]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/genrecog.c
mangle18-1.C: Modify regexp to test for `[...
[thirdparty/gcc.git] / gcc / genrecog.c
CommitLineData
ec65fa66 1/* Generate code from machine description to recognize rtl as insns.
d050d723 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
3d7aafde 3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
ec65fa66 4
1322177d 5 This file is part of GCC.
09051660 6
1322177d
LB
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
09051660
RH
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
1322177d
LB
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
09051660
RH
16
17 You should have received a copy of the GNU General Public License
1322177d
LB
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
09051660
RH
21
22
23/* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
ec65fa66
RK
37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
09051660
RH
41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
ec65fa66 43
09051660
RH
44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
2f937369 46 rtl as an INSN list.
09051660
RH
47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
2f937369 50 the new rtl is returned in an INSN list, and LAST_INSN will point
09051660 51 to the last recognized insn in the old sequence. */
ec65fa66 52
4977bab6 53#include "bconfig.h"
0b93b64e 54#include "system.h"
4977bab6
ZW
55#include "coretypes.h"
56#include "tm.h"
ec65fa66 57#include "rtl.h"
f8b6598e 58#include "errors.h"
c88c0d42 59#include "gensupport.h"
ec65fa66 60
3916d6d8 61
736b02fd
KG
62#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
8aeba909 65/* Holds an array of names indexed by insn_code_number. */
a995e389
RH
66static char **insn_name_ptr = 0;
67static int insn_name_ptr_size = 0;
4db83042 68
09051660 69/* A listhead of decision trees. The alternatives to a node are kept
fbe5a4a6 70 in a doubly-linked list so we can easily add nodes to the proper
09051660
RH
71 place when merging. */
72
73struct decision_head
74{
75 struct decision *first;
76 struct decision *last;
77};
5b7c7046 78
09051660
RH
79/* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
82
83struct decision_test
84{
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
87
88 /* These types are roughly in the order in which we'd like to test them. */
070ef6f4
RK
89 enum decision_type
90 {
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
5b7c7046 93 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
070ef6f4
RK
94 DT_accept_op, DT_accept_insn
95 } type;
09051660
RH
96
97 union
98 {
99 enum machine_mode mode; /* Machine mode of node. */
100 RTX_CODE code; /* Code to test. */
e0689256 101
09051660
RH
102 struct
103 {
104 const char *name; /* Predicate to call. */
105 int index; /* Index into `preds' or -1. */
106 enum machine_mode mode; /* Machine mode for node. */
107 } pred;
108
109 const char *c_test; /* Additional test to perform. */
110 int veclen; /* Length of vector. */
111 int dup; /* Number of operand to compare against. */
112 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
113 int opno; /* Operand number matched. */
114
115 struct {
116 int code_number; /* Insn number matched. */
bcdaba58 117 int lineno; /* Line number of the insn. */
09051660
RH
118 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
119 } insn;
120 } u;
121};
e0689256 122
09051660 123/* Data structure for decision tree for recognizing legitimate insns. */
ec65fa66
RK
124
125struct decision
126{
09051660
RH
127 struct decision_head success; /* Nodes to test on success. */
128 struct decision *next; /* Node to test on failure. */
129 struct decision *prev; /* Node whose failure tests us. */
130 struct decision *afterward; /* Node to test on success,
131 but failure of successor nodes. */
132
133 const char *position; /* String denoting position in pattern. */
134
135 struct decision_test *tests; /* The tests for this node. */
136
e0689256 137 int number; /* Node number, used for labels */
e0689256 138 int subroutine_number; /* Number of subroutine this node starts */
09051660 139 int need_label; /* Label needs to be output. */
ec65fa66
RK
140};
141
09051660 142#define SUBROUTINE_THRESHOLD 100
ec65fa66
RK
143
144static int next_subroutine_number;
145
ede7cd44
RH
146/* We can write three types of subroutines: One for insn recognition,
147 one to split insns, and one for peephole-type optimizations. This
148 defines which type is being written. */
ec65fa66 149
09051660
RH
150enum routine_type {
151 RECOG, SPLIT, PEEPHOLE2
152};
ede7cd44 153
09051660 154#define IS_SPLIT(X) ((X) != RECOG)
ec65fa66 155
e0689256 156/* Next available node number for tree nodes. */
ec65fa66 157
e0689256 158static int next_number;
ec65fa66 159
e0689256 160/* Next number to use as an insn_code. */
ec65fa66 161
e0689256 162static int next_insn_code;
ec65fa66 163
e0689256 164/* Similar, but counts all expressions in the MD file; used for
0f41302f 165 error messages. */
ec65fa66 166
e0689256 167static int next_index;
ec65fa66 168
e0689256
RK
169/* Record the highest depth we ever have so we know how many variables to
170 allocate in each subroutine we make. */
ec65fa66 171
e0689256 172static int max_depth;
bcdaba58
RH
173
174/* The line number of the start of the pattern currently being processed. */
175static int pattern_lineno;
176
177/* Count of errors. */
178static int error_count;
e0689256
RK
179\f
180/* This table contains a list of the rtl codes that can possibly match a
09051660 181 predicate defined in recog.c. The function `maybe_both_true' uses it to
e0689256
RK
182 deduce that there are no expressions that can be matches by certain pairs
183 of tree nodes. Also, if a predicate can match only one code, we can
184 hardwire that code into the node testing the predicate. */
ec65fa66 185
8b60264b 186static const struct pred_table
e0689256 187{
8b60264b
KG
188 const char *const name;
189 const RTX_CODE codes[NUM_RTX_CODE];
09051660
RH
190} preds[] = {
191 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
0b40e88e 192 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
e0689256 193#ifdef PREDICATE_CODES
09051660 194 PREDICATE_CODES
e0689256 195#endif
09051660 196 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
0b40e88e
EB
197 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
198 PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG, ADDRESSOF}},
200 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
09051660
RH
201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
0b40e88e 206 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
09051660 207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
0b40e88e 208 LABEL_REF, SUBREG, REG, ADDRESSOF}},
09051660
RH
209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
3a3677ff
RH
213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
214 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
8116809c 215 UNLT, LTGT}}
09051660 216};
e0689256 217
b6a1cbae 218#define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
ec65fa66 219
27c38fbe 220static const char *const special_mode_pred_table[] = {
8fe0ca0c
RH
221#ifdef SPECIAL_MODE_PREDICATES
222 SPECIAL_MODE_PREDICATES
223#endif
556ffcc5 224 "pmode_register_operand"
8fe0ca0c
RH
225};
226
b6a1cbae 227#define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
8fe0ca0c 228
09051660 229static struct decision *new_decision
3d7aafde 230 (const char *, struct decision_head *);
09051660 231static struct decision_test *new_decision_test
3d7aafde 232 (enum decision_type, struct decision_test ***);
8fe0ca0c 233static rtx find_operand
3d7aafde 234 (rtx, int);
c0ea284b 235static rtx find_matching_operand
3d7aafde 236 (rtx, int);
8fe0ca0c 237static void validate_pattern
3d7aafde 238 (rtx, rtx, rtx, int);
09051660 239static struct decision *add_to_sequence
3d7aafde 240 (rtx, struct decision_head *, const char *, enum routine_type, int);
09051660
RH
241
242static int maybe_both_true_2
3d7aafde 243 (struct decision_test *, struct decision_test *);
09051660 244static int maybe_both_true_1
3d7aafde 245 (struct decision_test *, struct decision_test *);
09051660 246static int maybe_both_true
3d7aafde 247 (struct decision *, struct decision *, int);
09051660
RH
248
249static int nodes_identical_1
3d7aafde 250 (struct decision_test *, struct decision_test *);
09051660 251static int nodes_identical
3d7aafde 252 (struct decision *, struct decision *);
09051660 253static void merge_accept_insn
3d7aafde 254 (struct decision *, struct decision *);
09051660 255static void merge_trees
3d7aafde 256 (struct decision_head *, struct decision_head *);
09051660
RH
257
258static void factor_tests
3d7aafde 259 (struct decision_head *);
09051660 260static void simplify_tests
3d7aafde 261 (struct decision_head *);
09051660 262static int break_out_subroutines
3d7aafde 263 (struct decision_head *, int);
09051660 264static void find_afterward
3d7aafde 265 (struct decision_head *, struct decision *);
09051660
RH
266
267static void change_state
3d7aafde 268 (const char *, const char *, struct decision *, const char *);
09051660 269static void print_code
3d7aafde 270 (enum rtx_code);
09051660 271static void write_afterward
3d7aafde 272 (struct decision *, struct decision *, const char *);
09051660 273static struct decision *write_switch
3d7aafde 274 (struct decision *, int);
09051660 275static void write_cond
3d7aafde 276 (struct decision_test *, int, enum routine_type);
09051660 277static void write_action
3d7aafde
AJ
278 (struct decision *, struct decision_test *, int, int,
279 struct decision *, enum routine_type);
09051660 280static int is_unconditional
3d7aafde 281 (struct decision_test *, enum routine_type);
09051660 282static int write_node
3d7aafde 283 (struct decision *, int, enum routine_type);
09051660 284static void write_tree_1
3d7aafde 285 (struct decision_head *, int, enum routine_type);
09051660 286static void write_tree
3d7aafde 287 (struct decision_head *, const char *, enum routine_type, int);
09051660 288static void write_subroutine
3d7aafde 289 (struct decision_head *, enum routine_type);
09051660 290static void write_subroutines
3d7aafde 291 (struct decision_head *, enum routine_type);
09051660 292static void write_header
3d7aafde 293 (void);
09051660
RH
294
295static struct decision_head make_insn_sequence
3d7aafde 296 (rtx, enum routine_type);
09051660 297static void process_tree
3d7aafde 298 (struct decision_head *, enum routine_type);
5b7c7046 299
09051660 300static void record_insn_name
3d7aafde 301 (int, const char *);
09051660 302
36f0e0a6 303static void debug_decision_0
3d7aafde 304 (struct decision *, int, int);
09051660 305static void debug_decision_1
3d7aafde 306 (struct decision *, int);
09051660 307static void debug_decision_2
3d7aafde 308 (struct decision_test *);
09051660 309extern void debug_decision
3d7aafde 310 (struct decision *);
36f0e0a6 311extern void debug_decision_list
3d7aafde 312 (struct decision *);
ede7cd44 313\f
09051660 314/* Create a new node in sequence after LAST. */
e0689256 315
09051660 316static struct decision *
3d7aafde 317new_decision (const char *position, struct decision_head *last)
ec65fa66 318{
29da5c92 319 struct decision *new = xcalloc (1, sizeof (struct decision));
ec65fa66 320
09051660
RH
321 new->success = *last;
322 new->position = xstrdup (position);
323 new->number = next_number++;
ec65fa66 324
09051660
RH
325 last->first = last->last = new;
326 return new;
327}
e0689256 328
09051660 329/* Create a new test and link it in at PLACE. */
ec65fa66 330
09051660 331static struct decision_test *
