]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gcse.c
[Ada] Revert change for gnatprove that is no longer needed
[thirdparty/gcc.git] / gcc / gcse.c
CommitLineData
07abdb66 1/* Partial redundancy elimination / Hoisting for RTL.
fbd26352 2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
18aa2adf 3
f12b58b3 4This file is part of GCC.
18aa2adf 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
18aa2adf 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
18aa2adf 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
18aa2adf 19
20/* TODO
21 - reordering of memory allocation and freeing to be more space efficient
1ec78e16 22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
18aa2adf 24*/
25
26/* References searched while implementing this.
18aa2adf 27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
18aa2adf 40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
18aa2adf 59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
ef0d57a0 114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
7bcd381b 118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
ef0d57a0 122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
18aa2adf 131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133*/
134
135#include "config.h"
ebd9163c 136#include "system.h"
805e22b2 137#include "coretypes.h"
9ef16211 138#include "backend.h"
7c29e30e 139#include "target.h"
9ef16211 140#include "rtl.h"
7c29e30e 141#include "tree.h"
142#include "predict.h"
9ef16211 143#include "df.h"
ad7b10a2 144#include "memmodel.h"
7953c610 145#include "tm_p.h"
7c29e30e 146#include "insn-config.h"
d30c5be2 147#include "print-rtl.h"
18aa2adf 148#include "regs.h"
1ec78e16 149#include "ira.h"
18aa2adf 150#include "recog.h"
7c29e30e 151#include "diagnostic-core.h"
94ea8568 152#include "cfgrtl.h"
153#include "cfganal.h"
154#include "lcm.h"
155#include "cfgcleanup.h"
3cfec666 156#include "expr.h"
9159979b 157#include "params.h"
c8a8ab0f 158#include "intl.h"
77fce4cd 159#include "tree-pass.h"
3072d30e 160#include "dbgcnt.h"
049d15fc 161#include "gcse.h"
d2ac64b1 162#include "gcse-common.h"
4059f3f0 163
ef0d57a0 164/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
05476866 165 are a superset of those done by classic GCSE.
18aa2adf 166
07abdb66 167 Two passes of copy/constant propagation are done around PRE or hoisting
168 because the first one enables more GCSE and the second one helps to clean
169 up the copies that PRE and HOIST create. This is needed more for PRE than
170 for HOIST because code hoisting will try to use an existing register
171 containing the common subexpression rather than create a new one. This is
172 harder to do for PRE because of the code motion (which HOIST doesn't do).
18aa2adf 173
174 Expressions we are interested in GCSE-ing are of the form
175 (set (pseudo-reg) (expression)).
176 Function want_to_gcse_p says what these are.
177
05476866 178 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
d45a307d 179 This allows PRE to hoist expressions that are expressed in multiple insns,
05476866 180 such as complex address calculations (e.g. for PIC code, or loads with a
181 high part and a low part).
d45a307d 182
18aa2adf 183 PRE handles moving invariant expressions out of loops (by treating them as
ef0d57a0 184 partially redundant).
18aa2adf 185
18aa2adf 186 **********************
187
188 We used to support multiple passes but there are diminishing returns in
189 doing so. The first pass usually makes 90% of the changes that are doable.
190 A second pass can make a few more changes made possible by the first pass.
191 Experiments show any further passes don't make enough changes to justify
192 the expense.
193
194 A study of spec92 using an unlimited number of passes:
195 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
196 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
197 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
198
199 It was found doing copy propagation between each pass enables further
200 substitutions.
201
d45a307d 202 This study was done before expressions in REG_EQUAL notes were added as
203 candidate expressions for optimization, and before the GIMPLE optimizers
204 were added. Probably, multiple passes is even less efficient now than
205 at the time when the study was conducted.
206
18aa2adf 207 PRE is quite expensive in complicated functions because the DFA can take
d45a307d 208 a while to converge. Hence we only perform one pass.
18aa2adf 209
210 **********************
211
212 The steps for PRE are:
213
214 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
215
216 2) Perform the data flow analysis for PRE.
217
218 3) Delete the redundant instructions
219
220 4) Insert the required copies [if any] that make the partially
221 redundant instructions fully redundant.
222
223 5) For other reaching expressions, insert an instruction to copy the value
224 to a newly created pseudo that will reach the redundant instruction.
225
226 The deletion is done first so that when we do insertions we
227 know which pseudo reg to use.
228
229 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
230 argue it is not. The number of iterations for the algorithm to converge
231 is typically 2-4 so I don't view it as that expensive (relatively speaking).
232
05476866 233 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
18aa2adf 234 we create. To make an expression reach the place where it's redundant,
235 the result of the expression is copied to a new register, and the redundant
236 expression is deleted by replacing it with this new register. Classic GCSE
237 doesn't have this problem as much as it computes the reaching defs of
04a40f24 238 each register in each block and thus can try to use an existing
239 register. */
18aa2adf 240\f
241/* GCSE global vars. */
242
049d15fc 243struct target_gcse default_target_gcse;
244#if SWITCHABLE_TARGET
245struct target_gcse *this_target_gcse = &default_target_gcse;
246#endif
247
d743aba2 248/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
249int flag_rerun_cse_after_global_opts;
ef0d57a0 250
18aa2adf 251/* An obstack for our working variables. */
252static struct obstack gcse_obstack;
253
18aa2adf 254/* Hash table of expressions. */
255
9908fe4d 256struct gcse_expr
18aa2adf 257{
bc8197c0 258 /* The expression. */
18aa2adf 259 rtx expr;
260 /* Index in the available expression bitmaps. */
261 int bitmap_index;
262 /* Next entry with the same hash. */
9908fe4d 263 struct gcse_expr *next_same_hash;
18aa2adf 264 /* List of anticipatable occurrences in basic blocks in the function.
265 An "anticipatable occurrence" is one that is the first occurrence in the
ef0d57a0 266 basic block, the operands are not modified in the basic block prior
267 to the occurrence and the output is not used between the start of
268 the block and the occurrence. */
9908fe4d 269 struct gcse_occr *antic_occr;
18aa2adf 270 /* List of available occurrence in basic blocks in the function.
271 An "available occurrence" is one that is the last occurrence in the
272 basic block and the operands are not modified by following statements in
273 the basic block [including this insn]. */
9908fe4d 274 struct gcse_occr *avail_occr;
18aa2adf 275 /* Non-null if the computation is PRE redundant.
276 The value is the newly created pseudo-reg to record a copy of the
277 expression in all the places that reach the redundant copy. */
278 rtx reaching_reg;
8b38b150 279 /* Maximum distance in instructions this expression can travel.
280 We avoid moving simple expressions for more than a few instructions
281 to keep register pressure under control.
282 A value of "0" removes restrictions on how far the expression can
283 travel. */
7125d9ac 284 HOST_WIDE_INT max_distance;
18aa2adf 285};
286
287/* Occurrence of an expression.
288 There is one per basic block. If a pattern appears more than once the
289 last appearance is used [or first for anticipatable expressions]. */
290
9908fe4d 291struct gcse_occr
18aa2adf 292{
293 /* Next occurrence of this expression. */
9908fe4d 294 struct gcse_occr *next;
18aa2adf 295 /* The insn that computes the expression. */
526d7387 296 rtx_insn *insn;
6ef828f9 297 /* Nonzero if this [anticipatable] occurrence has been deleted. */
18aa2adf 298 char deleted_p;
6ef828f9 299 /* Nonzero if this [available] occurrence has been copied to
18aa2adf 300 reaching_reg. */
301 /* ??? This is mutually exclusive with deleted_p, so they could share
302 the same byte. */
303 char copied_p;
304};
305
9908fe4d 306typedef struct gcse_occr *occr_t;
c0939130 307
07abdb66 308/* Expression hash tables.
18aa2adf 309 Each hash table is an array of buckets.
310 ??? It is known that if it were an array of entries, structure elements
311 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
312 not clear whether in the final analysis a sufficient amount of memory would
313 be saved as the size of the available expression bitmaps would be larger
314 [one could build a mapping table without holes afterwards though].
2c084240 315 Someday I'll perform the computation and figure it out. */
18aa2adf 316
9908fe4d 317struct gcse_hash_table_d
27cfe3f1 318{
319 /* The table itself.
320 This is an array of `expr_hash_table_size' elements. */
9908fe4d 321 struct gcse_expr **table;
27cfe3f1 322
323 /* Size of the hash table, in elements. */
324 unsigned int size;
a08b57af 325
27cfe3f1 326 /* Number of hash table elements. */
327 unsigned int n_elems;
27cfe3f1 328};
2c084240 329
27cfe3f1 330/* Expression hash table. */
9908fe4d 331static struct gcse_hash_table_d expr_hash_table;
27cfe3f1 332
8e802be9 333/* This is a list of expressions which are MEMs and will be used by load
3cfec666 334 or store motion.
bc8197c0 335 Load motion tracks MEMs which aren't killed by anything except itself,
336 i.e. loads and stores to a single location.
3cfec666 337 We can then allow movement of these MEM refs with a little special
8e802be9 338 allowance. (all stores copy the same value to the reaching reg used
339 for the loads). This means all values used to store into memory must have
bc8197c0 340 no side effects so we can re-issue the setter value. */
8e802be9 341
342struct ls_expr
343{
9908fe4d 344 struct gcse_expr * expr; /* Gcse expression reference for LM. */
8e802be9 345 rtx pattern; /* Pattern of this mem. */
64928ee5 346 rtx pattern_regs; /* List of registers mentioned by the mem. */
d30c5be2 347 vec<rtx_insn *> stores; /* INSN list of stores seen. */
8e802be9 348 struct ls_expr * next; /* Next in the list. */
349 int invalid; /* Invalid for some reason. */
350 int index; /* If it maps to a bitmap index. */
69333952 351 unsigned int hash_index; /* Index when in a hash table. */
8e802be9 352 rtx reaching_reg; /* Register to use when re-writing. */
353};
354
355/* Head of the list of load/store memory refs. */
356static struct ls_expr * pre_ldst_mems = NULL;
357
770ff93b 358struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
d9dd21a8 359{
d9dd21a8 360 typedef value_type compare_type;
9969c043 361 static inline hashval_t hash (const ls_expr *);
362 static inline bool equal (const ls_expr *, const ls_expr *);
d9dd21a8 363};
364
365/* Hashtable helpers. */
366inline hashval_t
9969c043 367pre_ldst_expr_hasher::hash (const ls_expr *x)
d9dd21a8 368{
369 int do_not_record_p = 0;
370 return
371 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
372}
373
374static int expr_equiv_p (const_rtx, const_rtx);
375
376inline bool
9969c043 377pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
378 const ls_expr *ptr2)
d9dd21a8 379{
380 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
381}
382
0d707271 383/* Hashtable for the load/store memory refs. */
c1f445d2 384static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
0d707271 385
18aa2adf 386/* Bitmap containing one bit for each register in the program.
387 Used when performing GCSE to track which registers have been set since
388 the start of the basic block. */
7fb47f9f 389static regset reg_set_bitmap;
18aa2adf 390
8e802be9 391/* Array, indexed by basic block number for a list of insns which modify
392 memory within that block. */
e050de51 393static vec<rtx_insn *> *modify_mem_list;
78d140c9 394static bitmap modify_mem_list_set;
8e802be9 395
57c8e46c 396/* This array parallels modify_mem_list, except that it stores MEMs
397 being set and their canonicalized memory addresses. */
f1f41a6c 398static vec<modify_pair> *canon_modify_mem_list;
78d140c9 399
f55d2721 400/* Bitmap indexed by block numbers to record which blocks contain
401 function calls. */
402static bitmap blocks_with_calls;
403
18aa2adf 404/* Various variables for statistics gathering. */
405
406/* Memory used in a pass.
407 This isn't intended to be absolutely precise. Its intent is only
408 to keep an eye on memory usage. */
409static int bytes_used;
2c084240 410
18aa2adf 411/* GCSE substitutions made. */
412static int gcse_subst_count;
413/* Number of copy instructions created. */
414static int gcse_create_count;
18aa2adf 415\f
8b38b150 416/* Doing code hoisting. */
417static bool doing_code_hoisting_p = false;
418\f
0ca684f3 419/* For available exprs */
4b673aa1 420static sbitmap *ae_kill;
18aa2adf 421\f
1ec78e16 422/* Data stored for each basic block. */
423struct bb_data
424{
425 /* Maximal register pressure inside basic block for given register class
426 (defined only for the pressure classes). */
427 int max_reg_pressure[N_REG_CLASSES];
ded17066 428 /* Recorded register pressure of basic block before trying to hoist
429 an expression. Will be used to restore the register pressure
430 if the expression should not be hoisted. */
431 int old_pressure;
432 /* Recorded register live_in info of basic block during code hoisting
433 process. BACKUP is used to record live_in info before trying to
434 hoist an expression, and will be used to restore LIVE_IN if the
435 expression should not be hoisted. */
436 bitmap live_in, backup;
1ec78e16 437};
438
439#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
440
441static basic_block curr_bb;
442
443/* Current register pressure for each pressure class. */
444static int curr_reg_pressure[N_REG_CLASSES];
445\f
446
952f0048 447static void compute_can_copy (void);
2f800191 448static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
449static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
f0af5a88 450static void *gcse_alloc (unsigned long);
defc8016 451static void alloc_gcse_mem (void);
952f0048 452static void free_gcse_mem (void);
9908fe4d 453static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
454static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
455static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
456static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
526d7387 457static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
458static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
459static int oprs_available_p (const_rtx, const rtx_insn *);
3754d046 460static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
7125d9ac 461 HOST_WIDE_INT, struct gcse_hash_table_d *);
3754d046 462static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
84b4ae13 463static void record_last_reg_set_info (rtx_insn *, int);
e050de51 464static void record_last_mem_set_info (rtx_insn *);
81a410b1 465static void record_last_set_info (rtx, const_rtx, void *);
9908fe4d 466static void compute_hash_table (struct gcse_hash_table_d *);
467static void alloc_hash_table (struct gcse_hash_table_d *);
468static void free_hash_table (struct gcse_hash_table_d *);
469static void compute_hash_table_work (struct gcse_hash_table_d *);
470static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
952f0048 471static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
9908fe4d 472 struct gcse_hash_table_d *);
81a410b1 473static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
7ecb5bb2 474static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
952f0048 475static void alloc_pre_mem (int, int);
476static void free_pre_mem (void);
bc8197c0 477static struct edge_list *compute_pre_data (void);
9908fe4d 478static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
952f0048 479 basic_block);
9908fe4d 480static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
481static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
952f0048 482static void pre_insert_copies (void);
483static int pre_delete (void);
bc8197c0 484static int pre_gcse (struct edge_list *);
d743aba2 485static int one_pre_gcse_pass (void);
84b4ae13 486static void add_label_notes (rtx, rtx_insn *);
952f0048 487static void alloc_code_hoist_mem (int, int);
488static void free_code_hoist_mem (void);
489static void compute_code_hoist_vbeinout (void);
490static void compute_code_hoist_data (void);
7125d9ac 491static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *,
492 basic_block,
493 sbitmap, HOST_WIDE_INT, int *,
494 enum reg_class,
526d7387 495 int *, bitmap, rtx_insn *);
d743aba2 496static int hoist_code (void);
ded17066 497static enum reg_class get_regno_pressure_class (int regno, int *nregs);
526d7387 498static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
952f0048 499static int one_code_hoisting_pass (void);
9908fe4d 500static rtx_insn *process_insert_insn (struct gcse_expr *);
501static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
502static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
952f0048 503 basic_block, char *);
504static struct ls_expr * ldst_entry (rtx);
505static void free_ldst_entry (struct ls_expr *);
bc8197c0 506static void free_ld_motion_mems (void);
952f0048 507static void print_ldst_list (FILE *);
508static struct ls_expr * find_rtx_in_ldst (rtx);
7ecb5bb2 509static int simple_mem (const_rtx);
952f0048 510static void invalidate_any_buried_refs (rtx);
511static void compute_ld_motion_mems (void);
512static void trim_ld_motion_mems (void);
9908fe4d 513static void update_ld_motion_stores (struct gcse_expr *);
952f0048 514static void clear_modify_mem_tables (void);
515static void free_modify_mem_tables (void);
2457c754 516
517#define GNEW(T) ((T *) gmalloc (sizeof (T)))
518#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
519
520#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
521#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
2457c754 522
523#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
524#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
2457c754 525
526#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
527#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
18aa2adf 528\f
18aa2adf 529/* Misc. utilities. */
530
049d15fc 531#define can_copy \
532 (this_target_gcse->x_can_copy)
533#define can_copy_init_p \
534 (this_target_gcse->x_can_copy_init_p)
3d055936 535
18aa2adf 536/* Compute which modes support reg/reg copy operations. */
537
538static void
952f0048 539compute_can_copy (void)
18aa2adf 540{
541 int i;
ebd9163c 542#ifndef AVOID_CCMODE_COPIES
bf79ca12 543 rtx reg;
544 rtx_insn *insn;
ebd9163c 545#endif
3d055936 546 memset (can_copy, 0, NUM_MACHINE_MODES);
18aa2adf 547
548 start_sequence ();
549 for (i = 0; i < NUM_MACHINE_MODES; i++)
2c084240 550 if (GET_MODE_CLASS (i) == MODE_CC)
551 {
18aa2adf 552#ifdef AVOID_CCMODE_COPIES
3d055936 553 can_copy[i] = 0;
18aa2adf 554#else
3754d046 555 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
d1f9b275 556 insn = emit_insn (gen_rtx_SET (reg, reg));
4679ade3 557 if (recog (PATTERN (insn), insn, NULL) >= 0)
3d055936 558 can_copy[i] = 1;
18aa2adf 559#endif
2c084240 560 }
72f3466e 561 else
3d055936 562 can_copy[i] = 1;
2c084240 563
18aa2adf 564 end_sequence ();
18aa2adf 565}
3d055936 566
567/* Returns whether the mode supports reg/reg copy operations. */
568
569bool
3754d046 570can_copy_p (machine_mode mode)
3d055936 571{
3d055936 572 if (! can_copy_init_p)
573 {
574 compute_can_copy ();
575 can_copy_init_p = true;
576 }
577
578 return can_copy[mode] != 0;
579}
18aa2adf 580\f
581/* Cover function to xmalloc to record bytes allocated. */
582
f0af5a88 583static void *
a41493eb 584gmalloc (size_t size)
18aa2adf 585{
586 bytes_used += size;
587 return xmalloc (size);
588}
589
2f800191 590/* Cover function to xcalloc to record bytes allocated. */
591
592static void *
593gcalloc (size_t nelem, size_t elsize)
594{
595 bytes_used += nelem * elsize;
596 return xcalloc (nelem, elsize);
597}
598
7cdd3716 599/* Cover function to obstack_alloc. */
18aa2adf 600
f0af5a88 601static void *
952f0048 602gcse_alloc (unsigned long size)
18aa2adf 603{
7cdd3716 604 bytes_used += size;
f0af5a88 605 return obstack_alloc (&gcse_obstack, size);
18aa2adf 606}
607
2e81afe5 608/* Allocate memory for the reg/memory set tracking tables.
