c47e414 2277 else /* This is possible only in case of a store to memory. */
53ee16e4 2278 {
5c47e414 2279 old_reg = SET_SRC (set);
53ee16e4 2280 new_insn = gen_move_insn (reg, old_reg);
5c47e414 2281
2282 /* Check if we can modify the set source in the original insn. */
2283 if (validate_change (insn, &SET_SRC (set), reg, 0))
2284 new_insn = emit_insn_before (new_insn, insn);
2285 else
2286 new_insn = emit_insn_after (new_insn, insn);
53ee16e4 2287 }
18aa2adf 2288
2289 gcse_create_count++;
2290
3f5be5f4 2291 if (dump_file)
2292 fprintf (dump_file,
7bcd381b 2293 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
90bd219d 2294 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
7bcd381b 2295 INSN_UID (insn), regno);
18aa2adf 2296}
2297
2298/* Copy available expressions that reach the redundant expression
2299 to `reaching_reg'. */
2300
2301static void
952f0048 2302pre_insert_copies (void)
18aa2adf 2303{
5c47e414 2304 unsigned int i, added_copy;
9908fe4d 2305 struct gcse_expr *expr;
2306 struct gcse_occr *occr;
2307 struct gcse_occr *avail;
b3f3796c 2308
18aa2adf 2309 /* For each available expression in the table, copy the result to
2310 `reaching_reg' if the expression reaches a deleted one.
2311
2312 ??? The current algorithm is rather brute force.
2313 Need to do some profiling. */
2314
27cfe3f1 2315 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 2316 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 2317 {
2318 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2319 we don't want to insert a copy here because the expression may not
2320 really be redundant. So only insert an insn if the expression was
2321 deleted. This test also avoids further processing if the
2322 expression wasn't deleted anywhere. */
2323 if (expr->reaching_reg == NULL)
2324 continue;
b9f02dbb 2325
5c47e414 2326 /* Set when we add a copy for that expression. */
b9f02dbb 2327 added_copy = 0;
2c084240 2328
2329 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2330 {
2331 if (! occr->deleted_p)
2332 continue;
18aa2adf 2333
2c084240 2334 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2335 {
526d7387 2336 rtx_insn *insn = avail->insn;
18aa2adf 2337
2c084240 2338 /* No need to handle this one if handled already. */
2339 if (avail->copied_p)
2340 continue;
18aa2adf 2341
2c084240 2342 /* Don't handle this one if it's a redundant one. */
dd1286fb 2343 if (insn->deleted ())
2c084240 2344 continue;
18aa2adf 2345
2c084240 2346 /* Or if the expression doesn't reach the deleted one. */
3cfec666 2347 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
8d4a53c7 2348 expr,
2349 BLOCK_FOR_INSN (occr->insn)))
2c084240 2350 continue;
18aa2adf 2351
5c47e414 2352 added_copy = 1;
2353
2c084240 2354 /* Copy the result of avail to reaching_reg. */
2355 pre_insert_copy_insn (expr, insn);
2356 avail->copied_p = 1;
2357 }
2358 }
5c47e414 2359
b9f02dbb 2360 if (added_copy)
5c47e414 2361 update_ld_motion_stores (expr);
2c084240 2362 }
18aa2adf 2363}
2364
97f436b3 2365struct set_data
2366{
526d7387 2367 rtx_insn *insn;
97f436b3 2368 const_rtx set;
2369 int nsets;
2370};
2371
2372/* Increment number of sets and record set in DATA. */
2373
2374static void
2375record_set_data (rtx dest, const_rtx set, void *data)
2376{
2377 struct set_data *s = (struct set_data *)data;
2378
2379 if (GET_CODE (set) == SET)
2380 {
2381 /* We allow insns having multiple sets, where all but one are
2382 dead as single set insns. In the common case only a single
2383 set is present, so we want to avoid checking for REG_UNUSED
2384 notes unless necessary. */
2385 if (s->nsets == 1
2386 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2387 && !side_effects_p (s->set))
2388 s->nsets = 0;
2389
2390 if (!s->nsets)
2391 {
2392 /* Record this set. */
2393 s->nsets += 1;
2394 s->set = set;
2395 }
2396 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2397 || side_effects_p (set))
2398 s->nsets += 1;
2399 }
2400}
2401
2402static const_rtx
526d7387 2403single_set_gcse (rtx_insn *insn)
97f436b3 2404{
2405 struct set_data s;
2406 rtx pattern;
2407
2408 gcc_assert (INSN_P (insn));
2409
2410 /* Optimize common case. */
2411 pattern = PATTERN (insn);
2412 if (GET_CODE (pattern) == SET)
2413 return pattern;
2414
2415 s.insn = insn;
2416 s.nsets = 0;
2417 note_stores (pattern, record_set_data, &s);
2418
2419 /* Considered invariant insns have exactly one set. */
2420 gcc_assert (s.nsets == 1);
2421 return s.set;
2422}
2423
51f6e244 2424/* Emit move from SRC to DEST noting the equivalence with expression computed
2425 in INSN. */
bc8197c0 2426
9ed997be 2427static rtx_insn *
526d7387 2428gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
51f6e244 2429{
50fc2d35 2430 rtx_insn *new_rtx;
97f436b3 2431 const_rtx set = single_set_gcse (insn);
2432 rtx set2;
51f6e244 2433 rtx note;
264adf90 2434 rtx eqv = NULL_RTX;
51f6e244 2435
2436 /* This should never fail since we're creating a reg->reg copy
2437 we've verified to be valid. */
2438
9ce37fa7 2439 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
27442180 2440
264adf90 2441 /* Note the equivalence for local CSE pass. Take the note from the old
2442 set if there was one. Otherwise record the SET_SRC from the old set
2443 unless DEST is also an operand of the SET_SRC. */
9ce37fa7 2444 set2 = single_set (new_rtx);
65e78aeb 2445 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
9ce37fa7 2446 return new_rtx;
51f6e244 2447 if ((note = find_reg_equal_equiv_note (insn)))
2448 eqv = XEXP (note, 0);
264adf90 2449 else if (! REG_P (dest)
2450 || ! reg_mentioned_p (dest, SET_SRC (set)))
51f6e244 2451 eqv = SET_SRC (set);
2452
264adf90 2453 if (eqv != NULL_RTX)
2454 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
51f6e244 2455
9ce37fa7 2456 return new_rtx;
51f6e244 2457}
2458
18aa2adf 2459/* Delete redundant computations.
18aa2adf 2460 Deletion is done by changing the insn to copy the `reaching_reg' of
2461 the expression into the result of the SET. It is left to later passes
67d57e27 2462 to propagate the copy or eliminate it.
18aa2adf 2463
bc8197c0 2464 Return nonzero if a change is made. */
18aa2adf 2465
2466static int
952f0048 2467pre_delete (void)
18aa2adf 2468{
a08b57af 2469 unsigned int i;
256d47d0 2470 int changed;
9908fe4d 2471 struct gcse_expr *expr;
2472 struct gcse_occr *occr;
b3f3796c 2473
18aa2adf 2474 changed = 0;
27cfe3f1 2475 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 2476 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 2477 {
2478 int indx = expr->bitmap_index;
18aa2adf 2479
bc8197c0 2480 /* We only need to search antic_occr since we require ANTLOC != 0. */
2c084240 2481 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2482 {
526d7387 2483 rtx_insn *insn = occr->insn;
2c084240 2484 rtx set;
8d4a53c7 2485 basic_block bb = BLOCK_FOR_INSN (insn);
18aa2adf 2486
53ee16e4 2487 /* We only delete insns that have a single_set. */
08b7917c 2488 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
3072d30e 2489 && (set = single_set (insn)) != 0
2490 && dbg_cnt (pre_insn))
2c084240 2491 {
2c084240 2492 /* Create a pseudo-reg to store the result of reaching
2493 expressions into. Get the mode for the new pseudo from
2494 the mode of the original destination pseudo. */
2495 if (expr->reaching_reg == NULL)
ae12ddda 2496 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2c084240 2497
bc8197c0 2498 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
51f6e244 2499 delete_insn (insn);
2500 occr->deleted_p = 1;
51f6e244 2501 changed = 1;
2502 gcse_subst_count++;
18aa2adf 2503
3f5be5f4 2504 if (dump_file)
2c084240 2505 {
3f5be5f4 2506 fprintf (dump_file,
2c084240 2507 "PRE: redundant insn %d (expression %d) in ",
2508 INSN_UID (insn), indx);
3f5be5f4 2509 fprintf (dump_file, "bb %d, reaching reg is %d\n",
b3d6de89 2510 bb->index, REGNO (expr->reaching_reg));
2c084240 2511 }
2512 }
2513 }
2514 }
18aa2adf 2515
2516 return changed;
2517}
2518
2519/* Perform GCSE optimizations using PRE.
