]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gcse.c
target.def (rtx_costs): Remove "code" param, add "mode".
[thirdparty/gcc.git] / gcc / gcse.c
CommitLineData
e45425ec 1/* Partial redundancy elimination / Hoisting for RTL.
5624e564 2 Copyright (C) 1997-2015 Free Software Foundation, Inc.
7506f491 3
1322177d 4This file is part of GCC.
7506f491 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
7506f491 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
7506f491
DE
15
16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
7506f491
DE
19
20/* TODO
21 - reordering of memory allocation and freeing to be more space efficient
b11f0116
BC
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
7506f491
DE
24*/
25
26/* References searched while implementing this.
7506f491
DE
27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
7506f491
DE
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
7506f491
DE
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
f4e584dc
JL
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
a42cd965
AM
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
f4e584dc
JL
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
7506f491
DE
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133*/
134
135#include "config.h"
50b2596f 136#include "system.h"
4977bab6 137#include "coretypes.h"
c7131fb2
AM
138#include "backend.h"
139#include "tree.h"
140#include "rtl.h"
141#include "df.h"
718f9c0f 142#include "diagnostic-core.h"
01198c2f 143#include "toplev.h"
40e23961 144#include "alias.h"
6baf1cc8 145#include "tm_p.h"
7506f491 146#include "regs.h"
b11f0116 147#include "ira.h"
7506f491 148#include "flags.h"
7506f491
DE
149#include "insn-config.h"
150#include "recog.h"
60393bbc
AM
151#include "cfgrtl.h"
152#include "cfganal.h"
153#include "lcm.h"
154#include "cfgcleanup.h"
36566b39
PK
155#include "expmed.h"
156#include "dojump.h"
157#include "explow.h"
158#include "calls.h"
159#include "emit-rtl.h"
160#include "varasm.h"
161#include "stmt.h"
589005ff 162#include "expr.h"
e7d482b9 163#include "except.h"
f1fa37ff 164#include "params.h"
a78a26f1 165#include "alloc-pool.h"
ae860ff7 166#include "cselib.h"
d128effb 167#include "intl.h"
7506f491 168#include "obstack.h"
ef330312 169#include "tree-pass.h"
6fb5fa3c 170#include "dbgcnt.h"
ec0a1343 171#include "target.h"
7c6811fe 172#include "gcse.h"
af3eb110 173#include "gcse-common.h"
4fa31c2a 174
f4e584dc 175/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
4cad6dba 176 are a superset of those done by classic GCSE.
7506f491 177
e45425ec
SB
178 Two passes of copy/constant propagation are done around PRE or hoisting
179 because the first one enables more GCSE and the second one helps to clean
180 up the copies that PRE and HOIST create. This is needed more for PRE than
181 for HOIST because code hoisting will try to use an existing register
182 containing the common subexpression rather than create a new one. This is
183 harder to do for PRE because of the code motion (which HOIST doesn't do).
7506f491
DE
184
185 Expressions we are interested in GCSE-ing are of the form
186 (set (pseudo-reg) (expression)).
187 Function want_to_gcse_p says what these are.
188
4cad6dba 189 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
3906a4a1 190 This allows PRE to hoist expressions that are expressed in multiple insns,
4cad6dba
SB
191 such as complex address calculations (e.g. for PIC code, or loads with a
192 high part and a low part).
3906a4a1 193
7506f491 194 PRE handles moving invariant expressions out of loops (by treating them as
f4e584dc 195 partially redundant).
7506f491 196
7506f491
DE
197 **********************
198
199 We used to support multiple passes but there are diminishing returns in
200 doing so. The first pass usually makes 90% of the changes that are doable.
201 A second pass can make a few more changes made possible by the first pass.
202 Experiments show any further passes don't make enough changes to justify
203 the expense.
204
205 A study of spec92 using an unlimited number of passes:
206 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
207 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
208 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
209
210 It was found doing copy propagation between each pass enables further
211 substitutions.
212
3906a4a1
SB
213 This study was done before expressions in REG_EQUAL notes were added as
214 candidate expressions for optimization, and before the GIMPLE optimizers
215 were added. Probably, multiple passes is even less efficient now than
216 at the time when the study was conducted.
217
7506f491 218 PRE is quite expensive in complicated functions because the DFA can take
3906a4a1 219 a while to converge. Hence we only perform one pass.
7506f491
DE
220
221 **********************
222
223 The steps for PRE are:
224
225 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
226
227 2) Perform the data flow analysis for PRE.
228
229 3) Delete the redundant instructions
230
231 4) Insert the required copies [if any] that make the partially
232 redundant instructions fully redundant.
233
234 5) For other reaching expressions, insert an instruction to copy the value
235 to a newly created pseudo that will reach the redundant instruction.
236
237 The deletion is done first so that when we do insertions we
238 know which pseudo reg to use.
239
240 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
241 argue it is not. The number of iterations for the algorithm to converge
242 is typically 2-4 so I don't view it as that expensive (relatively speaking).
243
4cad6dba 244 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
7506f491
DE
245 we create. To make an expression reach the place where it's redundant,
246 the result of the expression is copied to a new register, and the redundant
247 expression is deleted by replacing it with this new register. Classic GCSE
248 doesn't have this problem as much as it computes the reaching defs of
a3c28ba2
KH
249 each register in each block and thus can try to use an existing
250 register. */
7506f491
DE
251\f
252/* GCSE global vars. */
253
7c6811fe
RS
254struct target_gcse default_target_gcse;
255#if SWITCHABLE_TARGET
256struct target_gcse *this_target_gcse = &default_target_gcse;
257#endif
258
5f39ad47
SB
259/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
260int flag_rerun_cse_after_global_opts;
f4e584dc 261
7506f491
DE
262/* An obstack for our working variables. */
263static struct obstack gcse_obstack;
264
7506f491
DE
265/* Hash table of expressions. */
266
11478306 267struct gcse_expr
7506f491 268{
43c8a043 269 /* The expression. */
7506f491
DE
270 rtx expr;
271 /* Index in the available expression bitmaps. */
272 int bitmap_index;
273 /* Next entry with the same hash. */
11478306 274 struct gcse_expr *next_same_hash;
7506f491
DE
275 /* List of anticipatable occurrences in basic blocks in the function.
276 An "anticipatable occurrence" is one that is the first occurrence in the
f4e584dc
JL
277 basic block, the operands are not modified in the basic block prior
278 to the occurrence and the output is not used between the start of
279 the block and the occurrence. */
11478306 280 struct gcse_occr *antic_occr;
7506f491
DE
281 /* List of available occurrence in basic blocks in the function.
282 An "available occurrence" is one that is the last occurrence in the
283 basic block and the operands are not modified by following statements in
284 the basic block [including this insn]. */
11478306 285 struct gcse_occr *avail_occr;
7506f491
DE
286 /* Non-null if the computation is PRE redundant.
287 The value is the newly created pseudo-reg to record a copy of the
288 expression in all the places that reach the redundant copy. */
289 rtx reaching_reg;
20160347
MK
290 /* Maximum distance in instructions this expression can travel.
291 We avoid moving simple expressions for more than a few instructions
292 to keep register pressure under control.
293 A value of "0" removes restrictions on how far the expression can
294 travel. */
295 int max_distance;
7506f491
DE
296};
297
298/* Occurrence of an expression.
299 There is one per basic block. If a pattern appears more than once the
300 last appearance is used [or first for anticipatable expressions]. */
301
11478306 302struct gcse_occr
7506f491
DE
303{
304 /* Next occurrence of this expression. */
11478306 305 struct gcse_occr *next;
7506f491 306 /* The insn that computes the expression. */
cf92a178 307 rtx_insn *insn;
cc2902df 308 /* Nonzero if this [anticipatable] occurrence has been deleted. */
7506f491 309 char deleted_p;
cc2902df 310 /* Nonzero if this [available] occurrence has been copied to
7506f491
DE
311 reaching_reg. */
312 /* ??? This is mutually exclusive with deleted_p, so they could share
313 the same byte. */
314 char copied_p;
315};
316
11478306 317typedef struct gcse_occr *occr_t;
cad9aa15 318
e45425ec 319/* Expression hash tables.
7506f491
DE
320 Each hash table is an array of buckets.
321 ??? It is known that if it were an array of entries, structure elements
322 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
323 not clear whether in the final analysis a sufficient amount of memory would
324 be saved as the size of the available expression bitmaps would be larger
325 [one could build a mapping table without holes afterwards though].
c4c81601 326 Someday I'll perform the computation and figure it out. */
7506f491 327
11478306 328struct gcse_hash_table_d
02280659
ZD
329{
330 /* The table itself.
331 This is an array of `expr_hash_table_size' elements. */
11478306 332 struct gcse_expr **table;
02280659
ZD
333
334 /* Size of the hash table, in elements. */
335 unsigned int size;
2e653e39 336
02280659
ZD
337 /* Number of hash table elements. */
338 unsigned int n_elems;
02280659 339};
c4c81601 340
02280659 341/* Expression hash table. */
11478306 342static struct gcse_hash_table_d expr_hash_table;
02280659 343
a13d4ebf 344/* This is a list of expressions which are MEMs and will be used by load
589005ff 345 or store motion.
43c8a043
EB
346 Load motion tracks MEMs which aren't killed by anything except itself,
347 i.e. loads and stores to a single location.
589005ff 348 We can then allow movement of these MEM refs with a little special
a13d4ebf
AM
349 allowance. (all stores copy the same value to the reaching reg used
350 for the loads). This means all values used to store into memory must have
43c8a043 351 no side effects so we can re-issue the setter value. */
a13d4ebf
AM
352
353struct ls_expr
354{
11478306 355 struct gcse_expr * expr; /* Gcse expression reference for LM. */
a13d4ebf 356 rtx pattern; /* Pattern of this mem. */
47a3dae1 357 rtx pattern_regs; /* List of registers mentioned by the mem. */
3dc99c19
DM
358 rtx_insn_list *loads; /* INSN list of loads seen. */
359 rtx_insn_list *stores; /* INSN list of stores seen. */
a13d4ebf
AM
360 struct ls_expr * next; /* Next in the list. */
361 int invalid; /* Invalid for some reason. */
362 int index; /* If it maps to a bitmap index. */
b58b21d5 363 unsigned int hash_index; /* Index when in a hash table. */
a13d4ebf
AM
364 rtx reaching_reg; /* Register to use when re-writing. */
365};
366
367/* Head of the list of load/store memory refs. */
368static struct ls_expr * pre_ldst_mems = NULL;
369
8d67ee55 370struct pre_ldst_expr_hasher : nofree_ptr_hash <ls_expr>
4a8fb1a1 371{
4a8fb1a1 372 typedef value_type compare_type;
67f58944
TS
373 static inline hashval_t hash (const ls_expr *);
374 static inline bool equal (const ls_expr *, const ls_expr *);
4a8fb1a1
LC
375};
376
377/* Hashtable helpers. */
378inline hashval_t
67f58944 379pre_ldst_expr_hasher::hash (const ls_expr *x)
4a8fb1a1
LC
380{
381 int do_not_record_p = 0;
382 return
383 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
384}
385
386static int expr_equiv_p (const_rtx, const_rtx);
387
388inline bool
67f58944
TS
389pre_ldst_expr_hasher::equal (const ls_expr *ptr1,
390 const ls_expr *ptr2)
4a8fb1a1
LC
391{
392 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
393}
394
9727e468 395/* Hashtable for the load/store memory refs. */
c203e8a7 396static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
9727e468 397
7506f491
DE
398/* Bitmap containing one bit for each register in the program.
399 Used when performing GCSE to track which registers have been set since
400 the start of the basic block. */
73991d6a 401static regset reg_set_bitmap;
7506f491 402
a13d4ebf
AM
403/* Array, indexed by basic block number for a list of insns which modify
404 memory within that block. */
e26d1bb2 405static vec<rtx_insn *> *modify_mem_list;
0516f6fe 406static bitmap modify_mem_list_set;
a13d4ebf 407
6ce1edcf
NF
408/* This array parallels modify_mem_list, except that it stores MEMs
409 being set and their canonicalized memory addresses. */
9771b263 410static vec<modify_pair> *canon_modify_mem_list;
0516f6fe 411
aa47fcfa
JL
412/* Bitmap indexed by block numbers to record which blocks contain
413 function calls. */
414static bitmap blocks_with_calls;
415
7506f491
DE
416/* Various variables for statistics gathering. */
417
418/* Memory used in a pass.
419 This isn't intended to be absolutely precise. Its intent is only
420 to keep an eye on memory usage. */
421static int bytes_used;
c4c81601 422
7506f491
DE
423/* GCSE substitutions made. */
424static int gcse_subst_count;
425/* Number of copy instructions created. */
426static int gcse_create_count;
7506f491 427\f
20160347
MK
428/* Doing code hoisting. */
429static bool doing_code_hoisting_p = false;
430\f
e83f4801 431/* For available exprs */
df35c271 432static sbitmap *ae_kill;
7506f491 433\f
b11f0116
BC
434/* Data stored for each basic block. */
435struct bb_data
436{
437 /* Maximal register pressure inside basic block for given register class
438 (defined only for the pressure classes). */
439 int max_reg_pressure[N_REG_CLASSES];
4b8181c5
BC
440 /* Recorded register pressure of basic block before trying to hoist
441 an expression. Will be used to restore the register pressure
442 if the expression should not be hoisted. */
443 int old_pressure;
444 /* Recorded register live_in info of basic block during code hoisting
445 process. BACKUP is used to record live_in info before trying to
446 hoist an expression, and will be used to restore LIVE_IN if the
447 expression should not be hoisted. */
448 bitmap live_in, backup;
b11f0116
BC
449};
450
451#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
452
453static basic_block curr_bb;
454
455/* Current register pressure for each pressure class. */
456static int curr_reg_pressure[N_REG_CLASSES];
457\f
458
1d088dee 459static void compute_can_copy (void);
9fe15a12
KG
460static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
461static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
703ad42b 462static void *gcse_alloc (unsigned long);
eb232f4e 463static void alloc_gcse_mem (void);
1d088dee 464static void free_gcse_mem (void);
11478306
JH
465static void hash_scan_insn (rtx_insn *, struct gcse_hash_table_d *);
466static void hash_scan_set (rtx, rtx_insn *, struct gcse_hash_table_d *);
467static void hash_scan_clobber (rtx, rtx_insn *, struct gcse_hash_table_d *);
468static void hash_scan_call (rtx, rtx_insn *, struct gcse_hash_table_d *);
cf92a178
DM
469static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
470static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
471static int oprs_available_p (const_rtx, const rtx_insn *);
ef4bddc2 472static void insert_expr_in_table (rtx, machine_mode, rtx_insn *, int, int,
11478306 473 int, struct gcse_hash_table_d *);
ef4bddc2 474static unsigned int hash_expr (const_rtx, machine_mode, int *, int);
170065c9 475static void record_last_reg_set_info (rtx_insn *, int);
e26d1bb2 476static void record_last_mem_set_info (rtx_insn *);
7bc980e1 477static void record_last_set_info (rtx, const_rtx, void *);
11478306
JH
478static void compute_hash_table (struct gcse_hash_table_d *);
479static void alloc_hash_table (struct gcse_hash_table_d *);
480static void free_hash_table (struct gcse_hash_table_d *);
481static void compute_hash_table_work (struct gcse_hash_table_d *);
482static void dump_hash_table (FILE *, const char *, struct gcse_hash_table_d *);
1d088dee 483static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
11478306 484 struct gcse_hash_table_d *);
7bc980e1 485static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
ed7a4b4b 486static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
1d088dee
AJ
487static void alloc_pre_mem (int, int);
488static void free_pre_mem (void);
43c8a043 489static struct edge_list *compute_pre_data (void);
11478306 490static int pre_expr_reaches_here_p (basic_block, struct gcse_expr *,
1d088dee 491 basic_block);
11478306
JH
492static void insert_insn_end_basic_block (struct gcse_expr *, basic_block);
493static void pre_insert_copy_insn (struct gcse_expr *, rtx_insn *);
1d088dee
AJ
494static void pre_insert_copies (void);
495static int pre_delete (void);
43c8a043 496static int pre_gcse (struct edge_list *);
5f39ad47 497static int one_pre_gcse_pass (void);
170065c9 498static void add_label_notes (rtx, rtx_insn *);
1d088dee
AJ
499static void alloc_code_hoist_mem (int, int);
500static void free_code_hoist_mem (void);
501static void compute_code_hoist_vbeinout (void);
502static void compute_code_hoist_data (void);
11478306 503static int should_hoist_expr_to_dom (basic_block, struct gcse_expr *, basic_block,
b11f0116 504 sbitmap, int, int *, enum reg_class,
cf92a178 505 int *, bitmap, rtx_insn *);
5f39ad47 506static int hoist_code (void);
4b8181c5 507static enum reg_class get_regno_pressure_class (int regno, int *nregs);
cf92a178 508static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
1d088dee 509static int one_code_hoisting_pass (void);
11478306
JH
510static rtx_insn *process_insert_insn (struct gcse_expr *);
511static int pre_edge_insert (struct edge_list *, struct gcse_expr **);
512static int pre_expr_reaches_here_p_work (basic_block, struct gcse_expr *,
1d088dee
AJ
513 basic_block, char *);
514static struct ls_expr * ldst_entry (rtx);
515static void free_ldst_entry (struct ls_expr *);
43c8a043 516static void free_ld_motion_mems (void);
1d088dee
AJ
517static void print_ldst_list (FILE *);
518static struct ls_expr * find_rtx_in_ldst (rtx);
ed7a4b4b 519static int simple_mem (const_rtx);
1d088dee
AJ
520static void invalidate_any_buried_refs (rtx);
521static void compute_ld_motion_mems (void);
522static void trim_ld_motion_mems (void);
11478306 523static void update_ld_motion_stores (struct gcse_expr *);
1d088dee
AJ
524static void clear_modify_mem_tables (void);
525static void free_modify_mem_tables (void);
d128effb 526static bool is_too_expensive (const char *);
1b4572a8
KG
527
528#define GNEW(T) ((T *) gmalloc (sizeof (T)))
529#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
530
531#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
532#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
1b4572a8
KG
533
534#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
535#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
1b4572a8
KG
536
537#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
538#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
7506f491 539\f
7506f491
DE
540/* Misc. utilities. */
541
7c6811fe
RS
542#define can_copy \
543 (this_target_gcse->x_can_copy)
544#define can_copy_init_p \
545 (this_target_gcse->x_can_copy_init_p)
773eae39 546
7506f491
DE
547/* Compute which modes support reg/reg copy operations. */
548
549static void
1d088dee 550compute_can_copy (void)
7506f491
DE
551{
552 int i;
50b2596f 553#ifndef AVOID_CCMODE_COPIES
21afc57d
TS
554 rtx reg;
555 rtx_insn *insn;
50b2596f 556#endif
773eae39 557 memset (can_copy, 0, NUM_MACHINE_MODES);
7506f491
DE
558
559 start_sequence ();
560 for (i = 0; i < NUM_MACHINE_MODES; i++)
c4c81601
RK
561 if (GET_MODE_CLASS (i) == MODE_CC)
562 {
7506f491 563#ifdef AVOID_CCMODE_COPIES
773eae39 564 can_copy[i] = 0;
7506f491 565#else
ef4bddc2 566 reg = gen_rtx_REG ((machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
f7df4a84 567 insn = emit_insn (gen_rtx_SET (reg, reg));
9714cf43 568 if (recog (PATTERN (insn), insn, NULL) >= 0)
773eae39 569 can_copy[i] = 1;
7506f491 570#endif
c4c81601 571 }
141b5810 572 else
773eae39 573 can_copy[i] = 1;
c4c81601 574
7506f491 575 end_sequence ();
7506f491 576}
773eae39
EB
577
578/* Returns whether the mode supports reg/reg copy operations. */
579
580bool
ef4bddc2 581can_copy_p (machine_mode mode)
773eae39 582{
773eae39
EB
583 if (! can_copy_init_p)
584 {
585 compute_can_copy ();
586 can_copy_init_p = true;
587 }
588
589 return can_copy[mode] != 0;
590}
7506f491
DE
591\f
592/* Cover function to xmalloc to record bytes allocated. */
593
703ad42b 594static void *
4ac11022 595gmalloc (size_t size)
7506f491
DE
596{
597 bytes_used += size;
598 return xmalloc (size);
599}
600
9fe15a12
KG
601/* Cover function to xcalloc to record bytes allocated. */
602
603static void *
604gcalloc (size_t nelem, size_t elsize)
605{
606 bytes_used += nelem * elsize;
607 return xcalloc (nelem, elsize);
608}
609
77bbd421 610/* Cover function to obstack_alloc. */
7506f491 611
703ad42b 612static void *
1d088dee 613gcse_alloc (unsigned long size)
7506f491 614{
77bbd421 615 bytes_used += size;
703ad42b 616 return obstack_alloc (&gcse_obstack, size);
7506f491
DE
617}
618
4a81774c 619/* Allocate memory for the reg/memory set tracking tables.
