]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/gcse.c
Eliminate FOR_EACH_BB macro.
[thirdparty/gcc.git] / gcc / gcse.c
CommitLineData
07abdb66 1/* Partial redundancy elimination / Hoisting for RTL.
711789cc 2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
18aa2adf 3
f12b58b3 4This file is part of GCC.
18aa2adf 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
18aa2adf 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
18aa2adf 15
16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
18aa2adf 19
20/* TODO
21 - reordering of memory allocation and freeing to be more space efficient
1ec78e16 22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
18aa2adf 24*/
25
26/* References searched while implementing this.
18aa2adf 27
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
31
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
35
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
39
18aa2adf 40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
43
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
48
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
53
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
58
18aa2adf 59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
62
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
68
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
73
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
77
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
81
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
85
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
89
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
93
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
97
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
101
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
105
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
109
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
113
ef0d57a0 114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
117
7bcd381b 118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
121
ef0d57a0 122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
126
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
130
18aa2adf 131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
133*/
134
135#include "config.h"
ebd9163c 136#include "system.h"
805e22b2 137#include "coretypes.h"
138#include "tm.h"
0b205f4c 139#include "diagnostic-core.h"
d3b64f2d 140#include "toplev.h"
18aa2adf 141
1ec78e16 142#include "hard-reg-set.h"
18aa2adf 143#include "rtl.h"
95b49b1d 144#include "tree.h"
7953c610 145#include "tm_p.h"
18aa2adf 146#include "regs.h"
1ec78e16 147#include "ira.h"
18aa2adf 148#include "flags.h"
18aa2adf 149#include "insn-config.h"
150#include "recog.h"
151#include "basic-block.h"
0a893c29 152#include "function.h"
3cfec666 153#include "expr.h"
a17466fa 154#include "except.h"
06e2144a 155#include "ggc.h"
9159979b 156#include "params.h"
09a762be 157#include "cselib.h"
c8a8ab0f 158#include "intl.h"
18aa2adf 159#include "obstack.h"
77fce4cd 160#include "tree-pass.h"
d9dd21a8 161#include "hash-table.h"
3072d30e 162#include "df.h"
163#include "dbgcnt.h"
2b86a75a 164#include "target.h"
049d15fc 165#include "gcse.h"
4059f3f0 166
ef0d57a0 167/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
05476866 168 are a superset of those done by classic GCSE.
18aa2adf 169
07abdb66 170 Two passes of copy/constant propagation are done around PRE or hoisting
171 because the first one enables more GCSE and the second one helps to clean
172 up the copies that PRE and HOIST create. This is needed more for PRE than
173 for HOIST because code hoisting will try to use an existing register
174 containing the common subexpression rather than create a new one. This is
175 harder to do for PRE because of the code motion (which HOIST doesn't do).
18aa2adf 176
177 Expressions we are interested in GCSE-ing are of the form
178 (set (pseudo-reg) (expression)).
179 Function want_to_gcse_p says what these are.
180
05476866 181 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
d45a307d 182 This allows PRE to hoist expressions that are expressed in multiple insns,
05476866 183 such as complex address calculations (e.g. for PIC code, or loads with a
184 high part and a low part).
d45a307d 185
18aa2adf 186 PRE handles moving invariant expressions out of loops (by treating them as
ef0d57a0 187 partially redundant).
18aa2adf 188
18aa2adf 189 **********************
190
191 We used to support multiple passes but there are diminishing returns in
192 doing so. The first pass usually makes 90% of the changes that are doable.
193 A second pass can make a few more changes made possible by the first pass.
194 Experiments show any further passes don't make enough changes to justify
195 the expense.
196
197 A study of spec92 using an unlimited number of passes:
198 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
199 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
200 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
201
202 It was found doing copy propagation between each pass enables further
203 substitutions.
204
d45a307d 205 This study was done before expressions in REG_EQUAL notes were added as
206 candidate expressions for optimization, and before the GIMPLE optimizers
207 were added. Probably, multiple passes is even less efficient now than
208 at the time when the study was conducted.
209
18aa2adf 210 PRE is quite expensive in complicated functions because the DFA can take
d45a307d 211 a while to converge. Hence we only perform one pass.
18aa2adf 212
213 **********************
214
215 The steps for PRE are:
216
217 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
218
219 2) Perform the data flow analysis for PRE.
220
221 3) Delete the redundant instructions
222
223 4) Insert the required copies [if any] that make the partially
224 redundant instructions fully redundant.
225
226 5) For other reaching expressions, insert an instruction to copy the value
227 to a newly created pseudo that will reach the redundant instruction.
228
229 The deletion is done first so that when we do insertions we
230 know which pseudo reg to use.
231
232 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
233 argue it is not. The number of iterations for the algorithm to converge
234 is typically 2-4 so I don't view it as that expensive (relatively speaking).
235
05476866 236 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
18aa2adf 237 we create. To make an expression reach the place where it's redundant,
238 the result of the expression is copied to a new register, and the redundant
239 expression is deleted by replacing it with this new register. Classic GCSE
240 doesn't have this problem as much as it computes the reaching defs of
04a40f24 241 each register in each block and thus can try to use an existing
242 register. */
18aa2adf 243\f
244/* GCSE global vars. */
245
049d15fc 246struct target_gcse default_target_gcse;
247#if SWITCHABLE_TARGET
248struct target_gcse *this_target_gcse = &default_target_gcse;
249#endif
250
d743aba2 251/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
252int flag_rerun_cse_after_global_opts;
ef0d57a0 253
18aa2adf 254/* An obstack for our working variables. */
255static struct obstack gcse_obstack;
256
18aa2adf 257/* Hash table of expressions. */
258
259struct expr
260{
bc8197c0 261 /* The expression. */
18aa2adf 262 rtx expr;
263 /* Index in the available expression bitmaps. */
264 int bitmap_index;
265 /* Next entry with the same hash. */
266 struct expr *next_same_hash;
267 /* List of anticipatable occurrences in basic blocks in the function.
268 An "anticipatable occurrence" is one that is the first occurrence in the
ef0d57a0 269 basic block, the operands are not modified in the basic block prior
270 to the occurrence and the output is not used between the start of
271 the block and the occurrence. */
18aa2adf 272 struct occr *antic_occr;
273 /* List of available occurrence in basic blocks in the function.
274 An "available occurrence" is one that is the last occurrence in the
275 basic block and the operands are not modified by following statements in
276 the basic block [including this insn]. */
277 struct occr *avail_occr;
278 /* Non-null if the computation is PRE redundant.
279 The value is the newly created pseudo-reg to record a copy of the
280 expression in all the places that reach the redundant copy. */
281 rtx reaching_reg;
8b38b150 282 /* Maximum distance in instructions this expression can travel.
283 We avoid moving simple expressions for more than a few instructions
284 to keep register pressure under control.
285 A value of "0" removes restrictions on how far the expression can
286 travel. */
287 int max_distance;
18aa2adf 288};
289
290/* Occurrence of an expression.
291 There is one per basic block. If a pattern appears more than once the
292 last appearance is used [or first for anticipatable expressions]. */
293
294struct occr
295{
296 /* Next occurrence of this expression. */
297 struct occr *next;
298 /* The insn that computes the expression. */
299 rtx insn;
6ef828f9 300 /* Nonzero if this [anticipatable] occurrence has been deleted. */
18aa2adf 301 char deleted_p;
6ef828f9 302 /* Nonzero if this [available] occurrence has been copied to
18aa2adf 303 reaching_reg. */
304 /* ??? This is mutually exclusive with deleted_p, so they could share
305 the same byte. */
306 char copied_p;
307};
308
c0939130 309typedef struct occr *occr_t;
c0939130 310
07abdb66 311/* Expression hash tables.
18aa2adf 312 Each hash table is an array of buckets.
313 ??? It is known that if it were an array of entries, structure elements
314 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
315 not clear whether in the final analysis a sufficient amount of memory would
316 be saved as the size of the available expression bitmaps would be larger
317 [one could build a mapping table without holes afterwards though].
2c084240 318 Someday I'll perform the computation and figure it out. */
18aa2adf 319
26dbec0a 320struct hash_table_d
27cfe3f1 321{
322 /* The table itself.
323 This is an array of `expr_hash_table_size' elements. */
324 struct expr **table;
325
326 /* Size of the hash table, in elements. */
327 unsigned int size;
a08b57af 328
27cfe3f1 329 /* Number of hash table elements. */
330 unsigned int n_elems;
27cfe3f1 331};
2c084240 332
27cfe3f1 333/* Expression hash table. */
26dbec0a 334static struct hash_table_d expr_hash_table;
27cfe3f1 335
8e802be9 336/* This is a list of expressions which are MEMs and will be used by load
3cfec666 337 or store motion.
bc8197c0 338 Load motion tracks MEMs which aren't killed by anything except itself,
339 i.e. loads and stores to a single location.
3cfec666 340 We can then allow movement of these MEM refs with a little special
8e802be9 341 allowance. (all stores copy the same value to the reaching reg used
342 for the loads). This means all values used to store into memory must have
bc8197c0 343 no side effects so we can re-issue the setter value. */
8e802be9 344
345struct ls_expr
346{
347 struct expr * expr; /* Gcse expression reference for LM. */
348 rtx pattern; /* Pattern of this mem. */
64928ee5 349 rtx pattern_regs; /* List of registers mentioned by the mem. */
7a676a9f 350 rtx loads; /* INSN list of loads seen. */
351 rtx stores; /* INSN list of stores seen. */
8e802be9 352 struct ls_expr * next; /* Next in the list. */
353 int invalid; /* Invalid for some reason. */
354 int index; /* If it maps to a bitmap index. */
69333952 355 unsigned int hash_index; /* Index when in a hash table. */
8e802be9 356 rtx reaching_reg; /* Register to use when re-writing. */
357};
358
359/* Head of the list of load/store memory refs. */
360static struct ls_expr * pre_ldst_mems = NULL;
361
d9dd21a8 362struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
363{
364 typedef ls_expr value_type;
365 typedef value_type compare_type;
366 static inline hashval_t hash (const value_type *);
367 static inline bool equal (const value_type *, const compare_type *);
368};
369
370/* Hashtable helpers. */
371inline hashval_t
372pre_ldst_expr_hasher::hash (const value_type *x)
373{
374 int do_not_record_p = 0;
375 return
376 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
377}
378
379static int expr_equiv_p (const_rtx, const_rtx);
380
381inline bool
382pre_ldst_expr_hasher::equal (const value_type *ptr1,
383 const compare_type *ptr2)
384{
385 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
386}
387
0d707271 388/* Hashtable for the load/store memory refs. */
d9dd21a8 389static hash_table <pre_ldst_expr_hasher> pre_ldst_table;
0d707271 390
18aa2adf 391/* Bitmap containing one bit for each register in the program.
392 Used when performing GCSE to track which registers have been set since
393 the start of the basic block. */
7fb47f9f 394static regset reg_set_bitmap;
18aa2adf 395
8e802be9 396/* Array, indexed by basic block number for a list of insns which modify
397 memory within that block. */
f1f41a6c 398static vec<rtx> *modify_mem_list;
78d140c9 399static bitmap modify_mem_list_set;
8e802be9 400
57c8e46c 401typedef struct modify_pair_s
402{
403 rtx dest; /* A MEM. */
404 rtx dest_addr; /* The canonical address of `dest'. */
405} modify_pair;
406
57c8e46c 407
408/* This array parallels modify_mem_list, except that it stores MEMs
409 being set and their canonicalized memory addresses. */
f1f41a6c 410static vec<modify_pair> *canon_modify_mem_list;
78d140c9 411
f55d2721 412/* Bitmap indexed by block numbers to record which blocks contain
413 function calls. */
414static bitmap blocks_with_calls;
415
18aa2adf 416/* Various variables for statistics gathering. */
417
418/* Memory used in a pass.
419 This isn't intended to be absolutely precise. Its intent is only
420 to keep an eye on memory usage. */
421static int bytes_used;
2c084240 422
18aa2adf 423/* GCSE substitutions made. */
424static int gcse_subst_count;
425/* Number of copy instructions created. */
426static int gcse_create_count;
18aa2adf 427\f
8b38b150 428/* Doing code hoisting. */
429static bool doing_code_hoisting_p = false;
430\f
0ca684f3 431/* For available exprs */
4b673aa1 432static sbitmap *ae_kill;
18aa2adf 433\f
1ec78e16 434/* Data stored for each basic block. */
435struct bb_data
436{
437 /* Maximal register pressure inside basic block for given register class
438 (defined only for the pressure classes). */
439 int max_reg_pressure[N_REG_CLASSES];
ded17066 440 /* Recorded register pressure of basic block before trying to hoist
441 an expression. Will be used to restore the register pressure
442 if the expression should not be hoisted. */
443 int old_pressure;
444 /* Recorded register live_in info of basic block during code hoisting
445 process. BACKUP is used to record live_in info before trying to
446 hoist an expression, and will be used to restore LIVE_IN if the
447 expression should not be hoisted. */
448 bitmap live_in, backup;
1ec78e16 449};
450
451#define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
452
453static basic_block curr_bb;
454
455/* Current register pressure for each pressure class. */
456static int curr_reg_pressure[N_REG_CLASSES];
457\f
458
952f0048 459static void compute_can_copy (void);
2f800191 460static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
461static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
f0af5a88 462static void *gcse_alloc (unsigned long);
defc8016 463static void alloc_gcse_mem (void);
952f0048 464static void free_gcse_mem (void);
26dbec0a 465static void hash_scan_insn (rtx, struct hash_table_d *);
466static void hash_scan_set (rtx, rtx, struct hash_table_d *);
467static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
468static void hash_scan_call (rtx, rtx, struct hash_table_d *);
8b38b150 469static int want_to_gcse_p (rtx, int *);
7ecb5bb2 470static int oprs_unchanged_p (const_rtx, const_rtx, int);
471static int oprs_anticipatable_p (const_rtx, const_rtx);
472static int oprs_available_p (const_rtx, const_rtx);
8b38b150 473static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
26dbec0a 474 struct hash_table_d *);
7ecb5bb2 475static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
952f0048 476static void record_last_reg_set_info (rtx, int);
477static void record_last_mem_set_info (rtx);
81a410b1 478static void record_last_set_info (rtx, const_rtx, void *);
26dbec0a 479static void compute_hash_table (struct hash_table_d *);
07abdb66 480static void alloc_hash_table (struct hash_table_d *);
26dbec0a 481static void free_hash_table (struct hash_table_d *);
482static void compute_hash_table_work (struct hash_table_d *);
483static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
07abdb66 484static void compute_transp (const_rtx, int, sbitmap *);
952f0048 485static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
26dbec0a 486 struct hash_table_d *);
81a410b1 487static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
7ecb5bb2 488static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
81a410b1 489static void canon_list_insert (rtx, const_rtx, void *);
952f0048 490static void alloc_pre_mem (int, int);
491static void free_pre_mem (void);
bc8197c0 492static struct edge_list *compute_pre_data (void);
952f0048 493static int pre_expr_reaches_here_p (basic_block, struct expr *,
494 basic_block);
36f52b0d 495static void insert_insn_end_basic_block (struct expr *, basic_block);
952f0048 496static void pre_insert_copy_insn (struct expr *, rtx);
497static void pre_insert_copies (void);
498static int pre_delete (void);
bc8197c0 499static int pre_gcse (struct edge_list *);
d743aba2 500static int one_pre_gcse_pass (void);
952f0048 501static void add_label_notes (rtx, rtx);
502static void alloc_code_hoist_mem (int, int);
503static void free_code_hoist_mem (void);
504static void compute_code_hoist_vbeinout (void);
505static void compute_code_hoist_data (void);
1ec78e16 506static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
507 sbitmap, int, int *, enum reg_class,
ded17066 508 int *, bitmap, rtx);
d743aba2 509static int hoist_code (void);
ded17066 510static enum reg_class get_regno_pressure_class (int regno, int *nregs);
1ec78e16 511static enum reg_class get_pressure_class_and_nregs (rtx insn, int *nregs);
952f0048 512static int one_code_hoisting_pass (void);
952f0048 513static rtx process_insert_insn (struct expr *);
514static int pre_edge_insert (struct edge_list *, struct expr **);
952f0048 515static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
516 basic_block, char *);
517static struct ls_expr * ldst_entry (rtx);
518static void free_ldst_entry (struct ls_expr *);
bc8197c0 519static void free_ld_motion_mems (void);
952f0048 520static void print_ldst_list (FILE *);
521static struct ls_expr * find_rtx_in_ldst (rtx);
7ecb5bb2 522static int simple_mem (const_rtx);
952f0048 523static void invalidate_any_buried_refs (rtx);
524static void compute_ld_motion_mems (void);
525static void trim_ld_motion_mems (void);
526static void update_ld_motion_stores (struct expr *);
952f0048 527static void clear_modify_mem_tables (void);
528static void free_modify_mem_tables (void);
529static rtx gcse_emit_move_after (rtx, rtx, rtx);
c8a8ab0f 530static bool is_too_expensive (const char *);
2457c754 531
532#define GNEW(T) ((T *) gmalloc (sizeof (T)))
533#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
534
535#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
536#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
2457c754 537
538#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
539#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
2457c754 540
541#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
542#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
18aa2adf 543\f
18aa2adf 544/* Misc. utilities. */
545
049d15fc 546#define can_copy \
547 (this_target_gcse->x_can_copy)
548#define can_copy_init_p \
549 (this_target_gcse->x_can_copy_init_p)
3d055936 550
18aa2adf 551/* Compute which modes support reg/reg copy operations. */
552
553static void
952f0048 554compute_can_copy (void)
18aa2adf 555{
556 int i;
ebd9163c 557#ifndef AVOID_CCMODE_COPIES
387732c1 558 rtx reg, insn;
ebd9163c 559#endif
3d055936 560 memset (can_copy, 0, NUM_MACHINE_MODES);
18aa2adf 561
562 start_sequence ();
563 for (i = 0; i < NUM_MACHINE_MODES; i++)
2c084240 564 if (GET_MODE_CLASS (i) == MODE_CC)
565 {
18aa2adf 566#ifdef AVOID_CCMODE_COPIES
3d055936 567 can_copy[i] = 0;
18aa2adf 568#else
2c084240 569 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
570 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
4679ade3 571 if (recog (PATTERN (insn), insn, NULL) >= 0)
3d055936 572 can_copy[i] = 1;
18aa2adf 573#endif
2c084240 574 }
72f3466e 575 else
3d055936 576 can_copy[i] = 1;
2c084240 577
18aa2adf 578 end_sequence ();
18aa2adf 579}
3d055936 580
581/* Returns whether the mode supports reg/reg copy operations. */
582
583bool
952f0048 584can_copy_p (enum machine_mode mode)
3d055936 585{
3d055936 586 if (! can_copy_init_p)
587 {
588 compute_can_copy ();
589 can_copy_init_p = true;
590 }
591
592 return can_copy[mode] != 0;
593}
18aa2adf 594\f
595/* Cover function to xmalloc to record bytes allocated. */
596
f0af5a88 597static void *
a41493eb 598gmalloc (size_t size)
18aa2adf 599{
600 bytes_used += size;
601 return xmalloc (size);
602}
603
2f800191 604/* Cover function to xcalloc to record bytes allocated. */
605
606static void *
607gcalloc (size_t nelem, size_t elsize)
608{
609 bytes_used += nelem * elsize;
610 return xcalloc (nelem, elsize);
611}
612
7cdd3716 613/* Cover function to obstack_alloc. */
18aa2adf 614
f0af5a88 615static void *
952f0048 616gcse_alloc (unsigned long size)
18aa2adf 617{
7cdd3716 618 bytes_used += size;
f0af5a88 619 return obstack_alloc (&gcse_obstack, size);
18aa2adf 620}
621
2e81afe5 622/* Allocate memory for the reg/memory set tracking tables.