2520 This is called by one_pre_gcse_pass after all the dataflow analysis
2521 has been done.
2522
2c084240 2523 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2524 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2525 Compiler Design and Implementation.
18aa2adf 2526
2c084240 2527 ??? A new pseudo reg is created to hold the reaching expression. The nice
2528 thing about the classical approach is that it would try to use an existing
2529 reg. If the register can't be adequately optimized [i.e. we introduce
2530 reload problems], one could add a pass here to propagate the new register
2531 through the block.
18aa2adf 2532
2c084240 2533 ??? We don't handle single sets in PARALLELs because we're [currently] not
2534 able to copy the rest of the parallel when we insert copies to create full
2535 redundancies from partial redundancies. However, there's no reason why we
2536 can't handle PARALLELs in the cases where there are no partial
18aa2adf 2537 redundancies. */
2538
2539static int
bc8197c0 2540pre_gcse (struct edge_list *edge_list)
18aa2adf 2541{
a08b57af 2542 unsigned int i;
2543 int did_insert, changed;
9908fe4d 2544 struct gcse_expr **index_map;
2545 struct gcse_expr *expr;
18aa2adf 2546
2547 /* Compute a mapping from expression number (`bitmap_index') to
2548 hash table entry. */
2549
9908fe4d 2550 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
27cfe3f1 2551 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 2552 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 2553 index_map[expr->bitmap_index] = expr;
18aa2adf 2554
18aa2adf 2555 /* Delete the redundant insns first so that
2556 - we know what register to use for the new insns and for the other
2557 ones with reaching expressions
2558 - we know which insns are redundant when we go to create copies */
2c084240 2559
18aa2adf 2560 changed = pre_delete ();
7bcd381b 2561 did_insert = pre_edge_insert (edge_list, index_map);
2c084240 2562
18aa2adf 2563 /* In other places with reaching expressions, copy the expression to the
7bcd381b 2564 specially allocated pseudo-reg that reaches the redundant expr. */
18aa2adf 2565 pre_insert_copies ();
7bcd381b 2566 if (did_insert)
2567 {
2568 commit_edge_insertions ();
2569 changed = 1;
2570 }
18aa2adf 2571
cd55d9d6 2572 free (index_map);
18aa2adf 2573 return changed;
2574}
2575
2576/* Top level routine to perform one PRE GCSE pass.
2577
6ef828f9 2578 Return nonzero if a change was made. */
18aa2adf 2579
2580static int
d743aba2 2581one_pre_gcse_pass (void)
18aa2adf 2582{
2583 int changed = 0;
2584
2585 gcse_subst_count = 0;
2586 gcse_create_count = 0;
2587
d743aba2 2588 /* Return if there's nothing to do, or it is too expensive. */
a28770e1 2589 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
82b9069d 2590 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
d743aba2 2591 return 0;
2592
2593 /* We need alias. */
2594 init_alias_analysis ();
2595
2596 bytes_used = 0;
2597 gcc_obstack_init (&gcse_obstack);
2598 alloc_gcse_mem ();
2599
07abdb66 2600 alloc_hash_table (&expr_hash_table);
7bcd381b 2601 add_noreturn_fake_exit_edges ();
8e802be9 2602 if (flag_gcse_lm)
2603 compute_ld_motion_mems ();
2604
27cfe3f1 2605 compute_hash_table (&expr_hash_table);
bc8197c0 2606 if (flag_gcse_lm)
2607 trim_ld_motion_mems ();
3f5be5f4 2608 if (dump_file)
2609 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2c084240 2610
27cfe3f1 2611 if (expr_hash_table.n_elems > 0)
18aa2adf 2612 {
bc8197c0 2613 struct edge_list *edge_list;
fe672ac0 2614 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
bc8197c0 2615 edge_list = compute_pre_data ();
2616 changed |= pre_gcse (edge_list);
7bcd381b 2617 free_edge_list (edge_list);
18aa2adf 2618 free_pre_mem ();
2619 }
2c084240 2620
bc8197c0 2621 if (flag_gcse_lm)
2622 free_ld_motion_mems ();
41d24834 2623 remove_fake_exit_edges ();
27cfe3f1 2624 free_hash_table (&expr_hash_table);
18aa2adf 2625
d743aba2 2626 free_gcse_mem ();
2627 obstack_free (&gcse_obstack, NULL);
2628
2629 /* We are finished with alias. */
2630 end_alias_analysis ();
2631
3f5be5f4 2632 if (dump_file)
18aa2adf 2633 {
d743aba2 2634 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
a28770e1 2635 current_function_name (), n_basic_blocks_for_fn (cfun),
2636 bytes_used);
3f5be5f4 2637 fprintf (dump_file, "%d substs, %d insns created\n",
2c084240 2638 gcse_subst_count, gcse_create_count);
18aa2adf 2639 }
2640
2641 return changed;
2642}
322b2436 2643\f
19d2fe05 2644/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2645 to INSN. If such notes are added to an insn which references a
2646 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2647 that note, because the following loop optimization pass requires
2648 them. */
322b2436 2649
322b2436 2650/* ??? If there was a jump optimization pass after gcse and before loop,
2651 then we would not need to do this here, because jump would add the
19d2fe05 2652 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
322b2436 2653
2654static void
84b4ae13 2655add_label_notes (rtx x, rtx_insn *insn)
322b2436 2656{
2657 enum rtx_code code = GET_CODE (x);
2658 int i, j;
d2ca078f 2659 const char *fmt;
322b2436 2660
2661 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2662 {
e72f55f8 2663 /* This code used to ignore labels that referred to dispatch tables to
d01481af 2664 avoid flow generating (slightly) worse code.
e72f55f8 2665
b65b4f63 2666 We no longer ignore such label references (see LABEL_REF handling in
2667 mark_jump_label for additional information). */
2c084240 2668
a8d1dae0 2669 /* There's no reason for current users to emit jump-insns with
2670 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2671 notes. */
2672 gcc_assert (!JUMP_P (insn));
c7799456 2673 add_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x));
a1ddb869 2674
c7799456 2675 if (LABEL_P (label_ref_label (x)))
2676 LABEL_NUSES (label_ref_label (x))++;
a8d1dae0 2677
322b2436 2678 return;
2679 }
2680
2c084240 2681 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
322b2436 2682 {
2683 if (fmt[i] == 'e')
2684 add_label_notes (XEXP (x, i), insn);
2685 else if (fmt[i] == 'E')
2686 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2687 add_label_notes (XVECEXP (x, i, j), insn);
2688 }
2689}
b3f3796c 2690
6627f3ed 2691/* Code Hoisting variables and subroutines. */
2692
2693/* Very busy expressions. */
2694static sbitmap *hoist_vbein;
2695static sbitmap *hoist_vbeout;
2696
6627f3ed 2697/* ??? We could compute post dominators and run this algorithm in
95cc2547 2698 reverse to perform tail merging, doing so would probably be
6627f3ed 2699 more effective than the tail merging code in jump.c.
2700
2701 It's unclear if tail merging could be run in parallel with
2702 code hoisting. It would be nice. */
2703
2704/* Allocate vars used for code hoisting analysis. */
2705
2706static void
952f0048 2707alloc_code_hoist_mem (int n_blocks, int n_exprs)
6627f3ed 2708{
2709 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2710 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2711 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2712
2713 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2714 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
6627f3ed 2715}
2716
2717/* Free vars used for code hoisting analysis. */
2718
2719static void
952f0048 2720free_code_hoist_mem (void)
6627f3ed 2721{
cca23eb2 2722 sbitmap_vector_free (antloc);
2723 sbitmap_vector_free (transp);
2724 sbitmap_vector_free (comp);
6627f3ed 2725
cca23eb2 2726 sbitmap_vector_free (hoist_vbein);
2727 sbitmap_vector_free (hoist_vbeout);
6627f3ed 2728
0051c76a 2729 free_dominance_info (CDI_DOMINATORS);
6627f3ed 2730}
2731
2732/* Compute the very busy expressions at entry/exit from each block.