18aa2adf 609 This is called at the start of each pass. */
610
611static void
defc8016 612alloc_gcse_mem (void)
18aa2adf 613{
18aa2adf 614 /* Allocate vars to track sets of regs. */
0f71a633 615 reg_set_bitmap = ALLOC_REG_SET (NULL);
18aa2adf 616
8e802be9 617 /* Allocate array to keep a list of insns which modify memory in each
f1f41a6c 618 basic block. The two typedefs are needed to work around the
619 pre-processor limitation with template types in macro arguments. */
e050de51 620 typedef vec<rtx_insn *> vec_rtx_heap;
f1f41a6c 621 typedef vec<modify_pair> vec_modify_pair_heap;
fe672ac0 622 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
623 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
624 last_basic_block_for_fn (cfun));
27335ffd 625 modify_mem_list_set = BITMAP_ALLOC (NULL);
626 blocks_with_calls = BITMAP_ALLOC (NULL);
18aa2adf 627}
628
629/* Free memory allocated by alloc_gcse_mem. */
630
631static void
952f0048 632free_gcse_mem (void)
18aa2adf 633{
98076867 634 FREE_REG_SET (reg_set_bitmap);
635
7fb47f9f 636 free_modify_mem_tables ();
27335ffd 637 BITMAP_FREE (modify_mem_list_set);
638 BITMAP_FREE (blocks_with_calls);
18aa2adf 639}
c7a3eccf 640\f
641/* Compute the local properties of each recorded expression.
2c084240 642
643 Local properties are those that are defined by the block, irrespective of
644 other blocks.
c7a3eccf 645
646 An expression is transparent in a block if its operands are not modified
647 in the block.
648
649 An expression is computed (locally available) in a block if it is computed
650 at least once and expression would contain the same value if the
651 computation was moved to the end of the block.
652
653 An expression is locally anticipatable in a block if it is computed at
654 least once and expression would contain the same value if the computation
655 was moved to the beginning of the block.
656
07abdb66 657 We call this routine for pre and code hoisting. They all compute
2c084240 658 basically the same information and thus can easily share this code.
18aa2adf 659
2c084240 660 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
661 properties. If NULL, then it is not necessary to compute or record that
662 particular property.
c7a3eccf 663
07abdb66 664 TABLE controls which hash table to look at. */
3cfec666 665
c7a3eccf 666static void
b9f02dbb 667compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
9908fe4d 668 struct gcse_hash_table_d *table)
c7a3eccf 669{
27cfe3f1 670 unsigned int i;
3cfec666 671
c7a3eccf 672 /* Initialize any bitmaps that were passed in. */
673 if (transp)
3d5c627e 674 {
fe672ac0 675 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
3d5c627e 676 }
2c084240 677
c7a3eccf 678 if (comp)
fe672ac0 679 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
c7a3eccf 680 if (antloc)
fe672ac0 681 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
c7a3eccf 682
27cfe3f1 683 for (i = 0; i < table->size; i++)
18aa2adf 684 {
9908fe4d 685 struct gcse_expr *expr;
c7a3eccf 686
27cfe3f1 687 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
c7a3eccf 688 {
c7a3eccf 689 int indx = expr->bitmap_index;
9908fe4d 690 struct gcse_occr *occr;
c7a3eccf 691
692 /* The expression is transparent in this block if it is not killed.
693 We start by assuming all are transparent [none are killed], and
694 then reset the bits for those that are. */
c7a3eccf 695 if (transp)
d2ac64b1 696 compute_transp (expr->expr, indx, transp,
697 blocks_with_calls,
698 modify_mem_list_set,
699 canon_modify_mem_list);
c7a3eccf 700
701 /* The occurrences recorded in antic_occr are exactly those that
6ef828f9 702 we want to set to nonzero in ANTLOC. */
c7a3eccf 703 if (antloc)
2c084240 704 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
705 {
08b7917c 706 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
c7a3eccf 707
2c084240 708 /* While we're scanning the table, this is a good place to
709 initialize this. */
710 occr->deleted_p = 0;
711 }
c7a3eccf 712
713 /* The occurrences recorded in avail_occr are exactly those that
6ef828f9 714 we want to set to nonzero in COMP. */
c7a3eccf 715 if (comp)
2c084240 716 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
717 {
08b7917c 718 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
c7a3eccf 719
2c084240 720 /* While we're scanning the table, this is a good place to
721 initialize this. */
722 occr->copied_p = 0;
723 }
c7a3eccf 724
725 /* While we're scanning the table, this is a good place to
726 initialize this. */
727 expr->reaching_reg = 0;
728 }
18aa2adf 729 }
18aa2adf 730}
731\f
18aa2adf 732/* Hash table support. */
733
eac13465 734struct reg_avail_info
735{
4c26117a 736 basic_block last_bb;
eac13465 737 int first_set;
738 int last_set;
739};
740
741static struct reg_avail_info *reg_avail_info;
4c26117a 742static basic_block current_bb;
18aa2adf 743
06e2144a 744/* See whether X, the source of a set, is something we want to consider for
745 GCSE. */
18aa2adf 746
747static int
7125d9ac 748want_to_gcse_p (rtx x, machine_mode mode, HOST_WIDE_INT *max_distance_ptr)
18aa2adf 749{
e207fd7a 750#ifdef STACK_REGS
751 /* On register stack architectures, don't GCSE constants from the
752 constant pool, as the benefits are often swamped by the overhead
753 of shuffling the register stack between basic blocks. */
754 if (IS_STACK_MODE (GET_MODE (x)))
755 x = avoid_constant_pool_reference (x);
756#endif
757
8b38b150 758 /* GCSE'ing constants:
759
760 We do not specifically distinguish between constant and non-constant
7013e87c 761 expressions in PRE and Hoist. We use set_src_cost below to limit
8b38b150 762 the maximum distance simple expressions can travel.
763
764 Nevertheless, constants are much easier to GCSE, and, hence,
765 it is easy to overdo the optimizations. Usually, excessive PRE and
766 Hoisting of constant leads to increased register pressure.
767
768 RA can deal with this by rematerialing some of the constants.
769 Therefore, it is important that the back-end generates sets of constants
770 in a way that allows reload rematerialize them under high register
771 pressure, i.e., a pseudo register with REG_EQUAL to constant
772 is set only once. Failing to do so will result in IRA/reload
773 spilling such constants under high register pressure instead of
774 rematerializing them. */
775
2c084240 776 switch (GET_CODE (x))
18aa2adf 777 {
778 case REG:
779 case SUBREG:
8b38b150 780 case CALL:
781 return 0;
782
0349edce 783 CASE_CONST_ANY:
8b38b150 784 if (!doing_code_hoisting_p)
785 /* Do not PRE constants. */
786 return 0;
787
788 /* FALLTHRU */
18aa2adf 789
790 default:
8b38b150 791 if (doing_code_hoisting_p)
792 /* PRE doesn't implement max_distance restriction. */
793 {
794 int cost;
46418b43 795 HOST_WIDE_INT max_distance;
8b38b150 796
797 gcc_assert (!optimize_function_for_speed_p (cfun)
798 && optimize_function_for_size_p (cfun));
5ae4887d 799 cost = set_src_cost (x, mode, 0);
8b38b150 800
801 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
802 {
46418b43 803 max_distance
804 = ((HOST_WIDE_INT)GCSE_COST_DISTANCE_RATIO * cost) / 10;
8b38b150 805 if (max_distance == 0)
806 return 0;
807
808 gcc_assert (max_distance > 0);
809 }
810 else
811 max_distance = 0;
812
813 if (max_distance_ptr)
814 *max_distance_ptr = max_distance;
815 }
816
9c9680b5 817 return can_assign_to_reg_without_clobbers_p (x, mode);
18aa2adf 818 }
69dbb666 819}
820
4b673aa1 821/* Used internally by can_assign_to_reg_without_clobbers_p. */
69dbb666 822
526d7387 823static GTY(()) rtx_insn *test_insn;
69dbb666 824
9c9680b5 825/* Return true if we can assign X to a pseudo register of mode MODE
826 such that the resulting insn does not result in clobbering a hard
827 register as a side-effect.
2b86a75a 828
829 Additionally, if the target requires it, check that the resulting insn
830 can be copied. If it cannot, this means that X is special and probably
831 has hidden side-effects we don't want to mess with.
832
4b673aa1 833 This function is typically used by code motion passes, to verify
834 that it is safe to insert an insn without worrying about clobbering
835 maybe live hard regs. */
69dbb666 836
4b673aa1 837bool
9c9680b5 838can_assign_to_reg_without_clobbers_p (rtx x, machine_mode mode)
69dbb666 839{
840 int num_clobbers = 0;
841 int icode;
e899b9f2 842 bool can_assign = false;
18aa2adf 843
06e2144a 844 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
9c9680b5 845 if (general_operand (x, mode))
06e2144a 846 return 1;
847 else if (GET_MODE (x) == VOIDmode)
848 return 0;
849
850 /* Otherwise, check if we can make a valid insn from it. First initialize
851 our test insn if we haven't already. */
852 if (test_insn == 0)
853 {
854 test_insn
d1f9b275 855 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
06e2144a 856 FIRST_PSEUDO_REGISTER * 2),
857 const0_rtx));
4a57a2e8 858 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
e899b9f2 859 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
06e2144a 860 }
861
862 /* Now make an insn like the one we would make when GCSE'ing and see if
863 valid. */
9c9680b5 864 PUT_MODE (SET_DEST (PATTERN (test_insn)), mode);
06e2144a 865 SET_SRC (PATTERN (test_insn)) = x;
48e1416a 866
2b86a75a 867 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
48e1416a 868
e899b9f2 869 /* If the test insn is valid and doesn't need clobbers, and the target also
870 has no objections, we're good. */
871 if (icode >= 0
872 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
873 && ! (targetm.cannot_copy_insn_p
874 && targetm.cannot_copy_insn_p (test_insn)))
875 can_assign = true;
48e1416a 876
e899b9f2 877 /* Make sure test_insn doesn't have any pointers into GC space. */
878 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
48e1416a 879
e899b9f2 880 return can_assign;
18aa2adf 881}
882
6ef828f9 883/* Return nonzero if the operands of expression X are unchanged from the
18aa2adf 884 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
885 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
886
887static int
526d7387 888oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
18aa2adf 889{
2c084240 890 int i, j;
18aa2adf 891 enum rtx_code code;
d2ca078f 892 const char *fmt;
18aa2adf 893
18aa2adf 894 if (x == 0)
895 return 1;
896
897 code = GET_CODE (x);
898 switch (code)
899 {
900 case REG:
eac13465 901 {
902 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
903
904 if (info->last_bb != current_bb)
905 return 1;
3cfec666 906 if (avail_p)
2e81afe5 907 return info->last_set < DF_INSN_LUID (insn);
eac13465 908 else
2e81afe5 909 return info->first_set >= DF_INSN_LUID (insn);
eac13465 910 }
18aa2adf 911
912 case MEM:
37495d69 913 if (! flag_gcse_lm
914 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
915 x, avail_p))
8e802be9 916 return 0;
18aa2adf 917 else
2c084240 918 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
18aa2adf 919
920 case PRE_DEC:
921 case PRE_INC:
922 case POST_DEC:
923 case POST_INC:
40988080 924 case PRE_MODIFY:
925 case POST_MODIFY:
18aa2adf 926 return 0;
927
928 case PC:
929 case CC0: /*FIXME*/
930 case CONST:
0349edce 931 CASE_CONST_ANY:
18aa2adf 932 case SYMBOL_REF:
933 case LABEL_REF:
934 case ADDR_VEC:
935 case ADDR_DIFF_VEC:
936 return 1;
937
938 default:
939 break;
940 }
941
2c084240 942 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
18aa2adf 943 {
944 if (fmt[i] == 'e')
945 {
2c084240 946 /* If we are about to do the last recursive call needed at this
947 level, change it into iteration. This function is called enough
948 to be worth it. */
18aa2adf 949 if (i == 0)
2c084240 950 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
951
952 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
18aa2adf 953 return 0;
954 }
955 else if (fmt[i] == 'E')
2c084240 956 for (j = 0; j < XVECLEN (x, i); j++)
957 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
958 return 0;
18aa2adf 959 }
960
961 return 1;
962}
963
bc8197c0 964/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
8e802be9 965
bc8197c0 966struct mem_conflict_info
967{
968 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
969 see if a memory store conflicts with this memory load. */
970 const_rtx mem;
8e802be9 971
bc8197c0 972 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
973 references. */
974 bool conflict;
975};
976
977/* DEST is the output of an instruction. If it is a memory reference and
978 possibly conflicts with the load found in DATA, then communicate this
979 information back through DATA. */
8e802be9 980
981static void
81a410b1 982mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
bc8197c0 983 void *data)
8e802be9 984{
bc8197c0 985 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
986
8e802be9 987 while (GET_CODE (dest) == SUBREG
988 || GET_CODE (dest) == ZERO_EXTRACT
8e802be9 989 || GET_CODE (dest) == STRICT_LOW_PART)
990 dest = XEXP (dest, 0);
991
992 /* If DEST is not a MEM, then it will not conflict with the load. Note
993 that function calls are assumed to clobber memory, but are handled
994 elsewhere. */
b9f02dbb 995 if (! MEM_P (dest))
8e802be9 996 return;
7a676a9f 997
8e802be9 998 /* If we are setting a MEM in our list of specially recognized MEMs,
3cfec666 999 don't mark as killed this time. */
bc8197c0 1000 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
8e802be9 1001 {
1002 if (!find_rtx_in_ldst (dest))
bc8197c0 1003 mci->conflict = true;
8e802be9 1004 return;
1005 }
7a676a9f 1006
376a287d 1007 if (true_dependence (dest, GET_MODE (dest), mci->mem))
bc8197c0 1008 mci->conflict = true;
8e802be9 1009}
1010
1011/* Return nonzero if the expression in X (a memory reference) is killed
2e81afe5 1012 in block BB before or after the insn with the LUID in UID_LIMIT.
8e802be9 1013 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1014 before UID_LIMIT.
1015
1016 To check the entire block, set UID_LIMIT to max_uid + 1 and
1017 AVAIL_P to 0. */
1018
1019static int
bc8197c0 1020load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1021 int avail_p)
8e802be9 1022{
e050de51 1023 vec<rtx_insn *> list = modify_mem_list[bb->index];
1024 rtx_insn *setter;
577cca34 1025 unsigned ix;
a2658f4a 1026
1027 /* If this is a readonly then we aren't going to be changing it. */
1028 if (MEM_READONLY_P (x))
1029 return 0;
1030
f1f41a6c 1031 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
8e802be9 1032 {
bc8197c0 1033 struct mem_conflict_info mci;
1034
8e802be9 1035 /* Ignore entries in the list that do not apply. */
1036 if ((avail_p
577cca34 1037 && DF_INSN_LUID (setter) < uid_limit)
8e802be9 1038 || (! avail_p
577cca34 1039 && DF_INSN_LUID (setter) > uid_limit))
1040 continue;
8e802be9 1041
1042 /* If SETTER is a call everything is clobbered. Note that calls
1043 to pure functions are never put on the list, so we need not
1044 worry about them. */
b9f02dbb 1045 if (CALL_P (setter))
8e802be9 1046 return 1;
1047
1048 /* SETTER must be an INSN of some kind that sets memory. Call
bc8197c0 1049 note_stores to examine each hunk of memory that is modified. */
1050 mci.mem = x;
1051 mci.conflict = false;
1052 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1053 if (mci.conflict)
8e802be9 1054 return 1;
8e802be9 1055 }
1056 return 0;
1057}
1058
6ef828f9 1059/* Return nonzero if the operands of expression X are unchanged from
18aa2adf 1060 the start of INSN's basic block up to but not including INSN. */
1061
1062static int
526d7387 1063oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
18aa2adf 1064{
1065 return oprs_unchanged_p (x, insn, 0);
1066}
1067
6ef828f9 1068/* Return nonzero if the operands of expression X are unchanged from
18aa2adf 1069 INSN to the end of INSN's basic block. */
1070
1071static int
526d7387 1072oprs_available_p (const_rtx x, const rtx_insn *insn)
18aa2adf 1073{
1074 return oprs_unchanged_p (x, insn, 1);
1075}
1076
1077/* Hash expression X.
2c084240 1078
1079 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1080 indicating if a volatile operand is found or if the expression contains
69333952 1081 something we don't want to insert in the table. HASH_TABLE_SIZE is
78d140c9 1082 the current size of the hash table to be probed. */
18aa2adf 1083
1084static unsigned int
3754d046 1085hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
69333952 1086 int hash_table_size)
18aa2adf 1087{
1088 unsigned int hash;
1089
1090 *do_not_record_p = 0;
1091
bc8197c0 1092 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
18aa2adf 1093 return hash % hash_table_size;
1094}
1b80ba05 1095
78d140c9 1096/* Return nonzero if exp1 is equivalent to exp2. */
18aa2adf 1097
1098static int
7ecb5bb2 1099expr_equiv_p (const_rtx x, const_rtx y)
18aa2adf 1100{
78d140c9 1101 return exp_equiv_p (x, y, 0, true);
18aa2adf 1102}
1103
27cfe3f1 1104/* Insert expression X in INSN in the hash TABLE.
18aa2adf 1105 If it is already present, record it as the last occurrence in INSN's
1106 basic block.
1107
1108 MODE is the mode of the value X is being stored into.
1109 It is only used if X is a CONST_INT.
1110
6ef828f9 1111 ANTIC_P is nonzero if X is an anticipatable expression.
8b38b150 1112 AVAIL_P is nonzero if X is an available expression.
1113
1114 MAX_DISTANCE is the maximum distance in instructions this expression can
1115 be moved. */
18aa2adf 1116
1117static void
3754d046 1118insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
526d7387 1119 int antic_p,
7125d9ac 1120 int avail_p, HOST_WIDE_INT max_distance,
1121 struct gcse_hash_table_d *table)
18aa2adf 1122{
1123 int found, do_not_record_p;
1124 unsigned int hash;
9908fe4d 1125 struct gcse_expr *cur_expr, *last_expr = NULL;
1126 struct gcse_occr *antic_occr, *avail_occr;
18aa2adf 1127
27cfe3f1 1128 hash = hash_expr (x, mode, &do_not_record_p, table->size);
18aa2adf 1129
1130 /* Do not insert expression in table if it contains volatile operands,
1131 or if hash_expr determines the expression is something we don't want
1132 to or can't handle. */
1133 if (do_not_record_p)
1134 return;
1135
27cfe3f1 1136 cur_expr = table->table[hash];
18aa2adf 1137 found = 0;
1138
c9281ef8 1139 while (cur_expr && (found = expr_equiv_p (cur_expr->expr, x)) == 0)
18aa2adf 1140 {
1141 /* If the expression isn't found, save a pointer to the end of
1142 the list. */
1143 last_expr = cur_expr;
1144 cur_expr = cur_expr->next_same_hash;
1145 }
1146
1147 if (! found)
1148 {
9908fe4d 1149 cur_expr = GOBNEW (struct gcse_expr);
1150 bytes_used += sizeof (struct gcse_expr);
27cfe3f1 1151 if (table->table[hash] == NULL)
2c084240 1152 /* This is the first pattern that hashed to this index. */
27cfe3f1 1153 table->table[hash] = cur_expr;
18aa2adf 1154 else
2c084240 1155 /* Add EXPR to end of this hash chain. */
1156 last_expr->next_same_hash = cur_expr;
1157
3cfec666 1158 /* Set the fields of the expr element. */
18aa2adf 1159 cur_expr->expr = x;
27cfe3f1 1160 cur_expr->bitmap_index = table->n_elems++;
18aa2adf 1161 cur_expr->next_same_hash = NULL;
1162 cur_expr->antic_occr = NULL;
1163 cur_expr->avail_occr = NULL;
8b38b150 1164 gcc_assert (max_distance >= 0);
1165 cur_expr->max_distance = max_distance;
18aa2adf 1166 }
8b38b150 1167 else
1168 gcc_assert (cur_expr->max_distance == max_distance);
18aa2adf 1169
1170 /* Now record the occurrence(s). */
18aa2adf 1171 if (antic_p)
1172 {
1173 antic_occr = cur_expr->antic_occr;
1174
90bd219d 1175 if (antic_occr
1176 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
77780ba6 1177 antic_occr = NULL;
18aa2adf 1178
1179 if (antic_occr)
2c084240 1180 /* Found another instance of the expression in the same basic block.