18aa2adf 623 This is called at the start of each pass. */
624
625static void
defc8016 626alloc_gcse_mem (void)
18aa2adf 627{
18aa2adf 628 /* Allocate vars to track sets of regs. */
0f71a633 629 reg_set_bitmap = ALLOC_REG_SET (NULL);
18aa2adf 630
8e802be9 631 /* Allocate array to keep a list of insns which modify memory in each
f1f41a6c 632 basic block. The two typedefs are needed to work around the
633 pre-processor limitation with template types in macro arguments. */
634 typedef vec<rtx> vec_rtx_heap;
635 typedef vec<modify_pair> vec_modify_pair_heap;
fe672ac0 636 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
637 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
638 last_basic_block_for_fn (cfun));
27335ffd 639 modify_mem_list_set = BITMAP_ALLOC (NULL);
640 blocks_with_calls = BITMAP_ALLOC (NULL);
18aa2adf 641}
642
643/* Free memory allocated by alloc_gcse_mem. */
644
645static void
952f0048 646free_gcse_mem (void)
18aa2adf 647{
98076867 648 FREE_REG_SET (reg_set_bitmap);
649
7fb47f9f 650 free_modify_mem_tables ();
27335ffd 651 BITMAP_FREE (modify_mem_list_set);
652 BITMAP_FREE (blocks_with_calls);
18aa2adf 653}
c7a3eccf 654\f
655/* Compute the local properties of each recorded expression.
2c084240 656
657 Local properties are those that are defined by the block, irrespective of
658 other blocks.
c7a3eccf 659
660 An expression is transparent in a block if its operands are not modified
661 in the block.
662
663 An expression is computed (locally available) in a block if it is computed
664 at least once and expression would contain the same value if the
665 computation was moved to the end of the block.
666
667 An expression is locally anticipatable in a block if it is computed at
668 least once and expression would contain the same value if the computation
669 was moved to the beginning of the block.
670
07abdb66 671 We call this routine for pre and code hoisting. They all compute
2c084240 672 basically the same information and thus can easily share this code.
18aa2adf 673
2c084240 674 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
675 properties. If NULL, then it is not necessary to compute or record that
676 particular property.
c7a3eccf 677
07abdb66 678 TABLE controls which hash table to look at. */
3cfec666 679
c7a3eccf 680static void
b9f02dbb 681compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
26dbec0a 682 struct hash_table_d *table)
c7a3eccf 683{
27cfe3f1 684 unsigned int i;
3cfec666 685
c7a3eccf 686 /* Initialize any bitmaps that were passed in. */
687 if (transp)
3d5c627e 688 {
fe672ac0 689 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
3d5c627e 690 }
2c084240 691
c7a3eccf 692 if (comp)
fe672ac0 693 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
c7a3eccf 694 if (antloc)
fe672ac0 695 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
c7a3eccf 696
27cfe3f1 697 for (i = 0; i < table->size; i++)
18aa2adf 698 {
c7a3eccf 699 struct expr *expr;
700
27cfe3f1 701 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
c7a3eccf 702 {
c7a3eccf 703 int indx = expr->bitmap_index;
2c084240 704 struct occr *occr;
c7a3eccf 705
706 /* The expression is transparent in this block if it is not killed.
707 We start by assuming all are transparent [none are killed], and
708 then reset the bits for those that are. */
c7a3eccf 709 if (transp)
07abdb66 710 compute_transp (expr->expr, indx, transp);
c7a3eccf 711
712 /* The occurrences recorded in antic_occr are exactly those that
6ef828f9 713 we want to set to nonzero in ANTLOC. */
c7a3eccf 714 if (antloc)
2c084240 715 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
716 {
08b7917c 717 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
c7a3eccf 718
2c084240 719 /* While we're scanning the table, this is a good place to
720 initialize this. */
721 occr->deleted_p = 0;
722 }
c7a3eccf 723
724 /* The occurrences recorded in avail_occr are exactly those that
6ef828f9 725 we want to set to nonzero in COMP. */
c7a3eccf 726 if (comp)
2c084240 727 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
728 {
08b7917c 729 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
c7a3eccf 730
2c084240 731 /* While we're scanning the table, this is a good place to
732 initialize this. */
733 occr->copied_p = 0;
734 }
c7a3eccf 735
736 /* While we're scanning the table, this is a good place to
737 initialize this. */
738 expr->reaching_reg = 0;
739 }
18aa2adf 740 }
18aa2adf 741}
742\f
18aa2adf 743/* Hash table support. */
744
eac13465 745struct reg_avail_info
746{
4c26117a 747 basic_block last_bb;
eac13465 748 int first_set;
749 int last_set;
750};
751
752static struct reg_avail_info *reg_avail_info;
4c26117a 753static basic_block current_bb;
18aa2adf 754
06e2144a 755/* See whether X, the source of a set, is something we want to consider for
756 GCSE. */
18aa2adf 757
758static int
8b38b150 759want_to_gcse_p (rtx x, int *max_distance_ptr)
18aa2adf 760{
e207fd7a 761#ifdef STACK_REGS
762 /* On register stack architectures, don't GCSE constants from the
763 constant pool, as the benefits are often swamped by the overhead
764 of shuffling the register stack between basic blocks. */
765 if (IS_STACK_MODE (GET_MODE (x)))
766 x = avoid_constant_pool_reference (x);
767#endif
768
8b38b150 769 /* GCSE'ing constants:
770
771 We do not specifically distinguish between constant and non-constant
7013e87c 772 expressions in PRE and Hoist. We use set_src_cost below to limit
8b38b150 773 the maximum distance simple expressions can travel.
774
775 Nevertheless, constants are much easier to GCSE, and, hence,
776 it is easy to overdo the optimizations. Usually, excessive PRE and
777 Hoisting of constant leads to increased register pressure.
778
779 RA can deal with this by rematerialing some of the constants.
780 Therefore, it is important that the back-end generates sets of constants
781 in a way that allows reload rematerialize them under high register
782 pressure, i.e., a pseudo register with REG_EQUAL to constant
783 is set only once. Failing to do so will result in IRA/reload
784 spilling such constants under high register pressure instead of
785 rematerializing them. */
786
2c084240 787 switch (GET_CODE (x))
18aa2adf 788 {
789 case REG:
790 case SUBREG:
8b38b150 791 case CALL:
792 return 0;
793
0349edce 794 CASE_CONST_ANY:
8b38b150 795 if (!doing_code_hoisting_p)
796 /* Do not PRE constants. */
797 return 0;
798
799 /* FALLTHRU */
18aa2adf 800
801 default:
8b38b150 802 if (doing_code_hoisting_p)
803 /* PRE doesn't implement max_distance restriction. */
804 {
805 int cost;
806 int max_distance;
807
808 gcc_assert (!optimize_function_for_speed_p (cfun)
809 && optimize_function_for_size_p (cfun));
7013e87c 810 cost = set_src_cost (x, 0);
8b38b150 811
812 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
813 {
814 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
815 if (max_distance == 0)
816 return 0;
817
818 gcc_assert (max_distance > 0);
819 }
820 else
821 max_distance = 0;
822
823 if (max_distance_ptr)
824 *max_distance_ptr = max_distance;
825 }
826
4b673aa1 827 return can_assign_to_reg_without_clobbers_p (x);
18aa2adf 828 }
69dbb666 829}
830
4b673aa1 831/* Used internally by can_assign_to_reg_without_clobbers_p. */
69dbb666 832
833static GTY(()) rtx test_insn;
834
4b673aa1 835/* Return true if we can assign X to a pseudo register such that the
836 resulting insn does not result in clobbering a hard register as a
837 side-effect.
2b86a75a 838
839 Additionally, if the target requires it, check that the resulting insn
840 can be copied. If it cannot, this means that X is special and probably
841 has hidden side-effects we don't want to mess with.
842
4b673aa1 843 This function is typically used by code motion passes, to verify
844 that it is safe to insert an insn without worrying about clobbering
845 maybe live hard regs. */
69dbb666 846
4b673aa1 847bool
848can_assign_to_reg_without_clobbers_p (rtx x)
69dbb666 849{
850 int num_clobbers = 0;
851 int icode;
18aa2adf 852
06e2144a 853 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
854 if (general_operand (x, GET_MODE (x)))
855 return 1;
856 else if (GET_MODE (x) == VOIDmode)
857 return 0;
858
859 /* Otherwise, check if we can make a valid insn from it. First initialize
860 our test insn if we haven't already. */
861 if (test_insn == 0)
862 {
863 test_insn
864 = make_insn_raw (gen_rtx_SET (VOIDmode,
865 gen_rtx_REG (word_mode,
866 FIRST_PSEUDO_REGISTER * 2),
867 const0_rtx));
868 NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
06e2144a 869 }
870
871 /* Now make an insn like the one we would make when GCSE'ing and see if
872 valid. */
873 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
874 SET_SRC (PATTERN (test_insn)) = x;
48e1416a 875
2b86a75a 876 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
877 if (icode < 0)
878 return false;
48e1416a 879
2b86a75a 880 if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
881 return false;
48e1416a 882
2b86a75a 883 if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
884 return false;
48e1416a 885
2b86a75a 886 return true;
18aa2adf 887}
888
6ef828f9 889/* Return nonzero if the operands of expression X are unchanged from the
18aa2adf 890 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
891 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
892
893static int
7ecb5bb2 894oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
18aa2adf 895{
2c084240 896 int i, j;
18aa2adf 897 enum rtx_code code;
d2ca078f 898 const char *fmt;
18aa2adf 899
18aa2adf 900 if (x == 0)
901 return 1;
902
903 code = GET_CODE (x);
904 switch (code)
905 {
906 case REG:
eac13465 907 {
908 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
909
910 if (info->last_bb != current_bb)
911 return 1;
3cfec666 912 if (avail_p)
2e81afe5 913 return info->last_set < DF_INSN_LUID (insn);
eac13465 914 else
2e81afe5 915 return info->first_set >= DF_INSN_LUID (insn);
eac13465 916 }
18aa2adf 917
918 case MEM:
37495d69 919 if (! flag_gcse_lm
920 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
921 x, avail_p))
8e802be9 922 return 0;
18aa2adf 923 else
2c084240 924 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
18aa2adf 925
926 case PRE_DEC:
927 case PRE_INC:
928 case POST_DEC:
929 case POST_INC:
40988080 930 case PRE_MODIFY:
931 case POST_MODIFY:
18aa2adf 932 return 0;
933
934 case PC:
935 case CC0: /*FIXME*/
936 case CONST:
0349edce 937 CASE_CONST_ANY:
18aa2adf 938 case SYMBOL_REF:
939 case LABEL_REF:
940 case ADDR_VEC:
941 case ADDR_DIFF_VEC:
942 return 1;
943
944 default:
945 break;
946 }
947
2c084240 948 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
18aa2adf 949 {
950 if (fmt[i] == 'e')
951 {
2c084240 952 /* If we are about to do the last recursive call needed at this
953 level, change it into iteration. This function is called enough
954 to be worth it. */
18aa2adf 955 if (i == 0)
2c084240 956 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
957
958 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
18aa2adf 959 return 0;
960 }
961 else if (fmt[i] == 'E')
2c084240 962 for (j = 0; j < XVECLEN (x, i); j++)
963 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
964 return 0;
18aa2adf 965 }
966
967 return 1;
968}
969
bc8197c0 970/* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
8e802be9 971
bc8197c0 972struct mem_conflict_info
973{
974 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
975 see if a memory store conflicts with this memory load. */
976 const_rtx mem;
8e802be9 977
bc8197c0 978 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
979 references. */
980 bool conflict;
981};
982
983/* DEST is the output of an instruction. If it is a memory reference and
984 possibly conflicts with the load found in DATA, then communicate this
985 information back through DATA. */
8e802be9 986
987static void
81a410b1 988mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
bc8197c0 989 void *data)
8e802be9 990{
bc8197c0 991 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
992
8e802be9 993 while (GET_CODE (dest) == SUBREG
994 || GET_CODE (dest) == ZERO_EXTRACT
8e802be9 995 || GET_CODE (dest) == STRICT_LOW_PART)
996 dest = XEXP (dest, 0);
997
998 /* If DEST is not a MEM, then it will not conflict with the load. Note
999 that function calls are assumed to clobber memory, but are handled
1000 elsewhere. */
b9f02dbb 1001 if (! MEM_P (dest))
8e802be9 1002 return;
7a676a9f 1003
8e802be9 1004 /* If we are setting a MEM in our list of specially recognized MEMs,
3cfec666 1005 don't mark as killed this time. */
bc8197c0 1006 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
8e802be9 1007 {
1008 if (!find_rtx_in_ldst (dest))
bc8197c0 1009 mci->conflict = true;
8e802be9 1010 return;
1011 }
7a676a9f 1012
376a287d 1013 if (true_dependence (dest, GET_MODE (dest), mci->mem))
bc8197c0 1014 mci->conflict = true;
8e802be9 1015}
1016
1017/* Return nonzero if the expression in X (a memory reference) is killed
2e81afe5 1018 in block BB before or after the insn with the LUID in UID_LIMIT.
8e802be9 1019 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1020 before UID_LIMIT.
1021
1022 To check the entire block, set UID_LIMIT to max_uid + 1 and
1023 AVAIL_P to 0. */
1024
1025static int
bc8197c0 1026load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1027 int avail_p)
8e802be9 1028{
f1f41a6c 1029 vec<rtx> list = modify_mem_list[bb->index];
577cca34 1030 rtx setter;
1031 unsigned ix;
a2658f4a 1032
1033 /* If this is a readonly then we aren't going to be changing it. */
1034 if (MEM_READONLY_P (x))
1035 return 0;
1036
f1f41a6c 1037 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
8e802be9 1038 {
bc8197c0 1039 struct mem_conflict_info mci;
1040
8e802be9 1041 /* Ignore entries in the list that do not apply. */
1042 if ((avail_p
577cca34 1043 && DF_INSN_LUID (setter) < uid_limit)
8e802be9 1044 || (! avail_p
577cca34 1045 && DF_INSN_LUID (setter) > uid_limit))
1046 continue;
8e802be9 1047
1048 /* If SETTER is a call everything is clobbered. Note that calls
1049 to pure functions are never put on the list, so we need not
1050 worry about them. */
b9f02dbb 1051 if (CALL_P (setter))
8e802be9 1052 return 1;
1053
1054 /* SETTER must be an INSN of some kind that sets memory. Call
bc8197c0 1055 note_stores to examine each hunk of memory that is modified. */
1056 mci.mem = x;
1057 mci.conflict = false;
1058 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1059 if (mci.conflict)
8e802be9 1060 return 1;
8e802be9 1061 }
1062 return 0;
1063}
1064
6ef828f9 1065/* Return nonzero if the operands of expression X are unchanged from
18aa2adf 1066 the start of INSN's basic block up to but not including INSN. */
1067
1068static int
7ecb5bb2 1069oprs_anticipatable_p (const_rtx x, const_rtx insn)
18aa2adf 1070{
1071 return oprs_unchanged_p (x, insn, 0);
1072}
1073
6ef828f9 1074/* Return nonzero if the operands of expression X are unchanged from
18aa2adf 1075 INSN to the end of INSN's basic block. */
1076
1077static int
7ecb5bb2 1078oprs_available_p (const_rtx x, const_rtx insn)
18aa2adf 1079{
1080 return oprs_unchanged_p (x, insn, 1);
1081}
1082
1083/* Hash expression X.
2c084240 1084
1085 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1086 indicating if a volatile operand is found or if the expression contains
69333952 1087 something we don't want to insert in the table. HASH_TABLE_SIZE is
78d140c9 1088 the current size of the hash table to be probed. */
18aa2adf 1089
1090static unsigned int
7ecb5bb2 1091hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
69333952 1092 int hash_table_size)
18aa2adf 1093{
1094 unsigned int hash;
1095
1096 *do_not_record_p = 0;
1097
bc8197c0 1098 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
18aa2adf 1099 return hash % hash_table_size;
1100}
1b80ba05 1101
78d140c9 1102/* Return nonzero if exp1 is equivalent to exp2. */
18aa2adf 1103
1104static int
7ecb5bb2 1105expr_equiv_p (const_rtx x, const_rtx y)
18aa2adf 1106{
78d140c9 1107 return exp_equiv_p (x, y, 0, true);
18aa2adf 1108}
1109
27cfe3f1 1110/* Insert expression X in INSN in the hash TABLE.
18aa2adf 1111 If it is already present, record it as the last occurrence in INSN's
1112 basic block.
1113
1114 MODE is the mode of the value X is being stored into.
1115 It is only used if X is a CONST_INT.
1116
6ef828f9 1117 ANTIC_P is nonzero if X is an anticipatable expression.
8b38b150 1118 AVAIL_P is nonzero if X is an available expression.
1119
1120 MAX_DISTANCE is the maximum distance in instructions this expression can
1121 be moved. */
18aa2adf 1122
1123static void
952f0048 1124insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
8b38b150 1125 int avail_p, int max_distance, struct hash_table_d *table)
18aa2adf 1126{
1127 int found, do_not_record_p;
1128 unsigned int hash;
1129 struct expr *cur_expr, *last_expr = NULL;
1130 struct occr *antic_occr, *avail_occr;
18aa2adf 1131
27cfe3f1 1132 hash = hash_expr (x, mode, &do_not_record_p, table->size);
18aa2adf 1133
1134 /* Do not insert expression in table if it contains volatile operands,
1135 or if hash_expr determines the expression is something we don't want
1136 to or can't handle. */
1137 if (do_not_record_p)
1138 return;
1139
27cfe3f1 1140 cur_expr = table->table[hash];
18aa2adf 1141 found = 0;
1142
2c084240 1143 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
18aa2adf 1144 {
1145 /* If the expression isn't found, save a pointer to the end of
1146 the list. */
1147 last_expr = cur_expr;
1148 cur_expr = cur_expr->next_same_hash;
1149 }
1150
1151 if (! found)
1152 {
2457c754 1153 cur_expr = GOBNEW (struct expr);
18aa2adf 1154 bytes_used += sizeof (struct expr);
27cfe3f1 1155 if (table->table[hash] == NULL)
2c084240 1156 /* This is the first pattern that hashed to this index. */
27cfe3f1 1157 table->table[hash] = cur_expr;
18aa2adf 1158 else
2c084240 1159 /* Add EXPR to end of this hash chain. */
1160 last_expr->next_same_hash = cur_expr;
1161
3cfec666 1162 /* Set the fields of the expr element. */
18aa2adf 1163 cur_expr->expr = x;
27cfe3f1 1164 cur_expr->bitmap_index = table->n_elems++;
18aa2adf 1165 cur_expr->next_same_hash = NULL;
1166 cur_expr->antic_occr = NULL;
1167 cur_expr->avail_occr = NULL;
8b38b150 1168 gcc_assert (max_distance >= 0);
1169 cur_expr->max_distance = max_distance;
18aa2adf 1170 }
8b38b150 1171 else
1172 gcc_assert (cur_expr->max_distance == max_distance);
18aa2adf 1173
1174 /* Now record the occurrence(s). */
18aa2adf 1175 if (antic_p)
1176 {
1177 antic_occr = cur_expr->antic_occr;
1178
90bd219d 1179 if (antic_occr
1180 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
77780ba6 1181 antic_occr = NULL;
18aa2adf 1182
1183 if (antic_occr)
2c084240 1184 /* Found another instance of the expression in the same basic block.