2733
2734 An expression is very busy if all paths from a given point
2735 compute the expression. */
2736
2737static void
952f0048 2738compute_code_hoist_vbeinout (void)
6627f3ed 2739{
4c26117a 2740 int changed, passes;
2741 basic_block bb;
6627f3ed 2742
fe672ac0 2743 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2744 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
6627f3ed 2745
2746 passes = 0;
2747 changed = 1;
2c084240 2748
6627f3ed 2749 while (changed)
2750 {
2751 changed = 0;
2c084240 2752
6627f3ed 2753 /* We scan the blocks in the reverse order to speed up
2754 the convergence. */
7a46197b 2755 FOR_EACH_BB_REVERSE_FN (bb, cfun)
6627f3ed 2756 {
34154e27 2757 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
33ff724a 2758 {
08b7917c 2759 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2760 hoist_vbein, bb);
33ff724a 2761
2762 /* Include expressions in VBEout that are calculated
2763 in BB and available at its end. */
53c5d9d4 2764 bitmap_ior (hoist_vbeout[bb->index],
33ff724a 2765 hoist_vbeout[bb->index], comp[bb->index]);
2766 }
0f11b6b5 2767
53c5d9d4 2768 changed |= bitmap_or_and (hoist_vbein[bb->index],
0f11b6b5 2769 antloc[bb->index],
2770 hoist_vbeout[bb->index],
2771 transp[bb->index]);
6627f3ed 2772 }
2c084240 2773
6627f3ed 2774 passes++;
2775 }
2776
3f5be5f4 2777 if (dump_file)
c0939130 2778 {
2779 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2780
fc00614f 2781 FOR_EACH_BB_FN (bb, cfun)
c0939130 2782 {
2783 fprintf (dump_file, "vbein (%d): ", bb->index);
53c5d9d4 2784 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
c0939130 2785 fprintf (dump_file, "vbeout(%d): ", bb->index);
53c5d9d4 2786 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
c0939130 2787 }
2788 }
6627f3ed 2789}
2790
2791/* Top level routine to do the dataflow analysis needed by code hoisting. */
2792
2793static void
952f0048 2794compute_code_hoist_data (void)
6627f3ed 2795{
27cfe3f1 2796 compute_local_properties (transp, comp, antloc, &expr_hash_table);
f151d0c6 2797 prune_expressions (false);
6627f3ed 2798 compute_code_hoist_vbeinout ();
0051c76a 2799 calculate_dominance_info (CDI_DOMINATORS);
3f5be5f4 2800 if (dump_file)
2801 fprintf (dump_file, "\n");
6627f3ed 2802}
2803
ded17066 2804/* Update register pressure for BB when hoisting an expression from
2805 instruction FROM, if live ranges of inputs are shrunk. Also
2806 maintain live_in information if live range of register referred
2807 in FROM is shrunk.
2808
2809 Return 0 if register pressure doesn't change, otherwise return
2810 the number by which register pressure is decreased.
2811
2812 NOTE: Register pressure won't be increased in this function. */
2813
2814static int
526d7387 2815update_bb_reg_pressure (basic_block bb, rtx_insn *from)
ded17066 2816{
526d7387 2817 rtx dreg;
2818 rtx_insn *insn;
ded17066 2819 basic_block succ_bb;
be10bb5a 2820 df_ref use, op_ref;
ded17066 2821 edge succ;
2822 edge_iterator ei;
2823 int decreased_pressure = 0;
2824 int nregs;
2825 enum reg_class pressure_class;
be10bb5a 2826
2827 FOR_EACH_INSN_USE (use, from)
ded17066 2828 {
be10bb5a 2829 dreg = DF_REF_REAL_REG (use);
ded17066 2830 /* The live range of register is shrunk only if it isn't:
2831 1. referred on any path from the end of this block to EXIT, or
2832 2. referred by insns other than FROM in this block. */
2833 FOR_EACH_EDGE (succ, ei, bb->succs)
2834 {
2835 succ_bb = succ->dest;
34154e27 2836 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
ded17066 2837 continue;
2838
2839 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2840 break;
2841 }
2842 if (succ != NULL)
2843 continue;
2844
2845 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2846 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2847 {
2848 if (!DF_REF_INSN_INFO (op_ref))
2849 continue;
2850
2851 insn = DF_REF_INSN (op_ref);
2852 if (BLOCK_FOR_INSN (insn) == bb
2853 && NONDEBUG_INSN_P (insn) && insn != from)
2854 break;
2855 }
2856
2857 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2858 /* Decrease register pressure and update live_in information for
2859 this block. */
2860 if (!op_ref && pressure_class != NO_REGS)
2861 {
2862 decreased_pressure += nregs;
2863 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2864 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2865 }
2866 }
2867 return decreased_pressure;
2868}
2869
1ec78e16 2870/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2871 flow graph, if it can reach BB unimpared. Stop the search if the
2872 expression would need to be moved more than DISTANCE instructions.
2873
2874 DISTANCE is the number of instructions through which EXPR can be
2875 hoisted up in flow graph.
2876
2877 BB_SIZE points to an array which contains the number of instructions
2878 for each basic block.
2879
2880 PRESSURE_CLASS and NREGS are register class and number of hard registers
2881 for storing EXPR.
2882
2883 HOISTED_BBS points to a bitmap indicating basic blocks through which
2884 EXPR is hoisted.
6627f3ed 2885
ded17066 2886 FROM is the instruction from which EXPR is hoisted.
2887
6627f3ed 2888 It's unclear exactly what Muchnick meant by "unimpared". It seems
2889 to me that the expression must either be computed or transparent in
2890 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2891 would allow the expression to be hoisted out of loops, even if
2892 the expression wasn't a loop invariant.
2893
2894 Contrast this to reachability for PRE where an expression is
2895 considered reachable if *any* path reaches instead of *all*
2896 paths. */
2897
2898static int
9908fe4d 2899should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
7125d9ac 2900 basic_block bb, sbitmap visited,
2901 HOST_WIDE_INT distance,
1ec78e16 2902 int *bb_size, enum reg_class pressure_class,
526d7387 2903 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
6627f3ed 2904{
1ec78e16 2905 unsigned int i;
6627f3ed 2906 edge pred;
cd665a06 2907 edge_iterator ei;
1ec78e16 2908 sbitmap_iterator sbi;
cd55d9d6 2909 int visited_allocated_locally = 0;
ded17066 2910 int decreased_pressure = 0;
3cfec666 2911
ded17066 2912 if (flag_ira_hoist_pressure)
2913 {
2914 /* Record old information of basic block BB when it is visited
2915 at the first time. */
2916 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2917 {
2918 struct bb_data *data = BB_DATA (bb);
2919 bitmap_copy (data->backup, data->live_in);
2920 data->old_pressure = data->max_reg_pressure[pressure_class];
2921 }
2922 decreased_pressure = update_bb_reg_pressure (bb, from);
2923 }
8b38b150 2924 /* Terminate the search if distance, for which EXPR is allowed to move,
2925 is exhausted. */
2926 if (distance > 0)
2927 {
ded17066 2928 if (flag_ira_hoist_pressure)
2929 {
2930 /* Prefer to hoist EXPR if register pressure is decreased. */
2931 if (decreased_pressure > *nregs)
2932 distance += bb_size[bb->index];
2933 /* Let EXPR be hoisted through basic block at no cost if one
2934 of following conditions is satisfied:
2935
2936 1. The basic block has low register pressure.
2937 2. Register pressure won't be increases after hoisting EXPR.
2938
2939 Constant expressions is handled conservatively, because
2940 hoisting constant expression aggressively results in worse
2941 code. This decision is made by the observation of CSiBE
2942 on ARM target, while it has no obvious effect on other
2943 targets like x86, x86_64, mips and powerpc. */
2944 else if (CONST_INT_P (expr->expr)
2945 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2946 >= ira_class_hard_regs_num[pressure_class]
2947 && decreased_pressure < *nregs))
2948 distance -= bb_size[bb->index];
2949 }
2950 else
1ec78e16 2951 distance -= bb_size[bb->index];
8b38b150 2952
2953 if (distance <= 0)
2954 return 0;
2955 }
2956 else
2957 gcc_assert (distance == 0);
6627f3ed 2958
2959 if (visited == NULL)
2960 {
387732c1 2961 visited_allocated_locally = 1;
fe672ac0 2962 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
53c5d9d4 2963 bitmap_clear (visited);
6627f3ed 2964 }
2965
cd665a06 2966 FOR_EACH_EDGE (pred, ei, bb->preds)
6627f3ed 2967 {
8d4a53c7 2968 basic_block pred_bb = pred->src;
6627f3ed 2969
34154e27 2970 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
6627f3ed 2971 break;
2e281af0 2972 else if (pred_bb == expr_bb)
2973 continue;
08b7917c 2974 else if (bitmap_bit_p (visited, pred_bb->index))
6627f3ed 2975 continue;
08b7917c 2976 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
6627f3ed 2977 break;
2978 /* Not killed. */
2979 else
2980 {
08b7917c 2981 bitmap_set_bit (visited, pred_bb->index);
1ec78e16 2982 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2983 visited, distance, bb_size,
ded17066 2984 pressure_class, nregs,
2985 hoisted_bbs, from))
6627f3ed 2986 break;
2987 }
2988 }
3cfec666 2989 if (visited_allocated_locally)
1ec78e16 2990 {
2991 /* If EXPR can be hoisted to expr_bb, record basic blocks through
ded17066 2992 which EXPR is hoisted in hoisted_bbs. */
1ec78e16 2993 if (flag_ira_hoist_pressure && !pred)
2994 {
ded17066 2995 /* Record the basic block from which EXPR is hoisted. */
2996 bitmap_set_bit (visited, bb->index);
0d211963 2997 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
ded17066 2998 bitmap_set_bit (hoisted_bbs, i);
1ec78e16 2999 }
3000 sbitmap_free (visited);
3001 }
2c084240 3002
6627f3ed 3003 return (pred == NULL);
3004}
3005\f
9d75589a 3006/* Find occurrence in BB. */
bc8197c0 3007
9908fe4d 3008static struct gcse_occr *
3009find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
8b38b150 3010{
3011 /* Find the right occurrence of this expression. */
3012 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3013 occr = occr->next;
3014
3015 return occr;
3016}
3017
1ec78e16 3018/* Actually perform code hoisting.
