]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/genrecog.c
Merge basic-improvements-branch to trunk
[thirdparty/gcc.git] / gcc / genrecog.c
CommitLineData
263287f7 1/* Generate code from machine description to recognize rtl as insns.
2f791da8 2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1997, 1998,
dfe09cce 3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
263287f7 4
f12b58b3 5 This file is part of GCC.
6d69ff19 6
f12b58b3 7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
6d69ff19 9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
f12b58b3 12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
6d69ff19 16
17 You should have received a copy of the GNU General Public License
f12b58b3 18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
6d69ff19 21
22
23/* This program is used to produce insn-recog.c, which contains a
24 function called `recog' plus its subroutines. These functions
25 contain a decision tree that recognizes whether an rtx, the
26 argument given to recog, is a valid instruction.
27
28 recog returns -1 if the rtx is not valid. If the rtx is valid,
29 recog returns a nonnegative number which is the insn code number
30 for the pattern that matched. This is the same as the order in the
31 machine description of the entry that matched. This number can be
32 used as an index into various insn_* tables, such as insn_template,
33 insn_outfun, and insn_n_operands (found in insn-output.c).
34
35 The third argument to recog is an optional pointer to an int. If
36 present, recog will accept a pattern if it matches except for
263287f7 37 missing CLOBBER expressions at the end. In that case, the value
38 pointed to by the optional pointer will be set to the number of
39 CLOBBERs that need to be added (it should be initialized to zero by
40 the caller). If it is set nonzero, the caller should allocate a
6d69ff19 41 PARALLEL of the appropriate size, copy the initial entries, and
42 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
263287f7 43
6d69ff19 44 This program also generates the function `split_insns', which
45 returns 0 if the rtl could not be split, or it returns the split
31d3e01c 46 rtl as an INSN list.
6d69ff19 47
48 This program also generates the function `peephole2_insns', which
49 returns 0 if the rtl could not be matched. If there was a match,
31d3e01c 50 the new rtl is returned in an INSN list, and LAST_INSN will point
6d69ff19 51 to the last recognized insn in the old sequence. */
263287f7 52
805e22b2 53#include "bconfig.h"
5ce88198 54#include "system.h"
805e22b2 55#include "coretypes.h"
56#include "tm.h"
263287f7 57#include "rtl.h"
04b58880 58#include "errors.h"
c5ddd6b5 59#include "gensupport.h"
263287f7 60
96d905e5 61
41e80e4b 62#define OUTPUT_LABEL(INDENT_STRING, LABEL_NUMBER) \
63 printf("%sL%d: ATTRIBUTE_UNUSED_LABEL\n", (INDENT_STRING), (LABEL_NUMBER))
64
36aaf757 65/* Holds an array of names indexed by insn_code_number. */
6357eaae 66static char **insn_name_ptr = 0;
67static int insn_name_ptr_size = 0;
497b2a29 68
6d69ff19 69/* A listhead of decision trees. The alternatives to a node are kept
70 in a doublely-linked list so we can easily add nodes to the proper
71 place when merging. */
72
73struct decision_head
74{
75 struct decision *first;
76 struct decision *last;
77};
fcb53c1e 78
6d69ff19 79/* A single test. The two accept types aren't tests per-se, but
80 their equality (or lack thereof) does affect tree merging so
81 it is convenient to keep them here. */
82
83struct decision_test
84{
85 /* A linked list through the tests attached to a node. */
86 struct decision_test *next;
87
88 /* These types are roughly in the order in which we'd like to test them. */
3164740a 89 enum decision_type
90 {
91 DT_mode, DT_code, DT_veclen,
92 DT_elt_zero_int, DT_elt_one_int, DT_elt_zero_wide, DT_elt_zero_wide_safe,
fcb53c1e 93 DT_veclen_ge, DT_dup, DT_pred, DT_c_test,
3164740a 94 DT_accept_op, DT_accept_insn
95 } type;
6d69ff19 96
97 union
98 {
99 enum machine_mode mode; /* Machine mode of node. */
100 RTX_CODE code; /* Code to test. */
a698628e 101
6d69ff19 102 struct
103 {
104 const char *name; /* Predicate to call. */
105 int index; /* Index into `preds' or -1. */
106 enum machine_mode mode; /* Machine mode for node. */
107 } pred;
108
109 const char *c_test; /* Additional test to perform. */
110 int veclen; /* Length of vector. */
111 int dup; /* Number of operand to compare against. */
112 HOST_WIDE_INT intval; /* Value for XINT for XWINT. */
113 int opno; /* Operand number matched. */
114
115 struct {
116 int code_number; /* Insn number matched. */
0922b1b8 117 int lineno; /* Line number of the insn. */
6d69ff19 118 int num_clobbers_to_add; /* Number of CLOBBERs to be added. */
119 } insn;
120 } u;
121};
a698628e 122
6d69ff19 123/* Data structure for decision tree for recognizing legitimate insns. */
263287f7 124
125struct decision
126{
6d69ff19 127 struct decision_head success; /* Nodes to test on success. */
128 struct decision *next; /* Node to test on failure. */
129 struct decision *prev; /* Node whose failure tests us. */
130 struct decision *afterward; /* Node to test on success,
131 but failure of successor nodes. */
132
133 const char *position; /* String denoting position in pattern. */
134
135 struct decision_test *tests; /* The tests for this node. */
136
a698628e 137 int number; /* Node number, used for labels */
a698628e 138 int subroutine_number; /* Number of subroutine this node starts */
6d69ff19 139 int need_label; /* Label needs to be output. */
263287f7 140};
141
6d69ff19 142#define SUBROUTINE_THRESHOLD 100
263287f7 143
144static int next_subroutine_number;
145
82575fa7 146/* We can write three types of subroutines: One for insn recognition,
147 one to split insns, and one for peephole-type optimizations. This
148 defines which type is being written. */
263287f7 149
6d69ff19 150enum routine_type {
151 RECOG, SPLIT, PEEPHOLE2
152};
82575fa7 153
6d69ff19 154#define IS_SPLIT(X) ((X) != RECOG)
263287f7 155
a698628e 156/* Next available node number for tree nodes. */
263287f7 157
a698628e 158static int next_number;
263287f7 159
a698628e 160/* Next number to use as an insn_code. */
263287f7 161
a698628e 162static int next_insn_code;
263287f7 163
a698628e 164/* Similar, but counts all expressions in the MD file; used for
a92771b8 165 error messages. */
263287f7 166
a698628e 167static int next_index;
263287f7 168
a698628e 169/* Record the highest depth we ever have so we know how many variables to
170 allocate in each subroutine we make. */
263287f7 171
a698628e 172static int max_depth;
0922b1b8 173
174/* The line number of the start of the pattern currently being processed. */
175static int pattern_lineno;
176
177/* Count of errors. */
178static int error_count;
a698628e 179\f
180/* This table contains a list of the rtl codes that can possibly match a
6d69ff19 181 predicate defined in recog.c. The function `maybe_both_true' uses it to
a698628e 182 deduce that there are no expressions that can be matches by certain pairs
183 of tree nodes. Also, if a predicate can match only one code, we can
184 hardwire that code into the node testing the predicate. */
263287f7 185
e99c3a1d 186static const struct pred_table
a698628e 187{
e99c3a1d 188 const char *const name;
189 const RTX_CODE codes[NUM_RTX_CODE];
6d69ff19 190} preds[] = {
191 {"general_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
26a7cede 192 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}},
a698628e 193#ifdef PREDICATE_CODES
6d69ff19 194 PREDICATE_CODES
a698628e 195#endif
6d69ff19 196 {"address_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
26a7cede 197 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF,
198 PLUS, MINUS, MULT}},
199 {"register_operand", {SUBREG, REG, ADDRESSOF}},
200 {"pmode_register_operand", {SUBREG, REG, ADDRESSOF}},
6d69ff19 201 {"scratch_operand", {SCRATCH, REG}},
202 {"immediate_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
203 LABEL_REF}},
204 {"const_int_operand", {CONST_INT}},
205 {"const_double_operand", {CONST_INT, CONST_DOUBLE}},
26a7cede 206 {"nonimmediate_operand", {SUBREG, REG, MEM, ADDRESSOF}},
6d69ff19 207 {"nonmemory_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
26a7cede 208 LABEL_REF, SUBREG, REG, ADDRESSOF}},
6d69ff19 209 {"push_operand", {MEM}},
210 {"pop_operand", {MEM}},
211 {"memory_operand", {SUBREG, MEM}},
212 {"indirect_operand", {SUBREG, MEM}},
36cabae2 213 {"comparison_operator", {EQ, NE, LE, LT, GE, GT, LEU, LTU, GEU, GTU,
214 UNORDERED, ORDERED, UNEQ, UNGE, UNGT, UNLE,
215 UNLT, LTGT}},
6d69ff19 216 {"mode_independent_operand", {CONST_INT, CONST_DOUBLE, CONST, SYMBOL_REF,
26a7cede 217 LABEL_REF, SUBREG, REG, MEM, ADDRESSOF}}
6d69ff19 218};
a698628e 219
3098b2d3 220#define NUM_KNOWN_PREDS ARRAY_SIZE (preds)
263287f7 221
35823b64 222static const char *const special_mode_pred_table[] = {
3a074b0f 223#ifdef SPECIAL_MODE_PREDICATES
224 SPECIAL_MODE_PREDICATES
225#endif
67b87c97 226 "pmode_register_operand"
3a074b0f 227};
228
3098b2d3 229#define NUM_SPECIAL_MODE_PREDS ARRAY_SIZE (special_mode_pred_table)
3a074b0f 230
6d69ff19 231static struct decision *new_decision
929efc7f 232 PARAMS ((const char *, struct decision_head *));
6d69ff19 233static struct decision_test *new_decision_test
929efc7f 234 PARAMS ((enum decision_type, struct decision_test ***));
3a074b0f 235static rtx find_operand
929efc7f 236 PARAMS ((rtx, int));
386d0079 237static rtx find_matching_operand
238 PARAMS ((rtx, int));
3a074b0f 239static void validate_pattern
d55ea929 240 PARAMS ((rtx, rtx, rtx, int));
6d69ff19 241static struct decision *add_to_sequence
929efc7f 242 PARAMS ((rtx, struct decision_head *, const char *, enum routine_type, int));
6d69ff19 243
244static int maybe_both_true_2
929efc7f 245 PARAMS ((struct decision_test *, struct decision_test *));
6d69ff19 246static int maybe_both_true_1
929efc7f 247 PARAMS ((struct decision_test *, struct decision_test *));
6d69ff19 248static int maybe_both_true
929efc7f 249 PARAMS ((struct decision *, struct decision *, int));
6d69ff19 250
251static int nodes_identical_1
929efc7f 252 PARAMS ((struct decision_test *, struct decision_test *));
6d69ff19 253static int nodes_identical
929efc7f 254 PARAMS ((struct decision *, struct decision *));
6d69ff19 255static void merge_accept_insn
929efc7f 256 PARAMS ((struct decision *, struct decision *));
6d69ff19 257static void merge_trees
929efc7f 258 PARAMS ((struct decision_head *, struct decision_head *));
6d69ff19 259
260static void factor_tests
929efc7f 261 PARAMS ((struct decision_head *));
6d69ff19 262static void simplify_tests
929efc7f 263 PARAMS ((struct decision_head *));
6d69ff19 264static int break_out_subroutines
929efc7f 265 PARAMS ((struct decision_head *, int));
6d69ff19 266static void find_afterward
929efc7f 267 PARAMS ((struct decision_head *, struct decision *));
6d69ff19 268
269static void change_state
929efc7f 270 PARAMS ((const char *, const char *, struct decision *, const char *));
6d69ff19 271static void print_code
929efc7f 272 PARAMS ((enum rtx_code));
6d69ff19 273static void write_afterward
929efc7f 274 PARAMS ((struct decision *, struct decision *, const char *));
6d69ff19 275static struct decision *write_switch
929efc7f 276 PARAMS ((struct decision *, int));
6d69ff19 277static void write_cond
929efc7f 278 PARAMS ((struct decision_test *, int, enum routine_type));
6d69ff19 279static void write_action
3e9f1237 280 PARAMS ((struct decision *, struct decision_test *, int, int,
281 struct decision *, enum routine_type));
6d69ff19 282static int is_unconditional
929efc7f 283 PARAMS ((struct decision_test *, enum routine_type));
6d69ff19 284static int write_node
929efc7f 285 PARAMS ((struct decision *, int, enum routine_type));
6d69ff19 286static void write_tree_1
929efc7f 287 PARAMS ((struct decision_head *, int, enum routine_type));
6d69ff19 288static void write_tree
929efc7f 289 PARAMS ((struct decision_head *, const char *, enum routine_type, int));
6d69ff19 290static void write_subroutine
929efc7f 291 PARAMS ((struct decision_head *, enum routine_type));
6d69ff19 292static void write_subroutines
929efc7f 293 PARAMS ((struct decision_head *, enum routine_type));
6d69ff19 294static void write_header
929efc7f 295 PARAMS ((void));
6d69ff19 296
297static struct decision_head make_insn_sequence
929efc7f 298 PARAMS ((rtx, enum routine_type));
6d69ff19 299static void process_tree
929efc7f 300 PARAMS ((struct decision_head *, enum routine_type));
fcb53c1e 301
6d69ff19 302static void record_insn_name
929efc7f 303 PARAMS ((int, const char *));