3d7aafde 332new_decision_test (enum decision_type type, struct decision_test ***pplace)
09051660
RH
333{
334 struct decision_test **place = *pplace;
335 struct decision_test *test;
ec65fa66 336
703ad42b 337 test = xmalloc (sizeof (*test));
09051660
RH
338 test->next = *place;
339 test->type = type;
340 *place = test;
ede7cd44 341
09051660
RH
342 place = &test->next;
343 *pplace = place;
ec65fa66 344
09051660 345 return test;
e0689256 346}
09051660 347
8fe0ca0c
RH
348/* Search for and return operand N. */
349
350static rtx
3d7aafde 351find_operand (rtx pattern, int n)
8fe0ca0c
RH
352{
353 const char *fmt;
354 RTX_CODE code;
355 int i, j, len;
356 rtx r;
357
358 code = GET_CODE (pattern);
359 if ((code == MATCH_SCRATCH
360 || code == MATCH_INSN
361 || code == MATCH_OPERAND
362 || code == MATCH_OPERATOR
363 || code == MATCH_PARALLEL)
364 && XINT (pattern, 0) == n)
365 return pattern;
366
367 fmt = GET_RTX_FORMAT (code);
368 len = GET_RTX_LENGTH (code);
369 for (i = 0; i < len; i++)
370 {
371 switch (fmt[i])
372 {
373 case 'e': case 'u':
374 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
375 return r;
376 break;
377
c0ea284b
RH
378 case 'V':
379 if (! XVEC (pattern, i))
380 break;
381 /* FALLTHRU */
382
8fe0ca0c
RH
383 case 'E':
384 for (j = 0; j < XVECLEN (pattern, i); j++)
385 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
386 return r;
387 break;
388
389 case 'i': case 'w': case '0': case 's':
390 break;
391
392 default:
393 abort ();
394 }
395 }
396
397 return NULL;
398}
399
c0ea284b
RH
400/* Search for and return operand M, such that it has a matching
401 constraint for operand N. */
402
403static rtx
3d7aafde 404find_matching_operand (rtx pattern, int n)
c0ea284b
RH
405{
406 const char *fmt;
407 RTX_CODE code;
408 int i, j, len;
409 rtx r;
410
411 code = GET_CODE (pattern);
412 if (code == MATCH_OPERAND
413 && (XSTR (pattern, 2)[0] == '0' + n
414 || (XSTR (pattern, 2)[0] == '%'
415 && XSTR (pattern, 2)[1] == '0' + n)))
416 return pattern;
417
418 fmt = GET_RTX_FORMAT (code);
419 len = GET_RTX_LENGTH (code);
420 for (i = 0; i < len; i++)
421 {
422 switch (fmt[i])
423 {
424 case 'e': case 'u':
425 if ((r = find_matching_operand (XEXP (pattern, i), n)))
426 return r;
427 break;
428
429 case 'V':
430 if (! XVEC (pattern, i))
431 break;
432 /* FALLTHRU */
433
434 case 'E':
435 for (j = 0; j < XVECLEN (pattern, i); j++)
436 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
437 return r;
438 break;
439
440 case 'i': case 'w': case '0': case 's':
441 break;
442
443 default:
444 abort ();
445 }
446 }
447
448 return NULL;
449}
450
451
aece2740 452/* Check for various errors in patterns. SET is nonnull for a destination,
7297e9fc
RH
453 and is the complete set pattern. SET_CODE is '=' for normal sets, and
454 '+' within a context that requires in-out constraints. */
bcdaba58
RH
455
456static void
3d7aafde 457validate_pattern (rtx pattern, rtx insn, rtx set, int set_code)
bcdaba58
RH
458{
459 const char *fmt;
460 RTX_CODE code;
8fe0ca0c
RH
461 size_t i, len;
462 int j;
bcdaba58
RH
463
464 code = GET_CODE (pattern);
465 switch (code)
466 {
467 case MATCH_SCRATCH:
bcdaba58
RH
468 return;
469
8fe0ca0c 470 case MATCH_INSN:
bcdaba58 471 case MATCH_OPERAND:
8fe0ca0c 472 case MATCH_OPERATOR:
bcdaba58
RH
473 {
474 const char *pred_name = XSTR (pattern, 1);
8fe0ca0c
RH
475 int allows_non_lvalue = 1, allows_non_const = 1;
476 int special_mode_pred = 0;
477 const char *c_test;
478
479 if (GET_CODE (insn) == DEFINE_INSN)
480 c_test = XSTR (insn, 2);
481 else
482 c_test = XSTR (insn, 1);
bcdaba58
RH
483
484 if (pred_name[0] != 0)
485 {
8fe0ca0c 486 for (i = 0; i < NUM_KNOWN_PREDS; i++)
bcdaba58
RH
487 if (! strcmp (preds[i].name, pred_name))
488 break;
489
8fe0ca0c 490 if (i < NUM_KNOWN_PREDS)
bcdaba58 491 {
8fe0ca0c 492 int j;
bcdaba58 493
8fe0ca0c 494 allows_non_lvalue = allows_non_const = 0;
bcdaba58 495 for (j = 0; preds[i].codes[j] != 0; j++)
bcdaba58 496 {
8fe0ca0c
RH
497 RTX_CODE c = preds[i].codes[j];
498 if (c != LABEL_REF
499 && c != SYMBOL_REF
500 && c != CONST_INT
501 && c != CONST_DOUBLE
502 && c != CONST
503 && c != HIGH
504 && c != CONSTANT_P_RTX)
505 allows_non_const = 1;
506
507 if (c != REG
508 && c != SUBREG
509 && c != MEM
0b40e88e 510 && c != ADDRESSOF
8fe0ca0c
RH
511 && c != CONCAT
512 && c != PARALLEL
513 && c != STRICT_LOW_PART)
514 allows_non_lvalue = 1;
bcdaba58
RH
515 }
516 }
517 else
518 {
519#ifdef PREDICATE_CODES
520 /* If the port has a list of the predicates it uses but
521 omits one, warn. */
8fe0ca0c
RH
522 message_with_line (pattern_lineno,
523 "warning: `%s' not in PREDICATE_CODES",
524 pred_name);
bcdaba58
RH
525#endif
526 }
8fe0ca0c
RH
527
528 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
529 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
530 {
531 special_mode_pred = 1;
532 break;
533 }
534 }
535
0dab343a 536 if (code == MATCH_OPERAND)
aece2740 537 {
0dab343a
RH
538 const char constraints0 = XSTR (pattern, 2)[0];
539
3d7aafde 540 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
0dab343a
RH
541 don't use the MATCH_OPERAND constraint, only the predicate.
542 This is confusing to folks doing new ports, so help them
543 not make the mistake. */
544 if (GET_CODE (insn) == DEFINE_EXPAND
545 || GET_CODE (insn) == DEFINE_SPLIT
546 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
7297e9fc 547 {
0dab343a
RH
548 if (constraints0)
549 message_with_line (pattern_lineno,
550 "warning: constraints not supported in %s",
551 rtx_name[GET_CODE (insn)]);
552 }
3d7aafde 553
0dab343a
RH
554 /* A MATCH_OPERAND that is a SET should have an output reload. */
555 else if (set && constraints0)
556 {
557 if (set_code == '+')
558 {
559 if (constraints0 == '+')
560 ;
561 /* If we've only got an output reload for this operand,
562 we'd better have a matching input operand. */
563 else if (constraints0 == '='
564 && find_matching_operand (insn, XINT (pattern, 0)))
565 ;
566 else
567 {
568 message_with_line (pattern_lineno,
569 "operand %d missing in-out reload",
570 XINT (pattern, 0));
571 error_count++;
572 }
573 }
574 else if (constraints0 != '=' && constraints0 != '+')
c0ea284b
RH
575 {
576 message_with_line (pattern_lineno,
3d7aafde 577 "operand %d missing output reload",
c0ea284b
RH
578 XINT (pattern, 0));
579 error_count++;
580 }
7297e9fc 581 }
aece2740
RH
582 }
583
8fe0ca0c
RH
584 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
585 while not likely to occur at runtime, results in less efficient
586 code from insn-recog.c. */
aece2740 587 if (set
8fe0ca0c
RH
588 && pred_name[0] != '\0'
589 && allows_non_lvalue)
590 {
591 message_with_line (pattern_lineno,
aece2740 592 "warning: destination operand %d allows non-lvalue",
476a33f4 593 XINT (pattern, 0));
8fe0ca0c
RH
594 }
595
596 /* A modeless MATCH_OPERAND can be handy when we can
597 check for multiple modes in the c_test. In most other cases,
598 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
5b7c7046 599 and PEEP2 can FAIL within the output pattern. Exclude
556ffcc5 600 address_operand, since its mode is related to the mode of
aece2740
RH
601 the memory not the operand. Exclude the SET_DEST of a call
602 instruction, as that is a common idiom. */
8fe0ca0c
RH
603
604 if (GET_MODE (pattern) == VOIDmode
605 && code == MATCH_OPERAND
556ffcc5 606 && GET_CODE (insn) == DEFINE_INSN
8fe0ca0c
RH
607 && allows_non_const
608 && ! special_mode_pred
556ffcc5
RH
609 && pred_name[0] != '\0'
610 && strcmp (pred_name, "address_operand") != 0
aece2740
RH
611 && strstr (c_test, "operands") == NULL
612 && ! (set
613 && GET_CODE (set) == SET
614 && GET_CODE (SET_SRC (set)) == CALL))
8fe0ca0c
RH
615 {
616 message_with_line (pattern_lineno,
617 "warning: operand %d missing mode?",
618 XINT (pattern, 0));
bcdaba58 619 }
bcdaba58
RH
620 return;
621 }
622
623 case SET:
8fe0ca0c
RH
624 {
625 enum machine_mode dmode, smode;
626 rtx dest, src;
627
628 dest = SET_DEST (pattern);
629 src = SET_SRC (pattern);
630
0dab343a
RH
631 /* STRICT_LOW_PART is a wrapper. Its argument is the real
632 destination, and it's mode should match the source. */
633 if (GET_CODE (dest) == STRICT_LOW_PART)
634 dest = XEXP (dest, 0);
635
d91edf86 636 /* Find the referent for a DUP. */
8fe0ca0c
RH
637
638 if (GET_CODE (dest) == MATCH_DUP
639 || GET_CODE (dest) == MATCH_OP_DUP
640 || GET_CODE (dest) == MATCH_PAR_DUP)
641 dest = find_operand (insn, XINT (dest, 0));
642
643 if (GET_CODE (src) == MATCH_DUP
644 || GET_CODE (src) == MATCH_OP_DUP
645 || GET_CODE (src) == MATCH_PAR_DUP)
646 src = find_operand (insn, XINT (src, 0));
647
8fe0ca0c
RH
648 dmode = GET_MODE (dest);
649 smode = GET_MODE (src);
bcdaba58 650
8fe0ca0c
RH
651 /* The mode of an ADDRESS_OPERAND is the mode of the memory
652 reference, not the mode of the address. */
653 if (GET_CODE (src) == MATCH_OPERAND
654 && ! strcmp (XSTR (src, 1), "address_operand"))
655 ;
656
657 /* The operands of a SET must have the same mode unless one
658 is VOIDmode. */
659 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
660 {
661 message_with_line (pattern_lineno,
662 "mode mismatch in set: %smode vs %smode",
663 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
664 error_count++;
665 }
666
5b7c7046 667 /* If only one of the operands is VOIDmode, and PC or CC0 is
8fe0ca0c
RH
668 not involved, it's probably a mistake. */
669 else if (dmode != smode
670 && GET_CODE (dest) != PC
671 && GET_CODE (dest) != CC0
aece2740
RH
672 && GET_CODE (src) != PC
673 && GET_CODE (src) != CC0
8fe0ca0c
RH
674 && GET_CODE (src) != CONST_INT)
675 {
676 const char *which;
677 which = (dmode == VOIDmode ? "destination" : "source");
678 message_with_line (pattern_lineno,
679 "warning: %s missing a mode?", which);
680 }
681
682 if (dest != SET_DEST (pattern))
7297e9fc
RH
683 validate_pattern (dest, insn, pattern, '=');
684 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
685 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
8fe0ca0c
RH
686 return;
687 }
688
689 case CLOBBER:
7297e9fc
RH
690 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
691 return;
692
693 case ZERO_EXTRACT:
694 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
695 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
696 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
697 return;
698
699 case STRICT_LOW_PART:
700 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
bcdaba58 701 return;
8fe0ca0c 702
bcdaba58
RH
703 case LABEL_REF:
704 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
705 {
706 message_with_line (pattern_lineno,
707 "operand to label_ref %smode not VOIDmode",
708 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
709 error_count++;
710 }
711 break;
712
713 default:
714 break;
715 }
716
717 fmt = GET_RTX_FORMAT (code);
718 len = GET_RTX_LENGTH (code);
719 for (i = 0; i < len; i++)
720 {
721 switch (fmt[i])
722 {
723 case 'e': case 'u':
7297e9fc 724 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
bcdaba58
RH
725 break;
726
727 case 'E':
728 for (j = 0; j < XVECLEN (pattern, i); j++)
7297e9fc 729 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
bcdaba58
RH
730 break;
731
732 case 'i': case 'w': case '0': case 's':
733 break;
734
735 default:
736 abort ();
737 }
738 }
bcdaba58
RH
739}
740
e0689256
RK
741/* Create a chain of nodes to verify that an rtl expression matches
742 PATTERN.
ec65fa66 743
e0689256
RK
744 LAST is a pointer to the listhead in the previous node in the chain (or
745 in the calling function, for the first node).
ec65fa66 746
e0689256 747 POSITION is the string representing the current position in the insn.