3019
3020 The code hoisting pass can hoist multiple computations of the same
3021 expression along dominated path to a dominating basic block, like
3022 from b2/b3 to b1 as depicted below:
3023
3024 b1 ------
3025 /\ |
3026 / \ |
3027 bx by distance
3028 / \ |
3029 / \ |
3030 b2 b3 ------
3031
3032 Unfortunately code hoisting generally extends the live range of an
3033 output pseudo register, which increases register pressure and hurts
3034 register allocation. To address this issue, an attribute MAX_DISTANCE
3035 is computed and attached to each expression. The attribute is computed
3036 from rtx cost of the corresponding expression and it's used to control
3037 how long the expression can be hoisted up in flow graph. As the
3038 expression is hoisted up in flow graph, GCC decreases its DISTANCE
ded17066 3039 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3040 register pressure if live ranges of inputs are shrunk.
1ec78e16 3041
3042 Option "-fira-hoist-pressure" implements register pressure directed
3043 hoist based on upper method. The rationale is:
3044 1. Calculate register pressure for each basic block by reusing IRA
3045 facility.
3046 2. When expression is hoisted through one basic block, GCC checks
ded17066 3047 the change of live ranges for inputs/output. The basic block's
3048 register pressure will be increased because of extended live
3049 range of output. However, register pressure will be decreased
3050 if the live ranges of inputs are shrunk.
3051 3. After knowing how hoisting affects register pressure, GCC prefers
3052 to hoist the expression if it can decrease register pressure, by
3053 increasing DISTANCE of the corresponding expression.
3054 4. If hoisting the expression increases register pressure, GCC checks
3055 register pressure of the basic block and decrease DISTANCE only if
3056 the register pressure is high. In other words, expression will be
3057 hoisted through at no cost if the basic block has low register
3058 pressure.
3059 5. Update register pressure information for basic blocks through
3060 which expression is hoisted. */
2c084240 3061
d743aba2 3062static int
952f0048 3063hoist_code (void)
6627f3ed 3064{
4c26117a 3065 basic_block bb, dominated;
f1f41a6c 3066 vec<basic_block> dom_tree_walk;
c0939130 3067 unsigned int dom_tree_walk_index;
f1f41a6c 3068 vec<basic_block> domby;
1ec78e16 3069 unsigned int i, j, k;
9908fe4d 3070 struct gcse_expr **index_map;
3071 struct gcse_expr *expr;
8b38b150 3072 int *to_bb_head;
3073 int *bb_size;
d743aba2 3074 int changed = 0;
1ec78e16 3075 struct bb_data *data;
3076 /* Basic blocks that have occurrences reachable from BB. */
3077 bitmap from_bbs;
3078 /* Basic blocks through which expr is hoisted. */
3079 bitmap hoisted_bbs = NULL;
3080 bitmap_iterator bi;
6627f3ed 3081
6627f3ed 3082 /* Compute a mapping from expression number (`bitmap_index') to
3083 hash table entry. */
3084
9908fe4d 3085 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
27cfe3f1 3086 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 3087 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 3088 index_map[expr->bitmap_index] = expr;
6627f3ed 3089
8b38b150 3090 /* Calculate sizes of basic blocks and note how far
3091 each instruction is from the start of its block. We then use this
3092 data to restrict distance an expression can travel. */
3093
3094 to_bb_head = XCNEWVEC (int, get_max_uid ());
fe672ac0 3095 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
8b38b150 3096
fc00614f 3097 FOR_EACH_BB_FN (bb, cfun)
8b38b150 3098 {
526d7387 3099 rtx_insn *insn;
8b38b150 3100 int to_head;
3101
8b38b150 3102 to_head = 0;
2241e3a7 3103 FOR_BB_INSNS (bb, insn)
8b38b150 3104 {
3105 /* Don't count debug instructions to avoid them affecting
3106 decision choices. */
3107 if (NONDEBUG_INSN_P (insn))
3108 to_bb_head[INSN_UID (insn)] = to_head++;
8b38b150 3109 }
3110
3111 bb_size[bb->index] = to_head;
3112 }
3113
34154e27 3114 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3115 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3116 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
c0939130 3117
1ec78e16 3118 from_bbs = BITMAP_ALLOC (NULL);
3119 if (flag_ira_hoist_pressure)
3120 hoisted_bbs = BITMAP_ALLOC (NULL);
3121
c0939130 3122 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
34154e27 3123 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
c0939130 3124
6627f3ed 3125 /* Walk over each basic block looking for potentially hoistable
3126 expressions, nothing gets hoisted from the entry block. */
f1f41a6c 3127 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
6627f3ed 3128 {
c0939130 3129 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3130
f1f41a6c 3131 if (domby.length () == 0)
c0939130 3132 continue;
6627f3ed 3133
3134 /* Examine each expression that is very busy at the exit of this
3135 block. These are the potentially hoistable expressions. */
156093aa 3136 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
6627f3ed 3137 {
08b7917c 3138 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
6627f3ed 3139 {
1ec78e16 3140 int nregs = 0;
3141 enum reg_class pressure_class = NO_REGS;
c0939130 3142 /* Current expression. */
9908fe4d 3143 struct gcse_expr *expr = index_map[i];
9d75589a 3144 /* Number of occurrences of EXPR that can be hoisted to BB. */
c0939130 3145 int hoistable = 0;
9d75589a 3146 /* Occurrences reachable from BB. */
1e094109 3147 vec<occr_t> occrs_to_hoist = vNULL;
c0939130 3148 /* We want to insert the expression into BB only once, so
3149 note when we've inserted it. */
3150 int insn_inserted_p;
3151 occr_t occr;
3152
33ff724a 3153 /* If an expression is computed in BB and is available at end of
9d75589a 3154 BB, hoist all occurrences dominated by BB to BB. */
08b7917c 3155 if (bitmap_bit_p (comp[bb->index], i))
c0939130 3156 {
3157 occr = find_occr_in_bb (expr->antic_occr, bb);
3158
3159 if (occr)
3160 {
9d75589a 3161 /* An occurrence might've been already deleted
c0939130 3162 while processing a dominator of BB. */
c96e0a0a 3163 if (!occr->deleted_p)
c0939130 3164 {
3165 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3166 hoistable++;
3167 }
3168 }
3169 else
3170 hoistable++;
3171 }
33ff724a 3172
6627f3ed 3173 /* We've found a potentially hoistable expression, now
3174 we look at every block BB dominates to see if it
3175 computes the expression. */
f1f41a6c 3176 FOR_EACH_VEC_ELT (domby, j, dominated)
6627f3ed 3177 {
7125d9ac 3178 HOST_WIDE_INT max_distance;
8b38b150 3179
6627f3ed 3180 /* Ignore self dominance. */
8c4bd339 3181 if (bb == dominated)
6627f3ed 3182 continue;
6627f3ed 3183 /* We've found a dominated block, now see if it computes
3184 the busy expression and whether or not moving that
3185 expression to the "beginning" of that block is safe. */
08b7917c 3186 if (!bitmap_bit_p (antloc[dominated->index], i))
6627f3ed 3187 continue;
3188
c0939130 3189 occr = find_occr_in_bb (expr->antic_occr, dominated);
3190 gcc_assert (occr);
8b38b150 3191
9d75589a 3192 /* An occurrence might've been already deleted
c0939130 3193 while processing a dominator of BB. */
3194 if (occr->deleted_p)
c96e0a0a 3195 continue;
c0939130 3196 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3197
3198 max_distance = expr->max_distance;
3199 if (max_distance > 0)
3200 /* Adjust MAX_DISTANCE to account for the fact that
3201 OCCR won't have to travel all of DOMINATED, but
3202 only part of it. */
3203 max_distance += (bb_size[dominated->index]
3204 - to_bb_head[INSN_UID (occr->insn)]);
8b38b150 3205
1ec78e16 3206 pressure_class = get_pressure_class_and_nregs (occr->insn,
3207 &nregs);
3208
3209 /* Note if the expression should be hoisted from the dominated
3210 block to BB if it can reach DOMINATED unimpared.