1181 Prefer the currently recorded one. We want the first one in the
1182 block and the block is scanned from start to end. */
1183 ; /* nothing to do */
18aa2adf 1184 else
1185 {
1186 /* First occurrence of this expression in this basic block. */
9908fe4d 1187 antic_occr = GOBNEW (struct gcse_occr);
1188 bytes_used += sizeof (struct gcse_occr);
18aa2adf 1189 antic_occr->insn = insn;
77780ba6 1190 antic_occr->next = cur_expr->antic_occr;
839f8415 1191 antic_occr->deleted_p = 0;
77780ba6 1192 cur_expr->antic_occr = antic_occr;
18aa2adf 1193 }
1194 }
1195
1196 if (avail_p)
1197 {
1198 avail_occr = cur_expr->avail_occr;
1199
90bd219d 1200 if (avail_occr
1201 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
18aa2adf 1202 {
77780ba6 1203 /* Found another instance of the expression in the same basic block.
1204 Prefer this occurrence to the currently recorded one. We want
1205 the last one in the block and the block is scanned from start
1206 to end. */
1207 avail_occr->insn = insn;
18aa2adf 1208 }
18aa2adf 1209 else
1210 {
1211 /* First occurrence of this expression in this basic block. */
9908fe4d 1212 avail_occr = GOBNEW (struct gcse_occr);
1213 bytes_used += sizeof (struct gcse_occr);
18aa2adf 1214 avail_occr->insn = insn;
77780ba6 1215 avail_occr->next = cur_expr->avail_occr;
839f8415 1216 avail_occr->deleted_p = 0;
77780ba6 1217 cur_expr->avail_occr = avail_occr;
18aa2adf 1218 }
1219 }
1220}
1221
bc8197c0 1222/* Scan SET present in INSN and add an entry to the hash TABLE. */
18aa2adf 1223
1224static void
9908fe4d 1225hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
18aa2adf 1226{
bc8197c0 1227 rtx src = SET_SRC (set);
1228 rtx dest = SET_DEST (set);
1b80ba05 1229 rtx note;
18aa2adf 1230
19595145 1231 if (GET_CODE (src) == CALL)
27cfe3f1 1232 hash_scan_call (src, insn, table);
18aa2adf 1233
b9f02dbb 1234 else if (REG_P (dest))
18aa2adf 1235 {
1b80ba05 1236 unsigned int regno = REGNO (dest);
7125d9ac 1237 HOST_WIDE_INT max_distance = 0;
18aa2adf 1238
ad6cd748 1239 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1240
59254d98 1241 This allows us to do a single GCSE pass and still eliminate
1242 redundant constants, addresses or other expressions that are
ad6cd748 1243 constructed with multiple instructions.
1244
07abdb66 1245 However, keep the original SRC if INSN is a simple reg-reg move.
ad6cd748 1246 In this case, there will almost always be a REG_EQUAL note on the
1247 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1248 for INSN, we miss copy propagation opportunities and we perform the
1249 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1250 do more than one PRE GCSE pass.
1251
f0b5f617 1252 Note that this does not impede profitable constant propagations. We
ad6cd748 1253 "look through" reg-reg sets in lookup_avail_set. */
59254d98 1254 note = find_reg_equal_equiv_note (insn);
1255 if (note != 0
ad6cd748 1256 && REG_NOTE_KIND (note) == REG_EQUAL
1257 && !REG_P (src)
5ae4887d 1258 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
d1f9b275 1259 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
1b80ba05 1260
18aa2adf 1261 /* Only record sets of pseudo-regs in the hash table. */
07abdb66 1262 if (regno >= FIRST_PSEUDO_REGISTER
18aa2adf 1263 /* Don't GCSE something if we can't do a reg/reg copy. */
3d055936 1264 && can_copy_p (GET_MODE (dest))
17a54dac 1265 /* GCSE commonly inserts instruction after the insn. We can't
e38def9c 1266 do that easily for EH edges so disable GCSE on these for now. */
1267 /* ??? We can now easily create new EH landing pads at the
1268 gimple level, for splitting edges; there's no reason we
1269 can't do the same thing at the rtl level. */
1270 && !can_throw_internal (insn)
18aa2adf 1271 /* Is SET_SRC something we want to gcse? */
5ae4887d 1272 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
1b80ba05 1273 /* Don't CSE a nop. */
bc8197c0 1274 && ! set_noop_p (set)
75f84104 1275 /* Don't GCSE if it has attached REG_EQUIV note.
1276 At this point this only function parameters should have
1277 REG_EQUIV notes and if the argument slot is used somewhere
3fb1e43b 1278 explicitly, it means address of parameter has been taken,
75f84104 1279 so we should not extend the lifetime of the pseudo. */
59254d98 1280 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
18aa2adf 1281 {
1282 /* An expression is not anticipatable if its operands are
232bbfff 1283 modified before this insn or if this is not the only SET in
3072d30e 1284 this insn. The latter condition does not have to mean that
1285 SRC itself is not anticipatable, but we just will not be
1286 able to handle code motion of insns with multiple sets. */
1287 int antic_p = oprs_anticipatable_p (src, insn)
1288 && !multiple_sets (insn);
18aa2adf 1289 /* An expression is not available if its operands are
f441a382 1290 subsequently modified, including this insn. It's also not
1291 available if this is a branch, because we can't insert
1292 a set after the branch. */
1293 int avail_p = (oprs_available_p (src, insn)
1294 && ! JUMP_P (insn));
2c084240 1295
8b38b150 1296 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1297 max_distance, table);
18aa2adf 1298 }
18aa2adf 1299 }
40e55fbb 1300 /* In case of store we want to consider the memory value as available in
5c47e414 1301 the REG stored in that memory. This makes it possible to remove
1302 redundant loads from due to stores to the same location. */
b9f02dbb 1303 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
5ae4887d 1304 {
1305 unsigned int regno = REGNO (src);
7125d9ac 1306 HOST_WIDE_INT max_distance = 0;
5ae4887d 1307
1308 /* Only record sets of pseudo-regs in the hash table. */
1309 if (regno >= FIRST_PSEUDO_REGISTER
1310 /* Don't GCSE something if we can't do a reg/reg copy. */
1311 && can_copy_p (GET_MODE (src))
1312 /* GCSE commonly inserts instruction after the insn. We can't
1313 do that easily for EH edges so disable GCSE on these for now. */
1314 && !can_throw_internal (insn)
1315 /* Is SET_DEST something we want to gcse? */
1316 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1317 /* Don't CSE a nop. */
1318 && ! set_noop_p (set)
1319 /* Don't GCSE if it has attached REG_EQUIV note.
1320 At this point this only function parameters should have
1321 REG_EQUIV notes and if the argument slot is used somewhere
1322 explicitly, it means address of parameter has been taken,
1323 so we should not extend the lifetime of the pseudo. */
1324 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1325 || ! MEM_P (XEXP (note, 0))))
1326 {
1327 /* Stores are never anticipatable. */
1328 int antic_p = 0;
1329 /* An expression is not available if its operands are
1330 subsequently modified, including this insn. It's also not
1331 available if this is a branch, because we can't insert
1332 a set after the branch. */
1333 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1334
1335 /* Record the memory expression (DEST) in the hash table. */
1336 insert_expr_in_table (dest, GET_MODE (dest), insn,
1337 antic_p, avail_p, max_distance, table);
1338 }
1339 }
18aa2adf 1340}
1341
1342static void
526d7387 1343hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
9908fe4d 1344 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
18aa2adf 1345{
1346 /* Currently nothing to do. */
1347}
1348
1349static void
526d7387 1350hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
9908fe4d 1351 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
18aa2adf 1352{
1353 /* Currently nothing to do. */
1354}
1355
bc8197c0 1356/* Process INSN and add hash table entries as appropriate. */
18aa2adf 1357
1358static void
9908fe4d 1359hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
18aa2adf 1360{
1361 rtx pat = PATTERN (insn);
2c084240 1362 int i;
18aa2adf 1363
1364 /* Pick out the sets of INSN and for other forms of instructions record
1365 what's been modified. */
1366
1b80ba05 1367 if (GET_CODE (pat) == SET)
27cfe3f1 1368 hash_scan_set (pat, insn, table);
bc8197c0 1369
1370 else if (GET_CODE (pat) == CLOBBER)
1371 hash_scan_clobber (pat, insn, table);
1372
1373 else if (GET_CODE (pat) == CALL)
1374 hash_scan_call (pat, insn, table);
1375
18aa2adf 1376 else if (GET_CODE (pat) == PARALLEL)
2c084240 1377 for (i = 0; i < XVECLEN (pat, 0); i++)
1378 {
1379 rtx x = XVECEXP (pat, 0, i);
18aa2adf 1380
2c084240 1381 if (GET_CODE (x) == SET)
27cfe3f1 1382 hash_scan_set (x, insn, table);
2c084240 1383 else if (GET_CODE (x) == CLOBBER)
27cfe3f1 1384 hash_scan_clobber (x, insn, table);
19595145 1385 else if (GET_CODE (x) == CALL)
27cfe3f1 1386 hash_scan_call (x, insn, table);
2c084240 1387 }
18aa2adf 1388}
1389
bc8197c0 1390/* Dump the hash table TABLE to file FILE under the name NAME. */
1391
18aa2adf 1392static void
9908fe4d 1393dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
18aa2adf 1394{
1395 int i;
1396 /* Flattened out table, so it's printed in proper order. */
9908fe4d 1397 struct gcse_expr **flat_table;
b9cf3f63 1398 unsigned int *hash_val;
9908fe4d 1399 struct gcse_expr *expr;
b9cf3f63 1400
9908fe4d 1401 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
2457c754 1402 hash_val = XNEWVEC (unsigned int, table->n_elems);
18aa2adf 1403
27cfe3f1 1404 for (i = 0; i < (int) table->size; i++)
1405 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
2c084240 1406 {
1407 flat_table[expr->bitmap_index] = expr;
1408 hash_val[expr->bitmap_index] = i;
1409 }
18aa2adf 1410
1411 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
27cfe3f1 1412 name, table->size, table->n_elems);
18aa2adf 1413
27cfe3f1 1414 for (i = 0; i < (int) table->n_elems; i++)
46fd7177 1415 if (flat_table[i] != 0)
1416 {
b16f1e6c 1417 expr = flat_table[i];
7125d9ac 1418 fprintf (file, "Index %d (hash value %d; max distance "
1419 HOST_WIDE_INT_PRINT_DEC ")\n ",
8b38b150 1420 expr->bitmap_index, hash_val[i], expr->max_distance);
b16f1e6c 1421 print_rtl (file, expr->expr);
46fd7177 1422 fprintf (file, "\n");
1423 }
18aa2adf 1424
1425 fprintf (file, "\n");
b9cf3f63 1426
b9cf3f63 1427 free (flat_table);
1428 free (hash_val);
18aa2adf 1429}
1430
1431/* Record register first/last/block set information for REGNO in INSN.
2c084240 1432
eac13465 1433 first_set records the first place in the block where the register
18aa2adf 1434 is set and is used to compute "anticipatability".
2c084240 1435
eac13465 1436 last_set records the last place in the block where the register
18aa2adf 1437 is set and is used to compute "availability".
2c084240 1438
eac13465 1439 last_bb records the block for which first_set and last_set are
2e81afe5 1440 valid, as a quick test to invalidate them. */
18aa2adf 1441
1442static void
84b4ae13 1443record_last_reg_set_info (rtx_insn *insn, int regno)
18aa2adf 1444{
eac13465 1445 struct reg_avail_info *info = &reg_avail_info[regno];
2e81afe5 1446 int luid = DF_INSN_LUID (insn);
2c084240 1447
2e81afe5 1448 info->last_set = luid;
eac13465 1449 if (info->last_bb != current_bb)
1450 {
1451 info->last_bb = current_bb;
2e81afe5 1452 info->first_set = luid;
eac13465 1453 }
18aa2adf 1454}
1455
8e802be9 1456/* Record memory modification information for INSN. We do not actually care
1457 about the memory location(s) that are set, or even how they are set (consider
1458 a CALL_INSN). We merely need to record which insns modify memory. */
18aa2adf 1459
1460static void
e050de51 1461record_last_mem_set_info (rtx_insn *insn)
18aa2adf 1462{
37495d69 1463 if (! flag_gcse_lm)
1464 return;
d7b592b0 1465
d2ac64b1 1466 record_last_mem_set_info_common (insn, modify_mem_list,
1467 canon_modify_mem_list,
1468 modify_mem_list_set,
1469 blocks_with_calls);
18aa2adf 1470}
1471
18aa2adf 1472/* Called from compute_hash_table via note_stores to handle one
ec8895d7 1473 SET or CLOBBER in an insn. DATA is really the instruction in which
1474 the SET is taking place. */
18aa2adf 1475
1476static void
81a410b1 1477record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
18aa2adf 1478{
e050de51 1479 rtx_insn *last_set_insn = (rtx_insn *) data;
ec8895d7 1480
18aa2adf 1481 if (GET_CODE (dest) == SUBREG)
1482 dest = SUBREG_REG (dest);
1483
b9f02dbb 1484 if (REG_P (dest))
18aa2adf 1485 record_last_reg_set_info (last_set_insn, REGNO (dest));
b9f02dbb 1486 else if (MEM_P (dest)
18aa2adf 1487 /* Ignore pushes, they clobber nothing. */
1488 && ! push_operand (dest, GET_MODE (dest)))
1489 record_last_mem_set_info (last_set_insn);
1490}
1491
07abdb66 1492/* Top level function to create an expression hash table.
18aa2adf 1493
1494 Expression entries are placed in the hash table if
1495 - they are of the form (set (pseudo-reg) src),
1496 - src is something we want to perform GCSE on,
1497 - none of the operands are subsequently modified in the block
1498
18aa2adf 1499 Currently src must be a pseudo-reg or a const_int.
1500
27cfe3f1 1501 TABLE is the table computed. */
18aa2adf 1502
1503static void
9908fe4d 1504compute_hash_table_work (struct gcse_hash_table_d *table)
18aa2adf 1505{
d743aba2 1506 int i;
18aa2adf 1507
8e802be9 1508 /* re-Cache any INSN_LIST nodes we have allocated. */
7fb47f9f 1509 clear_modify_mem_tables ();
18aa2adf 1510 /* Some working arrays used to track first and last set in each block. */
d743aba2 1511 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
eac13465 1512
d743aba2 1513 for (i = 0; i < max_reg_num (); ++i)
4c26117a 1514 reg_avail_info[i].last_bb = NULL;
18aa2adf 1515
fc00614f 1516 FOR_EACH_BB_FN (current_bb, cfun)
18aa2adf 1517 {
526d7387 1518 rtx_insn *insn;
02e7a332 1519 unsigned int regno;
18aa2adf 1520
1521 /* First pass over the instructions records information used to
2e81afe5 1522 determine when registers and memory are first and last set. */
defc8016 1523 FOR_BB_INSNS (current_bb, insn)
18aa2adf 1524 {
da6f6776 1525 if (!NONDEBUG_INSN_P (insn))
18aa2adf 1526 continue;
1527
b9f02dbb 1528 if (CALL_P (insn))
18aa2adf 1529 {
24ec6636 1530 hard_reg_set_iterator hrsi;
1531 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1532 0, regno, hrsi)
1533 record_last_reg_set_info (insn, regno);
2c084240 1534
948ac165 1535 if (! RTL_CONST_OR_PURE_CALL_P (insn)
1536 || RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
07abdb66 1537 record_last_mem_set_info (insn);
18aa2adf 1538 }
1539
ec8895d7 1540 note_stores (PATTERN (insn), record_last_set_info, insn);
18aa2adf 1541 }
1542
1543 /* The next pass builds the hash table. */
defc8016 1544 FOR_BB_INSNS (current_bb, insn)
da6f6776 1545 if (NONDEBUG_INSN_P (insn))
1e5b92fa 1546 hash_scan_insn (insn, table);
18aa2adf 1547 }
1548
eac13465 1549 free (reg_avail_info);
1550 reg_avail_info = NULL;
18aa2adf 1551}
1552
27cfe3f1 1553/* Allocate space for the set/expr hash TABLE.
07abdb66 1554 It is used to determine the number of buckets to use. */
18aa2adf 1555
1556static void
9908fe4d 1557alloc_hash_table (struct gcse_hash_table_d *table)
18aa2adf 1558{
1559 int n;
1560
9845d120 1561 n = get_max_insn_count ();
1562
1563 table->size = n / 4;
27cfe3f1 1564 if (table->size < 11)
1565 table->size = 11;
2c084240 1566
18aa2adf 1567 /* Attempt to maintain efficient use of hash table.