7506f491
DE
620 This is called at the start of each pass. */
621
622static void
eb232f4e 623alloc_gcse_mem (void)
7506f491 624{
7506f491 625 /* Allocate vars to track sets of regs. */
7a8cba34 626 reg_set_bitmap = ALLOC_REG_SET (NULL);
7506f491 627
a13d4ebf 628 /* Allocate array to keep a list of insns which modify memory in each
9771b263
DN
629 basic block. The two typedefs are needed to work around the
630 pre-processor limitation with template types in macro arguments. */
e26d1bb2 631 typedef vec<rtx_insn *> vec_rtx_heap;
9771b263 632 typedef vec<modify_pair> vec_modify_pair_heap;
8b1c6fd7
DM
633 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
634 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
635 last_basic_block_for_fn (cfun));
8bdbfff5
NS
636 modify_mem_list_set = BITMAP_ALLOC (NULL);
637 blocks_with_calls = BITMAP_ALLOC (NULL);
7506f491
DE
638}
639
640/* Free memory allocated by alloc_gcse_mem. */
641
642static void
1d088dee 643free_gcse_mem (void)
7506f491 644{
d5b8da97
SB
645 FREE_REG_SET (reg_set_bitmap);
646
73991d6a 647 free_modify_mem_tables ();
8bdbfff5
NS
648 BITMAP_FREE (modify_mem_list_set);
649 BITMAP_FREE (blocks_with_calls);
7506f491 650}
b5ce41ff
JL
651\f
652/* Compute the local properties of each recorded expression.
c4c81601
RK
653
654 Local properties are those that are defined by the block, irrespective of
655 other blocks.
b5ce41ff
JL
656
657 An expression is transparent in a block if its operands are not modified
658 in the block.
659
660 An expression is computed (locally available) in a block if it is computed
661 at least once and expression would contain the same value if the
662 computation was moved to the end of the block.
663
664 An expression is locally anticipatable in a block if it is computed at
665 least once and expression would contain the same value if the computation
666 was moved to the beginning of the block.
667
e45425ec 668 We call this routine for pre and code hoisting. They all compute
c4c81601 669 basically the same information and thus can easily share this code.
7506f491 670
c4c81601
RK
671 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
672 properties. If NULL, then it is not necessary to compute or record that
673 particular property.
b5ce41ff 674
e45425ec 675 TABLE controls which hash table to look at. */
589005ff 676
b5ce41ff 677static void
7b1b4aed 678compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
11478306 679 struct gcse_hash_table_d *table)
b5ce41ff 680{
02280659 681 unsigned int i;
589005ff 682
b5ce41ff
JL
683 /* Initialize any bitmaps that were passed in. */
684 if (transp)
695ab36a 685 {
8b1c6fd7 686 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
695ab36a 687 }
c4c81601 688
b5ce41ff 689 if (comp)
8b1c6fd7 690 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
b5ce41ff 691 if (antloc)
8b1c6fd7 692 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
b5ce41ff 693
02280659 694 for (i = 0; i < table->size; i++)
7506f491 695 {
11478306 696 struct gcse_expr *expr;
b5ce41ff 697
02280659 698 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
b5ce41ff 699 {
b5ce41ff 700 int indx = expr->bitmap_index;
11478306 701 struct gcse_occr *occr;
b5ce41ff
JL
702
703 /* The expression is transparent in this block if it is not killed.
704 We start by assuming all are transparent [none are killed], and
705 then reset the bits for those that are. */
b5ce41ff 706 if (transp)
af3eb110
JL
707 compute_transp (expr->expr, indx, transp,
708 blocks_with_calls,
709 modify_mem_list_set,
710 canon_modify_mem_list);
b5ce41ff
JL
711
712 /* The occurrences recorded in antic_occr are exactly those that
cc2902df 713 we want to set to nonzero in ANTLOC. */
b5ce41ff 714 if (antloc)
c4c81601
RK
715 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
716 {
d7c028c0 717 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 718
c4c81601
RK
719 /* While we're scanning the table, this is a good place to
720 initialize this. */
721 occr->deleted_p = 0;
722 }
b5ce41ff
JL
723
724 /* The occurrences recorded in avail_occr are exactly those that
cc2902df 725 we want to set to nonzero in COMP. */
b5ce41ff 726 if (comp)
c4c81601
RK
727 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
728 {
d7c028c0 729 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
b5ce41ff 730
c4c81601
RK
731 /* While we're scanning the table, this is a good place to
732 initialize this. */
733 occr->copied_p = 0;
734 }
b5ce41ff
JL
735
736 /* While we're scanning the table, this is a good place to
737 initialize this. */
738 expr->reaching_reg = 0;
739 }
7506f491 740 }
7506f491
DE
741}
742\f
7506f491
DE
743/* Hash table support. */
744
80c29cc4
RZ
745struct reg_avail_info
746{
e0082a72 747 basic_block last_bb;
80c29cc4
RZ
748 int first_set;
749 int last_set;
750};
751
752static struct reg_avail_info *reg_avail_info;
e0082a72 753static basic_block current_bb;
7506f491 754
fb0c0a12
RK
755/* See whether X, the source of a set, is something we want to consider for
756 GCSE. */
7506f491
DE
757
758static int
e548c9df 759want_to_gcse_p (rtx x, machine_mode mode, int *max_distance_ptr)
7506f491 760{
3d8504ac
RS
761#ifdef STACK_REGS
762 /* On register stack architectures, don't GCSE constants from the
763 constant pool, as the benefits are often swamped by the overhead
764 of shuffling the register stack between basic blocks. */
765 if (IS_STACK_MODE (GET_MODE (x)))
766 x = avoid_constant_pool_reference (x);
767#endif
768
20160347
MK
769 /* GCSE'ing constants:
770
771 We do not specifically distinguish between constant and non-constant
5e8f01f4 772 expressions in PRE and Hoist. We use set_src_cost below to limit
20160347
MK
773 the maximum distance simple expressions can travel.
774
775 Nevertheless, constants are much easier to GCSE, and, hence,
776 it is easy to overdo the optimizations. Usually, excessive PRE and
777 Hoisting of constant leads to increased register pressure.
778
779 RA can deal with this by rematerialing some of the constants.
780 Therefore, it is important that the back-end generates sets of constants
781 in a way that allows reload rematerialize them under high register
782 pressure, i.e., a pseudo register with REG_EQUAL to constant
783 is set only once. Failing to do so will result in IRA/reload
784 spilling such constants under high register pressure instead of
785 rematerializing them. */
786
c4c81601 787 switch (GET_CODE (x))
7506f491
DE
788 {
789 case REG:
790 case SUBREG:
20160347
MK
791 case CALL:
792 return 0;
793
d8116890 794 CASE_CONST_ANY:
20160347
MK
795 if (!doing_code_hoisting_p)
796 /* Do not PRE constants. */
797 return 0;
798
799 /* FALLTHRU */
7506f491
DE
800
801 default:
20160347
MK
802 if (doing_code_hoisting_p)
803 /* PRE doesn't implement max_distance restriction. */
804 {
805 int cost;
806 int max_distance;
807
808 gcc_assert (!optimize_function_for_speed_p (cfun)
809 && optimize_function_for_size_p (cfun));
e548c9df 810 cost = set_src_cost (x, mode, 0);
20160347
MK
811
812 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
813 {
814 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
815 if (max_distance == 0)
816 return 0;
817
818 gcc_assert (max_distance > 0);
819 }
820 else
821 max_distance = 0;
822
823 if (max_distance_ptr)
824 *max_distance_ptr = max_distance;
825 }
826
df35c271 827 return can_assign_to_reg_without_clobbers_p (x);
7506f491 828 }
1707bafa
RS
829}
830
df35c271 831/* Used internally by can_assign_to_reg_without_clobbers_p. */
1707bafa 832
cf92a178 833static GTY(()) rtx_insn *test_insn;
1707bafa 834
df35c271
SB
835/* Return true if we can assign X to a pseudo register such that the
836 resulting insn does not result in clobbering a hard register as a
837 side-effect.
ec0a1343
JB
838
839 Additionally, if the target requires it, check that the resulting insn
840 can be copied. If it cannot, this means that X is special and probably
841 has hidden side-effects we don't want to mess with.
842
df35c271
SB
843 This function is typically used by code motion passes, to verify
844 that it is safe to insert an insn without worrying about clobbering
845 maybe live hard regs. */
1707bafa 846
df35c271
SB
847bool
848can_assign_to_reg_without_clobbers_p (rtx x)
1707bafa
RS
849{
850 int num_clobbers = 0;
851 int icode;
0dbaf51e 852 bool can_assign = false;
7506f491 853
fb0c0a12
RK
854 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
855 if (general_operand (x, GET_MODE (x)))
856 return 1;
857 else if (GET_MODE (x) == VOIDmode)
858 return 0;
859
860 /* Otherwise, check if we can make a valid insn from it. First initialize
861 our test insn if we haven't already. */
862 if (test_insn == 0)
863 {
864 test_insn
f7df4a84 865 = make_insn_raw (gen_rtx_SET (gen_rtx_REG (word_mode,
fb0c0a12
RK
866 FIRST_PSEUDO_REGISTER * 2),
867 const0_rtx));
0f82e5c9 868 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
0dbaf51e 869 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
fb0c0a12
RK
870 }
871
872 /* Now make an insn like the one we would make when GCSE'ing and see if
873 valid. */
874 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
875 SET_SRC (PATTERN (test_insn)) = x;
b8698a0f 876
ec0a1343 877 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
b8698a0f 878
0dbaf51e
SB
879 /* If the test insn is valid and doesn't need clobbers, and the target also
880 has no objections, we're good. */
881 if (icode >= 0
882 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
883 && ! (targetm.cannot_copy_insn_p
884 && targetm.cannot_copy_insn_p (test_insn)))
885 can_assign = true;
b8698a0f 886
0dbaf51e
SB
887 /* Make sure test_insn doesn't have any pointers into GC space. */
888 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
b8698a0f 889
0dbaf51e 890 return can_assign;
7506f491
DE
891}
892
cc2902df 893/* Return nonzero if the operands of expression X are unchanged from the
7506f491
DE
894 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
895 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
896
897static int
cf92a178 898oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
7506f491 899{
c4c81601 900 int i, j;
7506f491 901 enum rtx_code code;
6f7d635c 902 const char *fmt;
7506f491 903
7506f491
DE
904 if (x == 0)
905 return 1;
906
907 code = GET_CODE (x);
908 switch (code)
909 {
910 case REG:
80c29cc4
RZ
911 {
912 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
913
914 if (info->last_bb != current_bb)
915 return 1;
589005ff 916 if (avail_p)
4a81774c 917 return info->last_set < DF_INSN_LUID (insn);
80c29cc4 918 else
4a81774c 919 return info->first_set >= DF_INSN_LUID (insn);
80c29cc4 920 }
7506f491
DE
921
922 case MEM:
85c0f02d
SB
923 if (! flag_gcse_lm
924 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
925 x, avail_p))
a13d4ebf 926 return 0;
7506f491 927 else
c4c81601 928 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
7506f491
DE
929
930 case PRE_DEC:
931 case PRE_INC:
932 case POST_DEC:
933 case POST_INC:
4b983fdc
RH
934 case PRE_MODIFY:
935 case POST_MODIFY:
7506f491
DE
936 return 0;
937
938 case PC:
939 case CC0: /*FIXME*/
940 case CONST:
d8116890 941 CASE_CONST_ANY:
7506f491
DE
942 case SYMBOL_REF:
943 case LABEL_REF:
944 case ADDR_VEC:
945 case ADDR_DIFF_VEC:
946 return 1;
947
948 default:
949 break;
950 }
951
c4c81601 952 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
7506f491
DE
953 {
954 if (fmt[i] == 'e')
955 {
c4c81601
RK
956 /* If we are about to do the last recursive call needed at this
957 level, change it into iteration. This function is called enough
958 to be worth it. */
7506f491 959 if (i == 0)
c4c81601
RK
960 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
961
962 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
7506f491
DE
963 return 0;
964 }
965 else if (fmt[i] == 'E')
c4c81601
RK
966 for (j = 0; j < XVECLEN (x, i); j++)
967 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
968 return 0;
7506f491
DE
969 }
970
971 return 1;
972}
973
43c8a043 974/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
a13d4ebf 975
43c8a043
EB
976struct mem_conflict_info
977{
978 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
979 see if a memory store conflicts with this memory load. */
980 const_rtx mem;
a13d4ebf 981
43c8a043
EB
982 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
983 references. */
984 bool conflict;
985};
986
987/* DEST is the output of an instruction. If it is a memory reference and
988 possibly conflicts with the load found in DATA, then communicate this
989 information back through DATA. */
a13d4ebf
AM
990
991static void
7bc980e1 992mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
43c8a043 993 void *data)
a13d4ebf 994{
43c8a043
EB
995 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
996
a13d4ebf
AM
997 while (GET_CODE (dest) == SUBREG
998 || GET_CODE (dest) == ZERO_EXTRACT
a13d4ebf
AM
999 || GET_CODE (dest) == STRICT_LOW_PART)
1000 dest = XEXP (dest, 0);
1001
1002 /* If DEST is not a MEM, then it will not conflict with the load. Note
1003 that function calls are assumed to clobber memory, but are handled
1004 elsewhere. */
7b1b4aed 1005 if (! MEM_P (dest))
a13d4ebf 1006 return;
aaa4ca30 1007
a13d4ebf 1008 /* If we are setting a MEM in our list of specially recognized MEMs,
589005ff 1009 don't mark as killed this time. */
43c8a043 1010 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
a13d4ebf
AM
1011 {
1012 if (!find_rtx_in_ldst (dest))
43c8a043 1013 mci->conflict = true;
a13d4ebf
AM
1014 return;
1015 }
aaa4ca30 1016
53d9622b 1017 if (true_dependence (dest, GET_MODE (dest), mci->mem))
43c8a043 1018 mci->conflict = true;
a13d4ebf
AM
1019}
1020
1021/* Return nonzero if the expression in X (a memory reference) is killed
4a81774c 1022 in block BB before or after the insn with the LUID in UID_LIMIT.
a13d4ebf
AM
1023 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1024 before UID_LIMIT.
1025
1026 To check the entire block, set UID_LIMIT to max_uid + 1 and
1027 AVAIL_P to 0. */
1028
1029static int
43c8a043
EB
1030load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1031 int avail_p)
a13d4ebf 1032{
e26d1bb2
DM
1033 vec<rtx_insn *> list = modify_mem_list[bb->index];
1034 rtx_insn *setter;
6409abe3 1035 unsigned ix;
16c5b95d
MH
1036
1037 /* If this is a readonly then we aren't going to be changing it. */
1038 if (MEM_READONLY_P (x))
1039 return 0;
1040
9771b263 1041 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
a13d4ebf 1042 {
43c8a043
EB
1043 struct mem_conflict_info mci;
1044
a13d4ebf
AM
1045 /* Ignore entries in the list that do not apply. */
1046 if ((avail_p
6409abe3 1047 && DF_INSN_LUID (setter) < uid_limit)
a13d4ebf 1048 || (! avail_p
6409abe3
NF
1049 && DF_INSN_LUID (setter) > uid_limit))
1050 continue;
a13d4ebf
AM
1051
1052 /* If SETTER is a call everything is clobbered. Note that calls
1053 to pure functions are never put on the list, so we need not
1054 worry about them. */
7b1b4aed 1055 if (CALL_P (setter))
a13d4ebf
AM
1056 return 1;
1057
1058 /* SETTER must be an INSN of some kind that sets memory. Call
43c8a043
EB
1059 note_stores to examine each hunk of memory that is modified. */
1060 mci.mem = x;
1061 mci.conflict = false;
1062 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1063 if (mci.conflict)
a13d4ebf 1064 return 1;
a13d4ebf
AM
1065 }
1066 return 0;
1067}
1068
cc2902df 1069/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1070 the start of INSN's basic block up to but not including INSN. */
1071
1072static int
cf92a178 1073oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
7506f491
DE
1074{
1075 return oprs_unchanged_p (x, insn, 0);
1076}
1077
cc2902df 1078/* Return nonzero if the operands of expression X are unchanged from
7506f491
DE
1079 INSN to the end of INSN's basic block. */
1080
1081static int
cf92a178 1082oprs_available_p (const_rtx x, const rtx_insn *insn)
7506f491
DE
1083{
1084 return oprs_unchanged_p (x, insn, 1);
1085}
1086
1087/* Hash expression X.
c4c81601
RK
1088
1089 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1090 indicating if a volatile operand is found or if the expression contains
b58b21d5 1091 something we don't want to insert in the table. HASH_TABLE_SIZE is
0516f6fe 1092 the current size of the hash table to be probed. */
7506f491
DE
1093
1094static unsigned int
ef4bddc2 1095hash_expr (const_rtx x, machine_mode mode, int *do_not_record_p,
b58b21d5 1096 int hash_table_size)
7506f491
DE
1097{
1098 unsigned int hash;
1099
1100 *do_not_record_p = 0;
1101
43c8a043 1102 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
7506f491
DE
1103 return hash % hash_table_size;
1104}
172890a2 1105
0516f6fe 1106/* Return nonzero if exp1 is equivalent to exp2. */
7506f491
DE
1107
1108static int
ed7a4b4b 1109expr_equiv_p (const_rtx x, const_rtx y)
7506f491 1110{
0516f6fe 1111 return exp_equiv_p (x, y, 0, true);
7506f491
DE
1112}
1113
02280659 1114/* Insert expression X in INSN in the hash TABLE.
7506f491
DE
1115 If it is already present, record it as the last occurrence in INSN's
1116 basic block.
1117
1118 MODE is the mode of the value X is being stored into.
1119 It is only used if X is a CONST_INT.
1120
cc2902df 1121 ANTIC_P is nonzero if X is an anticipatable expression.
