]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/genrecog.c
poly_int: ira subreg liveness tracking
[thirdparty/gcc.git] / gcc / genrecog.c
CommitLineData
263287f7 1/* Generate code from machine description to recognize rtl as insns.
aad93da1 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
263287f7 3
f12b58b3 4 This file is part of GCC.
6d69ff19 5
f12b58b3 6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8c4c00c1 8 the Free Software Foundation; either version 3, or (at your option)
6d69ff19 9 any later version.
10
f12b58b3 11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
6d69ff19 15
16 You should have received a copy of the GNU General Public License
8c4c00c1 17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
6d69ff19 19
20
21/* This program is used to produce insn-recog.c, which contains a
22 function called `recog' plus its subroutines. These functions
23 contain a decision tree that recognizes whether an rtx, the
24 argument given to recog, is a valid instruction.
25
26 recog returns -1 if the rtx is not valid. If the rtx is valid,
27 recog returns a nonnegative number which is the insn code number
28 for the pattern that matched. This is the same as the order in the
29 machine description of the entry that matched. This number can be
30 used as an index into various insn_* tables, such as insn_template,
31 insn_outfun, and insn_n_operands (found in insn-output.c).
32
33 The third argument to recog is an optional pointer to an int. If
34 present, recog will accept a pattern if it matches except for
263287f7 35 missing CLOBBER expressions at the end. In that case, the value
36 pointed to by the optional pointer will be set to the number of
37 CLOBBERs that need to be added (it should be initialized to zero by
38 the caller). If it is set nonzero, the caller should allocate a
6d69ff19 39 PARALLEL of the appropriate size, copy the initial entries, and
40 call add_clobbers (found in insn-emit.c) to fill in the CLOBBERs.
263287f7 41
6d69ff19 42 This program also generates the function `split_insns', which
43 returns 0 if the rtl could not be split, or it returns the split
31d3e01c 44 rtl as an INSN list.
6d69ff19 45
46 This program also generates the function `peephole2_insns', which
47 returns 0 if the rtl could not be matched. If there was a match,
31d3e01c 48 the new rtl is returned in an INSN list, and LAST_INSN will point
59250a8d 49 to the last recognized insn in the old sequence.
50
51
52 At a high level, the algorithm used in this file is as follows:
53
54 1. Build up a decision tree for each routine, using the following
55 approach to matching an rtx:
56
57 - First determine the "shape" of the rtx, based on GET_CODE,
58 XVECLEN and XINT. This phase examines SET_SRCs before SET_DESTs
59 since SET_SRCs tend to be more distinctive. It examines other
60 operands in numerical order, since the canonicalization rules
61 prefer putting complex operands of commutative operators first.
62
63 - Next check modes and predicates. This phase examines all
64 operands in numerical order, even for SETs, since the mode of a
65 SET_DEST is exact while the mode of a SET_SRC can be VOIDmode
66 for constant integers.
67
68 - Next check match_dups.
69
70 - Finally check the C condition and (where appropriate) pnum_clobbers.
71
72 2. Try to optimize the tree by removing redundant tests, CSEing tests,
73 folding tests together, etc.
74
75 3. Look for common subtrees and split them out into "pattern" routines.
76 These common subtrees can be identical or they can differ in mode,
77 code, or integer (usually an UNSPEC or UNSPEC_VOLATILE code).
78 In the latter case the users of the pattern routine pass the
79 appropriate mode, etc., as argument. For example, if two patterns
80 contain:
81
82 (plus:SI (match_operand:SI 1 "register_operand")
83 (match_operand:SI 2 "register_operand"))
84
85 we can split the associated matching code out into a subroutine.
86 If a pattern contains:
87
88 (minus:DI (match_operand:DI 1 "register_operand")
89 (match_operand:DI 2 "register_operand"))
90
91 then we can consider using the same matching routine for both
92 the plus and minus expressions, passing PLUS and SImode in the
93 former case and MINUS and DImode in the latter case.
94
95 The main aim of this phase is to reduce the compile time of the
96 insn-recog.c code and to reduce the amount of object code in
97 insn-recog.o.
98
99 4. Split the matching trees into functions, trying to limit the
100 size of each function to a sensible amount.
101
102 Again, the main aim of this phase is to reduce the compile time
103 of insn-recog.c. (It doesn't help with the size of insn-recog.o.)
104
105 5. Write out C++ code for each function. */
263287f7 106
805e22b2 107#include "bconfig.h"
802ba5cb 108#define INCLUDE_ALGORITHM
5ce88198 109#include "system.h"
805e22b2 110#include "coretypes.h"
111#include "tm.h"
263287f7 112#include "rtl.h"
04b58880 113#include "errors.h"
960ebfe7 114#include "read-md.h"
c5ddd6b5 115#include "gensupport.h"
59250a8d 116
117#undef GENERATOR_FILE
118enum true_rtx_doe {
119#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) TRUE_##ENUM,
120#include "rtl.def"
121#undef DEF_RTL_EXPR
122 FIRST_GENERATOR_RTX_CODE
123};
124#define NUM_TRUE_RTX_CODE ((int) FIRST_GENERATOR_RTX_CODE)
125#define GENERATOR_FILE 1
126
127/* Debugging variables to control which optimizations are performed.
128 Note that disabling merge_states_p leads to very large output. */
129static const bool merge_states_p = true;
130static const bool collapse_optional_decisions_p = true;
131static const bool cse_tests_p = true;
132static const bool simplify_tests_p = true;
133static const bool use_operand_variables_p = true;
134static const bool use_subroutines_p = true;
135static const bool use_pattern_routines_p = true;
136
137/* Whether to add comments for optional tests that we decided to keep.
138 Can be useful when debugging the generator itself but is noise when
139 debugging the generated code. */
140static const bool mark_optional_transitions_p = false;
141
142/* Whether pattern routines should calculate positions relative to their
143 rtx parameter rather than use absolute positions. This e.g. allows
144 a pattern routine to be shared between a plain SET and a PARALLEL
145 that includes a SET.
146
147 In principle it sounds like this should be useful, especially for
148 recog_for_combine, where the plain SET form is generated automatically
149 from a PARALLEL of a single SET and some CLOBBERs. In practice it doesn't
150 seem to help much and leads to slightly bigger object files. */
151static const bool relative_patterns_p = false;
152
153/* Whether pattern routines should be allowed to test whether pnum_clobbers
154 is null. This requires passing pnum_clobbers around as a parameter. */
155static const bool pattern_have_num_clobbers_p = true;
156
157/* Whether pattern routines should be allowed to test .md file C conditions.
158 This requires passing insn around as a parameter, in case the C
159 condition refers to it. In practice this tends to lead to bigger
160 object files. */
161static const bool pattern_c_test_p = false;
162
163/* Whether to require each parameter passed to a pattern routine to be
164 unique. Disabling this check for example allows unary operators with
165 matching modes (like NEG) and unary operators with mismatched modes
166 (like ZERO_EXTEND) to be matched by a single pattern. However, we then
167 often have cases where the same value is passed too many times. */
168static const bool force_unique_params_p = true;
169
170/* The maximum (approximate) depth of block nesting that an individual
171 routine or subroutine should have. This limit is about keeping the
172 output readable rather than reducing compile time. */
00788409 173static const unsigned int MAX_DEPTH = 6;
59250a8d 174
175/* The minimum number of pseudo-statements that a state must have before
176 we split it out into a subroutine. */
00788409 177static const unsigned int MIN_NUM_STATEMENTS = 5;
59250a8d 178
179/* The number of pseudo-statements a state can have before we consider
180 splitting out substates into subroutines. This limit is about avoiding
181 compile-time problems with very big functions (and also about keeping
182 functions within --param optimization limits, etc.). */
00788409 183static const unsigned int MAX_NUM_STATEMENTS = 200;
59250a8d 184
185/* The minimum number of pseudo-statements that can be used in a pattern
186 routine. */
187static const unsigned int MIN_COMBINE_COST = 4;
188
189/* The maximum number of arguments that a pattern routine can have.
190 The idea is to prevent one pattern getting a ridiculous number of
191 arguments when it would be more beneficial to have a separate pattern
192 routine instead. */
193static const unsigned int MAX_PATTERN_PARAMS = 5;
194
195/* The maximum operand number plus one. */
196int num_operands;
41e80e4b 197
2494d261 198/* Ways of obtaining an rtx to be tested. */
199enum position_type {
200 /* PATTERN (peep2_next_insn (ARG)). */
201 POS_PEEP2_INSN,
202
203 /* XEXP (BASE, ARG). */
204 POS_XEXP,
205
206 /* XVECEXP (BASE, 0, ARG). */
207 POS_XVECEXP0
208};
209
210/* The position of an rtx relative to X0. Each useful position is
211 represented by exactly one instance of this structure. */
212struct position
213{
214 /* The parent rtx. This is the root position for POS_PEEP2_INSNs. */
215 struct position *base;
216
217 /* A position with the same BASE and TYPE, but with the next value
218 of ARG. */
219 struct position *next;
220
221 /* A list of all POS_XEXP positions that use this one as their base,
222 chained by NEXT fields. The first entry represents XEXP (this, 0),
223 the second represents XEXP (this, 1), and so on. */
224 struct position *xexps;
225
226 /* A list of POS_XVECEXP0 positions that use this one as their base,
227 chained by NEXT fields. The first entry represents XVECEXP (this, 0, 0),
228 the second represents XVECEXP (this, 0, 1), and so on. */
229 struct position *xvecexp0s;
230
231 /* The type of position. */
232 enum position_type type;
233
234 /* The argument to TYPE (shown as ARG in the position_type comments). */
235 int arg;
236
59250a8d 237 /* The instruction to which the position belongs. */
238 unsigned int insn_id;
a698628e 239
59250a8d 240 /* The depth of this position relative to the instruction pattern.
241 E.g. if the instruction pattern is a SET, the SET itself has a
242 depth of 0 while the SET_DEST and SET_SRC have depths of 1. */
243 unsigned int depth;
263287f7 244
59250a8d 245 /* A unique identifier for this position. */
246 unsigned int id;
263287f7 247};
248
6d69ff19 249enum routine_type {
59250a8d 250 SUBPATTERN, RECOG, SPLIT, PEEPHOLE2
6d69ff19 251};
82575fa7 252
2494d261 253/* The root position (x0). */
254static struct position root_pos;
255
59250a8d 256/* The number of positions created. Also one higher than the maximum
257 position id. */
258static unsigned int num_positions = 1;
259
2494d261 260/* A list of all POS_PEEP2_INSNs. The entry for insn 0 is the root position,
261 since we are given that instruction's pattern as x0. */
262static struct position *peep2_insn_pos_list = &root_pos;
cbf464bd 263\f
2494d261 264/* Return a position with the given BASE, TYPE and ARG. NEXT_PTR
265 points to where the unique object that represents the position
266 should be stored. Create the object if it doesn't already exist,
267 otherwise reuse the object that is already there. */
268
269static struct position *
270next_position (struct position **next_ptr, struct position *base,
271 enum position_type type, int arg)
272{
273 struct position *pos;
274
275 pos = *next_ptr;
276 if (!pos)
277 {
278 pos = XCNEW (struct position);
2494d261 279 pos->type = type;
280 pos->arg = arg;
59250a8d 281 if (type == POS_PEEP2_INSN)
282 {
283 pos->base = 0;
284 pos->insn_id = arg;
285 pos->depth = base->depth;
286 }
287 else
288 {
289 pos->base = base;
290 pos->insn_id = base->insn_id;
291 pos->depth = base->depth + 1;
292 }
293 pos->id = num_positions++;
2494d261 294 *next_ptr = pos;
295 }
296 return pos;
297}
298
299/* Compare positions POS1 and POS2 lexicographically. */
300
301static int
302compare_positions (struct position *pos1, struct position *pos2)
303{
304 int diff;
305
306 diff = pos1->depth - pos2->depth;
307 if (diff < 0)
308 do
309 pos2 = pos2->base;
310 while (pos1->depth != pos2->depth);
311 else if (diff > 0)
312 do
313 pos1 = pos1->base;
314 while (pos1->depth != pos2->depth);
315 while (pos1 != pos2)
316 {
317 diff = (int) pos1->type - (int) pos2->type;
318 if (diff == 0)
319 diff = pos1->arg - pos2->arg;
320 pos1 = pos1->base;
321 pos2 = pos2->base;
322 }
323 return diff;
324}
325
59250a8d 326/* Return the most deeply-nested position that is common to both
327 POS1 and POS2. If the positions are from different instructions,
328 return the one with the lowest insn_id. */
263287f7 329
59250a8d 330static struct position *
331common_position (struct position *pos1, struct position *pos2)
6d69ff19 332{
59250a8d 333 if (pos1->insn_id != pos2->insn_id)
334 return pos1->insn_id < pos2->insn_id ? pos1 : pos2;
335 if (pos1->depth > pos2->depth)
336 std::swap (pos1, pos2);
337 while (pos1->depth != pos2->depth)
338 pos2 = pos2->base;
339 while (pos1 != pos2)
340 {
341 pos1 = pos1->base;
342 pos2 = pos2->base;
343 }
344 return pos1;
a698628e 345}
59250a8d 346\f
f82dbd66 347/* Search for and return operand N, stop when reaching node STOP. */
3a074b0f 348
349static rtx
f82dbd66 350find_operand (rtx pattern, int n, rtx stop)
3a074b0f 351{
352 const char *fmt;
353 RTX_CODE code;
354 int i, j, len;
355 rtx r;
356
f82dbd66 357 if (pattern == stop)
358 return stop;
359
3a074b0f 360 code = GET_CODE (pattern);
361 if ((code == MATCH_SCRATCH
3a074b0f 362 || code == MATCH_OPERAND
363 || code == MATCH_OPERATOR
364 || code == MATCH_PARALLEL)
365 && XINT (pattern, 0) == n)
366 return pattern;
367
368 fmt = GET_RTX_FORMAT (code);
369 len = GET_RTX_LENGTH (code);
370 for (i = 0; i < len; i++)
371 {
372 switch (fmt[i])
373 {
374 case 'e': case 'u':
f82dbd66 375 if ((r = find_operand (XEXP (pattern, i), n, stop)) != NULL_RTX)
3a074b0f 376 return r;
377 break;
378
386d0079 379 case 'V':
380 if (! XVEC (pattern, i))
381 break;
d632b59a 382 /* Fall through. */
386d0079 383
3a074b0f 384 case 'E':
385 for (j = 0; j < XVECLEN (pattern, i); j++)
f82dbd66 386 if ((r = find_operand (XVECEXP (pattern, i, j), n, stop))
387 != NULL_RTX)
3a074b0f 388 return r;
389 break;
390
15183fd2 391 case 'i': case 'r': case 'w': case '0': case 's':
3a074b0f 392 break;
393
394 default:
e0a4c0c2 395 gcc_unreachable ();
3a074b0f 396 }
397 }
398
399 return NULL;
400}
401
386d0079 402/* Search for and return operand M, such that it has a matching
403 constraint for operand N. */
404
405static rtx
1a97be37 406find_matching_operand (rtx pattern, int n)
386d0079 407{
408 const char *fmt;
409 RTX_CODE code;
410 int i, j, len;
411 rtx r;
412
413 code = GET_CODE (pattern);
414 if (code == MATCH_OPERAND
415 && (XSTR (pattern, 2)[0] == '0' + n
416 || (XSTR (pattern, 2)[0] == '%'
417 && XSTR (pattern, 2)[1] == '0' + n)))
418 return pattern;
419
420 fmt = GET_RTX_FORMAT (code);
421 len = GET_RTX_LENGTH (code);
422 for (i = 0; i < len; i++)
423 {
424 switch (fmt[i])
425 {
426 case 'e': case 'u':
427 if ((r = find_matching_operand (XEXP (pattern, i), n)))
428 return r;
429 break;
430
431 case 'V':
432 if (! XVEC (pattern, i))
433 break;
d632b59a 434 /* Fall through. */
386d0079 435
436 case 'E':
437 for (j = 0; j < XVECLEN (pattern, i); j++)
438 if ((r = find_matching_operand (XVECEXP (pattern, i, j), n)))
439 return r;
440 break;
441
15183fd2 442 case 'i': case 'r': case 'w': case '0': case 's':
386d0079 443 break;
444
445 default:
e0a4c0c2 446 gcc_unreachable ();
386d0079 447 }
448 }
449
450 return NULL;
451}
452
ffcd6b16 453/* In DEFINE_EXPAND, DEFINE_SPLIT, and DEFINE_PEEPHOLE2, we
454 don't use the MATCH_OPERAND constraint, only the predicate.
455 This is confusing to folks doing new ports, so help them
456 not make the mistake. */
457
458static bool
459constraints_supported_in_insn_p (rtx insn)
460{
461 return !(GET_CODE (insn) == DEFINE_EXPAND
462 || GET_CODE (insn) == DEFINE_SPLIT
463 || GET_CODE (insn) == DEFINE_PEEPHOLE2);
464}
386d0079 465
7a23db96 466/* Return the name of the predicate matched by MATCH_RTX. */
467
468static const char *
469predicate_name (rtx match_rtx)
470{
471 if (GET_CODE (match_rtx) == MATCH_SCRATCH)
472 return "scratch_operand";
473 else
474 return XSTR (match_rtx, 1);
475}
476
477/* Return true if OPERAND is a MATCH_OPERAND using a special predicate
478 function. */
479
480static bool
481special_predicate_operand_p (rtx operand)
482{
483 if (GET_CODE (operand) == MATCH_OPERAND)
484 {
485 const char *pred_name = predicate_name (operand);
486 if (pred_name[0] != 0)
487 {
488 const struct pred_data *pred;
489
490 pred = lookup_predicate (pred_name);
491 return pred != NULL && pred->special;
492 }
493 }
494
495 return false;
496}
497
c04601c1 498/* Check for various errors in PATTERN, which is part of INFO.