1568 Making it an odd number is simplest for now.
1569 ??? Later take some measurements. */
27cfe3f1 1570 table->size |= 1;
9908fe4d 1571 n = table->size * sizeof (struct gcse_expr *);
1572 table->table = GNEWVAR (struct gcse_expr *, n);
18aa2adf 1573}
1574
27cfe3f1 1575/* Free things allocated by alloc_hash_table. */
18aa2adf 1576
1577static void
9908fe4d 1578free_hash_table (struct gcse_hash_table_d *table)
18aa2adf 1579{
27cfe3f1 1580 free (table->table);
18aa2adf 1581}
1582
07abdb66 1583/* Compute the expression hash table TABLE. */
18aa2adf 1584
1585static void
9908fe4d 1586compute_hash_table (struct gcse_hash_table_d *table)
18aa2adf 1587{
1588 /* Initialize count of number of entries in hash table. */
27cfe3f1 1589 table->n_elems = 0;
9908fe4d 1590 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
18aa2adf 1591
27cfe3f1 1592 compute_hash_table_work (table);
18aa2adf 1593}
1594\f
1595/* Expression tracking support. */
1596
07abdb66 1597/* Clear canon_modify_mem_list and modify_mem_list tables. */
1598static void
1599clear_modify_mem_tables (void)
23e5207c 1600{
07abdb66 1601 unsigned i;
1602 bitmap_iterator bi;
23e5207c 1603
07abdb66 1604 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
23e5207c 1605 {
f1f41a6c 1606 modify_mem_list[i].release ();
1607 canon_modify_mem_list[i].release ();
23e5207c 1608 }
07abdb66 1609 bitmap_clear (modify_mem_list_set);
1610 bitmap_clear (blocks_with_calls);
23e5207c 1611}
1612
07abdb66 1613/* Release memory used by modify_mem_list_set. */
23e5207c 1614
07abdb66 1615static void
1616free_modify_mem_tables (void)
375b98af 1617{
07abdb66 1618 clear_modify_mem_tables ();
1619 free (modify_mem_list);
1620 free (canon_modify_mem_list);
1621 modify_mem_list = 0;
1622 canon_modify_mem_list = 0;
375b98af 1623}
07abdb66 1624\f
b3f3796c 1625/* Compute PRE+LCM working variables. */
18aa2adf 1626
1627/* Local properties of expressions. */
bc8197c0 1628
18aa2adf 1629/* Nonzero for expressions that are transparent in the block. */
b3f3796c 1630static sbitmap *transp;
18aa2adf 1631
b3f3796c 1632/* Nonzero for expressions that are computed (available) in the block. */
1633static sbitmap *comp;
18aa2adf 1634
b3f3796c 1635/* Nonzero for expressions that are locally anticipatable in the block. */
1636static sbitmap *antloc;
18aa2adf 1637
b3f3796c 1638/* Nonzero for expressions where this block is an optimal computation
1639 point. */
1640static sbitmap *pre_optimal;
7bdba5dd 1641
b3f3796c 1642/* Nonzero for expressions which are redundant in a particular block. */
1643static sbitmap *pre_redundant;
18aa2adf 1644
7bcd381b 1645/* Nonzero for expressions which should be inserted on a specific edge. */
1646static sbitmap *pre_insert_map;
1647
1648/* Nonzero for expressions which should be deleted in a specific block. */
1649static sbitmap *pre_delete_map;
1650
b3f3796c 1651/* Allocate vars used for PRE analysis. */
18aa2adf 1652
1653static void
952f0048 1654alloc_pre_mem (int n_blocks, int n_exprs)
18aa2adf 1655{
b3f3796c 1656 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1657 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1658 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
0388e90f 1659
7bcd381b 1660 pre_optimal = NULL;
1661 pre_redundant = NULL;
1662 pre_insert_map = NULL;
1663 pre_delete_map = NULL;
7bcd381b 1664 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
2c084240 1665
7bcd381b 1666 /* pre_insert and pre_delete are allocated later. */
18aa2adf 1667}
1668
b3f3796c 1669/* Free vars used for PRE analysis. */
18aa2adf 1670
1671static void
952f0048 1672free_pre_mem (void)
18aa2adf 1673{
cca23eb2 1674 sbitmap_vector_free (transp);
1675 sbitmap_vector_free (comp);
8123d49b 1676
1677 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
18aa2adf 1678
7bcd381b 1679 if (pre_optimal)
cca23eb2 1680 sbitmap_vector_free (pre_optimal);
7bcd381b 1681 if (pre_redundant)
cca23eb2 1682 sbitmap_vector_free (pre_redundant);
7bcd381b 1683 if (pre_insert_map)
cca23eb2 1684 sbitmap_vector_free (pre_insert_map);
7bcd381b 1685 if (pre_delete_map)
cca23eb2 1686 sbitmap_vector_free (pre_delete_map);
7bcd381b 1687
8123d49b 1688 transp = comp = NULL;
7bcd381b 1689 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
18aa2adf 1690}
1691
f151d0c6 1692/* Remove certain expressions from anticipatable and transparent
1693 sets of basic blocks that have incoming abnormal edge.
1694 For PRE remove potentially trapping expressions to avoid placing
1695 them on abnormal edges. For hoisting remove memory references that
1696 can be clobbered by calls. */
18aa2adf 1697
1698static void
f151d0c6 1699prune_expressions (bool pre_p)
18aa2adf 1700{
9908fe4d 1701 struct gcse_expr *expr;
e531b5f0 1702 unsigned int ui;
f151d0c6 1703 basic_block bb;
bafa5ac7 1704
3c6549f8 1705 auto_sbitmap prune_exprs (expr_hash_table.n_elems);
53c5d9d4 1706 bitmap_clear (prune_exprs);
27cfe3f1 1707 for (ui = 0; ui < expr_hash_table.size; ui++)
e531b5f0 1708 {
bc8197c0 1709 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
f151d0c6 1710 {
1711 /* Note potentially trapping expressions. */
bc8197c0 1712 if (may_trap_p (expr->expr))
f151d0c6 1713 {
08b7917c 1714 bitmap_set_bit (prune_exprs, expr->bitmap_index);
f151d0c6 1715 continue;
1716 }
e531b5f0 1717
050ae453 1718 if (!pre_p && contains_mem_rtx_p (expr->expr))
f151d0c6 1719 /* Note memory references that can be clobbered by a call.
1720 We do not split abnormal edges in hoisting, so would
1721 a memory reference get hoisted along an abnormal edge,
1722 it would be placed /before/ the call. Therefore, only
1723 constant memory references can be hoisted along abnormal
1724 edges. */
1725 {
050ae453 1726 rtx x = expr->expr;
1727
1728 /* Common cases where we might find the MEM which may allow us
1729 to avoid pruning the expression. */
1730 while (GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1731 x = XEXP (x, 0);
1732
1733 /* If we found the MEM, go ahead and look at it to see if it has
1734 properties that allow us to avoid pruning its expression out
1735 of the tables. */
1736 if (MEM_P (x))
1737 {
1738 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1739 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
1740 continue;
1741
1742 if (MEM_READONLY_P (x)
1743 && !MEM_VOLATILE_P (x)
1744 && MEM_NOTRAP_P (x))
1745 /* Constant memory reference, e.g., a PIC address. */
1746 continue;
1747 }
f151d0c6 1748
1749 /* ??? Optimally, we would use interprocedural alias
1750 analysis to determine if this mem is actually killed
1751 by this call. */
1752
08b7917c 1753 bitmap_set_bit (prune_exprs, expr->bitmap_index);
f151d0c6 1754 }
1755 }
1756 }
bafa5ac7 1757
fc00614f 1758 FOR_EACH_BB_FN (bb, cfun)
bafa5ac7 1759 {
e531b5f0 1760 edge e;
cd665a06 1761 edge_iterator ei;
e531b5f0 1762
1763 /* If the current block is the destination of an abnormal edge, we
f151d0c6 1764 kill all trapping (for PRE) and memory (for hoist) expressions
1765 because we won't be able to properly place the instruction on
1766 the edge. So make them neither anticipatable nor transparent.
1767 This is fairly conservative.
1768
1769 ??? For hoisting it may be necessary to check for set-and-jump
1770 instructions here, not just for abnormal edges. The general problem
1771 is that when an expression cannot not be placed right at the end of
1772 a basic block we should account for any side-effects of a subsequent
1773 jump instructions that could clobber the expression. It would
1774 be best to implement this check along the lines of
1ec78e16 1775 should_hoist_expr_to_dom where the target block is already known
f151d0c6 1776 and, hence, there's no need to conservatively prune expressions on
1777 "intermediate" set-and-jump instructions. */
cd665a06 1778 FOR_EACH_EDGE (e, ei, bb->preds)
f151d0c6 1779 if ((e->flags & EDGE_ABNORMAL)
1780 && (pre_p || CALL_P (BB_END (e->src))))
e531b5f0 1781 {
53c5d9d4 1782 bitmap_and_compl (antloc[bb->index],
f151d0c6 1783 antloc[bb->index], prune_exprs);
53c5d9d4 1784 bitmap_and_compl (transp[bb->index],
f151d0c6 1785 transp[bb->index], prune_exprs);
e531b5f0 1786 break;
1787 }
f151d0c6 1788 }
f151d0c6 1789}
1790
b89c219c 1791/* It may be necessary to insert a large number of insns on edges to
1792 make the existing occurrences of expressions fully redundant. This
1793 routine examines the set of insertions and deletions and if the ratio
1794 of insertions to deletions is too high for a particular expression, then
1795 the expression is removed from the insertion/deletion sets.
1796
1797 N_ELEMS is the number of elements in the hash table. */
1798
1799static void
1800prune_insertions_deletions (int n_elems)
1801{
1802 sbitmap_iterator sbi;
b89c219c 1803
1804 /* We always use I to iterate over blocks/edges and J to iterate over
1805 expressions. */
1806 unsigned int i, j;
1807
1808 /* Counts for the number of times an expression needs to be inserted and
1809 number of times an expression can be removed as a result. */
1810 int *insertions = GCNEWVEC (int, n_elems);
1811 int *deletions = GCNEWVEC (int, n_elems);
1812
1813 /* Set of expressions which require too many insertions relative to
1814 the number of deletions achieved. We will prune these out of the
1815 insertion/deletion sets. */
3c6549f8 1816 auto_sbitmap prune_exprs (n_elems);
53c5d9d4 1817 bitmap_clear (prune_exprs);
b89c219c 1818
1819 /* Iterate over the edges counting the number of times each expression
1820 needs to be inserted. */
f1955b22 1821 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
b89c219c 1822 {
0d211963 1823 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
b89c219c 1824 insertions[j]++;
1825 }
1826
1827 /* Similarly for deletions, but those occur in blocks rather than on
1828 edges. */
fe672ac0 1829 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
b89c219c 1830 {
0d211963 1831 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
b89c219c 1832 deletions[j]++;
1833 }
1834
1835 /* Now that we have accurate counts, iterate over the elements in the
1836 hash table and see if any need too many insertions relative to the
1837 number of evaluations that can be removed. If so, mark them in
1838 PRUNE_EXPRS. */
1839 for (j = 0; j < (unsigned) n_elems; j++)
1840 if (deletions[j]
1841 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
08b7917c 1842 bitmap_set_bit (prune_exprs, j);
b89c219c 1843
1844 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
0d211963 1845 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
b89c219c 1846 {
f1955b22 1847 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
08b7917c 1848 bitmap_clear_bit (pre_insert_map[i], j);
b89c219c 1849
fe672ac0 1850 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
08b7917c 1851 bitmap_clear_bit (pre_delete_map[i], j);
b89c219c 1852 }
1853
b89c219c 1854 free (insertions);
1855 free (deletions);
1856}
1857
f151d0c6 1858/* Top level routine to do the dataflow analysis needed by PRE. */
e531b5f0 1859
bc8197c0 1860static struct edge_list *
f151d0c6 1861compute_pre_data (void)
1862{
bc8197c0 1863 struct edge_list *edge_list;
f151d0c6 1864 basic_block bb;
1865
1866 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1867 prune_expressions (true);
fe672ac0 1868 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
f151d0c6 1869
1870 /* Compute ae_kill for each basic block using:
1871
1872 ~(TRANSP | COMP)
1873 */
1874
fc00614f 1875 FOR_EACH_BB_FN (bb, cfun)
f151d0c6 1876 {
53c5d9d4 1877 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1878 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
bafa5ac7 1879 }
1880
3f5be5f4 1881 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
7bcd381b 1882 ae_kill, &pre_insert_map, &pre_delete_map);
cca23eb2 1883 sbitmap_vector_free (antloc);
8123d49b 1884 antloc = NULL;
cca23eb2 1885 sbitmap_vector_free (ae_kill);
3cfec666 1886 ae_kill = NULL;
b89c219c 1887
1888 prune_insertions_deletions (expr_hash_table.n_elems);
bc8197c0 1889
1890 return edge_list;
18aa2adf 1891}
1892\f
1893/* PRE utilities */
1894
6ef828f9 1895/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
b3f3796c 1896 block BB.
18aa2adf 1897
1898 VISITED is a pointer to a working buffer for tracking which BB's have
1899 been visited. It is NULL for the top-level call.
1900
1901 We treat reaching expressions that go through blocks containing the same
1902 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1903 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1904 2 as not reaching. The intent is to improve the probability of finding
1905 only one reaching expression and to reduce register lifetimes by picking
1906 the closest such expression. */
1907
1908static int
9908fe4d 1909pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
bc8197c0 1910 basic_block bb, char *visited)
18aa2adf 1911{
cb7e28c3 1912 edge pred;
cd665a06 1913 edge_iterator ei;
48e1416a 1914
cd665a06 1915 FOR_EACH_EDGE (pred, ei, bb->preds)
18aa2adf 1916 {
8d4a53c7 1917 basic_block pred_bb = pred->src;
18aa2adf 1918
34154e27 1919 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
18aa2adf 1920 /* Has predecessor has already been visited? */
b3d6de89 1921 || visited[pred_bb->index])
2c084240 1922 ;/* Nothing to do. */
1923
18aa2adf 1924 /* Does this predecessor generate this expression? */
08b7917c 1925 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
18aa2adf 1926 {
1927 /* Is this the occurrence we're looking for?
1928 Note that there's only one generating occurrence per block
1929 so we just need to check the block number. */
b3f3796c 1930 if (occr_bb == pred_bb)
18aa2adf 1931 return 1;
2c084240 1932
b3d6de89 1933 visited[pred_bb->index] = 1;
18aa2adf 1934 }
1935 /* Ignore this predecessor if it kills the expression. */
08b7917c 1936 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
b3d6de89 1937 visited[pred_bb->index] = 1;
2c084240 1938
18aa2adf 1939 /* Neither gen nor kill. */
1940 else
b65b4f63 1941 {
b3d6de89 1942 visited[pred_bb->index] = 1;
048599b9 1943 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
18aa2adf 1944 return 1;
b65b4f63 1945 }
18aa2adf 1946 }
1947
1948 /* All paths have been checked. */
1949 return 0;
1950}
cd55d9d6 1951
1952/* The wrapper for pre_expr_reaches_here_work that ensures that any
aa40f561 1953 memory allocated for that function is returned. */
cd55d9d6 1954
1955static int
9908fe4d 1956pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
cd55d9d6 1957{
1958 int rval;
fe672ac0 1959 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
cd55d9d6 1960
387732c1 1961 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
cd55d9d6 1962
1963 free (visited);
2c084240 1964 return rval;
cd55d9d6 1965}
18aa2adf 1966\f
42202832 1967/* Generate RTL to copy an EXP to REG and return it. */
7bcd381b 1968
42202832 1969rtx_insn *
1970prepare_copy_insn (rtx reg, rtx exp)
7bcd381b 1971{
526d7387 1972 rtx_insn *pat;
7bcd381b 1973
1974 start_sequence ();
06e2144a 1975
1976 /* If the expression is something that's an operand, like a constant,
1977 just copy it to a register. */
1978 if (general_operand (exp, GET_MODE (reg)))
1979 emit_move_insn (reg, exp);
1980
1981 /* Otherwise, make a new insn to compute this expression and make sure the
bc8197c0 1982 insn will be recognized (this also adds any needed CLOBBERs). */
0d59b19d 1983 else
1984 {
d1f9b275 1985 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
0d59b19d 1986
dae9d0e7 1987 if (insn_invalid_p (insn, false))
0fa137b8 1988 gcc_unreachable ();
0d59b19d 1989 }
48e1416a 1990
31d3e01c 1991 pat = get_insns ();
7bcd381b 1992 end_sequence ();
1993
1994 return pat;
1995}
3cfec666 1996
42202832 1997/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
1998
1999static rtx_insn *
2000process_insert_insn (struct gcse_expr *expr)
2001{
2002 rtx reg = expr->reaching_reg;
2003 /* Copy the expression to make sure we don't have any sharing issues. */
2004 rtx exp = copy_rtx (expr->expr);
2005
2006 return prepare_copy_insn (reg, exp);
2007}
2008
b3f3796c 2009/* Add EXPR to the end of basic block BB.
2010
36f52b0d 2011 This is used by both the PRE and code hoisting. */
18aa2adf 2012
2013static void
9908fe4d 2014insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
18aa2adf 2015{
4cd001d5 2016 rtx_insn *insn = BB_END (bb);
526d7387 2017 rtx_insn *new_insn;
18aa2adf 2018 rtx reg = expr->reaching_reg;
2019 int regno = REGNO (reg);
526d7387 2020 rtx_insn *pat, *pat_end;
18aa2adf 2021
7bcd381b 2022 pat = process_insert_insn (expr);
0d59b19d 2023 gcc_assert (pat && INSN_P (pat));
31d3e01c 2024
2025 pat_end = pat;
2026 while (NEXT_INSN (pat_end) != NULL_RTX)
2027 pat_end = NEXT_INSN (pat_end);
18aa2adf 2028
2029 /* If the last insn is a jump, insert EXPR in front [taking care to
917bbcab 2030 handle cc0, etc. properly]. Similarly we need to care trapping
17a54dac 2031 instructions in presence of non-call exceptions. */
18aa2adf 2032
b9f02dbb 2033 if (JUMP_P (insn)
6d7dc5b9 2034 || (NONJUMP_INSN_P (insn)
ea091dfd 2035 && (!single_succ_p (bb)
2036 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
18aa2adf 2037 {
18aa2adf 2038 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2039 if cc0 isn't set. */
693c9f42 2040 if (HAVE_cc0)
18aa2adf 2041 {
693c9f42 2042 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2043 if (note)
2044 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2045 else
2046 {
2047 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2048 if (maybe_cc0_setter
2049 && INSN_P (maybe_cc0_setter)
2050 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2051 insn = maybe_cc0_setter;
2052 }
18aa2adf 2053 }
693c9f42 2054
18aa2adf 2055 /* FIXME: What if something in cc0/jump uses value set in new insn? */
3072d30e 2056 new_insn = emit_insn_before_noloc (pat, insn, bb);
170e5c6c 2057 }
2c084240 2058
170e5c6c 2059 /* Likewise if the last insn is a call, as will happen in the presence
2060 of exception handling. */
b9f02dbb 2061 else if (CALL_P (insn)
ea091dfd 2062 && (!single_succ_p (bb)
2063 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
170e5c6c 2064 {
ed5527ca 2065 /* Keeping in mind targets with small register classes and parameters
2066 in registers, we search backward and place the instructions before
2067 the first parameter is loaded. Do this for everyone for consistency
36f52b0d 2068 and a presumption that we'll get better code elsewhere as well. */
170e5c6c 2069
2070 /* Since different machines initialize their parameter registers
2071 in different orders, assume nothing. Collect the set of all
2072 parameter registers. */
5496dbfc 2073 insn = find_first_parameter_load (insn, BB_HEAD (bb));
170e5c6c 2074
9fc37e9d 2075 /* If we found all the parameter loads, then we want to insert
2076 before the first parameter load.
2077
2078 If we did not find all the parameter loads, then we might have
2079 stopped on the head of the block, which could be a CODE_LABEL.