ec65fa66 748
ede7cd44
RH
749 INSN_TYPE is the type of insn for which we are emitting code.
750
e0689256 751 A pointer to the final node in the chain is returned. */
ec65fa66
RK
752
753static struct decision *
3d7aafde
AJ
754add_to_sequence (rtx pattern, struct decision_head *last, const char *position,
755 enum routine_type insn_type, int top)
ec65fa66 756{
09051660
RH
757 RTX_CODE code;
758 struct decision *this, *sub;
759 struct decision_test *test;
760 struct decision_test **place;
761 char *subpos;
b3694847
SS
762 size_t i;
763 const char *fmt;
e0689256 764 int depth = strlen (position);
ec65fa66 765 int len;
09051660 766 enum machine_mode mode;
ec65fa66 767
e0689256
RK
768 if (depth > max_depth)
769 max_depth = depth;
770
703ad42b 771 subpos = xmalloc (depth + 2);
09051660
RH
772 strcpy (subpos, position);
773 subpos[depth + 1] = 0;
ec65fa66 774
09051660
RH
775 sub = this = new_decision (position, last);
776 place = &this->tests;
ec65fa66
RK
777
778 restart:
09051660
RH
779 mode = GET_MODE (pattern);
780 code = GET_CODE (pattern);
ec65fa66
RK
781
782 switch (code)
783 {
ede7cd44 784 case PARALLEL:
dc297297 785 /* Toplevel peephole pattern. */
ede7cd44
RH
786 if (insn_type == PEEPHOLE2 && top)
787 {
09051660
RH
788 /* We don't need the node we just created -- unlink it. */
789 last->first = last->last = NULL;
ede7cd44
RH
790
791 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
792 {
793 /* Which insn we're looking at is represented by A-Z. We don't
dc297297 794 ever use 'A', however; it is always implied. */
09051660
RH
795
796 subpos[depth] = (i > 0 ? 'A' + i : 0);
797 sub = add_to_sequence (XVECEXP (pattern, 0, i),
798 last, subpos, insn_type, 0);
799 last = &sub->success;
ede7cd44 800 }
b548dffb 801 goto ret;
ede7cd44 802 }
09051660
RH
803
804 /* Else nothing special. */
ede7cd44 805 break;
09051660 806
521b9224
RH
807 case MATCH_PARALLEL:
808 /* The explicit patterns within a match_parallel enforce a minimum
809 length on the vector. The match_parallel predicate may allow
810 for more elements. We do need to check for this minimum here
811 or the code generated to match the internals may reference data
812 beyond the end of the vector. */
813 test = new_decision_test (DT_veclen_ge, &place);
814 test->u.veclen = XVECLEN (pattern, 2);
815 /* FALLTHRU */
816
ec65fa66 817 case MATCH_OPERAND:
ec65fa66 818 case MATCH_SCRATCH:
ec65fa66 819 case MATCH_OPERATOR:
5126c35a 820 case MATCH_INSN:
09051660
RH
821 {
822 const char *pred_name;
823 RTX_CODE was_code = code;
ec1c89e6 824 int allows_const_int = 1;
09051660
RH
825
826 if (code == MATCH_SCRATCH)
827 {
828 pred_name = "scratch_operand";
829 code = UNKNOWN;
830 }
831 else
832 {
833 pred_name = XSTR (pattern, 1);
834 if (code == MATCH_PARALLEL)
835 code = PARALLEL;
836 else
837 code = UNKNOWN;
838 }
839
29360e56 840 if (pred_name[0] != 0)
09051660
RH
841 {
842 test = new_decision_test (DT_pred, &place);
843 test->u.pred.name = pred_name;
844 test->u.pred.mode = mode;
845
b4fbaca7
RH
846 /* See if we know about this predicate and save its number.
847 If we do, and it only accepts one code, note that fact.
848
849 If we know that the predicate does not allow CONST_INT,
850 we know that the only way the predicate can match is if
851 the modes match (here we use the kludge of relying on the
852 fact that "address_operand" accepts CONST_INT; otherwise,
853 it would have to be a special case), so we can test the
854 mode (but we need not). This fact should considerably
855 simplify the generated code. */
09051660
RH
856
857 for (i = 0; i < NUM_KNOWN_PREDS; i++)
858 if (! strcmp (preds[i].name, pred_name))
859 break;
e0689256 860
09051660 861 if (i < NUM_KNOWN_PREDS)
9edd4689 862 {
c3693cb1 863 int j;
e0689256 864
09051660 865 test->u.pred.index = i;
e0689256 866
09051660
RH
867 if (preds[i].codes[1] == 0 && code == UNKNOWN)
868 code = preds[i].codes[0];
e0689256 869
09051660
RH
870 allows_const_int = 0;
871 for (j = 0; preds[i].codes[j] != 0; j++)
9edd4689 872 if (preds[i].codes[j] == CONST_INT)
09051660
RH
873 {
874 allows_const_int = 1;
875 break;
876 }
9edd4689 877 }
09051660 878 else
bcdaba58 879 test->u.pred.index = -1;
09051660 880 }
ec1c89e6
RH
881
882 /* Can't enforce a mode if we allow const_int. */
883 if (allows_const_int)
884 mode = VOIDmode;
e0689256 885
09051660
RH
886 /* Accept the operand, ie. record it in `operands'. */
887 test = new_decision_test (DT_accept_op, &place);
888 test->u.opno = XINT (pattern, 0);
e0689256 889
09051660
RH
890 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
891 {
892 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
893 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
894 {
895 subpos[depth] = i + base;
896 sub = add_to_sequence (XVECEXP (pattern, 2, i),
897 &sub->success, subpos, insn_type, 0);
898 }
899 }
900 goto fini;
901 }
ec65fa66
RK
902
903 case MATCH_OP_DUP:
09051660
RH
904 code = UNKNOWN;
905
906 test = new_decision_test (DT_dup, &place);
907 test->u.dup = XINT (pattern, 0);
908
909 test = new_decision_test (DT_accept_op, &place);
910 test->u.opno = XINT (pattern, 0);
911
e51712db 912 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
ec65fa66 913 {
09051660
RH
914 subpos[depth] = i + '0';
915 sub = add_to_sequence (XVECEXP (pattern, 1, i),
916 &sub->success, subpos, insn_type, 0);
ec65fa66 917 }
09051660 918 goto fini;
ec65fa66
RK
919
920 case MATCH_DUP:
f582c9d5 921 case MATCH_PAR_DUP:
09051660
RH
922 code = UNKNOWN;
923
924 test = new_decision_test (DT_dup, &place);
925 test->u.dup = XINT (pattern, 0);
926 goto fini;
ec65fa66
RK
927
928 case ADDRESS:
929 pattern = XEXP (pattern, 0);
930 goto restart;
931
76d31c63
JL
932 default:
933 break;
ec65fa66
RK
934 }
935
936 fmt = GET_RTX_FORMAT (code);
937 len = GET_RTX_LENGTH (code);
09051660
RH
938
939 /* Do tests against the current node first. */
e51712db 940 for (i = 0; i < (size_t) len; i++)
ec65fa66 941 {
09051660 942 if (fmt[i] == 'i')
ec65fa66 943 {
09051660
RH
944 if (i == 0)
945 {
946 test = new_decision_test (DT_elt_zero_int, &place);
947 test->u.intval = XINT (pattern, i);
948 }
949 else if (i == 1)
950 {
951 test = new_decision_test (DT_elt_one_int, &place);
952 test->u.intval = XINT (pattern, i);
953 }
954 else
955 abort ();
ec65fa66 956 }
09051660 957 else if (fmt[i] == 'w')
3d678dca 958 {
070ef6f4
RK
959 /* If this value actually fits in an int, we can use a switch
960 statement here, so indicate that. */
961 enum decision_type type
962 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
963 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
964
09051660
RH
965 if (i != 0)
966 abort ();
967
070ef6f4 968 test = new_decision_test (type, &place);
09051660 969 test->u.intval = XWINT (pattern, i);
3d678dca 970 }
ec65fa66
RK
971 else if (fmt[i] == 'E')
972 {
ec65fa66
RK
973 if (i != 0)
974 abort ();
09051660
RH
975
976 test = new_decision_test (DT_veclen, &place);
977 test->u.veclen = XVECLEN (pattern, i);
978 }
979 }
980
981 /* Now test our sub-patterns. */
982 for (i = 0; i < (size_t) len; i++)
983 {
984 switch (fmt[i])
985 {
986 case 'e': case 'u':
987 subpos[depth] = '0' + i;
988 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
989 subpos, insn_type, 0);
990 break;
991
992 case 'E':
993 {
b3694847 994 int j;
09051660
RH
995 for (j = 0; j < XVECLEN (pattern, i); j++)
996 {
997 subpos[depth] = 'a' + j;
998 sub = add_to_sequence (XVECEXP (pattern, i, j),
999 &sub->success, subpos, insn_type, 0);
1000 }
1001 break;
1002 }
1003
1004 case 'i': case 'w':
1005 /* Handled above. */
1006 break;
1007 case '0':
1008 break;
1009
1010 default:
1011 abort ();
1012 }
1013 }
1014
1015 fini:
1016 /* Insert nodes testing mode and code, if they're still relevant,
1017 before any of the nodes we may have added above. */
1018 if (code != UNKNOWN)
1019 {
1020 place = &this->tests;
1021 test = new_decision_test (DT_code, &place);
1022 test->u.code = code;
1023 }
1024
1025 if (mode != VOIDmode)
1026 {
1027 place = &this->tests;
1028 test = new_decision_test (DT_mode, &place);
1029 test->u.mode = mode;
1030 }
1031
1032 /* If we didn't insert any tests or accept nodes, hork. */
1033 if (this->tests == NULL)
1034 abort ();
1035
b548dffb
ZW
1036 ret:
1037 free (subpos);
09051660
RH
1038 return sub;
1039}
1040\f
1041/* A subroutine of maybe_both_true; examines only one test.
1042 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1043
1044static int
3d7aafde 1045maybe_both_true_2 (struct decision_test *d1, struct decision_test *d2)
09051660
RH
1046{
1047 if (d1->type == d2->type)
1048 {
1049 switch (d1->type)
1050 {
1051 case DT_mode:
f0e1f482 1052 return d1->u.mode == d2->u.mode;
09051660
RH
1053
1054 case DT_code:
1055 return d1->u.code == d2->u.code;
1056
1057 case DT_veclen:
1058 return d1->u.veclen == d2->u.veclen;
1059
1060 case DT_elt_zero_int:
1061 case DT_elt_one_int:
1062 case DT_elt_zero_wide:
070ef6f4 1063 case DT_elt_zero_wide_safe:
09051660
RH
1064 return d1->u.intval == d2->u.intval;
1065
1066 default:
1067 break;
1068 }
1069 }
1070
1071 /* If either has a predicate that we know something about, set
1072 things up so that D1 is the one that always has a known
1073 predicate. Then see if they have any codes in common. */
1074
1075 if (d1->type == DT_pred || d2->type == DT_pred)
1076 {
1077 if (d2->type == DT_pred)
1078 {
1079 struct decision_test *tmp;
1080 tmp = d1, d1 = d2, d2 = tmp;
1081 }
1082
1083 /* If D2 tests a mode, see if it matches D1. */
1084 if (d1->u.pred.mode != VOIDmode)
1085 {
1086 if (d2->type == DT_mode)
1087 {
f0e1f482 1088 if (d1->u.pred.mode != d2->u.mode
8f496bc2
HPN
1089 /* The mode of an address_operand predicate is the
1090 mode of the memory, not the operand. It can only
1091 be used for testing the predicate, so we must
1092 ignore it here. */
1093 && strcmp (d1->u.pred.name, "address_operand") != 0)
09051660
RH
1094 return 0;
1095 }
4dc320a5
RH
1096 /* Don't check two predicate modes here, because if both predicates
1097 accept CONST_INT, then both can still be true even if the modes
1098 are different. If they don't accept CONST_INT, there will be a
1099 separate DT_mode that will make maybe_both_true_1 return 0. */
09051660
RH
1100 }
1101
1102 if (d1->u.pred.index >= 0)
1103 {
1104 /* If D2 tests a code, see if it is in the list of valid
1105 codes for D1's predicate. */
1106 if (d2->type == DT_code)
1107 {
1108 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1109 while (*c != 0)
1110 {
1111 if (*c == d2->u.code)
1112 break;
1113 ++c;
1114 }
1115 if (*c == 0)
1116 return 0;
1117 }
1118
1119 /* Otherwise see if the predicates have any codes in common. */
1120 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
ec65fa66 1121 {
09051660
RH
1122 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1123 int common = 0;
1124
1125 while (*c1 != 0 && !common)
1126 {
1127 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1128 while (*c2 != 0 && !common)
1129 {
1130 common = (*c1 == *c2);
1131 ++c2;
1132 }
1133 ++c1;
1134 }
1135
1136 if (!common)
1137 return 0;
ec65fa66
RK
1138 }
1139 }
ec65fa66 1140 }
09051660 1141
521b9224
RH
1142 /* Tests vs veclen may be known when strict equality is involved. */
1143 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1144 return d1->u.veclen >= d2->u.veclen;
1145 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1146 return d2->u.veclen >= d1->u.veclen;
1147
09051660 1148 return -1;
ec65fa66 1149}
09051660
RH
1150
1151/* A subroutine of maybe_both_true; examines all the tests for a given node.