6627f3ed 3211
3212 Keep track of how many times this expression is hoistable
3213 from a dominated block into BB. */
1ec78e16 3214 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3215 max_distance, bb_size,
3216 pressure_class, &nregs,
ded17066 3217 hoisted_bbs, occr->insn))
c0939130 3218 {
3219 hoistable++;
f1f41a6c 3220 occrs_to_hoist.safe_push (occr);
c0939130 3221 bitmap_set_bit (from_bbs, dominated->index);
3222 }
6627f3ed 3223 }
3224
424da949 3225 /* If we found more than one hoistable occurrence of this
c0939130 3226 expression, then note it in the vector of expressions to
6627f3ed 3227 hoist. It makes no sense to hoist things which are computed
3228 in only one BB, and doing so tends to pessimize register
3229 allocation. One could increase this value to try harder
3230 to avoid any possible code expansion due to register
3231 allocation issues; however experiments have shown that
3232 the vast majority of hoistable expressions are only movable
d01481af 3233 from two successors, so raising this threshold is likely
6627f3ed 3234 to nullify any benefit we get from code hoisting. */
da54886a 3235 if (hoistable > 1 && dbg_cnt (hoist_insn))
6627f3ed 3236 {
f1f41a6c 3237 /* If (hoistable != vec::length), then there is
9d75589a 3238 an occurrence of EXPR in BB itself. Don't waste
c0939130 3239 time looking for LCA in this case. */
f1f41a6c 3240 if ((unsigned) hoistable == occrs_to_hoist.length ())
c0939130 3241 {
3242 basic_block lca;
3243
3244 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3245 from_bbs);
3246 if (lca != bb)
9d75589a 3247 /* Punt, it's better to hoist these occurrences to
c0939130 3248 LCA. */
f1f41a6c 3249 occrs_to_hoist.release ();
c0939130 3250 }
6627f3ed 3251 }
c0939130 3252 else
a04e8d62 3253 /* Punt, no point hoisting a single occurrence. */
f1f41a6c 3254 occrs_to_hoist.release ();
6627f3ed 3255
1ec78e16 3256 if (flag_ira_hoist_pressure
f1f41a6c 3257 && !occrs_to_hoist.is_empty ())
1ec78e16 3258 {
ded17066 3259 /* Increase register pressure of basic blocks to which
3260 expr is hoisted because of extended live range of
3261 output. */
1ec78e16 3262 data = BB_DATA (bb);
3263 data->max_reg_pressure[pressure_class] += nregs;
ded17066 3264 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3265 {
f5a6b05f 3266 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
ded17066 3267 data->max_reg_pressure[pressure_class] += nregs;
3268 }
1ec78e16 3269 }
3270 else if (flag_ira_hoist_pressure)
3271 {
ded17066 3272 /* Restore register pressure and live_in info for basic
3273 blocks recorded in hoisted_bbs when expr will not be
3274 hoisted. */
1ec78e16 3275 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3276 {
f5a6b05f 3277 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
ded17066 3278 bitmap_copy (data->live_in, data->backup);
3279 data->max_reg_pressure[pressure_class]
3280 = data->old_pressure;
1ec78e16 3281 }
3282 }
3283
3284 if (flag_ira_hoist_pressure)
3285 bitmap_clear (hoisted_bbs);
3286
c0939130 3287 insn_inserted_p = 0;
6627f3ed 3288
9d75589a 3289 /* Walk through occurrences of I'th expressions we want
c0939130 3290 to hoist to BB and make the transformations. */
f1f41a6c 3291 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
6627f3ed 3292 {
526d7387 3293 rtx_insn *insn;
97f436b3 3294 const_rtx set;
c0939130 3295
3296 gcc_assert (!occr->deleted_p);
3297
3298 insn = occr->insn;
97f436b3 3299 set = single_set_gcse (insn);
c0939130 3300
3301 /* Create a pseudo-reg to store the result of reaching
3302 expressions into. Get the mode for the new pseudo
3303 from the mode of the original destination pseudo.
3304
3305 It is important to use new pseudos whenever we
3306 emit a set. This will allow reload to use
3307 rematerialization for such registers. */
3308 if (!insn_inserted_p)
3309 expr->reaching_reg
3310 = gen_reg_rtx_and_attrs (SET_DEST (set));
3311
bc8197c0 3312 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
c0939130 3313 insn);
3314 delete_insn (insn);
3315 occr->deleted_p = 1;
3316 changed = 1;
3317 gcse_subst_count++;
3318
3319 if (!insn_inserted_p)
6627f3ed 3320 {
c0939130 3321 insert_insn_end_basic_block (expr, bb);
3322 insn_inserted_p = 1;
6627f3ed 3323 }
3324 }
c0939130 3325
f1f41a6c 3326 occrs_to_hoist.release ();
c0939130 3327 bitmap_clear (from_bbs);
6627f3ed 3328 }
3329 }
f1f41a6c 3330 domby.release ();
6627f3ed 3331 }
2c084240 3332
f1f41a6c 3333 dom_tree_walk.release ();
1ec78e16 3334 BITMAP_FREE (from_bbs);
3335 if (flag_ira_hoist_pressure)
3336 BITMAP_FREE (hoisted_bbs);
3337
8b38b150 3338 free (bb_size);
3339 free (to_bb_head);
387732c1 3340 free (index_map);
d743aba2 3341
3342 return changed;
6627f3ed 3343}
3344
1ec78e16 3345/* Return pressure class and number of needed hard registers (through
3346 *NREGS) of register REGNO. */
3347static enum reg_class
3348get_regno_pressure_class (int regno, int *nregs)
3349{
3350 if (regno >= FIRST_PSEUDO_REGISTER)
3351 {
3352 enum reg_class pressure_class;
3353
3354 pressure_class = reg_allocno_class (regno);
3355 pressure_class = ira_pressure_class_translate[pressure_class];
3356 *nregs
3357 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3358 return pressure_class;
3359 }
3360 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3361 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3362 {
3363 *nregs = 1;
3364 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3365 }
3366 else
3367 {
3368 *nregs = 0;
3369 return NO_REGS;
3370 }
3371}
3372
3373/* Return pressure class and number of hard registers (through *NREGS)
3374 for destination of INSN. */
3375static enum reg_class
526d7387 3376get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
1ec78e16 3377{
3378 rtx reg;
3379 enum reg_class pressure_class;
97f436b3 3380 const_rtx set = single_set_gcse (insn);
1ec78e16 3381
1ec78e16 3382 reg = SET_DEST (set);
3383 if (GET_CODE (reg) == SUBREG)
3384 reg = SUBREG_REG (reg);
3385 if (MEM_P (reg))
3386 {
3387 *nregs = 0;
3388 pressure_class = NO_REGS;
3389 }
3390 else
3391 {
3392 gcc_assert (REG_P (reg));
3393 pressure_class = reg_allocno_class (REGNO (reg));
3394 pressure_class = ira_pressure_class_translate[pressure_class];
3395 *nregs
3396 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3397 }
3398 return pressure_class;
3399}
3400
3401/* Increase (if INCR_P) or decrease current register pressure for
3402 register REGNO. */
3403static void
3404change_pressure (int regno, bool incr_p)
3405{
3406 int nregs;
3407 enum reg_class pressure_class;
3408
3409 pressure_class = get_regno_pressure_class (regno, &nregs);
3410 if (! incr_p)
3411 curr_reg_pressure[pressure_class] -= nregs;
3412 else
3413 {
3414 curr_reg_pressure[pressure_class] += nregs;
3415 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3416 < curr_reg_pressure[pressure_class])
3417 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3418 = curr_reg_pressure[pressure_class];
3419 }
3420}
3421
3422/* Calculate register pressure for each basic block by walking insns
3423 from last to first. */
3424static void
3425calculate_bb_reg_pressure (void)
3426{
3427 int i;
3428 unsigned int j;
526d7387 3429 rtx_insn *insn;
1ec78e16 3430 basic_block bb;
3431 bitmap curr_regs_live;
3432 bitmap_iterator bi;
3433
3434
3b3a5e5f 3435 ira_setup_eliminable_regset ();
1ec78e16 3436 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
fc00614f 3437 FOR_EACH_BB_FN (bb, cfun)
1ec78e16 3438 {
3439 curr_bb = bb;
ded17066 3440 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3441 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3442 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3443 bitmap_copy (curr_regs_live, df_get_live_out (bb));
1ec78e16 3444 for (i = 0; i < ira_pressure_classes_num; i++)
3445 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3446 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3447 change_pressure (j, true);