2080 If we inserted before the CODE_LABEL, then we would be putting
2081 the insn in the wrong basic block. In that case, put the insn
8b3dea0b 2082 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
b9f02dbb 2083 while (LABEL_P (insn)
83458610 2084 || NOTE_INSN_BASIC_BLOCK_P (insn))
8b3dea0b 2085 insn = NEXT_INSN (insn);
2c084240 2086
3072d30e 2087 new_insn = emit_insn_before_noloc (pat, insn, bb);
18aa2adf 2088 }
2089 else
3072d30e 2090 new_insn = emit_insn_after_noloc (pat, insn, bb);
18aa2adf 2091
31d3e01c 2092 while (1)
b3f3796c 2093 {
31d3e01c 2094 if (INSN_P (pat))
2e81afe5 2095 add_label_notes (PATTERN (pat), new_insn);
31d3e01c 2096 if (pat == pat_end)
2097 break;
2098 pat = NEXT_INSN (pat);
b3f3796c 2099 }
170e5c6c 2100
18aa2adf 2101 gcse_create_count++;
2102
3f5be5f4 2103 if (dump_file)
18aa2adf 2104 {
3f5be5f4 2105 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
b3d6de89 2106 bb->index, INSN_UID (new_insn));
3f5be5f4 2107 fprintf (dump_file, "copying expression %d to reg %d\n",
2c084240 2108 expr->bitmap_index, regno);
18aa2adf 2109 }
2110}
2111
7bcd381b 2112/* Insert partially redundant expressions on edges in the CFG to make
2113 the expressions fully redundant. */
18aa2adf 2114
7bcd381b 2115static int
9908fe4d 2116pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
18aa2adf 2117{
2c084240 2118 int e, i, j, num_edges, set_size, did_insert = 0;
b3f3796c 2119 sbitmap *inserted;
2120
7bcd381b 2121 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2122 if it reaches any of the deleted expressions. */
18aa2adf 2123
7bcd381b 2124 set_size = pre_insert_map[0]->size;
2125 num_edges = NUM_EDGES (edge_list);
27cfe3f1 2126 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
53c5d9d4 2127 bitmap_vector_clear (inserted, num_edges);
18aa2adf 2128
7bcd381b 2129 for (e = 0; e < num_edges; e++)
18aa2adf 2130 {
2131 int indx;
8d4a53c7 2132 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
b3f3796c 2133
b3f3796c 2134 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
18aa2adf 2135 {
7bcd381b 2136 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
18aa2adf 2137
bc8197c0 2138 for (j = indx;
2139 insert && j < (int) expr_hash_table.n_elems;
2140 j++, insert >>= 1)
2c084240 2141 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2142 {
9908fe4d 2143 struct gcse_expr *expr = index_map[j];
2144 struct gcse_occr *occr;
b3f3796c 2145
424da949 2146 /* Now look at each deleted occurrence of this expression. */
2c084240 2147 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2148 {
2149 if (! occr->deleted_p)
2150 continue;
2151
822e391f 2152 /* Insert this expression on this edge if it would
424da949 2153 reach the deleted occurrence in BB. */
08b7917c 2154 if (!bitmap_bit_p (inserted[e], j))
2c084240 2155 {
526d7387 2156 rtx_insn *insn;
2c084240 2157 edge eg = INDEX_EDGE (edge_list, e);
2158
2159 /* We can't insert anything on an abnormal and
2160 critical edge, so we insert the insn at the end of
2161 the previous block. There are several alternatives
2162 detailed in Morgans book P277 (sec 10.5) for
2163 handling this situation. This one is easiest for
2164 now. */
2165
164aece4 2166 if (eg->flags & EDGE_ABNORMAL)
36f52b0d 2167 insert_insn_end_basic_block (index_map[j], bb);
2c084240 2168 else
2169 {
2170 insn = process_insert_insn (index_map[j]);
2171 insert_insn_on_edge (insn, eg);
2172 }
2173
3f5be5f4 2174 if (dump_file)
2c084240 2175 {
d743aba2 2176 fprintf (dump_file, "PRE: edge (%d,%d), ",
b3d6de89 2177 bb->index,
2178 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
3f5be5f4 2179 fprintf (dump_file, "copy expression %d\n",
2c084240 2180 expr->bitmap_index);
2181 }
2182
8e802be9 2183 update_ld_motion_stores (expr);
08b7917c 2184 bitmap_set_bit (inserted[e], j);
2c084240 2185 did_insert = 1;
2186 gcse_create_count++;
2187 }
2188 }
2189 }
18aa2adf 2190 }
2191 }
0388e90f 2192
cca23eb2 2193 sbitmap_vector_free (inserted);
7bcd381b 2194 return did_insert;
18aa2adf 2195}
2196
53ee16e4 2197/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
9d344979 2198 Given "old_reg <- expr" (INSN), instead of adding after it
2199 reaching_reg <- old_reg
2200 it's better to do the following:
2201 reaching_reg <- expr
2202 old_reg <- reaching_reg
2203 because this way copy propagation can discover additional PRE
5c47e414 2204 opportunities. But if this fails, we try the old way.
2205 When "expr" is a store, i.e.
2206 given "MEM <- old_reg", instead of adding after it
2207 reaching_reg <- old_reg
2208 it's better to add it before as follows:
2209 reaching_reg <- old_reg
2210 MEM <- reaching_reg. */
18aa2adf 2211
2212static void
9908fe4d 2213pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
18aa2adf 2214{
2215 rtx reg = expr->reaching_reg;
2216 int regno = REGNO (reg);
2217 int indx = expr->bitmap_index;
53ee16e4 2218 rtx pat = PATTERN (insn);
f9a00e9e 2219 rtx set, first_set;
2220 rtx_insn *new_insn;
9d344979 2221 rtx old_reg;
53ee16e4 2222 int i;
18aa2adf 2223
53ee16e4 2224 /* This block matches the logic in hash_scan_insn. */
0d59b19d 2225 switch (GET_CODE (pat))
53ee16e4 2226 {
0d59b19d 2227 case SET:
2228 set = pat;
2229 break;
2230
2231 case PARALLEL:
53ee16e4 2232 /* Search through the parallel looking for the set whose
2233 source was the expression that we're interested in. */
00ce82e3 2234 first_set = NULL_RTX;
53ee16e4 2235 set = NULL_RTX;
2236 for (i = 0; i < XVECLEN (pat, 0); i++)
2237 {
2238 rtx x = XVECEXP (pat, 0, i);
00ce82e3 2239 if (GET_CODE (x) == SET)
53ee16e4 2240 {
00ce82e3 2241 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2242 may not find an equivalent expression, but in this
2243 case the PARALLEL will have a single set. */
2244 if (first_set == NULL_RTX)
2245 first_set = x;
2246 if (expr_equiv_p (SET_SRC (x), expr->expr))
2247 {
2248 set = x;
2249 break;
2250 }
53ee16e4 2251 }
2252 }
00ce82e3 2253
2254 gcc_assert (first_set);
2255 if (set == NULL_RTX)
2256 set = first_set;
0d59b19d 2257 break;
2258
2259 default:
2260 gcc_unreachable ();
53ee16e4 2261 }
2c084240 2262
b9f02dbb 2263 if (REG_P (SET_DEST (set)))
53ee16e4 2264 {
5c47e414 2265 old_reg = SET_DEST (set);
2266 /* Check if we can modify the set destination in the original insn. */
2267 if (validate_change (insn, &SET_DEST (set), reg, 0))
2268 {
2269 new_insn = gen_move_insn (old_reg, reg);
2270 new_insn = emit_insn_after (new_insn, insn);
5c47e414 2271 }
2272 else
2273 {
2274 new_insn = gen_move_insn (reg, old_reg);
2275 new_insn = emit_insn_after (new_insn, insn);
5c47e414 2276 }
53ee16e4 2277 }
5c47e414 2278 else /* This is possible only in case of a store to memory. */
53ee16e4 2279 {
5c47e414 2280 old_reg = SET_SRC (set);
53ee16e4 2281 new_insn = gen_move_insn (reg, old_reg);
5c47e414 2282
2283 /* Check if we can modify the set source in the original insn. */
2284 if (validate_change (insn, &SET_SRC (set), reg, 0))
2285 new_insn = emit_insn_before (new_insn, insn);
2286 else
2287 new_insn = emit_insn_after (new_insn, insn);
53ee16e4 2288 }
18aa2adf 2289
2290 gcse_create_count++;
2291
3f5be5f4 2292 if (dump_file)
2293 fprintf (dump_file,
7bcd381b 2294 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
90bd219d 2295 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
7bcd381b 2296 INSN_UID (insn), regno);
18aa2adf 2297}
2298
2299/* Copy available expressions that reach the redundant expression
2300 to `reaching_reg'. */
2301
2302static void
952f0048 2303pre_insert_copies (void)
18aa2adf 2304{
5c47e414 2305 unsigned int i, added_copy;
9908fe4d 2306 struct gcse_expr *expr;
2307 struct gcse_occr *occr;
2308 struct gcse_occr *avail;
b3f3796c 2309
18aa2adf 2310 /* For each available expression in the table, copy the result to
2311 `reaching_reg' if the expression reaches a deleted one.
2312
2313 ??? The current algorithm is rather brute force.
2314 Need to do some profiling. */
2315
27cfe3f1 2316 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 2317 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 2318 {
2319 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2320 we don't want to insert a copy here because the expression may not
2321 really be redundant. So only insert an insn if the expression was
2322 deleted. This test also avoids further processing if the
2323 expression wasn't deleted anywhere. */
2324 if (expr->reaching_reg == NULL)
2325 continue;
b9f02dbb 2326
5c47e414 2327 /* Set when we add a copy for that expression. */
b9f02dbb 2328 added_copy = 0;
2c084240 2329
2330 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2331 {
2332 if (! occr->deleted_p)
2333 continue;
18aa2adf 2334
2c084240 2335 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2336 {
526d7387 2337 rtx_insn *insn = avail->insn;
18aa2adf 2338
2c084240 2339 /* No need to handle this one if handled already. */
2340 if (avail->copied_p)
2341 continue;
18aa2adf 2342
2c084240 2343 /* Don't handle this one if it's a redundant one. */
dd1286fb 2344 if (insn->deleted ())
2c084240 2345 continue;
18aa2adf 2346
2c084240 2347 /* Or if the expression doesn't reach the deleted one. */
3cfec666 2348 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
8d4a53c7 2349 expr,
2350 BLOCK_FOR_INSN (occr->insn)))
2c084240 2351 continue;
18aa2adf 2352
5c47e414 2353 added_copy = 1;
2354
2c084240 2355 /* Copy the result of avail to reaching_reg. */
2356 pre_insert_copy_insn (expr, insn);
2357 avail->copied_p = 1;
2358 }
2359 }
5c47e414 2360
b9f02dbb 2361 if (added_copy)
5c47e414 2362 update_ld_motion_stores (expr);
2c084240 2363 }
18aa2adf 2364}
2365
97f436b3 2366struct set_data
2367{
526d7387 2368 rtx_insn *insn;
97f436b3 2369 const_rtx set;
2370 int nsets;
2371};
2372
2373/* Increment number of sets and record set in DATA. */
2374
2375static void
2376record_set_data (rtx dest, const_rtx set, void *data)
2377{
2378 struct set_data *s = (struct set_data *)data;
2379
2380 if (GET_CODE (set) == SET)
2381 {
2382 /* We allow insns having multiple sets, where all but one are
2383 dead as single set insns. In the common case only a single
2384 set is present, so we want to avoid checking for REG_UNUSED
2385 notes unless necessary. */
2386 if (s->nsets == 1
2387 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2388 && !side_effects_p (s->set))
2389 s->nsets = 0;
2390
2391 if (!s->nsets)
2392 {
2393 /* Record this set. */
2394 s->nsets += 1;
2395 s->set = set;
2396 }
2397 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2398 || side_effects_p (set))
2399 s->nsets += 1;
2400 }
2401}
2402
2403static const_rtx
526d7387 2404single_set_gcse (rtx_insn *insn)
97f436b3 2405{
2406 struct set_data s;
2407 rtx pattern;
2408
2409 gcc_assert (INSN_P (insn));
2410
2411 /* Optimize common case. */
2412 pattern = PATTERN (insn);
2413 if (GET_CODE (pattern) == SET)
2414 return pattern;
2415
2416 s.insn = insn;
2417 s.nsets = 0;
2418 note_stores (pattern, record_set_data, &s);
2419
2420 /* Considered invariant insns have exactly one set. */
2421 gcc_assert (s.nsets == 1);
2422 return s.set;
2423}
2424
51f6e244 2425/* Emit move from SRC to DEST noting the equivalence with expression computed
2426 in INSN. */
bc8197c0 2427
9ed997be 2428static rtx_insn *
526d7387 2429gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
51f6e244 2430{
50fc2d35 2431 rtx_insn *new_rtx;
97f436b3 2432 const_rtx set = single_set_gcse (insn);
2433 rtx set2;
51f6e244 2434 rtx note;
264adf90 2435 rtx eqv = NULL_RTX;
51f6e244 2436
2437 /* This should never fail since we're creating a reg->reg copy
2438 we've verified to be valid. */
2439
9ce37fa7 2440 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
27442180 2441
264adf90 2442 /* Note the equivalence for local CSE pass. Take the note from the old
2443 set if there was one. Otherwise record the SET_SRC from the old set
2444 unless DEST is also an operand of the SET_SRC. */
9ce37fa7 2445 set2 = single_set (new_rtx);
65e78aeb 2446 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
9ce37fa7 2447 return new_rtx;
51f6e244 2448 if ((note = find_reg_equal_equiv_note (insn)))
2449 eqv = XEXP (note, 0);
264adf90 2450 else if (! REG_P (dest)
2451 || ! reg_mentioned_p (dest, SET_SRC (set)))
51f6e244 2452 eqv = SET_SRC (set);
2453
264adf90 2454 if (eqv != NULL_RTX)
2455 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
51f6e244 2456
9ce37fa7 2457 return new_rtx;
51f6e244 2458}
2459
18aa2adf 2460/* Delete redundant computations.
18aa2adf 2461 Deletion is done by changing the insn to copy the `reaching_reg' of
2462 the expression into the result of the SET. It is left to later passes
67d57e27 2463 to propagate the copy or eliminate it.
18aa2adf 2464
bc8197c0 2465 Return nonzero if a change is made. */
18aa2adf 2466
2467static int
952f0048 2468pre_delete (void)
18aa2adf 2469{
a08b57af 2470 unsigned int i;
256d47d0 2471 int changed;
9908fe4d 2472 struct gcse_expr *expr;
2473 struct gcse_occr *occr;
b3f3796c 2474
18aa2adf 2475 changed = 0;
27cfe3f1 2476 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 2477 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 2478 {
2479 int indx = expr->bitmap_index;
18aa2adf 2480
bc8197c0 2481 /* We only need to search antic_occr since we require ANTLOC != 0. */
2c084240 2482 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2483 {
526d7387 2484 rtx_insn *insn = occr->insn;
2c084240 2485 rtx set;
8d4a53c7 2486 basic_block bb = BLOCK_FOR_INSN (insn);
18aa2adf 2487
53ee16e4 2488 /* We only delete insns that have a single_set. */
08b7917c 2489 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
3072d30e 2490 && (set = single_set (insn)) != 0
2491 && dbg_cnt (pre_insn))
2c084240 2492 {
2c084240 2493 /* Create a pseudo-reg to store the result of reaching
2494 expressions into. Get the mode for the new pseudo from
2495 the mode of the original destination pseudo. */
2496 if (expr->reaching_reg == NULL)
ae12ddda 2497 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2c084240 2498
bc8197c0 2499 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
51f6e244 2500 delete_insn (insn);
2501 occr->deleted_p = 1;
51f6e244 2502 changed = 1;
2503 gcse_subst_count++;
18aa2adf 2504
3f5be5f4 2505 if (dump_file)
2c084240 2506 {
3f5be5f4 2507 fprintf (dump_file,
2c084240 2508 "PRE: redundant insn %d (expression %d) in ",
2509 INSN_UID (insn), indx);
3f5be5f4 2510 fprintf (dump_file, "bb %d, reaching reg is %d\n",
b3d6de89 2511 bb->index, REGNO (expr->reaching_reg));
2c084240 2512 }
2513 }
2514 }
2515 }
18aa2adf 2516
2517 return changed;
2518}
2519
2520/* Perform GCSE optimizations using PRE.
2521 This is called by one_pre_gcse_pass after all the dataflow analysis
2522 has been done.
2523
2c084240 2524 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2525 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2526 Compiler Design and Implementation.
18aa2adf 2527
2c084240 2528 ??? A new pseudo reg is created to hold the reaching expression. The nice
2529 thing about the classical approach is that it would try to use an existing
2530 reg. If the register can't be adequately optimized [i.e. we introduce
2531 reload problems], one could add a pass here to propagate the new register
2532 through the block.
18aa2adf 2533
2c084240 2534 ??? We don't handle single sets in PARALLELs because we're [currently] not
2535 able to copy the rest of the parallel when we insert copies to create full
2536 redundancies from partial redundancies. However, there's no reason why we
2537 can't handle PARALLELs in the cases where there are no partial
18aa2adf 2538 redundancies. */
2539
2540static int
bc8197c0 2541pre_gcse (struct edge_list *edge_list)
18aa2adf 2542{
a08b57af 2543 unsigned int i;
2544 int did_insert, changed;
9908fe4d 2545 struct gcse_expr **index_map;
2546 struct gcse_expr *expr;
18aa2adf 2547
2548 /* Compute a mapping from expression number (`bitmap_index') to
2549 hash table entry. */
2550
9908fe4d 2551 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
27cfe3f1 2552 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 2553 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 2554 index_map[expr->bitmap_index] = expr;
18aa2adf 2555
18aa2adf 2556 /* Delete the redundant insns first so that
2557 - we know what register to use for the new insns and for the other
2558 ones with reaching expressions
2559 - we know which insns are redundant when we go to create copies */
2c084240 2560
18aa2adf 2561 changed = pre_delete ();
7bcd381b 2562 did_insert = pre_edge_insert (edge_list, index_map);
2c084240 2563
18aa2adf 2564 /* In other places with reaching expressions, copy the expression to the
7bcd381b 2565 specially allocated pseudo-reg that reaches the redundant expr. */
18aa2adf 2566 pre_insert_copies ();
7bcd381b 2567 if (did_insert)
2568 {
2569 commit_edge_insertions ();
2570 changed = 1;
2571 }
18aa2adf 2572
cd55d9d6 2573 free (index_map);
18aa2adf 2574 return changed;
2575}
2576
2577/* Top level routine to perform one PRE GCSE pass.