20160347
MK
1122 AVAIL_P is nonzero if X is an available expression.
1123
1124 MAX_DISTANCE is the maximum distance in instructions this expression can
1125 be moved. */
7506f491
DE
1126
1127static void
ef4bddc2 1128insert_expr_in_table (rtx x, machine_mode mode, rtx_insn *insn,
cf92a178 1129 int antic_p,
11478306 1130 int avail_p, int max_distance, struct gcse_hash_table_d *table)
7506f491
DE
1131{
1132 int found, do_not_record_p;
1133 unsigned int hash;
11478306
JH
1134 struct gcse_expr *cur_expr, *last_expr = NULL;
1135 struct gcse_occr *antic_occr, *avail_occr;
7506f491 1136
02280659 1137 hash = hash_expr (x, mode, &do_not_record_p, table->size);
7506f491
DE
1138
1139 /* Do not insert expression in table if it contains volatile operands,
1140 or if hash_expr determines the expression is something we don't want
1141 to or can't handle. */
1142 if (do_not_record_p)
1143 return;
1144
02280659 1145 cur_expr = table->table[hash];
7506f491
DE
1146 found = 0;
1147
c4c81601 1148 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
7506f491
DE
1149 {
1150 /* If the expression isn't found, save a pointer to the end of
1151 the list. */
1152 last_expr = cur_expr;
1153 cur_expr = cur_expr->next_same_hash;
1154 }
1155
1156 if (! found)
1157 {
11478306
JH
1158 cur_expr = GOBNEW (struct gcse_expr);
1159 bytes_used += sizeof (struct gcse_expr);
02280659 1160 if (table->table[hash] == NULL)
c4c81601 1161 /* This is the first pattern that hashed to this index. */
02280659 1162 table->table[hash] = cur_expr;
7506f491 1163 else
c4c81601
RK
1164 /* Add EXPR to end of this hash chain. */
1165 last_expr->next_same_hash = cur_expr;
1166
589005ff 1167 /* Set the fields of the expr element. */
7506f491 1168 cur_expr->expr = x;
02280659 1169 cur_expr->bitmap_index = table->n_elems++;
7506f491
DE
1170 cur_expr->next_same_hash = NULL;
1171 cur_expr->antic_occr = NULL;
1172 cur_expr->avail_occr = NULL;
20160347
MK
1173 gcc_assert (max_distance >= 0);
1174 cur_expr->max_distance = max_distance;
7506f491 1175 }
20160347
MK
1176 else
1177 gcc_assert (cur_expr->max_distance == max_distance);
7506f491
DE
1178
1179 /* Now record the occurrence(s). */
7506f491
DE
1180 if (antic_p)
1181 {
1182 antic_occr = cur_expr->antic_occr;
1183
b0de17ef
SB
1184 if (antic_occr
1185 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
b6e47ceb 1186 antic_occr = NULL;
7506f491
DE
1187
1188 if (antic_occr)
c4c81601
RK
1189 /* Found another instance of the expression in the same basic block.
1190 Prefer the currently recorded one. We want the first one in the
1191 block and the block is scanned from start to end. */
1192 ; /* nothing to do */
7506f491
DE
1193 else
1194 {
1195 /* First occurrence of this expression in this basic block. */
11478306
JH
1196 antic_occr = GOBNEW (struct gcse_occr);
1197 bytes_used += sizeof (struct gcse_occr);
7506f491 1198 antic_occr->insn = insn;
b6e47ceb 1199 antic_occr->next = cur_expr->antic_occr;
f9957958 1200 antic_occr->deleted_p = 0;
b6e47ceb 1201 cur_expr->antic_occr = antic_occr;
7506f491
DE
1202 }
1203 }
1204
1205 if (avail_p)
1206 {
1207 avail_occr = cur_expr->avail_occr;
1208
b0de17ef
SB
1209 if (avail_occr
1210 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
7506f491 1211 {
b6e47ceb
JL
1212 /* Found another instance of the expression in the same basic block.
1213 Prefer this occurrence to the currently recorded one. We want
1214 the last one in the block and the block is scanned from start
1215 to end. */
1216 avail_occr->insn = insn;
7506f491 1217 }
7506f491
DE
1218 else
1219 {
1220 /* First occurrence of this expression in this basic block. */
11478306
JH
1221 avail_occr = GOBNEW (struct gcse_occr);
1222 bytes_used += sizeof (struct gcse_occr);
7506f491 1223 avail_occr->insn = insn;
b6e47ceb 1224 avail_occr->next = cur_expr->avail_occr;
f9957958 1225 avail_occr->deleted_p = 0;
b6e47ceb 1226 cur_expr->avail_occr = avail_occr;
7506f491
DE
1227 }
1228 }
1229}
1230
43c8a043 1231/* Scan SET present in INSN and add an entry to the hash TABLE. */
7506f491
DE
1232
1233static void
11478306 1234hash_scan_set (rtx set, rtx_insn *insn, struct gcse_hash_table_d *table)
7506f491 1235{
43c8a043
EB
1236 rtx src = SET_SRC (set);
1237 rtx dest = SET_DEST (set);
172890a2 1238 rtx note;
7506f491 1239
6e72d1e9 1240 if (GET_CODE (src) == CALL)
02280659 1241 hash_scan_call (src, insn, table);
7506f491 1242
7b1b4aed 1243 else if (REG_P (dest))
7506f491 1244 {
172890a2 1245 unsigned int regno = REGNO (dest);
20160347 1246 int max_distance = 0;
7506f491 1247
29470771
SB
1248 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1249
90631280
PB
1250 This allows us to do a single GCSE pass and still eliminate
1251 redundant constants, addresses or other expressions that are
29470771
SB
1252 constructed with multiple instructions.
1253
e45425ec 1254 However, keep the original SRC if INSN is a simple reg-reg move.
29470771
SB
1255 In this case, there will almost always be a REG_EQUAL note on the
1256 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1257 for INSN, we miss copy propagation opportunities and we perform the
1258 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1259 do more than one PRE GCSE pass.
1260
fa10beec 1261 Note that this does not impede profitable constant propagations. We
29470771 1262 "look through" reg-reg sets in lookup_avail_set. */
90631280
PB
1263 note = find_reg_equal_equiv_note (insn);
1264 if (note != 0
29470771
SB
1265 && REG_NOTE_KIND (note) == REG_EQUAL
1266 && !REG_P (src)
e548c9df 1267 && want_to_gcse_p (XEXP (note, 0), GET_MODE (dest), NULL))
f7df4a84 1268 src = XEXP (note, 0), set = gen_rtx_SET (dest, src);
172890a2 1269
7506f491 1270 /* Only record sets of pseudo-regs in the hash table. */
e45425ec 1271 if (regno >= FIRST_PSEUDO_REGISTER
7506f491 1272 /* Don't GCSE something if we can't do a reg/reg copy. */
773eae39 1273 && can_copy_p (GET_MODE (dest))
068473ec 1274 /* GCSE commonly inserts instruction after the insn. We can't
1d65f45c
RH
1275 do that easily for EH edges so disable GCSE on these for now. */
1276 /* ??? We can now easily create new EH landing pads at the
1277 gimple level, for splitting edges; there's no reason we
1278 can't do the same thing at the rtl level. */
1279 && !can_throw_internal (insn)
7506f491 1280 /* Is SET_SRC something we want to gcse? */
e548c9df 1281 && want_to_gcse_p (src, GET_MODE (dest), &max_distance)
172890a2 1282 /* Don't CSE a nop. */
43c8a043 1283 && ! set_noop_p (set)
43e72072
JJ
1284 /* Don't GCSE if it has attached REG_EQUIV note.
1285 At this point this only function parameters should have
1286 REG_EQUIV notes and if the argument slot is used somewhere
a1f300c0 1287 explicitly, it means address of parameter has been taken,
43e72072 1288 so we should not extend the lifetime of the pseudo. */
90631280 1289 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
7506f491
DE
1290 {
1291 /* An expression is not anticipatable if its operands are
52d76e11 1292 modified before this insn or if this is not the only SET in
6fb5fa3c
DB
1293 this insn. The latter condition does not have to mean that
1294 SRC itself is not anticipatable, but we just will not be
1295 able to handle code motion of insns with multiple sets. */
1296 int antic_p = oprs_anticipatable_p (src, insn)
1297 && !multiple_sets (insn);
7506f491 1298 /* An expression is not available if its operands are
eb296bd9
GK
1299 subsequently modified, including this insn. It's also not
1300 available if this is a branch, because we can't insert
1301 a set after the branch. */
1302 int avail_p = (oprs_available_p (src, insn)
1303 && ! JUMP_P (insn));
c4c81601 1304
20160347
MK
1305 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1306 max_distance, table);
7506f491 1307 }
7506f491 1308 }
d91edf86 1309 /* In case of store we want to consider the memory value as available in
f5f2e3cd
MH
1310 the REG stored in that memory. This makes it possible to remove
1311 redundant loads from due to stores to the same location. */
7b1b4aed 1312 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
e548c9df
AM
1313 {
1314 unsigned int regno = REGNO (src);
1315 int max_distance = 0;
1316
1317 /* Only record sets of pseudo-regs in the hash table. */
1318 if (regno >= FIRST_PSEUDO_REGISTER
1319 /* Don't GCSE something if we can't do a reg/reg copy. */
1320 && can_copy_p (GET_MODE (src))
1321 /* GCSE commonly inserts instruction after the insn. We can't
1322 do that easily for EH edges so disable GCSE on these for now. */
1323 && !can_throw_internal (insn)
1324 /* Is SET_DEST something we want to gcse? */
1325 && want_to_gcse_p (dest, GET_MODE (dest), &max_distance)
1326 /* Don't CSE a nop. */
1327 && ! set_noop_p (set)
1328 /* Don't GCSE if it has attached REG_EQUIV note.
1329 At this point this only function parameters should have
1330 REG_EQUIV notes and if the argument slot is used somewhere
1331 explicitly, it means address of parameter has been taken,
1332 so we should not extend the lifetime of the pseudo. */
1333 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1334 || ! MEM_P (XEXP (note, 0))))
1335 {
1336 /* Stores are never anticipatable. */
1337 int antic_p = 0;
1338 /* An expression is not available if its operands are
1339 subsequently modified, including this insn. It's also not
1340 available if this is a branch, because we can't insert
1341 a set after the branch. */
1342 int avail_p = oprs_available_p (dest, insn) && ! JUMP_P (insn);
1343
1344 /* Record the memory expression (DEST) in the hash table. */
1345 insert_expr_in_table (dest, GET_MODE (dest), insn,
1346 antic_p, avail_p, max_distance, table);
1347 }
1348 }
7506f491
DE
1349}
1350
1351static void
cf92a178 1352hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
11478306 1353 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1354{
1355 /* Currently nothing to do. */
1356}
1357
1358static void
cf92a178 1359hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
11478306 1360 struct gcse_hash_table_d *table ATTRIBUTE_UNUSED)
7506f491
DE
1361{
1362 /* Currently nothing to do. */
1363}
1364
43c8a043 1365/* Process INSN and add hash table entries as appropriate. */
7506f491
DE
1366
1367static void
11478306 1368hash_scan_insn (rtx_insn *insn, struct gcse_hash_table_d *table)
7506f491
DE
1369{
1370 rtx pat = PATTERN (insn);
c4c81601 1371 int i;
7506f491
DE
1372
1373 /* Pick out the sets of INSN and for other forms of instructions record
1374 what's been modified. */
1375
172890a2 1376 if (GET_CODE (pat) == SET)
02280659 1377 hash_scan_set (pat, insn, table);
43c8a043
EB
1378
1379 else if (GET_CODE (pat) == CLOBBER)
1380 hash_scan_clobber (pat, insn, table);
1381
1382 else if (GET_CODE (pat) == CALL)
1383 hash_scan_call (pat, insn, table);
1384
7506f491 1385 else if (GET_CODE (pat) == PARALLEL)
c4c81601
RK
1386 for (i = 0; i < XVECLEN (pat, 0); i++)
1387 {
1388 rtx x = XVECEXP (pat, 0, i);
7506f491 1389
c4c81601 1390 if (GET_CODE (x) == SET)
02280659 1391 hash_scan_set (x, insn, table);
c4c81601 1392 else if (GET_CODE (x) == CLOBBER)
02280659 1393 hash_scan_clobber (x, insn, table);
6e72d1e9 1394 else if (GET_CODE (x) == CALL)
02280659 1395 hash_scan_call (x, insn, table);
c4c81601 1396 }
7506f491
DE
1397}
1398
43c8a043
EB
1399/* Dump the hash table TABLE to file FILE under the name NAME. */
1400
7506f491 1401static void
11478306 1402dump_hash_table (FILE *file, const char *name, struct gcse_hash_table_d *table)
7506f491
DE
1403{
1404 int i;
1405 /* Flattened out table, so it's printed in proper order. */
11478306 1406 struct gcse_expr **flat_table;
4da896b2 1407 unsigned int *hash_val;
11478306 1408 struct gcse_expr *expr;
4da896b2 1409
11478306 1410 flat_table = XCNEWVEC (struct gcse_expr *, table->n_elems);
1b4572a8 1411 hash_val = XNEWVEC (unsigned int, table->n_elems);
7506f491 1412
02280659
ZD
1413 for (i = 0; i < (int) table->size; i++)
1414 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
c4c81601
RK
1415 {
1416 flat_table[expr->bitmap_index] = expr;
1417 hash_val[expr->bitmap_index] = i;
1418 }
7506f491
DE
1419
1420 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
02280659 1421 name, table->size, table->n_elems);
7506f491 1422
02280659 1423 for (i = 0; i < (int) table->n_elems; i++)
21318741
RK
1424 if (flat_table[i] != 0)
1425 {
a0ac9e5a 1426 expr = flat_table[i];
20160347
MK
1427 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1428 expr->bitmap_index, hash_val[i], expr->max_distance);
a0ac9e5a 1429 print_rtl (file, expr->expr);
21318741
RK
1430 fprintf (file, "\n");
1431 }
7506f491
DE
1432
1433 fprintf (file, "\n");
4da896b2 1434
4da896b2
MM
1435 free (flat_table);
1436 free (hash_val);
7506f491
DE
1437}
1438
1439/* Record register first/last/block set information for REGNO in INSN.
c4c81601 1440
80c29cc4 1441 first_set records the first place in the block where the register
7506f491 1442 is set and is used to compute "anticipatability".
c4c81601 1443
80c29cc4 1444 last_set records the last place in the block where the register
7506f491 1445 is set and is used to compute "availability".
c4c81601 1446
80c29cc4 1447 last_bb records the block for which first_set and last_set are
4a81774c 1448 valid, as a quick test to invalidate them. */
7506f491
DE
1449
1450static void
170065c9 1451record_last_reg_set_info (rtx_insn *insn, int regno)
7506f491 1452{
80c29cc4 1453 struct reg_avail_info *info = &reg_avail_info[regno];
4a81774c 1454 int luid = DF_INSN_LUID (insn);
c4c81601 1455
4a81774c 1456 info->last_set = luid;
80c29cc4
RZ
1457 if (info->last_bb != current_bb)
1458 {
1459 info->last_bb = current_bb;
4a81774c 1460 info->first_set = luid;
80c29cc4 1461 }
7506f491
DE
1462}
1463
a13d4ebf
AM
1464/* Record memory modification information for INSN. We do not actually care
1465 about the memory location(s) that are set, or even how they are set (consider
1466 a CALL_INSN). We merely need to record which insns modify memory. */
7506f491
DE
1467
1468static void
e26d1bb2 1469record_last_mem_set_info (rtx_insn *insn)
7506f491 1470{
85c0f02d
SB
1471 if (! flag_gcse_lm)
1472 return;
0fe854a7 1473
af3eb110
JL
1474 record_last_mem_set_info_common (insn, modify_mem_list,
1475 canon_modify_mem_list,
1476 modify_mem_list_set,
1477 blocks_with_calls);
7506f491
DE
1478}
1479
7506f491 1480/* Called from compute_hash_table via note_stores to handle one
84832317
MM
1481 SET or CLOBBER in an insn. DATA is really the instruction in which
1482 the SET is taking place. */
7506f491
DE
1483
1484static void
7bc980e1 1485record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
7506f491 1486{
e26d1bb2 1487 rtx_insn *last_set_insn = (rtx_insn *) data;
84832317 1488
7506f491
DE
1489 if (GET_CODE (dest) == SUBREG)
1490 dest = SUBREG_REG (dest);
1491
7b1b4aed 1492 if (REG_P (dest))
7506f491 1493 record_last_reg_set_info (last_set_insn, REGNO (dest));
7b1b4aed 1494 else if (MEM_P (dest)
7506f491
DE
1495 /* Ignore pushes, they clobber nothing. */
1496 && ! push_operand (dest, GET_MODE (dest)))
1497 record_last_mem_set_info (last_set_insn);
1498}
1499
e45425ec 1500/* Top level function to create an expression hash table.
7506f491
DE
1501
1502 Expression entries are placed in the hash table if
1503 - they are of the form (set (pseudo-reg) src),
1504 - src is something we want to perform GCSE on,
1505 - none of the operands are subsequently modified in the block
1506
7506f491
DE
1507 Currently src must be a pseudo-reg or a const_int.
1508
02280659 1509 TABLE is the table computed. */
7506f491
DE
1510
1511static void
11478306 1512compute_hash_table_work (struct gcse_hash_table_d *table)
7506f491 1513{
5f39ad47 1514 int i;
7506f491 1515
a13d4ebf 1516 /* re-Cache any INSN_LIST nodes we have allocated. */
73991d6a 1517 clear_modify_mem_tables ();
7506f491 1518 /* Some working arrays used to track first and last set in each block. */
5f39ad47 1519 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
80c29cc4 1520
5f39ad47 1521 for (i = 0; i < max_reg_num (); ++i)
e0082a72 1522 reg_avail_info[i].last_bb = NULL;
7506f491 1523
11cd3bed 1524 FOR_EACH_BB_FN (current_bb, cfun)
7506f491 1525 {
cf92a178 1526 rtx_insn *insn;
770ae6cc 1527 unsigned int regno;
7506f491
DE
1528
1529 /* First pass over the instructions records information used to
4a81774c 1530 determine when registers and memory are first and last set. */
eb232f4e 1531 FOR_BB_INSNS (current_bb, insn)
7506f491 1532 {
a344c9f1 1533 if (!NONDEBUG_INSN_P (insn))
7506f491
DE
1534 continue;
1535
7b1b4aed 1536 if (CALL_P (insn))
7506f491 1537 {
c7fb4c7a
SB
1538 hard_reg_set_iterator hrsi;
1539 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1540 0, regno, hrsi)
1541 record_last_reg_set_info (insn, regno);
c4c81601 1542
e45425ec
SB
1543 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1544 record_last_mem_set_info (insn);
7506f491
DE
1545 }
1546
84832317 1547 note_stores (PATTERN (insn), record_last_set_info, insn);
7506f491
DE
1548 }
1549
1550 /* The next pass builds the hash table. */
eb232f4e 1551 FOR_BB_INSNS (current_bb, insn)
a344c9f1 1552 if (NONDEBUG_INSN_P (insn))
4a8cae83 1553 hash_scan_insn (insn, table);
7506f491
DE
1554 }
1555
80c29cc4
RZ
1556 free (reg_avail_info);
1557 reg_avail_info = NULL;
7506f491
DE
1558}
1559
02280659 1560/* Allocate space for the set/expr hash TABLE.
e45425ec 1561 It is used to determine the number of buckets to use. */
7506f491
DE
1562
1563static void
11478306 1564alloc_hash_table (struct gcse_hash_table_d *table)
7506f491
DE
1565{
1566 int n;
1567
b5b8b0ac
AO
1568 n = get_max_insn_count ();
1569
1570 table->size = n / 4;
02280659
ZD
1571 if (table->size < 11)
1572 table->size = 11;
c4c81601 1573
7506f491
DE
1574 /* Attempt to maintain efficient use of hash table.