499 SET is nonnull for a destination, and is the complete set pattern.
500 SET_CODE is '=' for normal sets, and '+' within a context that
501 requires in-out constraints. */
0922b1b8 502
503static void
c04601c1 504validate_pattern (rtx pattern, md_rtx_info *info, rtx set, int set_code)
0922b1b8 505{
506 const char *fmt;
507 RTX_CODE code;
3a074b0f 508 size_t i, len;
509 int j;
0922b1b8 510
511 code = GET_CODE (pattern);
512 switch (code)
513 {
514 case MATCH_SCRATCH:
ffcd6b16 515 {
516 const char constraints0 = XSTR (pattern, 1)[0];
517
c04601c1 518 if (!constraints_supported_in_insn_p (info->def))
ffcd6b16 519 {
520 if (constraints0)
521 {
c04601c1 522 error_at (info->loc, "constraints not supported in %s",
523 GET_RTX_NAME (GET_CODE (info->def)));
ffcd6b16 524 }
525 return;
526 }
527
528 /* If a MATCH_SCRATCH is used in a context requiring an write-only
529 or read/write register, validate that. */
530 if (set_code == '='
0993e186 531 && constraints0
ffcd6b16 532 && constraints0 != '='
533 && constraints0 != '+')
534 {
c04601c1 535 error_at (info->loc, "operand %d missing output reload",
536 XINT (pattern, 0));
ffcd6b16 537 }
538 return;
539 }
f82dbd66 540 case MATCH_DUP:
541 case MATCH_OP_DUP:
542 case MATCH_PAR_DUP:
c04601c1 543 if (find_operand (info->def, XINT (pattern, 0), pattern) == pattern)
544 error_at (info->loc, "operand %i duplicated before defined",
545 XINT (pattern, 0));
f82dbd66 546 break;
0922b1b8 547 case MATCH_OPERAND:
3a074b0f 548 case MATCH_OPERATOR:
0922b1b8 549 {
550 const char *pred_name = XSTR (pattern, 1);
cbf464bd 551 const struct pred_data *pred;
3a074b0f 552 const char *c_test;
553
7c1b1064 554 c_test = get_c_test (info->def);
0922b1b8 555
556 if (pred_name[0] != 0)
557 {
cbf464bd 558 pred = lookup_predicate (pred_name);
559 if (!pred)
c04601c1 560 error_at (info->loc, "unknown predicate '%s'", pred_name);
3a074b0f 561 }
cbf464bd 562 else
563 pred = 0;
3a074b0f 564
ad9465d6 565 if (code == MATCH_OPERAND)
4747a74c 566 {
f1a7e25b 567 const char *constraints = XSTR (pattern, 2);
568 const char constraints0 = constraints[0];
ad9465d6 569
c04601c1 570 if (!constraints_supported_in_insn_p (info->def))
d55ea929 571 {
ad9465d6 572 if (constraints0)
ffcd6b16 573 {
c04601c1 574 error_at (info->loc, "constraints not supported in %s",
575 GET_RTX_NAME (GET_CODE (info->def)));
ffcd6b16 576 }
ad9465d6 577 }
1a97be37 578
ad9465d6 579 /* A MATCH_OPERAND that is a SET should have an output reload. */
580 else if (set && constraints0)
581 {
582 if (set_code == '+')
583 {
584 if (constraints0 == '+')
585 ;
586 /* If we've only got an output reload for this operand,
587 we'd better have a matching input operand. */
588 else if (constraints0 == '='
c04601c1 589 && find_matching_operand (info->def,
590 XINT (pattern, 0)))
ad9465d6 591 ;
592 else
c04601c1 593 error_at (info->loc, "operand %d missing in-out reload",
594 XINT (pattern, 0));
386d0079 595 }
b638f5c8 596 else if (constraints0 != '=' && constraints0 != '+')
c04601c1 597 error_at (info->loc, "operand %d missing output reload",
598 XINT (pattern, 0));
d55ea929 599 }
f1a7e25b 600
601 /* For matching constraint in MATCH_OPERAND, the digit must be a
602 smaller number than the number of the operand that uses it in the
603 constraint. */
604 while (1)
605 {
606 while (constraints[0]
607 && (constraints[0] == ' ' || constraints[0] == ','))
608 constraints++;
609 if (!constraints[0])
610 break;
611
612 if (constraints[0] >= '0' && constraints[0] <= '9')
613 {
614 int val;
615
616 sscanf (constraints, "%d", &val);
617 if (val >= XINT (pattern, 0))
c04601c1 618 error_at (info->loc, "constraint digit %d is not"
619 " smaller than operand %d",
620 val, XINT (pattern, 0));
f1a7e25b 621 }
622
623 while (constraints[0] && constraints[0] != ',')
624 constraints++;
625 }
4747a74c 626 }
627
3a074b0f 628 /* Allowing non-lvalues in destinations -- particularly CONST_INT --
629 while not likely to occur at runtime, results in less efficient
630 code from insn-recog.c. */
cbf464bd 631 if (set && pred && pred->allows_non_lvalue)
c04601c1 632 error_at (info->loc, "destination operand %d allows non-lvalue",
633 XINT (pattern, 0));
3a074b0f 634
cbf464bd 635 /* A modeless MATCH_OPERAND can be handy when we can check for
636 multiple modes in the c_test. In most other cases, it is a
637 mistake. Only DEFINE_INSN is eligible, since SPLIT and
638 PEEP2 can FAIL within the output pattern. Exclude special
639 predicates, which check the mode themselves. Also exclude
640 predicates that allow only constants. Exclude the SET_DEST
641 of a call instruction, as that is a common idiom. */
3a074b0f 642
643 if (GET_MODE (pattern) == VOIDmode
644 && code == MATCH_OPERAND
c04601c1 645 && GET_CODE (info->def) == DEFINE_INSN
cbf464bd 646 && pred
647 && !pred->special
648 && pred->allows_non_const
4747a74c 649 && strstr (c_test, "operands") == NULL
650 && ! (set
651 && GET_CODE (set) == SET
652 && GET_CODE (SET_SRC (set)) == CALL))
c04601c1 653 message_at (info->loc, "warning: operand %d missing mode?",
654 XINT (pattern, 0));
0922b1b8 655 return;
656 }
657
658 case SET:
3a074b0f 659 {
3754d046 660 machine_mode dmode, smode;
3a074b0f 661 rtx dest, src;
662
663 dest = SET_DEST (pattern);
664 src = SET_SRC (pattern);
665
ad9465d6 666 /* STRICT_LOW_PART is a wrapper. Its argument is the real
667 destination, and it's mode should match the source. */
668 if (GET_CODE (dest) == STRICT_LOW_PART)
669 dest = XEXP (dest, 0);
670
40e55fbb 671 /* Find the referent for a DUP. */
3a074b0f 672
673 if (GET_CODE (dest) == MATCH_DUP
674 || GET_CODE (dest) == MATCH_OP_DUP
675 || GET_CODE (dest) == MATCH_PAR_DUP)
c04601c1 676 dest = find_operand (info->def, XINT (dest, 0), NULL);
3a074b0f 677
678 if (GET_CODE (src) == MATCH_DUP
679 || GET_CODE (src) == MATCH_OP_DUP
680 || GET_CODE (src) == MATCH_PAR_DUP)
c04601c1 681 src = find_operand (info->def, XINT (src, 0), NULL);
3a074b0f 682
3a074b0f 683 dmode = GET_MODE (dest);
684 smode = GET_MODE (src);
0922b1b8 685
7a23db96 686 /* Mode checking is not performed for special predicates. */
687 if (special_predicate_operand_p (src)
688 || special_predicate_operand_p (dest))
3a074b0f 689 ;
690
691 /* The operands of a SET must have the same mode unless one
692 is VOIDmode. */
693 else if (dmode != VOIDmode && smode != VOIDmode && dmode != smode)
c04601c1 694 error_at (info->loc, "mode mismatch in set: %smode vs %smode",
695 GET_MODE_NAME (dmode), GET_MODE_NAME (smode));
3a074b0f 696
fcb53c1e 697 /* If only one of the operands is VOIDmode, and PC or CC0 is
3a074b0f 698 not involved, it's probably a mistake. */
699 else if (dmode != smode
700 && GET_CODE (dest) != PC
701 && GET_CODE (dest) != CC0
4747a74c 702 && GET_CODE (src) != PC
703 && GET_CODE (src) != CC0
971ba038 704 && !CONST_INT_P (src)
219f3246 705 && !CONST_WIDE_INT_P (src)
84e907aa 706 && GET_CODE (src) != CALL)
3a074b0f 707 {
708 const char *which;
709 which = (dmode == VOIDmode ? "destination" : "source");
c04601c1 710 message_at (info->loc, "warning: %s missing a mode?", which);
3a074b0f 711 }
712
713 if (dest != SET_DEST (pattern))
c04601c1 714 validate_pattern (dest, info, pattern, '=');
715 validate_pattern (SET_DEST (pattern), info, pattern, '=');
716 validate_pattern (SET_SRC (pattern), info, NULL_RTX, 0);
3a074b0f 717 return;
718 }
719
720 case CLOBBER:
c04601c1 721 validate_pattern (SET_DEST (pattern), info, pattern, '=');
d55ea929 722 return;
723
724 case ZERO_EXTRACT:
c04601c1 725 validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
726 validate_pattern (XEXP (pattern, 1), info, NULL_RTX, 0);
727 validate_pattern (XEXP (pattern, 2), info, NULL_RTX, 0);
d55ea929 728 return;
729
730 case STRICT_LOW_PART:
c04601c1 731 validate_pattern (XEXP (pattern, 0), info, set, set ? '+' : 0);
0922b1b8 732 return;
3a074b0f 733
0922b1b8 734 case LABEL_REF:
c7799456 735 if (GET_MODE (XEXP (pattern, 0)) != VOIDmode)
c04601c1 736 error_at (info->loc, "operand to label_ref %smode not VOIDmode",
c7799456 737 GET_MODE_NAME (GET_MODE (XEXP (pattern, 0))));
0922b1b8 738 break;
739
9b067f04 740 case VEC_SELECT:
741 if (GET_MODE (pattern) != VOIDmode)
742 {
582adad1 743 machine_mode mode = GET_MODE (pattern);
744 machine_mode imode = GET_MODE (XEXP (pattern, 0));
745 machine_mode emode
9b067f04 746 = VECTOR_MODE_P (mode) ? GET_MODE_INNER (mode) : mode;
747 if (GET_CODE (XEXP (pattern, 1)) == PARALLEL)
748 {
749 int expected = VECTOR_MODE_P (mode) ? GET_MODE_NUNITS (mode) : 1;
750 if (XVECLEN (XEXP (pattern, 1), 0) != expected)
751 error_at (info->loc,
752 "vec_select parallel with %d elements, expected %d",
753 XVECLEN (XEXP (pattern, 1), 0), expected);
ddd399ff 754 else if (VECTOR_MODE_P (imode))
755 {
756 unsigned int nelems = GET_MODE_NUNITS (imode);
757 int i;
758 for (i = 0; i < expected; ++i)
759 if (CONST_INT_P (XVECEXP (XEXP (pattern, 1), 0, i))
760 && (UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i))
761 >= nelems))
762 error_at (info->loc,
763 "out of bounds selector %u in vec_select, "
764 "expected at most %u",
765 (unsigned)
766 UINTVAL (XVECEXP (XEXP (pattern, 1), 0, i)),
767 nelems - 1);
768 }
9b067f04 769 }
770 if (imode != VOIDmode && !VECTOR_MODE_P (imode))
771 error_at (info->loc, "%smode of first vec_select operand is not a "
772 "vector mode", GET_MODE_NAME (imode));
773 else if (imode != VOIDmode && GET_MODE_INNER (imode) != emode)
774 error_at (info->loc, "element mode mismatch between vec_select "
775 "%smode and its operand %smode",
776 GET_MODE_NAME (emode),
777 GET_MODE_NAME (GET_MODE_INNER (imode)));
778 }
779 break;
780
0922b1b8 781 default:
782 break;
783 }
784
785 fmt = GET_RTX_FORMAT (code);
786 len = GET_RTX_LENGTH (code);
787 for (i = 0; i < len; i++)
788 {
789 switch (fmt[i])
790 {
791 case 'e': case 'u':
c04601c1 792 validate_pattern (XEXP (pattern, i), info, NULL_RTX, 0);
0922b1b8 793 break;
794
795 case 'E':
796 for (j = 0; j < XVECLEN (pattern, i); j++)
c04601c1 797 validate_pattern (XVECEXP (pattern, i, j), info, NULL_RTX, 0);
0922b1b8 798 break;
799
15183fd2 800 case 'i': case 'r': case 'w': case '0': case 's':
0922b1b8 801 break;
802
803 default:
e0a4c0c2 804 gcc_unreachable ();
0922b1b8 805 }
806 }
0922b1b8 807}
59250a8d 808\f
809/* Simple list structure for items of type T, for use when being part
810 of a list is an inherent property of T. T must have members equivalent
811 to "T *prev, *next;" and a function "void set_parent (list_head <T> *)"
812 to set the parent list. */
813template <typename T>
814struct list_head
263287f7 815{
59250a8d 816 /* A range of linked items. */
817 struct range
818 {
819 range (T *);
820 range (T *, T *);
263287f7 821
59250a8d 822 T *start, *end;
823 void set_parent (list_head *);
824 };
263287f7 825
59250a8d 826 list_head ();
827 range release ();
828 void push_back (range);
829 range remove (range);
830 void replace (range, range);
831 T *singleton () const;
263287f7 832
59250a8d 833 T *first, *last;
834};
263287f7 835
59250a8d 836/* Create a range [START_IN, START_IN]. */
393d701f 837
59250a8d 838template <typename T>
839list_head <T>::range::range (T *start_in) : start (start_in), end (start_in) {}
82575fa7 840
59250a8d 841/* Create a range [START_IN, END_IN], linked by next and prev fields. */
6d69ff19 842
59250a8d 843template <typename T>
844list_head <T>::range::range (T *start_in, T *end_in)
845 : start (start_in), end (end_in) {}
6d69ff19 846
59250a8d 847template <typename T>
848void
849list_head <T>::range::set_parent (list_head <T> *owner)
850{
851 for (T *item = start; item != end; item = item->next)
852 item->set_parent (owner);
853 end->set_parent (owner);
854}
35b0bfe2 855
59250a8d 856template <typename T>
857list_head <T>::list_head () : first (0), last (0) {}
6d69ff19 858
59250a8d 859/* Add R to the end of the list. */
6d69ff19 860
59250a8d 861template <typename T>
862void
863list_head <T>::push_back (range r)
864{
865 if (last)
866 last->next = r.start;
867 else
868 first = r.start;
869 r.start->prev = last;
870 last = r.end;
871 r.set_parent (this);
872}
cbf464bd 873
59250a8d 874/* Remove R from the list. R remains valid and can be inserted into
875 other lists. */
6d69ff19 876
59250a8d 877template <typename T>
878typename list_head <T>::range
879list_head <T>::remove (range r)
880{
881 if (r.start->prev)
882 r.start->prev->next = r.end->next;
883 else
884 first = r.end->next;
885 if (r.end->next)
886 r.end->next->prev = r.start->prev;
887 else
888 last = r.start->prev;
889 r.start->prev = 0;
890 r.end->next = 0;
891 r.set_parent (0);
892 return r;
893}
a698628e 894
59250a8d 895/* Replace OLDR with NEWR. OLDR remains valid and can be inserted into
896 other lists. */
940b9cea 897
59250a8d 898template <typename T>
899void
900list_head <T>::replace (range oldr, range newr)
901{
902 newr.start->prev = oldr.start->prev;
903 newr.end->next = oldr.end->next;
a698628e 904
59250a8d 905 oldr.start->prev = 0;
906 oldr.end->next = 0;
907 oldr.set_parent (0);
a698628e 908
59250a8d 909 if (newr.start->prev)
910 newr.start->prev->next = newr.start;
911 else
912 first = newr.start;
913 if (newr.end->next)
914 newr.end->next->prev = newr.end;
915 else
916 last = newr.end;
917 newr.set_parent (this);
918}
263287f7 919
59250a8d 920/* Empty the list and return the previous contents as a range that can
921 be inserted into other lists. */
6d69ff19 922
59250a8d 923template <typename T>
924typename list_head <T>::range
925list_head <T>::release ()
926{
927 range r (first, last);
928 first = 0;
929 last = 0;
930 r.set_parent (0);
931 return r;
932}
6d69ff19 933
59250a8d 934/* If the list contains a single item, return that item, otherwise return
935 null. */
6d69ff19 936
59250a8d 937template <typename T>
938T *
939list_head <T>::singleton () const
940{
941 return first == last ? first : 0;
942}
943\f
944struct state;
263287f7 945
59250a8d 946/* Describes a possible successful return from a routine. */
947struct acceptance_type
948{
949 /* The type of routine we're returning from. */
950 routine_type type : 16;
6d69ff19 951
59250a8d 952 /* True if this structure only really represents a partial match,
953 and if we must call a subroutine of type TYPE to complete the match.
954 In this case we'll call the subroutine and, if it succeeds, return
955 whatever the subroutine returned.
263287f7 956
59250a8d 957 False if this structure presents a full match. */
958 unsigned int partial_p : 1;
263287f7 959
59250a8d 960 union
961 {
962 /* If PARTIAL_P, this is the number of the subroutine to call. */
963 int subroutine_id;
6d69ff19 964
59250a8d 965 /* Valid if !PARTIAL_P. */
966 struct
263287f7 967 {
59250a8d 968 /* The identifier of the matching pattern. For SUBPATTERNs this
969 value belongs to an ad-hoc routine-specific enum. For the
970 others it's the number of an .md file pattern. */
971 int code;
972 union
973 {
974 /* For RECOG, the number of clobbers that must be added to the
975 pattern in order for it to match CODE. */
976 int num_clobbers;
977
978 /* For PEEPHOLE2, the number of additional instructions that were
979 included in the optimization. */
980 int match_len;
981 } u;
982 } full;
983 } u;
984};
fb16c776 985
59250a8d 986bool
987operator == (const acceptance_type &a, const acceptance_type &b)
988{
989 if (a.partial_p != b.partial_p)
990 return false;
991 if (a.partial_p)
992 return a.u.subroutine_id == b.u.subroutine_id;
993 else
994 return a.u.full.code == b.u.full.code;
995}
3164740a 996
59250a8d 997bool
998operator != (const acceptance_type &a, const acceptance_type &b)
999{
1000 return !operator == (a, b);
1001}
6d69ff19 1002
59250a8d 1003/* Represents a parameter to a pattern routine. */
1004struct parameter
1005{
1006 /* The C type of parameter. */
1007 enum type_enum {
1008 /* Represents an invalid parameter. */
1009 UNSET,
6d69ff19 1010
59250a8d 1011 /* A machine_mode parameter. */
1012 MODE,
6d69ff19 1013
59250a8d 1014 /* An rtx_code parameter. */
1015 CODE,
6d69ff19 1016
59250a8d 1017 /* An int parameter. */
1018 INT,
2494d261 1019
15183fd2 1020 /* An unsigned int parameter. */
1021 UINT,
1022
59250a8d 1023 /* A HOST_WIDE_INT parameter. */
1024 WIDE_INT
1025 };
6d69ff19 1026
59250a8d 1027 parameter ();
1028 parameter (type_enum, bool, uint64_t);
6d69ff19 1029
59250a8d 1030 /* The type of the parameter. */
1031 type_enum type;
6d69ff19 1032
59250a8d 1033 /* True if the value passed is variable, false if it is constant. */
1034 bool is_param;
6d69ff19 1035
59250a8d 1036 /* If IS_PARAM, this is the number of the variable passed, for an "i%d"
1037 format string. If !IS_PARAM, this is the constant value passed. */
1038 uint64_t value;
1039};
6d69ff19 1040
59250a8d 1041parameter::parameter ()
1042 : type (UNSET), is_param (false), value (0) {}
6d69ff19 1043
59250a8d 1044parameter::parameter (type_enum type_in, bool is_param_in, uint64_t value_in)
1045 : type (type_in), is_param (is_param_in), value (value_in) {}
6d69ff19 1046
59250a8d 1047bool
1048operator == (const parameter &param1, const parameter &param2)
6d69ff19 1049{
59250a8d 1050 return (param1.type == param2.type
1051 && param1.is_param == param2.is_param
1052 && param1.value == param2.value);
1053}
6d69ff19 1054
59250a8d 1055bool
1056operator != (const parameter &param1, const parameter &param2)
1057{
1058 return !operator == (param1, param2);
1059}
6d69ff19 1060
59250a8d 1061/* Represents a routine that matches a partial rtx pattern, returning
1062 an ad-hoc enum value on success and -1 on failure. The routine can
1063 be used by any subroutine type. The match can be parameterized by
1064 things like mode, code and UNSPEC number. */
1065struct pattern_routine
1066{
1067 /* The state that implements the pattern. */
1068 state *s;
6d69ff19 1069
59250a8d 1070 /* The deepest root position from which S can access all the rtxes it needs.
1071 This is NULL if the pattern doesn't need an rtx input, usually because
1072 all matching is done on operands[] instead. */
1073 position *pos;
6d69ff19 1074
59250a8d 1075 /* A unique identifier for the routine. */
1076 unsigned int pattern_id;
6d69ff19 1077
59250a8d 1078 /* True if the routine takes pnum_clobbers as argument. */
1079 bool pnum_clobbers_p;
6d69ff19 1080
59250a8d 1081 /* True if the routine takes the enclosing instruction as argument. */
1082 bool insn_p;
6d69ff19 1083
59250a8d 1084 /* The types of the other parameters to the routine, if any. */
1085 auto_vec <parameter::type_enum, MAX_PATTERN_PARAMS> param_types;
1086};
6d69ff19 1087
59250a8d 1088/* All defined patterns. */
1089static vec <pattern_routine *> patterns;
35b0bfe2 1090
59250a8d 1091/* Represents one use of a pattern routine. */
1092struct pattern_use
1093{
1094 /* The pattern routine to use. */
1095 pattern_routine *routine;
6d69ff19 1096
59250a8d 1097 /* The values to pass as parameters. This vector has the same length
1098 as ROUTINE->PARAM_TYPES. */
1099 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
1100};
6d69ff19 1101
59250a8d 1102/* Represents a test performed by a decision. */
abef0e58 1103struct rtx_test
6d69ff19 1104{
abef0e58 1105 rtx_test ();
6d69ff19 1106
59250a8d 1107 /* The types of test that can be performed. Most of them take as input
1108 an rtx X. Some also take as input a transition label LABEL; the others
1109 are booleans for which the transition label is always "true".
6d69ff19 1110
59250a8d 1111 The order of the enum isn't important. */
1112 enum kind_enum {
1113 /* Check GET_CODE (X) == LABEL. */
1114 CODE,
6d69ff19 1115
59250a8d 1116 /* Check GET_MODE (X) == LABEL. */
1117 MODE,
6d69ff19 1118
15183fd2 1119 /* Check REGNO (X) == LABEL. */
1120 REGNO_FIELD,
1121
59250a8d 1122 /* Check XINT (X, u.opno) == LABEL. */
1123 INT_FIELD,
263287f7 1124
59250a8d 1125 /* Check XWINT (X, u.opno) == LABEL. */
1126 WIDE_INT_FIELD,
263287f7 1127
59250a8d 1128 /* Check XVECLEN (X, 0) == LABEL. */
1129 VECLEN,
15d18ea0 1130
59250a8d 1131 /* Check peep2_current_count >= u.min_len. */
1132 PEEP2_COUNT,
15d18ea0 1133
59250a8d 1134 /* Check XVECLEN (X, 0) >= u.min_len. */
1135 VECLEN_GE,
15d18ea0 1136
59250a8d 1137 /* Check whether X is a cached const_int with value u.integer. */
1138 SAVED_CONST_INT,
15d18ea0 1139
59250a8d 1140 /* Check u.predicate.data (X, u.predicate.mode). */
1141 PREDICATE,
15d18ea0 1142
59250a8d 1143 /* Check rtx_equal_p (X, operands[u.opno]). */
1144 DUPLICATE,
15d18ea0 1145
59250a8d 1146 /* Check whether X matches pattern u.pattern. */
1147 PATTERN,
15d18ea0 1148
59250a8d 1149 /* Check whether pnum_clobbers is nonnull (RECOG only). */
1150 HAVE_NUM_CLOBBERS,
15d18ea0 1151
59250a8d 1152 /* Check whether general C test u.string holds. In general the condition
1153 needs access to "insn" and the full operand list. */
1154 C_TEST,
a698628e 1155
59250a8d 1156 /* Execute operands[u.opno] = X. (Always succeeds.) */
1157 SET_OP,
6d69ff19 1158
59250a8d 1159 /* Accept u.acceptance. Always succeeds for SUBPATTERN, RECOG and SPLIT.