1185 Prefer the currently recorded one. We want the first one in the
1186 block and the block is scanned from start to end. */
1187 ; /* nothing to do */
18aa2adf 1188 else
1189 {
1190 /* First occurrence of this expression in this basic block. */
2457c754 1191 antic_occr = GOBNEW (struct occr);
18aa2adf 1192 bytes_used += sizeof (struct occr);
18aa2adf 1193 antic_occr->insn = insn;
77780ba6 1194 antic_occr->next = cur_expr->antic_occr;
839f8415 1195 antic_occr->deleted_p = 0;
77780ba6 1196 cur_expr->antic_occr = antic_occr;
18aa2adf 1197 }
1198 }
1199
1200 if (avail_p)
1201 {
1202 avail_occr = cur_expr->avail_occr;
1203
90bd219d 1204 if (avail_occr
1205 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
18aa2adf 1206 {
77780ba6 1207 /* Found another instance of the expression in the same basic block.
1208 Prefer this occurrence to the currently recorded one. We want
1209 the last one in the block and the block is scanned from start
1210 to end. */
1211 avail_occr->insn = insn;
18aa2adf 1212 }
18aa2adf 1213 else
1214 {
1215 /* First occurrence of this expression in this basic block. */
2457c754 1216 avail_occr = GOBNEW (struct occr);
18aa2adf 1217 bytes_used += sizeof (struct occr);
18aa2adf 1218 avail_occr->insn = insn;
77780ba6 1219 avail_occr->next = cur_expr->avail_occr;
839f8415 1220 avail_occr->deleted_p = 0;
77780ba6 1221 cur_expr->avail_occr = avail_occr;
18aa2adf 1222 }
1223 }
1224}
1225
bc8197c0 1226/* Scan SET present in INSN and add an entry to the hash TABLE. */
18aa2adf 1227
1228static void
bc8197c0 1229hash_scan_set (rtx set, rtx insn, struct hash_table_d *table)
18aa2adf 1230{
bc8197c0 1231 rtx src = SET_SRC (set);
1232 rtx dest = SET_DEST (set);
1b80ba05 1233 rtx note;
18aa2adf 1234
19595145 1235 if (GET_CODE (src) == CALL)
27cfe3f1 1236 hash_scan_call (src, insn, table);
18aa2adf 1237
b9f02dbb 1238 else if (REG_P (dest))
18aa2adf 1239 {
1b80ba05 1240 unsigned int regno = REGNO (dest);
8b38b150 1241 int max_distance = 0;
18aa2adf 1242
ad6cd748 1243 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1244
59254d98 1245 This allows us to do a single GCSE pass and still eliminate
1246 redundant constants, addresses or other expressions that are
ad6cd748 1247 constructed with multiple instructions.
1248
07abdb66 1249 However, keep the original SRC if INSN is a simple reg-reg move.
ad6cd748 1250 In this case, there will almost always be a REG_EQUAL note on the
1251 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1252 for INSN, we miss copy propagation opportunities and we perform the
1253 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1254 do more than one PRE GCSE pass.
1255
f0b5f617 1256 Note that this does not impede profitable constant propagations. We
ad6cd748 1257 "look through" reg-reg sets in lookup_avail_set. */
59254d98 1258 note = find_reg_equal_equiv_note (insn);
1259 if (note != 0
ad6cd748 1260 && REG_NOTE_KIND (note) == REG_EQUAL
1261 && !REG_P (src)
07abdb66 1262 && want_to_gcse_p (XEXP (note, 0), NULL))
bc8197c0 1263 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1b80ba05 1264
18aa2adf 1265 /* Only record sets of pseudo-regs in the hash table. */
07abdb66 1266 if (regno >= FIRST_PSEUDO_REGISTER
18aa2adf 1267 /* Don't GCSE something if we can't do a reg/reg copy. */
3d055936 1268 && can_copy_p (GET_MODE (dest))
17a54dac 1269 /* GCSE commonly inserts instruction after the insn. We can't
e38def9c 1270 do that easily for EH edges so disable GCSE on these for now. */
1271 /* ??? We can now easily create new EH landing pads at the
1272 gimple level, for splitting edges; there's no reason we
1273 can't do the same thing at the rtl level. */
1274 && !can_throw_internal (insn)
18aa2adf 1275 /* Is SET_SRC something we want to gcse? */
8b38b150 1276 && want_to_gcse_p (src, &max_distance)
1b80ba05 1277 /* Don't CSE a nop. */
bc8197c0 1278 && ! set_noop_p (set)
75f84104 1279 /* Don't GCSE if it has attached REG_EQUIV note.
1280 At this point this only function parameters should have
1281 REG_EQUIV notes and if the argument slot is used somewhere
3fb1e43b 1282 explicitly, it means address of parameter has been taken,
75f84104 1283 so we should not extend the lifetime of the pseudo. */
59254d98 1284 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
18aa2adf 1285 {
1286 /* An expression is not anticipatable if its operands are
232bbfff 1287 modified before this insn or if this is not the only SET in
3072d30e 1288 this insn. The latter condition does not have to mean that
1289 SRC itself is not anticipatable, but we just will not be
1290 able to handle code motion of insns with multiple sets. */
1291 int antic_p = oprs_anticipatable_p (src, insn)
1292 && !multiple_sets (insn);
18aa2adf 1293 /* An expression is not available if its operands are
f441a382 1294 subsequently modified, including this insn. It's also not
1295 available if this is a branch, because we can't insert
1296 a set after the branch. */
1297 int avail_p = (oprs_available_p (src, insn)
1298 && ! JUMP_P (insn));
2c084240 1299
8b38b150 1300 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1301 max_distance, table);
18aa2adf 1302 }
18aa2adf 1303 }
40e55fbb 1304 /* In case of store we want to consider the memory value as available in
5c47e414 1305 the REG stored in that memory. This makes it possible to remove
1306 redundant loads from due to stores to the same location. */
b9f02dbb 1307 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
5c47e414 1308 {
1309 unsigned int regno = REGNO (src);
02540644 1310 int max_distance = 0;
5c47e414 1311
07abdb66 1312 /* Only record sets of pseudo-regs in the hash table. */
1313 if (regno >= FIRST_PSEUDO_REGISTER
5c47e414 1314 /* Don't GCSE something if we can't do a reg/reg copy. */
1315 && can_copy_p (GET_MODE (src))
1316 /* GCSE commonly inserts instruction after the insn. We can't
e38def9c 1317 do that easily for EH edges so disable GCSE on these for now. */
1318 && !can_throw_internal (insn)
5c47e414 1319 /* Is SET_DEST something we want to gcse? */
02540644 1320 && want_to_gcse_p (dest, &max_distance)
5c47e414 1321 /* Don't CSE a nop. */
bc8197c0 1322 && ! set_noop_p (set)
5c47e414 1323 /* Don't GCSE if it has attached REG_EQUIV note.
1324 At this point this only function parameters should have
1325 REG_EQUIV notes and if the argument slot is used somewhere
1326 explicitly, it means address of parameter has been taken,
1327 so we should not extend the lifetime of the pseudo. */
1328 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
b9f02dbb 1329 || ! MEM_P (XEXP (note, 0))))
5c47e414 1330 {
1331 /* Stores are never anticipatable. */
1332 int antic_p = 0;
1333 /* An expression is not available if its operands are
1334 subsequently modified, including this insn. It's also not
1335 available if this is a branch, because we can't insert
1336 a set after the branch. */
1337 int avail_p = oprs_available_p (dest, insn)
1338 && ! JUMP_P (insn);
1339
1340 /* Record the memory expression (DEST) in the hash table. */
716ad11c 1341 insert_expr_in_table (dest, GET_MODE (dest), insn,
02540644 1342 antic_p, avail_p, max_distance, table);
5c47e414 1343 }
1344 }
18aa2adf 1345}
1346
1347static void
952f0048 1348hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
26dbec0a 1349 struct hash_table_d *table ATTRIBUTE_UNUSED)
18aa2adf 1350{
1351 /* Currently nothing to do. */
1352}
1353
1354static void
952f0048 1355hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
26dbec0a 1356 struct hash_table_d *table ATTRIBUTE_UNUSED)
18aa2adf 1357{
1358 /* Currently nothing to do. */
1359}
1360
bc8197c0 1361/* Process INSN and add hash table entries as appropriate. */
18aa2adf 1362
1363static void
26dbec0a 1364hash_scan_insn (rtx insn, struct hash_table_d *table)
18aa2adf 1365{
1366 rtx pat = PATTERN (insn);
2c084240 1367 int i;
18aa2adf 1368
1369 /* Pick out the sets of INSN and for other forms of instructions record
1370 what's been modified. */
1371
1b80ba05 1372 if (GET_CODE (pat) == SET)
27cfe3f1 1373 hash_scan_set (pat, insn, table);
bc8197c0 1374
1375 else if (GET_CODE (pat) == CLOBBER)
1376 hash_scan_clobber (pat, insn, table);
1377
1378 else if (GET_CODE (pat) == CALL)
1379 hash_scan_call (pat, insn, table);
1380
18aa2adf 1381 else if (GET_CODE (pat) == PARALLEL)
2c084240 1382 for (i = 0; i < XVECLEN (pat, 0); i++)
1383 {
1384 rtx x = XVECEXP (pat, 0, i);
18aa2adf 1385
2c084240 1386 if (GET_CODE (x) == SET)
27cfe3f1 1387 hash_scan_set (x, insn, table);
2c084240 1388 else if (GET_CODE (x) == CLOBBER)
27cfe3f1 1389 hash_scan_clobber (x, insn, table);
19595145 1390 else if (GET_CODE (x) == CALL)
27cfe3f1 1391 hash_scan_call (x, insn, table);
2c084240 1392 }
18aa2adf 1393}
1394
bc8197c0 1395/* Dump the hash table TABLE to file FILE under the name NAME. */
1396
18aa2adf 1397static void
26dbec0a 1398dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
18aa2adf 1399{
1400 int i;
1401 /* Flattened out table, so it's printed in proper order. */
b9cf3f63 1402 struct expr **flat_table;
1403 unsigned int *hash_val;
2c084240 1404 struct expr *expr;
b9cf3f63 1405
2457c754 1406 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1407 hash_val = XNEWVEC (unsigned int, table->n_elems);
18aa2adf 1408
27cfe3f1 1409 for (i = 0; i < (int) table->size; i++)
1410 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
2c084240 1411 {
1412 flat_table[expr->bitmap_index] = expr;
1413 hash_val[expr->bitmap_index] = i;
1414 }
18aa2adf 1415
1416 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
27cfe3f1 1417 name, table->size, table->n_elems);
18aa2adf 1418
27cfe3f1 1419 for (i = 0; i < (int) table->n_elems; i++)
46fd7177 1420 if (flat_table[i] != 0)
1421 {
b16f1e6c 1422 expr = flat_table[i];
8b38b150 1423 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1424 expr->bitmap_index, hash_val[i], expr->max_distance);
b16f1e6c 1425 print_rtl (file, expr->expr);
46fd7177 1426 fprintf (file, "\n");
1427 }
18aa2adf 1428
1429 fprintf (file, "\n");
b9cf3f63 1430
b9cf3f63 1431 free (flat_table);
1432 free (hash_val);
18aa2adf 1433}
1434
1435/* Record register first/last/block set information for REGNO in INSN.
2c084240 1436
eac13465 1437 first_set records the first place in the block where the register
18aa2adf 1438 is set and is used to compute "anticipatability".
2c084240 1439
eac13465 1440 last_set records the last place in the block where the register
18aa2adf 1441 is set and is used to compute "availability".
2c084240 1442
eac13465 1443 last_bb records the block for which first_set and last_set are
2e81afe5 1444 valid, as a quick test to invalidate them. */
18aa2adf 1445
1446static void
952f0048 1447record_last_reg_set_info (rtx insn, int regno)
18aa2adf 1448{
eac13465 1449 struct reg_avail_info *info = &reg_avail_info[regno];
2e81afe5 1450 int luid = DF_INSN_LUID (insn);
2c084240 1451
2e81afe5 1452 info->last_set = luid;
eac13465 1453 if (info->last_bb != current_bb)
1454 {
1455 info->last_bb = current_bb;
2e81afe5 1456 info->first_set = luid;
eac13465 1457 }
18aa2adf 1458}
1459
8e802be9 1460/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1461 Note we store a pair of elements in the list, so they have to be
1462 taken off pairwise. */
1463
3cfec666 1464static void
bc8197c0 1465canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
952f0048 1466 void * v_insn)
8e802be9 1467{
1468 rtx dest_addr, insn;
d7b592b0 1469 int bb;
e82e4eb5 1470 modify_pair pair;
8e802be9 1471
1472 while (GET_CODE (dest) == SUBREG
1473 || GET_CODE (dest) == ZERO_EXTRACT
8e802be9 1474 || GET_CODE (dest) == STRICT_LOW_PART)
1475 dest = XEXP (dest, 0);
1476
1477 /* If DEST is not a MEM, then it will not conflict with a load. Note
1478 that function calls are assumed to clobber memory, but are handled
1479 elsewhere. */
1480
b9f02dbb 1481 if (! MEM_P (dest))
8e802be9 1482 return;
1483
1484 dest_addr = get_addr (XEXP (dest, 0));
1485 dest_addr = canon_rtx (dest_addr);
3cfec666 1486 insn = (rtx) v_insn;
90bd219d 1487 bb = BLOCK_FOR_INSN (insn)->index;
8e802be9 1488
e82e4eb5 1489 pair.dest = dest;
1490 pair.dest_addr = dest_addr;
f1f41a6c 1491 canon_modify_mem_list[bb].safe_push (pair);
8e802be9 1492}
1493
8e802be9 1494/* Record memory modification information for INSN. We do not actually care
1495 about the memory location(s) that are set, or even how they are set (consider
1496 a CALL_INSN). We merely need to record which insns modify memory. */
18aa2adf 1497
1498static void
952f0048 1499record_last_mem_set_info (rtx insn)
18aa2adf 1500{
37495d69 1501 int bb;
1502
1503 if (! flag_gcse_lm)
1504 return;
d7b592b0 1505
45b51429 1506 /* load_killed_in_block_p will handle the case of calls clobbering
aa40f561 1507 everything. */
37495d69 1508 bb = BLOCK_FOR_INSN (insn)->index;
f1f41a6c 1509 modify_mem_list[bb].safe_push (insn);
d7b592b0 1510 bitmap_set_bit (modify_mem_list_set, bb);
8e802be9 1511
b9f02dbb 1512 if (CALL_P (insn))
57c8e46c 1513 bitmap_set_bit (blocks_with_calls, bb);
8e802be9 1514 else
d7b592b0 1515 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
18aa2adf 1516}
1517
18aa2adf 1518/* Called from compute_hash_table via note_stores to handle one
ec8895d7 1519 SET or CLOBBER in an insn. DATA is really the instruction in which
1520 the SET is taking place. */
18aa2adf 1521
1522static void
81a410b1 1523record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
18aa2adf 1524{
ec8895d7 1525 rtx last_set_insn = (rtx) data;
1526
18aa2adf 1527 if (GET_CODE (dest) == SUBREG)
1528 dest = SUBREG_REG (dest);
1529
b9f02dbb 1530 if (REG_P (dest))
18aa2adf 1531 record_last_reg_set_info (last_set_insn, REGNO (dest));
b9f02dbb 1532 else if (MEM_P (dest)
18aa2adf 1533 /* Ignore pushes, they clobber nothing. */
1534 && ! push_operand (dest, GET_MODE (dest)))
1535 record_last_mem_set_info (last_set_insn);
1536}
1537
07abdb66 1538/* Top level function to create an expression hash table.
18aa2adf 1539
1540 Expression entries are placed in the hash table if
1541 - they are of the form (set (pseudo-reg) src),
1542 - src is something we want to perform GCSE on,
1543 - none of the operands are subsequently modified in the block
1544
18aa2adf 1545 Currently src must be a pseudo-reg or a const_int.
1546
27cfe3f1 1547 TABLE is the table computed. */
18aa2adf 1548
1549static void
26dbec0a 1550compute_hash_table_work (struct hash_table_d *table)
18aa2adf 1551{
d743aba2 1552 int i;
18aa2adf 1553
8e802be9 1554 /* re-Cache any INSN_LIST nodes we have allocated. */
7fb47f9f 1555 clear_modify_mem_tables ();
18aa2adf 1556 /* Some working arrays used to track first and last set in each block. */
d743aba2 1557 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
eac13465 1558
d743aba2 1559 for (i = 0; i < max_reg_num (); ++i)
4c26117a 1560 reg_avail_info[i].last_bb = NULL;
18aa2adf 1561
fc00614f 1562 FOR_EACH_BB_FN (current_bb, cfun)
18aa2adf 1563 {
1564 rtx insn;
02e7a332 1565 unsigned int regno;
18aa2adf 1566
1567 /* First pass over the instructions records information used to
2e81afe5 1568 determine when registers and memory are first and last set. */
defc8016 1569 FOR_BB_INSNS (current_bb, insn)
18aa2adf 1570 {
da6f6776 1571 if (!NONDEBUG_INSN_P (insn))
18aa2adf 1572 continue;
1573
b9f02dbb 1574 if (CALL_P (insn))
18aa2adf 1575 {
24ec6636 1576 hard_reg_set_iterator hrsi;
1577 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1578 0, regno, hrsi)
1579 record_last_reg_set_info (insn, regno);
2c084240 1580
07abdb66 1581 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1582 record_last_mem_set_info (insn);
18aa2adf 1583 }
1584
ec8895d7 1585 note_stores (PATTERN (insn), record_last_set_info, insn);
18aa2adf 1586 }
1587
1588 /* The next pass builds the hash table. */
defc8016 1589 FOR_BB_INSNS (current_bb, insn)
da6f6776 1590 if (NONDEBUG_INSN_P (insn))
1e5b92fa 1591 hash_scan_insn (insn, table);
18aa2adf 1592 }
1593
eac13465 1594 free (reg_avail_info);
1595 reg_avail_info = NULL;
18aa2adf 1596}
1597
27cfe3f1 1598/* Allocate space for the set/expr hash TABLE.
07abdb66 1599 It is used to determine the number of buckets to use. */
18aa2adf 1600
1601static void
07abdb66 1602alloc_hash_table (struct hash_table_d *table)
18aa2adf 1603{
1604 int n;
1605
9845d120 1606 n = get_max_insn_count ();
1607
1608 table->size = n / 4;
27cfe3f1 1609 if (table->size < 11)
1610 table->size = 11;
2c084240 1611
18aa2adf 1612 /* Attempt to maintain efficient use of hash table.