2578
6ef828f9 2579 Return nonzero if a change was made. */
18aa2adf 2580
2581static int
d743aba2 2582one_pre_gcse_pass (void)
18aa2adf 2583{
2584 int changed = 0;
2585
2586 gcse_subst_count = 0;
2587 gcse_create_count = 0;
2588
d743aba2 2589 /* Return if there's nothing to do, or it is too expensive. */
a28770e1 2590 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
82b9069d 2591 || gcse_or_cprop_is_too_expensive (_("PRE disabled")))
d743aba2 2592 return 0;
2593
2594 /* We need alias. */
2595 init_alias_analysis ();
2596
2597 bytes_used = 0;
2598 gcc_obstack_init (&gcse_obstack);
2599 alloc_gcse_mem ();
2600
07abdb66 2601 alloc_hash_table (&expr_hash_table);
7bcd381b 2602 add_noreturn_fake_exit_edges ();
8e802be9 2603 if (flag_gcse_lm)
2604 compute_ld_motion_mems ();
2605
27cfe3f1 2606 compute_hash_table (&expr_hash_table);
bc8197c0 2607 if (flag_gcse_lm)
2608 trim_ld_motion_mems ();
3f5be5f4 2609 if (dump_file)
2610 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2c084240 2611
27cfe3f1 2612 if (expr_hash_table.n_elems > 0)
18aa2adf 2613 {
bc8197c0 2614 struct edge_list *edge_list;
fe672ac0 2615 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
bc8197c0 2616 edge_list = compute_pre_data ();
2617 changed |= pre_gcse (edge_list);
7bcd381b 2618 free_edge_list (edge_list);
18aa2adf 2619 free_pre_mem ();
2620 }
2c084240 2621
bc8197c0 2622 if (flag_gcse_lm)
2623 free_ld_motion_mems ();
41d24834 2624 remove_fake_exit_edges ();
27cfe3f1 2625 free_hash_table (&expr_hash_table);
18aa2adf 2626
d743aba2 2627 free_gcse_mem ();
2628 obstack_free (&gcse_obstack, NULL);
2629
2630 /* We are finished with alias. */
2631 end_alias_analysis ();
2632
3f5be5f4 2633 if (dump_file)
18aa2adf 2634 {
d743aba2 2635 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
a28770e1 2636 current_function_name (), n_basic_blocks_for_fn (cfun),
2637 bytes_used);
3f5be5f4 2638 fprintf (dump_file, "%d substs, %d insns created\n",
2c084240 2639 gcse_subst_count, gcse_create_count);
18aa2adf 2640 }
2641
2642 return changed;
2643}
322b2436 2644\f
19d2fe05 2645/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2646 to INSN. If such notes are added to an insn which references a
2647 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2648 that note, because the following loop optimization pass requires
2649 them. */
322b2436 2650
322b2436 2651/* ??? If there was a jump optimization pass after gcse and before loop,
2652 then we would not need to do this here, because jump would add the
19d2fe05 2653 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
322b2436 2654
2655static void
84b4ae13 2656add_label_notes (rtx x, rtx_insn *insn)
322b2436 2657{
2658 enum rtx_code code = GET_CODE (x);
2659 int i, j;
d2ca078f 2660 const char *fmt;
322b2436 2661
2662 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2663 {
e72f55f8 2664 /* This code used to ignore labels that referred to dispatch tables to
d01481af 2665 avoid flow generating (slightly) worse code.
e72f55f8 2666
b65b4f63 2667 We no longer ignore such label references (see LABEL_REF handling in
2668 mark_jump_label for additional information). */
2c084240 2669
a8d1dae0 2670 /* There's no reason for current users to emit jump-insns with
2671 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2672 notes. */
2673 gcc_assert (!JUMP_P (insn));
c7799456 2674 add_reg_note (insn, REG_LABEL_OPERAND, label_ref_label (x));
a1ddb869 2675
c7799456 2676 if (LABEL_P (label_ref_label (x)))
2677 LABEL_NUSES (label_ref_label (x))++;
a8d1dae0 2678
322b2436 2679 return;
2680 }
2681
2c084240 2682 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
322b2436 2683 {
2684 if (fmt[i] == 'e')
2685 add_label_notes (XEXP (x, i), insn);
2686 else if (fmt[i] == 'E')
2687 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2688 add_label_notes (XVECEXP (x, i, j), insn);
2689 }
2690}
b3f3796c 2691
6627f3ed 2692/* Code Hoisting variables and subroutines. */
2693
2694/* Very busy expressions. */
2695static sbitmap *hoist_vbein;
2696static sbitmap *hoist_vbeout;
2697
6627f3ed 2698/* ??? We could compute post dominators and run this algorithm in
95cc2547 2699 reverse to perform tail merging, doing so would probably be
6627f3ed 2700 more effective than the tail merging code in jump.c.
2701
2702 It's unclear if tail merging could be run in parallel with
2703 code hoisting. It would be nice. */
2704
2705/* Allocate vars used for code hoisting analysis. */
2706
2707static void
952f0048 2708alloc_code_hoist_mem (int n_blocks, int n_exprs)
6627f3ed 2709{
2710 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2711 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2712 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2713
2714 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2715 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
6627f3ed 2716}
2717
2718/* Free vars used for code hoisting analysis. */
2719
2720static void
952f0048 2721free_code_hoist_mem (void)
6627f3ed 2722{
cca23eb2 2723 sbitmap_vector_free (antloc);
2724 sbitmap_vector_free (transp);
2725 sbitmap_vector_free (comp);
6627f3ed 2726
cca23eb2 2727 sbitmap_vector_free (hoist_vbein);
2728 sbitmap_vector_free (hoist_vbeout);
6627f3ed 2729
0051c76a 2730 free_dominance_info (CDI_DOMINATORS);
6627f3ed 2731}
2732
2733/* Compute the very busy expressions at entry/exit from each block.
2734
2735 An expression is very busy if all paths from a given point
2736 compute the expression. */
2737
2738static void
952f0048 2739compute_code_hoist_vbeinout (void)
6627f3ed 2740{
4c26117a 2741 int changed, passes;
2742 basic_block bb;
6627f3ed 2743
fe672ac0 2744 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2745 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
6627f3ed 2746
2747 passes = 0;
2748 changed = 1;
2c084240 2749
6627f3ed 2750 while (changed)
2751 {
2752 changed = 0;
2c084240 2753
6627f3ed 2754 /* We scan the blocks in the reverse order to speed up
2755 the convergence. */
7a46197b 2756 FOR_EACH_BB_REVERSE_FN (bb, cfun)
6627f3ed 2757 {
34154e27 2758 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
33ff724a 2759 {
08b7917c 2760 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2761 hoist_vbein, bb);
33ff724a 2762
2763 /* Include expressions in VBEout that are calculated
2764 in BB and available at its end. */
53c5d9d4 2765 bitmap_ior (hoist_vbeout[bb->index],
33ff724a 2766 hoist_vbeout[bb->index], comp[bb->index]);
2767 }
0f11b6b5 2768
53c5d9d4 2769 changed |= bitmap_or_and (hoist_vbein[bb->index],
0f11b6b5 2770 antloc[bb->index],
2771 hoist_vbeout[bb->index],
2772 transp[bb->index]);
6627f3ed 2773 }
2c084240 2774
6627f3ed 2775 passes++;
2776 }
2777
3f5be5f4 2778 if (dump_file)
c0939130 2779 {
2780 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2781
fc00614f 2782 FOR_EACH_BB_FN (bb, cfun)
c0939130 2783 {
2784 fprintf (dump_file, "vbein (%d): ", bb->index);
53c5d9d4 2785 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
c0939130 2786 fprintf (dump_file, "vbeout(%d): ", bb->index);
53c5d9d4 2787 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
c0939130 2788 }
2789 }
6627f3ed 2790}
2791
2792/* Top level routine to do the dataflow analysis needed by code hoisting. */
2793
2794static void
952f0048 2795compute_code_hoist_data (void)
6627f3ed 2796{
27cfe3f1 2797 compute_local_properties (transp, comp, antloc, &expr_hash_table);
f151d0c6 2798 prune_expressions (false);
6627f3ed 2799 compute_code_hoist_vbeinout ();
0051c76a 2800 calculate_dominance_info (CDI_DOMINATORS);
3f5be5f4 2801 if (dump_file)
2802 fprintf (dump_file, "\n");
6627f3ed 2803}
2804
ded17066 2805/* Update register pressure for BB when hoisting an expression from
2806 instruction FROM, if live ranges of inputs are shrunk. Also
2807 maintain live_in information if live range of register referred
2808 in FROM is shrunk.
2809
2810 Return 0 if register pressure doesn't change, otherwise return
2811 the number by which register pressure is decreased.
2812
2813 NOTE: Register pressure won't be increased in this function. */
2814
2815static int
526d7387 2816update_bb_reg_pressure (basic_block bb, rtx_insn *from)
ded17066 2817{
526d7387 2818 rtx dreg;
2819 rtx_insn *insn;
ded17066 2820 basic_block succ_bb;
be10bb5a 2821 df_ref use, op_ref;
ded17066 2822 edge succ;
2823 edge_iterator ei;
2824 int decreased_pressure = 0;
2825 int nregs;
2826 enum reg_class pressure_class;
be10bb5a 2827
2828 FOR_EACH_INSN_USE (use, from)
ded17066 2829 {
be10bb5a 2830 dreg = DF_REF_REAL_REG (use);
ded17066 2831 /* The live range of register is shrunk only if it isn't:
2832 1. referred on any path from the end of this block to EXIT, or
2833 2. referred by insns other than FROM in this block. */
2834 FOR_EACH_EDGE (succ, ei, bb->succs)
2835 {
2836 succ_bb = succ->dest;
34154e27 2837 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
ded17066 2838 continue;
2839
2840 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2841 break;
2842 }
2843 if (succ != NULL)
2844 continue;
2845
2846 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2847 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2848 {
2849 if (!DF_REF_INSN_INFO (op_ref))
2850 continue;
2851
2852 insn = DF_REF_INSN (op_ref);
2853 if (BLOCK_FOR_INSN (insn) == bb
2854 && NONDEBUG_INSN_P (insn) && insn != from)
2855 break;
2856 }
2857
2858 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2859 /* Decrease register pressure and update live_in information for
2860 this block. */
2861 if (!op_ref && pressure_class != NO_REGS)
2862 {
2863 decreased_pressure += nregs;
2864 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2865 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2866 }
2867 }
2868 return decreased_pressure;
2869}
2870
1ec78e16 2871/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2872 flow graph, if it can reach BB unimpared. Stop the search if the
2873 expression would need to be moved more than DISTANCE instructions.
2874
2875 DISTANCE is the number of instructions through which EXPR can be
2876 hoisted up in flow graph.
2877
2878 BB_SIZE points to an array which contains the number of instructions
2879 for each basic block.
2880
2881 PRESSURE_CLASS and NREGS are register class and number of hard registers
2882 for storing EXPR.
2883
2884 HOISTED_BBS points to a bitmap indicating basic blocks through which
2885 EXPR is hoisted.
6627f3ed 2886
ded17066 2887 FROM is the instruction from which EXPR is hoisted.
2888
6627f3ed 2889 It's unclear exactly what Muchnick meant by "unimpared". It seems
2890 to me that the expression must either be computed or transparent in
2891 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2892 would allow the expression to be hoisted out of loops, even if
2893 the expression wasn't a loop invariant.
2894
2895 Contrast this to reachability for PRE where an expression is
2896 considered reachable if *any* path reaches instead of *all*
2897 paths. */
2898
2899static int
9908fe4d 2900should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
7125d9ac 2901 basic_block bb, sbitmap visited,
2902 HOST_WIDE_INT distance,
1ec78e16 2903 int *bb_size, enum reg_class pressure_class,
526d7387 2904 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
6627f3ed 2905{
1ec78e16 2906 unsigned int i;
6627f3ed 2907 edge pred;
cd665a06 2908 edge_iterator ei;
1ec78e16 2909 sbitmap_iterator sbi;
cd55d9d6 2910 int visited_allocated_locally = 0;
ded17066 2911 int decreased_pressure = 0;
3cfec666 2912
ded17066 2913 if (flag_ira_hoist_pressure)
2914 {
2915 /* Record old information of basic block BB when it is visited
2916 at the first time. */
2917 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2918 {
2919 struct bb_data *data = BB_DATA (bb);
2920 bitmap_copy (data->backup, data->live_in);
2921 data->old_pressure = data->max_reg_pressure[pressure_class];
2922 }
2923 decreased_pressure = update_bb_reg_pressure (bb, from);
2924 }
8b38b150 2925 /* Terminate the search if distance, for which EXPR is allowed to move,
2926 is exhausted. */
2927 if (distance > 0)
2928 {
ded17066 2929 if (flag_ira_hoist_pressure)
2930 {
2931 /* Prefer to hoist EXPR if register pressure is decreased. */
2932 if (decreased_pressure > *nregs)
2933 distance += bb_size[bb->index];
2934 /* Let EXPR be hoisted through basic block at no cost if one
2935 of following conditions is satisfied:
2936
2937 1. The basic block has low register pressure.
2938 2. Register pressure won't be increases after hoisting EXPR.
2939
2940 Constant expressions is handled conservatively, because
2941 hoisting constant expression aggressively results in worse
2942 code. This decision is made by the observation of CSiBE
2943 on ARM target, while it has no obvious effect on other
2944 targets like x86, x86_64, mips and powerpc. */
2945 else if (CONST_INT_P (expr->expr)
2946 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2947 >= ira_class_hard_regs_num[pressure_class]
2948 && decreased_pressure < *nregs))
2949 distance -= bb_size[bb->index];
2950 }
2951 else
1ec78e16 2952 distance -= bb_size[bb->index];
8b38b150 2953
2954 if (distance <= 0)
2955 return 0;
2956 }
2957 else
2958 gcc_assert (distance == 0);
6627f3ed 2959
2960 if (visited == NULL)
2961 {
387732c1 2962 visited_allocated_locally = 1;
fe672ac0 2963 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
53c5d9d4 2964 bitmap_clear (visited);
6627f3ed 2965 }
2966
cd665a06 2967 FOR_EACH_EDGE (pred, ei, bb->preds)
6627f3ed 2968 {
8d4a53c7 2969 basic_block pred_bb = pred->src;
6627f3ed 2970
34154e27 2971 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
6627f3ed 2972 break;
2e281af0 2973 else if (pred_bb == expr_bb)
2974 continue;
08b7917c 2975 else if (bitmap_bit_p (visited, pred_bb->index))
6627f3ed 2976 continue;
08b7917c 2977 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
6627f3ed 2978 break;
2979 /* Not killed. */
2980 else
2981 {
08b7917c 2982 bitmap_set_bit (visited, pred_bb->index);
1ec78e16 2983 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2984 visited, distance, bb_size,
ded17066 2985 pressure_class, nregs,
2986 hoisted_bbs, from))
6627f3ed 2987 break;
2988 }
2989 }
3cfec666 2990 if (visited_allocated_locally)
1ec78e16 2991 {
2992 /* If EXPR can be hoisted to expr_bb, record basic blocks through
ded17066 2993 which EXPR is hoisted in hoisted_bbs. */
1ec78e16 2994 if (flag_ira_hoist_pressure && !pred)
2995 {
ded17066 2996 /* Record the basic block from which EXPR is hoisted. */
2997 bitmap_set_bit (visited, bb->index);
0d211963 2998 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
ded17066 2999 bitmap_set_bit (hoisted_bbs, i);
1ec78e16 3000 }
3001 sbitmap_free (visited);
3002 }
2c084240 3003
6627f3ed 3004 return (pred == NULL);
3005}
3006\f
9d75589a 3007/* Find occurrence in BB. */
bc8197c0 3008
9908fe4d 3009static struct gcse_occr *
3010find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
8b38b150 3011{
3012 /* Find the right occurrence of this expression. */
3013 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3014 occr = occr->next;
3015
3016 return occr;
3017}
3018
1ec78e16 3019/* Actually perform code hoisting.
3020
3021 The code hoisting pass can hoist multiple computations of the same
3022 expression along dominated path to a dominating basic block, like
3023 from b2/b3 to b1 as depicted below:
3024
3025 b1 ------
3026 /\ |
3027 / \ |
3028 bx by distance
3029 / \ |
3030 / \ |
3031 b2 b3 ------
3032
3033 Unfortunately code hoisting generally extends the live range of an
3034 output pseudo register, which increases register pressure and hurts
3035 register allocation. To address this issue, an attribute MAX_DISTANCE
3036 is computed and attached to each expression. The attribute is computed
3037 from rtx cost of the corresponding expression and it's used to control
3038 how long the expression can be hoisted up in flow graph. As the
3039 expression is hoisted up in flow graph, GCC decreases its DISTANCE
ded17066 3040 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3041 register pressure if live ranges of inputs are shrunk.
1ec78e16 3042
3043 Option "-fira-hoist-pressure" implements register pressure directed
3044 hoist based on upper method. The rationale is:
3045 1. Calculate register pressure for each basic block by reusing IRA
3046 facility.
3047 2. When expression is hoisted through one basic block, GCC checks
ded17066 3048 the change of live ranges for inputs/output. The basic block's
3049 register pressure will be increased because of extended live
3050 range of output. However, register pressure will be decreased
3051 if the live ranges of inputs are shrunk.
3052 3. After knowing how hoisting affects register pressure, GCC prefers
3053 to hoist the expression if it can decrease register pressure, by
3054 increasing DISTANCE of the corresponding expression.
3055 4. If hoisting the expression increases register pressure, GCC checks
3056 register pressure of the basic block and decrease DISTANCE only if
3057 the register pressure is high. In other words, expression will be
3058 hoisted through at no cost if the basic block has low register
3059 pressure.