1575 Making it an odd number is simplest for now.
1576 ??? Later take some measurements. */
02280659 1577 table->size |= 1;
11478306
JH
1578 n = table->size * sizeof (struct gcse_expr *);
1579 table->table = GNEWVAR (struct gcse_expr *, n);
7506f491
DE
1580}
1581
02280659 1582/* Free things allocated by alloc_hash_table. */
7506f491
DE
1583
1584static void
11478306 1585free_hash_table (struct gcse_hash_table_d *table)
7506f491 1586{
02280659 1587 free (table->table);
7506f491
DE
1588}
1589
e45425ec 1590/* Compute the expression hash table TABLE. */
7506f491
DE
1591
1592static void
11478306 1593compute_hash_table (struct gcse_hash_table_d *table)
7506f491
DE
1594{
1595 /* Initialize count of number of entries in hash table. */
02280659 1596 table->n_elems = 0;
11478306 1597 memset (table->table, 0, table->size * sizeof (struct gcse_expr *));
7506f491 1598
02280659 1599 compute_hash_table_work (table);
7506f491
DE
1600}
1601\f
1602/* Expression tracking support. */
1603
e45425ec
SB
1604/* Clear canon_modify_mem_list and modify_mem_list tables. */
1605static void
1606clear_modify_mem_tables (void)
0e3f0221 1607{
e45425ec
SB
1608 unsigned i;
1609 bitmap_iterator bi;
0e3f0221 1610
e45425ec 1611 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
0e3f0221 1612 {
9771b263
DN
1613 modify_mem_list[i].release ();
1614 canon_modify_mem_list[i].release ();
0e3f0221 1615 }
e45425ec
SB
1616 bitmap_clear (modify_mem_list_set);
1617 bitmap_clear (blocks_with_calls);
0e3f0221
RS
1618}
1619
e45425ec 1620/* Release memory used by modify_mem_list_set. */
0e3f0221 1621
e45425ec
SB
1622static void
1623free_modify_mem_tables (void)
e129b3f9 1624{
e45425ec
SB
1625 clear_modify_mem_tables ();
1626 free (modify_mem_list);
1627 free (canon_modify_mem_list);
1628 modify_mem_list = 0;
1629 canon_modify_mem_list = 0;
e129b3f9 1630}
e45425ec 1631\f
a65f3558 1632/* Compute PRE+LCM working variables. */
7506f491
DE
1633
1634/* Local properties of expressions. */
43c8a043 1635
7506f491 1636/* Nonzero for expressions that are transparent in the block. */
a65f3558 1637static sbitmap *transp;
7506f491 1638
a65f3558
JL
1639/* Nonzero for expressions that are computed (available) in the block. */
1640static sbitmap *comp;
7506f491 1641
a65f3558
JL
1642/* Nonzero for expressions that are locally anticipatable in the block. */
1643static sbitmap *antloc;
7506f491 1644
a65f3558
JL
1645/* Nonzero for expressions where this block is an optimal computation
1646 point. */
1647static sbitmap *pre_optimal;
5c35539b 1648
a65f3558
JL
1649/* Nonzero for expressions which are redundant in a particular block. */
1650static sbitmap *pre_redundant;
7506f491 1651
a42cd965
AM
1652/* Nonzero for expressions which should be inserted on a specific edge. */
1653static sbitmap *pre_insert_map;
1654
1655/* Nonzero for expressions which should be deleted in a specific block. */
1656static sbitmap *pre_delete_map;
1657
a65f3558 1658/* Allocate vars used for PRE analysis. */
7506f491
DE
1659
1660static void
1d088dee 1661alloc_pre_mem (int n_blocks, int n_exprs)
7506f491 1662{
a65f3558
JL
1663 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1664 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1665 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
5faf03ae 1666
a42cd965
AM
1667 pre_optimal = NULL;
1668 pre_redundant = NULL;
1669 pre_insert_map = NULL;
1670 pre_delete_map = NULL;
a42cd965 1671 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
c4c81601 1672
a42cd965 1673 /* pre_insert and pre_delete are allocated later. */
7506f491
DE
1674}
1675
a65f3558 1676/* Free vars used for PRE analysis. */
7506f491
DE
1677
1678static void
1d088dee 1679free_pre_mem (void)
7506f491 1680{
5a660bff
DB
1681 sbitmap_vector_free (transp);
1682 sbitmap_vector_free (comp);
bd3675fc
JL
1683
1684 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
7506f491 1685
a42cd965 1686 if (pre_optimal)
5a660bff 1687 sbitmap_vector_free (pre_optimal);
a42cd965 1688 if (pre_redundant)
5a660bff 1689 sbitmap_vector_free (pre_redundant);
a42cd965 1690 if (pre_insert_map)
5a660bff 1691 sbitmap_vector_free (pre_insert_map);
a42cd965 1692 if (pre_delete_map)
5a660bff 1693 sbitmap_vector_free (pre_delete_map);
a42cd965 1694
bd3675fc 1695 transp = comp = NULL;
a42cd965 1696 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
7506f491
DE
1697}
1698
9b774782
JL
1699/* Remove certain expressions from anticipatable and transparent
1700 sets of basic blocks that have incoming abnormal edge.
1701 For PRE remove potentially trapping expressions to avoid placing
1702 them on abnormal edges. For hoisting remove memory references that
1703 can be clobbered by calls. */
7506f491
DE
1704
1705static void
9b774782 1706prune_expressions (bool pre_p)
7506f491 1707{
9b774782 1708 sbitmap prune_exprs;
11478306 1709 struct gcse_expr *expr;
b614171e 1710 unsigned int ui;
9b774782 1711 basic_block bb;
c66e8ae9 1712
9b774782 1713 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
f61e445a 1714 bitmap_clear (prune_exprs);
02280659 1715 for (ui = 0; ui < expr_hash_table.size; ui++)
b614171e 1716 {
43c8a043 1717 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
9b774782
JL
1718 {
1719 /* Note potentially trapping expressions. */
43c8a043 1720 if (may_trap_p (expr->expr))
9b774782 1721 {
d7c028c0 1722 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1723 continue;
1724 }
b614171e 1725
43c8a043 1726 if (!pre_p && MEM_P (expr->expr))
9b774782
JL
1727 /* Note memory references that can be clobbered by a call.
1728 We do not split abnormal edges in hoisting, so would
1729 a memory reference get hoisted along an abnormal edge,
1730 it would be placed /before/ the call. Therefore, only
1731 constant memory references can be hoisted along abnormal
1732 edges. */
1733 {
43c8a043
EB
1734 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1735 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
9b774782 1736 continue;
c66e8ae9 1737
43c8a043
EB
1738 if (MEM_READONLY_P (expr->expr)
1739 && !MEM_VOLATILE_P (expr->expr)
1740 && MEM_NOTRAP_P (expr->expr))
9b774782
JL
1741 /* Constant memory reference, e.g., a PIC address. */
1742 continue;
1743
1744 /* ??? Optimally, we would use interprocedural alias
1745 analysis to determine if this mem is actually killed
1746 by this call. */
1747
d7c028c0 1748 bitmap_set_bit (prune_exprs, expr->bitmap_index);
9b774782
JL
1749 }
1750 }
1751 }
c66e8ae9 1752
11cd3bed 1753 FOR_EACH_BB_FN (bb, cfun)
c66e8ae9 1754 {
b614171e 1755 edge e;
628f6a4e 1756 edge_iterator ei;
b614171e
MM
1757
1758 /* If the current block is the destination of an abnormal edge, we
9b774782
JL
1759 kill all trapping (for PRE) and memory (for hoist) expressions
1760 because we won't be able to properly place the instruction on
1761 the edge. So make them neither anticipatable nor transparent.
1762 This is fairly conservative.
1763
1764 ??? For hoisting it may be necessary to check for set-and-jump
1765 instructions here, not just for abnormal edges. The general problem
1766 is that when an expression cannot not be placed right at the end of
1767 a basic block we should account for any side-effects of a subsequent
1768 jump instructions that could clobber the expression. It would
1769 be best to implement this check along the lines of
b11f0116 1770 should_hoist_expr_to_dom where the target block is already known
9b774782
JL
1771 and, hence, there's no need to conservatively prune expressions on
1772 "intermediate" set-and-jump instructions. */
628f6a4e 1773 FOR_EACH_EDGE (e, ei, bb->preds)
9b774782
JL
1774 if ((e->flags & EDGE_ABNORMAL)
1775 && (pre_p || CALL_P (BB_END (e->src))))
b614171e 1776 {
f61e445a 1777 bitmap_and_compl (antloc[bb->index],
9b774782 1778 antloc[bb->index], prune_exprs);
f61e445a 1779 bitmap_and_compl (transp[bb->index],
9b774782 1780 transp[bb->index], prune_exprs);
b614171e
MM
1781 break;
1782 }
9b774782
JL
1783 }
1784
1785 sbitmap_free (prune_exprs);
1786}
1787
29fa95ed
JL
1788/* It may be necessary to insert a large number of insns on edges to
1789 make the existing occurrences of expressions fully redundant. This
1790 routine examines the set of insertions and deletions and if the ratio
1791 of insertions to deletions is too high for a particular expression, then
1792 the expression is removed from the insertion/deletion sets.
1793
1794 N_ELEMS is the number of elements in the hash table. */
1795
1796static void
1797prune_insertions_deletions (int n_elems)
1798{
1799 sbitmap_iterator sbi;
1800 sbitmap prune_exprs;
1801
1802 /* We always use I to iterate over blocks/edges and J to iterate over
1803 expressions. */
1804 unsigned int i, j;
1805
1806 /* Counts for the number of times an expression needs to be inserted and
1807 number of times an expression can be removed as a result. */
1808 int *insertions = GCNEWVEC (int, n_elems);
1809 int *deletions = GCNEWVEC (int, n_elems);
1810
1811 /* Set of expressions which require too many insertions relative to
1812 the number of deletions achieved. We will prune these out of the
1813 insertion/deletion sets. */
1814 prune_exprs = sbitmap_alloc (n_elems);
f61e445a 1815 bitmap_clear (prune_exprs);
29fa95ed
JL
1816
1817 /* Iterate over the edges counting the number of times each expression
1818 needs to be inserted. */
dc936fb2 1819 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
29fa95ed 1820 {
d4ac4ce2 1821 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
29fa95ed
JL
1822 insertions[j]++;
1823 }
1824
1825 /* Similarly for deletions, but those occur in blocks rather than on
1826 edges. */
8b1c6fd7 1827 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
29fa95ed 1828 {
d4ac4ce2 1829 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
29fa95ed
JL
1830 deletions[j]++;
1831 }
1832
1833 /* Now that we have accurate counts, iterate over the elements in the
1834 hash table and see if any need too many insertions relative to the
1835 number of evaluations that can be removed. If so, mark them in
1836 PRUNE_EXPRS. */
1837 for (j = 0; j < (unsigned) n_elems; j++)
1838 if (deletions[j]
1839 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
d7c028c0 1840 bitmap_set_bit (prune_exprs, j);
29fa95ed
JL
1841
1842 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
d4ac4ce2 1843 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
29fa95ed 1844 {
dc936fb2 1845 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
d7c028c0 1846 bitmap_clear_bit (pre_insert_map[i], j);
29fa95ed 1847
8b1c6fd7 1848 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
d7c028c0 1849 bitmap_clear_bit (pre_delete_map[i], j);
29fa95ed
JL
1850 }
1851
1852 sbitmap_free (prune_exprs);
1853 free (insertions);
1854 free (deletions);
1855}
1856
9b774782 1857/* Top level routine to do the dataflow analysis needed by PRE. */
b614171e 1858
43c8a043 1859static struct edge_list *
9b774782
JL
1860compute_pre_data (void)
1861{
43c8a043 1862 struct edge_list *edge_list;
9b774782
JL
1863 basic_block bb;
1864
1865 compute_local_properties (transp, comp, antloc, &expr_hash_table);
1866 prune_expressions (true);
8b1c6fd7 1867 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
9b774782
JL
1868
1869 /* Compute ae_kill for each basic block using:
1870
1871 ~(TRANSP | COMP)
1872 */
1873
11cd3bed 1874 FOR_EACH_BB_FN (bb, cfun)
9b774782 1875 {
f61e445a
LC
1876 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
1877 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
c66e8ae9
JL
1878 }
1879
10d22567 1880 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
a42cd965 1881 ae_kill, &pre_insert_map, &pre_delete_map);
5a660bff 1882 sbitmap_vector_free (antloc);
bd3675fc 1883 antloc = NULL;
5a660bff 1884 sbitmap_vector_free (ae_kill);
589005ff 1885 ae_kill = NULL;
29fa95ed
JL
1886
1887 prune_insertions_deletions (expr_hash_table.n_elems);
43c8a043
EB
1888
1889 return edge_list;
7506f491
DE
1890}
1891\f
1892/* PRE utilities */
1893
cc2902df 1894/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
a65f3558 1895 block BB.
7506f491
DE
1896
1897 VISITED is a pointer to a working buffer for tracking which BB's have
1898 been visited. It is NULL for the top-level call.
1899
1900 We treat reaching expressions that go through blocks containing the same
1901 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
1902 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
1903 2 as not reaching. The intent is to improve the probability of finding
1904 only one reaching expression and to reduce register lifetimes by picking
1905 the closest such expression. */
1906
1907static int
11478306 1908pre_expr_reaches_here_p_work (basic_block occr_bb, struct gcse_expr *expr,
43c8a043 1909 basic_block bb, char *visited)
7506f491 1910{
36349f8b 1911 edge pred;
628f6a4e 1912 edge_iterator ei;
b8698a0f 1913
628f6a4e 1914 FOR_EACH_EDGE (pred, ei, bb->preds)
7506f491 1915 {
e2d2ed72 1916 basic_block pred_bb = pred->src;
7506f491 1917
fefa31b5 1918 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
7506f491 1919 /* Has predecessor has already been visited? */
0b17ab2f 1920 || visited[pred_bb->index])
c4c81601
RK
1921 ;/* Nothing to do. */
1922
7506f491 1923 /* Does this predecessor generate this expression? */
d7c028c0 1924 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
7506f491
DE
1925 {
1926 /* Is this the occurrence we're looking for?
1927 Note that there's only one generating occurrence per block
1928 so we just need to check the block number. */
a65f3558 1929 if (occr_bb == pred_bb)
7506f491 1930 return 1;
c4c81601 1931
0b17ab2f 1932 visited[pred_bb->index] = 1;
7506f491
DE
1933 }
1934 /* Ignore this predecessor if it kills the expression. */
d7c028c0 1935 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
0b17ab2f 1936 visited[pred_bb->index] = 1;
c4c81601 1937
7506f491
DE
1938 /* Neither gen nor kill. */
1939 else
ac7c5af5 1940 {
0b17ab2f 1941 visited[pred_bb->index] = 1;
89e606c9 1942 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
7506f491 1943 return 1;
ac7c5af5 1944 }
7506f491
DE
1945 }
1946
1947 /* All paths have been checked. */
1948 return 0;
1949}
283a2545
RL
1950
1951/* The wrapper for pre_expr_reaches_here_work that ensures that any
dc297297 1952 memory allocated for that function is returned. */
283a2545
RL
1953
1954static int
11478306 1955pre_expr_reaches_here_p (basic_block occr_bb, struct gcse_expr *expr, basic_block bb)
283a2545
RL
1956{
1957 int rval;
8b1c6fd7 1958 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
283a2545 1959
8e42ace1 1960 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
283a2545
RL
1961
1962 free (visited);
c4c81601 1963 return rval;
283a2545 1964}
7506f491 1965\f
43c8a043 1966/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
a42cd965 1967
cf92a178 1968static rtx_insn *
11478306 1969process_insert_insn (struct gcse_expr *expr)
a42cd965
AM
1970{
1971 rtx reg = expr->reaching_reg;
43c8a043 1972 /* Copy the expression to make sure we don't have any sharing issues. */
fb0c0a12 1973 rtx exp = copy_rtx (expr->expr);
cf92a178 1974 rtx_insn *pat;
a42cd965
AM
1975
1976 start_sequence ();
fb0c0a12
RK
1977
1978 /* If the expression is something that's an operand, like a constant,
1979 just copy it to a register. */
1980 if (general_operand (exp, GET_MODE (reg)))
1981 emit_move_insn (reg, exp);
1982
1983 /* Otherwise, make a new insn to compute this expression and make sure the
43c8a043 1984 insn will be recognized (this also adds any needed CLOBBERs). */
282899df
NS
1985 else
1986 {
f7df4a84 1987 rtx_insn *insn = emit_insn (gen_rtx_SET (reg, exp));
282899df 1988
57ac4c34 1989 if (insn_invalid_p (insn, false))
2f021b67 1990 gcc_unreachable ();
282899df 1991 }
b8698a0f 1992
2f937369 1993 pat = get_insns ();
a42cd965
AM
1994 end_sequence ();
1995
1996 return pat;
1997}
589005ff 1998
a65f3558
JL
1999/* Add EXPR to the end of basic block BB.
2000
eae7938e 2001 This is used by both the PRE and code hoisting. */
7506f491
DE
2002
2003static void
11478306 2004insert_insn_end_basic_block (struct gcse_expr *expr, basic_block bb)
7506f491 2005{
dc01c3d1 2006 rtx_insn *insn = BB_END (bb);
cf92a178 2007 rtx_insn *new_insn;
7506f491
DE
2008 rtx reg = expr->reaching_reg;
2009 int regno = REGNO (reg);
cf92a178 2010 rtx_insn *pat, *pat_end;
7506f491 2011
a42cd965 2012 pat = process_insert_insn (expr);
282899df 2013 gcc_assert (pat && INSN_P (pat));
2f937369
DM
2014
2015 pat_end = pat;
2016 while (NEXT_INSN (pat_end) != NULL_RTX)
2017 pat_end = NEXT_INSN (pat_end);
7506f491
DE
2018
2019 /* If the last insn is a jump, insert EXPR in front [taking care to
4d6922ee 2020 handle cc0, etc. properly]. Similarly we need to care trapping
068473ec 2021 instructions in presence of non-call exceptions. */
7506f491 2022
7b1b4aed 2023 if (JUMP_P (insn)
4b4bf941 2024 || (NONJUMP_INSN_P (insn)
c5cbcccf
ZD
2025 && (!single_succ_p (bb)
2026 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
7506f491 2027 {
7506f491
DE
2028 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2029 if cc0 isn't set. */
618f4073 2030 if (HAVE_cc0)
7506f491 2031 {
618f4073
TS
2032 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2033 if (note)
2034 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2035 else
2036 {
2037 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2038 if (maybe_cc0_setter
2039 && INSN_P (maybe_cc0_setter)
2040 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2041 insn = maybe_cc0_setter;
2042 }
7506f491 2043 }
618f4073 2044
7506f491 2045 /* FIXME: What if something in cc0/jump uses value set in new insn? */
6fb5fa3c 2046 new_insn = emit_insn_before_noloc (pat, insn, bb);
3947e2f9 2047 }
c4c81601 2048
3947e2f9
RH
2049 /* Likewise if the last insn is a call, as will happen in the presence
2050 of exception handling. */
7b1b4aed 2051 else if (CALL_P (insn)
c5cbcccf
ZD
2052 && (!single_succ_p (bb)
2053 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
3947e2f9 2054 {
42db504c
SB
2055 /* Keeping in mind targets with small register classes and parameters
2056 in registers, we search backward and place the instructions before
2057 the first parameter is loaded. Do this for everyone for consistency
eae7938e 2058 and a presumption that we'll get better code elsewhere as well. */
3947e2f9
RH
2059
2060 /* Since different machines initialize their parameter registers
2061 in different orders, assume nothing. Collect the set of all
2062 parameter registers. */
a813c111 2063 insn = find_first_parameter_load (insn, BB_HEAD (bb));
3947e2f9 2064
b1d26727
JL
2065 /* If we found all the parameter loads, then we want to insert
2066 before the first parameter load.
2067
2068 If we did not find all the parameter loads, then we might have
2069 stopped on the head of the block, which could be a CODE_LABEL.