6d69ff19 304
867b95d0 305static void debug_decision_0
929efc7f 306 PARAMS ((struct decision *, int, int));
6d69ff19 307static void debug_decision_1
929efc7f 308 PARAMS ((struct decision *, int));
6d69ff19 309static void debug_decision_2
929efc7f 310 PARAMS ((struct decision_test *));
6d69ff19 311extern void debug_decision
929efc7f 312 PARAMS ((struct decision *));
867b95d0 313extern void debug_decision_list
929efc7f 314 PARAMS ((struct decision *));
82575fa7 315\f
6d69ff19 316/* Create a new node in sequence after LAST. */
a698628e 317
6d69ff19 318static struct decision *
319new_decision (position, last)
320 const char *position;
321 struct decision_head *last;
263287f7 322{
19cb6b50 323 struct decision *new
6d69ff19 324 = (struct decision *) xmalloc (sizeof (struct decision));
263287f7 325
6d69ff19 326 memset (new, 0, sizeof (*new));
327 new->success = *last;
328 new->position = xstrdup (position);
329 new->number = next_number++;
263287f7 330
6d69ff19 331 last->first = last->last = new;
332 return new;
333}
a698628e 334
6d69ff19 335/* Create a new test and link it in at PLACE. */
263287f7 336
6d69ff19 337static struct decision_test *
338new_decision_test (type, pplace)
339 enum decision_type type;
340 struct decision_test ***pplace;
341{
342 struct decision_test **place = *pplace;
343 struct decision_test *test;
263287f7 344
6d69ff19 345 test = (struct decision_test *) xmalloc (sizeof (*test));
346 test->next = *place;
347 test->type = type;
348 *place = test;
82575fa7 349
6d69ff19 350 place = &test->next;
351 *pplace = place;
263287f7 352
6d69ff19 353 return test;
a698628e 354}
6d69ff19 355
3a074b0f 356/* Search for and return operand N. */
357
358static rtx
359find_operand (pattern, n)
360 rtx pattern;
361 int n;
362{
363 const char *fmt;
364 RTX_CODE code;
365 int i, j, len;
366 rtx r;
367
368 code = GET_CODE (pattern);
369 if ((code == MATCH_SCRATCH
370 || code == MATCH_INSN
371 || code == MATCH_OPERAND
372 || code == MATCH_OPERATOR
373 || code == MATCH_PARALLEL)
374 && XINT (pattern, 0) == n)
375 return pattern;
376
377 fmt = GET_RTX_FORMAT (code);
378 len = GET_RTX_LENGTH (code);
379 for (i = 0; i < len; i++)
380 {
381 switch (fmt[i])
382 {
383 case 'e': case 'u':
384 if ((r = find_operand (XEXP (pattern, i), n)) != NULL_RTX)
385 return r;
386 break;
387
386d0079 388 case 'V':
389 if (! XVEC (pattern, i))
390 break;
391 /* FALLTHRU */
392
3a074b0f 393 case 'E':
394 for (j = 0; j < XVECLEN (pattern, i); j++)
395 if ((r = find_operand (XVECEXP (pattern, i, j), n)) != NULL_RTX)
396 return r;
397 break;
398
399 case 'i': case 'w': case '0': case 's':
400 break;
401
402 default:
403 abort ();
404 }
405 }
406
407 return NULL;
408}
409
386d0079 410/* Search for and return operand M, such that it has a matching
411 constraint for operand N. */
412
413static rtx
414find_matching_operand (pattern, n)
415 rtx pattern;
416 int n;
417{
418 const char *fmt;
419 RTX_CODE code;
420 int i, j, len;
421 rtx r;
422
423 code = GET_CODE (pattern);
424 if (code == MATCH_OPERAND
425 && (XSTR (pattern, 2)[0] == '0' + n
426 || (XSTR (pattern, 2)[0] == '%'
427 && XSTR (pattern, 2)[1] == '0' + n)))
428 return pattern;
429
430 fmt = GET_RTX_FORMAT (code);
431 len = GET_RTX_LENGTH (code);
432 for (i = 0; i < len; i++)
433 {
434 switch (fmt[i])
435 {
436 case 'e': case 'u':
437 if ((r = find_matching_operand (XEXP (pattern, i), n)))
438 return r;
439 break;
440
441 case 'V':
442 if (! XVEC (pattern, i))
443 break;
444 /* FALLTHRU */
445
446 case 'E':
447 for (j = 0; j < XVECLEN (pattern, i); j++)
448 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
449 return r;
450 break;
451
452 case 'i': case 'w': case '0': case 's':
453 break;
454
455 default:
456 abort ();
457 }
458 }
459
460 return NULL;
461}
462
463
4747a74c 464/* Check for various errors in patterns. SET is nonnull for a destination,
d55ea929 465 and is the complete set pattern. SET_CODE is '=' for normal sets, and
466 '+' within a context that requires in-out constraints. */
0922b1b8 467
468static void
d55ea929 469validate_pattern (pattern, insn, set, set_code)
0922b1b8 470 rtx pattern;
3a074b0f 471 rtx insn;
4747a74c 472 rtx set;
d55ea929 473 int set_code;
0922b1b8 474{
475 const char *fmt;
476 RTX_CODE code;
3a074b0f 477 size_t i, len;
478 int j;
0922b1b8 479
480 code = GET_CODE (pattern);
481 switch (code)
482 {
483 case MATCH_SCRATCH:
0922b1b8 484 return;
485
3a074b0f 486 case MATCH_INSN:
0922b1b8 487 case MATCH_OPERAND:
3a074b0f 488 case MATCH_OPERATOR:
0922b1b8 489 {
490 const char *pred_name = XSTR (pattern, 1);
3a074b0f 491 int allows_non_lvalue = 1, allows_non_const = 1;
492 int special_mode_pred = 0;
493 const char *c_test;
494
495 if (GET_CODE (insn) == DEFINE_INSN)
496 c_test = XSTR (insn, 2);
497 else
498 c_test = XSTR (insn, 1);
0922b1b8 499
500 if (pred_name[0] != 0)
501 {
3a074b0f 502 for (i = 0; i < NUM_KNOWN_PREDS; i++)
0922b1b8 503 if (! strcmp (preds[i].name, pred_name))
504 break;
505
3a074b0f 506 if (i < NUM_KNOWN_PREDS)
0922b1b8 507 {
3a074b0f 508 int j;
0922b1b8 509
3a074b0f 510 allows_non_lvalue = allows_non_const = 0;
0922b1b8 511 for (j = 0; preds[i].codes[j] != 0; j++)
0922b1b8 512 {
3a074b0f 513 RTX_CODE c = preds[i].codes[j];
514 if (c != LABEL_REF
515 && c != SYMBOL_REF
516 && c != CONST_INT
517 && c != CONST_DOUBLE
518 && c != CONST
519 && c != HIGH
520 && c != CONSTANT_P_RTX)
521 allows_non_const = 1;
522
523 if (c != REG
524 && c != SUBREG
525 && c != MEM
26a7cede 526 && c != ADDRESSOF
3a074b0f 527 && c != CONCAT
528 && c != PARALLEL
529 && c != STRICT_LOW_PART)
530 allows_non_lvalue = 1;
0922b1b8 531 }
532 }
533 else
534 {
535#ifdef PREDICATE_CODES
536 /* If the port has a list of the predicates it uses but
537 omits one, warn. */
3a074b0f 538 message_with_line (pattern_lineno,
539 "warning: `%s' not in PREDICATE_CODES",
540 pred_name);
0922b1b8 541#endif
542 }
3a074b0f 543
544 for (i = 0; i < NUM_SPECIAL_MODE_PREDS; ++i)
545 if (strcmp (pred_name, special_mode_pred_table[i]) == 0)
546 {
547 special_mode_pred = 1;
548 break;
549 }
550 }
551
ad9465d6 552 if (code == MATCH_OPERAND)
4747a74c 553 {
ad9465d6 554 const char constraints0 = XSTR (pattern, 2)[0];
555
556 /* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
557 don't use the MATCH_OPERAND constraint, only the predicate.
558 This is confusing to folks doing new ports, so help them
559 not make the mistake. */
560 if (GET_CODE (insn) == DEFINE_EXPAND
561 || GET_CODE (insn) == DEFINE_SPLIT
562 || GET_CODE (insn) == DEFINE_PEEPHOLE2)
d55ea929 563 {
ad9465d6 564 if (constraints0)
565 message_with_line (pattern_lineno,
566 "warning: constraints not supported in %s",
567 rtx_name[GET_CODE (insn)]);
568 }
569
570 /* A MATCH_OPERAND that is a SET should have an output reload. */
571 else if (set && constraints0)
572 {
573 if (set_code == '+')
574 {
575 if (constraints0 == '+')
576 ;
577 /* If we've only got an output reload for this operand,
578 we'd better have a matching input operand. */
579 else if (constraints0 == '='
580 && find_matching_operand (insn, XINT (pattern, 0)))
581 ;
582 else
583 {
584 message_with_line (pattern_lineno,
585 "operand %d missing in-out reload",
586 XINT (pattern, 0));
587 error_count++;
588 }
589 }
590 else if (constraints0 != '=' && constraints0 != '+')
386d0079 591 {
592 message_with_line (pattern_lineno,
ad9465d6 593 "operand %d missing output reload",
386d0079 594 XINT (pattern, 0));
595 error_count++;
596 }
d55ea929 597 }
4747a74c 598 }
599
3a074b0f 600 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
601 while not likely to occur at runtime, results in less efficient
602 code from insn-recog.c. */
4747a74c 603 if (set
3a074b0f 604 && pred_name[0] != '\0'
605 && allows_non_lvalue)
606 {
607 message_with_line (pattern_lineno,
4747a74c 608 "warning: destination operand %d allows non-lvalue",
8619070a 609 XINT (pattern, 0));
3a074b0f 610 }
611
612 /* A modeless MATCH_OPERAND can be handy when we can
613 check for multiple modes in the c_test. In most other cases,
614 it is a mistake. Only DEFINE_INSN is eligible, since SPLIT
fcb53c1e 615 and PEEP2 can FAIL within the output pattern. Exclude
67b87c97 616 address_operand, since its mode is related to the mode of
4747a74c 617 the memory not the operand. Exclude the SET_DEST of a call
618 instruction, as that is a common idiom. */
3a074b0f 619
620 if (GET_MODE (pattern) == VOIDmode
621 && code == MATCH_OPERAND
67b87c97 622 && GET_CODE (insn) == DEFINE_INSN
3a074b0f 623 && allows_non_const
624 && ! special_mode_pred
67b87c97 625 && pred_name[0] != '\0'
626 && strcmp (pred_name, "address_operand") != 0
4747a74c 627 && strstr (c_test, "operands") == NULL
628 && ! (set
629 && GET_CODE (set) == SET
630 && GET_CODE (SET_SRC (set)) == CALL))
3a074b0f 631 {
632 message_with_line (pattern_lineno,
633 "warning: operand %d missing mode?",
634 XINT (pattern, 0));
0922b1b8 635 }
0922b1b8 636 return;
637 }
638
639 case SET:
3a074b0f 640 {
641 enum machine_mode dmode, smode;
642 rtx dest, src;
643
644 dest = SET_DEST (pattern);
645 src = SET_SRC (pattern);
646
ad9465d6 647 /* STRICT_LOW_PART is a wrapper. Its argument is the real
648 destination, and it's mode should match the source. */
649 if (GET_CODE (dest) == STRICT_LOW_PART)
650 dest = XEXP (dest, 0);
651
3a074b0f 652 /* Find the referant for a DUP. */
653
654 if (GET_CODE (dest) == MATCH_DUP
655 || GET_CODE (dest) == MATCH_OP_DUP
656 || GET_CODE (dest) == MATCH_PAR_DUP)
657 dest = find_operand (insn, XINT (dest, 0));
658
659 if (GET_CODE (src) == MATCH_DUP
660 || GET_CODE (src) == MATCH_OP_DUP
661 || GET_CODE (src) == MATCH_PAR_DUP)
662 src = find_operand (insn, XINT (src, 0));
663
3a074b0f 664 dmode = GET_MODE (dest);
665 smode = GET_MODE (src);
0922b1b8 666
3a074b0f 667 /* The mode of an ADDRESS_OPERAND is the mode of the memory
668 reference, not the mode of the address. */
669 if (GET_CODE (src) == MATCH_OPERAND
670 && ! strcmp (XSTR (src, 1), "address_operand"))
671 ;
672
673 /* The operands of a SET must have the same mode unless one
674 is VOIDmode. */
675 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
676 {
677 message_with_line (pattern_lineno,
678 "mode mismatch in set: %smode vs %smode",
679 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
680 error_count++;
681 }
682
fcb53c1e 683 /* If only one of the operands is VOIDmode, and PC or CC0 is
3a074b0f 684 not involved, it's probably a mistake. */
685 else if (dmode != smode
686 && GET_CODE (dest) != PC
687 && GET_CODE (dest) != CC0
4747a74c 688 && GET_CODE (src) != PC
689 && GET_CODE (src) != CC0
3a074b0f 690 && GET_CODE (src) != CONST_INT)
691 {
692 const char *which;
693 which = (dmode == VOIDmode ? "destination" : "source");
694 message_with_line (pattern_lineno,
695 "warning: %s missing a mode?", which);
696 }
697
698 if (dest != SET_DEST (pattern))
d55ea929 699 validate_pattern (dest, insn, pattern, '=');
700 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
701 validate_pattern (SET_SRC (pattern), insn, NULL_RTX, 0);
3a074b0f 702 return;
703 }
704
705 case CLOBBER:
d55ea929 706 validate_pattern (SET_DEST (pattern), insn, pattern, '=');
707 return;
708
709 case ZERO_EXTRACT:
710 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
711 validate_pattern (XEXP (pattern, 1), insn, NULL_RTX, 0);
712 validate_pattern (XEXP (pattern, 2), insn, NULL_RTX, 0);
713 return;
714
715 case STRICT_LOW_PART:
716 validate_pattern (XEXP (pattern, 0), insn, set, set ? '+' : 0);
0922b1b8 717 return;
3a074b0f 718
0922b1b8 719 case LABEL_REF:
720 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
721 {
722 message_with_line (pattern_lineno,
723 "operand to label_ref %smode not VOIDmode",
724 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
725 error_count++;
726 }
727 break;
728
729 default:
730 break;
731 }
732
733 fmt = GET_RTX_FORMAT (code);
734 len = GET_RTX_LENGTH (code);
735 for (i = 0; i < len; i++)
736 {
737 switch (fmt[i])
738 {
739 case 'e': case 'u':
d55ea929 740 validate_pattern (XEXP (pattern, i), insn, NULL_RTX, 0);
0922b1b8 741 break;
742
743 case 'E':
744 for (j = 0; j < XVECLEN (pattern, i); j++)
d55ea929 745 validate_pattern (XVECEXP (pattern, i, j), insn, NULL_RTX, 0);
0922b1b8 746 break;
747
748 case 'i': case 'w': case '0': case 's':
749 break;
750
751 default:
752 abort ();
753 }
754 }
0922b1b8 755}
756
a698628e 757/* Create a chain of nodes to verify that an rtl expression matches
758 PATTERN.
263287f7 759
a698628e 760 LAST is a pointer to the listhead in the previous node in the chain (or
761 in the calling function, for the first node).