1160 May fail for PEEPHOLE2 if the define_peephole2 C code executes FAIL. */
1161 ACCEPT
1162 };
6d69ff19 1163
59250a8d 1164 /* The position of rtx X in the above description, relative to the
1165 incoming instruction "insn". The position is null if the test
1166 doesn't take an X as input. */
1167 position *pos;
a698628e 1168
59250a8d 1169 /* Which element of operands[] already contains POS, or -1 if no element
1170 is known to hold POS. */
1171 int pos_operand;
a698628e 1172
59250a8d 1173 /* The type of test and its parameters, as described above. */
1174 kind_enum kind;
1175 union
1176 {
1177 int opno;
1178 int min_len;
1179 struct
263287f7 1180 {
59250a8d 1181 bool is_param;
1182 int value;
1183 } integer;
1184 struct
1185 {
1186 const struct pred_data *data;
1187 /* True if the mode is taken from a machine_mode parameter
1188 to the routine rather than a constant machine_mode. If true,
1189 MODE is the number of the parameter (for an "i%d" format string),
1190 otherwise it is the mode itself. */
1191 bool mode_is_param;
1192 unsigned int mode;
1193 } predicate;
1194 pattern_use *pattern;
1195 const char *string;
1196 acceptance_type acceptance;
1197 } u;
a698628e 1198
abef0e58 1199 static rtx_test code (position *);
1200 static rtx_test mode (position *);
15183fd2 1201 static rtx_test regno_field (position *);
abef0e58 1202 static rtx_test int_field (position *, int);
1203 static rtx_test wide_int_field (position *, int);
1204 static rtx_test veclen (position *);
1205 static rtx_test peep2_count (int);
1206 static rtx_test veclen_ge (position *, int);
1207 static rtx_test predicate (position *, const pred_data *, machine_mode);
1208 static rtx_test duplicate (position *, int);
1209 static rtx_test pattern (position *, pattern_use *);
1210 static rtx_test have_num_clobbers ();
1211 static rtx_test c_test (const char *);
1212 static rtx_test set_op (position *, int);
1213 static rtx_test accept (const acceptance_type &);
59250a8d 1214
1215 bool terminal_p () const;
1216 bool single_outcome_p () const;
1217
1218private:
abef0e58 1219 rtx_test (position *, kind_enum);
59250a8d 1220};
a698628e 1221
abef0e58 1222rtx_test::rtx_test () {}
a698628e 1223
abef0e58 1224rtx_test::rtx_test (position *pos_in, kind_enum kind_in)
59250a8d 1225 : pos (pos_in), pos_operand (-1), kind (kind_in) {}
a698628e 1226
abef0e58 1227rtx_test
1228rtx_test::code (position *pos)
59250a8d 1229{
abef0e58 1230 return rtx_test (pos, rtx_test::CODE);
59250a8d 1231}
a698628e 1232
abef0e58 1233rtx_test
1234rtx_test::mode (position *pos)
59250a8d 1235{
abef0e58 1236 return rtx_test (pos, rtx_test::MODE);
59250a8d 1237}
6d69ff19 1238
15183fd2 1239rtx_test
1240rtx_test::regno_field (position *pos)
1241{
1242 rtx_test res (pos, rtx_test::REGNO_FIELD);
1243 return res;
1244}
1245
abef0e58 1246rtx_test
1247rtx_test::int_field (position *pos, int opno)
59250a8d 1248{
abef0e58 1249 rtx_test res (pos, rtx_test::INT_FIELD);
59250a8d 1250 res.u.opno = opno;
1251 return res;
1252}
6d69ff19 1253
abef0e58 1254rtx_test
1255rtx_test::wide_int_field (position *pos, int opno)
59250a8d 1256{
abef0e58 1257 rtx_test res (pos, rtx_test::WIDE_INT_FIELD);
59250a8d 1258 res.u.opno = opno;
1259 return res;
6d69ff19 1260}
263287f7 1261
abef0e58 1262rtx_test
1263rtx_test::veclen (position *pos)
59250a8d 1264{
abef0e58 1265 return rtx_test (pos, rtx_test::VECLEN);
59250a8d 1266}
263287f7 1267
abef0e58 1268rtx_test
1269rtx_test::peep2_count (int min_len)
6d69ff19 1270{
abef0e58 1271 rtx_test res (0, rtx_test::PEEP2_COUNT);
59250a8d 1272 res.u.min_len = min_len;
1273 return res;
1274}
a698628e 1275
abef0e58 1276rtx_test
1277rtx_test::veclen_ge (position *pos, int min_len)
59250a8d 1278{
abef0e58 1279 rtx_test res (pos, rtx_test::VECLEN_GE);
59250a8d 1280 res.u.min_len = min_len;
1281 return res;
1282}
a698628e 1283
abef0e58 1284rtx_test
1285rtx_test::predicate (position *pos, const struct pred_data *data,
1286 machine_mode mode)
59250a8d 1287{
abef0e58 1288 rtx_test res (pos, rtx_test::PREDICATE);
59250a8d 1289 res.u.predicate.data = data;
1290 res.u.predicate.mode_is_param = false;
1291 res.u.predicate.mode = mode;
1292 return res;
1293}
4747a74c 1294
abef0e58 1295rtx_test
1296rtx_test::duplicate (position *pos, int opno)
59250a8d 1297{
abef0e58 1298 rtx_test res (pos, rtx_test::DUPLICATE);
59250a8d 1299 res.u.opno = opno;
1300 return res;
1301}
4747a74c 1302
abef0e58 1303rtx_test
1304rtx_test::pattern (position *pos, pattern_use *pattern)
59250a8d 1305{
abef0e58 1306 rtx_test res (pos, rtx_test::PATTERN);
59250a8d 1307 res.u.pattern = pattern;
1308 return res;
a698628e 1309}
a698628e 1310
abef0e58 1311rtx_test
1312rtx_test::have_num_clobbers ()
59250a8d 1313{
abef0e58 1314 return rtx_test (0, rtx_test::HAVE_NUM_CLOBBERS);
59250a8d 1315}
6d69ff19 1316
abef0e58 1317rtx_test
1318rtx_test::c_test (const char *string)
263287f7 1319{
abef0e58 1320 rtx_test res (0, rtx_test::C_TEST);
59250a8d 1321 res.u.string = string;
1322 return res;
1323}
6d69ff19 1324
abef0e58 1325rtx_test
1326rtx_test::set_op (position *pos, int opno)
59250a8d 1327{
abef0e58 1328 rtx_test res (pos, rtx_test::SET_OP);
59250a8d 1329 res.u.opno = opno;
1330 return res;
1331}
a698628e 1332
abef0e58 1333rtx_test
1334rtx_test::accept (const acceptance_type &acceptance)
59250a8d 1335{
abef0e58 1336 rtx_test res (0, rtx_test::ACCEPT);
59250a8d 1337 res.u.acceptance = acceptance;
1338 return res;
1339}
a698628e 1340
59250a8d 1341/* Return true if the test represents an unconditionally successful match. */
a698628e 1342
59250a8d 1343bool
abef0e58 1344rtx_test::terminal_p () const
59250a8d 1345{
abef0e58 1346 return kind == rtx_test::ACCEPT && u.acceptance.type != PEEPHOLE2;
a698628e 1347}
a698628e 1348
59250a8d 1349/* Return true if the test is a boolean that is always true. */
6d69ff19 1350
59250a8d 1351bool
abef0e58 1352rtx_test::single_outcome_p () const
a698628e 1353{
abef0e58 1354 return terminal_p () || kind == rtx_test::SET_OP;
59250a8d 1355}
a698628e 1356
59250a8d 1357bool
abef0e58 1358operator == (const rtx_test &a, const rtx_test &b)
59250a8d 1359{
1360 if (a.pos != b.pos || a.kind != b.kind)
1361 return false;
1362 switch (a.kind)
6d69ff19 1363 {
abef0e58 1364 case rtx_test::CODE:
1365 case rtx_test::MODE:
15183fd2 1366 case rtx_test::REGNO_FIELD:
abef0e58 1367 case rtx_test::VECLEN:
1368 case rtx_test::HAVE_NUM_CLOBBERS:
59250a8d 1369 return true;
1370
abef0e58 1371 case rtx_test::PEEP2_COUNT:
1372 case rtx_test::VECLEN_GE:
59250a8d 1373 return a.u.min_len == b.u.min_len;
1374
abef0e58 1375 case rtx_test::INT_FIELD:
1376 case rtx_test::WIDE_INT_FIELD:
1377 case rtx_test::DUPLICATE:
1378 case rtx_test::SET_OP:
59250a8d 1379 return a.u.opno == b.u.opno;
1380
abef0e58 1381 case rtx_test::SAVED_CONST_INT:
59250a8d 1382 return (a.u.integer.is_param == b.u.integer.is_param
1383 && a.u.integer.value == b.u.integer.value);
1384
abef0e58 1385 case rtx_test::PREDICATE:
59250a8d 1386 return (a.u.predicate.data == b.u.predicate.data
1387 && a.u.predicate.mode_is_param == b.u.predicate.mode_is_param
1388 && a.u.predicate.mode == b.u.predicate.mode);
1389
abef0e58 1390 case rtx_test::PATTERN:
59250a8d 1391 return (a.u.pattern->routine == b.u.pattern->routine
1392 && a.u.pattern->params == b.u.pattern->params);
1393
abef0e58 1394 case rtx_test::C_TEST:
59250a8d 1395 return strcmp (a.u.string, b.u.string) == 0;
1396
abef0e58 1397 case rtx_test::ACCEPT:
59250a8d 1398 return a.u.acceptance == b.u.acceptance;
6d69ff19 1399 }
59250a8d 1400 gcc_unreachable ();
1401}
263287f7 1402
59250a8d 1403bool
abef0e58 1404operator != (const rtx_test &a, const rtx_test &b)
59250a8d 1405{
1406 return !operator == (a, b);
1407}
a698628e 1408
59250a8d 1409/* A simple set of transition labels. Most transitions have a singleton
1410 label, so try to make that case as efficient as possible. */
1411struct int_set : public auto_vec <uint64_t, 1>
1412{
1413 typedef uint64_t *iterator;
a698628e 1414
59250a8d 1415 int_set ();
1416 int_set (uint64_t);
1417 int_set (const int_set &);
a698628e 1418
59250a8d 1419 int_set &operator = (const int_set &);
a698628e 1420
59250a8d 1421 iterator begin ();
1422 iterator end ();
1423};
a698628e 1424
6d443cda 1425int_set::int_set () : auto_vec<uint64_t, 1> () {}
fcb53c1e 1426
6d443cda 1427int_set::int_set (uint64_t label) :
1428 auto_vec<uint64_t, 1> ()
59250a8d 1429{
1430 safe_push (label);
1431}
a698628e 1432
6d443cda 1433int_set::int_set (const int_set &other) :
1434 auto_vec<uint64_t, 1> ()
59250a8d 1435{
1436 safe_splice (other);
1437}
a698628e 1438
59250a8d 1439int_set &
1440int_set::operator = (const int_set &other)
1441{
1442 truncate (0);
1443 safe_splice (other);
1444 return *this;
1445}
ec4c9f0c 1446
59250a8d 1447int_set::iterator
1448int_set::begin ()
1449{
1450 return address ();
1451}
6d69ff19 1452
59250a8d 1453int_set::iterator
1454int_set::end ()
1455{
1456 return address () + length ();
6d69ff19 1457}
6d69ff19 1458
59250a8d 1459bool
1460operator == (const int_set &a, const int_set &b)
6d69ff19 1461{
59250a8d 1462 if (a.length () != b.length ())
1463 return false;
1464 for (unsigned int i = 0; i < a.length (); ++i)
1465 if (a[i] != b[i])
1466 return false;
1467 return true;
1468}
a698628e 1469
59250a8d 1470bool
1471operator != (const int_set &a, const int_set &b)
1472{
1473 return !operator == (a, b);
1474}
a698628e 1475
59250a8d 1476struct decision;
a698628e 1477
59250a8d 1478/* Represents a transition between states, dependent on the result of
1479 a test T. */
1480struct transition
1481{
1482 transition (const int_set &, state *, bool);
263287f7 1483
59250a8d 1484 void set_parent (list_head <transition> *);
263287f7 1485
59250a8d 1486 /* Links to other transitions for T. Always null for boolean tests. */
1487 transition *prev, *next;
fcb53c1e 1488
59250a8d 1489 /* The transition should be taken when T has one of these values.
abef0e58 1490 E.g. for rtx_test::CODE this is a set of codes, while for booleans like
1491 rtx_test::PREDICATE it is always a singleton "true". The labels are
59250a8d 1492 sorted in ascending order. */
1493 int_set labels;
6d69ff19 1494
59250a8d 1495 /* The source decision. */
1496 decision *from;
6d69ff19 1497
59250a8d 1498 /* The target state. */
1499 state *to;
263287f7 1500
59250a8d 1501 /* True if TO would function correctly even if TEST wasn't performed.
1502 E.g. it isn't necessary to check whether GET_MODE (x1) is SImode
1503 before calling register_operand (x1, SImode), since register_operand
1504 performs its own mode check. However, checking GET_MODE can be a cheap
1505 way of disambiguating SImode and DImode register operands. */
1506 bool optional;
263287f7 1507
59250a8d 1508 /* True if LABELS contains parameter numbers rather than constants.
abef0e58 1509 E.g. if this is true for a rtx_test::CODE, the label is the number
59250a8d 1510 of an rtx_code parameter rather than an rtx_code itself.
1511 LABELS is always a singleton when this variable is true. */
1512 bool is_param;
1513};
263287f7 1514
59250a8d 1515/* Represents a test and the action that should be taken on the result.
1516 If a transition exists for the test outcome, the machine switches
1517 to the transition's target state. If no suitable transition exists,
1518 the machine either falls through to the next decision or, if there are no
1519 more decisions to try, fails the match. */
1520struct decision : list_head <transition>
1521{
abef0e58 1522 decision (const rtx_test &);
6d69ff19 1523
59250a8d 1524 void set_parent (list_head <decision> *s);
1525 bool if_statement_p (uint64_t * = 0) const;
6d69ff19 1526
59250a8d 1527 /* The state to which this decision belongs. */
1528 state *s;
6d69ff19 1529
59250a8d 1530 /* Links to other decisions in the same state. */
1531 decision *prev, *next;
6d69ff19 1532
59250a8d 1533 /* The test to perform. */
abef0e58 1534 rtx_test test;
59250a8d 1535};
6d69ff19 1536
59250a8d 1537/* Represents one machine state. For each state the machine tries a list
1538 of decisions, in order, and acts on the first match. It fails without
1539 further backtracking if no decisions match. */
1540struct state : list_head <decision>
1541{
1542 void set_parent (list_head <state> *) {}
1543};
6d69ff19 1544
59250a8d 1545transition::transition (const int_set &labels_in, state *to_in,
1546 bool optional_in)
1547 : prev (0), next (0), labels (labels_in), from (0), to (to_in),
1548 optional (optional_in), is_param (false) {}
1549
1550/* Set the source decision of the transition. */
263287f7 1551
59250a8d 1552void
1553transition::set_parent (list_head <transition> *from_in)
1554{
1555 from = static_cast <decision *> (from_in);
263287f7 1556}
6d69ff19 1557
abef0e58 1558decision::decision (const rtx_test &test_in)
59250a8d 1559 : prev (0), next (0), test (test_in) {}
263287f7 1560
59250a8d 1561/* Set the state to which this decision belongs. */
1562
1563void
1564decision::set_parent (list_head <decision> *s_in)
263287f7 1565{
59250a8d 1566 s = static_cast <state *> (s_in);
1567}
a698628e 1568
59250a8d 1569/* Return true if the decision has a single transition with a single label.
1570 If so, return the label in *LABEL if nonnull. */
a698628e 1571
59250a8d 1572inline bool
1573decision::if_statement_p (uint64_t *label) const
1574{
1575 if (singleton () && first->labels.length () == 1)
263287f7 1576 {
59250a8d 1577 if (label)
1578 *label = first->labels[0];
1579 return true;
263287f7 1580 }
59250a8d 1581 return false;
263287f7 1582}
6d69ff19 1583
59250a8d 1584/* Add to FROM a decision that performs TEST and has a single transition
1585 TRANS. */
263287f7 1586
1587static void
abef0e58 1588add_decision (state *from, const rtx_test &test, transition *trans)
263287f7 1589{
59250a8d 1590 decision *d = new decision (test);
1591 from->push_back (d);
1592 d->push_back (trans);
6d69ff19 1593}
a698628e 1594
59250a8d 1595/* Add a transition from FROM to a new, empty state that is taken
1596 when TEST == LABELS. OPTIONAL says whether the new transition
1597 should be optional. Return the new state. */
a698628e 1598
59250a8d 1599static state *
abef0e58 1600add_decision (state *from, const rtx_test &test, int_set labels, bool optional)
6d69ff19 1601{
59250a8d 1602 state *to = new state;
1603 add_decision (from, test, new transition (labels, to, optional));
1604 return to;
1605}
2494d261 1606
59250a8d 1607/* Insert a decision before decisions R to make them dependent on
1608 TEST == LABELS. OPTIONAL says whether the new transition should be
1609 optional. */
2494d261 1610
59250a8d 1611static decision *
abef0e58 1612insert_decision_before (state::range r, const rtx_test &test,
59250a8d 1613 const int_set &labels, bool optional)
1614{
1615 decision *newd = new decision (test);
1616 state *news = new state;
1617 newd->push_back (new transition (labels, news, optional));
1618 r.start->s->replace (r, newd);
1619 news->push_back (r);
1620 return newd;
6d69ff19 1621}
59250a8d 1622
1623/* Remove any optional transitions from S that turned out not to be useful. */
6d69ff19 1624
1625static void
59250a8d 1626collapse_optional_decisions (state *s)
6d69ff19 1627{
59250a8d 1628 decision *d = s->first;
1629 while (d)
1630 {
1631 decision *next = d->next;
1632 for (transition *trans = d->first; trans; trans = trans->next)
1633 collapse_optional_decisions (trans->to);
1634 /* A decision with a single optional transition doesn't help
1635 partition the potential matches and so is unlikely to be
1636 worthwhile. In particular, if the decision that performs the
1637 test is the last in the state, the best it could do is reject
1638 an invalid pattern slightly earlier. If instead the decision
1639 is not the last in the state, the condition it tests could hold
1640 even for the later decisions in the state. The best it can do
1641 is save work in some cases where only the later decisions can
1642 succeed.
1643
1644 In both cases the optional transition would add extra work to
1645 successful matches when the tested condition holds. */
1646 if (transition *trans = d->singleton ())
1647 if (trans->optional)
1648 s->replace (d, trans->to->release ());
1649 d = next;
1650 }
6d69ff19 1651}
263287f7 1652
59250a8d 1653/* Try to squash several separate tests into simpler ones. */
263287f7 1654
6d69ff19 1655static void
59250a8d 1656simplify_tests (state *s)
6d69ff19 1657{
59250a8d 1658 for (decision *d = s->first; d; d = d->next)
6d69ff19 1659 {
59250a8d 1660 uint64_t label;
1661 /* Convert checks for GET_CODE (x) == CONST_INT and XWINT (x, 0) == N
1662 into checks for const_int_rtx[N'], if N is suitably small. */
abef0e58 1663 if (d->test.kind == rtx_test::CODE
59250a8d 1664 && d->if_statement_p (&label)
1665 && label == CONST_INT)
1666 if (decision *second = d->first->to->singleton ())
fe512d6d 1667 if (d->test.pos == second->test.pos
abef0e58 1668 && second->test.kind == rtx_test::WIDE_INT_FIELD
59250a8d 1669 && second->test.u.opno == 0
1670 && second->if_statement_p (&label)
1671 && IN_RANGE (int64_t (label),
1672 -MAX_SAVED_CONST_INT, MAX_SAVED_CONST_INT))
1673 {
abef0e58 1674 d->test.kind = rtx_test::SAVED_CONST_INT;
59250a8d 1675 d->test.u.integer.is_param = false;
1676 d->test.u.integer.value = label;
1677 d->replace (d->first, second->release ());
1678 d->first->labels[0] = true;
1679 }
1680 /* If we have a CODE test followed by a PREDICATE test, rely on
1681 the predicate to test the code.
1682
1683 This case exists for match_operators. We initially treat the
1684 CODE test for a match_operator as non-optional so that we can
1685 safely move down to its operands. It may turn out that all
1686 paths that reach that code test require the same predicate
1687 to be true. cse_tests will then put the predicate test in
1688 series with the code test. */
abef0e58 1689 if (d->test.kind == rtx_test::CODE)
59250a8d 1690 if (transition *trans = d->singleton ())
1691 {
1692 state *s = trans->to;
1693 while (decision *d2 = s->singleton ())
1694 {
1695 if (d->test.pos != d2->test.pos)
1696 break;
1697 transition *trans2 = d2->singleton ();
1698 if (!trans2)
1699 break;
abef0e58 1700 if (d2->test.kind == rtx_test::PREDICATE)
59250a8d 1701 {
1702 d->test = d2->test;
1703 trans->labels = int_set (true);
1704 s->replace (d2, trans2->to->release ());
1705 break;
1706 }
1707 s = trans2->to;
1708 }
1709 }
1710 for (transition *trans = d->first; trans; trans = trans->next)
1711 simplify_tests (trans->to);
6d69ff19 1712 }
1713}
a698628e 1714
59250a8d 1715/* Return true if all successful returns passing through D require the
1716 condition tested by COMMON to be true.
ad85fb32 1717
59250a8d 1718 When returning true, add all transitions like COMMON in D to WHERE.