2070 If we inserted before the CODE_LABEL, then we would be putting
2071 the insn in the wrong basic block. In that case, put the insn
b5229628 2072 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
7b1b4aed 2073 while (LABEL_P (insn)
589ca5cb 2074 || NOTE_INSN_BASIC_BLOCK_P (insn))
b5229628 2075 insn = NEXT_INSN (insn);
c4c81601 2076
6fb5fa3c 2077 new_insn = emit_insn_before_noloc (pat, insn, bb);
7506f491
DE
2078 }
2079 else
6fb5fa3c 2080 new_insn = emit_insn_after_noloc (pat, insn, bb);
7506f491 2081
2f937369 2082 while (1)
a65f3558 2083 {
2f937369 2084 if (INSN_P (pat))
4a81774c 2085 add_label_notes (PATTERN (pat), new_insn);
2f937369
DM
2086 if (pat == pat_end)
2087 break;
2088 pat = NEXT_INSN (pat);
a65f3558 2089 }
3947e2f9 2090
7506f491
DE
2091 gcse_create_count++;
2092
10d22567 2093 if (dump_file)
7506f491 2094 {
10d22567 2095 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
0b17ab2f 2096 bb->index, INSN_UID (new_insn));
10d22567 2097 fprintf (dump_file, "copying expression %d to reg %d\n",
c4c81601 2098 expr->bitmap_index, regno);
7506f491
DE
2099 }
2100}
2101
a42cd965
AM
2102/* Insert partially redundant expressions on edges in the CFG to make
2103 the expressions fully redundant. */
7506f491 2104
a42cd965 2105static int
11478306 2106pre_edge_insert (struct edge_list *edge_list, struct gcse_expr **index_map)
7506f491 2107{
c4c81601 2108 int e, i, j, num_edges, set_size, did_insert = 0;
a65f3558
JL
2109 sbitmap *inserted;
2110
a42cd965
AM
2111 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2112 if it reaches any of the deleted expressions. */
7506f491 2113
a42cd965
AM
2114 set_size = pre_insert_map[0]->size;
2115 num_edges = NUM_EDGES (edge_list);
02280659 2116 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
f61e445a 2117 bitmap_vector_clear (inserted, num_edges);
7506f491 2118
a42cd965 2119 for (e = 0; e < num_edges; e++)
7506f491
DE
2120 {
2121 int indx;
e2d2ed72 2122 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
a65f3558 2123
a65f3558 2124 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
7506f491 2125 {
a42cd965 2126 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
7506f491 2127
43c8a043
EB
2128 for (j = indx;
2129 insert && j < (int) expr_hash_table.n_elems;
2130 j++, insert >>= 1)
c4c81601
RK
2131 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2132 {
11478306
JH
2133 struct gcse_expr *expr = index_map[j];
2134 struct gcse_occr *occr;
a65f3558 2135
ff7cc307 2136 /* Now look at each deleted occurrence of this expression. */
c4c81601
RK
2137 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2138 {
2139 if (! occr->deleted_p)
2140 continue;
2141
3f117656 2142 /* Insert this expression on this edge if it would
ff7cc307 2143 reach the deleted occurrence in BB. */
d7c028c0 2144 if (!bitmap_bit_p (inserted[e], j))
c4c81601 2145 {
cf92a178 2146 rtx_insn *insn;
c4c81601
RK
2147 edge eg = INDEX_EDGE (edge_list, e);
2148
2149 /* We can't insert anything on an abnormal and
2150 critical edge, so we insert the insn at the end of
2151 the previous block. There are several alternatives
2152 detailed in Morgans book P277 (sec 10.5) for
2153 handling this situation. This one is easiest for
2154 now. */
2155
b16aa8a5 2156 if (eg->flags & EDGE_ABNORMAL)
eae7938e 2157 insert_insn_end_basic_block (index_map[j], bb);
c4c81601
RK
2158 else
2159 {
2160 insn = process_insert_insn (index_map[j]);
2161 insert_insn_on_edge (insn, eg);
2162 }
2163
10d22567 2164 if (dump_file)
c4c81601 2165 {
5f39ad47 2166 fprintf (dump_file, "PRE: edge (%d,%d), ",
0b17ab2f
RH
2167 bb->index,
2168 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
10d22567 2169 fprintf (dump_file, "copy expression %d\n",
c4c81601
RK
2170 expr->bitmap_index);
2171 }
2172
a13d4ebf 2173 update_ld_motion_stores (expr);
d7c028c0 2174 bitmap_set_bit (inserted[e], j);
c4c81601
RK
2175 did_insert = 1;
2176 gcse_create_count++;
2177 }
2178 }
2179 }
7506f491
DE
2180 }
2181 }
5faf03ae 2182
5a660bff 2183 sbitmap_vector_free (inserted);
a42cd965 2184 return did_insert;
7506f491
DE
2185}
2186
073089a7 2187/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
b885908b
MH
2188 Given "old_reg <- expr" (INSN), instead of adding after it
2189 reaching_reg <- old_reg
2190 it's better to do the following:
2191 reaching_reg <- expr
2192 old_reg <- reaching_reg
2193 because this way copy propagation can discover additional PRE
f5f2e3cd
MH
2194 opportunities. But if this fails, we try the old way.
2195 When "expr" is a store, i.e.
2196 given "MEM <- old_reg", instead of adding after it
2197 reaching_reg <- old_reg
2198 it's better to add it before as follows:
2199 reaching_reg <- old_reg
2200 MEM <- reaching_reg. */
7506f491
DE
2201
2202static void
11478306 2203pre_insert_copy_insn (struct gcse_expr *expr, rtx_insn *insn)
7506f491
DE
2204{
2205 rtx reg = expr->reaching_reg;
2206 int regno = REGNO (reg);
2207 int indx = expr->bitmap_index;
073089a7 2208 rtx pat = PATTERN (insn);
1476d1bd
MM
2209 rtx set, first_set;
2210 rtx_insn *new_insn;
b885908b 2211 rtx old_reg;
073089a7 2212 int i;
7506f491 2213
073089a7 2214 /* This block matches the logic in hash_scan_insn. */
282899df 2215 switch (GET_CODE (pat))
073089a7 2216 {
282899df
NS
2217 case SET:
2218 set = pat;
2219 break;
2220
2221 case PARALLEL:
073089a7
RS
2222 /* Search through the parallel looking for the set whose
2223 source was the expression that we're interested in. */
64068ca2 2224 first_set = NULL_RTX;
073089a7
RS
2225 set = NULL_RTX;
2226 for (i = 0; i < XVECLEN (pat, 0); i++)
2227 {
2228 rtx x = XVECEXP (pat, 0, i);
64068ca2 2229 if (GET_CODE (x) == SET)
073089a7 2230 {
64068ca2
RS
2231 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2232 may not find an equivalent expression, but in this
2233 case the PARALLEL will have a single set. */
2234 if (first_set == NULL_RTX)
2235 first_set = x;
2236 if (expr_equiv_p (SET_SRC (x), expr->expr))
2237 {
2238 set = x;
2239 break;
2240 }
073089a7
RS
2241 }
2242 }
64068ca2
RS
2243
2244 gcc_assert (first_set);
2245 if (set == NULL_RTX)
2246 set = first_set;
282899df
NS
2247 break;
2248
2249 default:
2250 gcc_unreachable ();
073089a7 2251 }
c4c81601 2252
7b1b4aed 2253 if (REG_P (SET_DEST (set)))
073089a7 2254 {
f5f2e3cd
MH
2255 old_reg = SET_DEST (set);
2256 /* Check if we can modify the set destination in the original insn. */
2257 if (validate_change (insn, &SET_DEST (set), reg, 0))
2258 {
2259 new_insn = gen_move_insn (old_reg, reg);
2260 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd
MH
2261 }
2262 else
2263 {
2264 new_insn = gen_move_insn (reg, old_reg);
2265 new_insn = emit_insn_after (new_insn, insn);
f5f2e3cd 2266 }
073089a7 2267 }
f5f2e3cd 2268 else /* This is possible only in case of a store to memory. */
073089a7 2269 {
f5f2e3cd 2270 old_reg = SET_SRC (set);
073089a7 2271 new_insn = gen_move_insn (reg, old_reg);
f5f2e3cd
MH
2272
2273 /* Check if we can modify the set source in the original insn. */
2274 if (validate_change (insn, &SET_SRC (set), reg, 0))
2275 new_insn = emit_insn_before (new_insn, insn);
2276 else
2277 new_insn = emit_insn_after (new_insn, insn);
073089a7 2278 }
7506f491
DE
2279
2280 gcse_create_count++;
2281
10d22567
ZD
2282 if (dump_file)
2283 fprintf (dump_file,
a42cd965 2284 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
b0de17ef 2285 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
a42cd965 2286 INSN_UID (insn), regno);
7506f491
DE
2287}
2288
2289/* Copy available expressions that reach the redundant expression
2290 to `reaching_reg'. */
2291
2292static void
1d088dee 2293pre_insert_copies (void)
7506f491 2294{
f5f2e3cd 2295 unsigned int i, added_copy;
11478306
JH
2296 struct gcse_expr *expr;
2297 struct gcse_occr *occr;
2298 struct gcse_occr *avail;
a65f3558 2299
7506f491
DE
2300 /* For each available expression in the table, copy the result to
2301 `reaching_reg' if the expression reaches a deleted one.
2302
2303 ??? The current algorithm is rather brute force.
2304 Need to do some profiling. */
2305
02280659 2306 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2307 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2308 {
2309 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2310 we don't want to insert a copy here because the expression may not
2311 really be redundant. So only insert an insn if the expression was
2312 deleted. This test also avoids further processing if the
2313 expression wasn't deleted anywhere. */
2314 if (expr->reaching_reg == NULL)
2315 continue;
7b1b4aed 2316
f5f2e3cd 2317 /* Set when we add a copy for that expression. */
7b1b4aed 2318 added_copy = 0;
c4c81601
RK
2319
2320 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2321 {
2322 if (! occr->deleted_p)
2323 continue;
7506f491 2324
c4c81601
RK
2325 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2326 {
cf92a178 2327 rtx_insn *insn = avail->insn;
7506f491 2328
c4c81601
RK
2329 /* No need to handle this one if handled already. */
2330 if (avail->copied_p)
2331 continue;
7506f491 2332
c4c81601 2333 /* Don't handle this one if it's a redundant one. */
4654c0cf 2334 if (insn->deleted ())
c4c81601 2335 continue;
7506f491 2336
c4c81601 2337 /* Or if the expression doesn't reach the deleted one. */
589005ff 2338 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
e2d2ed72
AM
2339 expr,
2340 BLOCK_FOR_INSN (occr->insn)))
c4c81601 2341 continue;
7506f491 2342
f5f2e3cd
MH
2343 added_copy = 1;
2344
c4c81601
RK
2345 /* Copy the result of avail to reaching_reg. */
2346 pre_insert_copy_insn (expr, insn);
2347 avail->copied_p = 1;
2348 }
2349 }
f5f2e3cd 2350
7b1b4aed 2351 if (added_copy)
f5f2e3cd 2352 update_ld_motion_stores (expr);
c4c81601 2353 }
7506f491
DE
2354}
2355
b6808818
JDA
2356struct set_data
2357{
cf92a178 2358 rtx_insn *insn;
b6808818
JDA
2359 const_rtx set;
2360 int nsets;
2361};
2362
2363/* Increment number of sets and record set in DATA. */
2364
2365static void
2366record_set_data (rtx dest, const_rtx set, void *data)
2367{
2368 struct set_data *s = (struct set_data *)data;
2369
2370 if (GET_CODE (set) == SET)
2371 {
2372 /* We allow insns having multiple sets, where all but one are
2373 dead as single set insns. In the common case only a single
2374 set is present, so we want to avoid checking for REG_UNUSED
2375 notes unless necessary. */
2376 if (s->nsets == 1
2377 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2378 && !side_effects_p (s->set))
2379 s->nsets = 0;
2380
2381 if (!s->nsets)
2382 {
2383 /* Record this set. */
2384 s->nsets += 1;
2385 s->set = set;
2386 }
2387 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2388 || side_effects_p (set))
2389 s->nsets += 1;
2390 }
2391}
2392
2393static const_rtx
cf92a178 2394single_set_gcse (rtx_insn *insn)
b6808818
JDA
2395{
2396 struct set_data s;
2397 rtx pattern;
2398
2399 gcc_assert (INSN_P (insn));
2400
2401 /* Optimize common case. */
2402 pattern = PATTERN (insn);
2403 if (GET_CODE (pattern) == SET)
2404 return pattern;
2405
2406 s.insn = insn;
2407 s.nsets = 0;
2408 note_stores (pattern, record_set_data, &s);
2409
2410 /* Considered invariant insns have exactly one set. */
2411 gcc_assert (s.nsets == 1);
2412 return s.set;
2413}
2414
10d1bb36
JH
2415/* Emit move from SRC to DEST noting the equivalence with expression computed
2416 in INSN. */
43c8a043 2417
e67d1102 2418static rtx_insn *
cf92a178 2419gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
10d1bb36 2420{
e8a54173 2421 rtx_insn *new_rtx;
b6808818
JDA
2422 const_rtx set = single_set_gcse (insn);
2423 rtx set2;
10d1bb36 2424 rtx note;
dca3da7a 2425 rtx eqv = NULL_RTX;
10d1bb36
JH
2426
2427 /* This should never fail since we're creating a reg->reg copy
2428 we've verified to be valid. */
2429
60564289 2430 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
285464d0 2431
dca3da7a
SB
2432 /* Note the equivalence for local CSE pass. Take the note from the old
2433 set if there was one. Otherwise record the SET_SRC from the old set
2434 unless DEST is also an operand of the SET_SRC. */
60564289 2435 set2 = single_set (new_rtx);
6bdb8dd6 2436 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
60564289 2437 return new_rtx;
10d1bb36
JH
2438 if ((note = find_reg_equal_equiv_note (insn)))
2439 eqv = XEXP (note, 0);
dca3da7a
SB
2440 else if (! REG_P (dest)
2441 || ! reg_mentioned_p (dest, SET_SRC (set)))
10d1bb36
JH
2442 eqv = SET_SRC (set);
2443
dca3da7a
SB
2444 if (eqv != NULL_RTX)
2445 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
10d1bb36 2446
60564289 2447 return new_rtx;
10d1bb36
JH
2448}
2449
7506f491 2450/* Delete redundant computations.
7506f491
DE
2451 Deletion is done by changing the insn to copy the `reaching_reg' of
2452 the expression into the result of the SET. It is left to later passes
337405fd 2453 to propagate the copy or eliminate it.
7506f491 2454
43c8a043 2455 Return nonzero if a change is made. */
7506f491
DE
2456
2457static int
1d088dee 2458pre_delete (void)
7506f491 2459{
2e653e39 2460 unsigned int i;
63bc1d05 2461 int changed;
11478306
JH
2462 struct gcse_expr *expr;
2463 struct gcse_occr *occr;
a65f3558 2464
7506f491 2465 changed = 0;
02280659 2466 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2467 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601
RK
2468 {
2469 int indx = expr->bitmap_index;
7506f491 2470
43c8a043 2471 /* We only need to search antic_occr since we require ANTLOC != 0. */
c4c81601
RK
2472 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2473 {
cf92a178 2474 rtx_insn *insn = occr->insn;
c4c81601 2475 rtx set;
e2d2ed72 2476 basic_block bb = BLOCK_FOR_INSN (insn);
7506f491 2477
073089a7 2478 /* We only delete insns that have a single_set. */
d7c028c0 2479 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
6fb5fa3c
DB
2480 && (set = single_set (insn)) != 0
2481 && dbg_cnt (pre_insn))
c4c81601 2482 {
c4c81601
RK
2483 /* Create a pseudo-reg to store the result of reaching
2484 expressions into. Get the mode for the new pseudo from
2485 the mode of the original destination pseudo. */
2486 if (expr->reaching_reg == NULL)
46b71b03 2487 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
c4c81601 2488
43c8a043 2489 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
10d1bb36
JH
2490 delete_insn (insn);
2491 occr->deleted_p = 1;
10d1bb36
JH
2492 changed = 1;
2493 gcse_subst_count++;
7506f491 2494
10d22567 2495 if (dump_file)
c4c81601 2496 {
10d22567 2497 fprintf (dump_file,
c4c81601
RK
2498 "PRE: redundant insn %d (expression %d) in ",
2499 INSN_UID (insn), indx);
10d22567 2500 fprintf (dump_file, "bb %d, reaching reg is %d\n",
0b17ab2f 2501 bb->index, REGNO (expr->reaching_reg));
c4c81601
RK
2502 }
2503 }
2504 }
2505 }
7506f491
DE
2506
2507 return changed;
2508}
2509
2510/* Perform GCSE optimizations using PRE.
2511 This is called by one_pre_gcse_pass after all the dataflow analysis
2512 has been done.
2513
c4c81601
RK
2514 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2515 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2516 Compiler Design and Implementation.
7506f491 2517
c4c81601
RK
2518 ??? A new pseudo reg is created to hold the reaching expression. The nice
2519 thing about the classical approach is that it would try to use an existing
2520 reg. If the register can't be adequately optimized [i.e. we introduce
2521 reload problems], one could add a pass here to propagate the new register
2522 through the block.
7506f491 2523
c4c81601
RK
2524 ??? We don't handle single sets in PARALLELs because we're [currently] not
2525 able to copy the rest of the parallel when we insert copies to create full
2526 redundancies from partial redundancies. However, there's no reason why we
2527 can't handle PARALLELs in the cases where there are no partial
7506f491
DE
2528 redundancies. */
2529
2530static int
43c8a043 2531pre_gcse (struct edge_list *edge_list)
7506f491 2532{
2e653e39
RK
2533 unsigned int i;
2534 int did_insert, changed;
11478306
JH
2535 struct gcse_expr **index_map;
2536 struct gcse_expr *expr;
7506f491
DE
2537
2538 /* Compute a mapping from expression number (`bitmap_index') to
2539 hash table entry. */
2540
11478306 2541 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
02280659 2542 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 2543 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 2544 index_map[expr->bitmap_index] = expr;
7506f491 2545
7506f491
DE
2546 /* Delete the redundant insns first so that
2547 - we know what register to use for the new insns and for the other
2548 ones with reaching expressions
2549 - we know which insns are redundant when we go to create copies */
c4c81601 2550
7506f491 2551 changed = pre_delete ();
a42cd965 2552 did_insert = pre_edge_insert (edge_list, index_map);
c4c81601 2553
7506f491 2554 /* In other places with reaching expressions, copy the expression to the
a42cd965 2555 specially allocated pseudo-reg that reaches the redundant expr. */
7506f491 2556 pre_insert_copies ();
a42cd965
AM
2557 if (did_insert)
2558 {
2559 commit_edge_insertions ();
2560 changed = 1;
2561 }
7506f491 2562
283a2545 2563 free (index_map);
7506f491
DE
2564 return changed;
2565}
2566
2567/* Top level routine to perform one PRE GCSE pass.