3448
3449 FOR_BB_INSNS_REVERSE (bb, insn)
3450 {
3451 rtx dreg;
3452 int regno;
be10bb5a 3453 df_ref def, use;
1ec78e16 3454
3455 if (! NONDEBUG_INSN_P (insn))
3456 continue;
3457
be10bb5a 3458 FOR_EACH_INSN_DEF (def, insn)
1ec78e16 3459 {
be10bb5a 3460 dreg = DF_REF_REAL_REG (def);
1ec78e16 3461 gcc_assert (REG_P (dreg));
3462 regno = REGNO (dreg);
be10bb5a 3463 if (!(DF_REF_FLAGS (def)
1ec78e16 3464 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3465 {
3466 if (bitmap_clear_bit (curr_regs_live, regno))
3467 change_pressure (regno, false);
3468 }
3469 }
3470
be10bb5a 3471 FOR_EACH_INSN_USE (use, insn)
1ec78e16 3472 {
be10bb5a 3473 dreg = DF_REF_REAL_REG (use);
1ec78e16 3474 gcc_assert (REG_P (dreg));
3475 regno = REGNO (dreg);
3476 if (bitmap_set_bit (curr_regs_live, regno))
3477 change_pressure (regno, true);
3478 }
3479 }
3480 }
3481 BITMAP_FREE (curr_regs_live);
3482
3483 if (dump_file == NULL)
3484 return;
3485
3486 fprintf (dump_file, "\nRegister Pressure: \n");
fc00614f 3487 FOR_EACH_BB_FN (bb, cfun)
1ec78e16 3488 {
3489 fprintf (dump_file, " Basic block %d: \n", bb->index);
3490 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3491 {
3492 enum reg_class pressure_class;
3493
3494 pressure_class = ira_pressure_classes[i];
3495 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3496 continue;
3497
3498 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3499 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3500 }
3501 }
3502 fprintf (dump_file, "\n");
3503}
3504
6627f3ed 3505/* Top level routine to perform one code hoisting (aka unification) pass
3506
6ef828f9 3507 Return nonzero if a change was made. */
6627f3ed 3508
3509static int
952f0048 3510one_code_hoisting_pass (void)
6627f3ed 3511{
3512 int changed = 0;
3513
d743aba2 3514 gcse_subst_count = 0;
3515 gcse_create_count = 0;
3516
3517 /* Return if there's nothing to do, or it is too expensive. */
a28770e1 3518 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
82b9069d 3519 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
d743aba2 3520 return 0;
3521
8b38b150 3522 doing_code_hoisting_p = true;
3523
1ec78e16 3524 /* Calculate register pressure for each basic block. */
3525 if (flag_ira_hoist_pressure)
3526 {
3527 regstat_init_n_sets_and_refs ();
3528 ira_set_pseudo_classes (false, dump_file);
3529 alloc_aux_for_blocks (sizeof (struct bb_data));
3530 calculate_bb_reg_pressure ();
3531 regstat_free_n_sets_and_refs ();
3532 }
3533
d743aba2 3534 /* We need alias. */
3535 init_alias_analysis ();
3536
3537 bytes_used = 0;
3538 gcc_obstack_init (&gcse_obstack);
3539 alloc_gcse_mem ();
3540
07abdb66 3541 alloc_hash_table (&expr_hash_table);
27cfe3f1 3542 compute_hash_table (&expr_hash_table);
3f5be5f4 3543 if (dump_file)
3544 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
2c084240 3545
27cfe3f1 3546 if (expr_hash_table.n_elems > 0)
6627f3ed 3547 {
fe672ac0 3548 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3549 expr_hash_table.n_elems);
6627f3ed 3550 compute_code_hoist_data ();
d743aba2 3551 changed = hoist_code ();
6627f3ed 3552 free_code_hoist_mem ();
3553 }
2c084240 3554
1ec78e16 3555 if (flag_ira_hoist_pressure)
3556 {
3557 free_aux_for_blocks ();
3558 free_reg_info ();
3559 }
27cfe3f1 3560 free_hash_table (&expr_hash_table);
d743aba2 3561 free_gcse_mem ();
3562 obstack_free (&gcse_obstack, NULL);
3563
3564 /* We are finished with alias. */
3565 end_alias_analysis ();
3566
3567 if (dump_file)
3568 {
3569 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
a28770e1 3570 current_function_name (), n_basic_blocks_for_fn (cfun),
3571 bytes_used);
d743aba2 3572 fprintf (dump_file, "%d substs, %d insns created\n",
3573 gcse_subst_count, gcse_create_count);
3574 }
6627f3ed 3575
8b38b150 3576 doing_code_hoisting_p = false;
3577
6627f3ed 3578 return changed;
3579}
8e802be9 3580\f
bc8197c0 3581/* Here we provide the things required to do store motion towards the exit.
3582 In order for this to be effective, gcse also needed to be taught how to
3583 move a load when it is killed only by a store to itself.
8e802be9 3584
3585 int i;
3586 float a[10];
3587
3588 void foo(float scale)
3589 {
3590 for (i=0; i<10; i++)
3591 a[i] *= scale;
3592 }
3593
3594 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3cfec666 3595 the load out since its live around the loop, and stored at the bottom
3596 of the loop.
8e802be9 3597
3cfec666 3598 The 'Load Motion' referred to and implemented in this file is
bc8197c0 3599 an enhancement to gcse which when using edge based LCM, recognizes
8e802be9 3600 this situation and allows gcse to move the load out of the loop.
3601
3602 Once gcse has hoisted the load, store motion can then push this
3603 load towards the exit, and we end up with no loads or stores of 'i'
3604 in the loop. */
3605
424da949 3606/* This will search the ldst list for a matching expression. If it
8e802be9 3607 doesn't find one, we create one and initialize it. */
3608
3609static struct ls_expr *
952f0048 3610ldst_entry (rtx x)
8e802be9 3611{
69333952 3612 int do_not_record_p = 0;
8e802be9 3613 struct ls_expr * ptr;
69333952 3614 unsigned int hash;
d9dd21a8 3615 ls_expr **slot;
0d707271 3616 struct ls_expr e;
8e802be9 3617
78d140c9 3618 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3619 NULL, /*have_reg_qty=*/false);
8e802be9 3620
0d707271 3621 e.pattern = x;
c1f445d2 3622 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
0d707271 3623 if (*slot)
d9dd21a8 3624 return *slot;
69333952 3625
4c36ffe6 3626 ptr = XNEW (struct ls_expr);
69333952 3627
3628 ptr->next = pre_ldst_mems;
3629 ptr->expr = NULL;
3630 ptr->pattern = x;
3631 ptr->pattern_regs = NULL_RTX;
d30c5be2 3632 ptr->stores.create (0);
69333952 3633 ptr->reaching_reg = NULL_RTX;
3634 ptr->invalid = 0;
3635 ptr->index = 0;
3636 ptr->hash_index = hash;
3637 pre_ldst_mems = ptr;
0d707271 3638 *slot = ptr;
3cfec666 3639
8e802be9 3640 return ptr;
3641}
3642
3643/* Free up an individual ldst entry. */
3644
3cfec666 3645static void
952f0048 3646free_ldst_entry (struct ls_expr * ptr)
8e802be9 3647{
d30c5be2 3648 ptr->stores.release ();
8e802be9 3649
3650 free (ptr);
3651}
3652
3653/* Free up all memory associated with the ldst list. */
3654
3655static void
bc8197c0 3656free_ld_motion_mems (void)
8e802be9 3657{
c1f445d2 3658 delete pre_ldst_table;
3659 pre_ldst_table = NULL;
0d707271 3660
3cfec666 3661 while (pre_ldst_mems)
8e802be9 3662 {
3663 struct ls_expr * tmp = pre_ldst_mems;
3664
3665 pre_ldst_mems = pre_ldst_mems->next;
3666
3667 free_ldst_entry (tmp);
3668 }
3669
3670 pre_ldst_mems = NULL;
3671}
3672
3673/* Dump debugging info about the ldst list. */
3674
3675static void
952f0048 3676print_ldst_list (FILE * file)
8e802be9 3677{
3678 struct ls_expr * ptr;
3679
3680 fprintf (file, "LDST list: \n");
3681
bc8197c0 3682 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
8e802be9 3683 {
3684 fprintf (file, " Pattern (%3d): ", ptr->index);
3685
3686 print_rtl (file, ptr->pattern);
3687
8e802be9 3688 fprintf (file, "\n Stores : ");
d30c5be2 3689 print_rtx_insn_vec (file, ptr->stores);
8e802be9 3690
3691 fprintf (file, "\n\n");
3692 }
3693
3694 fprintf (file, "\n");
3695}
3696
3697/* Returns 1 if X is in the list of ldst only expressions. */
3698
3699static struct ls_expr *
952f0048 3700find_rtx_in_ldst (rtx x)
8e802be9 3701{
0d707271 3702 struct ls_expr e;
d9dd21a8 3703 ls_expr **slot;
c1f445d2 3704 if (!pre_ldst_table)
00784725 3705 return NULL;
0d707271 3706 e.pattern = x;
c1f445d2 3707 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
d9dd21a8 3708 if (!slot || (*slot)->invalid)
0d707271 3709 return NULL;
d9dd21a8 3710 return *slot;
8e802be9 3711}
8e802be9 3712\f
3713/* Load Motion for loads which only kill themselves. */
3714
bc8197c0 3715/* Return true if x, a MEM, is a simple access with no side effects.