1719 WHERE may contain a partial result on failure. */
1720
1721static bool
1722common_test_p (decision *d, transition *common, vec <transition *> *where)
ad85fb32 1723{
abef0e58 1724 if (d->test.kind == rtx_test::ACCEPT)
59250a8d 1725 /* We found a successful return that didn't require COMMON. */
1726 return false;
1727 if (d->test == common->from->test)
1728 {
1729 transition *trans = d->singleton ();
1730 if (!trans
1731 || trans->optional != common->optional
1732 || trans->labels != common->labels)
1733 return false;
1734 where->safe_push (trans);
1735 return true;
1736 }
1737 for (transition *trans = d->first; trans; trans = trans->next)
1738 for (decision *subd = trans->to->first; subd; subd = subd->next)
1739 if (!common_test_p (subd, common, where))
1740 return false;
1741 return true;
ad85fb32 1742}
1743
59250a8d 1744/* Indicates that we have tested GET_CODE (X) for a particular rtx X. */
1745const unsigned char TESTED_CODE = 1;
a698628e 1746
59250a8d 1747/* Indicates that we have tested XVECLEN (X, 0) for a particular rtx X. */
1748const unsigned char TESTED_VECLEN = 2;
263287f7 1749
59250a8d 1750/* Represents a set of conditions that are known to hold. */
1751struct known_conditions
1752{
1753 /* A mask of TESTED_ values for each position, indexed by the position's
1754 id field. */
1755 auto_vec <unsigned char> position_tests;
a698628e 1756
59250a8d 1757 /* Index N says whether operands[N] has been set. */
1758 auto_vec <bool> set_operands;
a698628e 1759
59250a8d 1760 /* A guranteed lower bound on the value of peep2_current_count. */
1761 int peep2_count;
1762};
263287f7 1763
59250a8d 1764/* Return true if TEST can safely be performed at D, where
1765 the conditions in KC hold. TEST is known to occur along the
1766 first path from D (i.e. always following the first transition
1767 of the first decision). Any intervening tests can be used as
1768 negative proof that hoisting isn't safe, but only KC can be used
1769 as positive proof. */
263287f7 1770
59250a8d 1771static bool
abef0e58 1772safe_to_hoist_p (decision *d, const rtx_test &test, known_conditions *kc)
59250a8d 1773{
1774 switch (test.kind)
1775 {
abef0e58 1776 case rtx_test::C_TEST:
59250a8d 1777 /* In general, C tests require everything else to have been
1778 verified and all operands to have been set up. */
1779 return false;
1780
abef0e58 1781 case rtx_test::ACCEPT:
59250a8d 1782 /* Don't accept something before all conditions have been tested. */
1783 return false;
1784
abef0e58 1785 case rtx_test::PREDICATE:
59250a8d 1786 /* Don't move a predicate over a test for VECLEN_GE, since the
1787 predicate used in a match_parallel can legitimately expect the
1788 length to be checked first. */
1789 for (decision *subd = d;
1790 subd->test != test;
1791 subd = subd->first->to->first)
1792 if (subd->test.pos == test.pos
abef0e58 1793 && subd->test.kind == rtx_test::VECLEN_GE)
59250a8d 1794 return false;
1795 goto any_rtx;
1796
abef0e58 1797 case rtx_test::DUPLICATE:
59250a8d 1798 /* Don't test for a match_dup until the associated operand has
1799 been set. */
1800 if (!kc->set_operands[test.u.opno])
1801 return false;
1802 goto any_rtx;
1803
abef0e58 1804 case rtx_test::CODE:
1805 case rtx_test::MODE:
1806 case rtx_test::SAVED_CONST_INT:
1807 case rtx_test::SET_OP:
59250a8d 1808 any_rtx:
1809 /* Check whether it is safe to access the rtx under test. */
1810 switch (test.pos->type)
263287f7 1811 {
59250a8d 1812 case POS_PEEP2_INSN:
1813 return test.pos->arg < kc->peep2_count;
0ced2f66 1814
59250a8d 1815 case POS_XEXP:
1816 return kc->position_tests[test.pos->base->id] & TESTED_CODE;
6d69ff19 1817
59250a8d 1818 case POS_XVECEXP0:
1819 return kc->position_tests[test.pos->base->id] & TESTED_VECLEN;
6d69ff19 1820 }
59250a8d 1821 gcc_unreachable ();
a698628e 1822
15183fd2 1823 case rtx_test::REGNO_FIELD:
abef0e58 1824 case rtx_test::INT_FIELD:
1825 case rtx_test::WIDE_INT_FIELD:
1826 case rtx_test::VECLEN:
1827 case rtx_test::VECLEN_GE:
59250a8d 1828 /* These tests access a specific part of an rtx, so are only safe
1829 once we know what the rtx is. */
1830 return kc->position_tests[test.pos->id] & TESTED_CODE;
a698628e 1831
abef0e58 1832 case rtx_test::PEEP2_COUNT:
1833 case rtx_test::HAVE_NUM_CLOBBERS:
59250a8d 1834 /* These tests can be performed anywhere. */
1835 return true;
263287f7 1836
abef0e58 1837 case rtx_test::PATTERN:
59250a8d 1838 gcc_unreachable ();
1839 }
1840 gcc_unreachable ();
1841}
a698628e 1842
59250a8d 1843/* Look for a transition that is taken by all successful returns from a range
1844 of decisions starting at OUTER and that would be better performed by
1845 OUTER's state instead. On success, store all instances of that transition
1846 in WHERE and return the last decision in the range. The range could
1847 just be OUTER, or it could include later decisions as well.
1848
1849 WITH_POSITION_P is true if only tests with position POS should be tried,
1850 false if any test should be tried. WORTHWHILE_SINGLE_P is true if the
1851 result is useful even when the range contains just a single decision
1852 with a single transition. KC are the conditions that are known to
1853 hold at OUTER. */
1854
1855static decision *
1856find_common_test (decision *outer, bool with_position_p,
1857 position *pos, bool worthwhile_single_p,
1858 known_conditions *kc, vec <transition *> *where)
1859{
1860 /* After this, WORTHWHILE_SINGLE_P indicates whether a range that contains
1861 just a single decision is useful, regardless of the number of
1862 transitions it has. */
1863 if (!outer->singleton ())
1864 worthwhile_single_p = true;
1865 /* Quick exit if we don't have enough decisions to form a worthwhile
1866 range. */
1867 if (!worthwhile_single_p && !outer->next)
1868 return 0;
1869 /* Follow the first chain down, as one example of a path that needs
1870 to contain the common test. */
1871 for (decision *d = outer; d; d = d->first->to->first)
1872 {
1873 transition *trans = d->singleton ();
1874 if (trans
1875 && (!with_position_p || d->test.pos == pos)
1876 && safe_to_hoist_p (outer, d->test, kc))
263287f7 1877 {
59250a8d 1878 if (common_test_p (outer, trans, where))
63e9de92 1879 {
59250a8d 1880 if (!outer->next)
1881 /* We checked above whether the move is worthwhile. */
1882 return outer;
1883 /* See how many decisions in OUTER's chain could reuse
1884 the same test. */
1885 decision *outer_end = outer;
1886 do
1887 {
1888 unsigned int length = where->length ();
1889 if (!common_test_p (outer_end->next, trans, where))
1890 {
1891 where->truncate (length);
1892 break;
1893 }
1894 outer_end = outer_end->next;
1895 }
1896 while (outer_end->next);
1897 /* It is worth moving TRANS if it can be shared by more than
1898 one decision. */
1899 if (outer_end != outer || worthwhile_single_p)
1900 return outer_end;
63e9de92 1901 }
59250a8d 1902 where->truncate (0);
263287f7 1903 }
6d69ff19 1904 }
59250a8d 1905 return 0;
1906}
1907
1908/* Try to promote common subtests in S to a single, shared decision.
1909 Also try to bunch tests for the same position together. POS is the
1910 position of the rtx tested before reaching S. KC are the conditions
1911 that are known to hold on entry to S. */
ff5decbb 1912
59250a8d 1913static void
1914cse_tests (position *pos, state *s, known_conditions *kc)
1915{
1916 for (decision *d = s->first; d; d = d->next)
1917 {
1918 auto_vec <transition *, 16> where;
1919 if (d->test.pos)
7abd96cd 1920 {
59250a8d 1921 /* Try to find conditions that don't depend on a particular rtx,
1922 such as pnum_clobbers != NULL or peep2_current_count >= X.
1923 It's usually better to check these conditions as soon as
1924 possible, so the change is worthwhile even if there is
1925 only one copy of the test. */
1926 decision *endd = find_common_test (d, true, 0, true, kc, &where);
1927 if (!endd && d->test.pos != pos)
1928 /* Try to find other conditions related to position POS
1929 before moving to the new position. Again, this is
1930 worthwhile even if there is only one copy of the test,
1931 since it means that fewer position variables are live
1932 at a given time. */
1933 endd = find_common_test (d, true, pos, true, kc, &where);
1934 if (!endd)
1935 /* Try to find any condition that is used more than once. */
1936 endd = find_common_test (d, false, 0, false, kc, &where);
1937 if (endd)
1938 {
1939 transition *common = where[0];
1940 /* Replace [D, ENDD] with a test like COMMON. We'll recurse
1941 on the common test and see the original D again next time. */
1942 d = insert_decision_before (state::range (d, endd),
1943 common->from->test,
1944 common->labels,
1945 common->optional);
1946 /* Remove the old tests. */
1947 while (!where.is_empty ())
1948 {
1949 transition *trans = where.pop ();
1950 trans->from->s->replace (trans->from, trans->to->release ());
1951 }
1952 }
7abd96cd 1953 }
59250a8d 1954
1955 /* Make sure that safe_to_hoist_p isn't being overly conservative.
1956 It should realize that D's test is safe in the current
1957 environment. */
abef0e58 1958 gcc_assert (d->test.kind == rtx_test::C_TEST
1959 || d->test.kind == rtx_test::ACCEPT
59250a8d 1960 || safe_to_hoist_p (d, d->test, kc));
1961
1962 /* D won't be changed any further by the current optimization.
1963 Recurse with the state temporarily updated to include D. */
1964 int prev = 0;
1965 switch (d->test.kind)
6d69ff19 1966 {
abef0e58 1967 case rtx_test::CODE:
59250a8d 1968 prev = kc->position_tests[d->test.pos->id];
1969 kc->position_tests[d->test.pos->id] |= TESTED_CODE;
6d69ff19 1970 break;
59250a8d 1971
abef0e58 1972 case rtx_test::VECLEN:
1973 case rtx_test::VECLEN_GE:
59250a8d 1974 prev = kc->position_tests[d->test.pos->id];
1975 kc->position_tests[d->test.pos->id] |= TESTED_VECLEN;
6d69ff19 1976 break;
59250a8d 1977
abef0e58 1978 case rtx_test::SET_OP:
59250a8d 1979 prev = kc->set_operands[d->test.u.opno];
1980 gcc_assert (!prev);
1981 kc->set_operands[d->test.u.opno] = true;
6d69ff19 1982 break;
59250a8d 1983
abef0e58 1984 case rtx_test::PEEP2_COUNT:
59250a8d 1985 prev = kc->peep2_count;
1986 kc->peep2_count = MAX (prev, d->test.u.min_len);
6d69ff19 1987 break;
59250a8d 1988
6d69ff19 1989 default:
59250a8d 1990 break;
6d69ff19 1991 }
59250a8d 1992 for (transition *trans = d->first; trans; trans = trans->next)
1993 cse_tests (d->test.pos ? d->test.pos : pos, trans->to, kc);
1994 switch (d->test.kind)
a698628e 1995 {
abef0e58 1996 case rtx_test::CODE:
1997 case rtx_test::VECLEN:
1998 case rtx_test::VECLEN_GE:
59250a8d 1999 kc->position_tests[d->test.pos->id] = prev;
2000 break;
a4245b4f 2001
abef0e58 2002 case rtx_test::SET_OP:
59250a8d 2003 kc->set_operands[d->test.u.opno] = prev;
2004 break;
7903ba8d 2005
abef0e58 2006 case rtx_test::PEEP2_COUNT:
59250a8d 2007 kc->peep2_count = prev;
2008 break;
263287f7 2009
59250a8d 2010 default:
2011 break;
2012 }
6d69ff19 2013 }
59250a8d 2014}
2015
2016/* Return the type of value that can be used to parameterize test KIND,
2017 or parameter::UNSET if none. */
2018
2019parameter::type_enum
abef0e58 2020transition_parameter_type (rtx_test::kind_enum kind)
59250a8d 2021{
2022 switch (kind)
6d69ff19 2023 {
abef0e58 2024 case rtx_test::CODE:
59250a8d 2025 return parameter::CODE;
2026
abef0e58 2027 case rtx_test::MODE:
59250a8d 2028 return parameter::MODE;
2029
15183fd2 2030 case rtx_test::REGNO_FIELD:
2031 return parameter::UINT;
2032
abef0e58 2033 case rtx_test::INT_FIELD:
2034 case rtx_test::VECLEN:
2035 case rtx_test::PATTERN:
59250a8d 2036 return parameter::INT;
2037
abef0e58 2038 case rtx_test::WIDE_INT_FIELD:
59250a8d 2039 return parameter::WIDE_INT;
2040
abef0e58 2041 case rtx_test::PEEP2_COUNT:
2042 case rtx_test::VECLEN_GE:
2043 case rtx_test::SAVED_CONST_INT:
2044 case rtx_test::PREDICATE:
2045 case rtx_test::DUPLICATE:
2046 case rtx_test::HAVE_NUM_CLOBBERS:
2047 case rtx_test::C_TEST:
2048 case rtx_test::SET_OP:
2049 case rtx_test::ACCEPT:
59250a8d 2050 return parameter::UNSET;
6d69ff19 2051 }
59250a8d 2052 gcc_unreachable ();
6d69ff19 2053}
263287f7 2054
59250a8d 2055/* Initialize the pos_operand fields of each state reachable from S.
2056 If OPERAND_POS[ID] >= 0, the position with id ID is stored in
2057 operands[OPERAND_POS[ID]] on entry to S. */
a698628e 2058
6d69ff19 2059static void
59250a8d 2060find_operand_positions (state *s, vec <int> &operand_pos)
6d69ff19 2061{
59250a8d 2062 for (decision *d = s->first; d; d = d->next)
6d69ff19 2063 {
59250a8d 2064 int this_operand = (d->test.pos ? operand_pos[d->test.pos->id] : -1);
2065 if (this_operand >= 0)
2066 d->test.pos_operand = this_operand;
abef0e58 2067 if (d->test.kind == rtx_test::SET_OP)
59250a8d 2068 operand_pos[d->test.pos->id] = d->test.u.opno;
2069 for (transition *trans = d->first; trans; trans = trans->next)
2070 find_operand_positions (trans->to, operand_pos);
abef0e58 2071 if (d->test.kind == rtx_test::SET_OP)
59250a8d 2072 operand_pos[d->test.pos->id] = this_operand;
2073 }
2074}
6d69ff19 2075
59250a8d 2076/* Statistics about a matching routine. */
2077struct stats
2078{
2079 stats ();
2080
2081 /* The total number of decisions in the routine, excluding trivial
2082 ones that never fail. */
2083 unsigned int num_decisions;
2084
2085 /* The number of non-trivial decisions on the longest path through
2086 the routine, and the return value that contributes most to that
2087 long path. */
2088 unsigned int longest_path;
2089 int longest_path_code;
2090
2091 /* The maximum number of times that a single call to the routine
2092 can backtrack, and the value returned at the end of that path.
2093 "Backtracking" here means failing one decision in state and
2094 going onto to the next. */
2095 unsigned int longest_backtrack;
2096 int longest_backtrack_code;
2097};
6d69ff19 2098
59250a8d 2099stats::stats ()
2100 : num_decisions (0), longest_path (0), longest_path_code (-1),
2101 longest_backtrack (0), longest_backtrack_code (-1) {}
6d69ff19 2102
59250a8d 2103/* Return statistics about S. */
6d69ff19 2104
59250a8d 2105static stats
2106get_stats (state *s)
2107{
2108 stats for_s;
2109 unsigned int longest_path = 0;
2110 for (decision *d = s->first; d; d = d->next)
2111 {
2112 /* Work out the statistics for D. */
2113 stats for_d;
2114 for (transition *trans = d->first; trans; trans = trans->next)
2115 {
2116 stats for_trans = get_stats (trans->to);
2117 for_d.num_decisions += for_trans.num_decisions;
2118 /* Each transition is mutually-exclusive, so just pick the
2119 longest of the individual paths. */
2120 if (for_d.longest_path <= for_trans.longest_path)
2121 {
2122 for_d.longest_path = for_trans.longest_path;
2123 for_d.longest_path_code = for_trans.longest_path_code;
2124 }
2125 /* Likewise for backtracking. */
2126 if (for_d.longest_backtrack <= for_trans.longest_backtrack)
2127 {
2128 for_d.longest_backtrack = for_trans.longest_backtrack;
2129 for_d.longest_backtrack_code = for_trans.longest_backtrack_code;
2130 }
2131 }
6d69ff19 2132
59250a8d 2133 /* Account for D's test in its statistics. */
2134 if (!d->test.single_outcome_p ())
2135 {
2136 for_d.num_decisions += 1;
2137 for_d.longest_path += 1;
2138 }
abef0e58 2139 if (d->test.kind == rtx_test::ACCEPT)
59250a8d 2140 {
2141 for_d.longest_path_code = d->test.u.acceptance.u.full.code;
2142 for_d.longest_backtrack_code = d->test.u.acceptance.u.full.code;
2143 }
7e5202bc 2144
59250a8d 2145 /* Keep a running count of the number of backtracks. */
2146 if (d->prev)
2147 for_s.longest_backtrack += 1;
35b0bfe2 2148
59250a8d 2149 /* Accumulate D's statistics into S's. */
2150 for_s.num_decisions += for_d.num_decisions;
2151 for_s.longest_path += for_d.longest_path;
2152 for_s.longest_backtrack += for_d.longest_backtrack;
6d69ff19 2153
59250a8d 2154 /* Use the code from the decision with the longest individual path,
2155 since that's more likely to be useful if trying to make the
2156 path shorter. In the event of a tie, pick the later decision,
2157 since that's closer to the end of the path. */
2158 if (longest_path <= for_d.longest_path)
2159 {
2160 longest_path = for_d.longest_path;
2161 for_s.longest_path_code = for_d.longest_path_code;
2162 }
6d69ff19 2163
59250a8d 2164 /* Later decisions in a state are necessarily in a longer backtrack
2165 than earlier decisions. */
2166 for_s.longest_backtrack_code = for_d.longest_backtrack_code;
2167 }
2168 return for_s;
2169}
6d69ff19 2170
59250a8d 2171/* Optimize ROOT. Use TYPE to describe ROOT in status messages. */
263287f7 2172
59250a8d 2173static void
2174optimize_subroutine_group (const char *type, state *root)
2175{
2176 /* Remove optional transitions that turned out not to be worthwhile. */
2177 if (collapse_optional_decisions_p)
2178 collapse_optional_decisions (root);
2179
2180 /* Try to remove duplicated tests and to rearrange tests into a more
2181 logical order. */
2182 if (cse_tests_p)
2183 {
2184 known_conditions kc;
2185 kc.position_tests.safe_grow_cleared (num_positions);
2186 kc.set_operands.safe_grow_cleared (num_operands);
2187 kc.peep2_count = 1;
2188 cse_tests (&root_pos, root, &kc);
2189 }
2190
2191 /* Try to simplify two or more tests into one. */
2192 if (simplify_tests_p)
2193 simplify_tests (root);
2194
2195 /* Try to use operands[] instead of xN variables. */
2196 if (use_operand_variables_p)
2197 {
2198 auto_vec <int> operand_pos (num_positions);
2199 for (unsigned int i = 0; i < num_positions; ++i)
2200 operand_pos.quick_push (-1);
2201 find_operand_positions (root, operand_pos);
2202 }
2203
2204 /* Print a summary of the new state. */
2205 stats st = get_stats (root);
2206 fprintf (stderr, "Statistics for %s:\n", type);
2207 fprintf (stderr, " Number of decisions: %6d\n", st.num_decisions);
2208 fprintf (stderr, " longest path: %6d (code: %6d)\n",
2209 st.longest_path, st.longest_path_code);
2210 fprintf (stderr, " longest backtrack: %6d (code: %6d)\n",
2211 st.longest_backtrack, st.longest_backtrack_code);
2212}
2213
2214struct merge_pattern_info;
2215
2216/* Represents a transition from one pattern to another. */
2217struct merge_pattern_transition
2218{
2219 merge_pattern_transition (merge_pattern_info *);
2220
2221 /* The target pattern. */
2222 merge_pattern_info *to;
2223
2224 /* The parameters that the source pattern passes to the target pattern.