2568
cc2902df 2569 Return nonzero if a change was made. */
7506f491
DE
2570
2571static int
5f39ad47 2572one_pre_gcse_pass (void)
7506f491
DE
2573{
2574 int changed = 0;
2575
2576 gcse_subst_count = 0;
2577 gcse_create_count = 0;
2578
5f39ad47 2579 /* Return if there's nothing to do, or it is too expensive. */
0cae8d31 2580 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
5f39ad47
SB
2581 || is_too_expensive (_("PRE disabled")))
2582 return 0;
2583
2584 /* We need alias. */
2585 init_alias_analysis ();
2586
2587 bytes_used = 0;
2588 gcc_obstack_init (&gcse_obstack);
2589 alloc_gcse_mem ();
2590
e45425ec 2591 alloc_hash_table (&expr_hash_table);
a42cd965 2592 add_noreturn_fake_exit_edges ();
a13d4ebf
AM
2593 if (flag_gcse_lm)
2594 compute_ld_motion_mems ();
2595
02280659 2596 compute_hash_table (&expr_hash_table);
43c8a043
EB
2597 if (flag_gcse_lm)
2598 trim_ld_motion_mems ();
10d22567
ZD
2599 if (dump_file)
2600 dump_hash_table (dump_file, "Expression", &expr_hash_table);
c4c81601 2601
02280659 2602 if (expr_hash_table.n_elems > 0)
7506f491 2603 {
43c8a043 2604 struct edge_list *edge_list;
8b1c6fd7 2605 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
43c8a043
EB
2606 edge_list = compute_pre_data ();
2607 changed |= pre_gcse (edge_list);
a42cd965 2608 free_edge_list (edge_list);
7506f491
DE
2609 free_pre_mem ();
2610 }
c4c81601 2611
43c8a043
EB
2612 if (flag_gcse_lm)
2613 free_ld_motion_mems ();
6809cbf9 2614 remove_fake_exit_edges ();
02280659 2615 free_hash_table (&expr_hash_table);
7506f491 2616
5f39ad47
SB
2617 free_gcse_mem ();
2618 obstack_free (&gcse_obstack, NULL);
2619
2620 /* We are finished with alias. */
2621 end_alias_analysis ();
2622
10d22567 2623 if (dump_file)
7506f491 2624 {
5f39ad47 2625 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
0cae8d31
DM
2626 current_function_name (), n_basic_blocks_for_fn (cfun),
2627 bytes_used);
10d22567 2628 fprintf (dump_file, "%d substs, %d insns created\n",
c4c81601 2629 gcse_subst_count, gcse_create_count);
7506f491
DE
2630 }
2631
2632 return changed;
2633}
aeb2f500 2634\f
cf7c4aa6
HPN
2635/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2636 to INSN. If such notes are added to an insn which references a
2637 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2638 that note, because the following loop optimization pass requires
2639 them. */
aeb2f500 2640
aeb2f500
JW
2641/* ??? If there was a jump optimization pass after gcse and before loop,
2642 then we would not need to do this here, because jump would add the
cf7c4aa6 2643 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
aeb2f500
JW
2644
2645static void
170065c9 2646add_label_notes (rtx x, rtx_insn *insn)
aeb2f500
JW
2647{
2648 enum rtx_code code = GET_CODE (x);
2649 int i, j;
6f7d635c 2650 const char *fmt;
aeb2f500
JW
2651
2652 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2653 {
6b3603c2 2654 /* This code used to ignore labels that referred to dispatch tables to
e0bb17a8 2655 avoid flow generating (slightly) worse code.
6b3603c2 2656
ac7c5af5
JL
2657 We no longer ignore such label references (see LABEL_REF handling in
2658 mark_jump_label for additional information). */
c4c81601 2659
cb2f563b
HPN
2660 /* There's no reason for current users to emit jump-insns with
2661 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2662 notes. */
2663 gcc_assert (!JUMP_P (insn));
a827d9b1 2664 add_reg_note (insn, REG_LABEL_OPERAND, LABEL_REF_LABEL (x));
65c5f2a6 2665
a827d9b1
DM
2666 if (LABEL_P (LABEL_REF_LABEL (x)))
2667 LABEL_NUSES (LABEL_REF_LABEL (x))++;
cb2f563b 2668
aeb2f500
JW
2669 return;
2670 }
2671
c4c81601 2672 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
aeb2f500
JW
2673 {
2674 if (fmt[i] == 'e')
2675 add_label_notes (XEXP (x, i), insn);
2676 else if (fmt[i] == 'E')
2677 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2678 add_label_notes (XVECEXP (x, i, j), insn);
2679 }
2680}
a65f3558 2681
bb457bd9
JL
2682/* Code Hoisting variables and subroutines. */
2683
2684/* Very busy expressions. */
2685static sbitmap *hoist_vbein;
2686static sbitmap *hoist_vbeout;
2687
bb457bd9 2688/* ??? We could compute post dominators and run this algorithm in
68e82b83 2689 reverse to perform tail merging, doing so would probably be
bb457bd9
JL
2690 more effective than the tail merging code in jump.c.
2691
2692 It's unclear if tail merging could be run in parallel with
2693 code hoisting. It would be nice. */
2694
2695/* Allocate vars used for code hoisting analysis. */
2696
2697static void
1d088dee 2698alloc_code_hoist_mem (int n_blocks, int n_exprs)
bb457bd9
JL
2699{
2700 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2701 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2702 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2703
2704 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2705 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
bb457bd9
JL
2706}
2707
2708/* Free vars used for code hoisting analysis. */
2709
2710static void
1d088dee 2711free_code_hoist_mem (void)
bb457bd9 2712{
5a660bff
DB
2713 sbitmap_vector_free (antloc);
2714 sbitmap_vector_free (transp);
2715 sbitmap_vector_free (comp);
bb457bd9 2716
5a660bff
DB
2717 sbitmap_vector_free (hoist_vbein);
2718 sbitmap_vector_free (hoist_vbeout);
bb457bd9 2719
d47cc544 2720 free_dominance_info (CDI_DOMINATORS);
bb457bd9
JL
2721}
2722
2723/* Compute the very busy expressions at entry/exit from each block.
2724
2725 An expression is very busy if all paths from a given point
2726 compute the expression. */
2727
2728static void
1d088dee 2729compute_code_hoist_vbeinout (void)
bb457bd9 2730{
e0082a72
ZD
2731 int changed, passes;
2732 basic_block bb;
bb457bd9 2733
8b1c6fd7
DM
2734 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2735 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
bb457bd9
JL
2736
2737 passes = 0;
2738 changed = 1;
c4c81601 2739
bb457bd9
JL
2740 while (changed)
2741 {
2742 changed = 0;
c4c81601 2743
bb457bd9
JL
2744 /* We scan the blocks in the reverse order to speed up
2745 the convergence. */
4f42035e 2746 FOR_EACH_BB_REVERSE_FN (bb, cfun)
bb457bd9 2747 {
fefa31b5 2748 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
ce4c0015 2749 {
d7c028c0
LC
2750 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2751 hoist_vbein, bb);
ce4c0015
MK
2752
2753 /* Include expressions in VBEout that are calculated
2754 in BB and available at its end. */
f61e445a 2755 bitmap_ior (hoist_vbeout[bb->index],
ce4c0015
MK
2756 hoist_vbeout[bb->index], comp[bb->index]);
2757 }
f8423fea 2758
f61e445a 2759 changed |= bitmap_or_and (hoist_vbein[bb->index],
f8423fea
SB
2760 antloc[bb->index],
2761 hoist_vbeout[bb->index],
2762 transp[bb->index]);
bb457bd9 2763 }
c4c81601 2764
bb457bd9
JL
2765 passes++;
2766 }
2767
10d22567 2768 if (dump_file)
cad9aa15
MK
2769 {
2770 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2771
11cd3bed 2772 FOR_EACH_BB_FN (bb, cfun)
cad9aa15
MK
2773 {
2774 fprintf (dump_file, "vbein (%d): ", bb->index);
f61e445a 2775 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
cad9aa15 2776 fprintf (dump_file, "vbeout(%d): ", bb->index);
f61e445a 2777 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
cad9aa15
MK
2778 }
2779 }
bb457bd9
JL
2780}
2781
2782/* Top level routine to do the dataflow analysis needed by code hoisting. */
2783
2784static void
1d088dee 2785compute_code_hoist_data (void)
bb457bd9 2786{
02280659 2787 compute_local_properties (transp, comp, antloc, &expr_hash_table);
9b774782 2788 prune_expressions (false);
bb457bd9 2789 compute_code_hoist_vbeinout ();
d47cc544 2790 calculate_dominance_info (CDI_DOMINATORS);
10d22567
ZD
2791 if (dump_file)
2792 fprintf (dump_file, "\n");
bb457bd9
JL
2793}
2794
4b8181c5
BC
2795/* Update register pressure for BB when hoisting an expression from
2796 instruction FROM, if live ranges of inputs are shrunk. Also
2797 maintain live_in information if live range of register referred
2798 in FROM is shrunk.
2799
2800 Return 0 if register pressure doesn't change, otherwise return
2801 the number by which register pressure is decreased.
2802
2803 NOTE: Register pressure won't be increased in this function. */
2804
2805static int
cf92a178 2806update_bb_reg_pressure (basic_block bb, rtx_insn *from)
4b8181c5 2807{
cf92a178
DM
2808 rtx dreg;
2809 rtx_insn *insn;
4b8181c5 2810 basic_block succ_bb;
bfac633a 2811 df_ref use, op_ref;
4b8181c5
BC
2812 edge succ;
2813 edge_iterator ei;
2814 int decreased_pressure = 0;
2815 int nregs;
2816 enum reg_class pressure_class;
bfac633a
RS
2817
2818 FOR_EACH_INSN_USE (use, from)
4b8181c5 2819 {
bfac633a 2820 dreg = DF_REF_REAL_REG (use);
4b8181c5
BC
2821 /* The live range of register is shrunk only if it isn't:
2822 1. referred on any path from the end of this block to EXIT, or
2823 2. referred by insns other than FROM in this block. */
2824 FOR_EACH_EDGE (succ, ei, bb->succs)
2825 {
2826 succ_bb = succ->dest;
fefa31b5 2827 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4b8181c5
BC
2828 continue;
2829
2830 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2831 break;
2832 }
2833 if (succ != NULL)
2834 continue;
2835
2836 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2837 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2838 {
2839 if (!DF_REF_INSN_INFO (op_ref))
2840 continue;
2841
2842 insn = DF_REF_INSN (op_ref);
2843 if (BLOCK_FOR_INSN (insn) == bb
2844 && NONDEBUG_INSN_P (insn) && insn != from)
2845 break;
2846 }
2847
2848 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2849 /* Decrease register pressure and update live_in information for
2850 this block. */
2851 if (!op_ref && pressure_class != NO_REGS)
2852 {
2853 decreased_pressure += nregs;
2854 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2855 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2856 }
2857 }
2858 return decreased_pressure;
2859}
2860
b11f0116
BC
2861/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2862 flow graph, if it can reach BB unimpared. Stop the search if the
2863 expression would need to be moved more than DISTANCE instructions.
2864
2865 DISTANCE is the number of instructions through which EXPR can be
2866 hoisted up in flow graph.
2867
2868 BB_SIZE points to an array which contains the number of instructions
2869 for each basic block.
2870
2871 PRESSURE_CLASS and NREGS are register class and number of hard registers
2872 for storing EXPR.
2873
2874 HOISTED_BBS points to a bitmap indicating basic blocks through which
2875 EXPR is hoisted.
bb457bd9 2876
4b8181c5
BC
2877 FROM is the instruction from which EXPR is hoisted.
2878
bb457bd9
JL
2879 It's unclear exactly what Muchnick meant by "unimpared". It seems
2880 to me that the expression must either be computed or transparent in
2881 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2882 would allow the expression to be hoisted out of loops, even if
2883 the expression wasn't a loop invariant.
2884
2885 Contrast this to reachability for PRE where an expression is
2886 considered reachable if *any* path reaches instead of *all*
2887 paths. */
2888
2889static int
11478306 2890should_hoist_expr_to_dom (basic_block expr_bb, struct gcse_expr *expr,
b11f0116
BC
2891 basic_block bb, sbitmap visited, int distance,
2892 int *bb_size, enum reg_class pressure_class,
cf92a178 2893 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
bb457bd9 2894{
b11f0116 2895 unsigned int i;
bb457bd9 2896 edge pred;
628f6a4e 2897 edge_iterator ei;
b11f0116 2898 sbitmap_iterator sbi;
283a2545 2899 int visited_allocated_locally = 0;
4b8181c5 2900 int decreased_pressure = 0;
589005ff 2901
4b8181c5
BC
2902 if (flag_ira_hoist_pressure)
2903 {
2904 /* Record old information of basic block BB when it is visited
2905 at the first time. */
2906 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2907 {
2908 struct bb_data *data = BB_DATA (bb);
2909 bitmap_copy (data->backup, data->live_in);
2910 data->old_pressure = data->max_reg_pressure[pressure_class];
2911 }
2912 decreased_pressure = update_bb_reg_pressure (bb, from);
2913 }
20160347
MK
2914 /* Terminate the search if distance, for which EXPR is allowed to move,
2915 is exhausted. */
2916 if (distance > 0)
2917 {
4b8181c5
BC
2918 if (flag_ira_hoist_pressure)
2919 {
2920 /* Prefer to hoist EXPR if register pressure is decreased. */
2921 if (decreased_pressure > *nregs)
2922 distance += bb_size[bb->index];
2923 /* Let EXPR be hoisted through basic block at no cost if one
2924 of following conditions is satisfied:
2925
2926 1. The basic block has low register pressure.
2927 2. Register pressure won't be increases after hoisting EXPR.
2928
2929 Constant expressions is handled conservatively, because
2930 hoisting constant expression aggressively results in worse
2931 code. This decision is made by the observation of CSiBE
2932 on ARM target, while it has no obvious effect on other
2933 targets like x86, x86_64, mips and powerpc. */
2934 else if (CONST_INT_P (expr->expr)
2935 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
2936 >= ira_class_hard_regs_num[pressure_class]
2937 && decreased_pressure < *nregs))
2938 distance -= bb_size[bb->index];
2939 }
2940 else
b11f0116 2941 distance -= bb_size[bb->index];
20160347
MK
2942
2943 if (distance <= 0)
2944 return 0;
2945 }
2946 else
2947 gcc_assert (distance == 0);
bb457bd9
JL
2948
2949 if (visited == NULL)
2950 {
8e42ace1 2951 visited_allocated_locally = 1;
8b1c6fd7 2952 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
f61e445a 2953 bitmap_clear (visited);
bb457bd9
JL
2954 }
2955
628f6a4e 2956 FOR_EACH_EDGE (pred, ei, bb->preds)
bb457bd9 2957 {
e2d2ed72 2958 basic_block pred_bb = pred->src;
bb457bd9 2959
fefa31b5 2960 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
bb457bd9 2961 break;
f305679f
JH
2962 else if (pred_bb == expr_bb)
2963 continue;
d7c028c0 2964 else if (bitmap_bit_p (visited, pred_bb->index))
bb457bd9 2965 continue;
d7c028c0 2966 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
bb457bd9
JL
2967 break;
2968 /* Not killed. */
2969 else
2970 {
d7c028c0 2971 bitmap_set_bit (visited, pred_bb->index);
b11f0116
BC
2972 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
2973 visited, distance, bb_size,
4b8181c5
BC
2974 pressure_class, nregs,
2975 hoisted_bbs, from))
bb457bd9
JL
2976 break;
2977 }
2978 }
589005ff 2979 if (visited_allocated_locally)
b11f0116
BC
2980 {
2981 /* If EXPR can be hoisted to expr_bb, record basic blocks through
4b8181c5 2982 which EXPR is hoisted in hoisted_bbs. */
b11f0116
BC
2983 if (flag_ira_hoist_pressure && !pred)
2984 {
4b8181c5
BC
2985 /* Record the basic block from which EXPR is hoisted. */
2986 bitmap_set_bit (visited, bb->index);
d4ac4ce2 2987 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
4b8181c5 2988 bitmap_set_bit (hoisted_bbs, i);
b11f0116
BC
2989 }
2990 sbitmap_free (visited);
2991 }
c4c81601 2992
bb457bd9
JL
2993 return (pred == NULL);
2994}
2995\f
073a8998 2996/* Find occurrence in BB. */
43c8a043 2997
11478306
JH
2998static struct gcse_occr *
2999find_occr_in_bb (struct gcse_occr *occr, basic_block bb)
20160347
MK
3000{
3001 /* Find the right occurrence of this expression. */
3002 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3003 occr = occr->next;
3004
3005 return occr;
3006}
3007
b11f0116
BC
3008/* Actually perform code hoisting.
3009
3010 The code hoisting pass can hoist multiple computations of the same
3011 expression along dominated path to a dominating basic block, like
3012 from b2/b3 to b1 as depicted below:
3013
3014 b1 ------
3015 /\ |
3016 / \ |
3017 bx by distance
3018 / \ |
3019 / \ |
3020 b2 b3 ------
3021
3022 Unfortunately code hoisting generally extends the live range of an
3023 output pseudo register, which increases register pressure and hurts
3024 register allocation. To address this issue, an attribute MAX_DISTANCE
3025 is computed and attached to each expression. The attribute is computed
3026 from rtx cost of the corresponding expression and it's used to control
3027 how long the expression can be hoisted up in flow graph. As the
3028 expression is hoisted up in flow graph, GCC decreases its DISTANCE
4b8181c5
BC
3029 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3030 register pressure if live ranges of inputs are shrunk.
b11f0116
BC
3031
3032 Option "-fira-hoist-pressure" implements register pressure directed
3033 hoist based on upper method. The rationale is:
3034 1. Calculate register pressure for each basic block by reusing IRA
3035 facility.
3036 2. When expression is hoisted through one basic block, GCC checks
4b8181c5
BC
3037 the change of live ranges for inputs/output. The basic block's
3038 register pressure will be increased because of extended live
3039 range of output. However, register pressure will be decreased
3040 if the live ranges of inputs are shrunk.
3041 3. After knowing how hoisting affects register pressure, GCC prefers
3042 to hoist the expression if it can decrease register pressure, by
3043 increasing DISTANCE of the corresponding expression.
3044 4. If hoisting the expression increases register pressure, GCC checks
3045 register pressure of the basic block and decrease DISTANCE only if
3046 the register pressure is high. In other words, expression will be
3047 hoisted through at no cost if the basic block has low register
3048 pressure.