1613 Making it an odd number is simplest for now.
1614 ??? Later take some measurements. */
27cfe3f1 1615 table->size |= 1;
1616 n = table->size * sizeof (struct expr *);
2457c754 1617 table->table = GNEWVAR (struct expr *, n);
18aa2adf 1618}
1619
27cfe3f1 1620/* Free things allocated by alloc_hash_table. */
18aa2adf 1621
1622static void
26dbec0a 1623free_hash_table (struct hash_table_d *table)
18aa2adf 1624{
27cfe3f1 1625 free (table->table);
18aa2adf 1626}
1627
07abdb66 1628/* Compute the expression hash table TABLE. */
18aa2adf 1629
1630static void
26dbec0a 1631compute_hash_table (struct hash_table_d *table)
18aa2adf 1632{
1633 /* Initialize count of number of entries in hash table. */
27cfe3f1 1634 table->n_elems = 0;
f0af5a88 1635 memset (table->table, 0, table->size * sizeof (struct expr *));
18aa2adf 1636
27cfe3f1 1637 compute_hash_table_work (table);
18aa2adf 1638}
1639\f
1640/* Expression tracking support. */
1641
07abdb66 1642/* Clear canon_modify_mem_list and modify_mem_list tables. */
1643static void
1644clear_modify_mem_tables (void)
23e5207c 1645{
07abdb66 1646 unsigned i;
1647 bitmap_iterator bi;
23e5207c 1648
07abdb66 1649 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
23e5207c 1650 {
f1f41a6c 1651 modify_mem_list[i].release ();
1652 canon_modify_mem_list[i].release ();
23e5207c 1653 }
07abdb66 1654 bitmap_clear (modify_mem_list_set);
1655 bitmap_clear (blocks_with_calls);
23e5207c 1656}
1657
07abdb66 1658/* Release memory used by modify_mem_list_set. */
23e5207c 1659
07abdb66 1660static void
1661free_modify_mem_tables (void)
375b98af 1662{
07abdb66 1663 clear_modify_mem_tables ();
1664 free (modify_mem_list);
1665 free (canon_modify_mem_list);
1666 modify_mem_list = 0;
1667 canon_modify_mem_list = 0;
375b98af 1668}
07abdb66 1669\f
1670/* For each block, compute whether X is transparent. X is either an
1671 expression or an assignment [though we don't care which, for this context
1672 an assignment is treated as an expression]. For each block where an
1673 element of X is modified, reset the INDX bit in BMAP. */
23e5207c 1674
07abdb66 1675static void
1676compute_transp (const_rtx x, int indx, sbitmap *bmap)
23e5207c 1677{
07abdb66 1678 int i, j;
1679 enum rtx_code code;
1680 const char *fmt;
23e5207c 1681
07abdb66 1682 /* repeat is used to turn tail-recursion into iteration since GCC
1683 can't do it when there's no return value. */
1684 repeat:
23e5207c 1685
07abdb66 1686 if (x == 0)
1687 return;
a964683a 1688
07abdb66 1689 code = GET_CODE (x);
1690 switch (code)
23e5207c 1691 {
07abdb66 1692 case REG:
cd665a06 1693 {
07abdb66 1694 df_ref def;
1695 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1696 def;
1697 def = DF_REF_NEXT_REG (def))
08b7917c 1698 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
cd665a06 1699 }
8724a717 1700
07abdb66 1701 return;
a964683a 1702
07abdb66 1703 case MEM:
1704 if (! MEM_READONLY_P (x))
23e5207c 1705 {
07abdb66 1706 bitmap_iterator bi;
1707 unsigned bb_index;
5d3b0682 1708 rtx x_addr;
1709
1710 x_addr = get_addr (XEXP (x, 0));
1711 x_addr = canon_rtx (x_addr);
375b98af 1712
07abdb66 1713 /* First handle all the blocks with calls. We don't need to
1714 do any list walking for them. */
1715 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1716 {
08b7917c 1717 bitmap_clear_bit (bmap[bb_index], indx);
07abdb66 1718 }
23e5207c 1719
5d3b0682 1720 /* Now iterate over the blocks which have memory modifications
1721 but which do not have any calls. */
1722 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1723 blocks_with_calls,
1724 0, bb_index, bi)
1725 {
1726 vec<modify_pair> list
1727 = canon_modify_mem_list[bb_index];
1728 modify_pair *pair;
1729 unsigned ix;
1730
1731 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1732 {
1733 rtx dest = pair->dest;
1734 rtx dest_addr = pair->dest_addr;
1735
1736 if (canon_true_dependence (dest, GET_MODE (dest),
1737 dest_addr, x, x_addr))
1738 bitmap_clear_bit (bmap[bb_index], indx);
1739 }
1740 }
23e5207c 1741 }
23e5207c 1742
07abdb66 1743 x = XEXP (x, 0);
1744 goto repeat;
23e5207c 1745
07abdb66 1746 case PC:
1747 case CC0: /*FIXME*/
1748 case CONST:
0349edce 1749 CASE_CONST_ANY:
07abdb66 1750 case SYMBOL_REF:
1751 case LABEL_REF:
1752 case ADDR_VEC:
1753 case ADDR_DIFF_VEC:
1754 return;
23e5207c 1755
07abdb66 1756 default:
1757 break;
1758 }
8724a717 1759
07abdb66 1760 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
23e5207c 1761 {
07abdb66 1762 if (fmt[i] == 'e')
23e5207c 1763 {
07abdb66 1764 /* If we are about to do the last recursive call
1765 needed at this level, change it into iteration.
1766 This function is called enough to be worth it. */
1767 if (i == 0)
1768 {
1769 x = XEXP (x, i);
1770 goto repeat;
1771 }
1772
1773 compute_transp (XEXP (x, i), indx, bmap);
23e5207c 1774 }
07abdb66 1775 else if (fmt[i] == 'E')
1776 for (j = 0; j < XVECLEN (x, i); j++)
1777 compute_transp (XVECEXP (x, i, j), indx, bmap);
23e5207c 1778 }
23e5207c 1779}
1780\f
b3f3796c 1781/* Compute PRE+LCM working variables. */
18aa2adf 1782
1783/* Local properties of expressions. */
bc8197c0 1784
18aa2adf 1785/* Nonzero for expressions that are transparent in the block. */
b3f3796c 1786static sbitmap *transp;
18aa2adf 1787
b3f3796c 1788/* Nonzero for expressions that are computed (available) in the block. */
1789static sbitmap *comp;
18aa2adf 1790
b3f3796c 1791/* Nonzero for expressions that are locally anticipatable in the block. */
1792static sbitmap *antloc;
18aa2adf 1793
b3f3796c 1794/* Nonzero for expressions where this block is an optimal computation
1795 point. */
1796static sbitmap *pre_optimal;
7bdba5dd 1797
b3f3796c 1798/* Nonzero for expressions which are redundant in a particular block. */
1799static sbitmap *pre_redundant;
18aa2adf 1800
7bcd381b 1801/* Nonzero for expressions which should be inserted on a specific edge. */
1802static sbitmap *pre_insert_map;
1803
1804/* Nonzero for expressions which should be deleted in a specific block. */
1805static sbitmap *pre_delete_map;
1806
b3f3796c 1807/* Allocate vars used for PRE analysis. */
18aa2adf 1808
1809static void
952f0048 1810alloc_pre_mem (int n_blocks, int n_exprs)
18aa2adf 1811{
b3f3796c 1812 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1813 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1814 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
0388e90f 1815
7bcd381b 1816 pre_optimal = NULL;
1817 pre_redundant = NULL;
1818 pre_insert_map = NULL;
1819 pre_delete_map = NULL;
7bcd381b 1820 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
2c084240 1821
7bcd381b 1822 /* pre_insert and pre_delete are allocated later. */
18aa2adf 1823}
1824
b3f3796c 1825/* Free vars used for PRE analysis. */
18aa2adf 1826
1827static void
952f0048 1828free_pre_mem (void)
18aa2adf 1829{
cca23eb2 1830 sbitmap_vector_free (transp);
1831 sbitmap_vector_free (comp);
8123d49b 1832
1833 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
18aa2adf 1834
7bcd381b 1835 if (pre_optimal)
cca23eb2 1836 sbitmap_vector_free (pre_optimal);
7bcd381b 1837 if (pre_redundant)
cca23eb2 1838 sbitmap_vector_free (pre_redundant);
7bcd381b 1839 if (pre_insert_map)
cca23eb2 1840 sbitmap_vector_free (pre_insert_map);
7bcd381b 1841 if (pre_delete_map)
cca23eb2 1842 sbitmap_vector_free (pre_delete_map);
7bcd381b 1843
8123d49b 1844 transp = comp = NULL;
7bcd381b 1845 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
18aa2adf 1846}
1847
f151d0c6 1848/* Remove certain expressions from anticipatable and transparent
1849 sets of basic blocks that have incoming abnormal edge.
1850 For PRE remove potentially trapping expressions to avoid placing
1851 them on abnormal edges. For hoisting remove memory references that
1852 can be clobbered by calls. */
18aa2adf 1853
1854static void
f151d0c6 1855prune_expressions (bool pre_p)
18aa2adf 1856{
f151d0c6 1857 sbitmap prune_exprs;
bc8197c0 1858 struct expr *expr;
e531b5f0 1859 unsigned int ui;
f151d0c6 1860 basic_block bb;
bafa5ac7 1861
f151d0c6 1862 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
53c5d9d4 1863 bitmap_clear (prune_exprs);
27cfe3f1 1864 for (ui = 0; ui < expr_hash_table.size; ui++)
e531b5f0 1865 {
bc8197c0 1866 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
f151d0c6 1867 {
1868 /* Note potentially trapping expressions. */
bc8197c0 1869 if (may_trap_p (expr->expr))
f151d0c6 1870 {
08b7917c 1871 bitmap_set_bit (prune_exprs, expr->bitmap_index);
f151d0c6 1872 continue;
1873 }
e531b5f0 1874
bc8197c0 1875 if (!pre_p && MEM_P (expr->expr))
f151d0c6 1876 /* Note memory references that can be clobbered by a call.
1877 We do not split abnormal edges in hoisting, so would
1878 a memory reference get hoisted along an abnormal edge,
1879 it would be placed /before/ the call. Therefore, only
1880 constant memory references can be hoisted along abnormal
1881 edges. */
1882 {
bc8197c0 1883 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1884 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
f151d0c6 1885 continue;
bafa5ac7 1886
bc8197c0 1887 if (MEM_READONLY_P (expr->expr)
1888 && !MEM_VOLATILE_P (expr->expr)
1889 && MEM_NOTRAP_P (expr->expr))
f151d0c6 1890 /* Constant memory reference, e.g., a PIC address. */
1891 continue;
1892
1893 /* ??? Optimally, we would use interprocedural alias
1894 analysis to determine if this mem is actually killed
1895 by this call. */
1896
08b7917c 1897 bitmap_set_bit (prune_exprs, expr->bitmap_index);
f151d0c6 1898 }
1899 }
1900 }
bafa5ac7 1901
fc00614f 1902 FOR_EACH_BB_FN (bb, cfun)
bafa5ac7 1903 {
e531b5f0 1904 edge e;
cd665a06 1905 edge_iterator ei;
e531b5f0 1906
1907 /* If the current block is the destination of an abnormal edge, we
f151d0c6 1908 kill all trapping (for PRE) and memory (for hoist) expressions
1909 because we won't be able to properly place the instruction on
1910 the edge. So make them neither anticipatable nor transparent.
1911 This is fairly conservative.
1912
1913 ??? For hoisting it may be necessary to check for set-and-jump
1914 instructions here, not just for abnormal edges. The general problem
1915 is that when an expression cannot not be placed right at the end of
1916 a basic block we should account for any side-effects of a subsequent
1917 jump instructions that could clobber the expression. It would
1918 be best to implement this check along the lines of
1ec78e16 1919 should_hoist_expr_to_dom where the target block is already known
f151d0c6 1920 and, hence, there's no need to conservatively prune expressions on
1921 "intermediate" set-and-jump instructions. */
cd665a06 1922 FOR_EACH_EDGE (e, ei, bb->preds)
f151d0c6 1923 if ((e->flags & EDGE_ABNORMAL)
1924 && (pre_p || CALL_P (BB_END (e->src))))
e531b5f0 1925 {
53c5d9d4 1926 bitmap_and_compl (antloc[bb->index],
f151d0c6 1927 antloc[bb->index], prune_exprs);
53c5d9d4 1928 bitmap_and_compl (transp[bb->index],
f151d0c6 1929 transp[bb->index], prune_exprs);
e531b5f0 1930 break;
1931 }
f151d0c6 1932 }
1933
1934 sbitmap_free (prune_exprs);
1935}
1936
b89c219c 1937/* It may be necessary to insert a large number of insns on edges to
1938 make the existing occurrences of expressions fully redundant. This
1939 routine examines the set of insertions and deletions and if the ratio
1940 of insertions to deletions is too high for a particular expression, then
1941 the expression is removed from the insertion/deletion sets.
1942
1943 N_ELEMS is the number of elements in the hash table. */
1944
1945static void
1946prune_insertions_deletions (int n_elems)
1947{
1948 sbitmap_iterator sbi;
1949 sbitmap prune_exprs;
1950
1951 /* We always use I to iterate over blocks/edges and J to iterate over
1952 expressions. */
1953 unsigned int i, j;
1954
1955 /* Counts for the number of times an expression needs to be inserted and
1956 number of times an expression can be removed as a result. */
1957 int *insertions = GCNEWVEC (int, n_elems);
1958 int *deletions = GCNEWVEC (int, n_elems);
1959
1960 /* Set of expressions which require too many insertions relative to
1961 the number of deletions achieved. We will prune these out of the
1962 insertion/deletion sets. */
1963 prune_exprs = sbitmap_alloc (n_elems);
53c5d9d4 1964 bitmap_clear (prune_exprs);
b89c219c 1965
1966 /* Iterate over the edges counting the number of times each expression
1967 needs to be inserted. */
f1955b22 1968 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
b89c219c 1969 {
0d211963 1970 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
b89c219c 1971 insertions[j]++;
1972 }
1973
1974 /* Similarly for deletions, but those occur in blocks rather than on
1975 edges. */
fe672ac0 1976 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
b89c219c 1977 {
0d211963 1978 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
b89c219c 1979 deletions[j]++;
1980 }
1981
1982 /* Now that we have accurate counts, iterate over the elements in the
1983 hash table and see if any need too many insertions relative to the
1984 number of evaluations that can be removed. If so, mark them in
1985 PRUNE_EXPRS. */
1986 for (j = 0; j < (unsigned) n_elems; j++)
1987 if (deletions[j]
1988 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
08b7917c 1989 bitmap_set_bit (prune_exprs, j);
b89c219c 1990
1991 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
0d211963 1992 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
b89c219c 1993 {
f1955b22 1994 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
08b7917c 1995 bitmap_clear_bit (pre_insert_map[i], j);
b89c219c 1996
fe672ac0 1997 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
08b7917c 1998 bitmap_clear_bit (pre_delete_map[i], j);
b89c219c 1999 }
2000
2001 sbitmap_free (prune_exprs);
2002 free (insertions);
2003 free (deletions);
2004}
2005
f151d0c6 2006/* Top level routine to do the dataflow analysis needed by PRE. */
e531b5f0 2007
bc8197c0 2008static struct edge_list *
f151d0c6 2009compute_pre_data (void)
2010{
bc8197c0 2011 struct edge_list *edge_list;
f151d0c6 2012 basic_block bb;
2013
2014 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2015 prune_expressions (true);
fe672ac0 2016 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
f151d0c6 2017
2018 /* Compute ae_kill for each basic block using:
2019
2020 ~(TRANSP | COMP)
2021 */
2022
fc00614f 2023 FOR_EACH_BB_FN (bb, cfun)
f151d0c6 2024 {
53c5d9d4 2025 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
2026 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
bafa5ac7 2027 }
2028
3f5be5f4 2029 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
7bcd381b 2030 ae_kill, &pre_insert_map, &pre_delete_map);
cca23eb2 2031 sbitmap_vector_free (antloc);
8123d49b 2032 antloc = NULL;
cca23eb2 2033 sbitmap_vector_free (ae_kill);
3cfec666 2034 ae_kill = NULL;
b89c219c 2035
2036 prune_insertions_deletions (expr_hash_table.n_elems);
bc8197c0 2037
2038 return edge_list;
18aa2adf 2039}
2040\f
2041/* PRE utilities */
2042
6ef828f9 2043/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
b3f3796c 2044 block BB.
18aa2adf 2045
2046 VISITED is a pointer to a working buffer for tracking which BB's have
2047 been visited. It is NULL for the top-level call.
2048
2049 We treat reaching expressions that go through blocks containing the same
2050 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2051 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2052 2 as not reaching. The intent is to improve the probability of finding
2053 only one reaching expression and to reduce register lifetimes by picking
2054 the closest such expression. */
2055
2056static int
bc8197c0 2057pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2058 basic_block bb, char *visited)
18aa2adf 2059{
cb7e28c3 2060 edge pred;
cd665a06 2061 edge_iterator ei;
48e1416a 2062
cd665a06 2063 FOR_EACH_EDGE (pred, ei, bb->preds)
18aa2adf 2064 {
8d4a53c7 2065 basic_block pred_bb = pred->src;
18aa2adf 2066
34154e27 2067 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
18aa2adf 2068 /* Has predecessor has already been visited? */
b3d6de89 2069 || visited[pred_bb->index])
2c084240 2070 ;/* Nothing to do. */
2071
18aa2adf 2072 /* Does this predecessor generate this expression? */
08b7917c 2073 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
18aa2adf 2074 {
2075 /* Is this the occurrence we're looking for?
2076 Note that there's only one generating occurrence per block
2077 so we just need to check the block number. */
b3f3796c 2078 if (occr_bb == pred_bb)
18aa2adf 2079 return 1;
2c084240 2080
b3d6de89 2081 visited[pred_bb->index] = 1;
18aa2adf 2082 }
2083 /* Ignore this predecessor if it kills the expression. */
08b7917c 2084 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
b3d6de89 2085 visited[pred_bb->index] = 1;
2c084240 2086
18aa2adf 2087 /* Neither gen nor kill. */
2088 else
b65b4f63 2089 {
b3d6de89 2090 visited[pred_bb->index] = 1;
048599b9 2091 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
18aa2adf 2092 return 1;
b65b4f63 2093 }
18aa2adf 2094 }
2095
2096 /* All paths have been checked. */
2097 return 0;
2098}
cd55d9d6 2099
2100/* The wrapper for pre_expr_reaches_here_work that ensures that any
aa40f561 2101 memory allocated for that function is returned. */
cd55d9d6 2102
2103static int
952f0048 2104pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
cd55d9d6 2105{
2106 int rval;
fe672ac0 2107 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
cd55d9d6 2108
387732c1 2109 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
cd55d9d6 2110
2111 free (visited);
2c084240 2112 return rval;
cd55d9d6 2113}
18aa2adf 2114\f
bc8197c0 2115/* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
7bcd381b 2116
2117static rtx
952f0048 2118process_insert_insn (struct expr *expr)
7bcd381b 2119{
2120 rtx reg = expr->reaching_reg;
bc8197c0 2121 /* Copy the expression to make sure we don't have any sharing issues. */
06e2144a 2122 rtx exp = copy_rtx (expr->expr);
2123 rtx pat;
7bcd381b 2124
2125 start_sequence ();
06e2144a 2126
2127 /* If the expression is something that's an operand, like a constant,
2128 just copy it to a register. */
2129 if (general_operand (exp, GET_MODE (reg)))
2130 emit_move_insn (reg, exp);
2131
2132 /* Otherwise, make a new insn to compute this expression and make sure the
bc8197c0 2133 insn will be recognized (this also adds any needed CLOBBERs). */
0d59b19d 2134 else
2135 {
2136 rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2137
dae9d0e7 2138 if (insn_invalid_p (insn, false))
0fa137b8 2139 gcc_unreachable ();
0d59b19d 2140 }
48e1416a 2141
31d3e01c 2142 pat = get_insns ();
7bcd381b 2143 end_sequence ();
2144
2145 return pat;
2146}
3cfec666 2147
b3f3796c 2148/* Add EXPR to the end of basic block BB.