2225 "parameter (TYPE, true, I)" represents parameter I of the source
2226 pattern. */
2227 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2228};
2229
2230merge_pattern_transition::merge_pattern_transition (merge_pattern_info *to_in)
2231 : to (to_in)
2232{
2233}
2234
2235/* Represents a pattern that can might match several states. The pattern
2236 may replace parts of the test with a parameter value. It may also
2237 replace transition labels with parameters. */
2238struct merge_pattern_info
2239{
2240 merge_pattern_info (unsigned int);
2241
2242 /* If PARAM_TEST_P, the state's singleton test should be generalized
2243 to use the runtime value of PARAMS[PARAM_TEST]. */
2244 unsigned int param_test : 8;
2245
2246 /* If PARAM_TRANSITION_P, the state's single transition label should
2247 be replaced by the runtime value of PARAMS[PARAM_TRANSITION]. */
2248 unsigned int param_transition : 8;
2249
2250 /* True if we have decided to generalize the root decision's test,
2251 as per PARAM_TEST. */
2252 unsigned int param_test_p : 1;
2253
2254 /* Likewise for the root decision's transition, as per PARAM_TRANSITION. */
2255 unsigned int param_transition_p : 1;
2256
2257 /* True if the contents of the structure are completely filled in. */
2258 unsigned int complete_p : 1;
2259
2260 /* The number of pseudo-statements in the pattern. Used to decide
2261 whether it's big enough to break out into a subroutine. */
2262 unsigned int num_statements;
2263
2264 /* The number of states that use this pattern. */
2265 unsigned int num_users;
2266
2267 /* The number of distinct success values that the pattern returns. */
2268 unsigned int num_results;
2269
2270 /* This array has one element for each runtime parameter to the pattern.
2271 PARAMS[I] gives the default value of parameter I, which is always
2272 constant.
2273
2274 These default parameters are used in cases where we match the
2275 pattern against some state S1, then add more parameters while
2276 matching against some state S2. S1 is then left passing fewer
2277 parameters than S2. The array gives us enough informatino to
2278 construct a full parameter list for S1 (see update_parameters).
2279
2280 If we decide to create a subroutine for this pattern,
2281 PARAMS[I].type determines the C type of parameter I. */
2282 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2283
2284 /* All states that match this pattern must have the same number of
2285 transitions. TRANSITIONS[I] describes the subpattern for transition
2286 number I; it is null if transition I represents a successful return
2287 from the pattern. */
2288 auto_vec <merge_pattern_transition *, 1> transitions;
2289
2290 /* The routine associated with the pattern, or null if we haven't generated
2291 one yet. */
2292 pattern_routine *routine;
2293};
2294
2295merge_pattern_info::merge_pattern_info (unsigned int num_transitions)
2296 : param_test (0),
2297 param_transition (0),
2298 param_test_p (false),
2299 param_transition_p (false),
2300 complete_p (false),
2301 num_statements (0),
2302 num_users (0),
2303 num_results (0),
2304 routine (0)
2305{
2306 transitions.safe_grow_cleared (num_transitions);
2307}
2308
2309/* Describes one way of matching a particular state to a particular
2310 pattern. */
2311struct merge_state_result
2312{
2313 merge_state_result (merge_pattern_info *, position *, merge_state_result *);
2314
2315 /* A pattern that matches the state. */
2316 merge_pattern_info *pattern;
2317
2318 /* If we decide to use this match and create a subroutine for PATTERN,
2319 the state should pass the rtx at position ROOT to the pattern's
2320 rtx parameter. A null root means that the pattern doesn't need
2321 an rtx parameter; all the rtxes it matches come from elsewhere. */
2322 position *root;
2323
2324 /* The parameters that should be passed to PATTERN for this state.
2325 If the array is shorter than PATTERN->params, the missing entries
2326 should be taken from the corresponding element of PATTERN->params. */
2327 auto_vec <parameter, MAX_PATTERN_PARAMS> params;
2328
2329 /* An earlier match for the same state, or null if none. Patterns
2330 matched by earlier entries are smaller than PATTERN. */
2331 merge_state_result *prev;
2332};
2333
2334merge_state_result::merge_state_result (merge_pattern_info *pattern_in,
2335 position *root_in,
2336 merge_state_result *prev_in)
2337 : pattern (pattern_in), root (root_in), prev (prev_in)
2338{}
2339
2340/* Information about a state, used while trying to match it against
2341 a pattern. */
2342struct merge_state_info
2343{
2344 merge_state_info (state *);
2345
2346 /* The state itself. */
2347 state *s;
2348
2349 /* Index I gives information about the target of transition I. */
2350 merge_state_info *to_states;
2351
2352 /* The number of transitions in S. */
2353 unsigned int num_transitions;
2354
2355 /* True if the state has been deleted in favor of a call to a
2356 pattern routine. */
2357 bool merged_p;
2358
2359 /* The previous state that might be a merge candidate for S, or null
2360 if no previous states could be merged with S. */
2361 merge_state_info *prev_same_test;
2362
2363 /* A list of pattern matches for this state. */
2364 merge_state_result *res;
2365};
2366
2367merge_state_info::merge_state_info (state *s_in)
2368 : s (s_in),
2369 to_states (0),
2370 num_transitions (0),
2371 merged_p (false),
2372 prev_same_test (0),
2373 res (0) {}
2374
2375/* True if PAT would be useful as a subroutine. */
2376
2377static bool
2378useful_pattern_p (merge_pattern_info *pat)
2379{
2380 return pat->num_statements >= MIN_COMBINE_COST;
2381}
2382
2383/* PAT2 is a subpattern of PAT1. Return true if PAT2 should be inlined
2384 into PAT1's C routine. */
2385
2386static bool
2387same_pattern_p (merge_pattern_info *pat1, merge_pattern_info *pat2)
2388{
2389 return pat1->num_users == pat2->num_users || !useful_pattern_p (pat2);
2390}
2391
2392/* PAT was previously matched against SINFO based on tentative matches
2393 for the target states of SINFO's state. Return true if the match
2394 still holds; that is, if the target states of SINFO's state still
2395 match the corresponding transitions of PAT. */
2396
2397static bool
2398valid_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2399{
2400 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2401 if (merge_pattern_transition *ptrans = pat->transitions[j])
2402 {
2403 merge_state_result *to_res = sinfo->to_states[j].res;
2404 if (!to_res || to_res->pattern != ptrans->to)
2405 return false;
2406 }
2407 return true;
2408}
2409
2410/* Remove any matches that are no longer valid from the head of SINFO's
2411 list of matches. */
2412
2413static void
2414prune_invalid_results (merge_state_info *sinfo)
2415{
2416 while (sinfo->res && !valid_result_p (sinfo->res->pattern, sinfo))
2417 {
2418 sinfo->res = sinfo->res->prev;
2419 gcc_assert (sinfo->res);
a698628e 2420 }
6d69ff19 2421}
263287f7 2422
59250a8d 2423/* Return true if PAT represents the biggest posssible match for SINFO;
2424 that is, if the next action of SINFO's state on return from PAT will
2425 be something that cannot be merged with any other state. */
2426
2427static bool
2428complete_result_p (merge_pattern_info *pat, merge_state_info *sinfo)
2429{
2430 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
2431 if (sinfo->to_states[j].res && !pat->transitions[j])
2432 return false;
2433 return true;
2434}
2435
2436/* Update TO for any parameters that have been added to FROM since TO
2437 was last set. The extra parameters in FROM will be constants or
2438 instructions to duplicate earlier parameters. */
263287f7 2439
6d69ff19 2440static void
59250a8d 2441update_parameters (vec <parameter> &to, const vec <parameter> &from)
6d69ff19 2442{
59250a8d 2443 for (unsigned int i = to.length (); i < from.length (); ++i)
2444 to.quick_push (from[i]);
2445}
6d69ff19 2446
59250a8d 2447/* Return true if A and B can be tested by a single test. If the test
2448 can be parameterised, store the parameter value for A in *PARAMA and
2449 the parameter value for B in *PARAMB, otherwise leave PARAMA and
2450 PARAMB alone. */
2451
2452static bool
abef0e58 2453compatible_tests_p (const rtx_test &a, const rtx_test &b,
59250a8d 2454 parameter *parama, parameter *paramb)
2455{
2456 if (a.kind != b.kind)
2457 return false;
2458 switch (a.kind)
a698628e 2459 {
abef0e58 2460 case rtx_test::PREDICATE:
59250a8d 2461 if (a.u.predicate.data != b.u.predicate.data)
2462 return false;
2463 *parama = parameter (parameter::MODE, false, a.u.predicate.mode);
2464 *paramb = parameter (parameter::MODE, false, b.u.predicate.mode);
2465 return true;
2466
abef0e58 2467 case rtx_test::SAVED_CONST_INT:
59250a8d 2468 *parama = parameter (parameter::INT, false, a.u.integer.value);
2469 *paramb = parameter (parameter::INT, false, b.u.integer.value);
2470 return true;
2471
2472 default:
2473 return a == b;
a698628e 2474 }
59250a8d 2475}
2476
2477/* PARAMS is an array of the parameters that a state is going to pass
2478 to a pattern routine. It is still incomplete; index I has a kind of
2479 parameter::UNSET if we don't yet know what the state will pass
2480 as parameter I. Try to make parameter ID equal VALUE, returning
2481 true on success. */
263287f7 2482
59250a8d 2483static bool
2484set_parameter (vec <parameter> &params, unsigned int id,
2485 const parameter &value)
2486{
2487 if (params[id].type == parameter::UNSET)
a698628e 2488 {
59250a8d 2489 if (force_unique_params_p)
2490 for (unsigned int i = 0; i < params.length (); ++i)
2491 if (params[i] == value)
2492 return false;
2493 params[id] = value;
2494 return true;
2495 }
2496 return params[id] == value;
2497}
2498
2499/* PARAMS2 is the "params" array for a pattern and PARAMS1 is the
2500 set of parameters that a particular state is going to pass to
2501 that pattern.
2502
2503 Try to extend PARAMS1 and PARAMS2 so that there is a parameter
2504 that is equal to PARAM1 for the state and has a default value of
2505 PARAM2. Parameters beginning at START were added as part of the
2506 same match and so may be reused. */
2507
2508static bool
2509add_parameter (vec <parameter> &params1, vec <parameter> &params2,
2510 const parameter &param1, const parameter &param2,
2511 unsigned int start, unsigned int *res)
2512{
2513 gcc_assert (params1.length () == params2.length ());
2514 gcc_assert (!param1.is_param && !param2.is_param);
2515
2516 for (unsigned int i = start; i < params2.length (); ++i)
2517 if (params1[i] == param1 && params2[i] == param2)
2518 {
2519 *res = i;
2520 return true;
2521 }
2522
2523 if (force_unique_params_p)
2524 for (unsigned int i = 0; i < params2.length (); ++i)
2525 if (params1[i] == param1 || params2[i] == param2)
2526 return false;
2527
2528 if (params2.length () >= MAX_PATTERN_PARAMS)
2529 return false;
6d69ff19 2530
59250a8d 2531 *res = params2.length ();
2532 params1.quick_push (param1);
2533 params2.quick_push (param2);
2534 return true;
2535}
2536
2537/* If *ROOTA is nonnull, return true if the same sequence of steps are
2538 required to reach A from *ROOTA as to reach B from ROOTB. If *ROOTA
2539 is null, update it if necessary in order to make the condition hold. */
2540
2541static bool
2542merge_relative_positions (position **roota, position *a,
2543 position *rootb, position *b)
2544{
2545 if (!relative_patterns_p)
2546 {
2547 if (a != b)
2548 return false;
2549 if (!*roota)
6d69ff19 2550 {
59250a8d 2551 *roota = rootb;
2552 return true;
6d69ff19 2553 }
59250a8d 2554 return *roota == rootb;
2555 }
2556 /* If B does not belong to the same instruction as ROOTB, we don't
2557 start with ROOTB but instead start with a call to peep2_next_insn.
2558 In that case the sequences for B and A are identical iff B and A
2559 are themselves identical. */
2560 if (rootb->insn_id != b->insn_id)
2561 return a == b;
2562 while (rootb != b)
2563 {
2564 if (!a || b->type != a->type || b->arg != a->arg)
2565 return false;
2566 b = b->base;
2567 a = a->base;
263287f7 2568 }
59250a8d 2569 if (!*roota)
2570 *roota = a;
2571 return *roota == a;
2572}
263287f7 2573
59250a8d 2574/* A hasher of states that treats two states as "equal" if they might be
2575 merged (but trying to be more discriminating than "return true"). */
770ff93b 2576struct test_pattern_hasher : nofree_ptr_hash <merge_state_info>
59250a8d 2577{
59250a8d 2578 static inline hashval_t hash (const value_type &);
2579 static inline bool equal (const value_type &, const compare_type &);
2580};
263287f7 2581
59250a8d 2582hashval_t
2583test_pattern_hasher::hash (merge_state_info *const &sinfo)
2584{
2585 inchash::hash h;
2586 decision *d = sinfo->s->singleton ();
2587 h.add_int (d->test.pos_operand + 1);
2588 if (!relative_patterns_p)
2589 h.add_int (d->test.pos ? d->test.pos->id + 1 : 0);
2590 h.add_int (d->test.kind);
2591 h.add_int (sinfo->num_transitions);
2592 return h.end ();
2593}
6d69ff19 2594
59250a8d 2595bool
2596test_pattern_hasher::equal (merge_state_info *const &sinfo1,
2597 merge_state_info *const &sinfo2)
2598{
2599 decision *d1 = sinfo1->s->singleton ();
2600 decision *d2 = sinfo2->s->singleton ();
2601 gcc_assert (d1 && d2);
2602
2603 parameter new_param1, new_param2;
2604 return (d1->test.pos_operand == d2->test.pos_operand
2605 && (relative_patterns_p || d1->test.pos == d2->test.pos)
2606 && compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2)
2607 && sinfo1->num_transitions == sinfo2->num_transitions);
2608}
6d69ff19 2609
59250a8d 2610/* Try to make the state described by SINFO1 use the same pattern as the
2611 state described by SINFO2. Return true on success.
3e9f1237 2612
59250a8d 2613 SINFO1 and SINFO2 are known to have the same hash value. */
2614
2615static bool
2616merge_patterns (merge_state_info *sinfo1, merge_state_info *sinfo2)
2617{
2618 merge_state_result *res2 = sinfo2->res;
2619 merge_pattern_info *pat = res2->pattern;
2620
2621 /* Write to temporary arrays while matching, in case we have to abort
2622 half way through. */
2623 auto_vec <parameter, MAX_PATTERN_PARAMS> params1;
2624 auto_vec <parameter, MAX_PATTERN_PARAMS> params2;
2625 params1.quick_grow_cleared (pat->params.length ());
2626 params2.splice (pat->params);
2627 unsigned int start_param = params2.length ();
2628
2629 /* An array for recording changes to PAT->transitions[?].params.
2630 All changes involve replacing a constant parameter with some
2631 PAT->params[N], where N is the second element of the pending_param. */
2632 typedef std::pair <parameter *, unsigned int> pending_param;
2633 auto_vec <pending_param, 32> pending_params;
2634
2635 decision *d1 = sinfo1->s->singleton ();
2636 decision *d2 = sinfo2->s->singleton ();
2637 gcc_assert (d1 && d2);
2638
2639 /* If D2 tests a position, SINFO1's root relative to D1 is the same
2640 as SINFO2's root relative to D2. */
2641 position *root1 = 0;
2642 position *root2 = res2->root;
2643 if (d2->test.pos_operand < 0
2644 && d1->test.pos
2645 && !merge_relative_positions (&root1, d1->test.pos,
2646 root2, d2->test.pos))
2647 return false;
2648
2649 /* Check whether the patterns have the same shape. */
2650 unsigned int num_transitions = sinfo1->num_transitions;
2651 gcc_assert (num_transitions == sinfo2->num_transitions);
2652 for (unsigned int i = 0; i < num_transitions; ++i)
2653 if (merge_pattern_transition *ptrans = pat->transitions[i])
2654 {
2655 merge_state_result *to1_res = sinfo1->to_states[i].res;
2656 merge_state_result *to2_res = sinfo2->to_states[i].res;
2657 merge_pattern_info *to_pat = ptrans->to;
2658 gcc_assert (to2_res && to2_res->pattern == to_pat);
2659 if (!to1_res || to1_res->pattern != to_pat)
2660 return false;
2661 if (to2_res->root
2662 && !merge_relative_positions (&root1, to1_res->root,
2663 root2, to2_res->root))
2664 return false;
2665 /* Match the parameters that TO1_RES passes to TO_PAT with the
2666 parameters that PAT passes to TO_PAT. */
2667 update_parameters (to1_res->params, to_pat->params);
2668 for (unsigned int j = 0; j < to1_res->params.length (); ++j)
2669 {
2670 const parameter &param1 = to1_res->params[j];
2671 const parameter &param2 = ptrans->params[j];
2672 gcc_assert (!param1.is_param);
2673 if (param2.is_param)
2674 {
2675 if (!set_parameter (params1, param2.value, param1))
2676 return false;
2677 }
2678 else if (param1 != param2)
2679 {
2680 unsigned int id;
2681 if (!add_parameter (params1, params2,
2682 param1, param2, start_param, &id))
2683 return false;
2684 /* Record that PAT should now pass parameter ID to TO_PAT,
2685 instead of the current contents of *PARAM2. We only
2686 make the change if the rest of the match succeeds. */
2687 pending_params.safe_push
2688 (pending_param (&ptrans->params[j], id));
2689 }
3e9f1237 2690 }
59250a8d 2691 }
6d69ff19 2692
59250a8d 2693 unsigned int param_test = pat->param_test;
2694 unsigned int param_transition = pat->param_transition;
2695 bool param_test_p = pat->param_test_p;
2696 bool param_transition_p = pat->param_transition_p;
2697
2698 /* If the tests don't match exactly, try to parameterize them. */
2699 parameter new_param1, new_param2;
2700 if (!compatible_tests_p (d1->test, d2->test, &new_param1, &new_param2))
2701 gcc_unreachable ();
2702 if (new_param1.type != parameter::UNSET)
2703 {
2704 /* If the test has not already been parameterized, all existing
2705 matches use constant NEW_PARAM2. */
2706 if (param_test_p)
2707 {
2708 if (!set_parameter (params1, param_test, new_param1))
2709 return false;
2710 }
2711 else if (new_param1 != new_param2)
2712 {
2713 if (!add_parameter (params1, params2, new_param1, new_param2,
2714 start_param, &param_test))
2715 return false;
2716 param_test_p = true;
6d69ff19 2717 }
263287f7 2718 }
59250a8d 2719
2720 /* Match the transitions. */
2721 transition *trans1 = d1->first;
2722 transition *trans2 = d2->first;
2723 for (unsigned int i = 0; i < num_transitions; ++i)
6d69ff19 2724 {
59250a8d 2725 if (param_transition_p || trans1->labels != trans2->labels)
2726 {
2727 /* We can only generalize a single transition with a single
2728 label. */
2729 if (num_transitions != 1
2730 || trans1->labels.length () != 1
2731 || trans2->labels.length () != 1)
2732 return false;
2733
2734 /* Although we can match wide-int fields, in practice it leads
2735 to some odd results for const_vectors. We end up
2736 parameterizing the first N const_ints of the vector
2737 and then (once we reach the maximum number of parameters)
2738 we go on to match the other elements exactly. */
abef0e58 2739 if (d1->test.kind == rtx_test::WIDE_INT_FIELD)
59250a8d 2740 return false;
2741
2742 /* See whether the label has a generalizable type. */
2743 parameter::type_enum param_type
2744 = transition_parameter_type (d1->test.kind);
2745 if (param_type == parameter::UNSET)
2746 return false;
2747
2748 /* Match the labels using parameters. */
2749 new_param1 = parameter (param_type, false, trans1->labels[0]);
2750 if (param_transition_p)
2751 {
2752 if (!set_parameter (params1, param_transition, new_param1))
2753 return false;
2754 }
2755 else
2756 {
2757 new_param2 = parameter (param_type, false, trans2->labels[0]);
2758 if (!add_parameter (params1, params2, new_param1, new_param2,
2759 start_param, &param_transition))
2760 return false;
2761 param_transition_p = true;
2762 }
2763 }
2764 trans1 = trans1->next;
2765 trans2 = trans2->next;
6d69ff19 2766 }
263287f7 2767
59250a8d 2768 /* Set any unset parameters to their default values. This occurs if some
2769 other state needed something to be parameterized in order to match SINFO2,
2770 but SINFO1 on its own does not. */
2771 for (unsigned int i = 0; i < params1.length (); ++i)
2772 if (params1[i].type == parameter::UNSET)
2773 params1[i] = params2[i];
2774
2775 /* The match was successful. Commit all pending changes to PAT. */
2776 update_parameters (pat->params, params2);
2777 {
2778 pending_param *pp;
2779 unsigned int i;
2780 FOR_EACH_VEC_ELT (pending_params, i, pp)
2781 *pp->first = parameter (pp->first->type, true, pp->second);
2782 }
2783 pat->param_test = param_test;
2784 pat->param_transition = param_transition;
2785 pat->param_test_p = param_test_p;
2786 pat->param_transition_p = param_transition_p;
2787
2788 /* Record the match of SINFO1. */
2789 merge_state_result *new_res1 = new merge_state_result (pat, root1,
2790 sinfo1->res);
2791 new_res1->params.splice (params1);
2792 sinfo1->res = new_res1;
2793 return true;
263287f7 2794}
2795
59250a8d 2796/* The number of states that were removed by calling pattern routines. */
2797static unsigned int pattern_use_states;
6d69ff19 2798
59250a8d 2799/* The number of states used while defining pattern routines. */
2800static unsigned int pattern_def_states;
2801
2802/* Information used while constructing a use or definition of a pattern
2803 routine. */
2804struct create_pattern_info
2805{
2806 /* The routine itself. */
2807 pattern_routine *routine;
2808
2809 /* The first unclaimed return value for this particular use or definition.