1152 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1153
1154static int
3d7aafde 1155maybe_both_true_1 (struct decision_test *d1, struct decision_test *d2)
09051660
RH
1156{
1157 struct decision_test *t1, *t2;
1158
1159 /* A match_operand with no predicate can match anything. Recognize
ff7cc307 1160 this by the existence of a lone DT_accept_op test. */
09051660
RH
1161 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1162 return 1;
1163
1164 /* Eliminate pairs of tests while they can exactly match. */
1165 while (d1 && d2 && d1->type == d2->type)
1166 {
1167 if (maybe_both_true_2 (d1, d2) == 0)
1168 return 0;
1169 d1 = d1->next, d2 = d2->next;
1170 }
1171
1172 /* After that, consider all pairs. */
1173 for (t1 = d1; t1 ; t1 = t1->next)
1174 for (t2 = d2; t2 ; t2 = t2->next)
1175 if (maybe_both_true_2 (t1, t2) == 0)
1176 return 0;
1177
1178 return -1;
1179}
1180
1181/* Return 0 if we can prove that there is no RTL that can match both
1182 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
e0689256 1183 can match both or just that we couldn't prove there wasn't such an RTL).
ec65fa66 1184
cc2902df 1185 TOPLEVEL is nonzero if we are to only look at the top level and not
e0689256 1186 recursively descend. */
ec65fa66 1187
e0689256 1188static int
3d7aafde
AJ
1189maybe_both_true (struct decision *d1, struct decision *d2,
1190 int toplevel)
ec65fa66 1191{
e0689256 1192 struct decision *p1, *p2;
00ec6daa
JH
1193 int cmp;
1194
1195 /* Don't compare strings on the different positions in insn. Doing so
1196 is incorrect and results in false matches from constructs like
1197
1198 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1199 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1200 vs
1201 [(set (match_operand:HI "register_operand" "r")
1202 (match_operand:HI "register_operand" "r"))]
1203
1204 If we are presented with such, we are recursing through the remainder
1205 of a node's success nodes (from the loop at the end of this function).
1206 Skip forward until we come to a position that matches.
1207
1208 Due to the way position strings are constructed, we know that iterating
1209 forward from the lexically lower position (e.g. "00") will run into
1210 the lexically higher position (e.g. "1") and not the other way around.
1211 This saves a bit of effort. */
1212
1213 cmp = strcmp (d1->position, d2->position);
1214 if (cmp != 0)
1215 {
1216 if (toplevel)
c4f2c499 1217 abort ();
00ec6daa
JH
1218
1219 /* If the d2->position was lexically lower, swap. */
1220 if (cmp > 0)
ace91ff1 1221 p1 = d1, d1 = d2, d2 = p1;
00ec6daa
JH
1222
1223 if (d1->success.first == 0)
29360e56 1224 return 1;
00ec6daa 1225 for (p1 = d1->success.first; p1; p1 = p1->next)
09051660
RH
1226 if (maybe_both_true (p1, d2, 0))
1227 return 1;
00ec6daa 1228
09051660 1229 return 0;
00ec6daa 1230 }
e0689256 1231
09051660
RH
1232 /* Test the current level. */
1233 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1234 if (cmp >= 0)
1235 return cmp;
1236
1237 /* We can't prove that D1 and D2 cannot both be true. If we are only
1238 to check the top level, return 1. Otherwise, see if we can prove
1239 that all choices in both successors are mutually exclusive. If
1240 either does not have any successors, we can't prove they can't both
1241 be true. */
1242
1243 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
e0689256
RK
1244 return 1;
1245
09051660
RH
1246 for (p1 = d1->success.first; p1; p1 = p1->next)
1247 for (p2 = d2->success.first; p2; p2 = p2->next)
1248 if (maybe_both_true (p1, p2, 0))
1249 return 1;
e0689256 1250
09051660
RH
1251 return 0;
1252}
ec65fa66 1253
09051660 1254/* A subroutine of nodes_identical. Examine two tests for equivalence. */
ec65fa66 1255
09051660 1256static int
3d7aafde 1257nodes_identical_1 (struct decision_test *d1, struct decision_test *d2)
09051660
RH
1258{
1259 switch (d1->type)
ec65fa66 1260 {
09051660
RH
1261 case DT_mode:
1262 return d1->u.mode == d2->u.mode;
e0689256 1263
09051660
RH
1264 case DT_code:
1265 return d1->u.code == d2->u.code;
e0689256 1266
09051660
RH
1267 case DT_pred:
1268 return (d1->u.pred.mode == d2->u.pred.mode
1269 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
e0689256 1270
09051660
RH
1271 case DT_c_test:
1272 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
e0689256 1273
09051660 1274 case DT_veclen:
521b9224 1275 case DT_veclen_ge:
09051660 1276 return d1->u.veclen == d2->u.veclen;
e0689256 1277
09051660
RH
1278 case DT_dup:
1279 return d1->u.dup == d2->u.dup;
e0689256 1280
09051660
RH
1281 case DT_elt_zero_int:
1282 case DT_elt_one_int:
1283 case DT_elt_zero_wide:
070ef6f4 1284 case DT_elt_zero_wide_safe:
09051660 1285 return d1->u.intval == d2->u.intval;
e0689256 1286
09051660
RH
1287 case DT_accept_op:
1288 return d1->u.opno == d2->u.opno;
1289
1290 case DT_accept_insn:
1291 /* Differences will be handled in merge_accept_insn. */
1292 return 1;
1293
1294 default:
1295 abort ();
ec65fa66 1296 }
09051660 1297}
ec65fa66 1298
09051660 1299/* True iff the two nodes are identical (on one level only). Due
5b7c7046 1300 to the way these lists are constructed, we shouldn't have to
09051660 1301 consider different orderings on the tests. */
ec65fa66 1302
09051660 1303static int
3d7aafde 1304nodes_identical (struct decision *d1, struct decision *d2)
09051660
RH
1305{
1306 struct decision_test *t1, *t2;
e0689256 1307
09051660
RH
1308 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1309 {
1310 if (t1->type != t2->type)
1311 return 0;
1312 if (! nodes_identical_1 (t1, t2))
e0689256 1313 return 0;
09051660 1314 }
e0689256 1315
09051660 1316 /* For success, they should now both be null. */
aece2740
RH
1317 if (t1 != t2)
1318 return 0;
1319
1320 /* Check that their subnodes are at the same position, as any one set
2cec75a1
RH
1321 of sibling decisions must be at the same position. Allowing this
1322 requires complications to find_afterward and when change_state is
1323 invoked. */
aece2740
RH
1324 if (d1->success.first
1325 && d2->success.first
1326 && strcmp (d1->success.first->position, d2->success.first->position))
1327 return 0;
1328
1329 return 1;
e0689256 1330}
e0689256 1331
09051660
RH
1332/* A subroutine of merge_trees; given two nodes that have been declared
1333 identical, cope with two insn accept states. If they differ in the
1334 number of clobbers, then the conflict was created by make_insn_sequence
5b7c7046 1335 and we can drop the with-clobbers version on the floor. If both
09051660
RH
1336 nodes have no additional clobbers, we have found an ambiguity in the
1337 source machine description. */
1338
1339static void
3d7aafde 1340merge_accept_insn (struct decision *oldd, struct decision *addd)
ec65fa66 1341{
09051660
RH
1342 struct decision_test *old, *add;
1343
1344 for (old = oldd->tests; old; old = old->next)
1345 if (old->type == DT_accept_insn)
1346 break;
1347 if (old == NULL)
1348 return;
e0689256 1349
09051660
RH
1350 for (add = addd->tests; add; add = add->next)
1351 if (add->type == DT_accept_insn)
1352 break;
1353 if (add == NULL)
1354 return;
e0689256 1355
09051660
RH
1356 /* If one node is for a normal insn and the second is for the base
1357 insn with clobbers stripped off, the second node should be ignored. */
e0689256 1358
09051660
RH
1359 if (old->u.insn.num_clobbers_to_add == 0
1360 && add->u.insn.num_clobbers_to_add > 0)
1361 {
1362 /* Nothing to do here. */
1363 }
1364 else if (old->u.insn.num_clobbers_to_add > 0
1365 && add->u.insn.num_clobbers_to_add == 0)
1366 {
1367 /* In this case, replace OLD with ADD. */
1368 old->u.insn = add->u.insn;
1369 }
1370 else
1371 {
bcdaba58
RH
1372 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1373 get_insn_name (add->u.insn.code_number),
1374 get_insn_name (old->u.insn.code_number));
1375 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1376 get_insn_name (old->u.insn.code_number));
1377 error_count++;
09051660 1378 }
e0689256 1379}
e0689256 1380
09051660
RH
1381/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1382
1383static void
3d7aafde 1384merge_trees (struct decision_head *oldh, struct decision_head *addh)
e0689256 1385{
09051660 1386 struct decision *next, *add;
e0689256 1387
09051660
RH
1388 if (addh->first == 0)
1389 return;
1390 if (oldh->first == 0)
1391 {
1392 *oldh = *addh;
1393 return;
1394 }
ec65fa66 1395
09051660
RH
1396 /* Trying to merge bits at different positions isn't possible. */
1397 if (strcmp (oldh->first->position, addh->first->position))
e0689256
RK
1398 abort ();
1399
09051660 1400 for (add = addh->first; add ; add = next)
ec65fa66 1401 {
09051660 1402 struct decision *old, *insert_before = NULL;
e0689256
RK
1403
1404 next = add->next;
1405
09051660
RH
1406 /* The semantics of pattern matching state that the tests are
1407 done in the order given in the MD file so that if an insn
1408 matches two patterns, the first one will be used. However,
1409 in practice, most, if not all, patterns are unambiguous so
1410 that their order is independent. In that case, we can merge
1411 identical tests and group all similar modes and codes together.
e0689256
RK
1412
1413 Scan starting from the end of OLDH until we reach a point
09051660
RH
1414 where we reach the head of the list or where we pass a
1415 pattern that could also be true if NEW is true. If we find
1416 an identical pattern, we can merge them. Also, record the
1417 last node that tests the same code and mode and the last one
1418 that tests just the same mode.
e0689256
RK
1419
1420 If we have no match, place NEW after the closest match we found. */
5b7c7046 1421
09051660 1422 for (old = oldh->last; old; old = old->prev)
ec65fa66 1423 {
09051660 1424 if (nodes_identical (old, add))
e0689256 1425 {
09051660
RH
1426 merge_accept_insn (old, add);
1427 merge_trees (&old->success, &add->success);
1428 goto merged_nodes;
1429 }
e0689256 1430
09051660
RH
1431 if (maybe_both_true (old, add, 0))
1432 break;
e0689256 1433
09051660
RH
1434 /* Insert the nodes in DT test type order, which is roughly
1435 how expensive/important the test is. Given that the tests
1436 are also ordered within the list, examining the first is
1437 sufficient. */
dbbbbf3b 1438 if ((int) add->tests->type < (int) old->tests->type)
09051660
RH
1439 insert_before = old;
1440 }
de6a431b 1441
09051660
RH
1442 if (insert_before == NULL)
1443 {
1444 add->next = NULL;
1445 add->prev = oldh->last;
1446 oldh->last->next = add;
1447 oldh->last = add;
1448 }
1449 else
1450 {
1451 if ((add->prev = insert_before->prev) != NULL)
1452 add->prev->next = add;
1453 else
1454 oldh->first = add;
1455 add->next = insert_before;
1456 insert_before->prev = add;
1457 }
1458
1459 merged_nodes:;
1460 }
1461}
1462\f
5b7c7046 1463/* Walk the tree looking for sub-nodes that perform common tests.