2149
36f52b0d 2150 This is used by both the PRE and code hoisting. */
18aa2adf 2151
2152static void
36f52b0d 2153insert_insn_end_basic_block (struct expr *expr, basic_block bb)
18aa2adf 2154{
5496dbfc 2155 rtx insn = BB_END (bb);
18aa2adf 2156 rtx new_insn;
2157 rtx reg = expr->reaching_reg;
2158 int regno = REGNO (reg);
31d3e01c 2159 rtx pat, pat_end;
18aa2adf 2160
7bcd381b 2161 pat = process_insert_insn (expr);
0d59b19d 2162 gcc_assert (pat && INSN_P (pat));
31d3e01c 2163
2164 pat_end = pat;
2165 while (NEXT_INSN (pat_end) != NULL_RTX)
2166 pat_end = NEXT_INSN (pat_end);
18aa2adf 2167
2168 /* If the last insn is a jump, insert EXPR in front [taking care to
917bbcab 2169 handle cc0, etc. properly]. Similarly we need to care trapping
17a54dac 2170 instructions in presence of non-call exceptions. */
18aa2adf 2171
b9f02dbb 2172 if (JUMP_P (insn)
6d7dc5b9 2173 || (NONJUMP_INSN_P (insn)
ea091dfd 2174 && (!single_succ_p (bb)
2175 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
18aa2adf 2176 {
18aa2adf 2177#ifdef HAVE_cc0
2178 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2179 if cc0 isn't set. */
91f71fa3 2180 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
18aa2adf 2181 if (note)
2182 insn = XEXP (note, 0);
2183 else
2184 {
2185 rtx maybe_cc0_setter = prev_nonnote_insn (insn);
2186 if (maybe_cc0_setter
9204e736 2187 && INSN_P (maybe_cc0_setter)
18aa2adf 2188 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2189 insn = maybe_cc0_setter;
2190 }
2191#endif
2192 /* FIXME: What if something in cc0/jump uses value set in new insn? */
3072d30e 2193 new_insn = emit_insn_before_noloc (pat, insn, bb);
170e5c6c 2194 }
2c084240 2195
170e5c6c 2196 /* Likewise if the last insn is a call, as will happen in the presence
2197 of exception handling. */
b9f02dbb 2198 else if (CALL_P (insn)
ea091dfd 2199 && (!single_succ_p (bb)
2200 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
170e5c6c 2201 {
ed5527ca 2202 /* Keeping in mind targets with small register classes and parameters
2203 in registers, we search backward and place the instructions before
2204 the first parameter is loaded. Do this for everyone for consistency
36f52b0d 2205 and a presumption that we'll get better code elsewhere as well. */
170e5c6c 2206
2207 /* Since different machines initialize their parameter registers
2208 in different orders, assume nothing. Collect the set of all
2209 parameter registers. */
5496dbfc 2210 insn = find_first_parameter_load (insn, BB_HEAD (bb));
170e5c6c 2211
9fc37e9d 2212 /* If we found all the parameter loads, then we want to insert
2213 before the first parameter load.
2214
2215 If we did not find all the parameter loads, then we might have
2216 stopped on the head of the block, which could be a CODE_LABEL.
2217 If we inserted before the CODE_LABEL, then we would be putting
2218 the insn in the wrong basic block. In that case, put the insn
8b3dea0b 2219 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
b9f02dbb 2220 while (LABEL_P (insn)
83458610 2221 || NOTE_INSN_BASIC_BLOCK_P (insn))
8b3dea0b 2222 insn = NEXT_INSN (insn);
2c084240 2223
3072d30e 2224 new_insn = emit_insn_before_noloc (pat, insn, bb);
18aa2adf 2225 }
2226 else
3072d30e 2227 new_insn = emit_insn_after_noloc (pat, insn, bb);
18aa2adf 2228
31d3e01c 2229 while (1)
b3f3796c 2230 {
31d3e01c 2231 if (INSN_P (pat))
2e81afe5 2232 add_label_notes (PATTERN (pat), new_insn);
31d3e01c 2233 if (pat == pat_end)
2234 break;
2235 pat = NEXT_INSN (pat);
b3f3796c 2236 }
170e5c6c 2237
18aa2adf 2238 gcse_create_count++;
2239
3f5be5f4 2240 if (dump_file)
18aa2adf 2241 {
3f5be5f4 2242 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
b3d6de89 2243 bb->index, INSN_UID (new_insn));
3f5be5f4 2244 fprintf (dump_file, "copying expression %d to reg %d\n",
2c084240 2245 expr->bitmap_index, regno);
18aa2adf 2246 }
2247}
2248
7bcd381b 2249/* Insert partially redundant expressions on edges in the CFG to make
2250 the expressions fully redundant. */
18aa2adf 2251
7bcd381b 2252static int
952f0048 2253pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
18aa2adf 2254{
2c084240 2255 int e, i, j, num_edges, set_size, did_insert = 0;
b3f3796c 2256 sbitmap *inserted;
2257
7bcd381b 2258 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2259 if it reaches any of the deleted expressions. */
18aa2adf 2260
7bcd381b 2261 set_size = pre_insert_map[0]->size;
2262 num_edges = NUM_EDGES (edge_list);
27cfe3f1 2263 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
53c5d9d4 2264 bitmap_vector_clear (inserted, num_edges);
18aa2adf 2265
7bcd381b 2266 for (e = 0; e < num_edges; e++)
18aa2adf 2267 {
2268 int indx;
8d4a53c7 2269 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
b3f3796c 2270
b3f3796c 2271 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
18aa2adf 2272 {
7bcd381b 2273 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
18aa2adf 2274
bc8197c0 2275 for (j = indx;
2276 insert && j < (int) expr_hash_table.n_elems;
2277 j++, insert >>= 1)
2c084240 2278 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2279 {
2280 struct expr *expr = index_map[j];
2281 struct occr *occr;
b3f3796c 2282
424da949 2283 /* Now look at each deleted occurrence of this expression. */
2c084240 2284 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2285 {
2286 if (! occr->deleted_p)
2287 continue;
2288
822e391f 2289 /* Insert this expression on this edge if it would
424da949 2290 reach the deleted occurrence in BB. */
08b7917c 2291 if (!bitmap_bit_p (inserted[e], j))
2c084240 2292 {
2293 rtx insn;
2294 edge eg = INDEX_EDGE (edge_list, e);
2295
2296 /* We can't insert anything on an abnormal and
2297 critical edge, so we insert the insn at the end of
2298 the previous block. There are several alternatives
2299 detailed in Morgans book P277 (sec 10.5) for
2300 handling this situation. This one is easiest for
2301 now. */
2302
164aece4 2303 if (eg->flags & EDGE_ABNORMAL)
36f52b0d 2304 insert_insn_end_basic_block (index_map[j], bb);
2c084240 2305 else
2306 {
2307 insn = process_insert_insn (index_map[j]);
2308 insert_insn_on_edge (insn, eg);
2309 }
2310
3f5be5f4 2311 if (dump_file)
2c084240 2312 {
d743aba2 2313 fprintf (dump_file, "PRE: edge (%d,%d), ",
b3d6de89 2314 bb->index,
2315 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
3f5be5f4 2316 fprintf (dump_file, "copy expression %d\n",
2c084240 2317 expr->bitmap_index);
2318 }
2319
8e802be9 2320 update_ld_motion_stores (expr);
08b7917c 2321 bitmap_set_bit (inserted[e], j);
2c084240 2322 did_insert = 1;
2323 gcse_create_count++;
2324 }
2325 }
2326 }
18aa2adf 2327 }
2328 }
0388e90f 2329
cca23eb2 2330 sbitmap_vector_free (inserted);
7bcd381b 2331 return did_insert;
18aa2adf 2332}
2333
53ee16e4 2334/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
9d344979 2335 Given "old_reg <- expr" (INSN), instead of adding after it
2336 reaching_reg <- old_reg
2337 it's better to do the following:
2338 reaching_reg <- expr
2339 old_reg <- reaching_reg
2340 because this way copy propagation can discover additional PRE
5c47e414 2341 opportunities. But if this fails, we try the old way.
2342 When "expr" is a store, i.e.
2343 given "MEM <- old_reg", instead of adding after it
2344 reaching_reg <- old_reg
2345 it's better to add it before as follows:
2346 reaching_reg <- old_reg
2347 MEM <- reaching_reg. */
18aa2adf 2348
2349static void
952f0048 2350pre_insert_copy_insn (struct expr *expr, rtx insn)
18aa2adf 2351{
2352 rtx reg = expr->reaching_reg;
2353 int regno = REGNO (reg);
2354 int indx = expr->bitmap_index;
53ee16e4 2355 rtx pat = PATTERN (insn);
00ce82e3 2356 rtx set, first_set, new_insn;
9d344979 2357 rtx old_reg;
53ee16e4 2358 int i;
18aa2adf 2359
53ee16e4 2360 /* This block matches the logic in hash_scan_insn. */
0d59b19d 2361 switch (GET_CODE (pat))
53ee16e4 2362 {
0d59b19d 2363 case SET:
2364 set = pat;
2365 break;
2366
2367 case PARALLEL:
53ee16e4 2368 /* Search through the parallel looking for the set whose
2369 source was the expression that we're interested in. */
00ce82e3 2370 first_set = NULL_RTX;
53ee16e4 2371 set = NULL_RTX;
2372 for (i = 0; i < XVECLEN (pat, 0); i++)
2373 {
2374 rtx x = XVECEXP (pat, 0, i);
00ce82e3 2375 if (GET_CODE (x) == SET)
53ee16e4 2376 {
00ce82e3 2377 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2378 may not find an equivalent expression, but in this
2379 case the PARALLEL will have a single set. */
2380 if (first_set == NULL_RTX)
2381 first_set = x;
2382 if (expr_equiv_p (SET_SRC (x), expr->expr))
2383 {
2384 set = x;
2385 break;
2386 }
53ee16e4 2387 }
2388 }
00ce82e3 2389
2390 gcc_assert (first_set);
2391 if (set == NULL_RTX)
2392 set = first_set;
0d59b19d 2393 break;
2394
2395 default:
2396 gcc_unreachable ();
53ee16e4 2397 }
2c084240 2398
b9f02dbb 2399 if (REG_P (SET_DEST (set)))
53ee16e4 2400 {
5c47e414 2401 old_reg = SET_DEST (set);
2402 /* Check if we can modify the set destination in the original insn. */
2403 if (validate_change (insn, &SET_DEST (set), reg, 0))
2404 {
2405 new_insn = gen_move_insn (old_reg, reg);
2406 new_insn = emit_insn_after (new_insn, insn);
5c47e414 2407 }
2408 else
2409 {
2410 new_insn = gen_move_insn (reg, old_reg);
2411 new_insn = emit_insn_after (new_insn, insn);
5c47e414 2412 }
53ee16e4 2413 }
5c47e414 2414 else /* This is possible only in case of a store to memory. */
53ee16e4 2415 {
5c47e414 2416 old_reg = SET_SRC (set);
53ee16e4 2417 new_insn = gen_move_insn (reg, old_reg);
5c47e414 2418
2419 /* Check if we can modify the set source in the original insn. */
2420 if (validate_change (insn, &SET_SRC (set), reg, 0))
2421 new_insn = emit_insn_before (new_insn, insn);
2422 else
2423 new_insn = emit_insn_after (new_insn, insn);
53ee16e4 2424 }
18aa2adf 2425
2426 gcse_create_count++;
2427
3f5be5f4 2428 if (dump_file)
2429 fprintf (dump_file,
7bcd381b 2430 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
90bd219d 2431 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
7bcd381b 2432 INSN_UID (insn), regno);
18aa2adf 2433}
2434
2435/* Copy available expressions that reach the redundant expression
2436 to `reaching_reg'. */
2437
2438static void
952f0048 2439pre_insert_copies (void)
18aa2adf 2440{
5c47e414 2441 unsigned int i, added_copy;
2c084240 2442 struct expr *expr;
2443 struct occr *occr;
2444 struct occr *avail;
b3f3796c 2445
18aa2adf 2446 /* For each available expression in the table, copy the result to
2447 `reaching_reg' if the expression reaches a deleted one.
2448
2449 ??? The current algorithm is rather brute force.
2450 Need to do some profiling. */
2451
27cfe3f1 2452 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 2453 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 2454 {
2455 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2456 we don't want to insert a copy here because the expression may not
2457 really be redundant. So only insert an insn if the expression was
2458 deleted. This test also avoids further processing if the
2459 expression wasn't deleted anywhere. */
2460 if (expr->reaching_reg == NULL)
2461 continue;
b9f02dbb 2462
5c47e414 2463 /* Set when we add a copy for that expression. */
b9f02dbb 2464 added_copy = 0;
2c084240 2465
2466 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2467 {
2468 if (! occr->deleted_p)
2469 continue;
18aa2adf 2470
2c084240 2471 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2472 {
2473 rtx insn = avail->insn;
18aa2adf 2474
2c084240 2475 /* No need to handle this one if handled already. */
2476 if (avail->copied_p)
2477 continue;
18aa2adf 2478
2c084240 2479 /* Don't handle this one if it's a redundant one. */
2e81afe5 2480 if (INSN_DELETED_P (insn))
2c084240 2481 continue;
18aa2adf 2482
2c084240 2483 /* Or if the expression doesn't reach the deleted one. */
3cfec666 2484 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
8d4a53c7 2485 expr,
2486 BLOCK_FOR_INSN (occr->insn)))
2c084240 2487 continue;
18aa2adf 2488
5c47e414 2489 added_copy = 1;
2490
2c084240 2491 /* Copy the result of avail to reaching_reg. */
2492 pre_insert_copy_insn (expr, insn);
2493 avail->copied_p = 1;
2494 }
2495 }
5c47e414 2496
b9f02dbb 2497 if (added_copy)
5c47e414 2498 update_ld_motion_stores (expr);
2c084240 2499 }
18aa2adf 2500}
2501
51f6e244 2502/* Emit move from SRC to DEST noting the equivalence with expression computed
2503 in INSN. */
bc8197c0 2504
51f6e244 2505static rtx
bc8197c0 2506gcse_emit_move_after (rtx dest, rtx src, rtx insn)
51f6e244 2507{
9ce37fa7 2508 rtx new_rtx;
65e78aeb 2509 rtx set = single_set (insn), set2;
51f6e244 2510 rtx note;
264adf90 2511 rtx eqv = NULL_RTX;
51f6e244 2512
2513 /* This should never fail since we're creating a reg->reg copy
2514 we've verified to be valid. */
2515
9ce37fa7 2516 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
27442180 2517
264adf90 2518 /* Note the equivalence for local CSE pass. Take the note from the old
2519 set if there was one. Otherwise record the SET_SRC from the old set
2520 unless DEST is also an operand of the SET_SRC. */
9ce37fa7 2521 set2 = single_set (new_rtx);
65e78aeb 2522 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
9ce37fa7 2523 return new_rtx;
51f6e244 2524 if ((note = find_reg_equal_equiv_note (insn)))
2525 eqv = XEXP (note, 0);
264adf90 2526 else if (! REG_P (dest)
2527 || ! reg_mentioned_p (dest, SET_SRC (set)))
51f6e244 2528 eqv = SET_SRC (set);
2529
264adf90 2530 if (eqv != NULL_RTX)
2531 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
51f6e244 2532
9ce37fa7 2533 return new_rtx;
51f6e244 2534}
2535
18aa2adf 2536/* Delete redundant computations.
18aa2adf 2537 Deletion is done by changing the insn to copy the `reaching_reg' of
2538 the expression into the result of the SET. It is left to later passes
67d57e27 2539 to propagate the copy or eliminate it.
18aa2adf 2540
bc8197c0 2541 Return nonzero if a change is made. */
18aa2adf 2542
2543static int
952f0048 2544pre_delete (void)
18aa2adf 2545{
a08b57af 2546 unsigned int i;
256d47d0 2547 int changed;
2c084240 2548 struct expr *expr;
2549 struct occr *occr;
b3f3796c 2550
18aa2adf 2551 changed = 0;
27cfe3f1 2552 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 2553 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 2554 {
2555 int indx = expr->bitmap_index;
18aa2adf 2556
bc8197c0 2557 /* We only need to search antic_occr since we require ANTLOC != 0. */
2c084240 2558 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2559 {
2560 rtx insn = occr->insn;
2561 rtx set;
8d4a53c7 2562 basic_block bb = BLOCK_FOR_INSN (insn);
18aa2adf 2563
53ee16e4 2564 /* We only delete insns that have a single_set. */
08b7917c 2565 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
3072d30e 2566 && (set = single_set (insn)) != 0
2567 && dbg_cnt (pre_insn))
2c084240 2568 {
2c084240 2569 /* Create a pseudo-reg to store the result of reaching
2570 expressions into. Get the mode for the new pseudo from
2571 the mode of the original destination pseudo. */
2572 if (expr->reaching_reg == NULL)
ae12ddda 2573 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2c084240 2574
bc8197c0 2575 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
51f6e244 2576 delete_insn (insn);
2577 occr->deleted_p = 1;
51f6e244 2578 changed = 1;
2579 gcse_subst_count++;
18aa2adf 2580
3f5be5f4 2581 if (dump_file)
2c084240 2582 {
3f5be5f4 2583 fprintf (dump_file,
2c084240 2584 "PRE: redundant insn %d (expression %d) in ",
2585 INSN_UID (insn), indx);
3f5be5f4 2586 fprintf (dump_file, "bb %d, reaching reg is %d\n",
b3d6de89 2587 bb->index, REGNO (expr->reaching_reg));
2c084240 2588 }
2589 }
2590 }
2591 }
18aa2adf 2592
2593 return changed;
2594}
2595
2596/* Perform GCSE optimizations using PRE.
2597 This is called by one_pre_gcse_pass after all the dataflow analysis
2598 has been done.
2599
2c084240 2600 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2601 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2602 Compiler Design and Implementation.
18aa2adf 2603
2c084240 2604 ??? A new pseudo reg is created to hold the reaching expression. The nice
2605 thing about the classical approach is that it would try to use an existing
2606 reg. If the register can't be adequately optimized [i.e. we introduce
2607 reload problems], one could add a pass here to propagate the new register
2608 through the block.
18aa2adf 2609
2c084240 2610 ??? We don't handle single sets in PARALLELs because we're [currently] not
2611 able to copy the rest of the parallel when we insert copies to create full
2612 redundancies from partial redundancies. However, there's no reason why we
2613 can't handle PARALLELs in the cases where there are no partial
18aa2adf 2614 redundancies. */
2615
2616static int
bc8197c0 2617pre_gcse (struct edge_list *edge_list)
18aa2adf 2618{
a08b57af 2619 unsigned int i;
2620 int did_insert, changed;
18aa2adf 2621 struct expr **index_map;
2c084240 2622 struct expr *expr;
18aa2adf 2623
2624 /* Compute a mapping from expression number (`bitmap_index') to
2625 hash table entry. */
2626
4c36ffe6 2627 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
27cfe3f1 2628 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 2629 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 2630 index_map[expr->bitmap_index] = expr;
18aa2adf 2631
18aa2adf 2632 /* Delete the redundant insns first so that
2633 - we know what register to use for the new insns and for the other
2634 ones with reaching expressions
2635 - we know which insns are redundant when we go to create copies */
2c084240 2636
18aa2adf 2637 changed = pre_delete ();
7bcd381b 2638 did_insert = pre_edge_insert (edge_list, index_map);
2c084240 2639
18aa2adf 2640 /* In other places with reaching expressions, copy the expression to the
7bcd381b 2641 specially allocated pseudo-reg that reaches the redundant expr. */
18aa2adf 2642 pre_insert_copies ();
7bcd381b 2643 if (did_insert)
2644 {
2645 commit_edge_insertions ();
2646 changed = 1;
2647 }
18aa2adf 2648
cd55d9d6 2649 free (index_map);
18aa2adf 2650 return changed;
2651}
2652
2653/* Top level routine to perform one PRE GCSE pass.