2810 We walk the substates of uses and definitions in the same order
2811 so each return value always refers to the same position within
2812 the pattern. */
2813 unsigned int next_result;
2814};
2815
2816static void populate_pattern_routine (create_pattern_info *,
2817 merge_state_info *, state *,
2818 const vec <parameter> &);
2819
2820/* SINFO matches a pattern for which we've decided to create a C routine.
2821 Return a decision that performs a call to the pattern routine,
2822 but leave the caller to add the transitions to it. Initialize CPI
2823 for this purpose. Also create a definition for the pattern routine,
2824 if it doesn't already have one.
2825
2826 PARAMS are the parameters that SINFO passes to its pattern. */
2827
2828static decision *
2829init_pattern_use (create_pattern_info *cpi, merge_state_info *sinfo,
2830 const vec <parameter> &params)
263287f7 2831{
59250a8d 2832 state *s = sinfo->s;
2833 merge_state_result *res = sinfo->res;
2834 merge_pattern_info *pat = res->pattern;
2835 cpi->routine = pat->routine;
2836 if (!cpi->routine)
2837 {
2838 /* We haven't defined the pattern routine yet, so create
2839 a definition now. */
2840 pattern_routine *routine = new pattern_routine;
2841 pat->routine = routine;
2842 cpi->routine = routine;
2843 routine->s = new state;
2844 routine->insn_p = false;
2845 routine->pnum_clobbers_p = false;
2846
2847 /* Create an "idempotent" mapping of parameter I to parameter I.
2848 Also record the C type of each parameter to the routine. */
2849 auto_vec <parameter, MAX_PATTERN_PARAMS> def_params;
2850 for (unsigned int i = 0; i < pat->params.length (); ++i)
2851 {
2852 def_params.quick_push (parameter (pat->params[i].type, true, i));
2853 routine->param_types.quick_push (pat->params[i].type);
2854 }
2855
2856 /* Any of the states that match the pattern could be used to
2857 create the routine definition. We might as well use SINFO
2858 since it's already to hand. This means that all positions
2859 in the definition will be relative to RES->root. */
2860 routine->pos = res->root;
2861 cpi->next_result = 0;
2862 populate_pattern_routine (cpi, sinfo, routine->s, def_params);
2863 gcc_assert (cpi->next_result == pat->num_results);
2864
2865 /* Add the routine to the global list, after the subroutines
2866 that it calls. */
2867 routine->pattern_id = patterns.length ();
2868 patterns.safe_push (routine);
2869 }
2870
2871 /* Create a decision to call the routine, passing PARAMS to it. */
2872 pattern_use *use = new pattern_use;
2873 use->routine = pat->routine;
2874 use->params.splice (params);
abef0e58 2875 decision *d = new decision (rtx_test::pattern (res->root, use));
59250a8d 2876
2877 /* If the original decision could use an element of operands[] instead
2878 of an rtx variable, try to transfer it to the new decision. */
2879 if (s->first->test.pos && res->root == s->first->test.pos)
2880 d->test.pos_operand = s->first->test.pos_operand;
2881
2882 cpi->next_result = 0;
2883 return d;
2884}
2885
2886/* Make S return the next unclaimed pattern routine result for CPI. */
2887
2888static void
2889add_pattern_acceptance (create_pattern_info *cpi, state *s)
2890{
2891 acceptance_type acceptance;
2892 acceptance.type = SUBPATTERN;
2893 acceptance.partial_p = false;
2894 acceptance.u.full.code = cpi->next_result;
abef0e58 2895 add_decision (s, rtx_test::accept (acceptance), true, false);
59250a8d 2896 cpi->next_result += 1;
2897}
2898
2899/* Initialize new empty state NEWS so that it implements SINFO's pattern
2900 (here referred to as "P"). P may be the top level of a pattern routine
2901 or a subpattern that should be inlined into its parent pattern's routine
2902 (as per same_pattern_p). The choice of SINFO for a top-level pattern is
2903 arbitrary; it could be any of the states that use P. The choice for
2904 subpatterns follows the choice for the parent pattern.
2905
2906 PARAMS gives the value of each parameter to P in terms of the parameters
2907 to the top-level pattern. If P itself is the top level pattern, PARAMS[I]
2908 is always "parameter (TYPE, true, I)". */
263287f7 2909
59250a8d 2910static void
2911populate_pattern_routine (create_pattern_info *cpi, merge_state_info *sinfo,
2912 state *news, const vec <parameter> &params)
2913{
2914 pattern_def_states += 1;
2915
2916 decision *d = sinfo->s->singleton ();
2917 merge_pattern_info *pat = sinfo->res->pattern;
2918 pattern_routine *routine = cpi->routine;
2919
2920 /* Create a copy of D's test for the pattern routine and generalize it
2921 as appropriate. */
2922 decision *newd = new decision (d->test);
2923 gcc_assert (newd->test.pos_operand >= 0
2924 || !newd->test.pos
2925 || common_position (newd->test.pos,
2926 routine->pos) == routine->pos);
2927 if (pat->param_test_p)
6d69ff19 2928 {
59250a8d 2929 const parameter &param = params[pat->param_test];
2930 switch (newd->test.kind)
6d69ff19 2931 {
abef0e58 2932 case rtx_test::PREDICATE:
59250a8d 2933 newd->test.u.predicate.mode_is_param = param.is_param;
2934 newd->test.u.predicate.mode = param.value;
2935 break;
2936
abef0e58 2937 case rtx_test::SAVED_CONST_INT:
59250a8d 2938 newd->test.u.integer.is_param = param.is_param;
2939 newd->test.u.integer.value = param.value;
2940 break;
2941
6d69ff19 2942 default:
e0a4c0c2 2943 gcc_unreachable ();
59250a8d 2944 break;
6d69ff19 2945 }
2946 }
abef0e58 2947 if (d->test.kind == rtx_test::C_TEST)
59250a8d 2948 routine->insn_p = true;
abef0e58 2949 else if (d->test.kind == rtx_test::HAVE_NUM_CLOBBERS)
59250a8d 2950 routine->pnum_clobbers_p = true;
2951 news->push_back (newd);
2952
2953 /* Fill in the transitions of NEWD. */
2954 unsigned int i = 0;
2955 for (transition *trans = d->first; trans; trans = trans->next)
2956 {
2957 /* Create a new state to act as the target of the new transition. */
2958 state *to_news = new state;
2959 if (merge_pattern_transition *ptrans = pat->transitions[i])
2960 {
2961 /* The pattern hasn't finished matching yet. Get the target
2962 pattern and the corresponding target state of SINFO. */
2963 merge_pattern_info *to_pat = ptrans->to;
2964 merge_state_info *to = sinfo->to_states + i;
2965 gcc_assert (to->res->pattern == to_pat);
2966 gcc_assert (ptrans->params.length () == to_pat->params.length ());
2967
2968 /* Express the parameters to TO_PAT in terms of the parameters
2969 to the top-level pattern. */
2970 auto_vec <parameter, MAX_PATTERN_PARAMS> to_params;
2971 for (unsigned int j = 0; j < ptrans->params.length (); ++j)
2972 {
2973 const parameter &param = ptrans->params[j];
2974 to_params.quick_push (param.is_param
2975 ? params[param.value]
2976 : param);
2977 }
263287f7 2978
59250a8d 2979 if (same_pattern_p (pat, to_pat))
2980 /* TO_PAT is part of the current routine, so just recurse. */
2981 populate_pattern_routine (cpi, to, to_news, to_params);
2982 else
2983 {
2984 /* TO_PAT should be matched by calling a separate routine. */
2985 create_pattern_info sub_cpi;
2986 decision *subd = init_pattern_use (&sub_cpi, to, to_params);
2987 routine->insn_p |= sub_cpi.routine->insn_p;
2988 routine->pnum_clobbers_p |= sub_cpi.routine->pnum_clobbers_p;
263287f7 2989
59250a8d 2990 /* Add the pattern routine call to the new target state. */
2991 to_news->push_back (subd);
6d69ff19 2992
59250a8d 2993 /* Add a transition for each successful call result. */
2994 for (unsigned int j = 0; j < to_pat->num_results; ++j)
2995 {
2996 state *res = new state;
2997 add_pattern_acceptance (cpi, res);
2998 subd->push_back (new transition (j, res, false));
2999 }
3000 }
3001 }
3002 else
3003 /* This transition corresponds to a successful match. */
3004 add_pattern_acceptance (cpi, to_news);
3005
3006 /* Create the transition itself, generalizing as necessary. */
3007 transition *new_trans = new transition (trans->labels, to_news,
3008 trans->optional);
3009 if (pat->param_transition_p)
7e5202bc 3010 {
59250a8d 3011 const parameter &param = params[pat->param_transition];
3012 new_trans->is_param = param.is_param;
3013 new_trans->labels[0] = param.value;
7e5202bc 3014 }
59250a8d 3015 newd->push_back (new_trans);
3016 i += 1;
7e5202bc 3017 }
59250a8d 3018}
3019
3020/* USE is a decision that calls a pattern routine and SINFO is part of the
3021 original state tree that the call is supposed to replace. Add the
3022 transitions for SINFO and its substates to USE. */
7e5202bc 3023
59250a8d 3024static void
3025populate_pattern_use (create_pattern_info *cpi, decision *use,
3026 merge_state_info *sinfo)
3027{
3028 pattern_use_states += 1;
3029 gcc_assert (!sinfo->merged_p);
3030 sinfo->merged_p = true;
3031 merge_state_result *res = sinfo->res;
3032 merge_pattern_info *pat = res->pattern;
3033 decision *d = sinfo->s->singleton ();
3034 unsigned int i = 0;
3035 for (transition *trans = d->first; trans; trans = trans->next)
6d69ff19 3036 {
59250a8d 3037 if (pat->transitions[i])
3038 /* The target state is also part of the pattern. */
3039 populate_pattern_use (cpi, use, sinfo->to_states + i);
3040 else
3041 {
3042 /* The transition corresponds to a successful return from the
3043 pattern routine. */
3044 use->push_back (new transition (cpi->next_result, trans->to, false));
3045 cpi->next_result += 1;
3046 }
3047 i += 1;
3048 }
3049}
3050
3051/* We have decided to replace SINFO's state with a call to a pattern
3052 routine. Make the change, creating a definition of the pattern routine
3053 if it doesn't have one already. */
6d69ff19 3054
59250a8d 3055static void
3056use_pattern (merge_state_info *sinfo)
3057{
3058 merge_state_result *res = sinfo->res;
3059 merge_pattern_info *pat = res->pattern;
3060 state *s = sinfo->s;
3061
3062 /* The pattern may have acquired new parameters after it was matched
3063 against SINFO. Update the parameters that SINFO passes accordingly. */
3064 update_parameters (res->params, pat->params);
3065
3066 create_pattern_info cpi;
3067 decision *d = init_pattern_use (&cpi, sinfo, res->params);
3068 populate_pattern_use (&cpi, d, sinfo);
3069 s->release ();
3070 s->push_back (d);
3071}
3072
3073/* Look through the state trees in STATES for common patterns and
3074 split them into subroutines. */
3075
3076static void
3077split_out_patterns (vec <merge_state_info> &states)
3078{
3079 unsigned int first_transition = states.length ();
3080 hash_table <test_pattern_hasher> hashtab (128);
3081 /* Stage 1: Create an order in which parent states come before their child
3082 states and in which sibling states are at consecutive locations.
3083 Having consecutive sibling states allows merge_state_info to have
3084 a single to_states pointer. */
3085 for (unsigned int i = 0; i < states.length (); ++i)
3086 for (decision *d = states[i].s->first; d; d = d->next)
3087 for (transition *trans = d->first; trans; trans = trans->next)
6d69ff19 3088 {
59250a8d 3089 states.safe_push (trans->to);
3090 states[i].num_transitions += 1;
3091 }
3092 /* Stage 2: Now that the addresses are stable, set up the to_states
3093 pointers. Look for states that might be merged and enter them
3094 into the hash table. */
3095 for (unsigned int i = 0; i < states.length (); ++i)
3096 {
3097 merge_state_info *sinfo = &states[i];
3098 if (sinfo->num_transitions)
3099 {
3100 sinfo->to_states = &states[first_transition];
3101 first_transition += sinfo->num_transitions;
3102 }
3103 /* For simplicity, we only try to merge states that have a single
3104 decision. This is in any case the best we can do for peephole2,
3105 since whether a peephole2 ACCEPT succeeds or not depends on the
3106 specific peephole2 pattern (which is unique to each ACCEPT
3107 and so couldn't be shared between states). */
3108 if (decision *d = sinfo->s->singleton ())
3109 /* ACCEPT states are unique, so don't even try to merge them. */
abef0e58 3110 if (d->test.kind != rtx_test::ACCEPT
59250a8d 3111 && (pattern_have_num_clobbers_p
abef0e58 3112 || d->test.kind != rtx_test::HAVE_NUM_CLOBBERS)
59250a8d 3113 && (pattern_c_test_p
abef0e58 3114 || d->test.kind != rtx_test::C_TEST))
59250a8d 3115 {
3116 merge_state_info **slot = hashtab.find_slot (sinfo, INSERT);
3117 sinfo->prev_same_test = *slot;
3118 *slot = sinfo;
3119 }
3120 }
3121 /* Stage 3: Walk backwards through the list of states and try to merge
3122 them. This is a greedy, bottom-up match; parent nodes can only start
3123 a new leaf pattern if they fail to match when combined with all child
3124 nodes that have matching patterns.
3125
3126 For each state we keep a list of potential matches, with each
3127 potential match being larger (and deeper) than the next match in
3128 the list. The final element in the list is a leaf pattern that
3129 matches just a single state.
3130
3131 Each candidate pattern created in this loop is unique -- it won't
3132 have been seen by an earlier iteration. We try to match each pattern
3133 with every state that appears earlier in STATES.
3134
3135 Because the patterns created in the loop are unique, any state
3136 that already has a match must have a final potential match that
3137 is different from any new leaf pattern. Therefore, when matching
3138 leaf patterns, we need only consider states whose list of matches
3139 is empty.
3140
3141 The non-leaf patterns that we try are as deep as possible
3142 and are an extension of the state's previous best candidate match (PB).
3143 We need only consider states whose current potential match is also PB;
3144 any states that don't match as much as PB cannnot match the new pattern,
3145 while any states that already match more than PB must be different from
3146 the new pattern. */
3147 for (unsigned int i2 = states.length (); i2-- > 0; )
3148 {
3149 merge_state_info *sinfo2 = &states[i2];
3150
3151 /* Enforce the bottom-upness of the match: remove matches with later
3152 states if SINFO2's child states ended up finding a better match. */
3153 prune_invalid_results (sinfo2);
3154
3155 /* Do nothing if the state doesn't match a later one and if there are
3156 no earlier states it could match. */
3157 if (!sinfo2->res && !sinfo2->prev_same_test)
3158 continue;
3159
3160 merge_state_result *res2 = sinfo2->res;
3161 decision *d2 = sinfo2->s->singleton ();
3162 position *root2 = (d2->test.pos_operand < 0 ? d2->test.pos : 0);
3163 unsigned int num_transitions = sinfo2->num_transitions;
3164
3165 /* If RES2 is null then SINFO2's test in isolation has not been seen
3166 before. First try matching that on its own. */
3167 if (!res2)
3168 {
3169 merge_pattern_info *new_pat
3170 = new merge_pattern_info (num_transitions);
3171 merge_state_result *new_res2
3172 = new merge_state_result (new_pat, root2, res2);
3173 sinfo2->res = new_res2;
3174
3175 new_pat->num_statements = !d2->test.single_outcome_p ();
3176 new_pat->num_results = num_transitions;
3177 bool matched_p = false;
3178 /* Look for states that don't currently match anything but
3179 can be made to match SINFO2 on its own. */
3180 for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3181 sinfo1 = sinfo1->prev_same_test)
3182 if (!sinfo1->res && merge_patterns (sinfo1, sinfo2))
3183 matched_p = true;
3184 if (!matched_p)
3185 {
3186 /* No other states match. */
3187 sinfo2->res = res2;
3188 delete new_pat;
3189 delete new_res2;
3190 continue;
3191 }
3192 else
3193 res2 = new_res2;
3194 }
3195
3196 /* Keep the existing pattern if it's as good as anything we'd
3197 create for SINFO2. */
3198 if (complete_result_p (res2->pattern, sinfo2))
3199 {
3200 res2->pattern->num_users += 1;
3201 continue;
3202 }
3203
3204 /* Create a new pattern for SINFO2. */
3205 merge_pattern_info *new_pat = new merge_pattern_info (num_transitions);
3206 merge_state_result *new_res2
3207 = new merge_state_result (new_pat, root2, res2);
3208 sinfo2->res = new_res2;
3209
3210 /* Fill in details about the pattern. */
3211 new_pat->num_statements = !d2->test.single_outcome_p ();
3212 new_pat->num_results = 0;
3213 for (unsigned int j = 0; j < num_transitions; ++j)
3214 if (merge_state_result *to_res = sinfo2->to_states[j].res)
3215 {
3216 /* Count the target state as part of this pattern.
3217 First update the root position so that it can reach
3218 the target state's root. */
3219 if (to_res->root)
3220 {
3221 if (new_res2->root)
3222 new_res2->root = common_position (new_res2->root,
3223 to_res->root);
3224 else
3225 new_res2->root = to_res->root;
3226 }
3227 merge_pattern_info *to_pat = to_res->pattern;
3228 merge_pattern_transition *ptrans
3229 = new merge_pattern_transition (to_pat);
3230
3231 /* TO_PAT may have acquired more parameters when matching
3232 states earlier in STATES than TO_RES's, but the list is
3233 now final. Make sure that TO_RES is up to date. */
3234 update_parameters (to_res->params, to_pat->params);
3235
3236 /* Start out by assuming that every user of NEW_PAT will
3237 want to pass the same (constant) parameters as TO_RES. */
3238 update_parameters (ptrans->params, to_res->params);
3239
3240 new_pat->transitions[j] = ptrans;
3241 new_pat->num_statements += to_pat->num_statements;
3242 new_pat->num_results += to_pat->num_results;
3243 }
3244 else
3245 /* The target state doesn't match anything and so is not part
3246 of the pattern. */
3247 new_pat->num_results += 1;
3248
3249 /* See if any earlier states that match RES2's pattern also match
3250 NEW_PAT. */
3251 bool matched_p = false;
3252 for (merge_state_info *sinfo1 = sinfo2->prev_same_test; sinfo1;
3253 sinfo1 = sinfo1->prev_same_test)
3254 {
3255 prune_invalid_results (sinfo1);
3256 if (sinfo1->res
3257 && sinfo1->res->pattern == res2->pattern
3258 && merge_patterns (sinfo1, sinfo2))
3259 matched_p = true;
3260 }
3261 if (!matched_p)
3262 {
3263 /* Nothing else matches NEW_PAT, so go back to the previous
3264 pattern (possibly just a single-state one). */
3265 sinfo2->res = res2;
3266 delete new_pat;
3267 delete new_res2;
3268 }
3269 /* Assume that SINFO2 will use RES. At this point we don't know
3270 whether earlier states that match the same pattern will use
3271 that match or a different one. */
3272 sinfo2->res->pattern->num_users += 1;
3273 }
3274 /* Step 4: Finalize the choice of pattern for each state, ignoring
3275 patterns that were only used once. Update each pattern's size
3276 so that it doesn't include subpatterns that are going to be split
3277 out into subroutines. */
3278 for (unsigned int i = 0; i < states.length (); ++i)
3279 {
3280 merge_state_info *sinfo = &states[i];
3281 merge_state_result *res = sinfo->res;
3282 /* Wind past patterns that are only used by SINFO. */
3283 while (res && res->pattern->num_users == 1)
3284 {
3285 res = res->prev;
3286 sinfo->res = res;
3287 if (res)
3288 res->pattern->num_users += 1;
3289 }
3290 if (!res)
3291 continue;
3292
3293 /* We have a shared pattern and are now committed to the match. */
3294 merge_pattern_info *pat = res->pattern;
3295 gcc_assert (valid_result_p (pat, sinfo));
3296
3297 if (!pat->complete_p)
3298 {
3299 /* Look for subpatterns that are going to be split out and remove
3300 them from the number of statements. */
3301 for (unsigned int j = 0; j < sinfo->num_transitions; ++j)
3302 if (merge_pattern_transition *ptrans = pat->transitions[j])
3303 {
3304 merge_pattern_info *to_pat = ptrans->to;
3305 if (!same_pattern_p (pat, to_pat))
3306 pat->num_statements -= to_pat->num_statements;
3307 }
3308 pat->complete_p = true;
3309 }
3310 }
3311 /* Step 5: Split out the patterns. */
3312 for (unsigned int i = 0; i < states.length (); ++i)
3313 {
3314 merge_state_info *sinfo = &states[i];
3315 merge_state_result *res = sinfo->res;
3316 if (!sinfo->merged_p && res && useful_pattern_p (res->pattern))
3317 use_pattern (sinfo);
3318 }
3319 fprintf (stderr, "Shared %d out of %d states by creating %d new states,"
3320 " saving %d\n",
3321 pattern_use_states, states.length (), pattern_def_states,
3322 pattern_use_states - pattern_def_states);
3323}
3324
3325/* Information about a state tree that we're considering splitting into a
3326 subroutine. */
3327struct state_size
3328{
3329 /* The number of pseudo-statements in the state tree. */
3330 unsigned int num_statements;
3331
3332 /* The approximate number of nested "if" and "switch" statements that
3333 would be required if control could fall through to a later state. */
3334 unsigned int depth;
3335};
3336
3337/* Pairs a transition with information about its target state. */
3338typedef std::pair <transition *, state_size> subroutine_candidate;
3339
3340/* Sort two subroutine_candidates so that the one with the largest
3341 number of statements comes last. */
3342
3343static int
3344subroutine_candidate_cmp (const void *a, const void *b)
3345{
3346 return int (((const subroutine_candidate *) a)->second.num_statements
3347 - ((const subroutine_candidate *) b)->second.num_statements);
3348}
3349
3350/* Turn S into a subroutine of type TYPE and add it to PROCS. Return a new
3351 state that performs a subroutine call to S. */
3352
3353static state *
3354create_subroutine (routine_type type, state *s, vec <state *> &procs)
3355{
3356 procs.safe_push (s);
3357 acceptance_type acceptance;
3358 acceptance.type = type;
3359 acceptance.partial_p = true;
3360 acceptance.u.subroutine_id = procs.length ();
3361 state *news = new state;
abef0e58 3362 add_decision (news, rtx_test::accept (acceptance), true, false);
59250a8d 3363 return news;
3364}
3365
3366/* Walk state tree S, of type TYPE, and look for subtrees that would be
3367 better split into subroutines. Accumulate all such subroutines in PROCS.