263287f7 762
a698628e 763 POSITION is the string representing the current position in the insn.
263287f7 764
82575fa7 765 INSN_TYPE is the type of insn for which we are emitting code.
766
a698628e 767 A pointer to the final node in the chain is returned. */
263287f7 768
769static struct decision *
82575fa7 770add_to_sequence (pattern, last, position, insn_type, top)
263287f7 771 rtx pattern;
a698628e 772 struct decision_head *last;
79e61f87 773 const char *position;
82575fa7 774 enum routine_type insn_type;
775 int top;
263287f7 776{
6d69ff19 777 RTX_CODE code;
778 struct decision *this, *sub;
779 struct decision_test *test;
780 struct decision_test **place;
781 char *subpos;
19cb6b50 782 size_t i;
783 const char *fmt;
a698628e 784 int depth = strlen (position);
263287f7 785 int len;
6d69ff19 786 enum machine_mode mode;
263287f7 787
a698628e 788 if (depth > max_depth)
789 max_depth = depth;
790
f8d49ce1 791 subpos = (char *) xmalloc (depth + 2);
6d69ff19 792 strcpy (subpos, position);
793 subpos[depth + 1] = 0;
263287f7 794
6d69ff19 795 sub = this = new_decision (position, last);
796 place = &this->tests;
263287f7 797
798 restart:
6d69ff19 799 mode = GET_MODE (pattern);
800 code = GET_CODE (pattern);
263287f7 801
802 switch (code)
803 {
82575fa7 804 case PARALLEL:
aa40f561 805 /* Toplevel peephole pattern. */
82575fa7 806 if (insn_type == PEEPHOLE2 && top)
807 {
6d69ff19 808 /* We don't need the node we just created -- unlink it. */
809 last->first = last->last = NULL;
82575fa7 810
811 for (i = 0; i < (size_t) XVECLEN (pattern, 0); i++)
812 {
813 /* Which insn we're looking at is represented by A-Z. We don't
aa40f561 814 ever use 'A', however; it is always implied. */
6d69ff19 815
816 subpos[depth] = (i > 0 ? 'A' + i : 0);
817 sub = add_to_sequence (XVECEXP (pattern, 0, i),
818 last, subpos, insn_type, 0);
819 last = &sub->success;
82575fa7 820 }
f8d49ce1 821 goto ret;
82575fa7 822 }
6d69ff19 823
824 /* Else nothing special. */
82575fa7 825 break;
6d69ff19 826
35b0bfe2 827 case MATCH_PARALLEL:
828 /* The explicit patterns within a match_parallel enforce a minimum
829 length on the vector. The match_parallel predicate may allow
830 for more elements. We do need to check for this minimum here
831 or the code generated to match the internals may reference data
832 beyond the end of the vector. */
833 test = new_decision_test (DT_veclen_ge, &place);
834 test->u.veclen = XVECLEN (pattern, 2);
835 /* FALLTHRU */
836
263287f7 837 case MATCH_OPERAND:
263287f7 838 case MATCH_SCRATCH:
263287f7 839 case MATCH_OPERATOR:
2c39832c 840 case MATCH_INSN:
6d69ff19 841 {
842 const char *pred_name;
843 RTX_CODE was_code = code;
940b9cea 844 int allows_const_int = 1;
6d69ff19 845
846 if (code == MATCH_SCRATCH)
847 {
848 pred_name = "scratch_operand";
849 code = UNKNOWN;
850 }
851 else
852 {
853 pred_name = XSTR (pattern, 1);
854 if (code == MATCH_PARALLEL)
855 code = PARALLEL;
856 else
857 code = UNKNOWN;
858 }
859
4fa67631 860 if (pred_name[0] != 0)
6d69ff19 861 {
862 test = new_decision_test (DT_pred, &place);
863 test->u.pred.name = pred_name;
864 test->u.pred.mode = mode;
865
4737d8ef 866 /* See if we know about this predicate and save its number.
867 If we do, and it only accepts one code, note that fact.
868
869 If we know that the predicate does not allow CONST_INT,
870 we know that the only way the predicate can match is if
871 the modes match (here we use the kludge of relying on the
872 fact that "address_operand" accepts CONST_INT; otherwise,
873 it would have to be a special case), so we can test the
874 mode (but we need not). This fact should considerably
875 simplify the generated code. */
6d69ff19 876
877 for (i = 0; i < NUM_KNOWN_PREDS; i++)
878 if (! strcmp (preds[i].name, pred_name))
879 break;
a698628e 880
6d69ff19 881 if (i < NUM_KNOWN_PREDS)
89e706a4 882 {
59a71f75 883 int j;
a698628e 884
6d69ff19 885 test->u.pred.index = i;
a698628e 886
6d69ff19 887 if (preds[i].codes[1] == 0 && code == UNKNOWN)
888 code = preds[i].codes[0];
a698628e 889
6d69ff19 890 allows_const_int = 0;
891 for (j = 0; preds[i].codes[j] != 0; j++)
89e706a4 892 if (preds[i].codes[j] == CONST_INT)
6d69ff19 893 {
894 allows_const_int = 1;
895 break;
896 }
89e706a4 897 }
6d69ff19 898 else
0922b1b8 899 test->u.pred.index = -1;
6d69ff19 900 }
940b9cea 901
902 /* Can't enforce a mode if we allow const_int. */
903 if (allows_const_int)
904 mode = VOIDmode;
a698628e 905
6d69ff19 906 /* Accept the operand, ie. record it in `operands'. */
907 test = new_decision_test (DT_accept_op, &place);
908 test->u.opno = XINT (pattern, 0);
a698628e 909
6d69ff19 910 if (was_code == MATCH_OPERATOR || was_code == MATCH_PARALLEL)
911 {
912 char base = (was_code == MATCH_OPERATOR ? '0' : 'a');
913 for (i = 0; i < (size_t) XVECLEN (pattern, 2); i++)
914 {
915 subpos[depth] = i + base;
916 sub = add_to_sequence (XVECEXP (pattern, 2, i),
917 &sub->success, subpos, insn_type, 0);
918 }
919 }
920 goto fini;
921 }
263287f7 922
923 case MATCH_OP_DUP:
6d69ff19 924 code = UNKNOWN;
925
926 test = new_decision_test (DT_dup, &place);
927 test->u.dup = XINT (pattern, 0);
928
929 test = new_decision_test (DT_accept_op, &place);
930 test->u.opno = XINT (pattern, 0);
931
274c11d8 932 for (i = 0; i < (size_t) XVECLEN (pattern, 1); i++)
263287f7 933 {
6d69ff19 934 subpos[depth] = i + '0';
935 sub = add_to_sequence (XVECEXP (pattern, 1, i),
936 &sub->success, subpos, insn_type, 0);
263287f7 937 }
6d69ff19 938 goto fini;
263287f7 939
940 case MATCH_DUP:
2c3e6f1d 941 case MATCH_PAR_DUP:
6d69ff19 942 code = UNKNOWN;
943
944 test = new_decision_test (DT_dup, &place);
945 test->u.dup = XINT (pattern, 0);
946 goto fini;
263287f7 947
948 case ADDRESS:
949 pattern = XEXP (pattern, 0);
950 goto restart;
951
13a0a8d8 952 default:
953 break;
263287f7 954 }
955
956 fmt = GET_RTX_FORMAT (code);
957 len = GET_RTX_LENGTH (code);
6d69ff19 958
959 /* Do tests against the current node first. */
274c11d8 960 for (i = 0; i < (size_t) len; i++)
263287f7 961 {
6d69ff19 962 if (fmt[i] == 'i')
263287f7 963 {
6d69ff19 964 if (i == 0)
965 {
966 test = new_decision_test (DT_elt_zero_int, &place);
967 test->u.intval = XINT (pattern, i);
968 }
969 else if (i == 1)
970 {
971 test = new_decision_test (DT_elt_one_int, &place);
972 test->u.intval = XINT (pattern, i);
973 }
974 else
975 abort ();
263287f7 976 }
6d69ff19 977 else if (fmt[i] == 'w')
9259c67f 978 {
3164740a 979 /* If this value actually fits in an int, we can use a switch
980 statement here, so indicate that. */
981 enum decision_type type
982 = ((int) XWINT (pattern, i) == XWINT (pattern, i))
983 ? DT_elt_zero_wide_safe : DT_elt_zero_wide;
984
6d69ff19 985 if (i != 0)
986 abort ();
987
3164740a 988 test = new_decision_test (type, &place);
6d69ff19 989 test->u.intval = XWINT (pattern, i);
9259c67f 990 }
263287f7 991 else if (fmt[i] == 'E')
992 {
263287f7 993 if (i != 0)
994 abort ();
6d69ff19 995
996 test = new_decision_test (DT_veclen, &place);
997 test->u.veclen = XVECLEN (pattern, i);
998 }
999 }
1000
1001 /* Now test our sub-patterns. */
1002 for (i = 0; i < (size_t) len; i++)
1003 {
1004 switch (fmt[i])
1005 {
1006 case 'e': case 'u':
1007 subpos[depth] = '0' + i;
1008 sub = add_to_sequence (XEXP (pattern, i), &sub->success,
1009 subpos, insn_type, 0);
1010 break;
1011
1012 case 'E':
1013 {
19cb6b50 1014 int j;
6d69ff19 1015 for (j = 0; j < XVECLEN (pattern, i); j++)
1016 {
1017 subpos[depth] = 'a' + j;
1018 sub = add_to_sequence (XVECEXP (pattern, i, j),
1019 &sub->success, subpos, insn_type, 0);
1020 }
1021 break;
1022 }
1023
1024 case 'i': case 'w':
1025 /* Handled above. */
1026 break;
1027 case '0':
1028 break;
1029
1030 default:
1031 abort ();
1032 }
1033 }
1034
1035 fini:
1036 /* Insert nodes testing mode and code, if they're still relevant,
1037 before any of the nodes we may have added above. */
1038 if (code != UNKNOWN)
1039 {
1040 place = &this->tests;
1041 test = new_decision_test (DT_code, &place);
1042 test->u.code = code;
1043 }
1044
1045 if (mode != VOIDmode)
1046 {
1047 place = &this->tests;
1048 test = new_decision_test (DT_mode, &place);
1049 test->u.mode = mode;
1050 }
1051
1052 /* If we didn't insert any tests or accept nodes, hork. */
1053 if (this->tests == NULL)
1054 abort ();
1055
f8d49ce1 1056 ret:
1057 free (subpos);
6d69ff19 1058 return sub;
1059}
1060\f
1061/* A subroutine of maybe_both_true; examines only one test.