3060 5. Update register pressure information for basic blocks through
3061 which expression is hoisted. */
2c084240 3062
d743aba2 3063static int
952f0048 3064hoist_code (void)
6627f3ed 3065{
4c26117a 3066 basic_block bb, dominated;
f1f41a6c 3067 vec<basic_block> dom_tree_walk;
c0939130 3068 unsigned int dom_tree_walk_index;
f1f41a6c 3069 vec<basic_block> domby;
1ec78e16 3070 unsigned int i, j, k;
9908fe4d 3071 struct gcse_expr **index_map;
3072 struct gcse_expr *expr;
8b38b150 3073 int *to_bb_head;
3074 int *bb_size;
d743aba2 3075 int changed = 0;
1ec78e16 3076 struct bb_data *data;
3077 /* Basic blocks that have occurrences reachable from BB. */
3078 bitmap from_bbs;
3079 /* Basic blocks through which expr is hoisted. */
3080 bitmap hoisted_bbs = NULL;
3081 bitmap_iterator bi;
6627f3ed 3082
6627f3ed 3083 /* Compute a mapping from expression number (`bitmap_index') to
3084 hash table entry. */
3085
9908fe4d 3086 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
27cfe3f1 3087 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 3088 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 3089 index_map[expr->bitmap_index] = expr;
6627f3ed 3090
8b38b150 3091 /* Calculate sizes of basic blocks and note how far
3092 each instruction is from the start of its block. We then use this
3093 data to restrict distance an expression can travel. */
3094
3095 to_bb_head = XCNEWVEC (int, get_max_uid ());
fe672ac0 3096 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
8b38b150 3097
fc00614f 3098 FOR_EACH_BB_FN (bb, cfun)
8b38b150 3099 {
526d7387 3100 rtx_insn *insn;
8b38b150 3101 int to_head;
3102
8b38b150 3103 to_head = 0;
2241e3a7 3104 FOR_BB_INSNS (bb, insn)
8b38b150 3105 {
3106 /* Don't count debug instructions to avoid them affecting
3107 decision choices. */
3108 if (NONDEBUG_INSN_P (insn))
3109 to_bb_head[INSN_UID (insn)] = to_head++;
8b38b150 3110 }
3111
3112 bb_size[bb->index] = to_head;
3113 }
3114
34154e27 3115 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3116 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3117 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
c0939130 3118
1ec78e16 3119 from_bbs = BITMAP_ALLOC (NULL);
3120 if (flag_ira_hoist_pressure)
3121 hoisted_bbs = BITMAP_ALLOC (NULL);
3122
c0939130 3123 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
34154e27 3124 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
c0939130 3125
6627f3ed 3126 /* Walk over each basic block looking for potentially hoistable
3127 expressions, nothing gets hoisted from the entry block. */
f1f41a6c 3128 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
6627f3ed 3129 {
c0939130 3130 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3131
f1f41a6c 3132 if (domby.length () == 0)
c0939130 3133 continue;
6627f3ed 3134
3135 /* Examine each expression that is very busy at the exit of this
3136 block. These are the potentially hoistable expressions. */
156093aa 3137 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
6627f3ed 3138 {
08b7917c 3139 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
6627f3ed 3140 {
1ec78e16 3141 int nregs = 0;
3142 enum reg_class pressure_class = NO_REGS;
c0939130 3143 /* Current expression. */
9908fe4d 3144 struct gcse_expr *expr = index_map[i];
9d75589a 3145 /* Number of occurrences of EXPR that can be hoisted to BB. */
c0939130 3146 int hoistable = 0;
9d75589a 3147 /* Occurrences reachable from BB. */
1e094109 3148 vec<occr_t> occrs_to_hoist = vNULL;
c0939130 3149 /* We want to insert the expression into BB only once, so
3150 note when we've inserted it. */
3151 int insn_inserted_p;
3152 occr_t occr;
3153
33ff724a 3154 /* If an expression is computed in BB and is available at end of
9d75589a 3155 BB, hoist all occurrences dominated by BB to BB. */
08b7917c 3156 if (bitmap_bit_p (comp[bb->index], i))
c0939130 3157 {
3158 occr = find_occr_in_bb (expr->antic_occr, bb);
3159
3160 if (occr)
3161 {
9d75589a 3162 /* An occurrence might've been already deleted
c0939130 3163 while processing a dominator of BB. */
c96e0a0a 3164 if (!occr->deleted_p)
c0939130 3165 {
3166 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3167 hoistable++;
3168 }
3169 }
3170 else
3171 hoistable++;
3172 }
33ff724a 3173
6627f3ed 3174 /* We've found a potentially hoistable expression, now
3175 we look at every block BB dominates to see if it
3176 computes the expression. */
f1f41a6c 3177 FOR_EACH_VEC_ELT (domby, j, dominated)
6627f3ed 3178 {
7125d9ac 3179 HOST_WIDE_INT max_distance;
8b38b150 3180
6627f3ed 3181 /* Ignore self dominance. */
8c4bd339 3182 if (bb == dominated)
6627f3ed 3183 continue;
6627f3ed 3184 /* We've found a dominated block, now see if it computes
3185 the busy expression and whether or not moving that
3186 expression to the "beginning" of that block is safe. */
08b7917c 3187 if (!bitmap_bit_p (antloc[dominated->index], i))
6627f3ed 3188 continue;
3189
c0939130 3190 occr = find_occr_in_bb (expr->antic_occr, dominated);
3191 gcc_assert (occr);
8b38b150 3192
9d75589a 3193 /* An occurrence might've been already deleted
c0939130 3194 while processing a dominator of BB. */
3195 if (occr->deleted_p)
c96e0a0a 3196 continue;
c0939130 3197 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3198
3199 max_distance = expr->max_distance;
3200 if (max_distance > 0)
3201 /* Adjust MAX_DISTANCE to account for the fact that
3202 OCCR won't have to travel all of DOMINATED, but
3203 only part of it. */
3204 max_distance += (bb_size[dominated->index]
3205 - to_bb_head[INSN_UID (occr->insn)]);
8b38b150 3206
1ec78e16 3207 pressure_class = get_pressure_class_and_nregs (occr->insn,
3208 &nregs);
3209
3210 /* Note if the expression should be hoisted from the dominated
3211 block to BB if it can reach DOMINATED unimpared.
6627f3ed 3212
3213 Keep track of how many times this expression is hoistable
3214 from a dominated block into BB. */
1ec78e16 3215 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3216 max_distance, bb_size,
3217 pressure_class, &nregs,
ded17066 3218 hoisted_bbs, occr->insn))
c0939130 3219 {
3220 hoistable++;
f1f41a6c 3221 occrs_to_hoist.safe_push (occr);
c0939130 3222 bitmap_set_bit (from_bbs, dominated->index);
3223 }
6627f3ed 3224 }
3225
424da949 3226 /* If we found more than one hoistable occurrence of this
c0939130 3227 expression, then note it in the vector of expressions to
6627f3ed 3228 hoist. It makes no sense to hoist things which are computed
3229 in only one BB, and doing so tends to pessimize register
3230 allocation. One could increase this value to try harder
3231 to avoid any possible code expansion due to register
3232 allocation issues; however experiments have shown that
3233 the vast majority of hoistable expressions are only movable
d01481af 3234 from two successors, so raising this threshold is likely
6627f3ed 3235 to nullify any benefit we get from code hoisting. */
da54886a 3236 if (hoistable > 1 && dbg_cnt (hoist_insn))
6627f3ed 3237 {
f1f41a6c 3238 /* If (hoistable != vec::length), then there is
9d75589a 3239 an occurrence of EXPR in BB itself. Don't waste
c0939130 3240 time looking for LCA in this case. */
f1f41a6c 3241 if ((unsigned) hoistable == occrs_to_hoist.length ())
c0939130 3242 {
3243 basic_block lca;
3244
3245 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3246 from_bbs);
3247 if (lca != bb)
9d75589a 3248 /* Punt, it's better to hoist these occurrences to
c0939130 3249 LCA. */
f1f41a6c 3250 occrs_to_hoist.release ();
c0939130 3251 }
6627f3ed 3252 }
c0939130 3253 else
a04e8d62 3254 /* Punt, no point hoisting a single occurrence. */
f1f41a6c 3255 occrs_to_hoist.release ();
6627f3ed 3256
1ec78e16 3257 if (flag_ira_hoist_pressure
f1f41a6c 3258 && !occrs_to_hoist.is_empty ())
1ec78e16 3259 {
ded17066 3260 /* Increase register pressure of basic blocks to which
3261 expr is hoisted because of extended live range of
3262 output. */
1ec78e16 3263 data = BB_DATA (bb);
3264 data->max_reg_pressure[pressure_class] += nregs;
ded17066 3265 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3266 {
f5a6b05f 3267 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
ded17066 3268 data->max_reg_pressure[pressure_class] += nregs;
3269 }
1ec78e16 3270 }
3271 else if (flag_ira_hoist_pressure)
3272 {
ded17066 3273 /* Restore register pressure and live_in info for basic
3274 blocks recorded in hoisted_bbs when expr will not be
3275 hoisted. */
1ec78e16 3276 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3277 {
f5a6b05f 3278 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
ded17066 3279 bitmap_copy (data->live_in, data->backup);
3280 data->max_reg_pressure[pressure_class]
3281 = data->old_pressure;
1ec78e16 3282 }
3283 }
3284
3285 if (flag_ira_hoist_pressure)
3286 bitmap_clear (hoisted_bbs);
3287
c0939130 3288 insn_inserted_p = 0;
6627f3ed 3289
9d75589a 3290 /* Walk through occurrences of I'th expressions we want
c0939130 3291 to hoist to BB and make the transformations. */
f1f41a6c 3292 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
6627f3ed 3293 {
526d7387 3294 rtx_insn *insn;
97f436b3 3295 const_rtx set;
c0939130 3296
3297 gcc_assert (!occr->deleted_p);
3298
3299 insn = occr->insn;
97f436b3 3300 set = single_set_gcse (insn);
c0939130 3301
3302 /* Create a pseudo-reg to store the result of reaching
3303 expressions into. Get the mode for the new pseudo
3304 from the mode of the original destination pseudo.
3305
3306 It is important to use new pseudos whenever we
3307 emit a set. This will allow reload to use
3308 rematerialization for such registers. */
3309 if (!insn_inserted_p)
3310 expr->reaching_reg
3311 = gen_reg_rtx_and_attrs (SET_DEST (set));
3312
bc8197c0 3313 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
c0939130 3314 insn);
3315 delete_insn (insn);
3316 occr->deleted_p = 1;
3317 changed = 1;
3318 gcse_subst_count++;
3319
3320 if (!insn_inserted_p)
6627f3ed 3321 {
c0939130 3322 insert_insn_end_basic_block (expr, bb);
3323 insn_inserted_p = 1;
6627f3ed 3324 }
3325 }
c0939130 3326
f1f41a6c 3327 occrs_to_hoist.release ();
c0939130 3328 bitmap_clear (from_bbs);
6627f3ed 3329 }
3330 }
f1f41a6c 3331 domby.release ();
6627f3ed 3332 }
2c084240 3333
f1f41a6c 3334 dom_tree_walk.release ();
1ec78e16 3335 BITMAP_FREE (from_bbs);
3336 if (flag_ira_hoist_pressure)
3337 BITMAP_FREE (hoisted_bbs);
3338
8b38b150 3339 free (bb_size);
3340 free (to_bb_head);
387732c1 3341 free (index_map);
d743aba2 3342
3343 return changed;
6627f3ed 3344}
3345
1ec78e16 3346/* Return pressure class and number of needed hard registers (through
3347 *NREGS) of register REGNO. */
3348static enum reg_class
3349get_regno_pressure_class (int regno, int *nregs)
3350{
3351 if (regno >= FIRST_PSEUDO_REGISTER)
3352 {
3353 enum reg_class pressure_class;
3354
3355 pressure_class = reg_allocno_class (regno);
3356 pressure_class = ira_pressure_class_translate[pressure_class];
3357 *nregs
3358 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3359 return pressure_class;
3360 }
3361 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3362 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3363 {
3364 *nregs = 1;
3365 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3366 }
3367 else
3368 {
3369 *nregs = 0;
3370 return NO_REGS;
3371 }
3372}
3373
3374/* Return pressure class and number of hard registers (through *NREGS)
3375 for destination of INSN. */
3376static enum reg_class
526d7387 3377get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
1ec78e16 3378{
3379 rtx reg;
3380 enum reg_class pressure_class;
97f436b3 3381 const_rtx set = single_set_gcse (insn);
1ec78e16 3382
1ec78e16 3383 reg = SET_DEST (set);
3384 if (GET_CODE (reg) == SUBREG)
3385 reg = SUBREG_REG (reg);
3386 if (MEM_P (reg))
3387 {
3388 *nregs = 0;
3389 pressure_class = NO_REGS;
3390 }
3391 else
3392 {
3393 gcc_assert (REG_P (reg));
3394 pressure_class = reg_allocno_class (REGNO (reg));
3395 pressure_class = ira_pressure_class_translate[pressure_class];
3396 *nregs
3397 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3398 }
3399 return pressure_class;
3400}
3401
3402/* Increase (if INCR_P) or decrease current register pressure for
3403 register REGNO. */
3404static void
3405change_pressure (int regno, bool incr_p)
3406{
3407 int nregs;
3408 enum reg_class pressure_class;
3409
3410 pressure_class = get_regno_pressure_class (regno, &nregs);
3411 if (! incr_p)
3412 curr_reg_pressure[pressure_class] -= nregs;
3413 else
3414 {
3415 curr_reg_pressure[pressure_class] += nregs;
3416 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3417 < curr_reg_pressure[pressure_class])
3418 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3419 = curr_reg_pressure[pressure_class];
3420 }
3421}
3422
3423/* Calculate register pressure for each basic block by walking insns
3424 from last to first. */
3425static void
3426calculate_bb_reg_pressure (void)
3427{
3428 int i;
3429 unsigned int j;
526d7387 3430 rtx_insn *insn;
1ec78e16 3431 basic_block bb;
3432 bitmap curr_regs_live;
3433 bitmap_iterator bi;
3434
3435
3b3a5e5f 3436 ira_setup_eliminable_regset ();
1ec78e16 3437 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
fc00614f 3438 FOR_EACH_BB_FN (bb, cfun)
1ec78e16 3439 {
3440 curr_bb = bb;
ded17066 3441 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3442 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3443 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3444 bitmap_copy (curr_regs_live, df_get_live_out (bb));
1ec78e16 3445 for (i = 0; i < ira_pressure_classes_num; i++)
3446 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3447 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3448 change_pressure (j, true);
3449
3450 FOR_BB_INSNS_REVERSE (bb, insn)
3451 {
3452 rtx dreg;
3453 int regno;
be10bb5a 3454 df_ref def, use;
1ec78e16 3455
3456 if (! NONDEBUG_INSN_P (insn))
3457 continue;
3458
be10bb5a 3459 FOR_EACH_INSN_DEF (def, insn)
1ec78e16 3460 {
be10bb5a 3461 dreg = DF_REF_REAL_REG (def);
1ec78e16 3462 gcc_assert (REG_P (dreg));
3463 regno = REGNO (dreg);
be10bb5a 3464 if (!(DF_REF_FLAGS (def)
1ec78e16 3465 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3466 {
3467 if (bitmap_clear_bit (curr_regs_live, regno))
3468 change_pressure (regno, false);
3469 }
3470 }
3471
be10bb5a 3472 FOR_EACH_INSN_USE (use, insn)
1ec78e16 3473 {
be10bb5a 3474 dreg = DF_REF_REAL_REG (use);
1ec78e16 3475 gcc_assert (REG_P (dreg));
3476 regno = REGNO (dreg);
3477 if (bitmap_set_bit (curr_regs_live, regno))
3478 change_pressure (regno, true);
3479 }
3480 }
3481 }
3482 BITMAP_FREE (curr_regs_live);
3483
3484 if (dump_file == NULL)
3485 return;
3486
3487 fprintf (dump_file, "\nRegister Pressure: \n");
fc00614f 3488 FOR_EACH_BB_FN (bb, cfun)
1ec78e16 3489 {
3490 fprintf (dump_file, " Basic block %d: \n", bb->index);
3491 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3492 {
3493 enum reg_class pressure_class;
3494
3495 pressure_class = ira_pressure_classes[i];
3496 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3497 continue;
3498
3499 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3500 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3501 }
3502 }
3503 fprintf (dump_file, "\n");
3504}
3505
6627f3ed 3506/* Top level routine to perform one code hoisting (aka unification) pass
3507
6ef828f9 3508 Return nonzero if a change was made. */
6627f3ed 3509
3510static int
952f0048 3511one_code_hoisting_pass (void)
6627f3ed 3512{
3513 int changed = 0;
3514
d743aba2 3515 gcse_subst_count = 0;
3516 gcse_create_count = 0;
3517
3518 /* Return if there's nothing to do, or it is too expensive. */
a28770e1 3519 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
82b9069d 3520 || gcse_or_cprop_is_too_expensive (_("GCSE disabled")))
d743aba2 3521 return 0;
3522
8b38b150 3523 doing_code_hoisting_p = true;
3524
1ec78e16 3525 /* Calculate register pressure for each basic block. */
3526 if (flag_ira_hoist_pressure)
3527 {
3528 regstat_init_n_sets_and_refs ();
3529 ira_set_pseudo_classes (false, dump_file);
3530 alloc_aux_for_blocks (sizeof (struct bb_data));
3531 calculate_bb_reg_pressure ();
3532 regstat_free_n_sets_and_refs ();
3533 }
3534
d743aba2 3535 /* We need alias. */
3536 init_alias_analysis ();
3537
3538 bytes_used = 0;
3539 gcc_obstack_init (&gcse_obstack);
3540 alloc_gcse_mem ();
3541
07abdb66 3542 alloc_hash_table (&expr_hash_table);
27cfe3f1 3543 compute_hash_table (&expr_hash_table);
3f5be5f4 3544 if (dump_file)
3545 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
2c084240 3546
27cfe3f1 3547 if (expr_hash_table.n_elems > 0)
6627f3ed 3548 {
fe672ac0 3549 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3550 expr_hash_table.n_elems);
6627f3ed 3551 compute_code_hoist_data ();
d743aba2 3552 changed = hoist_code ();
6627f3ed 3553 free_code_hoist_mem ();
3554 }
2c084240 3555
1ec78e16 3556 if (flag_ira_hoist_pressure)
3557 {
3558 free_aux_for_blocks ();
3559 free_reg_info ();
3560 }
27cfe3f1 3561 free_hash_table (&expr_hash_table);
d743aba2 3562 free_gcse_mem ();
3563 obstack_free (&gcse_obstack, NULL);
3564
3565 /* We are finished with alias. */
3566 end_alias_analysis ();
3567
3568 if (dump_file)
3569 {
3570 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
a28770e1 3571 current_function_name (), n_basic_blocks_for_fn (cfun),
3572 bytes_used);
d743aba2 3573 fprintf (dump_file, "%d substs, %d insns created\n",
3574 gcse_subst_count, gcse_create_count);
3575 }
6627f3ed 3576
8b38b150 3577 doing_code_hoisting_p = false;
3578
6627f3ed 3579 return changed;
3580}
8e802be9 3581\f
bc8197c0 3582/* Here we provide the things required to do store motion towards the exit.
3583 In order for this to be effective, gcse also needed to be taught how to
3584 move a load when it is killed only by a store to itself.
8e802be9 3585
3586 int i;
3587 float a[10];
3588
3589 void foo(float scale)
3590 {
3591 for (i=0; i<10; i++)
3592 a[i] *= scale;
3593 }
3594
3595 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3cfec666 3596 the load out since its live around the loop, and stored at the bottom
3597 of the loop.
8e802be9 3598
3cfec666 3599 The 'Load Motion' referred to and implemented in this file is
bc8197c0 3600 an enhancement to gcse which when using edge based LCM, recognizes
8e802be9 3601 this situation and allows gcse to move the load out of the loop.