2654
6ef828f9 2655 Return nonzero if a change was made. */
18aa2adf 2656
2657static int
d743aba2 2658one_pre_gcse_pass (void)
18aa2adf 2659{
2660 int changed = 0;
2661
2662 gcse_subst_count = 0;
2663 gcse_create_count = 0;
2664
d743aba2 2665 /* Return if there's nothing to do, or it is too expensive. */
a28770e1 2666 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
d743aba2 2667 || is_too_expensive (_("PRE disabled")))
2668 return 0;
2669
2670 /* We need alias. */
2671 init_alias_analysis ();
2672
2673 bytes_used = 0;
2674 gcc_obstack_init (&gcse_obstack);
2675 alloc_gcse_mem ();
2676
07abdb66 2677 alloc_hash_table (&expr_hash_table);
7bcd381b 2678 add_noreturn_fake_exit_edges ();
8e802be9 2679 if (flag_gcse_lm)
2680 compute_ld_motion_mems ();
2681
27cfe3f1 2682 compute_hash_table (&expr_hash_table);
bc8197c0 2683 if (flag_gcse_lm)
2684 trim_ld_motion_mems ();
3f5be5f4 2685 if (dump_file)
2686 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2c084240 2687
27cfe3f1 2688 if (expr_hash_table.n_elems > 0)
18aa2adf 2689 {
bc8197c0 2690 struct edge_list *edge_list;
fe672ac0 2691 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
bc8197c0 2692 edge_list = compute_pre_data ();
2693 changed |= pre_gcse (edge_list);
7bcd381b 2694 free_edge_list (edge_list);
18aa2adf 2695 free_pre_mem ();
2696 }
2c084240 2697
bc8197c0 2698 if (flag_gcse_lm)
2699 free_ld_motion_mems ();
41d24834 2700 remove_fake_exit_edges ();
27cfe3f1 2701 free_hash_table (&expr_hash_table);
18aa2adf 2702
d743aba2 2703 free_gcse_mem ();
2704 obstack_free (&gcse_obstack, NULL);
2705
2706 /* We are finished with alias. */
2707 end_alias_analysis ();
2708
3f5be5f4 2709 if (dump_file)
18aa2adf 2710 {
d743aba2 2711 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
a28770e1 2712 current_function_name (), n_basic_blocks_for_fn (cfun),
2713 bytes_used);
3f5be5f4 2714 fprintf (dump_file, "%d substs, %d insns created\n",
2c084240 2715 gcse_subst_count, gcse_create_count);
18aa2adf 2716 }
2717
2718 return changed;
2719}
322b2436 2720\f
19d2fe05 2721/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2722 to INSN. If such notes are added to an insn which references a
2723 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2724 that note, because the following loop optimization pass requires
2725 them. */
322b2436 2726
322b2436 2727/* ??? If there was a jump optimization pass after gcse and before loop,
2728 then we would not need to do this here, because jump would add the
19d2fe05 2729 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
322b2436 2730
2731static void
952f0048 2732add_label_notes (rtx x, rtx insn)
322b2436 2733{
2734 enum rtx_code code = GET_CODE (x);
2735 int i, j;
d2ca078f 2736 const char *fmt;
322b2436 2737
2738 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2739 {
e72f55f8 2740 /* This code used to ignore labels that referred to dispatch tables to
d01481af 2741 avoid flow generating (slightly) worse code.
e72f55f8 2742
b65b4f63 2743 We no longer ignore such label references (see LABEL_REF handling in
2744 mark_jump_label for additional information). */
2c084240 2745
a8d1dae0 2746 /* There's no reason for current users to emit jump-insns with
2747 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2748 notes. */
2749 gcc_assert (!JUMP_P (insn));
a1ddb869 2750 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2751
a8d1dae0 2752 if (LABEL_P (XEXP (x, 0)))
2753 LABEL_NUSES (XEXP (x, 0))++;
2754
322b2436 2755 return;
2756 }
2757
2c084240 2758 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
322b2436 2759 {
2760 if (fmt[i] == 'e')
2761 add_label_notes (XEXP (x, i), insn);
2762 else if (fmt[i] == 'E')
2763 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2764 add_label_notes (XVECEXP (x, i, j), insn);
2765 }
2766}
b3f3796c 2767
6627f3ed 2768/* Code Hoisting variables and subroutines. */
2769
2770/* Very busy expressions. */
2771static sbitmap *hoist_vbein;
2772static sbitmap *hoist_vbeout;
2773
6627f3ed 2774/* ??? We could compute post dominators and run this algorithm in
95cc2547 2775 reverse to perform tail merging, doing so would probably be
6627f3ed 2776 more effective than the tail merging code in jump.c.
2777
2778 It's unclear if tail merging could be run in parallel with
2779 code hoisting. It would be nice. */
2780
2781/* Allocate vars used for code hoisting analysis. */
2782
2783static void
952f0048 2784alloc_code_hoist_mem (int n_blocks, int n_exprs)
6627f3ed 2785{
2786 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2787 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2788 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2789
2790 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2791 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
6627f3ed 2792}
2793
2794/* Free vars used for code hoisting analysis. */
2795
2796static void
952f0048 2797free_code_hoist_mem (void)
6627f3ed 2798{
cca23eb2 2799 sbitmap_vector_free (antloc);
2800 sbitmap_vector_free (transp);
2801 sbitmap_vector_free (comp);
6627f3ed 2802
cca23eb2 2803 sbitmap_vector_free (hoist_vbein);
2804 sbitmap_vector_free (hoist_vbeout);
6627f3ed 2805
0051c76a 2806 free_dominance_info (CDI_DOMINATORS);
6627f3ed 2807}
2808
2809/* Compute the very busy expressions at entry/exit from each block.
2810
2811 An expression is very busy if all paths from a given point
2812 compute the expression. */
2813
2814static void
952f0048 2815compute_code_hoist_vbeinout (void)
6627f3ed 2816{
4c26117a 2817 int changed, passes;
2818 basic_block bb;
6627f3ed 2819
fe672ac0 2820 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2821 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
6627f3ed 2822
2823 passes = 0;
2824 changed = 1;
2c084240 2825
6627f3ed 2826 while (changed)
2827 {
2828 changed = 0;
2c084240 2829
6627f3ed 2830 /* We scan the blocks in the reverse order to speed up
2831 the convergence. */
4c26117a 2832 FOR_EACH_BB_REVERSE (bb)
6627f3ed 2833 {
34154e27 2834 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
33ff724a 2835 {
08b7917c 2836 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2837 hoist_vbein, bb);
33ff724a 2838
2839 /* Include expressions in VBEout that are calculated
2840 in BB and available at its end. */
53c5d9d4 2841 bitmap_ior (hoist_vbeout[bb->index],
33ff724a 2842 hoist_vbeout[bb->index], comp[bb->index]);
2843 }
0f11b6b5 2844
53c5d9d4 2845 changed |= bitmap_or_and (hoist_vbein[bb->index],
0f11b6b5 2846 antloc[bb->index],
2847 hoist_vbeout[bb->index],
2848 transp[bb->index]);
6627f3ed 2849 }
2c084240 2850
6627f3ed 2851 passes++;
2852 }
2853
3f5be5f4 2854 if (dump_file)
c0939130 2855 {
2856 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2857
fc00614f 2858 FOR_EACH_BB_FN (bb, cfun)
c0939130 2859 {
2860 fprintf (dump_file, "vbein (%d): ", bb->index);
53c5d9d4 2861 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
c0939130 2862 fprintf (dump_file, "vbeout(%d): ", bb->index);
53c5d9d4 2863 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
c0939130 2864 }
2865 }
6627f3ed 2866}
2867
2868/* Top level routine to do the dataflow analysis needed by code hoisting. */
2869
2870static void
952f0048 2871compute_code_hoist_data (void)
6627f3ed 2872{
27cfe3f1 2873 compute_local_properties (transp, comp, antloc, &expr_hash_table);
f151d0c6 2874 prune_expressions (false);
6627f3ed 2875 compute_code_hoist_vbeinout ();
0051c76a 2876 calculate_dominance_info (CDI_DOMINATORS);
3f5be5f4 2877 if (dump_file)
2878 fprintf (dump_file, "\n");
6627f3ed 2879}
2880
ded17066 2881/* Update register pressure for BB when hoisting an expression from
2882 instruction FROM, if live ranges of inputs are shrunk. Also
2883 maintain live_in information if live range of register referred
2884 in FROM is shrunk.
2885
2886 Return 0 if register pressure doesn't change, otherwise return
2887 the number by which register pressure is decreased.
2888
2889 NOTE: Register pressure won't be increased in this function. */
2890
2891static int
2892update_bb_reg_pressure (basic_block bb, rtx from)
2893{
2894 rtx dreg, insn;
2895 basic_block succ_bb;
2896 df_ref *op, op_ref;
2897 edge succ;
2898 edge_iterator ei;
2899 int decreased_pressure = 0;
2900 int nregs;
2901 enum reg_class pressure_class;
2902
2903 for (op = DF_INSN_USES (from); *op; op++)
2904 {
2905 dreg = DF_REF_REAL_REG (*op);
2906 /* The live range of register is shrunk only if it isn't:
2907 1. referred on any path from the end of this block to EXIT, or
2908 2. referred by insns other than FROM in this block. */
2909 FOR_EACH_EDGE (succ, ei, bb->succs)
2910 {
2911 succ_bb = succ->dest;
34154e27 2912 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
ded17066 2913 continue;
2914
2915 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2916 break;
2917 }
2918 if (succ != NULL)
2919 continue;
2920
2921 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2922 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2923 {
2924 if (!DF_REF_INSN_INFO (op_ref))
2925 continue;
2926
2927 insn = DF_REF_INSN (op_ref);
2928 if (BLOCK_FOR_INSN (insn) == bb
2929 && NONDEBUG_INSN_P (insn) && insn != from)
2930 break;
2931 }
2932
2933 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
2934 /* Decrease register pressure and update live_in information for
2935 this block. */
2936 if (!op_ref && pressure_class != NO_REGS)
2937 {
2938 decreased_pressure += nregs;
2939 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
2940 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
2941 }
2942 }
2943 return decreased_pressure;
2944}
2945
1ec78e16 2946/* Determine if the expression EXPR should be hoisted to EXPR_BB up in
2947 flow graph, if it can reach BB unimpared. Stop the search if the
2948 expression would need to be moved more than DISTANCE instructions.
2949
2950 DISTANCE is the number of instructions through which EXPR can be
2951 hoisted up in flow graph.
2952
2953 BB_SIZE points to an array which contains the number of instructions
2954 for each basic block.
2955
2956 PRESSURE_CLASS and NREGS are register class and number of hard registers
2957 for storing EXPR.
2958
2959 HOISTED_BBS points to a bitmap indicating basic blocks through which
2960 EXPR is hoisted.
6627f3ed 2961
ded17066 2962 FROM is the instruction from which EXPR is hoisted.
2963
6627f3ed 2964 It's unclear exactly what Muchnick meant by "unimpared". It seems
2965 to me that the expression must either be computed or transparent in
2966 *every* block in the path(s) from EXPR_BB to BB. Any other definition
2967 would allow the expression to be hoisted out of loops, even if
2968 the expression wasn't a loop invariant.
2969
2970 Contrast this to reachability for PRE where an expression is
2971 considered reachable if *any* path reaches instead of *all*
2972 paths. */
2973
2974static int
1ec78e16 2975should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
2976 basic_block bb, sbitmap visited, int distance,
2977 int *bb_size, enum reg_class pressure_class,
ded17066 2978 int *nregs, bitmap hoisted_bbs, rtx from)
6627f3ed 2979{
1ec78e16 2980 unsigned int i;
6627f3ed 2981 edge pred;
cd665a06 2982 edge_iterator ei;
1ec78e16 2983 sbitmap_iterator sbi;
cd55d9d6 2984 int visited_allocated_locally = 0;
ded17066 2985 int decreased_pressure = 0;
3cfec666 2986
ded17066 2987 if (flag_ira_hoist_pressure)
2988 {
2989 /* Record old information of basic block BB when it is visited
2990 at the first time. */
2991 if (!bitmap_bit_p (hoisted_bbs, bb->index))
2992 {
2993 struct bb_data *data = BB_DATA (bb);
2994 bitmap_copy (data->backup, data->live_in);
2995 data->old_pressure = data->max_reg_pressure[pressure_class];
2996 }
2997 decreased_pressure = update_bb_reg_pressure (bb, from);
2998 }
8b38b150 2999 /* Terminate the search if distance, for which EXPR is allowed to move,
3000 is exhausted. */
3001 if (distance > 0)
3002 {
ded17066 3003 if (flag_ira_hoist_pressure)
3004 {
3005 /* Prefer to hoist EXPR if register pressure is decreased. */
3006 if (decreased_pressure > *nregs)
3007 distance += bb_size[bb->index];
3008 /* Let EXPR be hoisted through basic block at no cost if one
3009 of following conditions is satisfied:
3010
3011 1. The basic block has low register pressure.
3012 2. Register pressure won't be increases after hoisting EXPR.
3013
3014 Constant expressions is handled conservatively, because
3015 hoisting constant expression aggressively results in worse
3016 code. This decision is made by the observation of CSiBE
3017 on ARM target, while it has no obvious effect on other
3018 targets like x86, x86_64, mips and powerpc. */
3019 else if (CONST_INT_P (expr->expr)
3020 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3021 >= ira_class_hard_regs_num[pressure_class]
3022 && decreased_pressure < *nregs))
3023 distance -= bb_size[bb->index];
3024 }
3025 else
1ec78e16 3026 distance -= bb_size[bb->index];
8b38b150 3027
3028 if (distance <= 0)
3029 return 0;
3030 }
3031 else
3032 gcc_assert (distance == 0);
6627f3ed 3033
3034 if (visited == NULL)
3035 {
387732c1 3036 visited_allocated_locally = 1;
fe672ac0 3037 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
53c5d9d4 3038 bitmap_clear (visited);
6627f3ed 3039 }
3040
cd665a06 3041 FOR_EACH_EDGE (pred, ei, bb->preds)
6627f3ed 3042 {
8d4a53c7 3043 basic_block pred_bb = pred->src;
6627f3ed 3044
34154e27 3045 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
6627f3ed 3046 break;
2e281af0 3047 else if (pred_bb == expr_bb)
3048 continue;
08b7917c 3049 else if (bitmap_bit_p (visited, pred_bb->index))
6627f3ed 3050 continue;
08b7917c 3051 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
6627f3ed 3052 break;
3053 /* Not killed. */
3054 else
3055 {
08b7917c 3056 bitmap_set_bit (visited, pred_bb->index);
1ec78e16 3057 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3058 visited, distance, bb_size,
ded17066 3059 pressure_class, nregs,
3060 hoisted_bbs, from))
6627f3ed 3061 break;
3062 }
3063 }
3cfec666 3064 if (visited_allocated_locally)
1ec78e16 3065 {
3066 /* If EXPR can be hoisted to expr_bb, record basic blocks through
ded17066 3067 which EXPR is hoisted in hoisted_bbs. */
1ec78e16 3068 if (flag_ira_hoist_pressure && !pred)
3069 {
ded17066 3070 /* Record the basic block from which EXPR is hoisted. */
3071 bitmap_set_bit (visited, bb->index);
0d211963 3072 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
ded17066 3073 bitmap_set_bit (hoisted_bbs, i);
1ec78e16 3074 }
3075 sbitmap_free (visited);
3076 }
2c084240 3077
6627f3ed 3078 return (pred == NULL);
3079}
3080\f
9d75589a 3081/* Find occurrence in BB. */
bc8197c0 3082
8b38b150 3083static struct occr *
3084find_occr_in_bb (struct occr *occr, basic_block bb)
3085{
3086 /* Find the right occurrence of this expression. */
3087 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3088 occr = occr->next;
3089
3090 return occr;
3091}
3092
1ec78e16 3093/* Actually perform code hoisting.
3094
3095 The code hoisting pass can hoist multiple computations of the same
3096 expression along dominated path to a dominating basic block, like
3097 from b2/b3 to b1 as depicted below:
3098
3099 b1 ------
3100 /\ |
3101 / \ |
3102 bx by distance
3103 / \ |
3104 / \ |
3105 b2 b3 ------
3106
3107 Unfortunately code hoisting generally extends the live range of an
3108 output pseudo register, which increases register pressure and hurts
3109 register allocation. To address this issue, an attribute MAX_DISTANCE
3110 is computed and attached to each expression. The attribute is computed
3111 from rtx cost of the corresponding expression and it's used to control
3112 how long the expression can be hoisted up in flow graph. As the
3113 expression is hoisted up in flow graph, GCC decreases its DISTANCE
ded17066 3114 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3115 register pressure if live ranges of inputs are shrunk.
1ec78e16 3116
3117 Option "-fira-hoist-pressure" implements register pressure directed
3118 hoist based on upper method. The rationale is:
3119 1. Calculate register pressure for each basic block by reusing IRA
3120 facility.
3121 2. When expression is hoisted through one basic block, GCC checks
ded17066 3122 the change of live ranges for inputs/output. The basic block's
3123 register pressure will be increased because of extended live
3124 range of output. However, register pressure will be decreased
3125 if the live ranges of inputs are shrunk.
3126 3. After knowing how hoisting affects register pressure, GCC prefers
3127 to hoist the expression if it can decrease register pressure, by
3128 increasing DISTANCE of the corresponding expression.
3129 4. If hoisting the expression increases register pressure, GCC checks
3130 register pressure of the basic block and decrease DISTANCE only if
3131 the register pressure is high. In other words, expression will be
3132 hoisted through at no cost if the basic block has low register
3133 pressure.