1062 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1063
1064static int
1065maybe_both_true_2 (d1, d2)
1066 struct decision_test *d1, *d2;
1067{
1068 if (d1->type == d2->type)
1069 {
1070 switch (d1->type)
1071 {
1072 case DT_mode:
e4e139d3 1073 return d1->u.mode == d2->u.mode;
6d69ff19 1074
1075 case DT_code:
1076 return d1->u.code == d2->u.code;
1077
1078 case DT_veclen:
1079 return d1->u.veclen == d2->u.veclen;
1080
1081 case DT_elt_zero_int:
1082 case DT_elt_one_int:
1083 case DT_elt_zero_wide:
3164740a 1084 case DT_elt_zero_wide_safe:
6d69ff19 1085 return d1->u.intval == d2->u.intval;
1086
1087 default:
1088 break;
1089 }
1090 }
1091
1092 /* If either has a predicate that we know something about, set
1093 things up so that D1 is the one that always has a known
1094 predicate. Then see if they have any codes in common. */
1095
1096 if (d1->type == DT_pred || d2->type == DT_pred)
1097 {
1098 if (d2->type == DT_pred)
1099 {
1100 struct decision_test *tmp;
1101 tmp = d1, d1 = d2, d2 = tmp;
1102 }
1103
1104 /* If D2 tests a mode, see if it matches D1. */
1105 if (d1->u.pred.mode != VOIDmode)
1106 {
1107 if (d2->type == DT_mode)
1108 {
e4e139d3 1109 if (d1->u.pred.mode != d2->u.mode
c2a76a0f 1110 /* The mode of an address_operand predicate is the
1111 mode of the memory, not the operand. It can only
1112 be used for testing the predicate, so we must
1113 ignore it here. */
1114 && strcmp (d1->u.pred.name, "address_operand") != 0)
6d69ff19 1115 return 0;
1116 }
f4adfe76 1117 /* Don't check two predicate modes here, because if both predicates
1118 accept CONST_INT, then both can still be true even if the modes
1119 are different. If they don't accept CONST_INT, there will be a
1120 separate DT_mode that will make maybe_both_true_1 return 0. */
6d69ff19 1121 }
1122
1123 if (d1->u.pred.index >= 0)
1124 {
1125 /* If D2 tests a code, see if it is in the list of valid
1126 codes for D1's predicate. */
1127 if (d2->type == DT_code)
1128 {
1129 const RTX_CODE *c = &preds[d1->u.pred.index].codes[0];
1130 while (*c != 0)
1131 {
1132 if (*c == d2->u.code)
1133 break;
1134 ++c;
1135 }
1136 if (*c == 0)
1137 return 0;
1138 }
1139
1140 /* Otherwise see if the predicates have any codes in common. */
1141 else if (d2->type == DT_pred && d2->u.pred.index >= 0)
263287f7 1142 {
6d69ff19 1143 const RTX_CODE *c1 = &preds[d1->u.pred.index].codes[0];
1144 int common = 0;
1145
1146 while (*c1 != 0 && !common)
1147 {
1148 const RTX_CODE *c2 = &preds[d2->u.pred.index].codes[0];
1149 while (*c2 != 0 && !common)
1150 {
1151 common = (*c1 == *c2);
1152 ++c2;
1153 }
1154 ++c1;
1155 }
1156
1157 if (!common)
1158 return 0;
263287f7 1159 }
1160 }
263287f7 1161 }
6d69ff19 1162
35b0bfe2 1163 /* Tests vs veclen may be known when strict equality is involved. */
1164 if (d1->type == DT_veclen && d2->type == DT_veclen_ge)
1165 return d1->u.veclen >= d2->u.veclen;
1166 if (d1->type == DT_veclen_ge && d2->type == DT_veclen)
1167 return d2->u.veclen >= d1->u.veclen;
1168
6d69ff19 1169 return -1;
263287f7 1170}
6d69ff19 1171
1172/* A subroutine of maybe_both_true; examines all the tests for a given node.
1173 Returns > 0 for "definitely both true" and < 0 for "maybe both true". */
1174
1175static int
1176maybe_both_true_1 (d1, d2)
1177 struct decision_test *d1, *d2;
1178{
1179 struct decision_test *t1, *t2;
1180
1181 /* A match_operand with no predicate can match anything. Recognize
424da949 1182 this by the existence of a lone DT_accept_op test. */
6d69ff19 1183 if (d1->type == DT_accept_op || d2->type == DT_accept_op)
1184 return 1;
1185
1186 /* Eliminate pairs of tests while they can exactly match. */
1187 while (d1 && d2 && d1->type == d2->type)
1188 {
1189 if (maybe_both_true_2 (d1, d2) == 0)
1190 return 0;
1191 d1 = d1->next, d2 = d2->next;
1192 }
1193
1194 /* After that, consider all pairs. */
1195 for (t1 = d1; t1 ; t1 = t1->next)
1196 for (t2 = d2; t2 ; t2 = t2->next)
1197 if (maybe_both_true_2 (t1, t2) == 0)
1198 return 0;
1199
1200 return -1;
1201}
1202
1203/* Return 0 if we can prove that there is no RTL that can match both
1204 D1 and D2. Otherwise, return 1 (it may be that there is an RTL that
a698628e 1205 can match both or just that we couldn't prove there wasn't such an RTL).
263287f7 1206
6ef828f9 1207 TOPLEVEL is nonzero if we are to only look at the top level and not
a698628e 1208 recursively descend. */
263287f7 1209
a698628e 1210static int
6d69ff19 1211maybe_both_true (d1, d2, toplevel)
a698628e 1212 struct decision *d1, *d2;
1213 int toplevel;
263287f7 1214{
a698628e 1215 struct decision *p1, *p2;
15d18ea0 1216 int cmp;
1217
1218 /* Don't compare strings on the different positions in insn. Doing so
1219 is incorrect and results in false matches from constructs like
1220
1221 [(set (subreg:HI (match_operand:SI "register_operand" "r") 0)
1222 (subreg:HI (match_operand:SI "register_operand" "r") 0))]
1223 vs
1224 [(set (match_operand:HI "register_operand" "r")
1225 (match_operand:HI "register_operand" "r"))]
1226
1227 If we are presented with such, we are recursing through the remainder
1228 of a node's success nodes (from the loop at the end of this function).
1229 Skip forward until we come to a position that matches.
1230
1231 Due to the way position strings are constructed, we know that iterating
1232 forward from the lexically lower position (e.g. "00") will run into
1233 the lexically higher position (e.g. "1") and not the other way around.
1234 This saves a bit of effort. */
1235
1236 cmp = strcmp (d1->position, d2->position);
1237 if (cmp != 0)
1238 {
1239 if (toplevel)
dfe09cce 1240 abort ();
15d18ea0 1241
1242 /* If the d2->position was lexically lower, swap. */
1243 if (cmp > 0)
f107bab8 1244 p1 = d1, d1 = d2, d2 = p1;
15d18ea0 1245
1246 if (d1->success.first == 0)
4fa67631 1247 return 1;
15d18ea0 1248 for (p1 = d1->success.first; p1; p1 = p1->next)
6d69ff19 1249 if (maybe_both_true (p1, d2, 0))
1250 return 1;
15d18ea0 1251
6d69ff19 1252 return 0;
15d18ea0 1253 }
a698628e 1254
6d69ff19 1255 /* Test the current level. */
1256 cmp = maybe_both_true_1 (d1->tests, d2->tests);
1257 if (cmp >= 0)
1258 return cmp;
1259
1260 /* We can't prove that D1 and D2 cannot both be true. If we are only
1261 to check the top level, return 1. Otherwise, see if we can prove
1262 that all choices in both successors are mutually exclusive. If
1263 either does not have any successors, we can't prove they can't both
1264 be true. */
1265
1266 if (toplevel || d1->success.first == 0 || d2->success.first == 0)
a698628e 1267 return 1;
1268
6d69ff19 1269 for (p1 = d1->success.first; p1; p1 = p1->next)
1270 for (p2 = d2->success.first; p2; p2 = p2->next)
1271 if (maybe_both_true (p1, p2, 0))
1272 return 1;
a698628e 1273
6d69ff19 1274 return 0;
1275}
263287f7 1276
6d69ff19 1277/* A subroutine of nodes_identical. Examine two tests for equivalence. */
263287f7 1278
6d69ff19 1279static int
1280nodes_identical_1 (d1, d2)
1281 struct decision_test *d1, *d2;
1282{
1283 switch (d1->type)
263287f7 1284 {
6d69ff19 1285 case DT_mode:
1286 return d1->u.mode == d2->u.mode;
a698628e 1287
6d69ff19 1288 case DT_code:
1289 return d1->u.code == d2->u.code;
a698628e 1290
6d69ff19 1291 case DT_pred:
1292 return (d1->u.pred.mode == d2->u.pred.mode
1293 && strcmp (d1->u.pred.name, d2->u.pred.name) == 0);
a698628e 1294
6d69ff19 1295 case DT_c_test:
1296 return strcmp (d1->u.c_test, d2->u.c_test) == 0;
a698628e 1297
6d69ff19 1298 case DT_veclen:
35b0bfe2 1299 case DT_veclen_ge:
6d69ff19 1300 return d1->u.veclen == d2->u.veclen;
a698628e 1301
6d69ff19 1302 case DT_dup:
1303 return d1->u.dup == d2->u.dup;
a698628e 1304
6d69ff19 1305 case DT_elt_zero_int:
1306 case DT_elt_one_int:
1307 case DT_elt_zero_wide:
3164740a 1308 case DT_elt_zero_wide_safe:
6d69ff19 1309 return d1->u.intval == d2->u.intval;
a698628e 1310
6d69ff19 1311 case DT_accept_op:
1312 return d1->u.opno == d2->u.opno;
1313
1314 case DT_accept_insn:
1315 /* Differences will be handled in merge_accept_insn. */
1316 return 1;
1317
1318 default:
1319 abort ();
263287f7 1320 }
6d69ff19 1321}
263287f7 1322
6d69ff19 1323/* True iff the two nodes are identical (on one level only). Due
fcb53c1e 1324 to the way these lists are constructed, we shouldn't have to
6d69ff19 1325 consider different orderings on the tests. */
263287f7 1326
6d69ff19 1327static int
1328nodes_identical (d1, d2)
1329 struct decision *d1, *d2;
1330{
1331 struct decision_test *t1, *t2;
a698628e 1332
6d69ff19 1333 for (t1 = d1->tests, t2 = d2->tests; t1 && t2; t1 = t1->next, t2 = t2->next)
1334 {
1335 if (t1->type != t2->type)
1336 return 0;
1337 if (! nodes_identical_1 (t1, t2))
a698628e 1338 return 0;
6d69ff19 1339 }
a698628e 1340
6d69ff19 1341 /* For success, they should now both be null. */
4747a74c 1342 if (t1 != t2)
1343 return 0;
1344
1345 /* Check that their subnodes are at the same position, as any one set
7903ba8d 1346 of sibling decisions must be at the same position. Allowing this
1347 requires complications to find_afterward and when change_state is
1348 invoked. */
4747a74c 1349 if (d1->success.first
1350 && d2->success.first
1351 && strcmp (d1->success.first->position, d2->success.first->position))
1352 return 0;
1353
1354 return 1;
a698628e 1355}
a698628e 1356
6d69ff19 1357/* A subroutine of merge_trees; given two nodes that have been declared
1358 identical, cope with two insn accept states. If they differ in the
1359 number of clobbers, then the conflict was created by make_insn_sequence
fcb53c1e 1360 and we can drop the with-clobbers version on the floor. If both
6d69ff19 1361 nodes have no additional clobbers, we have found an ambiguity in the
1362 source machine description. */
1363
1364static void
1365merge_accept_insn (oldd, addd)
1366 struct decision *oldd, *addd;
263287f7 1367{
6d69ff19 1368 struct decision_test *old, *add;
1369
1370 for (old = oldd->tests; old; old = old->next)
1371 if (old->type == DT_accept_insn)
1372 break;
1373 if (old == NULL)
1374 return;
a698628e 1375
6d69ff19 1376 for (add = addd->tests; add; add = add->next)
1377 if (add->type == DT_accept_insn)
1378 break;
1379 if (add == NULL)
1380 return;
a698628e 1381
6d69ff19 1382 /* If one node is for a normal insn and the second is for the base
1383 insn with clobbers stripped off, the second node should be ignored. */
a698628e 1384
6d69ff19 1385 if (old->u.insn.num_clobbers_to_add == 0
1386 && add->u.insn.num_clobbers_to_add > 0)
1387 {
1388 /* Nothing to do here. */
1389 }
1390 else if (old->u.insn.num_clobbers_to_add > 0
1391 && add->u.insn.num_clobbers_to_add == 0)
1392 {
1393 /* In this case, replace OLD with ADD. */
1394 old->u.insn = add->u.insn;
1395 }
1396 else
1397 {
0922b1b8 1398 message_with_line (add->u.insn.lineno, "`%s' matches `%s'",
1399 get_insn_name (add->u.insn.code_number),
1400 get_insn_name (old->u.insn.code_number));
1401 message_with_line (old->u.insn.lineno, "previous definition of `%s'",
1402 get_insn_name (old->u.insn.code_number));
1403 error_count++;
6d69ff19 1404 }
a698628e 1405}
a698628e 1406
6d69ff19 1407/* Merge two decision trees OLDH and ADDH, modifying OLDH destructively. */
1408
1409static void
a698628e 1410merge_trees (oldh, addh)
6d69ff19 1411 struct decision_head *oldh, *addh;
a698628e 1412{
6d69ff19 1413 struct decision *next, *add;
a698628e 1414
6d69ff19 1415 if (addh->first == 0)
1416 return;
1417 if (oldh->first == 0)
1418 {
1419 *oldh = *addh;
1420 return;
1421 }
263287f7 1422
6d69ff19 1423 /* Trying to merge bits at different positions isn't possible. */
1424 if (strcmp (oldh->first->position, addh->first->position))
a698628e 1425 abort ();
1426
6d69ff19 1427 for (add = addh->first; add ; add = next)
263287f7 1428 {
6d69ff19 1429 struct decision *old, *insert_before = NULL;
a698628e 1430
1431 next = add->next;
1432
6d69ff19 1433 /* The semantics of pattern matching state that the tests are
1434 done in the order given in the MD file so that if an insn
1435 matches two patterns, the first one will be used. However,
1436 in practice, most, if not all, patterns are unambiguous so
1437 that their order is independent. In that case, we can merge
1438 identical tests and group all similar modes and codes together.
a698628e 1439
1440 Scan starting from the end of OLDH until we reach a point
6d69ff19 1441 where we reach the head of the list or where we pass a
1442 pattern that could also be true if NEW is true. If we find
1443 an identical pattern, we can merge them. Also, record the
1444 last node that tests the same code and mode and the last one
1445 that tests just the same mode.
a698628e 1446
1447 If we have no match, place NEW after the closest match we found. */
fcb53c1e 1448
6d69ff19 1449 for (old = oldh->last; old; old = old->prev)
263287f7 1450 {
6d69ff19 1451 if (nodes_identical (old, add))
a698628e 1452 {
6d69ff19 1453 merge_accept_insn (old, add);
1454 merge_trees (&old->success, &add->success);
1455 goto merged_nodes;
1456 }
a698628e 1457
6d69ff19 1458 if (maybe_both_true (old, add, 0))
1459 break;
a698628e 1460
6d69ff19 1461 /* Insert the nodes in DT test type order, which is roughly
1462 how expensive/important the test is. Given that the tests
1463 are also ordered within the list, examining the first is
1464 sufficient. */
0fd4500a 1465 if ((int) add->tests->type < (int) old->tests->type)
6d69ff19 1466 insert_before = old;
1467 }
ec4c9f0c 1468
6d69ff19 1469 if (insert_before == NULL)
1470 {
1471 add->next = NULL;
1472 add->prev = oldh->last;
1473 oldh->last->next = add;
1474 oldh->last = add;
1475 }
1476 else
1477 {
1478 if ((add->prev = insert_before->prev) != NULL)
1479 add->prev->next = add;
1480 else
1481 oldh->first = add;
1482 add->next = insert_before;
1483 insert_before->prev = add;
1484 }
1485
1486 merged_nodes:;
1487 }
1488}
1489\f
fcb53c1e 1490/* Walk the tree looking for sub-nodes that perform common tests.