09051660
RH
1464 Factor out the common test into a new node. This enables us
1465 (depending on the test type) to emit switch statements later. */
1466
1467static void
3d7aafde 1468factor_tests (struct decision_head *head)
09051660
RH
1469{
1470 struct decision *first, *next;
e0689256 1471
09051660
RH
1472 for (first = head->first; first && first->next; first = next)
1473 {
1474 enum decision_type type;
1475 struct decision *new, *old_last;
e0689256 1476
09051660
RH
1477 type = first->tests->type;
1478 next = first->next;
e0689256 1479
09051660
RH
1480 /* Want at least two compatible sequential nodes. */
1481 if (next->tests->type != type)
1482 continue;
ec65fa66 1483
5b7c7046 1484 /* Don't want all node types, just those we can turn into
09051660
RH
1485 switch statements. */
1486 if (type != DT_mode
1487 && type != DT_code
1488 && type != DT_veclen
1489 && type != DT_elt_zero_int
1490 && type != DT_elt_one_int
070ef6f4 1491 && type != DT_elt_zero_wide_safe)
e0689256 1492 continue;
ec65fa66 1493
09051660
RH
1494 /* If we'd been performing more than one test, create a new node
1495 below our first test. */
1496 if (first->tests->next != NULL)
1497 {
1498 new = new_decision (first->position, &first->success);
1499 new->tests = first->tests->next;
1500 first->tests->next = NULL;
1501 }
5b7c7046 1502
09051660
RH
1503 /* Crop the node tree off after our first test. */
1504 first->next = NULL;
1505 old_last = head->last;
1506 head->last = first;
1507
1508 /* For each compatible test, adjust to perform only one test in
1509 the top level node, then merge the node back into the tree. */
1510 do
1511 {
1512 struct decision_head h;
1513
1514 if (next->tests->next != NULL)
1515 {
1516 new = new_decision (next->position, &next->success);
1517 new->tests = next->tests->next;
1518 next->tests->next = NULL;
1519 }
1520 new = next;
1521 next = next->next;
1522 new->next = NULL;
1523 h.first = h.last = new;
ec65fa66 1524
09051660
RH
1525 merge_trees (head, &h);
1526 }
1527 while (next && next->tests->type == type);
ec65fa66 1528
09051660
RH
1529 /* After we run out of compatible tests, graft the remaining nodes
1530 back onto the tree. */
1531 if (next)
e0689256 1532 {
09051660
RH
1533 next->prev = head->last;
1534 head->last->next = next;
1535 head->last = old_last;
e0689256 1536 }
09051660 1537 }
ec65fa66 1538
09051660
RH
1539 /* Recurse. */
1540 for (first = head->first; first; first = first->next)
1541 factor_tests (&first->success);
1542}
1543
1544/* After factoring, try to simplify the tests on any one node.
1545 Tests that are useful for switch statements are recognizable
1546 by having only a single test on a node -- we'll be manipulating
1547 nodes with multiple tests:
1548
1549 If we have mode tests or code tests that are redundant with
1550 predicates, remove them. */
1551
1552static void
3d7aafde 1553simplify_tests (struct decision_head *head)
09051660
RH
1554{
1555 struct decision *tree;
1556
1557 for (tree = head->first; tree; tree = tree->next)
1558 {
1559 struct decision_test *a, *b;
1560
1561 a = tree->tests;
1562 b = a->next;
1563 if (b == NULL)
1564 continue;
1565
1566 /* Find a predicate node. */
1567 while (b && b->type != DT_pred)
1568 b = b->next;
1569 if (b)
e0689256 1570 {
09051660
RH
1571 /* Due to how these tests are constructed, we don't even need
1572 to check that the mode and code are compatible -- they were
1573 generated from the predicate in the first place. */
1574 while (a->type == DT_mode || a->type == DT_code)
1575 a = a->next;
1576 tree->tests = a;
e0689256
RK
1577 }
1578 }
ec65fa66 1579
09051660
RH
1580 /* Recurse. */
1581 for (tree = head->first; tree; tree = tree->next)
1582 simplify_tests (&tree->success);
ec65fa66 1583}
09051660 1584
e0689256
RK
1585/* Count the number of subnodes of HEAD. If the number is high enough,
1586 make the first node in HEAD start a separate subroutine in the C code
09051660 1587 that is generated. */
ec65fa66
RK
1588
1589static int
3d7aafde 1590break_out_subroutines (struct decision_head *head, int initial)
ec65fa66
RK
1591{
1592 int size = 0;
87bd0490 1593 struct decision *sub;
e0689256 1594
09051660
RH
1595 for (sub = head->first; sub; sub = sub->next)
1596 size += 1 + break_out_subroutines (&sub->success, 0);
e0689256
RK
1597
1598 if (size > SUBROUTINE_THRESHOLD && ! initial)
ec65fa66 1599 {
09051660 1600 head->first->subroutine_number = ++next_subroutine_number;
ec65fa66
RK
1601 size = 1;
1602 }
1603 return size;
1604}
09051660
RH
1605
1606/* For each node p, find the next alternative that might be true
1607 when p is true. */
ec65fa66
RK
1608
1609static void
3d7aafde 1610find_afterward (struct decision_head *head, struct decision *real_afterward)
ec65fa66 1611{
09051660 1612 struct decision *p, *q, *afterward;
69277eec 1613
a1f300c0 1614 /* We can't propagate alternatives across subroutine boundaries.
09051660 1615 This is not incorrect, merely a minor optimization loss. */
ec65fa66 1616
09051660
RH
1617 p = head->first;
1618 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
e0689256 1619
09051660 1620 for ( ; p ; p = p->next)
e0689256 1621 {
09051660
RH
1622 /* Find the next node that might be true if this one fails. */
1623 for (q = p->next; q ; q = q->next)
1624 if (maybe_both_true (p, q, 1))
1625 break;
e0689256 1626
5b7c7046 1627 /* If we reached the end of the list without finding one,
09051660
RH
1628 use the incoming afterward position. */
1629 if (!q)
1630 q = afterward;
1631 p->afterward = q;
1632 if (q)
1633 q->need_label = 1;
e0689256
RK
1634 }
1635
09051660
RH
1636 /* Recurse. */
1637 for (p = head->first; p ; p = p->next)
1638 if (p->success.first)
1639 find_afterward (&p->success, p->afterward);
1640
1641 /* When we are generating a subroutine, record the real afterward
1642 position in the first node where write_tree can find it, and we
1643 can do the right thing at the subroutine call site. */
1644 p = head->first;
1645 if (p->subroutine_number > 0)
1646 p->afterward = real_afterward;
1647}
1648\f
1649/* Assuming that the state of argument is denoted by OLDPOS, take whatever
1650 actions are necessary to move to NEWPOS. If we fail to move to the
cc2902df 1651 new state, branch to node AFTERWARD if nonzero, otherwise return.
e0689256 1652
09051660 1653 Failure to move to the new state can only occur if we are trying to
dc297297 1654 match multiple insns and we try to step past the end of the stream. */
e0689256 1655
09051660 1656static void
3d7aafde
AJ
1657change_state (const char *oldpos, const char *newpos,
1658 struct decision *afterward, const char *indent)
09051660
RH
1659{
1660 int odepth = strlen (oldpos);
1661 int ndepth = strlen (newpos);
1662 int depth;
1663 int old_has_insn, new_has_insn;
e0689256 1664
09051660
RH
1665 /* Pop up as many levels as necessary. */
1666 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1667 continue;
ec65fa66 1668
09051660
RH
1669 /* Hunt for the last [A-Z] in both strings. */
1670 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
0df6c2c7 1671 if (ISUPPER (oldpos[old_has_insn]))
09051660 1672 break;
0deeec4e 1673 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
0df6c2c7 1674 if (ISUPPER (newpos[new_has_insn]))
09051660 1675 break;
e0689256 1676
09051660
RH
1677 /* Go down to desired level. */
1678 while (depth < ndepth)
1679 {
dc297297 1680 /* It's a different insn from the first one. */
0df6c2c7 1681 if (ISUPPER (newpos[depth]))
ec65fa66 1682 {
09051660
RH
1683 /* We can only fail if we're moving down the tree. */
1684 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
e0689256 1685 {
5b7c7046 1686 printf ("%stem = peep2_next_insn (%d);\n",
09051660 1687 indent, newpos[depth] - 'A');
e0689256
RK
1688 }
1689 else
1690 {
5b7c7046 1691 printf ("%stem = peep2_next_insn (%d);\n",
09051660
RH
1692 indent, newpos[depth] - 'A');
1693 printf ("%sif (tem == NULL_RTX)\n", indent);
1694 if (afterward)
1695 printf ("%s goto L%d;\n", indent, afterward->number);
e0689256 1696 else
09051660 1697 printf ("%s goto ret0;\n", indent);
e0689256 1698 }
23280139 1699 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
ec65fa66 1700 }
0df6c2c7 1701 else if (ISLOWER (newpos[depth]))
09051660
RH
1702 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1703 indent, depth + 1, depth, newpos[depth] - 'a');
1704 else
1705 printf ("%sx%d = XEXP (x%d, %c);\n",
1706 indent, depth + 1, depth, newpos[depth]);
1707 ++depth;
1708 }
1709}
1710\f
1711/* Print the enumerator constant for CODE -- the upcase version of
1712 the name. */
1713
1714static void
3d7aafde 1715print_code (enum rtx_code code)
09051660 1716{
b3694847 1717 const char *p;
09051660
RH
1718 for (p = GET_RTX_NAME (code); *p; p++)
1719 putchar (TOUPPER (*p));
1720}
ec65fa66 1721
09051660 1722/* Emit code to cross an afterward link -- change state and branch. */
ec65fa66 1723
09051660 1724static void
3d7aafde
AJ
1725write_afterward (struct decision *start, struct decision *afterward,
1726 const char *indent)
09051660
RH
1727{
1728 if (!afterward || start->subroutine_number > 0)
1729 printf("%sgoto ret0;\n", indent);
1730 else
1731 {
1732 change_state (start->position, afterward->position, NULL, indent);
1733 printf ("%sgoto L%d;\n", indent, afterward->number);
1734 }
1735}
e0689256 1736
5b7c7046 1737/* Emit a switch statement, if possible, for an initial sequence of
09051660 1738 nodes at START. Return the first node yet untested. */
e0689256 1739
09051660 1740static struct decision *
3d7aafde 1741write_switch (struct decision *start, int depth)
09051660
RH
1742{
1743 struct decision *p = start;
1744 enum decision_type type = p->tests->type;
1651ab85 1745 struct decision *needs_label = NULL;
ec65fa66 1746
09051660
RH
1747 /* If we have two or more nodes in sequence that test the same one
1748 thing, we may be able to use a switch statement. */
e0689256 1749
09051660
RH
1750 if (!p->next
1751 || p->tests->next
1752 || p->next->tests->type != type
2cec75a1
RH
1753 || p->next->tests->next
1754 || nodes_identical_1 (p->tests, p->next->tests))
09051660 1755 return p;
e0689256 1756
09051660
RH
1757 /* DT_code is special in that we can do interesting things with
1758 known predicates at the same time. */
1759 if (type == DT_code)
1760 {
1761 char codemap[NUM_RTX_CODE];
1762 struct decision *ret;
1e193337 1763 RTX_CODE code;
ec65fa66 1764
09051660 1765 memset (codemap, 0, sizeof(codemap));
ec65fa66 1766
09051660 1767 printf (" switch (GET_CODE (x%d))\n {\n", depth);
1e193337 1768 code = p->tests->u.code;
5b7c7046 1769 do
ec65fa66 1770 {
1651ab85
AO
1771 if (p != start && p->need_label && needs_label == NULL)
1772 needs_label = p;
1773
09051660
RH
1774 printf (" case ");
1775 print_code (code);
1776 printf (":\n goto L%d;\n", p->success.first->number);
1777 p->success.first->need_label = 1;
1778
1779 codemap[code] = 1;
1780 p = p->next;
1781 }
1e193337
RH
1782 while (p
1783 && ! p->tests->next
1784 && p->tests->type == DT_code
1785 && ! codemap[code = p->tests->u.code]);
09051660
RH
1786
1787 /* If P is testing a predicate that we know about and we haven't
1788 seen any of the codes that are valid for the predicate, we can
1789 write a series of "case" statement, one for each possible code.