3602
3603 Once gcse has hoisted the load, store motion can then push this
3604 load towards the exit, and we end up with no loads or stores of 'i'
3605 in the loop. */
3606
424da949 3607/* This will search the ldst list for a matching expression. If it
8e802be9 3608 doesn't find one, we create one and initialize it. */
3609
3610static struct ls_expr *
952f0048 3611ldst_entry (rtx x)
8e802be9 3612{
69333952 3613 int do_not_record_p = 0;
8e802be9 3614 struct ls_expr * ptr;
69333952 3615 unsigned int hash;
d9dd21a8 3616 ls_expr **slot;
0d707271 3617 struct ls_expr e;
8e802be9 3618
78d140c9 3619 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3620 NULL, /*have_reg_qty=*/false);
8e802be9 3621
0d707271 3622 e.pattern = x;
c1f445d2 3623 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
0d707271 3624 if (*slot)
d9dd21a8 3625 return *slot;
69333952 3626
4c36ffe6 3627 ptr = XNEW (struct ls_expr);
69333952 3628
3629 ptr->next = pre_ldst_mems;
3630 ptr->expr = NULL;
3631 ptr->pattern = x;
3632 ptr->pattern_regs = NULL_RTX;
d30c5be2 3633 ptr->stores.create (0);
69333952 3634 ptr->reaching_reg = NULL_RTX;
3635 ptr->invalid = 0;
3636 ptr->index = 0;
3637 ptr->hash_index = hash;
3638 pre_ldst_mems = ptr;
0d707271 3639 *slot = ptr;
3cfec666 3640
8e802be9 3641 return ptr;
3642}
3643
3644/* Free up an individual ldst entry. */
3645
3cfec666 3646static void
952f0048 3647free_ldst_entry (struct ls_expr * ptr)
8e802be9 3648{
d30c5be2 3649 ptr->stores.release ();
8e802be9 3650
3651 free (ptr);
3652}
3653
3654/* Free up all memory associated with the ldst list. */
3655
3656static void
bc8197c0 3657free_ld_motion_mems (void)
8e802be9 3658{
c1f445d2 3659 delete pre_ldst_table;
3660 pre_ldst_table = NULL;
0d707271 3661
3cfec666 3662 while (pre_ldst_mems)
8e802be9 3663 {
3664 struct ls_expr * tmp = pre_ldst_mems;
3665
3666 pre_ldst_mems = pre_ldst_mems->next;
3667
3668 free_ldst_entry (tmp);
3669 }
3670
3671 pre_ldst_mems = NULL;
3672}
3673
3674/* Dump debugging info about the ldst list. */
3675
3676static void
952f0048 3677print_ldst_list (FILE * file)
8e802be9 3678{
3679 struct ls_expr * ptr;
3680
3681 fprintf (file, "LDST list: \n");
3682
bc8197c0 3683 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
8e802be9 3684 {
3685 fprintf (file, " Pattern (%3d): ", ptr->index);
3686
3687 print_rtl (file, ptr->pattern);
3688
8e802be9 3689 fprintf (file, "\n Stores : ");
d30c5be2 3690 print_rtx_insn_vec (file, ptr->stores);
8e802be9 3691
3692 fprintf (file, "\n\n");
3693 }
3694
3695 fprintf (file, "\n");
3696}
3697
3698/* Returns 1 if X is in the list of ldst only expressions. */
3699
3700static struct ls_expr *
952f0048 3701find_rtx_in_ldst (rtx x)
8e802be9 3702{
0d707271 3703 struct ls_expr e;
d9dd21a8 3704 ls_expr **slot;
c1f445d2 3705 if (!pre_ldst_table)
00784725 3706 return NULL;
0d707271 3707 e.pattern = x;
c1f445d2 3708 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
d9dd21a8 3709 if (!slot || (*slot)->invalid)
0d707271 3710 return NULL;
d9dd21a8 3711 return *slot;
8e802be9 3712}
8e802be9 3713\f
3714/* Load Motion for loads which only kill themselves. */
3715
bc8197c0 3716/* Return true if x, a MEM, is a simple access with no side effects.
3717 These are the types of loads we consider for the ld_motion list,
3718 otherwise we let the usual aliasing take care of it. */
8e802be9 3719
3cfec666 3720static int
7ecb5bb2 3721simple_mem (const_rtx x)
8e802be9 3722{
8e802be9 3723 if (MEM_VOLATILE_P (x))
3724 return 0;
3cfec666 3725
8e802be9 3726 if (GET_MODE (x) == BLKmode)
3727 return 0;
7a676a9f 3728
64928ee5 3729 /* If we are handling exceptions, we must be careful with memory references
cbeb677e 3730 that may trap. If we are not, the behavior is undefined, so we may just
64928ee5 3731 continue. */
cbeb677e 3732 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
43f5be72 3733 return 0;
3734
64928ee5 3735 if (side_effects_p (x))
3736 return 0;
3cfec666 3737
64928ee5 3738 /* Do not consider function arguments passed on stack. */
3739 if (reg_mentioned_p (stack_pointer_rtx, x))
3740 return 0;
3741
3742 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3743 return 0;
3744
3745 return 1;
8e802be9 3746}
3747
3cfec666 3748/* Make sure there isn't a buried reference in this pattern anywhere.
3749 If there is, invalidate the entry for it since we're not capable
3750 of fixing it up just yet.. We have to be sure we know about ALL
8e802be9 3751 loads since the aliasing code will allow all entries in the
3752 ld_motion list to not-alias itself. If we miss a load, we will get
3cfec666 3753 the wrong value since gcse might common it and we won't know to
8e802be9 3754 fix it up. */
3755
3756static void
952f0048 3757invalidate_any_buried_refs (rtx x)
8e802be9 3758{
3759 const char * fmt;
387732c1 3760 int i, j;
8e802be9 3761 struct ls_expr * ptr;
3762
3763 /* Invalidate it in the list. */
b9f02dbb 3764 if (MEM_P (x) && simple_mem (x))
8e802be9 3765 {
3766 ptr = ldst_entry (x);
3767 ptr->invalid = 1;
3768 }
3769
3770 /* Recursively process the insn. */
3771 fmt = GET_RTX_FORMAT (GET_CODE (x));
3cfec666 3772
8e802be9 3773 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3774 {
3775 if (fmt[i] == 'e')
3776 invalidate_any_buried_refs (XEXP (x, i));
3777 else if (fmt[i] == 'E')
3778 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3779 invalidate_any_buried_refs (XVECEXP (x, i, j));
3780 }
3781}
3782
c5d8ca43 3783/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3784 being defined as MEM loads and stores to symbols, with no side effects
3785 and no registers in the expression. For a MEM destination, we also
3786 check that the insn is still valid if we replace the destination with a
3787 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3788 which don't match this criteria, they are invalidated and trimmed out
3789 later. */
8e802be9 3790
3cfec666 3791static void
952f0048 3792compute_ld_motion_mems (void)
8e802be9 3793{
3794 struct ls_expr * ptr;
4c26117a 3795 basic_block bb;
526d7387 3796 rtx_insn *insn;
3cfec666 3797
8e802be9 3798 pre_ldst_mems = NULL;
c1f445d2 3799 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
8e802be9 3800
fc00614f 3801 FOR_EACH_BB_FN (bb, cfun)
8e802be9 3802 {
defc8016 3803 FOR_BB_INSNS (bb, insn)
8e802be9 3804 {
9845d120 3805 if (NONDEBUG_INSN_P (insn))
8e802be9 3806 {
3807 if (GET_CODE (PATTERN (insn)) == SET)
3808 {
3809 rtx src = SET_SRC (PATTERN (insn));
3810 rtx dest = SET_DEST (PATTERN (insn));
3811
066c8e94 3812 /* Check for a simple load. */
b9f02dbb 3813 if (MEM_P (src) && simple_mem (src))
8e802be9 3814 {
3815 ptr = ldst_entry (src);
acec9605 3816 if (!REG_P (dest))
8e802be9 3817 ptr->invalid = 1;
3818 }
3819 else
3820 {
3821 /* Make sure there isn't a buried load somewhere. */
3822 invalidate_any_buried_refs (src);
3823 }
3cfec666 3824
066c8e94 3825 /* Check for a simple load through a REG_EQUAL note. */
3826 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3827 if (note
3828 && REG_NOTE_KIND (note) == REG_EQUAL
3829 && (src_eq = XEXP (note, 0))
f473eb72 3830 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3831 invalidate_any_buried_refs (src_eq);
3832
8e802be9 3833 /* Check for stores. Don't worry about aliased ones, they
3834 will block any movement we might do later. We only care
3835 about this exact pattern since those are the only
3836 circumstance that we will ignore the aliasing info. */
b9f02dbb 3837 if (MEM_P (dest) && simple_mem (dest))
8e802be9 3838 {
3839 ptr = ldst_entry (dest);
9c9680b5 3840 machine_mode src_mode = GET_MODE (src);
b9f02dbb 3841 if (! MEM_P (src)
c5d8ca43 3842 && GET_CODE (src) != ASM_OPERANDS
3843 /* Check for REG manually since want_to_gcse_p
3844 returns 0 for all REGs. */
9c9680b5 3845 && can_assign_to_reg_without_clobbers_p (src,
3846 src_mode))
d30c5be2 3847 ptr->stores.safe_push (insn);
8e802be9 3848 else
3849 ptr->invalid = 1;
3850 }
3851 }
3852 else
066c8e94 3853 {
3854 /* Invalidate all MEMs in the pattern and... */
3855 invalidate_any_buried_refs (PATTERN (insn));
3856
3857 /* ...in REG_EQUAL notes for PARALLELs with single SET. */
3858 rtx note = find_reg_equal_equiv_note (insn), src_eq;
3859 if (note
3860 && REG_NOTE_KIND (note) == REG_EQUAL
3861 && (src_eq = XEXP (note, 0)))
3862 invalidate_any_buried_refs (src_eq);
3863 }
8e802be9 3864 }
3865 }
3866 }
3867}
3868
3cfec666 3869/* Remove any references that have been either invalidated or are not in the
8e802be9 3870 expression list for pre gcse. */
3871
3872static void
952f0048 3873trim_ld_motion_mems (void)
8e802be9 3874{
69333952 3875 struct ls_expr * * last = & pre_ldst_mems;
3876 struct ls_expr * ptr = pre_ldst_mems;
8e802be9 3877
3878 while (ptr != NULL)
3879 {
9908fe4d 3880 struct gcse_expr * expr;
3cfec666 3881
8e802be9 3882 /* Delete if entry has been made invalid. */
69333952 3883 if (! ptr->invalid)
8e802be9 3884 {
8e802be9 3885 /* Delete if we cannot find this mem in the expression list. */
69333952 3886 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3cfec666 3887
69333952 3888 for (expr = expr_hash_table.table[hash];
3889 expr != NULL;
3890 expr = expr->next_same_hash)
3891 if (expr_equiv_p (expr->expr, ptr->pattern))
3892 break;
8e802be9 3893 }
3894 else
9908fe4d 3895 expr = (struct gcse_expr *) 0;
69333952 3896
3897 if (expr)
8e802be9 3898 {
3899 /* Set the expression field if we are keeping it. */
8e802be9 3900 ptr->expr = expr;
69333952 3901 last = & ptr->next;
8e802be9 3902 ptr = ptr->next;
3903 }
69333952 3904 else
3905 {
3906 *last = ptr->next;
c1f445d2 3907 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
69333952 3908 free_ldst_entry (ptr);
3909 ptr = * last;
3910 }
8e802be9 3911 }
3912
3913 /* Show the world what we've found. */
3f5be5f4 3914 if (dump_file && pre_ldst_mems != NULL)
3915 print_ldst_list (dump_file);
8e802be9 3916}
3917
3918/* This routine will take an expression which we are replacing with
3919 a reaching register, and update any stores that are needed if
3920 that expression is in the ld_motion list. Stores are updated by
91c82c20 3921 copying their SRC to the reaching register, and then storing
8e802be9 3922 the reaching register into the store location. These keeps the
3923 correct value in the reaching register for the loads. */
3924
3925static void
9908fe4d 3926update_ld_motion_stores (struct gcse_expr * expr)
8e802be9 3927{
3928 struct ls_expr * mem_ptr;
3929
3930 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3931 {
3cfec666 3932 /* We can try to find just the REACHED stores, but is shouldn't
3933 matter to set the reaching reg everywhere... some might be
8e802be9 3934 dead and should be eliminated later. */
3935
c5d8ca43 3936 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3937 where reg is the reaching reg used in the load. We checked in
3938 compute_ld_motion_mems that we can replace (set mem expr) with
3939 (set reg expr) in that insn. */
d30c5be2 3940 rtx_insn *insn;
3941 unsigned int i;
3942 FOR_EACH_VEC_ELT_REVERSE (mem_ptr->stores, i, insn)
8e802be9 3943 {
8e802be9 3944 rtx pat = PATTERN (insn);
3945 rtx src = SET_SRC (pat);
3946 rtx reg = expr->reaching_reg;
8e802be9 3947
3948 /* If we've already copied it, continue. */
3949 if (expr->reaching_reg == src)
3950 continue;
3cfec666 3951
3f5be5f4 3952 if (dump_file)
8e802be9 3953 {
3f5be5f4 3954 fprintf (dump_file, "PRE: store updated with reaching reg ");
bc8197c0 3955 print_rtl (dump_file, reg);
3f5be5f4 3956 fprintf (dump_file, ":\n ");
3957 print_inline_rtx (dump_file, insn, 8);
3958 fprintf (dump_file, "\n");
8e802be9 3959 }
3cfec666 3960
9ed997be 3961 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
d52d7a3a 3962 emit_insn_before (copy, insn);
8e802be9 3963 SET_SRC (pat) = reg;
3072d30e 3964 df_insn_rescan (insn);
8e802be9 3965
3966 /* un-recognize this pattern since it's probably different now. */
3967 INSN_CODE (insn) = -1;
3968 gcse_create_count++;
3969 }
3970 }
3971}
3972\f
4b673aa1 3973/* Return true if the graph is too expensive to optimize. PASS is the
3974 optimization about to be performed. */
64928ee5 3975
82b9069d 3976bool
3977gcse_or_cprop_is_too_expensive (const char *pass)
4b673aa1 3978{
82b9069d 3979 unsigned int memory_request = (n_basic_blocks_for_fn (cfun)
3980 * SBITMAP_SET_SIZE (max_reg_num ())
3981 * sizeof (SBITMAP_ELT_TYPE));
3982
4b673aa1 3983 /* Trying to perform global optimizations on flow graphs which have
3984 a high connectivity will take a long time and is unlikely to be
3985 particularly useful.
7a676a9f 3986
4b673aa1 3987 In normal circumstances a cfg should have about twice as many
3988 edges as blocks. But we do not want to punish small functions
3989 which have a couple switch statements. Rather than simply
3990 threshold the number of blocks, uses something with a more
3991 graceful degradation. */
f1955b22 3992 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4b673aa1 3993 {
3994 warning (OPT_Wdisabled_optimization,
3995 "%s: %d basic blocks and %d edges/basic block",
a28770e1 3996 pass, n_basic_blocks_for_fn (cfun),
f1955b22 3997 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
8e802be9 3998
4b673aa1 3999 return true;
4000 }
8e802be9 4001
07abdb66 4002 /* If allocating memory for the dataflow bitmaps would take up too much
4b673aa1 4003 storage it's better just to disable the optimization. */
82b9069d 4004 if (memory_request > MAX_GCSE_MEMORY)
4b673aa1 4005 {
4006 warning (OPT_Wdisabled_optimization,
85b9be9b 4007 "%s: %d basic blocks and %d registers; "
4008 "increase %<--param max-gcse-memory%> above %d",
82b9069d 4009 pass, n_basic_blocks_for_fn (cfun), max_reg_num (),
4010 memory_request);
8e802be9 4011
4b673aa1 4012 return true;
4013 }
42334a67 4014
4b673aa1 4015 return false;
9e4a9ceb 4016}
4b673aa1 4017\f
4b673aa1 4018static unsigned int
4019execute_rtl_pre (void)
4020{
805e3e15 4021 int changed;
4b673aa1 4022 delete_unreachable_blocks ();
4b673aa1 4023 df_analyze ();
805e3e15 4024 changed = one_pre_gcse_pass ();
4025 flag_rerun_cse_after_global_opts |= changed;
4026 if (changed)
4027 cleanup_cfg (0);
4b673aa1 4028 return 0;
4029}
7a676a9f 4030
4b673aa1 4031static unsigned int
4032execute_rtl_hoist (void)
4033{
805e3e15 4034 int changed;
4b673aa1 4035 delete_unreachable_blocks ();
4b673aa1 4036 df_analyze ();
805e3e15 4037 changed = one_code_hoisting_pass ();
4038 flag_rerun_cse_after_global_opts |= changed;
4039 if (changed)
4040 cleanup_cfg (0);
4b673aa1 4041 return 0;
4042}
77fce4cd 4043
cbe8bda8 4044namespace {
4045
4046const pass_data pass_data_rtl_pre =
77fce4cd 4047{
cbe8bda8 4048 RTL_PASS, /* type */
4049 "rtl pre", /* name */
4050 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 4051 TV_PRE, /* tv_id */
4052 PROP_cfglayout, /* properties_required */
4053 0, /* properties_provided */
4054 0, /* properties_destroyed */
4055 0, /* todo_flags_start */
8b88439e 4056 TODO_df_finish, /* todo_flags_finish */
d743aba2 4057};
77fce4cd 4058
cbe8bda8 4059class pass_rtl_pre : public rtl_opt_pass
4060{
4061public:
9af5ce0c 4062 pass_rtl_pre (gcc::context *ctxt)
4063 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
cbe8bda8 4064 {}
4065
4066 /* opt_pass methods: */
31315c24 4067 virtual bool gate (function *);
65b0537f 4068 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
cbe8bda8 4069
4070}; // class pass_rtl_pre
4071
31315c24 4072/* We do not construct an accurate cfg in functions which call
4073 setjmp, so none of these passes runs if the function calls
4074 setjmp.
4075 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4076
4077bool
4078pass_rtl_pre::gate (function *fun)
4079{
4080 return optimize > 0 && flag_gcse
4081 && !fun->calls_setjmp
4082 && optimize_function_for_speed_p (fun)
4083 && dbg_cnt (pre);
4084}
4085
cbe8bda8 4086} // anon namespace
4087
4088rtl_opt_pass *
4089make_pass_rtl_pre (gcc::context *ctxt)
4090{
4091 return new pass_rtl_pre (ctxt);
4092}
4093
4094namespace {
4095
4096const pass_data pass_data_rtl_hoist =
77fce4cd 4097{
cbe8bda8 4098 RTL_PASS, /* type */
4099 "hoist", /* name */
4100 OPTGROUP_NONE, /* optinfo_flags */
cbe8bda8 4101 TV_HOIST, /* tv_id */
4102 PROP_cfglayout, /* properties_required */
4103 0, /* properties_provided */
4104 0, /* properties_destroyed */
4105 0, /* todo_flags_start */
8b88439e 4106 TODO_df_finish, /* todo_flags_finish */
77fce4cd 4107};
4108
cbe8bda8 4109class pass_rtl_hoist : public rtl_opt_pass
4110{
4111public:
9af5ce0c 4112 pass_rtl_hoist (gcc::context *ctxt)
4113 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
cbe8bda8 4114 {}
4115
4116 /* opt_pass methods: */
31315c24 4117 virtual bool gate (function *);
65b0537f 4118 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
cbe8bda8 4119
4120}; // class pass_rtl_hoist
4121
31315c24 4122bool
4123pass_rtl_hoist::gate (function *)
4124{
4125 return optimize > 0 && flag_gcse
4126 && !cfun->calls_setjmp
4127 /* It does not make sense to run code hoisting unless we are optimizing
4128 for code size -- it rarely makes programs faster, and can make then
4129 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4130 && optimize_function_for_size_p (cfun)
4131 && dbg_cnt (hoist);
4132}
4133
cbe8bda8 4134} // anon namespace
4135
4136rtl_opt_pass *
4137make_pass_rtl_hoist (gcc::context *ctxt)
4138{
4139 return new pass_rtl_hoist (ctxt);
4140}
4141
415309e2 4142/* Reset all state within gcse.c so that we can rerun the compiler
4143 within the same process. For use by toplev::finalize. */
4144
4145void
4146gcse_c_finalize (void)
4147{
4148 test_insn = NULL;
4149}
4150
1f3233d1 4151#include "gt-gcse.h"