6d69ff19 1491 Factor out the common test into a new node. This enables us
1492 (depending on the test type) to emit switch statements later. */
1493
1494static void
1495factor_tests (head)
1496 struct decision_head *head;
1497{
1498 struct decision *first, *next;
a698628e 1499
6d69ff19 1500 for (first = head->first; first && first->next; first = next)
1501 {
1502 enum decision_type type;
1503 struct decision *new, *old_last;
a698628e 1504
6d69ff19 1505 type = first->tests->type;
1506 next = first->next;
a698628e 1507
6d69ff19 1508 /* Want at least two compatible sequential nodes. */
1509 if (next->tests->type != type)
1510 continue;
263287f7 1511
fcb53c1e 1512 /* Don't want all node types, just those we can turn into
6d69ff19 1513 switch statements. */
1514 if (type != DT_mode
1515 && type != DT_code
1516 && type != DT_veclen
1517 && type != DT_elt_zero_int
1518 && type != DT_elt_one_int
3164740a 1519 && type != DT_elt_zero_wide_safe)
a698628e 1520 continue;
263287f7 1521
6d69ff19 1522 /* If we'd been performing more than one test, create a new node
1523 below our first test. */
1524 if (first->tests->next != NULL)
1525 {
1526 new = new_decision (first->position, &first->success);
1527 new->tests = first->tests->next;
1528 first->tests->next = NULL;
1529 }
fcb53c1e 1530
6d69ff19 1531 /* Crop the node tree off after our first test. */
1532 first->next = NULL;
1533 old_last = head->last;
1534 head->last = first;
1535
1536 /* For each compatible test, adjust to perform only one test in
1537 the top level node, then merge the node back into the tree. */
1538 do
1539 {
1540 struct decision_head h;
1541
1542 if (next->tests->next != NULL)
1543 {
1544 new = new_decision (next->position, &next->success);
1545 new->tests = next->tests->next;
1546 next->tests->next = NULL;
1547 }
1548 new = next;
1549 next = next->next;
1550 new->next = NULL;
1551 h.first = h.last = new;
263287f7 1552
6d69ff19 1553 merge_trees (head, &h);
1554 }
1555 while (next && next->tests->type == type);
263287f7 1556
6d69ff19 1557 /* After we run out of compatible tests, graft the remaining nodes
1558 back onto the tree. */
1559 if (next)
a698628e 1560 {
6d69ff19 1561 next->prev = head->last;
1562 head->last->next = next;
1563 head->last = old_last;
a698628e 1564 }
6d69ff19 1565 }
263287f7 1566
6d69ff19 1567 /* Recurse. */
1568 for (first = head->first; first; first = first->next)
1569 factor_tests (&first->success);
1570}
1571
1572/* After factoring, try to simplify the tests on any one node.
1573 Tests that are useful for switch statements are recognizable
1574 by having only a single test on a node -- we'll be manipulating
1575 nodes with multiple tests:
1576
1577 If we have mode tests or code tests that are redundant with
1578 predicates, remove them. */
1579
1580static void
1581simplify_tests (head)
1582 struct decision_head *head;
1583{
1584 struct decision *tree;
1585
1586 for (tree = head->first; tree; tree = tree->next)
1587 {
1588 struct decision_test *a, *b;
1589
1590 a = tree->tests;
1591 b = a->next;
1592 if (b == NULL)
1593 continue;
1594
1595 /* Find a predicate node. */
1596 while (b && b->type != DT_pred)
1597 b = b->next;
1598 if (b)
a698628e 1599 {
6d69ff19 1600 /* Due to how these tests are constructed, we don't even need
1601 to check that the mode and code are compatible -- they were
1602 generated from the predicate in the first place. */
1603 while (a->type == DT_mode || a->type == DT_code)
1604 a = a->next;
1605 tree->tests = a;
a698628e 1606 }
1607 }
263287f7 1608
6d69ff19 1609 /* Recurse. */
1610 for (tree = head->first; tree; tree = tree->next)
1611 simplify_tests (&tree->success);
263287f7 1612}
6d69ff19 1613
a698628e 1614/* Count the number of subnodes of HEAD. If the number is high enough,
1615 make the first node in HEAD start a separate subroutine in the C code
6d69ff19 1616 that is generated. */
263287f7 1617
1618static int
6d69ff19 1619break_out_subroutines (head, initial)
1620 struct decision_head *head;
a698628e 1621 int initial;
263287f7 1622{
1623 int size = 0;
f3d32040 1624 struct decision *sub;
a698628e 1625
6d69ff19 1626 for (sub = head->first; sub; sub = sub->next)
1627 size += 1 + break_out_subroutines (&sub->success, 0);
a698628e 1628
1629 if (size > SUBROUTINE_THRESHOLD && ! initial)
263287f7 1630 {
6d69ff19 1631 head->first->subroutine_number = ++next_subroutine_number;
263287f7 1632 size = 1;
1633 }
1634 return size;
1635}
6d69ff19 1636
1637/* For each node p, find the next alternative that might be true
1638 when p is true. */
263287f7 1639
1640static void
6d69ff19 1641find_afterward (head, real_afterward)
1642 struct decision_head *head;
1643 struct decision *real_afterward;
263287f7 1644{
6d69ff19 1645 struct decision *p, *q, *afterward;
fcf6cb17 1646
3fb1e43b 1647 /* We can't propagate alternatives across subroutine boundaries.
6d69ff19 1648 This is not incorrect, merely a minor optimization loss. */
263287f7 1649
6d69ff19 1650 p = head->first;
1651 afterward = (p->subroutine_number > 0 ? NULL : real_afterward);
a698628e 1652
6d69ff19 1653 for ( ; p ; p = p->next)
a698628e 1654 {
6d69ff19 1655 /* Find the next node that might be true if this one fails. */
1656 for (q = p->next; q ; q = q->next)
1657 if (maybe_both_true (p, q, 1))
1658 break;
a698628e 1659
fcb53c1e 1660 /* If we reached the end of the list without finding one,
6d69ff19 1661 use the incoming afterward position. */
1662 if (!q)
1663 q = afterward;
1664 p->afterward = q;
1665 if (q)
1666 q->need_label = 1;
a698628e 1667 }
1668
6d69ff19 1669 /* Recurse. */
1670 for (p = head->first; p ; p = p->next)
1671 if (p->success.first)
1672 find_afterward (&p->success, p->afterward);
1673
1674 /* When we are generating a subroutine, record the real afterward
1675 position in the first node where write_tree can find it, and we
1676 can do the right thing at the subroutine call site. */
1677 p = head->first;
1678 if (p->subroutine_number > 0)
1679 p->afterward = real_afterward;
1680}
1681\f
1682/* Assuming that the state of argument is denoted by OLDPOS, take whatever
1683 actions are necessary to move to NEWPOS. If we fail to move to the
6ef828f9 1684 new state, branch to node AFTERWARD if nonzero, otherwise return.
a698628e 1685
6d69ff19 1686 Failure to move to the new state can only occur if we are trying to
aa40f561 1687 match multiple insns and we try to step past the end of the stream. */
a698628e 1688
6d69ff19 1689static void
1690change_state (oldpos, newpos, afterward, indent)
1691 const char *oldpos;
1692 const char *newpos;
1693 struct decision *afterward;
1694 const char *indent;
1695{
1696 int odepth = strlen (oldpos);
1697 int ndepth = strlen (newpos);
1698 int depth;
1699 int old_has_insn, new_has_insn;
a698628e 1700
6d69ff19 1701 /* Pop up as many levels as necessary. */
1702 for (depth = odepth; strncmp (oldpos, newpos, depth) != 0; --depth)
1703 continue;
263287f7 1704
6d69ff19 1705 /* Hunt for the last [A-Z] in both strings. */
1706 for (old_has_insn = odepth - 1; old_has_insn >= 0; --old_has_insn)
66a33570 1707 if (ISUPPER (oldpos[old_has_insn]))
6d69ff19 1708 break;
aa242a2f 1709 for (new_has_insn = ndepth - 1; new_has_insn >= 0; --new_has_insn)
66a33570 1710 if (ISUPPER (newpos[new_has_insn]))
6d69ff19 1711 break;
a698628e 1712
6d69ff19 1713 /* Go down to desired level. */
1714 while (depth < ndepth)
1715 {
aa40f561 1716 /* It's a different insn from the first one. */
66a33570 1717 if (ISUPPER (newpos[depth]))
263287f7 1718 {
6d69ff19 1719 /* We can only fail if we're moving down the tree. */
1720 if (old_has_insn >= 0 && oldpos[old_has_insn] >= newpos[depth])
a698628e 1721 {
fcb53c1e 1722 printf ("%stem = peep2_next_insn (%d);\n",
6d69ff19 1723 indent, newpos[depth] - 'A');
a698628e 1724 }
1725 else
1726 {
fcb53c1e 1727 printf ("%stem = peep2_next_insn (%d);\n",
6d69ff19 1728 indent, newpos[depth] - 'A');
1729 printf ("%sif (tem == NULL_RTX)\n", indent);
1730 if (afterward)
1731 printf ("%s goto L%d;\n", indent, afterward->number);
a698628e 1732 else
6d69ff19 1733 printf ("%s goto ret0;\n", indent);
a698628e 1734 }
3e9f1237 1735 printf ("%sx%d = PATTERN (tem);\n", indent, depth + 1);
263287f7 1736 }
66a33570 1737 else if (ISLOWER (newpos[depth]))
6d69ff19 1738 printf ("%sx%d = XVECEXP (x%d, 0, %d);\n",
1739 indent, depth + 1, depth, newpos[depth] - 'a');
1740 else
1741 printf ("%sx%d = XEXP (x%d, %c);\n",
1742 indent, depth + 1, depth, newpos[depth]);
1743 ++depth;
1744 }
1745}
1746\f
1747/* Print the enumerator constant for CODE -- the upcase version of
1748 the name. */
1749
1750static void
1751print_code (code)
1752 enum rtx_code code;
1753{
19cb6b50 1754 const char *p;
6d69ff19 1755 for (p = GET_RTX_NAME (code); *p; p++)
1756 putchar (TOUPPER (*p));
1757}
263287f7 1758
6d69ff19 1759/* Emit code to cross an afterward link -- change state and branch. */
263287f7 1760
6d69ff19 1761static void
1762write_afterward (start, afterward, indent)
1763 struct decision *start;
1764 struct decision *afterward;
1765 const char *indent;
1766{
1767 if (!afterward || start->subroutine_number > 0)
1768 printf("%sgoto ret0;\n", indent);
1769 else
1770 {
1771 change_state (start->position, afterward->position, NULL, indent);
1772 printf ("%sgoto L%d;\n", indent, afterward->number);
1773 }
1774}
a698628e 1775
fcb53c1e 1776/* Emit a switch statement, if possible, for an initial sequence of
6d69ff19 1777 nodes at START. Return the first node yet untested. */
a698628e 1778
6d69ff19 1779static struct decision *
1780write_switch (start, depth)
1781 struct decision *start;
1782 int depth;
1783{
1784 struct decision *p = start;
1785 enum decision_type type = p->tests->type;
0ced2f66 1786 struct decision *needs_label = NULL;
263287f7 1787
6d69ff19 1788 /* If we have two or more nodes in sequence that test the same one
1789 thing, we may be able to use a switch statement. */
a698628e 1790
6d69ff19 1791 if (!p->next
1792 || p->tests->next
1793 || p->next->tests->type != type
7903ba8d 1794 || p->next->tests->next
1795 || nodes_identical_1 (p->tests, p->next->tests))
6d69ff19 1796 return p;
a698628e 1797
6d69ff19 1798 /* DT_code is special in that we can do interesting things with
1799 known predicates at the same time. */
1800 if (type == DT_code)
1801 {
1802 char codemap[NUM_RTX_CODE];
1803 struct decision *ret;
6f276b59 1804 RTX_CODE code;
263287f7 1805
6d69ff19 1806 memset (codemap, 0, sizeof(codemap));
263287f7 1807
6d69ff19 1808 printf (" switch (GET_CODE (x%d))\n {\n", depth);
6f276b59 1809 code = p->tests->u.code;
fcb53c1e 1810 do
263287f7 1811 {
0ced2f66 1812 if (p != start && p->need_label && needs_label == NULL)
1813 needs_label = p;
1814
6d69ff19 1815 printf (" case ");
1816 print_code (code);
1817 printf (":\n goto L%d;\n", p->success.first->number);
1818 p->success.first->need_label = 1;
1819
1820 codemap[code] = 1;
1821 p = p->next;
1822 }
6f276b59 1823 while (p
1824 && ! p->tests->next
1825 && p->tests->type == DT_code
1826 && ! codemap[code = p->tests->u.code]);
6d69ff19 1827
1828 /* If P is testing a predicate that we know about and we haven't
1829 seen any of the codes that are valid for the predicate, we can
1830 write a series of "case" statement, one for each possible code.