3368 Return the size of the new state tree (excluding subroutines). */
3369
3370static state_size
3371find_subroutines (routine_type type, state *s, vec <state *> &procs)
3372{
3373 auto_vec <subroutine_candidate, 16> candidates;
3374 state_size size;
3375 size.num_statements = 0;
3376 size.depth = 0;
3377 for (decision *d = s->first; d; d = d->next)
3378 {
3379 if (!d->test.single_outcome_p ())
3380 size.num_statements += 1;
3381 for (transition *trans = d->first; trans; trans = trans->next)
3382 {
3383 /* Keep chains of simple decisions together if we know that no
3384 change of position is required. We'll output this chain as a
3385 single "if" statement, so it counts as a single nesting level. */
3386 if (d->test.pos && d->if_statement_p ())
3387 for (;;)
3388 {
3389 decision *newd = trans->to->singleton ();
3390 if (!newd
3391 || (newd->test.pos
3392 && newd->test.pos_operand < 0
3393 && newd->test.pos != d->test.pos)
3394 || !newd->if_statement_p ())
3395 break;
3396 if (!newd->test.single_outcome_p ())
3397 size.num_statements += 1;
3398 trans = newd->singleton ();
abef0e58 3399 if (newd->test.kind == rtx_test::SET_OP
3400 || newd->test.kind == rtx_test::ACCEPT)
59250a8d 3401 break;
3402 }
3403 /* The target of TRANS is a subroutine candidate. First recurse
3404 on it to see how big it is after subroutines have been
3405 split out. */
3406 state_size to_size = find_subroutines (type, trans->to, procs);
3407 if (d->next && to_size.depth > MAX_DEPTH)
3408 /* Keeping the target state in the same routine would lead
3409 to an excessive nesting of "if" and "switch" statements.
3410 Split it out into a subroutine so that it can use
3411 inverted tests that return early on failure. */
3412 trans->to = create_subroutine (type, trans->to, procs);
3413 else
3414 {
3415 size.num_statements += to_size.num_statements;
3416 if (to_size.num_statements < MIN_NUM_STATEMENTS)
3417 /* The target state is too small to be worth splitting.
3418 Keep it in the same routine as S. */
3419 size.depth = MAX (size.depth, to_size.depth);
3420 else
3421 /* Assume for now that we'll keep the target state in the
3422 same routine as S, but record it as a subroutine candidate
3423 if S grows too big. */
3424 candidates.safe_push (subroutine_candidate (trans, to_size));
3425 }
3426 }
3427 }
3428 if (size.num_statements > MAX_NUM_STATEMENTS)
3429 {
3430 /* S is too big. Sort the subroutine candidates so that bigger ones
3431 are nearer the end. */
3432 candidates.qsort (subroutine_candidate_cmp);
3433 while (!candidates.is_empty ()
3434 && size.num_statements > MAX_NUM_STATEMENTS)
3435 {
3436 /* Peel off a candidate and force it into a subroutine. */
3437 subroutine_candidate cand = candidates.pop ();
3438 size.num_statements -= cand.second.num_statements;
3439 cand.first->to = create_subroutine (type, cand.first->to, procs);
3440 }
3441 }
3442 /* Update the depth for subroutine candidates that we decided not to
3443 split out. */
3444 for (unsigned int i = 0; i < candidates.length (); ++i)
3445 size.depth = MAX (size.depth, candidates[i].second.depth);
3446 size.depth += 1;
3447 return size;
3448}
3449
3450/* Return true if, for all X, PRED (X, MODE) implies that X has mode MODE. */
3451
3452static bool
3453safe_predicate_mode (const struct pred_data *pred, machine_mode mode)
3454{
3455 /* Scalar integer constants have VOIDmode. */
3456 if (GET_MODE_CLASS (mode) == MODE_INT
3457 && (pred->codes[CONST_INT]
3458 || pred->codes[CONST_DOUBLE]
8770d0ad 3459 || pred->codes[CONST_WIDE_INT]
3460 || pred->codes[LABEL_REF]))
59250a8d 3461 return false;
3462
3463 return !pred->special && mode != VOIDmode;
3464}
3465
3466/* Fill CODES with the set of codes that could be matched by PRED. */
3467
3468static void
3469get_predicate_codes (const struct pred_data *pred, int_set *codes)
3470{
3471 for (int i = 0; i < NUM_TRUE_RTX_CODE; ++i)
3472 if (!pred || pred->codes[i])
3473 codes->safe_push (i);
3474}
3475
3476/* Return true if the first path through D1 tests the same thing as D2. */
3477
3478static bool
3479has_same_test_p (decision *d1, decision *d2)
3480{
3481 do
3482 {
3483 if (d1->test == d2->test)
3484 return true;
3485 d1 = d1->first->to->first;
3486 }
3487 while (d1);
3488 return false;
3489}
3490
3491/* Return true if D1 and D2 cannot match the same rtx. All states reachable
3492 from D2 have single decisions and all those decisions have single
3493 transitions. */
3494
3495static bool
3496mutually_exclusive_p (decision *d1, decision *d2)
3497{
3498 /* If one path through D1 fails to test the same thing as D2, assume
3499 that D2's test could be true for D1 and look for a later, more useful,
3500 test. This isn't as expensive as it looks in practice. */
3501 while (!has_same_test_p (d1, d2))
3502 {
3503 d2 = d2->singleton ()->to->singleton ();
3504 if (!d2)
3505 return false;
3506 }
3507 if (d1->test == d2->test)
3508 {
3509 /* Look for any transitions from D1 that have the same labels as
3510 the transition from D2. */
3511 transition *trans2 = d2->singleton ();
3512 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3513 {
3514 int_set::iterator i1 = trans1->labels.begin ();
3515 int_set::iterator end1 = trans1->labels.end ();
3516 int_set::iterator i2 = trans2->labels.begin ();
3517 int_set::iterator end2 = trans2->labels.end ();
3518 while (i1 != end1 && i2 != end2)
3519 if (*i1 < *i2)
3520 ++i1;
3521 else if (*i2 < *i1)
3522 ++i2;
3523 else
3524 {
3525 /* TRANS1 has some labels in common with TRANS2. Assume
3526 that D1 and D2 could match the same rtx if the target
3527 of TRANS1 could match the same rtx as D2. */
3528 for (decision *subd1 = trans1->to->first;
3529 subd1; subd1 = subd1->next)
3530 if (!mutually_exclusive_p (subd1, d2))
3531 return false;
3532 break;
3533 }
3534 }
3535 return true;
3536 }
3537 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3538 for (decision *subd1 = trans1->to->first; subd1; subd1 = subd1->next)
3539 if (!mutually_exclusive_p (subd1, d2))
3540 return false;
3541 return true;
3542}
3543
3544/* Try to merge S2's decision into D1, given that they have the same test.
3545 Fail only if EXCLUDE is nonnull and the new transition would have the
3546 same labels as *EXCLUDE. When returning true, set *NEXT_S1, *NEXT_S2
3547 and *NEXT_EXCLUDE as for merge_into_state_1, or set *NEXT_S2 to null
3548 if the merge is complete. */
3549
3550static bool
3551merge_into_decision (decision *d1, state *s2, const int_set *exclude,
3552 state **next_s1, state **next_s2,
3553 const int_set **next_exclude)
3554{
3555 decision *d2 = s2->singleton ();
3556 transition *trans2 = d2->singleton ();
3557
3558 /* Get a list of the transitions that intersect TRANS2. */
3559 auto_vec <transition *, 32> intersecting;
3560 for (transition *trans1 = d1->first; trans1; trans1 = trans1->next)
3561 {
3562 int_set::iterator i1 = trans1->labels.begin ();
3563 int_set::iterator end1 = trans1->labels.end ();
3564 int_set::iterator i2 = trans2->labels.begin ();
3565 int_set::iterator end2 = trans2->labels.end ();
3566 bool trans1_is_subset = true;
3567 bool trans2_is_subset = true;
3568 bool intersect_p = false;
3569 while (i1 != end1 && i2 != end2)
3570 if (*i1 < *i2)
3571 {
3572 trans1_is_subset = false;
3573 ++i1;
3574 }
3575 else if (*i2 < *i1)
3576 {
3577 trans2_is_subset = false;
3578 ++i2;
3579 }
3580 else
3581 {
3582 intersect_p = true;
3583 ++i1;
3584 ++i2;
3585 }
3586 if (i1 != end1)
3587 trans1_is_subset = false;
3588 if (i2 != end2)
3589 trans2_is_subset = false;
3590 if (trans1_is_subset && trans2_is_subset)
3591 {
3592 /* There's already a transition that matches exactly.
3593 Merge the target states. */
3594 trans1->optional &= trans2->optional;
3595 *next_s1 = trans1->to;
3596 *next_s2 = trans2->to;
3597 *next_exclude = 0;
3598 return true;
3599 }
3600 if (trans2_is_subset)
3601 {
3602 /* TRANS1 has all the labels that TRANS2 needs. Merge S2 into
3603 the target of TRANS1, but (to avoid infinite recursion)
3604 make sure that we don't end up creating another transition
3605 like TRANS1. */
3606 *next_s1 = trans1->to;
3607 *next_s2 = s2;
3608 *next_exclude = &trans1->labels;
3609 return true;
3610 }
3611 if (intersect_p)
3612 intersecting.safe_push (trans1);
3613 }
3614
3615 if (intersecting.is_empty ())
3616 {
3617 /* No existing labels intersect the new ones. We can just add
3618 TRANS2 itself. */
3619 d1->push_back (d2->release ());
3620 *next_s1 = 0;
3621 *next_s2 = 0;
3622 *next_exclude = 0;
3623 return true;
3624 }
3625
3626 /* Take the union of the labels in INTERSECTING and TRANS2. Store the
3627 result in COMBINED and use NEXT as a temporary. */
3628 int_set tmp1 = trans2->labels, tmp2;
3629 int_set *combined = &tmp1, *next = &tmp2;
3630 for (unsigned int i = 0; i < intersecting.length (); ++i)
3631 {
3632 transition *trans1 = intersecting[i];
3633 next->truncate (0);
3634 next->safe_grow (trans1->labels.length () + combined->length ());
3635 int_set::iterator end
3636 = std::set_union (trans1->labels.begin (), trans1->labels.end (),
3637 combined->begin (), combined->end (),
3638 next->begin ());
3639 next->truncate (end - next->begin ());
3640 std::swap (next, combined);
3641 }
3642
3643 /* Stop now if we've been told not to create a transition with these
3644 labels. */
3645 if (exclude && *combined == *exclude)
3646 return false;
3647
3648 /* Get the transition that should carry the new labels. */
3649 transition *new_trans = intersecting[0];
3650 if (intersecting.length () == 1)
3651 {
3652 /* We're merging with one existing transition whose labels are a
3653 subset of those required. If both transitions are optional,
3654 we can just expand the set of labels so that it's suitable
3655 for both transitions. It isn't worth preserving the original
3656 transitions since we know that they can't be merged; we would
3657 need to backtrack to S2 if TRANS1->to fails. In contrast,
3658 we might be able to merge the targets of the transitions
3659 without any backtracking.
3660
3661 If instead the existing transition is not optional, ensure that
3662 all target decisions are suitably protected. Some decisions
3663 might already have a more specific requirement than NEW_TRANS,
3664 in which case there's no point testing NEW_TRANS as well. E.g. this
3665 would have happened if a test for an (eq ...) rtx had been
3666 added to a decision that tested whether the code is suitable
3667 for comparison_operator. The original comparison_operator
3668 transition would have been non-optional and the (eq ...) test
3669 would be performed by a second decision in the target of that
3670 transition.
3671
3672 The remaining case -- keeping the original optional transition
3673 when adding a non-optional TRANS2 -- is a wash. Preserving
3674 the optional transition only helps if we later merge another
3675 state S3 that is mutually exclusive with S2 and whose labels
3676 belong to *COMBINED - TRANS1->labels. We can then test the
3677 original NEW_TRANS and S3 in the same decision. We keep the
3678 optional transition around for that case, but it occurs very
3679 rarely. */
3680 gcc_assert (new_trans->labels != *combined);
3681 if (!new_trans->optional || !trans2->optional)
3682 {
3683 decision *start = 0;
3684 for (decision *end = new_trans->to->first; end; end = end->next)
3685 {
3686 if (!start && end->test != d1->test)
3687 /* END belongs to a range of decisions that need to be
3688 protected by NEW_TRANS. */
3689 start = end;
3690 if (start && (!end->next || end->next->test == d1->test))
3691 {
3692 /* Protect [START, END] with NEW_TRANS. The decisions
3693 move to NEW_S and NEW_D becomes part of NEW_TRANS->to. */
3694 state *new_s = new state;
3695 decision *new_d = new decision (d1->test);
3696 new_d->push_back (new transition (new_trans->labels, new_s,
3697 new_trans->optional));
3698 state::range r (start, end);
3699 new_trans->to->replace (r, new_d);
3700 new_s->push_back (r);
3701
3702 /* Continue with an empty range. */
3703 start = 0;
3704
3705 /* Continue from the decision after NEW_D. */
3706 end = new_d;
3707 }
3708 }
3709 }
3710 new_trans->optional = true;
3711 new_trans->labels = *combined;
3712 }
3713 else
3714 {
3715 /* We're merging more than one existing transition together.
3716 Those transitions are successfully dividing the matching space
3717 and so we want to preserve them, even if they're optional.
3718
3719 Create a new transition with the union set of labels and make
3720 it go to a state that has the original transitions. */
3721 decision *new_d = new decision (d1->test);
3722 for (unsigned int i = 0; i < intersecting.length (); ++i)
3723 new_d->push_back (d1->remove (intersecting[i]));
3724
3725 state *new_s = new state;
3726 new_s->push_back (new_d);
3727
3728 new_trans = new transition (*combined, new_s, true);
3729 d1->push_back (new_trans);
3730 }
3731
3732 /* We now have an optional transition with labels *COMBINED. Decide
3733 whether we can use it as TRANS2 or whether we need to merge S2
3734 into the target of NEW_TRANS. */
3735 gcc_assert (new_trans->optional);
3736 if (new_trans->labels == trans2->labels)
3737 {
3738 /* NEW_TRANS matches TRANS2. Just merge the target states. */
3739 new_trans->optional = trans2->optional;
3740 *next_s1 = new_trans->to;
3741 *next_s2 = trans2->to;
3742 *next_exclude = 0;
3743 }
3744 else
3745 {
3746 /* Try to merge TRANS2 into the target of the overlapping transition,
3747 but (to prevent infinite recursion or excessive redundancy) without
3748 creating another transition of the same type. */
3749 *next_s1 = new_trans->to;
3750 *next_s2 = s2;
3751 *next_exclude = &new_trans->labels;
3752 }
3753 return true;
3754}
3755
3756/* Make progress in merging S2 into S1, given that each state in S2
3757 has a single decision. If EXCLUDE is nonnull, avoid creating a new
3758 transition with the same test as S2's decision and with the labels
3759 in *EXCLUDE.
3760
3761 Return true if there is still work to do. When returning true,
3762 set *NEXT_S1, *NEXT_S2 and *NEXT_EXCLUDE to the values that
3763 S1, S2 and EXCLUDE should have next time round.
3764
3765 If S1 and S2 both match a particular rtx, give priority to S1. */
3766
3767static bool
3768merge_into_state_1 (state *s1, state *s2, const int_set *exclude,
3769 state **next_s1, state **next_s2,
3770 const int_set **next_exclude)
3771{
3772 decision *d2 = s2->singleton ();
3773 if (decision *d1 = s1->last)
3774 {
3775 if (d1->test.terminal_p ())
3776 /* D1 is an unconditional return, so S2 can never match. This can
3777 sometimes be a bug in the .md description, but might also happen
3778 if genconditions forces some conditions to true for certain
3779 configurations. */
3780 return false;
3781
3782 /* Go backwards through the decisions in S1, stopping once we find one
3783 that could match the same thing as S2. */
3784 while (d1->prev && mutually_exclusive_p (d1, d2))
3785 d1 = d1->prev;
3786
3787 /* Search forwards from that point, merging D2 into the first
3788 decision we can. */
3789 for (; d1; d1 = d1->next)
3790 {
3791 /* If S2 performs some optional tests before testing the same thing
3792 as D1, those tests do not help to distinguish D1 and S2, so it's
3793 better to drop them. Search through such optional decisions
3794 until we find something that tests the same thing as D1. */
3795 state *sub_s2 = s2;
3796 for (;;)
3797 {
3798 decision *sub_d2 = sub_s2->singleton ();
3799 if (d1->test == sub_d2->test)
3800 {
3801 /* Only apply EXCLUDE if we're testing the same thing
3802 as D2. */
3803 const int_set *sub_exclude = (d2 == sub_d2 ? exclude : 0);
3804
3805 /* Try to merge SUB_S2 into D1. This can only fail if
3806 it would involve creating a new transition with
3807 labels SUB_EXCLUDE. */
3808 if (merge_into_decision (d1, sub_s2, sub_exclude,
3809 next_s1, next_s2, next_exclude))
3810 return *next_s2 != 0;
3811
3812 /* Can't merge with D1; try a later decision. */
3813 break;
3814 }
3815 transition *sub_trans2 = sub_d2->singleton ();
3816 if (!sub_trans2->optional)
3817 /* Can't merge with D1; try a later decision. */
3818 break;
3819 sub_s2 = sub_trans2->to;
3820 }
3821 }
3822 }
3823
3824 /* We can't merge D2 with any existing decision. Just add it to the end. */
3825 s1->push_back (s2->release ());
3826 return false;
3827}
3828
3829/* Merge S2 into S1. If they both match a particular rtx, give
3830 priority to S1. Each state in S2 has a single decision. */
3831
3832static void
3833merge_into_state (state *s1, state *s2)
3834{
3835 const int_set *exclude = 0;
3836 while (s2 && merge_into_state_1 (s1, s2, exclude, &s1, &s2, &exclude))
3837 continue;
3838}
3839
3840/* Pairs a pattern that needs to be matched with the rtx position at
3841 which the pattern should occur. */
3842struct pattern_pos {
3843 pattern_pos () {}
3844 pattern_pos (rtx, position *);
3845
3846 rtx pattern;
3847 position *pos;
3848};
3849
3850pattern_pos::pattern_pos (rtx pattern_in, position *pos_in)
3851 : pattern (pattern_in), pos (pos_in)
3852{}
3853
3854/* Compare entries according to their depth-first order. There shouldn't
3855 be two entries at the same position. */
3856
3857bool
3858operator < (const pattern_pos &e1, const pattern_pos &e2)
3859{
3860 int diff = compare_positions (e1.pos, e2.pos);
3861 gcc_assert (diff != 0 || e1.pattern == e2.pattern);
3862 return diff < 0;
3863}
3864
59250a8d 3865/* Add new decisions to S that check whether the rtx at position POS
3866 matches PATTERN. Return the state that is reached in that case.