3716 These are the types of loads we consider for the ld_motion list,
3717 otherwise we let the usual aliasing take care of it. */
8e802be9 3718
3cfec666 3719static int
7ecb5bb2 3720simple_mem (const_rtx x)
8e802be9 3721{
8e802be9 3722 if (MEM_VOLATILE_P (x))
3723 return 0;
3cfec666 3724
8e802be9 3725 if (GET_MODE (x) == BLKmode)
3726 return 0;
7a676a9f 3727
64928ee5 3728 /* If we are handling exceptions, we must be careful with memory references
cbeb677e 3729 that may trap. If we are not, the behavior is undefined, so we may just
64928ee5 3730 continue. */
cbeb677e 3731 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
43f5be72 3732 return 0;
3733
64928ee5 3734 if (side_effects_p (x))
3735 return 0;
3cfec666 3736
64928ee5 3737 /* Do not consider function arguments passed on stack. */
3738 if (reg_mentioned_p (stack_pointer_rtx, x))
3739 return 0;
3740
3741 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3742 return 0;
3743
3744 return 1;
8e802be9 3745}
3746
3cfec666 3747/* Make sure there isn't a buried reference in this pattern anywhere.
3748 If there is, invalidate the entry for it since we're not capable
3749 of fixing it up just yet.. We have to be sure we know about ALL
8e802be9 3750 loads since the aliasing code will allow all entries in the
3751 ld_motion list to not-alias itself. If we miss a load, we will get
3cfec666 3752 the wrong value since gcse might common it and we won't know to
8e802be9 3753 fix it up. */
3754
3755static void
952f0048 3756invalidate_any_buried_refs (rtx x)
8e802be9 3757{
3758 const char * fmt;
387732c1 3759 int i, j;
8e802be9 3760 struct ls_expr * ptr;
3761
3762 /* Invalidate it in the list. */
b9f02dbb 3763 if (MEM_P (x) && simple_mem (x))
8e802be9 3764 {
3765 ptr = ldst_entry (x);
3766 ptr->invalid = 1;
3767 }
3768
3769 /* Recursively process the insn. */
3770 fmt = GET_RTX_FORMAT (GET_CODE (x));
3cfec666 3771
8e802be9 3772 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3773 {
3774 if (fmt[i] == 'e')
3775 invalidate_any_buried_refs (XEXP (x, i));
3776 else if (fmt[i] == 'E')
3777 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3778 invalidate_any_buried_refs (XVECEXP (x, i, j));
3779 }
3780}
3781
c5d8ca43 3782/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3783 being defined as MEM loads and stores to symbols, with no side effects
3784 and no registers in the expression. For a MEM destination, we also
3785 check that the insn is still valid if we replace the destination with a
3786 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3787 which don't match this criteria, they are invalidated and trimmed out
3788 later. */
8e802be9 3789
3cfec666 3790static void
952f0048 3791compute_ld_motion_mems (void)
8e802be9 3792{
3793 struct ls_expr * ptr;
4c26117a 3794 basic_block bb;
526d7387 3795 rtx_insn *insn;
3cfec666 3796
8e802be9 3797 pre_ldst_mems = NULL;
c1f445d2 3798 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
8e802be9 3799
fc00614f 3800 FOR_EACH_BB_FN (bb, cfun)
8e802be9 3801 {
defc8016 3802 FOR_BB_INSNS (bb, insn)
8e802be9 3803 {
9845d120 3804 if (NONDEBUG_INSN_P (insn))
8e802be9 3805 {
3806 if (GET_CODE (PATTERN (insn)) == SET)
3807 {
3808 rtx src = SET_SRC (PATTERN (insn));
3809 rtx dest = SET_DEST (PATTERN (insn));
3810
066c8e94 3811 /* Check for a simple load. */
b9f02dbb 3812 if (MEM_P (src) && simple_mem (src))
8e802be9 3813 {
3814 ptr = ldst_entry (src);
acec9605 3815 if (!REG_P (dest))
8e802be9 3816 ptr->invalid = 1;
3817 }
3818 else
3819 {
3820 /* Make sure there isn't a buried load somewhere. */
3821 invalidate_any_buried_refs (src);
3822 }
3cfec666 3823
066c8e94 3824 /* Check for a simple load through a REG_EQUAL note. */
3825 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3826 if (note
3827 && REG_NOTE_KIND (note) == REG_EQUAL
3828 && (src_eq = XEXP (note, 0))
f473eb72 3829 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3830 invalidate_any_buried_refs (src_eq);
3831
8e802be9 3832 /* Check for stores. Don't worry about aliased ones, they
3833 will block any movement we might do later. We only care
3834 about this exact pattern since those are the only
3835 circumstance that we will ignore the aliasing info. */
b9f02dbb 3836 if (MEM_P (dest) && simple_mem (dest))
8e802be9 3837 {
3838 ptr = ldst_entry (dest);
9c9680b5 3839 machine_mode src_mode = GET_MODE (src);
b9f02dbb 3840 if (! MEM_P (src)
c5d8ca43 3841 && GET_CODE (src) != ASM_OPERANDS
3842 /* Check for REG manually since want_to_gcse_p
3843 returns 0 for all REGs. */
9c9680b5 3844 && can_assign_to_reg_without_clobbers_p (src,
3845 src_mode))
d30c5be2 3846 ptr->stores.safe_push (insn);
8e802be9 3847 else
3848 ptr->invalid = 1;
3849 }
3850 }
3851 else
066c8e94 3852 {
3853 /* Invalidate all MEMs in the pattern and... */
3854 invalidate_any_buried_refs (PATTERN (insn));
3855
3856 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3857 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3858 if (note
3859 && REG_NOTE_KIND (note) == REG_EQUAL
3860 && (src_eq = XEXP (note, 0)))
3861 invalidate_any_buried_refs (src_eq);
3862 }
8e802be9 3863 }
3864 }
3865 }
3866}
3867
3cfec666 3868/* Remove any references that have been either invalidated or are not in the
8e802be9 3869 expression list for pre gcse. */
3870
3871static void
952f0048 3872trim_ld_motion_mems (void)
8e802be9 3873{
69333952 3874 struct ls_expr * * last = & pre_ldst_mems;
3875 struct ls_expr * ptr = pre_ldst_mems;
8e802be9 3876
3877 while (ptr != NULL)
3878 {
9908fe4d 3879 struct gcse_expr * expr;
3cfec666 3880
8e802be9 3881 /* Delete if entry has been made invalid. */
69333952 3882 if (! ptr->invalid)
8e802be9 3883 {
8e802be9 3884 /* Delete if we cannot find this mem in the expression list. */
69333952 3885 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3cfec666 3886
69333952 3887 for (expr = expr_hash_table.table[hash];
3888 expr != NULL;
3889 expr = expr->next_same_hash)
3890 if (expr_equiv_p (expr->expr, ptr->pattern))
3891 break;
8e802be9 3892 }
3893 else
9908fe4d 3894 expr = (struct gcse_expr *) 0;
69333952 3895
3896 if (expr)
8e802be9 3897 {
3898 /* Set the expression field if we are keeping it. */
8e802be9 3899 ptr->expr = expr;
69333952 3900 last = & ptr->next;
8e802be9 3901 ptr = ptr->next;
3902 }
69333952 3903 else
3904 {
3905 *last = ptr->next;
c1f445d2 3906 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
69333952 3907 free_ldst_entry (ptr);
3908 ptr = * last;
3909 }
8e802be9 3910 }
3911
3912 /* Show the world what we've found. */
3f5be5f4 3913 if (dump_file && pre_ldst_mems != NULL)
3914 print_ldst_list (dump_file);
8e802be9 3915}
3916
3917/* This routine will take an expression which we are replacing with
3918 a reaching register, and update any stores that are needed if
3919 that expression is in the ld_motion list. Stores are updated by
91c82c20 3920 copying their SRC to the reaching register, and then storing
8e802be9 3921 the reaching register into the store location. These keeps the
3922 correct value in the reaching register for the loads. */
3923
3924static void
9908fe4d 3925update_ld_motion_stores (struct gcse_expr * expr)
8e802be9 3926{
3927 struct ls_expr * mem_ptr;