1831 Since we are already in a switch, these redundant tests are very
1832 cheap and will reduce the number of predicates called. */
1833
1834 /* Note that while we write out cases for these predicates here,
1835 we don't actually write the test here, as it gets kinda messy.
1836 It is trivial to leave this to later by telling our caller that
1837 we only processed the CODE tests. */
0ced2f66 1838 if (needs_label != NULL)
1839 ret = needs_label;
1840 else
1841 ret = p;
6d69ff19 1842
1843 while (p && p->tests->type == DT_pred
1844 && p->tests->u.pred.index >= 0)
1845 {
1846 const RTX_CODE *c;
263287f7 1847
6d69ff19 1848 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
1849 if (codemap[(int) *c] != 0)
1850 goto pred_done;
a698628e 1851
6d69ff19 1852 for (c = &preds[p->tests->u.pred.index].codes[0]; *c ; ++c)
263287f7 1853 {
6d69ff19 1854 printf (" case ");
1855 print_code (*c);
1856 printf (":\n");
1857 codemap[(int) *c] = 1;
263287f7 1858 }
a698628e 1859
6d69ff19 1860 printf (" goto L%d;\n", p->number);
1861 p->need_label = 1;
1862 p = p->next;
263287f7 1863 }
1864
6d69ff19 1865 pred_done:
1866 /* Make the default case skip the predicates we managed to match. */
a698628e 1867
6d69ff19 1868 printf (" default:\n");
1869 if (p != ret)
263287f7 1870 {
6d69ff19 1871 if (p)
63e9de92 1872 {
6d69ff19 1873 printf (" goto L%d;\n", p->number);
1874 p->need_label = 1;
63e9de92 1875 }
a698628e 1876 else
6d69ff19 1877 write_afterward (start, start->afterward, " ");
263287f7 1878 }
263287f7 1879 else
6d69ff19 1880 printf (" break;\n");
1881 printf (" }\n");
1882
1883 return ret;
1884 }
1885 else if (type == DT_mode
1886 || type == DT_veclen
1887 || type == DT_elt_zero_int
1888 || type == DT_elt_one_int
3164740a 1889 || type == DT_elt_zero_wide_safe)
6d69ff19 1890 {
7abd96cd 1891 const char *indent = "";
ff5decbb 1892
7abd96cd 1893 /* We cast switch parameter to integer, so we must ensure that the value
1894 fits. */
1895 if (type == DT_elt_zero_wide_safe)
1896 {
1897 indent = " ";
1898 printf(" if ((int) XWINT (x%d, 0) == XWINT (x%d, 0))\n", depth, depth);
1899 }
1900 printf ("%s switch (", indent);
6d69ff19 1901 switch (type)
1902 {
1903 case DT_mode:
29768226 1904 printf ("GET_MODE (x%d)", depth);
6d69ff19 1905 break;
1906 case DT_veclen:
29768226 1907 printf ("XVECLEN (x%d, 0)", depth);
6d69ff19 1908 break;
1909 case DT_elt_zero_int:
29768226 1910 printf ("XINT (x%d, 0)", depth);
6d69ff19 1911 break;
1912 case DT_elt_one_int:
29768226 1913 printf ("XINT (x%d, 1)", depth);
6d69ff19 1914 break;
3164740a 1915 case DT_elt_zero_wide_safe:
29768226 1916 /* Convert result of XWINT to int for portability since some C
1917 compilers won't do it and some will. */
1918 printf ("(int) XWINT (x%d, 0)", depth);
6d69ff19 1919 break;
1920 default:
1921 abort ();
1922 }
7abd96cd 1923 printf (")\n%s {\n", indent);
a4245b4f 1924
6d69ff19 1925 do
a698628e 1926 {
7903ba8d 1927 /* Merge trees will not unify identical nodes if their
1928 sub-nodes are at different levels. Thus we must check
1929 for duplicate cases. */
1930 struct decision *q;
1931 for (q = start; q != p; q = q->next)
1932 if (nodes_identical_1 (p->tests, q->tests))
1933 goto case_done;
1934
0ced2f66 1935 if (p != start && p->need_label && needs_label == NULL)
1936 needs_label = p;
1937
7abd96cd 1938 printf ("%s case ", indent);
6d69ff19 1939 switch (type)
a4245b4f 1940 {
6d69ff19 1941 case DT_mode:
1942 printf ("%smode", GET_MODE_NAME (p->tests->u.mode));
1943 break;
1944 case DT_veclen:
1945 printf ("%d", p->tests->u.veclen);
1946 break;
1947 case DT_elt_zero_int:
1948 case DT_elt_one_int:
1949 case DT_elt_zero_wide:
3164740a 1950 case DT_elt_zero_wide_safe:
fe0e3c2a 1951 printf (HOST_WIDE_INT_PRINT_DEC_C, p->tests->u.intval);
6d69ff19 1952 break;
1953 default:
1954 abort ();
a4245b4f 1955 }
7abd96cd 1956 printf (":\n%s goto L%d;\n", indent, p->success.first->number);
6d69ff19 1957 p->success.first->need_label = 1;
a4245b4f 1958
6d69ff19 1959 p = p->next;
a698628e 1960 }
6d69ff19 1961 while (p && p->tests->type == type && !p->tests->next);
7903ba8d 1962
1963 case_done:
7abd96cd 1964 printf ("%s default:\n%s break;\n%s }\n",
1965 indent, indent, indent);
263287f7 1966
0ced2f66 1967 return needs_label != NULL ? needs_label : p;
6d69ff19 1968 }
1969 else
1970 {
1971 /* None of the other tests are ameanable. */
1972 return p;
1973 }
1974}
263287f7 1975
6d69ff19 1976/* Emit code for one test. */
a698628e 1977
6d69ff19 1978static void
1979write_cond (p, depth, subroutine_type)
1980 struct decision_test *p;
1981 int depth;
1982 enum routine_type subroutine_type;
1983{
1984 switch (p->type)
1985 {
1986 case DT_mode:
1987 printf ("GET_MODE (x%d) == %smode", depth, GET_MODE_NAME (p->u.mode));
1988 break;
a698628e 1989
6d69ff19 1990 case DT_code:
1991 printf ("GET_CODE (x%d) == ", depth);
1992 print_code (p->u.code);
1993 break;
1994
1995 case DT_veclen:
1996 printf ("XVECLEN (x%d, 0) == %d", depth, p->u.veclen);
1997 break;
1998
1999 case DT_elt_zero_int:
2000 printf ("XINT (x%d, 0) == %d", depth, (int) p->u.intval);
2001 break;
2002
2003 case DT_elt_one_int:
2004 printf ("XINT (x%d, 1) == %d", depth, (int) p->u.intval);
2005 break;
2006
2007 case DT_elt_zero_wide:
3164740a 2008 case DT_elt_zero_wide_safe:
6d69ff19 2009 printf ("XWINT (x%d, 0) == ", depth);
fe0e3c2a 2010 printf (HOST_WIDE_INT_PRINT_DEC_C, p->u.intval);
6d69ff19 2011 break;
2012
35b0bfe2 2013 case DT_veclen_ge:
2014 printf ("XVECLEN (x%d, 0) >= %d", depth, p->u.veclen);
2015 break;
2016
6d69ff19 2017 case DT_dup:
2018 printf ("rtx_equal_p (x%d, operands[%d])", depth, p->u.dup);
2019 break;
2020
2021 case DT_pred:
2022 printf ("%s (x%d, %smode)", p->u.pred.name, depth,
2023 GET_MODE_NAME (p->u.pred.mode));
2024 break;
2025
2026 case DT_c_test:
2027 printf ("(%s)", p->u.c_test);
2028 break;
2029
2030 case DT_accept_insn:
2031 switch (subroutine_type)
2032 {
2033 case RECOG:
2034 if (p->u.insn.num_clobbers_to_add == 0)
2035 abort ();
2036 printf ("pnum_clobbers != NULL");
2037 break;
2038
2039 default:
2040 abort ();
263287f7 2041 }
6d69ff19 2042 break;
263287f7 2043
6d69ff19 2044 default:
2045 abort ();
a698628e 2046 }
6d69ff19 2047}
263287f7 2048
6d69ff19 2049/* Emit code for one action. The previous tests have succeeded;
2050 TEST is the last of the chain. In the normal case we simply
2051 perform a state change. For the `accept' tests we must do more work. */
263287f7 2052
6d69ff19 2053static void
3e9f1237 2054write_action (p, test, depth, uncond, success, subroutine_type)
2055 struct decision *p;
6d69ff19 2056 struct decision_test *test;
2057 int depth, uncond;
2058 struct decision *success;
2059 enum routine_type subroutine_type;
2060{
2061 const char *indent;
2062 int want_close = 0;
2063
2064 if (uncond)
2065 indent = " ";
2066 else if (test->type == DT_accept_op || test->type == DT_accept_insn)
a698628e 2067 {
6d69ff19 2068 fputs (" {\n", stdout);
2069 indent = " ";
2070 want_close = 1;
a698628e 2071 }
6d69ff19 2072 else
2073 indent = " ";
263287f7 2074
6d69ff19 2075 if (test->type == DT_accept_op)
a698628e 2076 {
6d69ff19 2077 printf("%soperands[%d] = x%d;\n", indent, test->u.opno, depth);
2078
2079 /* Only allow DT_accept_insn to follow. */
2080 if (test->next)
2081 {
2082 test = test->next;
2083 if (test->type != DT_accept_insn)
2084 abort ();
2085 }
263287f7 2086 }
2087
6d69ff19 2088 /* Sanity check that we're now at the end of the list of tests. */
2089 if (test->next)
a698628e 2090 abort ();
263287f7 2091
6d69ff19 2092 if (test->type == DT_accept_insn)
263287f7 2093 {
6d69ff19 2094 switch (subroutine_type)
2095 {
2096 case RECOG:
2097 if (test->u.insn.num_clobbers_to_add != 0)
2098 printf ("%s*pnum_clobbers = %d;\n",
2099 indent, test->u.insn.num_clobbers_to_add);
2100 printf ("%sreturn %d;\n", indent, test->u.insn.code_number);
2101 break;
2102
2103 case SPLIT:
2104 printf ("%sreturn gen_split_%d (operands);\n",
2105 indent, test->u.insn.code_number);
2106 break;
2107
2108 case PEEPHOLE2:
3e9f1237 2109 {
2110 int match_len = 0, i;
2111
2112 for (i = strlen (p->position) - 1; i >= 0; --i)
66a33570 2113 if (ISUPPER (p->position[i]))
3e9f1237 2114 {
2115 match_len = p->position[i] - 'A';
2116 break;
2117 }
2118 printf ("%s*_pmatch_len = %d;\n", indent, match_len);
2119 printf ("%stem = gen_peephole2_%d (insn, operands);\n",
2120 indent, test->u.insn.code_number);
2121 printf ("%sif (tem != 0)\n%s return tem;\n", indent, indent);
2122 }
6d69ff19 2123 break;
2124
2125 default:
2126 abort ();
2127 }
263287f7 2128 }
2129 else
6d69ff19 2130 {
2131 printf("%sgoto L%d;\n", indent, success->number);
2132 success->need_label = 1;
2133 }
263287f7 2134
6d69ff19 2135 if (want_close)
2136 fputs (" }\n", stdout);
263287f7 2137}
2138
6d69ff19 2139/* Return 1 if the test is always true and has no fallthru path. Return -1
2140 if the test does have a fallthru path, but requires that the condition be
2141 terminated. Otherwise return 0 for a normal test. */
2142/* ??? is_unconditional is a stupid name for a tri-state function. */
2143
263287f7 2144static int
6d69ff19 2145is_unconditional (t, subroutine_type)
2146 struct decision_test *t;
2147 enum routine_type subroutine_type;
263287f7 2148{
6d69ff19 2149 if (t->type == DT_accept_op)
2150 return 1;
263287f7 2151
6d69ff19 2152 if (t->type == DT_accept_insn)
2153 {
2154 switch (subroutine_type)
2155 {
2156 case RECOG:
2157 return (t->u.insn.num_clobbers_to_add == 0);
2158 case SPLIT:
2159 return 1;
2160 case PEEPHOLE2:
2161 return -1;
2162 default:
2163 abort ();
2164 }
2165 }
263287f7 2166
6d69ff19 2167 return 0;
263287f7 2168}
2169
6d69ff19 2170/* Emit code for one node -- the conditional and the accompanying action.