1790 Since we are already in a switch, these redundant tests are very
1791 cheap and will reduce the number of predicates called. */
1792
1793 /* Note that while we write out cases for these predicates here,
1794 we don't actually write the test here, as it gets kinda messy.
1795 It is trivial to leave this to later by telling our caller that
1796 we only processed the CODE tests. */
1651ab85
AO
1797 if (needs_label != NULL)
1798 ret = needs_label;
1799 else
1800 ret = p;
09051660
RH
1801
1802 while (p && p->tests->type == DT_pred
1803 && p->tests->u.pred.index >= 0)
1804 {
1805 const RTX_CODE *c;
ec65fa66 1806
09051660
RH
1807 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1808 if (codemap[(int) *c] != 0)
1809 goto pred_done;
e0689256 1810
09051660 1811 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
ec65fa66 1812 {
09051660
RH
1813 printf (" case ");
1814 print_code (*c);
1815 printf (":\n");
1816 codemap[(int) *c] = 1;
ec65fa66 1817 }
e0689256 1818
09051660
RH
1819 printf (" goto L%d;\n", p->number);
1820 p->need_label = 1;
1821 p = p->next;
ec65fa66
RK
1822 }
1823
09051660
RH
1824 pred_done:
1825 /* Make the default case skip the predicates we managed to match. */
e0689256 1826
09051660
RH
1827 printf (" default:\n");
1828 if (p != ret)
ec65fa66 1829 {
09051660 1830 if (p)
b030d598 1831 {
09051660
RH
1832 printf (" goto L%d;\n", p->number);
1833 p->need_label = 1;
b030d598 1834 }
e0689256 1835 else
09051660 1836 write_afterward (start, start->afterward, " ");
ec65fa66 1837 }
ec65fa66 1838 else
09051660
RH
1839 printf (" break;\n");
1840 printf (" }\n");
1841
1842 return ret;
1843 }
1844 else if (type == DT_mode
1845 || type == DT_veclen
1846 || type == DT_elt_zero_int
1847 || type == DT_elt_one_int
070ef6f4 1848 || type == DT_elt_zero_wide_safe)
09051660 1849 {
9591d210 1850 const char *indent = "";
9e9f3ede 1851
9591d210
JH
1852 /* We cast switch parameter to integer, so we must ensure that the value
1853 fits. */
1854 if (type == DT_elt_zero_wide_safe)
1855 {
1856 indent = " ";
1857 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1858 }
1859 printf ("%s switch (", indent);
09051660
RH
1860 switch (type)
1861 {
1862 case DT_mode:
c8d8ed65 1863 printf ("GET_MODE (x%d)", depth);
09051660
RH
1864 break;
1865 case DT_veclen:
c8d8ed65 1866 printf ("XVECLEN (x%d, 0)", depth);
09051660
RH
1867 break;
1868 case DT_elt_zero_int:
c8d8ed65 1869 printf ("XINT (x%d, 0)", depth);
09051660
RH
1870 break;
1871 case DT_elt_one_int:
c8d8ed65 1872 printf ("XINT (x%d, 1)", depth);
09051660 1873 break;
070ef6f4 1874 case DT_elt_zero_wide_safe:
c8d8ed65
RK
1875 /* Convert result of XWINT to int for portability since some C
1876 compilers won't do it and some will. */
1877 printf ("(int) XWINT (x%d, 0)", depth);
09051660
RH
1878 break;
1879 default:
1880 abort ();
1881 }
9591d210 1882 printf (")\n%s {\n", indent);
cba998bf 1883
09051660 1884 do
e0689256 1885 {
2cec75a1
RH
1886 /* Merge trees will not unify identical nodes if their
1887 sub-nodes are at different levels. Thus we must check
1888 for duplicate cases. */
1889 struct decision *q;
1890 for (q = start; q != p; q = q->next)
1891 if (nodes_identical_1 (p->tests, q->tests))
1892 goto case_done;
1893
1651ab85
AO
1894 if (p != start && p->need_label && needs_label == NULL)
1895 needs_label = p;
1896
9591d210 1897 printf ("%s case ", indent);
09051660 1898 switch (type)
cba998bf 1899 {
09051660
RH
1900 case DT_mode:
1901 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1902 break;
1903 case DT_veclen:
1904 printf ("%d", p->tests->u.veclen);
1905 break;
1906 case DT_elt_zero_int:
1907 case DT_elt_one_int:
1908 case DT_elt_zero_wide:
070ef6f4 1909 case DT_elt_zero_wide_safe:
bb9b3805 1910 printf (HOST_WIDE_INT_PRINT_DEC_C, p->tests->u.intval);
09051660
RH
1911 break;
1912 default:
1913 abort ();
cba998bf 1914 }
9591d210 1915 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
09051660 1916 p->success.first->need_label = 1;
cba998bf 1917
09051660 1918 p = p->next;
e0689256 1919 }
09051660 1920 while (p && p->tests->type == type && !p->tests->next);
2cec75a1
RH
1921
1922 case_done:
9591d210
JH
1923 printf ("%s default:\n%s break;\n%s }\n",
1924 indent, indent, indent);
ec65fa66 1925
1651ab85 1926 return needs_label != NULL ? needs_label : p;
09051660
RH
1927 }
1928 else
1929 {
fbe5a4a6 1930 /* None of the other tests are amenable. */
09051660
RH
1931 return p;
1932 }
1933}
ec65fa66 1934
09051660 1935/* Emit code for one test. */
e0689256 1936
09051660 1937static void
3d7aafde
AJ
1938write_cond (struct decision_test *p, int depth,
1939 enum routine_type subroutine_type)
09051660
RH
1940{
1941 switch (p->type)
1942 {
1943 case DT_mode:
1944 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1945 break;
e0689256 1946
09051660
RH
1947 case DT_code:
1948 printf ("GET_CODE (x%d) == ", depth);
1949 print_code (p->u.code);
1950 break;
1951
1952 case DT_veclen:
1953 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1954 break;
1955
1956 case DT_elt_zero_int:
1957 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
1958 break;
1959
1960 case DT_elt_one_int:
1961 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
1962 break;
1963
1964 case DT_elt_zero_wide:
070ef6f4 1965 case DT_elt_zero_wide_safe:
09051660 1966 printf ("XWINT (x%d, 0) == ", depth);
bb9b3805 1967 printf (HOST_WIDE_INT_PRINT_DEC_C, p->u.intval);
09051660
RH
1968 break;
1969
521b9224
RH
1970 case DT_veclen_ge:
1971 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
1972 break;
1973
09051660
RH
1974 case DT_dup:
1975 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
1976 break;
1977
1978 case DT_pred:
1979 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
1980 GET_MODE_NAME (p->u.pred.mode));
1981 break;
1982
1983 case DT_c_test:
1984 printf ("(%s)", p->u.c_test);
1985 break;
1986
1987 case DT_accept_insn:
1988 switch (subroutine_type)
1989 {
1990 case RECOG:
1991 if (p->u.insn.num_clobbers_to_add == 0)
1992 abort ();
1993 printf ("pnum_clobbers != NULL");
1994 break;
1995
1996 default:
1997 abort ();
ec65fa66 1998 }
09051660 1999 break;
ec65fa66 2000
09051660
RH
2001 default:
2002 abort ();
e0689256 2003 }
09051660 2004}
ec65fa66 2005
09051660
RH
2006/* Emit code for one action. The previous tests have succeeded;
2007 TEST is the last of the chain. In the normal case we simply
2008 perform a state change. For the `accept' tests we must do more work. */
ec65fa66 2009
09051660 2010static void
3d7aafde
AJ
2011write_action (struct decision *p, struct decision_test *test,
2012 int depth, int uncond, struct decision *success,
2013 enum routine_type subroutine_type)
09051660
RH
2014{
2015 const char *indent;
2016 int want_close = 0;
2017
2018 if (uncond)
2019 indent = " ";
2020 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
e0689256 2021 {
09051660
RH
2022 fputs (" {\n", stdout);
2023 indent = " ";
2024 want_close = 1;
e0689256 2025 }
09051660
RH
2026 else
2027 indent = " ";
ec65fa66 2028
09051660 2029 if (test->type == DT_accept_op)
e0689256 2030 {
09051660
RH
2031 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2032
2033 /* Only allow DT_accept_insn to follow. */
2034 if (test->next)
2035 {
2036 test = test->next;
2037 if (test->type != DT_accept_insn)
2038 abort ();
2039 }
ec65fa66
RK
2040 }
2041
09051660
RH
2042 /* Sanity check that we're now at the end of the list of tests. */
2043 if (test->next)
e0689256 2044 abort ();
ec65fa66 2045
09051660 2046 if (test->type == DT_accept_insn)
ec65fa66 2047 {
09051660
RH
2048 switch (subroutine_type)
2049 {
2050 case RECOG:
2051 if (test->u.insn.num_clobbers_to_add != 0)
2052 printf ("%s*pnum_clobbers = %d;\n",
2053 indent, test->u.insn.num_clobbers_to_add);
2054 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2055 break;
2056
2057 case SPLIT:
2058 printf ("%sreturn gen_split_%d (operands);\n",
2059 indent, test->u.insn.code_number);
2060 break;
2061
2062 case PEEPHOLE2:
23280139
RH
2063 {
2064 int match_len = 0, i;
2065
2066 for (i = strlen (p->position) - 1; i >= 0; --i)
0df6c2c7 2067 if (ISUPPER (p->position[i]))
23280139
RH
2068 {
2069 match_len = p->position[i] - 'A';
2070 break;
2071 }
2072 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2073 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2074 indent, test->u.insn.code_number);
2075 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2076 }
09051660
RH
2077 break;
2078
2079 default:
2080 abort ();
2081 }
ec65fa66
RK
2082 }
2083 else
09051660
RH
2084 {
2085 printf("%sgoto L%d;\n", indent, success->number);
2086 success->need_label = 1;
2087 }
ec65fa66 2088
09051660
RH
2089 if (want_close)
2090 fputs (" }\n", stdout);
ec65fa66
RK
2091}
2092
09051660
RH
2093/* Return 1 if the test is always true and has no fallthru path. Return -1
2094 if the test does have a fallthru path, but requires that the condition be
2095 terminated. Otherwise return 0 for a normal test. */
2096/* ??? is_unconditional is a stupid name for a tri-state function. */
2097
ec65fa66 2098static int
3d7aafde 2099is_unconditional (struct decision_test *t, enum routine_type subroutine_type)
ec65fa66 2100{
09051660
RH
2101 if (t->type == DT_accept_op)
2102 return 1;
ec65fa66 2103
09051660
RH
2104 if (t->type == DT_accept_insn)
2105 {
2106 switch (subroutine_type)
2107 {
2108 case RECOG:
2109 return (t->u.insn.num_clobbers_to_add == 0);
2110 case SPLIT:
2111 return 1;
2112 case PEEPHOLE2:
2113 return -1;
2114 default:
2115 abort ();
2116 }
2117 }
ec65fa66 2118
09051660 2119 return 0;
ec65fa66
RK
2120}
2121
09051660
RH
2122/* Emit code for one node -- the conditional and the accompanying action.