3928
3929 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3930 {
3cfec666 3931 /* We can try to find just the REACHED stores, but is shouldn't
3932 matter to set the reaching reg everywhere... some might be
8e802be9 3933 dead and should be eliminated later. */
3934
c5d8ca43 3935 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3936 where reg is the reaching reg used in the load. We checked in
3937 compute_ld_motion_mems that we can replace (set mem expr) with
3938 (set reg expr) in that insn. */
d30c5be2 3939 rtx_insn *insn;
3940 unsigned int i;
3941 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
8e802be9 3942 {
8e802be9 3943 rtx pat = PATTERN (insn);
3944 rtx src = SET_SRC (pat);
3945 rtx reg = expr->reaching_reg;
8e802be9 3946
3947 /* If we've already copied it, continue. */
3948 if (expr->reaching_reg == src)
3949 continue;
3cfec666 3950
3f5be5f4 3951 if (dump_file)
8e802be9 3952 {
3f5be5f4 3953 fprintf (dump_file, "PRE: store updated with reaching reg ");
bc8197c0 3954 print_rtl (dump_file, reg);
3f5be5f4 3955 fprintf (dump_file, ":\n ");
3956 print_inline_rtx (dump_file, insn, 8);
3957 fprintf (dump_file, "\n");
8e802be9 3958 }
3cfec666 3959
9ed997be 3960 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
d52d7a3a 3961 emit_insn_before (copy, insn);
8e802be9 3962 SET_SRC (pat) = reg;
3072d30e 3963 df_insn_rescan (insn);
8e802be9 3964
3965 /* un-recognize this pattern since it's probably different now. */
3966 INSN_CODE (insn) = -1;
3967 gcse_create_count++;
3968 }
3969 }
3970}
3971\f
4b673aa1 3972/* Return true if the graph is too expensive to optimize. PASS is the
3973 optimization about to be performed. */
64928ee5 3974
82b9069d 3975bool
3976gcse_or_cprop_is_too_expensive (const char *pass)
4b673aa1 3977{
82b9069d 3978 unsigned int memory_request = (n_basic_blocks_for_fn (cfun)
3979 * SBITMAP_SET_SIZE (max_reg_num ())
3980 * sizeof (SBITMAP_ELT_TYPE));
3981
4b673aa1 3982 /* Trying to perform global optimizations on flow graphs which have
3983 a high connectivity will take a long time and is unlikely to be
3984 particularly useful.
7a676a9f 3985
4b673aa1 3986 In normal circumstances a cfg should have about twice as many
3987 edges as blocks. But we do not want to punish small functions
3988 which have a couple switch statements. Rather than simply
3989 threshold the number of blocks, uses something with a more
3990 graceful degradation. */
f1955b22 3991 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4b673aa1 3992 {
3993 warning (OPT_Wdisabled_optimization,
3994 "%s: %d basic blocks and %d edges/basic block",
a28770e1 3995 pass, n_basic_blocks_for_fn (cfun),
f1955b22 3996 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
8e802be9 3997
4b673aa1 3998 return true;
3999 }
8e802be9 4000
07abdb66 4001 /* If allocating memory for the dataflow bitmaps would take up too much
4b673aa1 4002 storage it's better just to disable the optimization. */
82b9069d 4003 if (memory_request > MAX_GCSE_MEMORY)
4b673aa1 4004 {
4005 warning (OPT_Wdisabled_optimization,
82b9069d 4006 "%s: %d basic blocks and %d registers; increase --param max-gcse-memory above %d",
4007 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
4008 memory_request);
8e802be9 4009
4b673aa1 4010 return true;
4011 }
42334a67 4012
4b673aa1 4013 return false;
9e4a9ceb 4014}
4b673aa1 4015\f
4b673aa1 4016static unsigned int
4017execute_rtl_pre (void)
4018{
805e3e15 4019 int changed;
4b673aa1 4020 delete_unreachable_blocks ();
4b673aa1 4021 df_analyze ();
805e3e15 4022 changed = one_pre_gcse_pass ();
4023 flag_rerun_cse_after_global_opts |= changed;
4024 if (changed)
4025 cleanup_cfg (0);
4b673aa1 4026 return 0;
4027}
7a676a9f 4028
4b673aa1 4029static unsigned int
4030execute_rtl_hoist (void)
4031{
805e3e15 4032 int changed;
4b673aa1 4033 delete_unreachable_blocks ();
4b673aa1 4034 df_analyze ();
805e3e15 4035 changed = one_code_hoisting_pass ();
4036 flag_rerun_cse_after_global_opts |= changed;
4037 if (changed)
4038 cleanup_cfg (0);
4b673aa1 4039 return 0;
4040}
77fce4cd 4041
cbe8bda8 4042namespace {
4043
4044const pass_data pass_data_rtl_pre =
77fce4cd 4045{
cbe8bda8 4046 RTL_PASS, /* type */
4047 "rtl pre", /* name */
4048 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 4049 TV_PRE, /* tv_id */
4050 PROP_cfglayout, /* properties_required */
4051 0, /* properties_provided */
4052 0, /* properties_destroyed */
4053 0, /* todo_flags_start */
8b88439e 4054 TODO_df_finish, /* todo_flags_finish */
d743aba2 4055};
77fce4cd 4056
cbe8bda8 4057class pass_rtl_pre : public rtl_opt_pass
4058{
4059public:
9af5ce0c 4060 pass_rtl_pre (gcc::context *ctxt)
4061 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
cbe8bda8 4062 {}
4063
4064 /* opt_pass methods: */
31315c24 4065 virtual bool gate (function *);
65b0537f 4066 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
cbe8bda8 4067
4068}; // class pass_rtl_pre
4069
31315c24 4070/* We do not construct an accurate cfg in functions which call
4071 setjmp, so none of these passes runs if the function calls
4072 setjmp.
4073 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4074
4075bool
4076pass_rtl_pre::gate (function *fun)
4077{
4078 return optimize > 0 && flag_gcse
4079 && !fun->calls_setjmp
4080 && optimize_function_for_speed_p (fun)
4081 && dbg_cnt (pre);
4082}
4083
cbe8bda8 4084} // anon namespace
4085
4086rtl_opt_pass *
4087make_pass_rtl_pre (gcc::context *ctxt)
4088{
4089 return new pass_rtl_pre (ctxt);
4090}
4091
4092namespace {
4093
4094const pass_data pass_data_rtl_hoist =
77fce4cd 4095{
cbe8bda8 4096 RTL_PASS, /* type */
4097 "hoist", /* name */
4098 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 4099 TV_HOIST, /* tv_id */
4100 PROP_cfglayout, /* properties_required */
4101 0, /* properties_provided */
4102 0, /* properties_destroyed */
4103 0, /* todo_flags_start */
8b88439e 4104 TODO_df_finish, /* todo_flags_finish */
77fce4cd 4105};
4106
cbe8bda8 4107class pass_rtl_hoist : public rtl_opt_pass
4108{
4109public:
9af5ce0c 4110 pass_rtl_hoist (gcc::context *ctxt)
4111 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
cbe8bda8 4112 {}
4113
4114 /* opt_pass methods: */
31315c24 4115 virtual bool gate (function *);
65b0537f 4116 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
cbe8bda8 4117
4118}; // class pass_rtl_hoist
4119
31315c24 4120bool
4121pass_rtl_hoist::gate (function *)
4122{
4123 return optimize > 0 && flag_gcse
4124 && !cfun->calls_setjmp
4125 /* It does not make sense to run code hoisting unless we are optimizing
4126 for code size -- it rarely makes programs faster, and can make then
4127 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4128 && optimize_function_for_size_p (cfun)
4129 && dbg_cnt (hoist);
4130}
4131
cbe8bda8 4132} // anon namespace
4133
4134rtl_opt_pass *
4135make_pass_rtl_hoist (gcc::context *ctxt)
4136{
4137 return new pass_rtl_hoist (ctxt);
4138}
4139
415309e2 4140/* Reset all state within gcse.c so that we can rerun the compiler
4141 within the same process. For use by toplev::finalize. */
4142
4143void
4144gcse_c_finalize (void)
4145{
4146 test_insn = NULL;
4147}
4148
1f3233d1 4149#include "gt-gcse.h"