2171 Return true if there is no fallthru path. */
2172
263287f7 2173static int
6d69ff19 2174write_node (p, depth, subroutine_type)
2175 struct decision *p;
2176 int depth;
2177 enum routine_type subroutine_type;
263287f7 2178{
6d69ff19 2179 struct decision_test *test, *last_test;
2180 int uncond;
263287f7 2181
6d69ff19 2182 last_test = test = p->tests;
2183 uncond = is_unconditional (test, subroutine_type);
2184 if (uncond == 0)
2185 {
2186 printf (" if (");
2187 write_cond (test, depth, subroutine_type);
2188
2189 while ((test = test->next) != NULL)
2190 {
2191 int uncond2;
2192
2193 last_test = test;
2194 uncond2 = is_unconditional (test, subroutine_type);
2195 if (uncond2 != 0)
2196 break;
2197
2198 printf ("\n && ");
2199 write_cond (test, depth, subroutine_type);
2200 }
2201
2202 printf (")\n");
2203 }
2204
3e9f1237 2205 write_action (p, last_test, depth, uncond, p->success.first, subroutine_type);
6d69ff19 2206
2207 return uncond > 0;
263287f7 2208}
2209
6d69ff19 2210/* Emit code for all of the sibling nodes of HEAD. */
2211
263287f7 2212static void
6d69ff19 2213write_tree_1 (head, depth, subroutine_type)
2214 struct decision_head *head;
2215 int depth;
2216 enum routine_type subroutine_type;
263287f7 2217{
6d69ff19 2218 struct decision *p, *next;
2219 int uncond = 0;
a698628e 2220
6d69ff19 2221 for (p = head->first; p ; p = next)
2222 {
2223 /* The label for the first element was printed in write_tree. */
2224 if (p != head->first && p->need_label)
2225 OUTPUT_LABEL (" ", p->number);
2226
2227 /* Attempt to write a switch statement for a whole sequence. */
2228 next = write_switch (p, depth);
2229 if (p != next)
2230 uncond = 0;
2231 else
2232 {
2233 /* Failed -- fall back and write one node. */
2234 uncond = write_node (p, depth, subroutine_type);
2235 next = p->next;
2236 }
2237 }
a698628e 2238
6d69ff19 2239 /* Finished with this chain. Close a fallthru path by branching
2240 to the afterward node. */
2241 if (! uncond)
2242 write_afterward (head->last, head->last->afterward, " ");
2243}
a698628e 2244
6d69ff19 2245/* Write out the decision tree starting at HEAD. PREVPOS is the
2246 position at the node that branched to this node. */
a698628e 2247
2248static void
6d69ff19 2249write_tree (head, prevpos, type, initial)
2250 struct decision_head *head;
79e61f87 2251 const char *prevpos;
a698628e 2252 enum routine_type type;
6d69ff19 2253 int initial;
a698628e 2254{
19cb6b50 2255 struct decision *p = head->first;
a698628e 2256
6d69ff19 2257 putchar ('\n');
2258 if (p->need_label)
2259 OUTPUT_LABEL (" ", p->number);
2260
2261 if (! initial && p->subroutine_number > 0)
a698628e 2262 {
6d69ff19 2263 static const char * const name_prefix[] = {
2264 "recog", "split", "peephole2"
2265 };
2266
2267 static const char * const call_suffix[] = {
3e9f1237 2268 ", pnum_clobbers", "", ", _pmatch_len"
6d69ff19 2269 };
a698628e 2270
6d69ff19 2271 /* This node has been broken out into a separate subroutine.
2272 Call it, test the result, and branch accordingly. */
2273
2274 if (p->afterward)
a698628e 2275 {
2276 printf (" tem = %s_%d (x0, insn%s);\n",
6d69ff19 2277 name_prefix[type], p->subroutine_number, call_suffix[type]);
82575fa7 2278 if (IS_SPLIT (type))
6d69ff19 2279 printf (" if (tem != 0)\n return tem;\n");
7bd62cd5 2280 else
6d69ff19 2281 printf (" if (tem >= 0)\n return tem;\n");
2282
2283 change_state (p->position, p->afterward->position, NULL, " ");
2284 printf (" goto L%d;\n", p->afterward->number);
a698628e 2285 }
2286 else
6d69ff19 2287 {
2288 printf (" return %s_%d (x0, insn%s);\n",
2289 name_prefix[type], p->subroutine_number, call_suffix[type]);
2290 }
a698628e 2291 }
6d69ff19 2292 else
2293 {
2294 int depth = strlen (p->position);
a698628e 2295
6d69ff19 2296 change_state (prevpos, p->position, head->last->afterward, " ");
2297 write_tree_1 (head, depth, type);
a698628e 2298
6d69ff19 2299 for (p = head->first; p; p = p->next)
2300 if (p->success.first)
2301 write_tree (&p->success, p->position, type, 0);
2302 }
a698628e 2303}
2304
6d69ff19 2305/* Write out a subroutine of type TYPE to do comparisons starting at
2306 node TREE. */
82575fa7 2307
6d69ff19 2308static void
2309write_subroutine (head, type)
2310 struct decision_head *head;
2311 enum routine_type type;
2312{
a5deb6f6 2313 int subfunction = head->first ? head->first->subroutine_number : 0;
6d69ff19 2314 const char *s_or_e;
2315 char extension[32];
2316 int i;
fcb53c1e 2317
6d69ff19 2318 s_or_e = subfunction ? "static " : "";
a698628e 2319
6d69ff19 2320 if (subfunction)
2321 sprintf (extension, "_%d", subfunction);
2322 else if (type == RECOG)
2323 extension[0] = '\0';
2324 else
2325 strcpy (extension, "_insns");
2326
e4ba8ded 2327 switch (type)
2328 {
2329 case RECOG:
929efc7f 2330 printf ("%sint recog%s PARAMS ((rtx, rtx, int *));\n", s_or_e, extension);
e4ba8ded 2331 printf ("%sint\n\
2332recog%s (x0, insn, pnum_clobbers)\n\
b51d5c7c 2333 rtx x0 ATTRIBUTE_UNUSED;\n\
e4ba8ded 2334 rtx insn ATTRIBUTE_UNUSED;\n\
2335 int *pnum_clobbers ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2336 break;
2337 case SPLIT:
929efc7f 2338 printf ("%srtx split%s PARAMS ((rtx, rtx));\n", s_or_e, extension);
e4ba8ded 2339 printf ("%srtx\n\
2340split%s (x0, insn)\n\
b51d5c7c 2341 rtx x0 ATTRIBUTE_UNUSED;\n\
e4ba8ded 2342 rtx insn ATTRIBUTE_UNUSED;\n", s_or_e, extension);
2343 break;
2344 case PEEPHOLE2:
3e9f1237 2345 printf ("%srtx peephole2%s PARAMS ((rtx, rtx, int *));\n",
2346 s_or_e, extension);
e4ba8ded 2347 printf ("%srtx\n\
3e9f1237 2348peephole2%s (x0, insn, _pmatch_len)\n\
b51d5c7c 2349 rtx x0 ATTRIBUTE_UNUSED;\n\
e4ba8ded 2350 rtx insn ATTRIBUTE_UNUSED;\n\
3e9f1237 2351 int *_pmatch_len ATTRIBUTE_UNUSED;\n", s_or_e, extension);
e4ba8ded 2352 break;
2353 }
6d69ff19 2354
19cb6b50 2355 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED = &recog_data.operand[0];\n");
6d69ff19 2356 for (i = 1; i <= max_depth; i++)
19cb6b50 2357 printf (" rtx x%d ATTRIBUTE_UNUSED;\n", i);
6d69ff19 2358
6d69ff19 2359 printf (" %s tem ATTRIBUTE_UNUSED;\n", IS_SPLIT (type) ? "rtx" : "int");
2360
0edc2b1c 2361 if (!subfunction)
2362 printf (" recog_data.insn = NULL_RTX;\n");
2363
a5deb6f6 2364 if (head->first)
2365 write_tree (head, "", type, 1);
2366 else
2367 printf (" goto ret0;\n");
6d69ff19 2368
6d69ff19 2369 printf (" ret0:\n return %d;\n}\n\n", IS_SPLIT (type) ? 0 : -1);
2370}
2371
2372/* In break_out_subroutines, we discovered the boundaries for the
2373 subroutines, but did not write them out. Do so now. */
a698628e 2374
263287f7 2375static void
6d69ff19 2376write_subroutines (head, type)
2377 struct decision_head *head;
2378 enum routine_type type;
263287f7 2379{
6d69ff19 2380 struct decision *p;
263287f7 2381
6d69ff19 2382 for (p = head->first; p ; p = p->next)
2383 if (p->success.first)
2384 write_subroutines (&p->success, type);
263287f7 2385
6d69ff19 2386 if (head->first->subroutine_number > 0)
2387 write_subroutine (head, type);
2388}
82575fa7 2389
6d69ff19 2390/* Begin the output file. */
82575fa7 2391
6d69ff19 2392static void
2393write_header ()
2394{
2395 puts ("\
2396/* Generated automatically by the program `genrecog' from the target\n\
2397 machine description file. */\n\
2398\n\
2399#include \"config.h\"\n\
2400#include \"system.h\"\n\
805e22b2 2401#include \"coretypes.h\"\n\
2402#include \"tm.h\"\n\
6d69ff19 2403#include \"rtl.h\"\n\
2404#include \"tm_p.h\"\n\
2405#include \"function.h\"\n\
2406#include \"insn-config.h\"\n\
2407#include \"recog.h\"\n\
2408#include \"real.h\"\n\
2409#include \"output.h\"\n\
2410#include \"flags.h\"\n\
5bcc7f1f 2411#include \"hard-reg-set.h\"\n\
2412#include \"resource.h\"\n\
1a670edb 2413#include \"toplev.h\"\n\
fcb53c1e 2414#include \"reload.h\"\n\
6d69ff19 2415\n");
2416
2417 puts ("\n\
2418/* `recog' contains a decision tree that recognizes whether the rtx\n\
2419 X0 is a valid instruction.\n\
2420\n\
2421 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
2422 returns a nonnegative number which is the insn code number for the\n\
2423 pattern that matched. This is the same as the order in the machine\n\
2424 description of the entry that matched. This number can be used as an\n\
0c53e426 2425 index into `insn_data' and other tables.\n");
2426 puts ("\
6d69ff19 2427 The third argument to recog is an optional pointer to an int. If\n\
2428 present, recog will accept a pattern if it matches except for missing\n\
2429 CLOBBER expressions at the end. In that case, the value pointed to by\n\
2430 the optional pointer will be set to the number of CLOBBERs that need\n\
0c53e426 2431 to be added (it should be initialized to zero by the caller). If it");
2432 puts ("\
6d69ff19 2433 is set nonzero, the caller should allocate a PARALLEL of the\n\
2434 appropriate size, copy the initial entries, and call add_clobbers\n\
2435 (found in insn-emit.c) to fill in the CLOBBERs.\n\
2436");
2437
2438 puts ("\n\
2439 The function split_insns returns 0 if the rtl could not\n\
31d3e01c 2440 be split or the split rtl as an INSN list if it can be.\n\
6d69ff19 2441\n\
2442 The function peephole2_insns returns 0 if the rtl could not\n\
31d3e01c 2443 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
6d69ff19 2444 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
2445*/\n\n");
2446}
263287f7 2447
6d69ff19 2448\f
2449/* Construct and return a sequence of decisions
2450 that will recognize INSN.
263287f7 2451
6d69ff19 2452 TYPE says what type of routine we are recognizing (RECOG or SPLIT). */
2453
2454static struct decision_head
2455make_insn_sequence (insn, type)
2456 rtx insn;
2457 enum routine_type type;
2458{
2459 rtx x;
2460 const char *c_test = XSTR (insn, type == RECOG ? 2 : 1);
b70bd542 2461 int truth = maybe_eval_c_test (c_test);
6d69ff19 2462 struct decision *last;
2463 struct decision_test *test, **place;
2464 struct decision_head head;
e772a198 2465 char c_test_pos[2];
6d69ff19 2466
b70bd542 2467 /* We should never see an insn whose C test is false at compile time. */
2468 if (truth == 0)
2469 abort ();
2470
6d69ff19 2471 record_insn_name (next_insn_code, (type == RECOG ? XSTR (insn, 0) : NULL));
2472
e772a198 2473 c_test_pos[0] = '\0';
6d69ff19 2474 if (type == PEEPHOLE2)
263287f7 2475 {
6d69ff19 2476 int i, j;
2477
2478 /* peephole2 gets special treatment:
2479 - X always gets an outer parallel even if it's only one entry
2480 - we remove all traces of outer-level match_scratch and match_dup
2481 expressions here. */
2482 x = rtx_alloc (PARALLEL);
2483 PUT_MODE (x, VOIDmode);
2484 XVEC (x, 0) = rtvec_alloc (XVECLEN (insn, 0));
2485 for (i = j = 0; i < XVECLEN (insn, 0); i++)
82575fa7 2486 {
6d69ff19 2487 rtx tmp = XVECEXP (insn, 0, i);
2488 if (GET_CODE (tmp) != MATCH_SCRATCH && GET_CODE (tmp) != MATCH_DUP)
2489 {
2490 XVECEXP (x, 0, j) = tmp;
2491 j++;
2492 }
2493 }
2494 XVECLEN (x, 0) = j;
fe5a6fce 2495
fe5a6fce 2496 c_test_pos[0] = 'A' + j - 1;
2497 c_test_pos[1] = '\0';
6d69ff19 2498 }
2499 else if (XVECLEN (insn, type == RECOG) == 1)
2500 x = XVECEXP (insn, type == RECOG, 0);
2501 else
2502 {
2503 x = rtx_alloc (PARALLEL);
2504 XVEC (x, 0) = XVEC (insn, type == RECOG);
2505 PUT_MODE (x, VOIDmode);
2506 }
2507
d55ea929 2508 validate_pattern (x, insn, NULL_RTX, 0);
0922b1b8 2509
6d69ff19 2510 memset(&head, 0, sizeof(head));
2511 last = add_to_sequence (x, &head, "", type, 1);
2512
2513 /* Find the end of the test chain on the last node. */
2514 for (test = last->tests; test->next; test = test->next)
2515 continue;
2516 place = &test->next;
2517
b70bd542 2518 /* Skip the C test if it's known to be true at compile time. */
2519 if (truth == -1)
6d69ff19 2520 {
2521 /* Need a new node if we have another test to add. */
2522 if (test->type == DT_accept_op)
2523 {
fe5a6fce 2524 last = new_decision (c_test_pos, &last->success);
6d69ff19 2525 place = &last->tests;
2526 }
2527 test = new_decision_test (DT_c_test, &place);
2528 test->u.c_test = c_test;
2529 }
2530
2531 test = new_decision_test (DT_accept_insn, &place);
2532 test->u.insn.code_number = next_insn_code;
0922b1b8 2533 test->u.insn.lineno = pattern_lineno;
6d69ff19 2534 test->u.insn.num_clobbers_to_add = 0;
2535
2536 switch (type)
2537 {
2538 case RECOG:
2539 /* If this is an DEFINE_INSN and X is a PARALLEL, see if it ends
2540 with a group of CLOBBERs of (hard) registers or MATCH_SCRATCHes.