3134 5. Update register pressure information for basic blocks through
3135 which expression is hoisted. */
2c084240 3136
d743aba2 3137static int
952f0048 3138hoist_code (void)
6627f3ed 3139{
4c26117a 3140 basic_block bb, dominated;
f1f41a6c 3141 vec<basic_block> dom_tree_walk;
c0939130 3142 unsigned int dom_tree_walk_index;
f1f41a6c 3143 vec<basic_block> domby;
1ec78e16 3144 unsigned int i, j, k;
6627f3ed 3145 struct expr **index_map;
2c084240 3146 struct expr *expr;
8b38b150 3147 int *to_bb_head;
3148 int *bb_size;
d743aba2 3149 int changed = 0;
1ec78e16 3150 struct bb_data *data;
3151 /* Basic blocks that have occurrences reachable from BB. */
3152 bitmap from_bbs;
3153 /* Basic blocks through which expr is hoisted. */
3154 bitmap hoisted_bbs = NULL;
3155 bitmap_iterator bi;
6627f3ed 3156
6627f3ed 3157 /* Compute a mapping from expression number (`bitmap_index') to
3158 hash table entry. */
3159
4c36ffe6 3160 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
27cfe3f1 3161 for (i = 0; i < expr_hash_table.size; i++)
bc8197c0 3162 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2c084240 3163 index_map[expr->bitmap_index] = expr;
6627f3ed 3164
8b38b150 3165 /* Calculate sizes of basic blocks and note how far
3166 each instruction is from the start of its block. We then use this
3167 data to restrict distance an expression can travel. */
3168
3169 to_bb_head = XCNEWVEC (int, get_max_uid ());
fe672ac0 3170 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
8b38b150 3171
fc00614f 3172 FOR_EACH_BB_FN (bb, cfun)
8b38b150 3173 {
3174 rtx insn;
8b38b150 3175 int to_head;
3176
8b38b150 3177 to_head = 0;
2241e3a7 3178 FOR_BB_INSNS (bb, insn)
8b38b150 3179 {
3180 /* Don't count debug instructions to avoid them affecting
3181 decision choices. */
3182 if (NONDEBUG_INSN_P (insn))
3183 to_bb_head[INSN_UID (insn)] = to_head++;
8b38b150 3184 }
3185
3186 bb_size[bb->index] = to_head;
3187 }
3188
34154e27 3189 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3190 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3191 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
c0939130 3192
1ec78e16 3193 from_bbs = BITMAP_ALLOC (NULL);
3194 if (flag_ira_hoist_pressure)
3195 hoisted_bbs = BITMAP_ALLOC (NULL);
3196
c0939130 3197 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
34154e27 3198 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
c0939130 3199
6627f3ed 3200 /* Walk over each basic block looking for potentially hoistable
3201 expressions, nothing gets hoisted from the entry block. */
f1f41a6c 3202 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
6627f3ed 3203 {
c0939130 3204 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3205
f1f41a6c 3206 if (domby.length () == 0)
c0939130 3207 continue;
6627f3ed 3208
3209 /* Examine each expression that is very busy at the exit of this
3210 block. These are the potentially hoistable expressions. */
156093aa 3211 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
6627f3ed 3212 {
08b7917c 3213 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
6627f3ed 3214 {
1ec78e16 3215 int nregs = 0;
3216 enum reg_class pressure_class = NO_REGS;
c0939130 3217 /* Current expression. */
3218 struct expr *expr = index_map[i];
9d75589a 3219 /* Number of occurrences of EXPR that can be hoisted to BB. */
c0939130 3220 int hoistable = 0;
9d75589a 3221 /* Occurrences reachable from BB. */
1e094109 3222 vec<occr_t> occrs_to_hoist = vNULL;
c0939130 3223 /* We want to insert the expression into BB only once, so
3224 note when we've inserted it. */
3225 int insn_inserted_p;
3226 occr_t occr;
3227
33ff724a 3228 /* If an expression is computed in BB and is available at end of
9d75589a 3229 BB, hoist all occurrences dominated by BB to BB. */
08b7917c 3230 if (bitmap_bit_p (comp[bb->index], i))
c0939130 3231 {
3232 occr = find_occr_in_bb (expr->antic_occr, bb);
3233
3234 if (occr)
3235 {
9d75589a 3236 /* An occurrence might've been already deleted
c0939130 3237 while processing a dominator of BB. */
c96e0a0a 3238 if (!occr->deleted_p)
c0939130 3239 {
3240 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3241 hoistable++;
3242 }
3243 }
3244 else
3245 hoistable++;
3246 }
33ff724a 3247
6627f3ed 3248 /* We've found a potentially hoistable expression, now
3249 we look at every block BB dominates to see if it
3250 computes the expression. */
f1f41a6c 3251 FOR_EACH_VEC_ELT (domby, j, dominated)
6627f3ed 3252 {
8b38b150 3253 int max_distance;
3254
6627f3ed 3255 /* Ignore self dominance. */
8c4bd339 3256 if (bb == dominated)
6627f3ed 3257 continue;
6627f3ed 3258 /* We've found a dominated block, now see if it computes
3259 the busy expression and whether or not moving that
3260 expression to the "beginning" of that block is safe. */
08b7917c 3261 if (!bitmap_bit_p (antloc[dominated->index], i))
6627f3ed 3262 continue;
3263
c0939130 3264 occr = find_occr_in_bb (expr->antic_occr, dominated);
3265 gcc_assert (occr);
8b38b150 3266
9d75589a 3267 /* An occurrence might've been already deleted
c0939130 3268 while processing a dominator of BB. */
3269 if (occr->deleted_p)
c96e0a0a 3270 continue;
c0939130 3271 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3272
3273 max_distance = expr->max_distance;
3274 if (max_distance > 0)
3275 /* Adjust MAX_DISTANCE to account for the fact that
3276 OCCR won't have to travel all of DOMINATED, but
3277 only part of it. */
3278 max_distance += (bb_size[dominated->index]
3279 - to_bb_head[INSN_UID (occr->insn)]);
8b38b150 3280
1ec78e16 3281 pressure_class = get_pressure_class_and_nregs (occr->insn,
3282 &nregs);
3283
3284 /* Note if the expression should be hoisted from the dominated
3285 block to BB if it can reach DOMINATED unimpared.
6627f3ed 3286
3287 Keep track of how many times this expression is hoistable
3288 from a dominated block into BB. */
1ec78e16 3289 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3290 max_distance, bb_size,
3291 pressure_class, &nregs,
ded17066 3292 hoisted_bbs, occr->insn))
c0939130 3293 {
3294 hoistable++;
f1f41a6c 3295 occrs_to_hoist.safe_push (occr);
c0939130 3296 bitmap_set_bit (from_bbs, dominated->index);
3297 }
6627f3ed 3298 }
3299
424da949 3300 /* If we found more than one hoistable occurrence of this
c0939130 3301 expression, then note it in the vector of expressions to
6627f3ed 3302 hoist. It makes no sense to hoist things which are computed
3303 in only one BB, and doing so tends to pessimize register
3304 allocation. One could increase this value to try harder
3305 to avoid any possible code expansion due to register
3306 allocation issues; however experiments have shown that
3307 the vast majority of hoistable expressions are only movable
d01481af 3308 from two successors, so raising this threshold is likely
6627f3ed 3309 to nullify any benefit we get from code hoisting. */
da54886a 3310 if (hoistable > 1 && dbg_cnt (hoist_insn))
6627f3ed 3311 {
f1f41a6c 3312 /* If (hoistable != vec::length), then there is
9d75589a 3313 an occurrence of EXPR in BB itself. Don't waste
c0939130 3314 time looking for LCA in this case. */
f1f41a6c 3315 if ((unsigned) hoistable == occrs_to_hoist.length ())
c0939130 3316 {
3317 basic_block lca;
3318
3319 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3320 from_bbs);
3321 if (lca != bb)
9d75589a 3322 /* Punt, it's better to hoist these occurrences to
c0939130 3323 LCA. */
f1f41a6c 3324 occrs_to_hoist.release ();
c0939130 3325 }
6627f3ed 3326 }
c0939130 3327 else
a04e8d62 3328 /* Punt, no point hoisting a single occurrence. */
f1f41a6c 3329 occrs_to_hoist.release ();
6627f3ed 3330
1ec78e16 3331 if (flag_ira_hoist_pressure
f1f41a6c 3332 && !occrs_to_hoist.is_empty ())
1ec78e16 3333 {
ded17066 3334 /* Increase register pressure of basic blocks to which
3335 expr is hoisted because of extended live range of
3336 output. */
1ec78e16 3337 data = BB_DATA (bb);
3338 data->max_reg_pressure[pressure_class] += nregs;
ded17066 3339 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3340 {
f5a6b05f 3341 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
ded17066 3342 data->max_reg_pressure[pressure_class] += nregs;
3343 }
1ec78e16 3344 }
3345 else if (flag_ira_hoist_pressure)
3346 {
ded17066 3347 /* Restore register pressure and live_in info for basic
3348 blocks recorded in hoisted_bbs when expr will not be
3349 hoisted. */
1ec78e16 3350 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3351 {
f5a6b05f 3352 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
ded17066 3353 bitmap_copy (data->live_in, data->backup);
3354 data->max_reg_pressure[pressure_class]
3355 = data->old_pressure;
1ec78e16 3356 }
3357 }
3358
3359 if (flag_ira_hoist_pressure)
3360 bitmap_clear (hoisted_bbs);
3361
c0939130 3362 insn_inserted_p = 0;
6627f3ed 3363
9d75589a 3364 /* Walk through occurrences of I'th expressions we want
c0939130 3365 to hoist to BB and make the transformations. */
f1f41a6c 3366 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
6627f3ed 3367 {
c0939130 3368 rtx insn;
3369 rtx set;
3370
3371 gcc_assert (!occr->deleted_p);
3372
3373 insn = occr->insn;
3374 set = single_set (insn);
3375 gcc_assert (set);
3376
3377 /* Create a pseudo-reg to store the result of reaching
3378 expressions into. Get the mode for the new pseudo
3379 from the mode of the original destination pseudo.
3380
3381 It is important to use new pseudos whenever we
3382 emit a set. This will allow reload to use
3383 rematerialization for such registers. */
3384 if (!insn_inserted_p)
3385 expr->reaching_reg
3386 = gen_reg_rtx_and_attrs (SET_DEST (set));
3387
bc8197c0 3388 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
c0939130 3389 insn);
3390 delete_insn (insn);
3391 occr->deleted_p = 1;
3392 changed = 1;
3393 gcse_subst_count++;
3394
3395 if (!insn_inserted_p)
6627f3ed 3396 {
c0939130 3397 insert_insn_end_basic_block (expr, bb);
3398 insn_inserted_p = 1;
6627f3ed 3399 }
3400 }
c0939130 3401
f1f41a6c 3402 occrs_to_hoist.release ();
c0939130 3403 bitmap_clear (from_bbs);
6627f3ed 3404 }
3405 }
f1f41a6c 3406 domby.release ();
6627f3ed 3407 }
2c084240 3408
f1f41a6c 3409 dom_tree_walk.release ();
1ec78e16 3410 BITMAP_FREE (from_bbs);
3411 if (flag_ira_hoist_pressure)
3412 BITMAP_FREE (hoisted_bbs);
3413
8b38b150 3414 free (bb_size);
3415 free (to_bb_head);
387732c1 3416 free (index_map);
d743aba2 3417
3418 return changed;
6627f3ed 3419}
3420
1ec78e16 3421/* Return pressure class and number of needed hard registers (through
3422 *NREGS) of register REGNO. */
3423static enum reg_class
3424get_regno_pressure_class (int regno, int *nregs)
3425{
3426 if (regno >= FIRST_PSEUDO_REGISTER)
3427 {
3428 enum reg_class pressure_class;
3429
3430 pressure_class = reg_allocno_class (regno);
3431 pressure_class = ira_pressure_class_translate[pressure_class];
3432 *nregs
3433 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3434 return pressure_class;
3435 }
3436 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3437 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3438 {
3439 *nregs = 1;
3440 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3441 }
3442 else
3443 {
3444 *nregs = 0;
3445 return NO_REGS;
3446 }
3447}
3448
3449/* Return pressure class and number of hard registers (through *NREGS)
3450 for destination of INSN. */
3451static enum reg_class
3452get_pressure_class_and_nregs (rtx insn, int *nregs)
3453{
3454 rtx reg;
3455 enum reg_class pressure_class;
3456 rtx set = single_set (insn);
3457
3458 /* Considered invariant insns have only one set. */
3459 gcc_assert (set != NULL_RTX);
3460 reg = SET_DEST (set);
3461 if (GET_CODE (reg) == SUBREG)
3462 reg = SUBREG_REG (reg);
3463 if (MEM_P (reg))
3464 {
3465 *nregs = 0;
3466 pressure_class = NO_REGS;
3467 }
3468 else
3469 {
3470 gcc_assert (REG_P (reg));
3471 pressure_class = reg_allocno_class (REGNO (reg));
3472 pressure_class = ira_pressure_class_translate[pressure_class];
3473 *nregs
3474 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3475 }
3476 return pressure_class;
3477}
3478
3479/* Increase (if INCR_P) or decrease current register pressure for
3480 register REGNO. */
3481static void
3482change_pressure (int regno, bool incr_p)
3483{
3484 int nregs;
3485 enum reg_class pressure_class;
3486
3487 pressure_class = get_regno_pressure_class (regno, &nregs);
3488 if (! incr_p)
3489 curr_reg_pressure[pressure_class] -= nregs;
3490 else
3491 {
3492 curr_reg_pressure[pressure_class] += nregs;
3493 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3494 < curr_reg_pressure[pressure_class])
3495 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3496 = curr_reg_pressure[pressure_class];
3497 }
3498}
3499
3500/* Calculate register pressure for each basic block by walking insns
3501 from last to first. */
3502static void
3503calculate_bb_reg_pressure (void)
3504{
3505 int i;
3506 unsigned int j;
3507 rtx insn;
3508 basic_block bb;
3509 bitmap curr_regs_live;
3510 bitmap_iterator bi;
3511
3512
3b3a5e5f 3513 ira_setup_eliminable_regset ();
1ec78e16 3514 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
fc00614f 3515 FOR_EACH_BB_FN (bb, cfun)
1ec78e16 3516 {
3517 curr_bb = bb;
ded17066 3518 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3519 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3520 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3521 bitmap_copy (curr_regs_live, df_get_live_out (bb));
1ec78e16 3522 for (i = 0; i < ira_pressure_classes_num; i++)
3523 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3524 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3525 change_pressure (j, true);
3526
3527 FOR_BB_INSNS_REVERSE (bb, insn)
3528 {
3529 rtx dreg;
3530 int regno;
3531 df_ref *def_rec, *use_rec;
3532
3533 if (! NONDEBUG_INSN_P (insn))
3534 continue;
3535
3536 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
3537 {
3538 dreg = DF_REF_REAL_REG (*def_rec);
3539 gcc_assert (REG_P (dreg));
3540 regno = REGNO (dreg);
3541 if (!(DF_REF_FLAGS (*def_rec)
3542 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3543 {
3544 if (bitmap_clear_bit (curr_regs_live, regno))
3545 change_pressure (regno, false);
3546 }
3547 }
3548
3549 for (use_rec = DF_INSN_USES (insn); *use_rec; use_rec++)
3550 {
3551 dreg = DF_REF_REAL_REG (*use_rec);
3552 gcc_assert (REG_P (dreg));
3553 regno = REGNO (dreg);
3554 if (bitmap_set_bit (curr_regs_live, regno))
3555 change_pressure (regno, true);
3556 }
3557 }
3558 }
3559 BITMAP_FREE (curr_regs_live);
3560
3561 if (dump_file == NULL)
3562 return;
3563
3564 fprintf (dump_file, "\nRegister Pressure: \n");
fc00614f 3565 FOR_EACH_BB_FN (bb, cfun)
1ec78e16 3566 {
3567 fprintf (dump_file, " Basic block %d: \n", bb->index);
3568 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3569 {
3570 enum reg_class pressure_class;
3571
3572 pressure_class = ira_pressure_classes[i];
3573 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3574 continue;
3575
3576 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3577 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3578 }
3579 }
3580 fprintf (dump_file, "\n");
3581}
3582
6627f3ed 3583/* Top level routine to perform one code hoisting (aka unification) pass
3584
6ef828f9 3585 Return nonzero if a change was made. */
6627f3ed 3586
3587static int
952f0048 3588one_code_hoisting_pass (void)
6627f3ed 3589{
3590 int changed = 0;
3591
d743aba2 3592 gcse_subst_count = 0;
3593 gcse_create_count = 0;
3594
3595 /* Return if there's nothing to do, or it is too expensive. */
a28770e1 3596 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
d743aba2 3597 || is_too_expensive (_("GCSE disabled")))
3598 return 0;
3599
8b38b150 3600 doing_code_hoisting_p = true;
3601
1ec78e16 3602 /* Calculate register pressure for each basic block. */
3603 if (flag_ira_hoist_pressure)
3604 {
3605 regstat_init_n_sets_and_refs ();
3606 ira_set_pseudo_classes (false, dump_file);
3607 alloc_aux_for_blocks (sizeof (struct bb_data));
3608 calculate_bb_reg_pressure ();
3609 regstat_free_n_sets_and_refs ();
3610 }
3611
d743aba2 3612 /* We need alias. */
3613 init_alias_analysis ();
3614
3615 bytes_used = 0;
3616 gcc_obstack_init (&gcse_obstack);
3617 alloc_gcse_mem ();
3618
07abdb66 3619 alloc_hash_table (&expr_hash_table);
27cfe3f1 3620 compute_hash_table (&expr_hash_table);
3f5be5f4 3621 if (dump_file)
3622 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
2c084240 3623
27cfe3f1 3624 if (expr_hash_table.n_elems > 0)
6627f3ed 3625 {
fe672ac0 3626 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3627 expr_hash_table.n_elems);
6627f3ed 3628 compute_code_hoist_data ();
d743aba2 3629 changed = hoist_code ();
6627f3ed 3630 free_code_hoist_mem ();
3631 }
2c084240 3632
1ec78e16 3633 if (flag_ira_hoist_pressure)
3634 {
3635 free_aux_for_blocks ();
3636 free_reg_info ();
3637 }
27cfe3f1 3638 free_hash_table (&expr_hash_table);
d743aba2 3639 free_gcse_mem ();
3640 obstack_free (&gcse_obstack, NULL);
3641
3642 /* We are finished with alias. */
3643 end_alias_analysis ();
3644
3645 if (dump_file)
3646 {
3647 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
a28770e1 3648 current_function_name (), n_basic_blocks_for_fn (cfun),
3649 bytes_used);
d743aba2 3650 fprintf (dump_file, "%d substs, %d insns created\n",
3651 gcse_subst_count, gcse_create_count);
3652 }
6627f3ed 3653
8b38b150 3654 doing_code_hoisting_p = false;
3655
6627f3ed 3656 return changed;
3657}
8e802be9 3658\f
bc8197c0 3659/* Here we provide the things required to do store motion towards the exit.
3660 In order for this to be effective, gcse also needed to be taught how to
3661 move a load when it is killed only by a store to itself.
8e802be9 3662
3663 int i;
3664 float a[10];
3665
3666 void foo(float scale)
3667 {
3668 for (i=0; i<10; i++)
3669 a[i] *= scale;
3670 }
3671
3672 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3cfec666 3673 the load out since its live around the loop, and stored at the bottom
3674 of the loop.
8e802be9 3675
3cfec666 3676 The 'Load Motion' referred to and implemented in this file is
bc8197c0 3677 an enhancement to gcse which when using edge based LCM, recognizes
8e802be9 3678 this situation and allows gcse to move the load out of the loop.