3049 5. Update register pressure information for basic blocks through
3050 which expression is hoisted. */
c4c81601 3051
5f39ad47 3052static int
1d088dee 3053hoist_code (void)
bb457bd9 3054{
e0082a72 3055 basic_block bb, dominated;
9771b263 3056 vec<basic_block> dom_tree_walk;
cad9aa15 3057 unsigned int dom_tree_walk_index;
9771b263 3058 vec<basic_block> domby;
b11f0116 3059 unsigned int i, j, k;
11478306
JH
3060 struct gcse_expr **index_map;
3061 struct gcse_expr *expr;
20160347
MK
3062 int *to_bb_head;
3063 int *bb_size;
5f39ad47 3064 int changed = 0;
b11f0116
BC
3065 struct bb_data *data;
3066 /* Basic blocks that have occurrences reachable from BB. */
3067 bitmap from_bbs;
3068 /* Basic blocks through which expr is hoisted. */
3069 bitmap hoisted_bbs = NULL;
3070 bitmap_iterator bi;
bb457bd9 3071
bb457bd9
JL
3072 /* Compute a mapping from expression number (`bitmap_index') to
3073 hash table entry. */
3074
11478306 3075 index_map = XCNEWVEC (struct gcse_expr *, expr_hash_table.n_elems);
02280659 3076 for (i = 0; i < expr_hash_table.size; i++)
43c8a043 3077 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
c4c81601 3078 index_map[expr->bitmap_index] = expr;
bb457bd9 3079
20160347
MK
3080 /* Calculate sizes of basic blocks and note how far
3081 each instruction is from the start of its block. We then use this
3082 data to restrict distance an expression can travel. */
3083
3084 to_bb_head = XCNEWVEC (int, get_max_uid ());
8b1c6fd7 3085 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
20160347 3086
11cd3bed 3087 FOR_EACH_BB_FN (bb, cfun)
20160347 3088 {
cf92a178 3089 rtx_insn *insn;
20160347
MK
3090 int to_head;
3091
20160347 3092 to_head = 0;
05b5ea34 3093 FOR_BB_INSNS (bb, insn)
20160347
MK
3094 {
3095 /* Don't count debug instructions to avoid them affecting
3096 decision choices. */
3097 if (NONDEBUG_INSN_P (insn))
3098 to_bb_head[INSN_UID (insn)] = to_head++;
20160347
MK
3099 }
3100
3101 bb_size[bb->index] = to_head;
3102 }
3103
fefa31b5
DM
3104 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3105 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3106 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
cad9aa15 3107
b11f0116
BC
3108 from_bbs = BITMAP_ALLOC (NULL);
3109 if (flag_ira_hoist_pressure)
3110 hoisted_bbs = BITMAP_ALLOC (NULL);
3111
cad9aa15 3112 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
fefa31b5 3113 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
cad9aa15 3114
bb457bd9
JL
3115 /* Walk over each basic block looking for potentially hoistable
3116 expressions, nothing gets hoisted from the entry block. */
9771b263 3117 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
bb457bd9 3118 {
cad9aa15
MK
3119 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3120
9771b263 3121 if (domby.length () == 0)
cad9aa15 3122 continue;
bb457bd9
JL
3123
3124 /* Examine each expression that is very busy at the exit of this
3125 block. These are the potentially hoistable expressions. */
5829cc0f 3126 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
bb457bd9 3127 {
d7c028c0 3128 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
bb457bd9 3129 {
b11f0116
BC
3130 int nregs = 0;
3131 enum reg_class pressure_class = NO_REGS;
cad9aa15 3132 /* Current expression. */
11478306 3133 struct gcse_expr *expr = index_map[i];
073a8998 3134 /* Number of occurrences of EXPR that can be hoisted to BB. */
cad9aa15 3135 int hoistable = 0;
073a8998 3136 /* Occurrences reachable from BB. */
6e1aa848 3137 vec<occr_t> occrs_to_hoist = vNULL;
cad9aa15
MK
3138 /* We want to insert the expression into BB only once, so
3139 note when we've inserted it. */
3140 int insn_inserted_p;
3141 occr_t occr;
3142
ce4c0015 3143 /* If an expression is computed in BB and is available at end of
073a8998 3144 BB, hoist all occurrences dominated by BB to BB. */
d7c028c0 3145 if (bitmap_bit_p (comp[bb->index], i))
cad9aa15
MK
3146 {
3147 occr = find_occr_in_bb (expr->antic_occr, bb);
3148
3149 if (occr)
3150 {
073a8998 3151 /* An occurrence might've been already deleted
cad9aa15 3152 while processing a dominator of BB. */
2d36b47f 3153 if (!occr->deleted_p)
cad9aa15
MK
3154 {
3155 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3156 hoistable++;
3157 }
3158 }
3159 else
3160 hoistable++;
3161 }
ce4c0015 3162
bb457bd9
JL
3163 /* We've found a potentially hoistable expression, now
3164 we look at every block BB dominates to see if it
3165 computes the expression. */
9771b263 3166 FOR_EACH_VEC_ELT (domby, j, dominated)
bb457bd9 3167 {
20160347
MK
3168 int max_distance;
3169
bb457bd9 3170 /* Ignore self dominance. */
c635a1ec 3171 if (bb == dominated)
bb457bd9 3172 continue;
bb457bd9
JL
3173 /* We've found a dominated block, now see if it computes
3174 the busy expression and whether or not moving that
3175 expression to the "beginning" of that block is safe. */
d7c028c0 3176 if (!bitmap_bit_p (antloc[dominated->index], i))
bb457bd9
JL
3177 continue;
3178
cad9aa15
MK
3179 occr = find_occr_in_bb (expr->antic_occr, dominated);
3180 gcc_assert (occr);
20160347 3181
073a8998 3182 /* An occurrence might've been already deleted
cad9aa15
MK
3183 while processing a dominator of BB. */
3184 if (occr->deleted_p)
2d36b47f 3185 continue;
cad9aa15
MK
3186 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3187
3188 max_distance = expr->max_distance;
3189 if (max_distance > 0)
3190 /* Adjust MAX_DISTANCE to account for the fact that
3191 OCCR won't have to travel all of DOMINATED, but
3192 only part of it. */
3193 max_distance += (bb_size[dominated->index]
3194 - to_bb_head[INSN_UID (occr->insn)]);
20160347 3195
b11f0116
BC
3196 pressure_class = get_pressure_class_and_nregs (occr->insn,
3197 &nregs);
3198
3199 /* Note if the expression should be hoisted from the dominated
3200 block to BB if it can reach DOMINATED unimpared.
bb457bd9
JL
3201
3202 Keep track of how many times this expression is hoistable
3203 from a dominated block into BB. */
b11f0116
BC
3204 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3205 max_distance, bb_size,
3206 pressure_class, &nregs,
4b8181c5 3207 hoisted_bbs, occr->insn))
cad9aa15
MK
3208 {
3209 hoistable++;
9771b263 3210 occrs_to_hoist.safe_push (occr);
cad9aa15
MK
3211 bitmap_set_bit (from_bbs, dominated->index);
3212 }
bb457bd9
JL
3213 }
3214
ff7cc307 3215 /* If we found more than one hoistable occurrence of this
cad9aa15 3216 expression, then note it in the vector of expressions to
bb457bd9
JL
3217 hoist. It makes no sense to hoist things which are computed
3218 in only one BB, and doing so tends to pessimize register
3219 allocation. One could increase this value to try harder
3220 to avoid any possible code expansion due to register
3221 allocation issues; however experiments have shown that
3222 the vast majority of hoistable expressions are only movable
e0bb17a8 3223 from two successors, so raising this threshold is likely
bb457bd9 3224 to nullify any benefit we get from code hoisting. */
62a3f636 3225 if (hoistable > 1 && dbg_cnt (hoist_insn))
bb457bd9 3226 {
9771b263 3227 /* If (hoistable != vec::length), then there is
073a8998 3228 an occurrence of EXPR in BB itself. Don't waste
cad9aa15 3229 time looking for LCA in this case. */
9771b263 3230 if ((unsigned) hoistable == occrs_to_hoist.length ())
cad9aa15
MK
3231 {
3232 basic_block lca;
3233
3234 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3235 from_bbs);
3236 if (lca != bb)
073a8998 3237 /* Punt, it's better to hoist these occurrences to
cad9aa15 3238 LCA. */
9771b263 3239 occrs_to_hoist.release ();
cad9aa15 3240 }
bb457bd9 3241 }
cad9aa15 3242 else
688010ba 3243 /* Punt, no point hoisting a single occurrence. */
9771b263 3244 occrs_to_hoist.release ();
bb457bd9 3245
b11f0116 3246 if (flag_ira_hoist_pressure
9771b263 3247 && !occrs_to_hoist.is_empty ())
b11f0116 3248 {
4b8181c5
BC
3249 /* Increase register pressure of basic blocks to which
3250 expr is hoisted because of extended live range of
3251 output. */
b11f0116
BC
3252 data = BB_DATA (bb);
3253 data->max_reg_pressure[pressure_class] += nregs;
4b8181c5
BC
3254 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3255 {
06e28de2 3256 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
4b8181c5
BC
3257 data->max_reg_pressure[pressure_class] += nregs;
3258 }
b11f0116
BC
3259 }
3260 else if (flag_ira_hoist_pressure)
3261 {
4b8181c5
BC
3262 /* Restore register pressure and live_in info for basic
3263 blocks recorded in hoisted_bbs when expr will not be
3264 hoisted. */
b11f0116
BC
3265 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3266 {
06e28de2 3267 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
4b8181c5
BC
3268 bitmap_copy (data->live_in, data->backup);
3269 data->max_reg_pressure[pressure_class]
3270 = data->old_pressure;
b11f0116
BC
3271 }
3272 }
3273
3274 if (flag_ira_hoist_pressure)
3275 bitmap_clear (hoisted_bbs);
3276
cad9aa15 3277 insn_inserted_p = 0;
bb457bd9 3278
073a8998 3279 /* Walk through occurrences of I'th expressions we want
cad9aa15 3280 to hoist to BB and make the transformations. */
9771b263 3281 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
bb457bd9 3282 {
cf92a178 3283 rtx_insn *insn;
b6808818 3284 const_rtx set;
cad9aa15
MK
3285
3286 gcc_assert (!occr->deleted_p);
3287
3288 insn = occr->insn;
b6808818 3289 set = single_set_gcse (insn);
cad9aa15
MK
3290
3291 /* Create a pseudo-reg to store the result of reaching
3292 expressions into. Get the mode for the new pseudo
3293 from the mode of the original destination pseudo.
3294
3295 It is important to use new pseudos whenever we
3296 emit a set. This will allow reload to use
3297 rematerialization for such registers. */
3298 if (!insn_inserted_p)
3299 expr->reaching_reg
3300 = gen_reg_rtx_and_attrs (SET_DEST (set));
3301
43c8a043 3302 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
cad9aa15
MK
3303 insn);
3304 delete_insn (insn);
3305 occr->deleted_p = 1;
3306 changed = 1;
3307 gcse_subst_count++;
3308
3309 if (!insn_inserted_p)
bb457bd9 3310 {
cad9aa15
MK
3311 insert_insn_end_basic_block (expr, bb);
3312 insn_inserted_p = 1;
bb457bd9
JL
3313 }
3314 }
cad9aa15 3315
9771b263 3316 occrs_to_hoist.release ();
cad9aa15 3317 bitmap_clear (from_bbs);
bb457bd9
JL
3318 }
3319 }
9771b263 3320 domby.release ();
bb457bd9 3321 }
c4c81601 3322
9771b263 3323 dom_tree_walk.release ();
b11f0116
BC
3324 BITMAP_FREE (from_bbs);
3325 if (flag_ira_hoist_pressure)
3326 BITMAP_FREE (hoisted_bbs);
3327
20160347
MK
3328 free (bb_size);
3329 free (to_bb_head);
8e42ace1 3330 free (index_map);
5f39ad47
SB
3331
3332 return changed;
bb457bd9
JL
3333}
3334
b11f0116
BC
3335/* Return pressure class and number of needed hard registers (through
3336 *NREGS) of register REGNO. */
3337static enum reg_class
3338get_regno_pressure_class (int regno, int *nregs)
3339{
3340 if (regno >= FIRST_PSEUDO_REGISTER)
3341 {
3342 enum reg_class pressure_class;
3343
3344 pressure_class = reg_allocno_class (regno);
3345 pressure_class = ira_pressure_class_translate[pressure_class];
3346 *nregs
3347 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3348 return pressure_class;
3349 }
3350 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3351 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3352 {
3353 *nregs = 1;
3354 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3355 }
3356 else
3357 {
3358 *nregs = 0;
3359 return NO_REGS;
3360 }
3361}
3362
3363/* Return pressure class and number of hard registers (through *NREGS)
3364 for destination of INSN. */
3365static enum reg_class
cf92a178 3366get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
b11f0116
BC
3367{
3368 rtx reg;
3369 enum reg_class pressure_class;
b6808818 3370 const_rtx set = single_set_gcse (insn);
b11f0116 3371
b11f0116
BC
3372 reg = SET_DEST (set);
3373 if (GET_CODE (reg) == SUBREG)
3374 reg = SUBREG_REG (reg);
3375 if (MEM_P (reg))
3376 {
3377 *nregs = 0;
3378 pressure_class = NO_REGS;
3379 }
3380 else
3381 {
3382 gcc_assert (REG_P (reg));
3383 pressure_class = reg_allocno_class (REGNO (reg));
3384 pressure_class = ira_pressure_class_translate[pressure_class];
3385 *nregs
3386 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3387 }
3388 return pressure_class;
3389}
3390
3391/* Increase (if INCR_P) or decrease current register pressure for
3392 register REGNO. */
3393static void
3394change_pressure (int regno, bool incr_p)
3395{
3396 int nregs;
3397 enum reg_class pressure_class;
3398
3399 pressure_class = get_regno_pressure_class (regno, &nregs);
3400 if (! incr_p)
3401 curr_reg_pressure[pressure_class] -= nregs;
3402 else
3403 {
3404 curr_reg_pressure[pressure_class] += nregs;
3405 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3406 < curr_reg_pressure[pressure_class])
3407 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3408 = curr_reg_pressure[pressure_class];
3409 }
3410}
3411
3412/* Calculate register pressure for each basic block by walking insns
3413 from last to first. */
3414static void
3415calculate_bb_reg_pressure (void)
3416{
3417 int i;
3418 unsigned int j;
cf92a178 3419 rtx_insn *insn;
b11f0116
BC
3420 basic_block bb;
3421 bitmap curr_regs_live;
3422 bitmap_iterator bi;
3423
3424
8d49e7ef 3425 ira_setup_eliminable_regset ();
b11f0116 3426 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
11cd3bed 3427 FOR_EACH_BB_FN (bb, cfun)
b11f0116
BC
3428 {
3429 curr_bb = bb;
4b8181c5
BC
3430 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3431 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3432 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3433 bitmap_copy (curr_regs_live, df_get_live_out (bb));
b11f0116
BC
3434 for (i = 0; i < ira_pressure_classes_num; i++)
3435 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3436 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3437 change_pressure (j, true);
3438
3439 FOR_BB_INSNS_REVERSE (bb, insn)
3440 {
3441 rtx dreg;
3442 int regno;
bfac633a 3443 df_ref def, use;
b11f0116
BC
3444
3445 if (! NONDEBUG_INSN_P (insn))
3446 continue;
3447
bfac633a 3448 FOR_EACH_INSN_DEF (def, insn)
b11f0116 3449 {
bfac633a 3450 dreg = DF_REF_REAL_REG (def);
b11f0116
BC
3451 gcc_assert (REG_P (dreg));
3452 regno = REGNO (dreg);
bfac633a 3453 if (!(DF_REF_FLAGS (def)
b11f0116
BC
3454 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3455 {
3456 if (bitmap_clear_bit (curr_regs_live, regno))
3457 change_pressure (regno, false);
3458 }
3459 }
3460
bfac633a 3461 FOR_EACH_INSN_USE (use, insn)
b11f0116 3462 {
bfac633a 3463 dreg = DF_REF_REAL_REG (use);
b11f0116
BC
3464 gcc_assert (REG_P (dreg));
3465 regno = REGNO (dreg);
3466 if (bitmap_set_bit (curr_regs_live, regno))
3467 change_pressure (regno, true);
3468 }
3469 }
3470 }
3471 BITMAP_FREE (curr_regs_live);
3472
3473 if (dump_file == NULL)
3474 return;
3475
3476 fprintf (dump_file, "\nRegister Pressure: \n");
11cd3bed 3477 FOR_EACH_BB_FN (bb, cfun)
b11f0116
BC
3478 {
3479 fprintf (dump_file, " Basic block %d: \n", bb->index);
3480 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3481 {
3482 enum reg_class pressure_class;
3483
3484 pressure_class = ira_pressure_classes[i];
3485 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3486 continue;
3487
3488 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3489 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3490 }
3491 }
3492 fprintf (dump_file, "\n");
3493}
3494
bb457bd9
JL
3495/* Top level routine to perform one code hoisting (aka unification) pass
3496
cc2902df 3497 Return nonzero if a change was made. */
bb457bd9
JL
3498
3499static int
1d088dee 3500one_code_hoisting_pass (void)
bb457bd9
JL
3501{
3502 int changed = 0;
3503
5f39ad47
SB
3504 gcse_subst_count = 0;
3505 gcse_create_count = 0;
3506
3507 /* Return if there's nothing to do, or it is too expensive. */
0cae8d31 3508 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
5f39ad47
SB
3509 || is_too_expensive (_("GCSE disabled")))
3510 return 0;
3511
20160347
MK
3512 doing_code_hoisting_p = true;
3513
b11f0116
BC
3514 /* Calculate register pressure for each basic block. */
3515 if (flag_ira_hoist_pressure)
3516 {
3517 regstat_init_n_sets_and_refs ();
3518 ira_set_pseudo_classes (false, dump_file);
3519 alloc_aux_for_blocks (sizeof (struct bb_data));
3520 calculate_bb_reg_pressure ();
3521 regstat_free_n_sets_and_refs ();
3522 }
3523
5f39ad47
SB
3524 /* We need alias. */
3525 init_alias_analysis ();
3526
3527 bytes_used = 0;
3528 gcc_obstack_init (&gcse_obstack);
3529 alloc_gcse_mem ();
3530
e45425ec 3531 alloc_hash_table (&expr_hash_table);
02280659 3532 compute_hash_table (&expr_hash_table);
10d22567
ZD
3533 if (dump_file)
3534 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
c4c81601 3535
02280659 3536 if (expr_hash_table.n_elems > 0)
bb457bd9 3537 {
8b1c6fd7
DM
3538 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3539 expr_hash_table.n_elems);
bb457bd9 3540 compute_code_hoist_data ();
5f39ad47 3541 changed = hoist_code ();
bb457bd9
JL
3542 free_code_hoist_mem ();
3543 }
c4c81601 3544
b11f0116
BC
3545 if (flag_ira_hoist_pressure)
3546 {
3547 free_aux_for_blocks ();
3548 free_reg_info ();
3549 }
02280659 3550 free_hash_table (&expr_hash_table);
5f39ad47
SB
3551 free_gcse_mem ();
3552 obstack_free (&gcse_obstack, NULL);
3553
3554 /* We are finished with alias. */
3555 end_alias_analysis ();
3556
3557 if (dump_file)
3558 {
3559 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
0cae8d31
DM
3560 current_function_name (), n_basic_blocks_for_fn (cfun),
3561 bytes_used);
5f39ad47
SB
3562 fprintf (dump_file, "%d substs, %d insns created\n",
3563 gcse_subst_count, gcse_create_count);
3564 }
bb457bd9 3565
20160347
MK
3566 doing_code_hoisting_p = false;
3567
bb457bd9
JL
3568 return changed;
3569}
a13d4ebf 3570\f
43c8a043
EB
3571/* Here we provide the things required to do store motion towards the exit.
3572 In order for this to be effective, gcse also needed to be taught how to
3573 move a load when it is killed only by a store to itself.
a13d4ebf
AM
3574
3575 int i;
3576 float a[10];
3577
3578 void foo(float scale)
3579 {
3580 for (i=0; i<10; i++)
3581 a[i] *= scale;
3582 }
3583
3584 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
589005ff
KH
3585 the load out since its live around the loop, and stored at the bottom
3586 of the loop.
a13d4ebf 3587
589005ff 3588 The 'Load Motion' referred to and implemented in this file is
43c8a043 3589 an enhancement to gcse which when using edge based LCM, recognizes
a13d4ebf
AM
3590 this situation and allows gcse to move the load out of the loop.