2541 If so, set up to recognize the pattern without these CLOBBERs. */
2542
2543 if (GET_CODE (x) == PARALLEL)
2544 {
2545 int i;
2546
2547 /* Find the last non-clobber in the parallel. */
2548 for (i = XVECLEN (x, 0); i > 0; i--)
82575fa7 2549 {
6d69ff19 2550 rtx y = XVECEXP (x, 0, i - 1);
2551 if (GET_CODE (y) != CLOBBER
2552 || (GET_CODE (XEXP (y, 0)) != REG
2553 && GET_CODE (XEXP (y, 0)) != MATCH_SCRATCH))
2554 break;
82575fa7 2555 }
6d69ff19 2556
2557 if (i != XVECLEN (x, 0))
82575fa7 2558 {
6d69ff19 2559 rtx new;
2560 struct decision_head clobber_head;
82575fa7 2561
6d69ff19 2562 /* Build a similar insn without the clobbers. */
2563 if (i == 1)
2564 new = XVECEXP (x, 0, 0);
82575fa7 2565 else
6d69ff19 2566 {
2567 int j;
2568
2569 new = rtx_alloc (PARALLEL);
2570 XVEC (new, 0) = rtvec_alloc (i);
2571 for (j = i - 1; j >= 0; j--)
2572 XVECEXP (new, 0, j) = XVECEXP (x, 0, j);
2573 }
2574
2575 /* Recognize it. */
2576 memset (&clobber_head, 0, sizeof(clobber_head));
2577 last = add_to_sequence (new, &clobber_head, "", type, 1);
82575fa7 2578
6d69ff19 2579 /* Find the end of the test chain on the last node. */
2580 for (test = last->tests; test->next; test = test->next)
2581 continue;
2582
2583 /* We definitely have a new test to add -- create a new
2584 node if needed. */
2585 place = &test->next;
2586 if (test->type == DT_accept_op)
2587 {
2588 last = new_decision ("", &last->success);
2589 place = &last->tests;
2590 }
2591
b70bd542 2592 /* Skip the C test if it's known to be true at compile
2593 time. */
2594 if (truth == -1)
6d69ff19 2595 {
2596 test = new_decision_test (DT_c_test, &place);
2597 test->u.c_test = c_test;
2598 }
2599
2600 test = new_decision_test (DT_accept_insn, &place);
2601 test->u.insn.code_number = next_insn_code;
0922b1b8 2602 test->u.insn.lineno = pattern_lineno;
6d69ff19 2603 test->u.insn.num_clobbers_to_add = XVECLEN (x, 0) - i;
2604
2605 merge_trees (&head, &clobber_head);
82575fa7 2606 }
82575fa7 2607 }
6d69ff19 2608 break;
2609
2610 case SPLIT:
2611 /* Define the subroutine we will call below and emit in genemit. */
929efc7f 2612 printf ("extern rtx gen_split_%d PARAMS ((rtx *));\n", next_insn_code);
6d69ff19 2613 break;
2614
2615 case PEEPHOLE2:
2616 /* Define the subroutine we will call below and emit in genemit. */
929efc7f 2617 printf ("extern rtx gen_peephole2_%d PARAMS ((rtx, rtx *));\n",
6d69ff19 2618 next_insn_code);
2619 break;
263287f7 2620 }
a698628e 2621
6d69ff19 2622 return head;
263287f7 2623}
2624
6d69ff19 2625static void
2626process_tree (head, subroutine_type)
2627 struct decision_head *head;
2628 enum routine_type subroutine_type;
263287f7 2629{
f4adfe76 2630 if (head->first == NULL)
2631 {
2632 /* We can elide peephole2_insns, but not recog or split_insns. */
2633 if (subroutine_type == PEEPHOLE2)
2634 return;
2635 }
2636 else
a5deb6f6 2637 {
2638 factor_tests (head);
263287f7 2639
a5deb6f6 2640 next_subroutine_number = 0;
2641 break_out_subroutines (head, 1);
2642 find_afterward (head, NULL);
947491b7 2643
f4adfe76 2644 /* We run this after find_afterward, because find_afterward needs
2645 the redundant DT_mode tests on predicates to determine whether
2646 two tests can both be true or not. */
2647 simplify_tests(head);
2648
a5deb6f6 2649 write_subroutines (head, subroutine_type);
2650 }
f4adfe76 2651
6d69ff19 2652 write_subroutine (head, subroutine_type);
2653}
2654\f
929efc7f 2655extern int main PARAMS ((int, char **));
867b95d0 2656
263287f7 2657int
2658main (argc, argv)
2659 int argc;
2660 char **argv;
2661{
2662 rtx desc;
6d69ff19 2663 struct decision_head recog_tree, split_tree, peephole2_tree, h;
263287f7 2664
04b58880 2665 progname = "genrecog";
6d69ff19 2666
2667 memset (&recog_tree, 0, sizeof recog_tree);
2668 memset (&split_tree, 0, sizeof split_tree);
2669 memset (&peephole2_tree, 0, sizeof peephole2_tree);
263287f7 2670
2671 if (argc <= 1)
cb8bacb6 2672 fatal ("no input file name");
263287f7 2673
2b6e1955 2674 if (init_md_reader_args (argc, argv) != SUCCESS_EXIT_CODE)
c5ddd6b5 2675 return (FATAL_EXIT_CODE);
263287f7 2676
263287f7 2677 next_insn_code = 0;
2678 next_index = 0;
2679
6d69ff19 2680 write_header ();
263287f7 2681
2682 /* Read the machine description. */
2683
2684 while (1)
2685 {
c5ddd6b5 2686 desc = read_md_rtx (&pattern_lineno, &next_insn_code);
2687 if (desc == NULL)
263287f7 2688 break;
263287f7 2689
263287f7 2690 if (GET_CODE (desc) == DEFINE_INSN)
6d69ff19 2691 {
2692 h = make_insn_sequence (desc, RECOG);
2693 merge_trees (&recog_tree, &h);
2694 }
263287f7 2695 else if (GET_CODE (desc) == DEFINE_SPLIT)
6d69ff19 2696 {
2697 h = make_insn_sequence (desc, SPLIT);
2698 merge_trees (&split_tree, &h);
2699 }
82575fa7 2700 else if (GET_CODE (desc) == DEFINE_PEEPHOLE2)
6d69ff19 2701 {
2702 h = make_insn_sequence (desc, PEEPHOLE2);
2703 merge_trees (&peephole2_tree, &h);
2704 }
fcb53c1e 2705
263287f7 2706 next_index++;
2707 }
2708
0922b1b8 2709 if (error_count)
2710 return FATAL_EXIT_CODE;
2711
6d69ff19 2712 puts ("\n\n");
263287f7 2713
6d69ff19 2714 process_tree (&recog_tree, RECOG);
2715 process_tree (&split_tree, SPLIT);
2716 process_tree (&peephole2_tree, PEEPHOLE2);
82575fa7 2717
263287f7 2718 fflush (stdout);
947491b7 2719 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
263287f7 2720}
6d69ff19 2721\f
6357eaae 2722/* Define this so we can link with print-rtl.o to get debug_rtx function. */
2723const char *
2724get_insn_name (code)
2725 int code;
2726{
2727 if (code < insn_name_ptr_size)
2728 return insn_name_ptr[code];
2729 else
2730 return NULL;
2731}
6d69ff19 2732
2733static void
2734record_insn_name (code, name)
2735 int code;
2736 const char *name;
2737{
2738 static const char *last_real_name = "insn";
2739 static int last_real_code = 0;
2740 char *new;
2741
2742 if (insn_name_ptr_size <= code)
2743 {
2744 int new_size;
2745 new_size = (insn_name_ptr_size ? insn_name_ptr_size * 2 : 512);
2746 insn_name_ptr =
2747 (char **) xrealloc (insn_name_ptr, sizeof(char *) * new_size);
fcb53c1e 2748 memset (insn_name_ptr + insn_name_ptr_size, 0,
6d69ff19 2749 sizeof(char *) * (new_size - insn_name_ptr_size));
2750 insn_name_ptr_size = new_size;
2751 }
2752
2753 if (!name || name[0] == '\0')
2754 {
2755 new = xmalloc (strlen (last_real_name) + 10);
2756 sprintf (new, "%s+%d", last_real_name, code - last_real_code);
2757 }
2758 else
2759 {
2760 last_real_name = new = xstrdup (name);
2761 last_real_code = code;
2762 }
fcb53c1e 2763
6d69ff19 2764 insn_name_ptr[code] = new;
fcb53c1e 2765}
6d69ff19 2766\f
6d69ff19 2767static void
2768debug_decision_2 (test)
2769 struct decision_test *test;
2770{
2771 switch (test->type)
2772 {
2773 case DT_mode:
2774 fprintf (stderr, "mode=%s", GET_MODE_NAME (test->u.mode));
2775 break;
2776 case DT_code:
2777 fprintf (stderr, "code=%s", GET_RTX_NAME (test->u.code));
2778 break;
2779 case DT_veclen:
2780 fprintf (stderr, "veclen=%d", test->u.veclen);
2781 break;
2782 case DT_elt_zero_int:
2783 fprintf (stderr, "elt0_i=%d", (int) test->u.intval);
2784 break;
2785 case DT_elt_one_int:
2786 fprintf (stderr, "elt1_i=%d", (int) test->u.intval);
2787 break;
2788 case DT_elt_zero_wide:
2789 fprintf (stderr, "elt0_w=");
2790 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2791 break;
3164740a 2792 case DT_elt_zero_wide_safe:
2793 fprintf (stderr, "elt0_ws=");
2794 fprintf (stderr, HOST_WIDE_INT_PRINT_DEC, test->u.intval);
2795 break;
35b0bfe2 2796 case DT_veclen_ge:
2797 fprintf (stderr, "veclen>=%d", test->u.veclen);
2798 break;
6d69ff19 2799 case DT_dup:
2800 fprintf (stderr, "dup=%d", test->u.dup);
2801 break;
2802 case DT_pred:
2803 fprintf (stderr, "pred=(%s,%s)",
2804 test->u.pred.name, GET_MODE_NAME(test->u.pred.mode));
2805 break;
2806 case DT_c_test:
2807 {
2808 char sub[16+4];
2809 strncpy (sub, test->u.c_test, sizeof(sub));
2810 memcpy (sub+16, "...", 4);
2811 fprintf (stderr, "c_test=\"%s\"", sub);
2812 }
2813 break;
2814 case DT_accept_op:
2815 fprintf (stderr, "A_op=%d", test->u.opno);
2816 break;
2817 case DT_accept_insn:
fcb53c1e 2818 fprintf (stderr, "A_insn=(%d,%d)",
6d69ff19 2819 test->u.insn.code_number, test->u.insn.num_clobbers_to_add);
2820 break;
2821
2822 default:
2823 abort ();
2824 }
2825}
2826
2827static void
2828debug_decision_1 (d, indent)
2829 struct decision *d;
2830 int indent;
2831{
2832 int i;
2833 struct decision_test *test;
2834
2835 if (d == NULL)
2836 {
2837 for (i = 0; i < indent; ++i)
2838 putc (' ', stderr);
2839 fputs ("(nil)\n", stderr);
2840 return;
2841 }
2842
2843 for (i = 0; i < indent; ++i)
2844 putc (' ', stderr);
2845
2846 putc ('{', stderr);
2847 test = d->tests;
2848 if (test)
2849 {
2850 debug_decision_2 (test);
2851 while ((test = test->next) != NULL)
2852 {
2853 fputs (" + ", stderr);
2854 debug_decision_2 (test);
2855 }
2856 }
f4adfe76 2857 fprintf (stderr, "} %d n %d a %d\n", d->number,
2858 (d->next ? d->next->number : -1),
2859 (d->afterward ? d->afterward->number : -1));
6d69ff19 2860}
2861
2862static void
2863debug_decision_0 (d, indent, maxdepth)
2864 struct decision *d;
2865 int indent, maxdepth;
2866{
2867 struct decision *n;
2868 int i;
2869
2870 if (maxdepth < 0)
2871 return;
2872 if (d == NULL)
2873 {
2874 for (i = 0; i < indent; ++i)
2875 putc (' ', stderr);
2876 fputs ("(nil)\n", stderr);
2877 return;
2878 }
2879
2880 debug_decision_1 (d, indent);
2881 for (n = d->success.first; n ; n = n->next)
2882 debug_decision_0 (n, indent + 2, maxdepth - 1);
2883}
2884
2885void
2886debug_decision (d)
2887 struct decision *d;
2888{
2889 debug_decision_0 (d, 0, 1000000);
2890}
940b9cea 2891
2892void
2893debug_decision_list (d)
2894 struct decision *d;
2895{
2896 while (d)
2897 {
2898 debug_decision_0 (d, 0, 0);
2899 d = d->next;
2900 }
2901}