2123 Return true if there is no fallthru path. */
2124
ec65fa66 2125static int
3d7aafde
AJ
2126write_node (struct decision *p, int depth,
2127 enum routine_type subroutine_type)
ec65fa66 2128{
09051660
RH
2129 struct decision_test *test, *last_test;
2130 int uncond;
ec65fa66 2131
09051660
RH
2132 last_test = test = p->tests;
2133 uncond = is_unconditional (test, subroutine_type);
2134 if (uncond == 0)
2135 {
2136 printf (" if (");
2137 write_cond (test, depth, subroutine_type);
2138
2139 while ((test = test->next) != NULL)
2140 {
2141 int uncond2;
2142
2143 last_test = test;
2144 uncond2 = is_unconditional (test, subroutine_type);
2145 if (uncond2 != 0)
2146 break;
2147
2148 printf ("\n && ");
2149 write_cond (test, depth, subroutine_type);
2150 }
2151
2152 printf (")\n");
2153 }
2154
23280139 2155 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
09051660
RH
2156
2157 return uncond > 0;
ec65fa66
RK
2158}
2159
09051660
RH
2160/* Emit code for all of the sibling nodes of HEAD. */
2161
ec65fa66 2162static void
3d7aafde
AJ
2163write_tree_1 (struct decision_head *head, int depth,
2164 enum routine_type subroutine_type)
ec65fa66 2165{
09051660
RH
2166 struct decision *p, *next;
2167 int uncond = 0;
e0689256 2168
09051660
RH
2169 for (p = head->first; p ; p = next)
2170 {
2171 /* The label for the first element was printed in write_tree. */
2172 if (p != head->first && p->need_label)
2173 OUTPUT_LABEL (" ", p->number);
2174
2175 /* Attempt to write a switch statement for a whole sequence. */
2176 next = write_switch (p, depth);
2177 if (p != next)
2178 uncond = 0;
2179 else
2180 {
2181 /* Failed -- fall back and write one node. */
2182 uncond = write_node (p, depth, subroutine_type);
2183 next = p->next;
2184 }
2185 }
e0689256 2186
09051660
RH
2187 /* Finished with this chain. Close a fallthru path by branching
2188 to the afterward node. */
2189 if (! uncond)
2190 write_afterward (head->last, head->last->afterward, " ");
2191}
e0689256 2192
09051660
RH
2193/* Write out the decision tree starting at HEAD. PREVPOS is the
2194 position at the node that branched to this node. */
e0689256
RK
2195
2196static void
3d7aafde
AJ
2197write_tree (struct decision_head *head, const char *prevpos,
2198 enum routine_type type, int initial)
e0689256 2199{
b3694847 2200 struct decision *p = head->first;
e0689256 2201
09051660
RH
2202 putchar ('\n');
2203 if (p->need_label)
2204 OUTPUT_LABEL (" ", p->number);
2205
2206 if (! initial && p->subroutine_number > 0)
e0689256 2207 {
09051660
RH
2208 static const char * const name_prefix[] = {
2209 "recog", "split", "peephole2"
2210 };
2211
2212 static const char * const call_suffix[] = {
23280139 2213 ", pnum_clobbers", "", ", _pmatch_len"
09051660 2214 };
e0689256 2215
09051660
RH
2216 /* This node has been broken out into a separate subroutine.
2217 Call it, test the result, and branch accordingly. */
2218
2219 if (p->afterward)
e0689256
RK
2220 {
2221 printf (" tem = %s_%d (x0, insn%s);\n",
09051660 2222 name_prefix[type], p->subroutine_number, call_suffix[type]);
ede7cd44 2223 if (IS_SPLIT (type))
09051660 2224 printf (" if (tem != 0)\n return tem;\n");
71bde1f3 2225 else
09051660
RH
2226 printf (" if (tem >= 0)\n return tem;\n");
2227
2228 change_state (p->position, p->afterward->position, NULL, " ");
2229 printf (" goto L%d;\n", p->afterward->number);
e0689256
RK
2230 }
2231 else
09051660
RH
2232 {
2233 printf (" return %s_%d (x0, insn%s);\n",
2234 name_prefix[type], p->subroutine_number, call_suffix[type]);
2235 }
e0689256 2236 }
09051660
RH
2237 else
2238 {
2239 int depth = strlen (p->position);
e0689256 2240
09051660
RH
2241 change_state (prevpos, p->position, head->last->afterward, " ");
2242 write_tree_1 (head, depth, type);
e0689256 2243
09051660
RH
2244 for (p = head->first; p; p = p->next)
2245 if (p->success.first)
2246 write_tree (&p->success, p->position, type, 0);
2247 }
e0689256
RK
2248}
2249
09051660
RH
2250/* Write out a subroutine of type TYPE to do comparisons starting at
2251 node TREE. */
ede7cd44 2252
09051660 2253static void
3d7aafde 2254write_subroutine (struct decision_head *head, enum routine_type type)
09051660 2255{
e8f9b13a 2256 int subfunction = head->first ? head->first->subroutine_number : 0;
09051660
RH
2257 const char *s_or_e;
2258 char extension[32];
2259 int i;
5b7c7046 2260
09051660 2261 s_or_e = subfunction ? "static " : "";
e0689256 2262
09051660
RH
2263 if (subfunction)
2264 sprintf (extension, "_%d", subfunction);
2265 else if (type == RECOG)
2266 extension[0] = '\0';
2267 else
2268 strcpy (extension, "_insns");
2269
913d0833
KG
2270 switch (type)
2271 {
2272 case RECOG:
913d0833 2273 printf ("%sint\n\
6906ba40 2274recog%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n", s_or_e, extension);
913d0833
KG
2275 break;
2276 case SPLIT:
913d0833 2277 printf ("%srtx\n\
6906ba40
KG
2278split%s (rtx x0 ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED)\n",
2279 s_or_e, extension);
913d0833
KG
2280 break;
2281 case PEEPHOLE2:
913d0833 2282 printf ("%srtx\n\
6906ba40
KG
2283peephole2%s (rtx x0 ATTRIBUTE_UNUSED,\n\trtx insn ATTRIBUTE_UNUSED,\n\tint *_pmatch_len ATTRIBUTE_UNUSED)\n",
2284 s_or_e, extension);
913d0833
KG
2285 break;
2286 }
09051660 2287
b3694847 2288 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
09051660 2289 for (i = 1; i <= max_depth; i++)
b3694847 2290 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
09051660 2291
09051660
RH
2292 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2293
d90ffc8d
JH
2294 if (!subfunction)
2295 printf (" recog_data.insn = NULL_RTX;\n");
2296
e8f9b13a
RH
2297 if (head->first)
2298 write_tree (head, "", type, 1);
2299 else
2300 printf (" goto ret0;\n");
09051660 2301
09051660
RH
2302 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2303}
2304
2305/* In break_out_subroutines, we discovered the boundaries for the
2306 subroutines, but did not write them out. Do so now. */
e0689256 2307
ec65fa66 2308static void
3d7aafde 2309write_subroutines (struct decision_head *head, enum routine_type type)
ec65fa66 2310{
09051660 2311 struct decision *p;
ec65fa66 2312
09051660
RH
2313 for (p = head->first; p ; p = p->next)
2314 if (p->success.first)
2315 write_subroutines (&p->success, type);
ec65fa66 2316
09051660
RH
2317 if (head->first->subroutine_number > 0)
2318 write_subroutine (head, type);
2319}
ede7cd44 2320
09051660 2321/* Begin the output file. */
ede7cd44 2322
09051660 2323static void
3d7aafde 2324write_header (void)
09051660
RH
2325{
2326 puts ("\
2327/* Generated automatically by the program `genrecog' from the target\n\
2328 machine description file. */\n\
2329\n\
2330#include \"config.h\"\n\
2331#include \"system.h\"\n\
4977bab6
ZW
2332#include \"coretypes.h\"\n\
2333#include \"tm.h\"\n\
09051660
RH
2334#include \"rtl.h\"\n\
2335#include \"tm_p.h\"\n\
2336#include \"function.h\"\n\
2337#include \"insn-config.h\"\n\
2338#include \"recog.h\"\n\
2339#include \"real.h\"\n\
2340#include \"output.h\"\n\
2341#include \"flags.h\"\n\
b1afd7f4
KG
2342#include \"hard-reg-set.h\"\n\
2343#include \"resource.h\"\n\
04f378ce 2344#include \"toplev.h\"\n\
5b7c7046 2345#include \"reload.h\"\n\
09051660
RH
2346\n");
2347
2348 puts ("\n\
2349/* `recog' contains a decision tree that recognizes whether the rtx\n\
2350 X0 is a valid instruction.\n\
2351\n\
2352 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2353 returns a nonnegative number which is the insn code number for the\n\
2354 pattern that matched. This is the same as the order in the machine\n\
2355 description of the entry that matched. This number can be used as an\n\
3f6790bf
KG
2356 index into `insn_data' and other tables.\n");
2357 puts ("\
09051660
RH
2358 The third argument to recog is an optional pointer to an int. If\n\
2359 present, recog will accept a pattern if it matches except for missing\n\
2360 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2361 the optional pointer will be set to the number of CLOBBERs that need\n\
3f6790bf
KG
2362 to be added (it should be initialized to zero by the caller). If it");
2363 puts ("\
09051660
RH
2364 is set nonzero, the caller should allocate a PARALLEL of the\n\
2365 appropriate size, copy the initial entries, and call add_clobbers\n\
2366 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2367");
2368
2369 puts ("\n\
2370 The function split_insns returns 0 if the rtl could not\n\
2f937369 2371 be split or the split rtl as an INSN list if it can be.\n\
09051660
RH
2372\n\
2373 The function peephole2_insns returns 0 if the rtl could not\n\
2f937369 2374 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
09051660
RH
2375 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2376*/\n\n");
2377}
ec65fa66 2378
09051660
RH
2379\f
2380/* Construct and return a sequence of decisions
2381 that will recognize INSN.