3591
3592 Once gcse has hoisted the load, store motion can then push this
3593 load towards the exit, and we end up with no loads or stores of 'i'
3594 in the loop. */
3595
ff7cc307 3596/* This will search the ldst list for a matching expression. If it
a13d4ebf
AM
3597 doesn't find one, we create one and initialize it. */
3598
3599static struct ls_expr *
1d088dee 3600ldst_entry (rtx x)
a13d4ebf 3601{
b58b21d5 3602 int do_not_record_p = 0;
a13d4ebf 3603 struct ls_expr * ptr;
b58b21d5 3604 unsigned int hash;
4a8fb1a1 3605 ls_expr **slot;
9727e468 3606 struct ls_expr e;
a13d4ebf 3607
0516f6fe
SB
3608 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3609 NULL, /*have_reg_qty=*/false);
a13d4ebf 3610
9727e468 3611 e.pattern = x;
c203e8a7 3612 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
9727e468 3613 if (*slot)
4a8fb1a1 3614 return *slot;
b58b21d5 3615
5ed6ace5 3616 ptr = XNEW (struct ls_expr);
b58b21d5
RS
3617
3618 ptr->next = pre_ldst_mems;
3619 ptr->expr = NULL;
3620 ptr->pattern = x;
3621 ptr->pattern_regs = NULL_RTX;
3dc99c19
DM
3622 ptr->loads = NULL;
3623 ptr->stores = NULL;
b58b21d5
RS
3624 ptr->reaching_reg = NULL_RTX;
3625 ptr->invalid = 0;
3626 ptr->index = 0;
3627 ptr->hash_index = hash;
3628 pre_ldst_mems = ptr;
9727e468 3629 *slot = ptr;
589005ff 3630
a13d4ebf
AM
3631 return ptr;
3632}
3633
3634/* Free up an individual ldst entry. */
3635
589005ff 3636static void
1d088dee 3637free_ldst_entry (struct ls_expr * ptr)
a13d4ebf 3638{
aaa4ca30
AJ
3639 free_INSN_LIST_list (& ptr->loads);
3640 free_INSN_LIST_list (& ptr->stores);
a13d4ebf
AM
3641
3642 free (ptr);
3643}
3644
3645/* Free up all memory associated with the ldst list. */
3646
3647static void
43c8a043 3648free_ld_motion_mems (void)
a13d4ebf 3649{
c203e8a7
TS
3650 delete pre_ldst_table;
3651 pre_ldst_table = NULL;
9727e468 3652
589005ff 3653 while (pre_ldst_mems)
a13d4ebf
AM
3654 {
3655 struct ls_expr * tmp = pre_ldst_mems;
3656
3657 pre_ldst_mems = pre_ldst_mems->next;
3658
3659 free_ldst_entry (tmp);
3660 }
3661
3662 pre_ldst_mems = NULL;
3663}
3664
3665/* Dump debugging info about the ldst list. */
3666
3667static void
1d088dee 3668print_ldst_list (FILE * file)
a13d4ebf
AM
3669{
3670 struct ls_expr * ptr;
3671
3672 fprintf (file, "LDST list: \n");
3673
43c8a043 3674 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
a13d4ebf
AM
3675 {
3676 fprintf (file, " Pattern (%3d): ", ptr->index);
3677
3678 print_rtl (file, ptr->pattern);
3679
3680 fprintf (file, "\n Loads : ");
3681
3682 if (ptr->loads)
3683 print_rtl (file, ptr->loads);
3684 else
3685 fprintf (file, "(nil)");
3686
3687 fprintf (file, "\n Stores : ");
3688
3689 if (ptr->stores)
3690 print_rtl (file, ptr->stores);
3691 else
3692 fprintf (file, "(nil)");
3693
3694 fprintf (file, "\n\n");
3695 }
3696
3697 fprintf (file, "\n");
3698}
3699
3700/* Returns 1 if X is in the list of ldst only expressions. */
3701
3702static struct ls_expr *
1d088dee 3703find_rtx_in_ldst (rtx x)
a13d4ebf 3704{
9727e468 3705 struct ls_expr e;
4a8fb1a1 3706 ls_expr **slot;
c203e8a7 3707 if (!pre_ldst_table)
6375779a 3708 return NULL;
9727e468 3709 e.pattern = x;
c203e8a7 3710 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
4a8fb1a1 3711 if (!slot || (*slot)->invalid)
9727e468 3712 return NULL;
4a8fb1a1 3713 return *slot;
a13d4ebf 3714}
a13d4ebf
AM
3715\f
3716/* Load Motion for loads which only kill themselves. */
3717
43c8a043
EB
3718/* Return true if x, a MEM, is a simple access with no side effects.
3719 These are the types of loads we consider for the ld_motion list,
3720 otherwise we let the usual aliasing take care of it. */
a13d4ebf 3721
589005ff 3722static int
ed7a4b4b 3723simple_mem (const_rtx x)
a13d4ebf 3724{
a13d4ebf
AM
3725 if (MEM_VOLATILE_P (x))
3726 return 0;
589005ff 3727
a13d4ebf
AM
3728 if (GET_MODE (x) == BLKmode)
3729 return 0;
aaa4ca30 3730
47a3dae1 3731 /* If we are handling exceptions, we must be careful with memory references
8f4f502f 3732 that may trap. If we are not, the behavior is undefined, so we may just
47a3dae1 3733 continue. */
8f4f502f 3734 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
98d3d336
RS
3735 return 0;
3736
47a3dae1
ZD
3737 if (side_effects_p (x))
3738 return 0;
589005ff 3739
47a3dae1
ZD
3740 /* Do not consider function arguments passed on stack. */
3741 if (reg_mentioned_p (stack_pointer_rtx, x))
3742 return 0;
3743
3744 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3745 return 0;
3746
3747 return 1;
a13d4ebf
AM
3748}
3749
589005ff
KH
3750/* Make sure there isn't a buried reference in this pattern anywhere.
3751 If there is, invalidate the entry for it since we're not capable
3752 of fixing it up just yet.. We have to be sure we know about ALL
a13d4ebf
AM
3753 loads since the aliasing code will allow all entries in the
3754 ld_motion list to not-alias itself. If we miss a load, we will get
589005ff 3755 the wrong value since gcse might common it and we won't know to
a13d4ebf
AM
3756 fix it up. */
3757
3758static void
1d088dee 3759invalidate_any_buried_refs (rtx x)
a13d4ebf
AM
3760{
3761 const char * fmt;
8e42ace1 3762 int i, j;
a13d4ebf
AM
3763 struct ls_expr * ptr;
3764
3765 /* Invalidate it in the list. */
7b1b4aed 3766 if (MEM_P (x) && simple_mem (x))
a13d4ebf
AM
3767 {
3768 ptr = ldst_entry (x);
3769 ptr->invalid = 1;
3770 }
3771
3772 /* Recursively process the insn. */
3773 fmt = GET_RTX_FORMAT (GET_CODE (x));
589005ff 3774
a13d4ebf
AM
3775 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3776 {
3777 if (fmt[i] == 'e')
3778 invalidate_any_buried_refs (XEXP (x, i));
3779 else if (fmt[i] == 'E')
3780 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3781 invalidate_any_buried_refs (XVECEXP (x, i, j));
3782 }
3783}
3784
4d3eb89a
HPN
3785/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3786 being defined as MEM loads and stores to symbols, with no side effects
3787 and no registers in the expression. For a MEM destination, we also
3788 check that the insn is still valid if we replace the destination with a
3789 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3790 which don't match this criteria, they are invalidated and trimmed out
3791 later. */
a13d4ebf 3792
589005ff 3793static void
1d088dee 3794compute_ld_motion_mems (void)
a13d4ebf
AM
3795{
3796 struct ls_expr * ptr;
e0082a72 3797 basic_block bb;
cf92a178 3798 rtx_insn *insn;
589005ff 3799
a13d4ebf 3800 pre_ldst_mems = NULL;
c203e8a7 3801 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
a13d4ebf 3802
11cd3bed 3803 FOR_EACH_BB_FN (bb, cfun)
a13d4ebf 3804 {
eb232f4e 3805 FOR_BB_INSNS (bb, insn)
a13d4ebf 3806 {
b5b8b0ac 3807 if (NONDEBUG_INSN_P (insn))
a13d4ebf
AM
3808 {
3809 if (GET_CODE (PATTERN (insn)) == SET)
3810 {
3811 rtx src = SET_SRC (PATTERN (insn));
3812 rtx dest = SET_DEST (PATTERN (insn));
2df013f3
JB
3813 rtx note = find_reg_equal_equiv_note (insn);
3814 rtx src_eq;
a13d4ebf
AM
3815
3816 /* Check for a simple LOAD... */
7b1b4aed 3817 if (MEM_P (src) && simple_mem (src))
a13d4ebf
AM
3818 {
3819 ptr = ldst_entry (src);
7b1b4aed 3820 if (REG_P (dest))
a13d4ebf
AM
3821 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3822 else
3823 ptr->invalid = 1;
3824 }
3825 else
3826 {
3827 /* Make sure there isn't a buried load somewhere. */
3828 invalidate_any_buried_refs (src);
3829 }
589005ff 3830
2df013f3
JB
3831 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3832 src_eq = XEXP (note, 0);
3833 else
3834 src_eq = NULL_RTX;
3835
3836 if (src_eq != NULL_RTX
3837 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3838 invalidate_any_buried_refs (src_eq);
3839
a13d4ebf
AM
3840 /* Check for stores. Don't worry about aliased ones, they
3841 will block any movement we might do later. We only care
3842 about this exact pattern since those are the only
3843 circumstance that we will ignore the aliasing info. */
7b1b4aed 3844 if (MEM_P (dest) && simple_mem (dest))
a13d4ebf
AM
3845 {
3846 ptr = ldst_entry (dest);
589005ff 3847
7b1b4aed 3848 if (! MEM_P (src)
4d3eb89a
HPN
3849 && GET_CODE (src) != ASM_OPERANDS
3850 /* Check for REG manually since want_to_gcse_p
3851 returns 0 for all REGs. */
df35c271 3852 && can_assign_to_reg_without_clobbers_p (src))
a13d4ebf
AM
3853 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3854 else
3855 ptr->invalid = 1;
3856 }
3857 }
3858 else
3859 invalidate_any_buried_refs (PATTERN (insn));
3860 }
3861 }
3862 }
3863}
3864
589005ff 3865/* Remove any references that have been either invalidated or are not in the
a13d4ebf
AM
3866 expression list for pre gcse. */
3867
3868static void
1d088dee 3869trim_ld_motion_mems (void)
a13d4ebf 3870{
b58b21d5
RS
3871 struct ls_expr * * last = & pre_ldst_mems;
3872 struct ls_expr * ptr = pre_ldst_mems;
a13d4ebf
AM
3873
3874 while (ptr != NULL)
3875 {
11478306 3876 struct gcse_expr * expr;
589005ff 3877
a13d4ebf 3878 /* Delete if entry has been made invalid. */
b58b21d5 3879 if (! ptr->invalid)
a13d4ebf 3880 {
a13d4ebf 3881 /* Delete if we cannot find this mem in the expression list. */
b58b21d5 3882 unsigned int hash = ptr->hash_index % expr_hash_table.size;
589005ff 3883
b58b21d5
RS
3884 for (expr = expr_hash_table.table[hash];
3885 expr != NULL;
3886 expr = expr->next_same_hash)
3887 if (expr_equiv_p (expr->expr, ptr->pattern))
3888 break;
a13d4ebf
AM
3889 }
3890 else
11478306 3891 expr = (struct gcse_expr *) 0;
b58b21d5
RS
3892
3893 if (expr)
a13d4ebf
AM
3894 {
3895 /* Set the expression field if we are keeping it. */
a13d4ebf 3896 ptr->expr = expr;
b58b21d5 3897 last = & ptr->next;
a13d4ebf
AM
3898 ptr = ptr->next;
3899 }
b58b21d5
RS
3900 else
3901 {
3902 *last = ptr->next;
c203e8a7 3903 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
b58b21d5
RS
3904 free_ldst_entry (ptr);
3905 ptr = * last;
3906 }
a13d4ebf
AM
3907 }
3908
3909 /* Show the world what we've found. */
10d22567
ZD
3910 if (dump_file && pre_ldst_mems != NULL)
3911 print_ldst_list (dump_file);
a13d4ebf
AM
3912}
3913
3914/* This routine will take an expression which we are replacing with
3915 a reaching register, and update any stores that are needed if
3916 that expression is in the ld_motion list. Stores are updated by
a98ebe2e 3917 copying their SRC to the reaching register, and then storing
a13d4ebf
AM
3918 the reaching register into the store location. These keeps the
3919 correct value in the reaching register for the loads. */
3920
3921static void
11478306 3922update_ld_motion_stores (struct gcse_expr * expr)
a13d4ebf
AM
3923{
3924 struct ls_expr * mem_ptr;
3925
3926 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
3927 {
589005ff
KH
3928 /* We can try to find just the REACHED stores, but is shouldn't
3929 matter to set the reaching reg everywhere... some might be
a13d4ebf
AM
3930 dead and should be eliminated later. */
3931
4d3eb89a
HPN
3932 /* We replace (set mem expr) with (set reg expr) (set mem reg)
3933 where reg is the reaching reg used in the load. We checked in
3934 compute_ld_motion_mems that we can replace (set mem expr) with
3935 (set reg expr) in that insn. */
a13d4ebf 3936 rtx list = mem_ptr->stores;
589005ff 3937
a13d4ebf
AM
3938 for ( ; list != NULL_RTX; list = XEXP (list, 1))
3939 {
b2908ba6 3940 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
a13d4ebf
AM
3941 rtx pat = PATTERN (insn);
3942 rtx src = SET_SRC (pat);
3943 rtx reg = expr->reaching_reg;
a13d4ebf
AM
3944
3945 /* If we've already copied it, continue. */
3946 if (expr->reaching_reg == src)
3947 continue;
589005ff 3948
10d22567 3949 if (dump_file)
a13d4ebf 3950 {
10d22567 3951 fprintf (dump_file, "PRE: store updated with reaching reg ");
43c8a043 3952 print_rtl (dump_file, reg);
10d22567
ZD
3953 fprintf (dump_file, ":\n ");
3954 print_inline_rtx (dump_file, insn, 8);
3955 fprintf (dump_file, "\n");
a13d4ebf 3956 }
589005ff 3957
e67d1102 3958 rtx_insn *copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
038dc49a 3959 emit_insn_before (copy, insn);
a13d4ebf 3960 SET_SRC (pat) = reg;
6fb5fa3c 3961 df_insn_rescan (insn);
a13d4ebf
AM
3962
3963 /* un-recognize this pattern since it's probably different now. */
3964 INSN_CODE (insn) = -1;
3965 gcse_create_count++;
3966 }
3967 }
3968}
3969\f
df35c271
SB
3970/* Return true if the graph is too expensive to optimize. PASS is the
3971 optimization about to be performed. */
47a3dae1 3972
df35c271
SB
3973static bool
3974is_too_expensive (const char *pass)
3975{
3976 /* Trying to perform global optimizations on flow graphs which have
3977 a high connectivity will take a long time and is unlikely to be
3978 particularly useful.
aaa4ca30 3979
df35c271
SB
3980 In normal circumstances a cfg should have about twice as many
3981 edges as blocks. But we do not want to punish small functions
3982 which have a couple switch statements. Rather than simply
3983 threshold the number of blocks, uses something with a more
3984 graceful degradation. */
dc936fb2 3985 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
df35c271
SB
3986 {
3987 warning (OPT_Wdisabled_optimization,
3988 "%s: %d basic blocks and %d edges/basic block",
0cae8d31 3989 pass, n_basic_blocks_for_fn (cfun),
dc936fb2 3990 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
a13d4ebf 3991
df35c271
SB
3992 return true;
3993 }
a13d4ebf 3994
e45425ec 3995 /* If allocating memory for the dataflow bitmaps would take up too much
df35c271 3996 storage it's better just to disable the optimization. */
0cae8d31 3997 if ((n_basic_blocks_for_fn (cfun)
df35c271
SB
3998 * SBITMAP_SET_SIZE (max_reg_num ())
3999 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4000 {
4001 warning (OPT_Wdisabled_optimization,
4002 "%s: %d basic blocks and %d registers",
0cae8d31 4003 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
a13d4ebf 4004
df35c271
SB
4005 return true;
4006 }
adfcce61 4007
df35c271 4008 return false;
01c43039 4009}
df35c271 4010\f
df35c271
SB
4011static unsigned int
4012execute_rtl_pre (void)
4013{
f2b01cfb 4014 int changed;
df35c271 4015 delete_unreachable_blocks ();
df35c271 4016 df_analyze ();
f2b01cfb
RG
4017 changed = one_pre_gcse_pass ();
4018 flag_rerun_cse_after_global_opts |= changed;
4019 if (changed)
4020 cleanup_cfg (0);
df35c271
SB
4021 return 0;
4022}
aaa4ca30 4023
df35c271
SB
4024static unsigned int
4025execute_rtl_hoist (void)
4026{
f2b01cfb 4027 int changed;
df35c271 4028 delete_unreachable_blocks ();
df35c271 4029 df_analyze ();
f2b01cfb
RG
4030 changed = one_code_hoisting_pass ();
4031 flag_rerun_cse_after_global_opts |= changed;
4032 if (changed)
4033 cleanup_cfg (0);
df35c271
SB
4034 return 0;
4035}
ef330312 4036
27a4cd48
DM
4037namespace {
4038
4039const pass_data pass_data_rtl_pre =
ef330312 4040{
27a4cd48
DM
4041 RTL_PASS, /* type */
4042 "rtl pre", /* name */
4043 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
4044 TV_PRE, /* tv_id */
4045 PROP_cfglayout, /* properties_required */
4046 0, /* properties_provided */
4047 0, /* properties_destroyed */
4048 0, /* todo_flags_start */
3bea341f 4049 TODO_df_finish, /* todo_flags_finish */
5f39ad47 4050};
ef330312 4051
27a4cd48
DM
4052class pass_rtl_pre : public rtl_opt_pass
4053{
4054public:
c3284718
RS
4055 pass_rtl_pre (gcc::context *ctxt)
4056 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
27a4cd48
DM
4057 {}
4058
4059 /* opt_pass methods: */
1a3d085c 4060 virtual bool gate (function *);
be55bfe6 4061 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
27a4cd48
DM
4062
4063}; // class pass_rtl_pre
4064
1a3d085c
TS
4065/* We do not construct an accurate cfg in functions which call
4066 setjmp, so none of these passes runs if the function calls
4067 setjmp.
4068 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4069
4070bool
4071pass_rtl_pre::gate (function *fun)
4072{
4073 return optimize > 0 && flag_gcse
4074 && !fun->calls_setjmp
4075 && optimize_function_for_speed_p (fun)
4076 && dbg_cnt (pre);
4077}
4078
27a4cd48
DM
4079} // anon namespace
4080
4081rtl_opt_pass *
4082make_pass_rtl_pre (gcc::context *ctxt)
4083{
4084 return new pass_rtl_pre (ctxt);
4085}
4086
4087namespace {
4088
4089const pass_data pass_data_rtl_hoist =
ef330312 4090{
27a4cd48
DM
4091 RTL_PASS, /* type */
4092 "hoist", /* name */
4093 OPTGROUP_NONE, /* optinfo_flags */
27a4cd48
DM
4094 TV_HOIST, /* tv_id */
4095 PROP_cfglayout, /* properties_required */
4096 0, /* properties_provided */
4097 0, /* properties_destroyed */
4098 0, /* todo_flags_start */
3bea341f 4099 TODO_df_finish, /* todo_flags_finish */
ef330312
PB
4100};
4101
27a4cd48
DM
4102class pass_rtl_hoist : public rtl_opt_pass
4103{
4104public:
c3284718
RS
4105 pass_rtl_hoist (gcc::context *ctxt)
4106 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
27a4cd48
DM
4107 {}
4108
4109 /* opt_pass methods: */
1a3d085c 4110 virtual bool gate (function *);
be55bfe6 4111 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
27a4cd48
DM
4112
4113}; // class pass_rtl_hoist
4114
1a3d085c
TS
4115bool
4116pass_rtl_hoist::gate (function *)
4117{
4118 return optimize > 0 && flag_gcse
4119 && !cfun->calls_setjmp
4120 /* It does not make sense to run code hoisting unless we are optimizing
4121 for code size -- it rarely makes programs faster, and can make then
4122 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4123 && optimize_function_for_size_p (cfun)
4124 && dbg_cnt (hoist);
4125}
4126
27a4cd48
DM
4127} // anon namespace
4128
4129rtl_opt_pass *
4130make_pass_rtl_hoist (gcc::context *ctxt)
4131{
4132 return new pass_rtl_hoist (ctxt);
4133}
4134
3edf64aa
DM
4135/* Reset all state within gcse.c so that we can rerun the compiler
4136 within the same process. For use by toplev::finalize. */
4137
4138void
4139gcse_c_finalize (void)
4140{
4141 test_insn = NULL;
4142}
4143
e2500fed 4144#include "gt-gcse.h"