3679
3680 Once gcse has hoisted the load, store motion can then push this
3681 load towards the exit, and we end up with no loads or stores of 'i'
3682 in the loop. */
3683
424da949 3684/* This will search the ldst list for a matching expression. If it
8e802be9 3685 doesn't find one, we create one and initialize it. */
3686
3687static struct ls_expr *
952f0048 3688ldst_entry (rtx x)
8e802be9 3689{
69333952 3690 int do_not_record_p = 0;
8e802be9 3691 struct ls_expr * ptr;
69333952 3692 unsigned int hash;
d9dd21a8 3693 ls_expr **slot;
0d707271 3694 struct ls_expr e;
8e802be9 3695
78d140c9 3696 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3697 NULL, /*have_reg_qty=*/false);
8e802be9 3698
0d707271 3699 e.pattern = x;
d9dd21a8 3700 slot = pre_ldst_table.find_slot_with_hash (&e, hash, INSERT);
0d707271 3701 if (*slot)
d9dd21a8 3702 return *slot;
69333952 3703
4c36ffe6 3704 ptr = XNEW (struct ls_expr);
69333952 3705
3706 ptr->next = pre_ldst_mems;
3707 ptr->expr = NULL;
3708 ptr->pattern = x;
3709 ptr->pattern_regs = NULL_RTX;
3710 ptr->loads = NULL_RTX;
3711 ptr->stores = NULL_RTX;
3712 ptr->reaching_reg = NULL_RTX;
3713 ptr->invalid = 0;
3714 ptr->index = 0;
3715 ptr->hash_index = hash;
3716 pre_ldst_mems = ptr;
0d707271 3717 *slot = ptr;
3cfec666 3718
8e802be9 3719 return ptr;
3720}
3721
3722/* Free up an individual ldst entry. */
3723
3cfec666 3724static void
952f0048 3725free_ldst_entry (struct ls_expr * ptr)
8e802be9 3726{
7a676a9f 3727 free_INSN_LIST_list (& ptr->loads);
3728 free_INSN_LIST_list (& ptr->stores);
8e802be9 3729
3730 free (ptr);
3731}
3732
3733/* Free up all memory associated with the ldst list. */
3734
3735static void
bc8197c0 3736free_ld_motion_mems (void)
8e802be9 3737{
d9dd21a8 3738 if (pre_ldst_table.is_created ())
3739 pre_ldst_table.dispose ();
0d707271 3740
3cfec666 3741 while (pre_ldst_mems)
8e802be9 3742 {
3743 struct ls_expr * tmp = pre_ldst_mems;
3744
3745 pre_ldst_mems = pre_ldst_mems->next;
3746
3747 free_ldst_entry (tmp);
3748 }
3749
3750 pre_ldst_mems = NULL;
3751}
3752
3753/* Dump debugging info about the ldst list. */
3754
3755static void
952f0048 3756print_ldst_list (FILE * file)
8e802be9 3757{
3758 struct ls_expr * ptr;
3759
3760 fprintf (file, "LDST list: \n");
3761
bc8197c0 3762 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
8e802be9 3763 {
3764 fprintf (file, " Pattern (%3d): ", ptr->index);
3765
3766 print_rtl (file, ptr->pattern);
3767
3768 fprintf (file, "\n Loads : ");
3769
3770 if (ptr->loads)
3771 print_rtl (file, ptr->loads);
3772 else
3773 fprintf (file, "(nil)");
3774
3775 fprintf (file, "\n Stores : ");
3776
3777 if (ptr->stores)
3778 print_rtl (file, ptr->stores);
3779 else
3780 fprintf (file, "(nil)");
3781
3782 fprintf (file, "\n\n");
3783 }
3784
3785 fprintf (file, "\n");
3786}
3787
3788/* Returns 1 if X is in the list of ldst only expressions. */
3789
3790static struct ls_expr *
952f0048 3791find_rtx_in_ldst (rtx x)
8e802be9 3792{
0d707271 3793 struct ls_expr e;
d9dd21a8 3794 ls_expr **slot;
3795 if (!pre_ldst_table.is_created ())
00784725 3796 return NULL;
0d707271 3797 e.pattern = x;
d9dd21a8 3798 slot = pre_ldst_table.find_slot (&e, NO_INSERT);
3799 if (!slot || (*slot)->invalid)
0d707271 3800 return NULL;
d9dd21a8 3801 return *slot;
8e802be9 3802}
8e802be9 3803\f
3804/* Load Motion for loads which only kill themselves. */
3805
bc8197c0 3806/* Return true if x, a MEM, is a simple access with no side effects.
3807 These are the types of loads we consider for the ld_motion list,
3808 otherwise we let the usual aliasing take care of it. */
8e802be9 3809
3cfec666 3810static int
7ecb5bb2 3811simple_mem (const_rtx x)
8e802be9 3812{
8e802be9 3813 if (MEM_VOLATILE_P (x))
3814 return 0;
3cfec666 3815
8e802be9 3816 if (GET_MODE (x) == BLKmode)
3817 return 0;
7a676a9f 3818
64928ee5 3819 /* If we are handling exceptions, we must be careful with memory references
cbeb677e 3820 that may trap. If we are not, the behavior is undefined, so we may just
64928ee5 3821 continue. */
cbeb677e 3822 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
43f5be72 3823 return 0;
3824
64928ee5 3825 if (side_effects_p (x))
3826 return 0;
3cfec666 3827
64928ee5 3828 /* Do not consider function arguments passed on stack. */
3829 if (reg_mentioned_p (stack_pointer_rtx, x))
3830 return 0;
3831
3832 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3833 return 0;
3834
3835 return 1;
8e802be9 3836}
3837
3cfec666 3838/* Make sure there isn't a buried reference in this pattern anywhere.
3839 If there is, invalidate the entry for it since we're not capable
3840 of fixing it up just yet.. We have to be sure we know about ALL
8e802be9 3841 loads since the aliasing code will allow all entries in the
3842 ld_motion list to not-alias itself. If we miss a load, we will get
3cfec666 3843 the wrong value since gcse might common it and we won't know to
8e802be9 3844 fix it up. */
3845
3846static void
952f0048 3847invalidate_any_buried_refs (rtx x)
8e802be9 3848{
3849 const char * fmt;
387732c1 3850 int i, j;
8e802be9 3851 struct ls_expr * ptr;
3852
3853 /* Invalidate it in the list. */
b9f02dbb 3854 if (MEM_P (x) && simple_mem (x))
8e802be9 3855 {
3856 ptr = ldst_entry (x);
3857 ptr->invalid = 1;
3858 }
3859
3860 /* Recursively process the insn. */
3861 fmt = GET_RTX_FORMAT (GET_CODE (x));
3cfec666 3862
8e802be9 3863 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3864 {
3865 if (fmt[i] == 'e')
3866 invalidate_any_buried_refs (XEXP (x, i));
3867 else if (fmt[i] == 'E')
3868 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3869 invalidate_any_buried_refs (XVECEXP (x, i, j));
3870 }
3871}
3872
c5d8ca43 3873/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3874 being defined as MEM loads and stores to symbols, with no side effects
3875 and no registers in the expression. For a MEM destination, we also
3876 check that the insn is still valid if we replace the destination with a
3877 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3878 which don't match this criteria, they are invalidated and trimmed out
3879 later. */
8e802be9 3880
3cfec666 3881static void
952f0048 3882compute_ld_motion_mems (void)
8e802be9 3883{
3884 struct ls_expr * ptr;
4c26117a 3885 basic_block bb;
8e802be9 3886 rtx insn;
3cfec666 3887
8e802be9 3888 pre_ldst_mems = NULL;
d9dd21a8 3889 pre_ldst_table.create (13);
8e802be9 3890
fc00614f 3891 FOR_EACH_BB_FN (bb, cfun)
8e802be9 3892 {
defc8016 3893 FOR_BB_INSNS (bb, insn)
8e802be9 3894 {
9845d120 3895 if (NONDEBUG_INSN_P (insn))
8e802be9 3896 {
3897 if (GET_CODE (PATTERN (insn)) == SET)
3898 {
3899 rtx src = SET_SRC (PATTERN (insn));
3900 rtx dest = SET_DEST (PATTERN (insn));
f473eb72 3901 rtx note = find_reg_equal_equiv_note (insn);
3902 rtx src_eq;
8e802be9 3903
3904 /* Check for a simple LOAD... */
b9f02dbb 3905 if (MEM_P (src) && simple_mem (src))
8e802be9 3906 {
3907 ptr = ldst_entry (src);
b9f02dbb 3908 if (REG_P (dest))
8e802be9 3909 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3910 else
3911 ptr->invalid = 1;
3912 }
3913 else
3914 {
3915 /* Make sure there isn't a buried load somewhere. */
3916 invalidate_any_buried_refs (src);
3917 }
3cfec666 3918
f473eb72 3919 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3920 src_eq = XEXP (note, 0);
3921 else
3922 src_eq = NULL_RTX;
3923
3924 if (src_eq != NULL_RTX
3925 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3926 invalidate_any_buried_refs (src_eq);
3927
8e802be9 3928 /* Check for stores. Don't worry about aliased ones, they
3929 will block any movement we might do later. We only care
3930 about this exact pattern since those are the only
3931 circumstance that we will ignore the aliasing info. */
b9f02dbb 3932 if (MEM_P (dest) && simple_mem (dest))
8e802be9 3933 {
3934 ptr = ldst_entry (dest);
3cfec666 3935
b9f02dbb 3936 if (! MEM_P (src)
c5d8ca43 3937 && GET_CODE (src) != ASM_OPERANDS
3938 /* Check for REG manually since want_to_gcse_p
3939 returns 0 for all REGs. */
4b673aa1 3940 && can_assign_to_reg_without_clobbers_p (src))
8e802be9 3941 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
3942 else
3943 ptr->invalid = 1;
3944 }
3945 }
3946 else
3947 invalidate_any_buried_refs (PATTERN (insn));
3948 }
3949 }
3950 }
3951}
3952
3cfec666 3953/* Remove any references that have been either invalidated or are not in the
8e802be9 3954 expression list for pre gcse. */
3955
3956static void
952f0048 3957trim_ld_motion_mems (void)
8e802be9 3958{
69333952 3959 struct ls_expr * * last = & pre_ldst_mems;
3960 struct ls_expr * ptr = pre_ldst_mems;
8e802be9 3961
3962 while (ptr != NULL)
3963 {
69333952 3964 struct expr * expr;
3cfec666 3965
8e802be9 3966 /* Delete if entry has been made invalid. */
69333952 3967 if (! ptr->invalid)
8e802be9 3968 {
8e802be9 3969 /* Delete if we cannot find this mem in the expression list. */
69333952 3970 unsigned int hash = ptr->hash_index % expr_hash_table.size;
3cfec666 3971
69333952 3972 for (expr = expr_hash_table.table[hash];
3973 expr != NULL;
3974 expr = expr->next_same_hash)
3975 if (expr_equiv_p (expr->expr, ptr->pattern))
3976 break;
8e802be9 3977 }
3978 else
69333952 3979 expr = (struct expr *) 0;
3980
3981 if (expr)
8e802be9 3982 {
3983 /* Set the expression field if we are keeping it. */
8e802be9 3984 ptr->expr = expr;
69333952 3985 last = & ptr->next;
8e802be9 3986 ptr = ptr->next;
3987 }
69333952 3988 else
3989 {
3990 *last = ptr->next;
d9dd21a8 3991 pre_ldst_table.remove_elt_with_hash (ptr, ptr->hash_index);
69333952 3992 free_ldst_entry (ptr);
3993 ptr = * last;
3994 }
8e802be9 3995 }
3996
3997 /* Show the world what we've found. */
3f5be5f4 3998 if (dump_file && pre_ldst_mems != NULL)
3999 print_ldst_list (dump_file);
8e802be9 4000}
4001
4002/* This routine will take an expression which we are replacing with
4003 a reaching register, and update any stores that are needed if
4004 that expression is in the ld_motion list. Stores are updated by
91c82c20 4005 copying their SRC to the reaching register, and then storing
8e802be9 4006 the reaching register into the store location. These keeps the
4007 correct value in the reaching register for the loads. */
4008
4009static void
952f0048 4010update_ld_motion_stores (struct expr * expr)
8e802be9 4011{
4012 struct ls_expr * mem_ptr;
4013
4014 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4015 {
3cfec666 4016 /* We can try to find just the REACHED stores, but is shouldn't
4017 matter to set the reaching reg everywhere... some might be
8e802be9 4018 dead and should be eliminated later. */
4019
c5d8ca43 4020 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4021 where reg is the reaching reg used in the load. We checked in
4022 compute_ld_motion_mems that we can replace (set mem expr) with
4023 (set reg expr) in that insn. */
8e802be9 4024 rtx list = mem_ptr->stores;
3cfec666 4025
8e802be9 4026 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4027 {
4028 rtx insn = XEXP (list, 0);
4029 rtx pat = PATTERN (insn);
4030 rtx src = SET_SRC (pat);
4031 rtx reg = expr->reaching_reg;
d52d7a3a 4032 rtx copy;
8e802be9 4033
4034 /* If we've already copied it, continue. */
4035 if (expr->reaching_reg == src)
4036 continue;
3cfec666 4037
3f5be5f4 4038 if (dump_file)
8e802be9 4039 {
3f5be5f4 4040 fprintf (dump_file, "PRE: store updated with reaching reg ");
bc8197c0 4041 print_rtl (dump_file, reg);
3f5be5f4 4042 fprintf (dump_file, ":\n ");
4043 print_inline_rtx (dump_file, insn, 8);
4044 fprintf (dump_file, "\n");
8e802be9 4045 }
3cfec666 4046
2e81afe5 4047 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
d52d7a3a 4048 emit_insn_before (copy, insn);
8e802be9 4049 SET_SRC (pat) = reg;
3072d30e 4050 df_insn_rescan (insn);
8e802be9 4051
4052 /* un-recognize this pattern since it's probably different now. */
4053 INSN_CODE (insn) = -1;
4054 gcse_create_count++;
4055 }
4056 }
4057}
4058\f
4b673aa1 4059/* Return true if the graph is too expensive to optimize. PASS is the
4060 optimization about to be performed. */
64928ee5 4061
4b673aa1 4062static bool
4063is_too_expensive (const char *pass)
4064{
4065 /* Trying to perform global optimizations on flow graphs which have
4066 a high connectivity will take a long time and is unlikely to be
4067 particularly useful.
7a676a9f 4068
4b673aa1 4069 In normal circumstances a cfg should have about twice as many
4070 edges as blocks. But we do not want to punish small functions
4071 which have a couple switch statements. Rather than simply
4072 threshold the number of blocks, uses something with a more
4073 graceful degradation. */
f1955b22 4074 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4b673aa1 4075 {
4076 warning (OPT_Wdisabled_optimization,
4077 "%s: %d basic blocks and %d edges/basic block",
a28770e1 4078 pass, n_basic_blocks_for_fn (cfun),
f1955b22 4079 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
8e802be9 4080
4b673aa1 4081 return true;
4082 }
8e802be9 4083
07abdb66 4084 /* If allocating memory for the dataflow bitmaps would take up too much
4b673aa1 4085 storage it's better just to disable the optimization. */
a28770e1 4086 if ((n_basic_blocks_for_fn (cfun)
4b673aa1 4087 * SBITMAP_SET_SIZE (max_reg_num ())
4088 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4089 {
4090 warning (OPT_Wdisabled_optimization,
4091 "%s: %d basic blocks and %d registers",
a28770e1 4092 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
8e802be9 4093
4b673aa1 4094 return true;
4095 }
42334a67 4096
4b673aa1 4097 return false;
9e4a9ceb 4098}
4b673aa1 4099\f
4100/* All the passes implemented in this file. Each pass has its
4101 own gate and execute function, and at the end of the file a
4102 pass definition for passes.c.
64928ee5 4103
4b673aa1 4104 We do not construct an accurate cfg in functions which call
4105 setjmp, so none of these passes runs if the function calls
4106 setjmp.
4107 FIXME: Should just handle setjmp via REG_SETJMP notes. */
8e802be9 4108
4b673aa1 4109static bool
4110gate_rtl_pre (void)
4111{
4112 return optimize > 0 && flag_gcse
de2ca00d 4113 && !cfun->calls_setjmp
4114 && optimize_function_for_speed_p (cfun)
4115 && dbg_cnt (pre);
4b673aa1 4116}
3cfec666 4117
4b673aa1 4118static unsigned int
4119execute_rtl_pre (void)
4120{
805e3e15 4121 int changed;
4b673aa1 4122 delete_unreachable_blocks ();
4b673aa1 4123 df_analyze ();
805e3e15 4124 changed = one_pre_gcse_pass ();
4125 flag_rerun_cse_after_global_opts |= changed;
4126 if (changed)
4127 cleanup_cfg (0);
4b673aa1 4128 return 0;
4129}
7a676a9f 4130
4b673aa1 4131static bool
4132gate_rtl_hoist (void)
4133{
4134 return optimize > 0 && flag_gcse
de2ca00d 4135 && !cfun->calls_setjmp
4136 /* It does not make sense to run code hoisting unless we are optimizing
4137 for code size -- it rarely makes programs faster, and can make then
4138 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4139 && optimize_function_for_size_p (cfun)
4140 && dbg_cnt (hoist);
4b673aa1 4141}
7a676a9f 4142
4b673aa1 4143static unsigned int
4144execute_rtl_hoist (void)
4145{
805e3e15 4146 int changed;
4b673aa1 4147 delete_unreachable_blocks ();
4b673aa1 4148 df_analyze ();
805e3e15 4149 changed = one_code_hoisting_pass ();
4150 flag_rerun_cse_after_global_opts |= changed;
4151 if (changed)
4152 cleanup_cfg (0);
4b673aa1 4153 return 0;
4154}
77fce4cd 4155
cbe8bda8 4156namespace {
4157
4158const pass_data pass_data_rtl_pre =
77fce4cd 4159{
cbe8bda8 4160 RTL_PASS, /* type */
4161 "rtl pre", /* name */
4162 OPTGROUP_NONE, /* optinfo_flags */
4163 true, /* has_gate */
4164 true, /* has_execute */
4165 TV_PRE, /* tv_id */
4166 PROP_cfglayout, /* properties_required */
4167 0, /* properties_provided */
4168 0, /* properties_destroyed */
4169 0, /* todo_flags_start */
4170 ( TODO_df_finish | TODO_verify_rtl_sharing
4171 | TODO_verify_flow ), /* todo_flags_finish */
d743aba2 4172};
77fce4cd 4173
cbe8bda8 4174class pass_rtl_pre : public rtl_opt_pass
4175{
4176public:
9af5ce0c 4177 pass_rtl_pre (gcc::context *ctxt)
4178 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
cbe8bda8 4179 {}
4180
4181 /* opt_pass methods: */
4182 bool gate () { return gate_rtl_pre (); }
4183 unsigned int execute () { return execute_rtl_pre (); }
4184
4185}; // class pass_rtl_pre
4186
4187} // anon namespace
4188
4189rtl_opt_pass *
4190make_pass_rtl_pre (gcc::context *ctxt)
4191{
4192 return new pass_rtl_pre (ctxt);
4193}
4194
4195namespace {
4196
4197const pass_data pass_data_rtl_hoist =
77fce4cd 4198{
cbe8bda8 4199 RTL_PASS, /* type */
4200 "hoist", /* name */
4201 OPTGROUP_NONE, /* optinfo_flags */
4202 true, /* has_gate */
4203 true, /* has_execute */
4204 TV_HOIST, /* tv_id */
4205 PROP_cfglayout, /* properties_required */
4206 0, /* properties_provided */
4207 0, /* properties_destroyed */
4208 0, /* todo_flags_start */
4209 ( TODO_df_finish | TODO_verify_rtl_sharing
4210 | TODO_verify_flow ), /* todo_flags_finish */
77fce4cd 4211};
4212
cbe8bda8 4213class pass_rtl_hoist : public rtl_opt_pass
4214{
4215public:
9af5ce0c 4216 pass_rtl_hoist (gcc::context *ctxt)
4217 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
cbe8bda8 4218 {}
4219
4220 /* opt_pass methods: */
4221 bool gate () { return gate_rtl_hoist (); }
4222 unsigned int execute () { return execute_rtl_hoist (); }
4223
4224}; // class pass_rtl_hoist
4225
4226} // anon namespace
4227
4228rtl_opt_pass *
4229make_pass_rtl_hoist (gcc::context *ctxt)
4230{
4231 return new pass_rtl_hoist (ctxt);
4232}
4233
1f3233d1 4234#include "gt-gcse.h"