ec65fa66 2382
09051660
RH
2383 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2384
2385static struct decision_head
3d7aafde 2386make_insn_sequence (rtx insn, enum routine_type type)
09051660
RH
2387{
2388 rtx x;
2389 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
2199e5fa 2390 int truth = maybe_eval_c_test (c_test);
09051660
RH
2391 struct decision *last;
2392 struct decision_test *test, **place;
2393 struct decision_head head;
3b304f5b 2394 char c_test_pos[2];
09051660 2395
2199e5fa
ZW
2396 /* We should never see an insn whose C test is false at compile time. */
2397 if (truth == 0)
2398 abort ();
2399
09051660
RH
2400 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2401
3b304f5b 2402 c_test_pos[0] = '\0';
09051660 2403 if (type == PEEPHOLE2)
ec65fa66 2404 {
09051660
RH
2405 int i, j;
2406
2407 /* peephole2 gets special treatment:
2408 - X always gets an outer parallel even if it's only one entry
2409 - we remove all traces of outer-level match_scratch and match_dup
2410 expressions here. */
2411 x = rtx_alloc (PARALLEL);
2412 PUT_MODE (x, VOIDmode);
2413 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2414 for (i = j = 0; i < XVECLEN (insn, 0); i++)
ede7cd44 2415 {
09051660
RH
2416 rtx tmp = XVECEXP (insn, 0, i);
2417 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2418 {
2419 XVECEXP (x, 0, j) = tmp;
2420 j++;
2421 }
2422 }
2423 XVECLEN (x, 0) = j;
4e9887c7 2424
4e9887c7
RH
2425 c_test_pos[0] = 'A' + j - 1;
2426 c_test_pos[1] = '\0';
09051660
RH
2427 }
2428 else if (XVECLEN (insn, type == RECOG) == 1)
2429 x = XVECEXP (insn, type == RECOG, 0);
2430 else
2431 {
2432 x = rtx_alloc (PARALLEL);
2433 XVEC (x, 0) = XVEC (insn, type == RECOG);
2434 PUT_MODE (x, VOIDmode);
2435 }
2436
7297e9fc 2437 validate_pattern (x, insn, NULL_RTX, 0);
bcdaba58 2438
09051660
RH
2439 memset(&head, 0, sizeof(head));
2440 last = add_to_sequence (x, &head, "", type, 1);
2441
2442 /* Find the end of the test chain on the last node. */
2443 for (test = last->tests; test->next; test = test->next)
2444 continue;
2445 place = &test->next;
2446
2199e5fa
ZW
2447 /* Skip the C test if it's known to be true at compile time. */
2448 if (truth == -1)
09051660
RH
2449 {
2450 /* Need a new node if we have another test to add. */
2451 if (test->type == DT_accept_op)
2452 {
4e9887c7 2453 last = new_decision (c_test_pos, &last->success);
09051660
RH
2454 place = &last->tests;
2455 }
2456 test = new_decision_test (DT_c_test, &place);
2457 test->u.c_test = c_test;
2458 }
2459
2460 test = new_decision_test (DT_accept_insn, &place);
2461 test->u.insn.code_number = next_insn_code;
bcdaba58 2462 test->u.insn.lineno = pattern_lineno;
09051660
RH
2463 test->u.insn.num_clobbers_to_add = 0;
2464
2465 switch (type)
2466 {
2467 case RECOG:
b20b352b 2468 /* If this is a DEFINE_INSN and X is a PARALLEL, see if it ends
09051660
RH
2469 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2470 If so, set up to recognize the pattern without these CLOBBERs. */
2471
2472 if (GET_CODE (x) == PARALLEL)
2473 {
2474 int i;
2475
2476 /* Find the last non-clobber in the parallel. */
2477 for (i = XVECLEN (x, 0); i > 0; i--)
ede7cd44 2478 {
09051660
RH
2479 rtx y = XVECEXP (x, 0, i - 1);
2480 if (GET_CODE (y) != CLOBBER
2481 || (GET_CODE (XEXP (y, 0)) != REG
2482 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2483 break;
ede7cd44 2484 }
09051660
RH
2485
2486 if (i != XVECLEN (x, 0))
ede7cd44 2487 {
09051660
RH
2488 rtx new;
2489 struct decision_head clobber_head;
ede7cd44 2490
09051660
RH
2491 /* Build a similar insn without the clobbers. */
2492 if (i == 1)
2493 new = XVECEXP (x, 0, 0);
ede7cd44 2494 else
09051660
RH
2495 {
2496 int j;
2497
2498 new = rtx_alloc (PARALLEL);
2499 XVEC (new, 0) = rtvec_alloc (i);
2500 for (j = i - 1; j >= 0; j--)
2501 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2502 }
2503
2504 /* Recognize it. */
2505 memset (&clobber_head, 0, sizeof(clobber_head));
2506 last = add_to_sequence (new, &clobber_head, "", type, 1);
ede7cd44 2507
09051660
RH
2508 /* Find the end of the test chain on the last node. */
2509 for (test = last->tests; test->next; test = test->next)
2510 continue;
2511
2512 /* We definitely have a new test to add -- create a new
2513 node if needed. */
2514 place = &test->next;
2515 if (test->type == DT_accept_op)
2516 {
2517 last = new_decision ("", &last->success);
2518 place = &last->tests;
2519 }
2520
2199e5fa
ZW
2521 /* Skip the C test if it's known to be true at compile
2522 time. */
2523 if (truth == -1)
09051660
RH
2524 {
2525 test = new_decision_test (DT_c_test, &place);
2526 test->u.c_test = c_test;
2527 }
2528
2529 test = new_decision_test (DT_accept_insn, &place);
2530 test->u.insn.code_number = next_insn_code;
bcdaba58 2531 test->u.insn.lineno = pattern_lineno;
09051660
RH
2532 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2533
2534 merge_trees (&head, &clobber_head);
ede7cd44 2535 }
ede7cd44 2536 }
09051660
RH
2537 break;
2538
2539 case SPLIT:
2540 /* Define the subroutine we will call below and emit in genemit. */
3d7aafde 2541 printf ("extern rtx gen_split_%d (rtx *);\n", next_insn_code);
09051660
RH
2542 break;
2543
2544 case PEEPHOLE2:
2545 /* Define the subroutine we will call below and emit in genemit. */
3d7aafde 2546 printf ("extern rtx gen_peephole2_%d (rtx, rtx *);\n",
09051660
RH
2547 next_insn_code);
2548 break;
ec65fa66 2549 }
e0689256 2550
09051660 2551 return head;
ec65fa66
RK
2552}
2553
09051660 2554static void
3d7aafde 2555process_tree (struct decision_head *head, enum routine_type subroutine_type)
ec65fa66 2556{
4dc320a5
RH
2557 if (head->first == NULL)
2558 {
2559 /* We can elide peephole2_insns, but not recog or split_insns. */
2560 if (subroutine_type == PEEPHOLE2)
2561 return;
2562 }
2563 else
e8f9b13a
RH
2564 {
2565 factor_tests (head);
ec65fa66 2566
e8f9b13a
RH
2567 next_subroutine_number = 0;
2568 break_out_subroutines (head, 1);
2569 find_afterward (head, NULL);
c1b59dce 2570
4dc320a5
RH
2571 /* We run this after find_afterward, because find_afterward needs
2572 the redundant DT_mode tests on predicates to determine whether
2573 two tests can both be true or not. */
2574 simplify_tests(head);
2575
e8f9b13a
RH
2576 write_subroutines (head, subroutine_type);
2577 }
4dc320a5 2578
09051660
RH
2579 write_subroutine (head, subroutine_type);
2580}
2581\f
3d7aafde 2582extern int main (int, char **);
36f0e0a6 2583
ec65fa66 2584int
3d7aafde 2585main (int argc, char **argv)
ec65fa66
RK
2586{
2587 rtx desc;
09051660 2588 struct decision_head recog_tree, split_tree, peephole2_tree, h;
ec65fa66 2589
f8b6598e 2590 progname = "genrecog";
09051660
RH
2591
2592 memset (&recog_tree, 0, sizeof recog_tree);
2593 memset (&split_tree, 0, sizeof split_tree);
2594 memset (&peephole2_tree, 0, sizeof peephole2_tree);
ec65fa66
RK
2595
2596 if (argc <= 1)
1f978f5f 2597 fatal ("no input file name");
ec65fa66 2598
04d8aa70 2599 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
c88c0d42 2600 return (FATAL_EXIT_CODE);
ec65fa66 2601
ec65fa66
RK
2602 next_insn_code = 0;
2603 next_index = 0;
2604
09051660 2605 write_header ();
ec65fa66
RK
2606
2607 /* Read the machine description. */
2608
2609 while (1)
2610 {
c88c0d42
CP
2611 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2612 if (desc == NULL)
ec65fa66 2613 break;
ec65fa66 2614
ec65fa66 2615 if (GET_CODE (desc) == DEFINE_INSN)
09051660
RH
2616 {
2617 h = make_insn_sequence (desc, RECOG);
2618 merge_trees (&recog_tree, &h);
2619 }
ec65fa66 2620 else if (GET_CODE (desc) == DEFINE_SPLIT)
09051660
RH
2621 {
2622 h = make_insn_sequence (desc, SPLIT);
2623 merge_trees (&split_tree, &h);
2624 }
ede7cd44 2625 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
09051660
RH
2626 {
2627 h = make_insn_sequence (desc, PEEPHOLE2);
2628 merge_trees (&peephole2_tree, &h);
2629 }
5b7c7046 2630
ec65fa66
RK
2631 next_index++;
2632 }
2633
bcdaba58
RH
2634 if (error_count)
2635 return FATAL_EXIT_CODE;
2636
09051660 2637 puts ("\n\n");
ec65fa66 2638
09051660
RH
2639 process_tree (&recog_tree, RECOG);
2640 process_tree (&split_tree, SPLIT);
2641 process_tree (&peephole2_tree, PEEPHOLE2);
ede7cd44 2642
ec65fa66 2643 fflush (stdout);
c1b59dce 2644 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
ec65fa66 2645}
09051660 2646\f
a995e389
RH
2647/* Define this so we can link with print-rtl.o to get debug_rtx function. */
2648const char *
3d7aafde 2649get_insn_name (int code)
a995e389
RH
2650{
2651 if (code < insn_name_ptr_size)
2652 return insn_name_ptr[code];
2653 else
2654 return NULL;
2655}
09051660
RH
2656
2657static void
3d7aafde 2658record_insn_name (int code, const char *name)
09051660
RH
2659{
2660 static const char *last_real_name = "insn";
2661 static int last_real_code = 0;
2662 char *new;
2663
2664 if (insn_name_ptr_size <= code)
2665 {
2666 int new_size;
2667 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
703ad42b 2668 insn_name_ptr = xrealloc (insn_name_ptr, sizeof(char *) * new_size);
5b7c7046 2669 memset (insn_name_ptr + insn_name_ptr_size, 0,
09051660
RH
2670 sizeof(char *) * (new_size - insn_name_ptr_size));
2671 insn_name_ptr_size = new_size;
2672 }
2673
2674 if (!name || name[0] == '\0')
2675 {
2676 new = xmalloc (strlen (last_real_name) + 10);
2677 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2678 }
2679 else
2680 {
2681 last_real_name = new = xstrdup (name);
2682 last_real_code = code;
2683 }
5b7c7046 2684
09051660 2685 insn_name_ptr[code] = new;
5b7c7046 2686}
09051660 2687\f
09051660 2688static void
3d7aafde 2689debug_decision_2 (struct decision_test *test)
09051660
RH
2690{
2691 switch (test->type)
2692 {
2693 case DT_mode:
2694 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2695 break;
2696 case DT_code:
2697 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2698 break;
2699 case DT_veclen:
2700 fprintf (stderr, "veclen=%d", test->u.veclen);
2701 break;
2702 case DT_elt_zero_int:
2703 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2704 break;
2705 case DT_elt_one_int:
2706 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2707 break;
2708 case DT_elt_zero_wide:
90ff44cf 2709 fprintf (stderr, "elt0_w=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
09051660 2710 break;
070ef6f4 2711 case DT_elt_zero_wide_safe:
90ff44cf 2712 fprintf (stderr, "elt0_ws=" HOST_WIDE_INT_PRINT_DEC, test->u.intval);
070ef6f4 2713 break;
521b9224
RH
2714 case DT_veclen_ge:
2715 fprintf (stderr, "veclen>=%d", test->u.veclen);
2716 break;
09051660
RH
2717 case DT_dup:
2718 fprintf (stderr, "dup=%d", test->u.dup);
2719 break;
2720 case DT_pred:
2721 fprintf (stderr, "pred=(%s,%s)",
2722 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2723 break;
2724 case DT_c_test:
2725 {
2726 char sub[16+4];
2727 strncpy (sub, test->u.c_test, sizeof(sub));
2728 memcpy (sub+16, "...", 4);
2729 fprintf (stderr, "c_test=\"%s\"", sub);
2730 }
2731 break;
2732 case DT_accept_op:
2733 fprintf (stderr, "A_op=%d", test->u.opno);
2734 break;
2735 case DT_accept_insn:
5b7c7046 2736 fprintf (stderr, "A_insn=(%d,%d)",
09051660
RH
2737 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2738 break;
2739
2740 default:
2741 abort ();
2742 }
2743}
2744
2745static void
3d7aafde 2746debug_decision_1 (struct decision *d, int indent)
09051660
RH
2747{
2748 int i;
2749 struct decision_test *test;
2750
2751 if (d == NULL)
2752 {
2753 for (i = 0; i < indent; ++i)
2754 putc (' ', stderr);
2755 fputs ("(nil)\n", stderr);
2756 return;
2757 }
2758
2759 for (i = 0; i < indent; ++i)
2760 putc (' ', stderr);
2761
2762 putc ('{', stderr);
2763 test = d->tests;
2764 if (test)
2765 {
2766 debug_decision_2 (test);
2767 while ((test = test->next) != NULL)
2768 {
2769 fputs (" + ", stderr);
2770 debug_decision_2 (test);
2771 }
2772 }
4dc320a5
RH
2773 fprintf (stderr, "} %d n %d a %d\n", d->number,
2774 (d->next ? d->next->number : -1),
2775 (d->afterward ? d->afterward->number : -1));
09051660
RH
2776}
2777
2778static void
3d7aafde 2779debug_decision_0 (struct decision *d, int indent, int maxdepth)
09051660
RH
2780{
2781 struct decision *n;
2782 int i;
2783
2784 if (maxdepth < 0)
2785 return;
2786 if (d == NULL)
2787 {
2788 for (i = 0; i < indent; ++i)
2789 putc (' ', stderr);
2790 fputs ("(nil)\n", stderr);
2791 return;
2792 }
2793
2794 debug_decision_1 (d, indent);
2795 for (n = d->success.first; n ; n = n->next)
2796 debug_decision_0 (n, indent + 2, maxdepth - 1);
2797}
2798
2799void
3d7aafde 2800debug_decision (struct decision *d)
09051660
RH
2801{
2802 debug_decision_0 (d, 0, 1000000);
2803}
ec1c89e6
RH
2804
2805void
3d7aafde 2806debug_decision_list (struct decision *d)
ec1c89e6
RH
2807{
2808 while (d)
2809 {
2810 debug_decision_0 (d, 0, 0);
2811 d = d->next;
2812 }
2813}