3867 TOP_PATTERN is the overall pattern, as passed to match_pattern_1. */
3868
3869static state *
c04601c1 3870match_pattern_2 (state *s, md_rtx_info *info, position *pos, rtx pattern)
59250a8d 3871{
3872 auto_vec <pattern_pos, 32> worklist;
3873 auto_vec <pattern_pos, 32> pred_and_mode_tests;
3874 auto_vec <pattern_pos, 32> dup_tests;
3875
3876 worklist.safe_push (pattern_pos (pattern, pos));
3877 while (!worklist.is_empty ())
3878 {
3879 pattern_pos next = worklist.pop ();
3880 pattern = next.pattern;
3881 pos = next.pos;
3882 unsigned int reverse_s = worklist.length ();
3883
3884 enum rtx_code code = GET_CODE (pattern);
3885 switch (code)
3886 {
3887 case MATCH_OP_DUP:
3888 case MATCH_DUP:
3889 case MATCH_PAR_DUP:
3890 /* Add a test that the rtx matches the earlier one, but only
3891 after the structure and predicates have been checked. */
3892 dup_tests.safe_push (pattern_pos (pattern, pos));
3893
3894 /* Use the same code check as the original operand. */
c04601c1 3895 pattern = find_operand (info->def, XINT (pattern, 0), NULL_RTX);
59250a8d 3896 /* Fall through. */
3897
3898 case MATCH_PARALLEL:
3899 case MATCH_OPERAND:
3900 case MATCH_SCRATCH:
3901 case MATCH_OPERATOR:
3902 {
3903 const char *pred_name = predicate_name (pattern);
3904 const struct pred_data *pred = 0;
3905 if (pred_name[0] != 0)
3906 {
3907 pred = lookup_predicate (pred_name);
3908 /* Only report errors once per rtx. */
3909 if (code == GET_CODE (pattern))
3910 {
3911 if (!pred)
c04601c1 3912 error_at (info->loc, "unknown predicate '%s' used in %s",
3913 pred_name, GET_RTX_NAME (code));
59250a8d 3914 else if (code == MATCH_PARALLEL
3915 && pred->singleton != PARALLEL)
c04601c1 3916 error_at (info->loc, "predicate '%s' used in"
3917 " match_parallel does not allow only PARALLEL",
3918 pred->name);
59250a8d 3919 }
3920 }
3921
3922 if (code == MATCH_PARALLEL || code == MATCH_PAR_DUP)
3923 {
3924 /* Check that we have a parallel with enough elements. */
abef0e58 3925 s = add_decision (s, rtx_test::code (pos), PARALLEL, false);
59250a8d 3926 int min_len = XVECLEN (pattern, 2);
abef0e58 3927 s = add_decision (s, rtx_test::veclen_ge (pos, min_len),
59250a8d 3928 true, false);
3929 }
3930 else
3931 {
3932 /* Check that the rtx has one of codes accepted by the
3933 predicate. This is necessary when matching suboperands
3934 of a MATCH_OPERATOR or MATCH_OP_DUP, since we can't
3935 call XEXP (X, N) without checking that X has at least
3936 N+1 operands. */
3937 int_set codes;
3938 get_predicate_codes (pred, &codes);
3939 bool need_codes = (pred
3940 && (code == MATCH_OPERATOR
3941 || code == MATCH_OP_DUP));
abef0e58 3942 s = add_decision (s, rtx_test::code (pos), codes, !need_codes);
59250a8d 3943 }
3944
3945 /* Postpone the predicate check until we've checked the rest
3946 of the rtx structure. */
3947 if (code == GET_CODE (pattern))
3948 pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
3949
3950 /* If we need to match suboperands, add them to the worklist. */
3951 if (code == MATCH_OPERATOR || code == MATCH_PARALLEL)
3952 {
3953 position **subpos_ptr;
3954 enum position_type pos_type;
3955 int i;
3956 if (code == MATCH_OPERATOR || code == MATCH_OP_DUP)
3957 {
3958 pos_type = POS_XEXP;
3959 subpos_ptr = &pos->xexps;
3960 i = (code == MATCH_OPERATOR ? 2 : 1);
3961 }
3962 else
3963 {
3964 pos_type = POS_XVECEXP0;
3965 subpos_ptr = &pos->xvecexp0s;
3966 i = 2;
3967 }
3968 for (int j = 0; j < XVECLEN (pattern, i); ++j)
3969 {
3970 position *subpos = next_position (subpos_ptr, pos,
3971 pos_type, j);
3972 worklist.safe_push (pattern_pos (XVECEXP (pattern, i, j),
3973 subpos));
3974 subpos_ptr = &subpos->next;
3975 }
3976 }
3977 break;
3978 }
3979
3980 default:
3981 {
3982 /* Check that the rtx has the right code. */
abef0e58 3983 s = add_decision (s, rtx_test::code (pos), code, false);
59250a8d 3984
3985 /* Queue a test for the mode if one is specified. */
3986 if (GET_MODE (pattern) != VOIDmode)
3987 pred_and_mode_tests.safe_push (pattern_pos (pattern, pos));
3988
3989 /* Push subrtxes onto the worklist. Match nonrtx operands now. */
3990 const char *fmt = GET_RTX_FORMAT (code);
3991 position **subpos_ptr = &pos->xexps;
3992 for (size_t i = 0; fmt[i]; ++i)
3993 {
3994 position *subpos = next_position (subpos_ptr, pos,
3995 POS_XEXP, i);
3996 switch (fmt[i])
3997 {
3998 case 'e': case 'u':
3999 worklist.safe_push (pattern_pos (XEXP (pattern, i),
4000 subpos));
4001 break;
4002
4003 case 'E':
4004 {
4005 /* Make sure the vector has the right number of
4006 elements. */
4007 int length = XVECLEN (pattern, i);
abef0e58 4008 s = add_decision (s, rtx_test::veclen (pos),
4009 length, false);
59250a8d 4010
4011 position **subpos2_ptr = &pos->xvecexp0s;
4012 for (int j = 0; j < length; j++)
4013 {
4014 position *subpos2 = next_position (subpos2_ptr, pos,
4015 POS_XVECEXP0, j);
4016 rtx x = XVECEXP (pattern, i, j);
4017 worklist.safe_push (pattern_pos (x, subpos2));
4018 subpos2_ptr = &subpos2->next;
4019 }
4020 break;
4021 }
4022
4023 case 'i':
4024 /* Make sure that XINT (X, I) has the right value. */
abef0e58 4025 s = add_decision (s, rtx_test::int_field (pos, i),
59250a8d 4026 XINT (pattern, i), false);
4027 break;
4028
15183fd2 4029 case 'r':
4030 /* Make sure that REGNO (X) has the right value. */
4031 gcc_assert (i == 0);
4032 s = add_decision (s, rtx_test::regno_field (pos),
4033 REGNO (pattern), false);
4034 break;
4035
59250a8d 4036 case 'w':
4037 /* Make sure that XWINT (X, I) has the right value. */
abef0e58 4038 s = add_decision (s, rtx_test::wide_int_field (pos, i),
59250a8d 4039 XWINT (pattern, 0), false);
4040 break;
4041
4042 case '0':
4043 break;
4044
4045 default:
4046 gcc_unreachable ();
4047 }
4048 subpos_ptr = &subpos->next;
4049 }
4050 }
4051 break;
4052 }
4053 /* Operands are pushed onto the worklist so that later indices are
4054 nearer the top. That's what we want for SETs, since a SET_SRC
4055 is a better discriminator than a SET_DEST. In other cases it's
4056 usually better to match earlier indices first. This is especially
4057 true of PARALLELs, where the first element tends to be the most
4058 individual. It's also true for commutative operators, where the
4059 canonicalization rules say that the more complex operand should
4060 come first. */
4061 if (code != SET && worklist.length () > reverse_s)
4062 std::reverse (&worklist[0] + reverse_s,
4063 &worklist[0] + worklist.length ());
4064 }
4065
4066 /* Sort the predicate and mode tests so that they're in depth-first order.
4067 The main goal of this is to put SET_SRC match_operands after SET_DEST
4068 match_operands and after mode checks for the enclosing SET_SRC operators
4069 (such as the mode of a PLUS in an addition instruction). The latter
4070 two types of test can determine the mode exactly, whereas a SET_SRC
4071 match_operand often has to cope with the possibility of the operand
4072 being a modeless constant integer. E.g. something that matches
4073 register_operand (x, SImode) never matches register_operand (x, DImode),
4074 but a const_int that matches immediate_operand (x, SImode) also matches
4075 immediate_operand (x, DImode). The register_operand cases can therefore
4076 be distinguished by a switch on the mode, but the immediate_operand
4077 cases can't. */
4078 if (pred_and_mode_tests.length () > 1)
4079 std::sort (&pred_and_mode_tests[0],
4080 &pred_and_mode_tests[0] + pred_and_mode_tests.length ());
4081
4082 /* Add the mode and predicate tests. */
4083 pattern_pos *e;
4084 unsigned int i;
4085 FOR_EACH_VEC_ELT (pred_and_mode_tests, i, e)
4086 {
4087 switch (GET_CODE (e->pattern))
4088 {
4089 case MATCH_PARALLEL:
4090 case MATCH_OPERAND:
4091 case MATCH_SCRATCH:
4092 case MATCH_OPERATOR:
4093 {
4094 int opno = XINT (e->pattern, 0);
4095 num_operands = MAX (num_operands, opno + 1);
4096 const char *pred_name = predicate_name (e->pattern);
4097 if (pred_name[0])
4098 {
4099 const struct pred_data *pred = lookup_predicate (pred_name);
4100 /* Check the mode first, to distinguish things like SImode
4101 and DImode register_operands, as described above. */
4102 machine_mode mode = GET_MODE (e->pattern);
85099d88 4103 if (pred && safe_predicate_mode (pred, mode))
abef0e58 4104 s = add_decision (s, rtx_test::mode (e->pos), mode, true);
59250a8d 4105
4106 /* Assign to operands[] first, so that the rtx usually doesn't
4107 need to be live across the call to the predicate.
4108
4109 This shouldn't cause a problem with dirtying the page,
4110 since we fully expect to assign to operands[] at some point,
4111 and since the caller usually writes to other parts of
4112 recog_data anyway. */
abef0e58 4113 s = add_decision (s, rtx_test::set_op (e->pos, opno),
4114 true, false);
4115 s = add_decision (s, rtx_test::predicate (e->pos, pred, mode),
59250a8d 4116 true, false);
4117 }
4118 else
4119 /* Historically we've ignored the mode when there's no
4120 predicate. Just set up operands[] unconditionally. */
abef0e58 4121 s = add_decision (s, rtx_test::set_op (e->pos, opno),
4122 true, false);
59250a8d 4123 break;
4124 }
4125
4126 default:
abef0e58 4127 s = add_decision (s, rtx_test::mode (e->pos),
59250a8d 4128 GET_MODE (e->pattern), false);
4129 break;
4130 }
4131 }
4132
4133 /* Finally add rtx_equal_p checks for duplicated operands. */
4134 FOR_EACH_VEC_ELT (dup_tests, i, e)
abef0e58 4135 s = add_decision (s, rtx_test::duplicate (e->pos, XINT (e->pattern, 0)),
59250a8d 4136 true, false);
4137 return s;
4138}
4139
4140/* Add new decisions to S that make it return ACCEPTANCE if:
4141
4142 (1) the rtx doesn't match anything already matched by S
4143 (2) the rtx matches TOP_PATTERN and
7c1b1064 4144 (3) the C test required by INFO->def is true
59250a8d 4145
a545c6cd 4146 For peephole2, TOP_PATTERN is a SEQUENCE of the instruction patterns
4147 to match, otherwise it is a single instruction pattern. */
59250a8d 4148
4149static void
7c1b1064 4150match_pattern_1 (state *s, md_rtx_info *info, rtx pattern,
59250a8d 4151 acceptance_type acceptance)
4152{
a545c6cd 4153 if (acceptance.type == PEEPHOLE2)
59250a8d 4154 {
4155 /* Match each individual instruction. */
4156 position **subpos_ptr = &peep2_insn_pos_list;
4157 int count = 0;
c04601c1 4158 for (int i = 0; i < XVECLEN (pattern, 0); ++i)
59250a8d 4159 {
c04601c1 4160 rtx x = XVECEXP (pattern, 0, i);
a545c6cd 4161 position *subpos = next_position (subpos_ptr, &root_pos,
4162 POS_PEEP2_INSN, count);
4163 if (count > 0)
4164 s = add_decision (s, rtx_test::peep2_count (count + 1),
4165 true, false);
c04601c1 4166 s = match_pattern_2 (s, info, subpos, x);
a545c6cd 4167 subpos_ptr = &subpos->next;
4168 count += 1;
59250a8d 4169 }
4170 acceptance.u.full.u.match_len = count - 1;
4171 }
4172 else
4173 {
4174 /* Make the rtx itself. */
c04601c1 4175 s = match_pattern_2 (s, info, &root_pos, pattern);
59250a8d 4176
4177 /* If the match is only valid when extra clobbers are added,
4178 make sure we're able to pass that information to the caller. */
4179 if (acceptance.type == RECOG && acceptance.u.full.u.num_clobbers)
abef0e58 4180 s = add_decision (s, rtx_test::have_num_clobbers (), true, false);
59250a8d 4181 }
4182
4183 /* Make sure that the C test is true. */
7c1b1064 4184 const char *c_test = get_c_test (info->def);
59250a8d 4185 if (maybe_eval_c_test (c_test) != 1)
abef0e58 4186 s = add_decision (s, rtx_test::c_test (c_test), true, false);
59250a8d 4187
4188 /* Accept the pattern. */
abef0e58 4189 add_decision (s, rtx_test::accept (acceptance), true, false);
59250a8d 4190}
4191
4192/* Like match_pattern_1, but (if merge_states_p) try to merge the
4193 decisions with what's already in S, to reduce the amount of
4194 backtracking. */
4195
4196static void
7c1b1064 4197match_pattern (state *s, md_rtx_info *info, rtx pattern,
59250a8d 4198 acceptance_type acceptance)
4199{
4200 if (merge_states_p)
4201 {
4202 state root;
4203 /* Add the decisions to a fresh state and then merge the full tree
4204 into the existing one. */
7c1b1064 4205 match_pattern_1 (&root, info, pattern, acceptance);
59250a8d 4206 merge_into_state (s, &root);
4207 }
4208 else
7c1b1064 4209 match_pattern_1 (s, info, pattern, acceptance);
59250a8d 4210}
4211
4212/* Begin the output file. */
4213
4214static void
4215write_header (void)
4216{
4217 puts ("\
4218/* Generated automatically by the program `genrecog' from the target\n\
4219 machine description file. */\n\
4220\n\
785790dc 4221#define IN_TARGET_CODE 1\n\
4222\n\
59250a8d 4223#include \"config.h\"\n\
4224#include \"system.h\"\n\
4225#include \"coretypes.h\"\n\
9ef16211 4226#include \"backend.h\"\n\
d040a5b0 4227#include \"predict.h\"\n\
59250a8d 4228#include \"rtl.h\"\n\
ad7b10a2 4229#include \"memmodel.h\"\n\
59250a8d 4230#include \"tm_p.h\"\n\
73bde8df 4231#include \"emit-rtl.h\"\n\
59250a8d 4232#include \"insn-config.h\"\n\
4233#include \"recog.h\"\n\
4234#include \"output.h\"\n\
4235#include \"flags.h\"\n\
9ef16211 4236#include \"df.h\"\n\
59250a8d 4237#include \"resource.h\"\n\
4238#include \"diagnostic-core.h\"\n\
4239#include \"reload.h\"\n\
4240#include \"regs.h\"\n\
4241#include \"tm-constrs.h\"\n\
59250a8d 4242\n");
4243
4244 puts ("\n\
4245/* `recog' contains a decision tree that recognizes whether the rtx\n\
4246 X0 is a valid instruction.\n\
4247\n\
4248 recog returns -1 if the rtx is not valid. If the rtx is valid, recog\n\
4249 returns a nonnegative number which is the insn code number for the\n\
4250 pattern that matched. This is the same as the order in the machine\n\
4251 description of the entry that matched. This number can be used as an\n\
4252 index into `insn_data' and other tables.\n");
4253 puts ("\
4254 The third parameter to recog is an optional pointer to an int. If\n\
4255 present, recog will accept a pattern if it matches except for missing\n\
4256 CLOBBER expressions at the end. In that case, the value pointed to by\n\
4257 the optional pointer will be set to the number of CLOBBERs that need\n\
4258 to be added (it should be initialized to zero by the caller). If it");
4259 puts ("\
4260 is set nonzero, the caller should allocate a PARALLEL of the\n\
4261 appropriate size, copy the initial entries, and call add_clobbers\n\
4262 (found in insn-emit.c) to fill in the CLOBBERs.\n\
4263");
4264
4265 puts ("\n\
4266 The function split_insns returns 0 if the rtl could not\n\
4267 be split or the split rtl as an INSN list if it can be.\n\
4268\n\
4269 The function peephole2_insns returns 0 if the rtl could not\n\
4270 be matched. If there was a match, the new rtl is returned in an INSN list,\n\
4271 and LAST_INSN will point to the last recognized insn in the old sequence.\n\
4272*/\n\n");
4273}
4274
4275/* Return the C type of a parameter with type TYPE. */
4276
4277static const char *
4278parameter_type_string (parameter::type_enum type)
4279{
4280 switch (type)
4281 {
4282 case parameter::UNSET:
4283 break;
4284
4285 case parameter::CODE:
4286 return "rtx_code";
4287
4288 case parameter::MODE:
4289 return "machine_mode";
4290
4291 case parameter::INT:
4292 return "int";
4293
15183fd2 4294 case parameter::UINT:
4295 return "unsigned int";
4296
59250a8d 4297 case parameter::WIDE_INT:
4298 return "HOST_WIDE_INT";
4299 }
4300 gcc_unreachable ();
4301}
4302
4303/* Return true if ACCEPTANCE requires only a single C statement even in
4304 a backtracking context. */
4305
4306static bool
4307single_statement_p (const acceptance_type &acceptance)
4308{
4309 if (acceptance.partial_p)
4310 /* We need to handle failures of the subroutine. */
4311 return false;
4312 switch (acceptance.type)
4313 {
4314 case SUBPATTERN:
4315 case SPLIT:
4316 return true;
4317
4318 case RECOG:
4319 /* False if we need to assign to pnum_clobbers. */
4320 return acceptance.u.full.u.num_clobbers == 0;
4321
4322 case PEEPHOLE2:
4323 /* We need to assign to pmatch_len_ and handle null returns from the
4324 peephole2 routine. */
4325 return false;
4326 }
4327 gcc_unreachable ();
4328}
4329
4330/* Return the C failure value for a routine of type TYPE. */
4331
4332static const char *
4333get_failure_return (routine_type type)
4334{
4335 switch (type)
4336 {
4337 case SUBPATTERN:
4338 case RECOG:
4339 return "-1";
4340
4341 case SPLIT:
4342 case PEEPHOLE2:
58a87a29 4343 return "NULL";
59250a8d 4344 }
4345 gcc_unreachable ();
4346}
4347
4348/* Indicates whether a block of code always returns or whether it can fall
4349 through. */
4350
4351enum exit_state {
4352 ES_RETURNED,
4353 ES_FALLTHROUGH
4354};
4355
4356/* Information used while writing out code. */
4357
4358struct output_state
4359{
4360 /* The type of routine that we're generating. */
4361 routine_type type;
4362
4363 /* Maps position ids to xN variable numbers. The entry is only valid if
4364 it is less than the length of VAR_TO_ID, but this holds for every position
4365 tested by a state when writing out that state. */
4366 auto_vec <unsigned int> id_to_var;
4367
4368 /* Maps xN variable numbers to position ids. */
4369 auto_vec <unsigned int> var_to_id;
4370
4371 /* Index N is true if variable xN has already been set. */
4372 auto_vec <bool> seen_vars;
4373};
4374
4375/* Return true if D is a call to a pattern routine and if there is some X
4376 such that the transition for pattern result N goes to a successful return
4377 with code X+N. When returning true, set *BASE_OUT to this X and *COUNT_OUT
4378 to the number of return values. (We know that every PATTERN decision has
4379 a transition for every successful return.) */
4380
4381static bool
4382terminal_pattern_p (decision *d, unsigned int *base_out,
4383 unsigned int *count_out)
4384{
abef0e58 4385 if (d->test.kind != rtx_test::PATTERN)
59250a8d 4386 return false;
4387 unsigned int base = 0;
4388 unsigned int count = 0;
4389 for (transition *trans = d->first; trans; trans = trans->next)
4390 {
4391 if (trans->is_param || trans->labels.length () != 1)
4392 return false;
4393 decision *subd = trans->to->singleton ();
abef0e58 4394 if (!subd || subd->test.kind != rtx_test::ACCEPT)
59250a8d 4395 return false;
4396 unsigned int this_base = (subd->test.u.acceptance.u.full.code
4397 - trans->labels[0]);
4398 if (trans == d->first)
4399 base = this_base;
4400 else if (base != this_base)
4401 return false;
4402 count += 1;
4403 }
4404 *base_out = base;
4405 *count_out = count;
4406 return true;
4407}
4408
4409/* Return true if TEST doesn't test an rtx or if the rtx it tests is
4410 already available in state OS. */
4411
4412static bool
abef0e58 4413test_position_available_p (output_state *os, const rtx_test &test)
59250a8d 4414{
4415 return (!test.pos
4416 || test.pos_operand >= 0
4417 || os->seen_vars[os->id_to_var[test.pos->id]]);
4418}
4419
4420/* Like printf, but print INDENT spaces at the beginning. */
4421
4422static void ATTRIBUTE_PRINTF_2
4423printf_indent (unsigned int indent, const char *format, ...)
4424{
4425 va_list ap;
4426 va_start (ap, format);
4427 printf ("%*s", indent, "");
4428 vprintf (format, ap);
4429 va_end (ap);
4430}
4431
4432/* Emit code to initialize the variable associated with POS, if it isn't
4433 already valid in state OS. Indent each line by INDENT spaces. Update
4434 OS with the new state. */
4435
4436static void
4437change_state (output_state *os, position *pos, unsigned int indent)
4438{
4439 unsigned int var = os->id_to_var[pos->id];
4440 gcc_assert (var < os->var_to_id.length () && os->var_to_id[var] == pos->id);
4441 if (os->seen_vars[var])
4442 return;
4443 switch (pos->type)
4444 {
4445 case POS_PEEP2_INSN:
4446 printf_indent (indent, "x%d = PATTERN (peep2_next_insn (%d));\n",
4447 var, pos->arg);
4448 break;
4449
4450 case POS_XEXP:
4451 change_state (os, pos->base, indent);
4452 printf_indent (indent, "x%d = XEXP (x%d, %d);\n",
4453 var, os->id_to_var[pos->base->id], pos->arg);
4454 break;
4455
4456 case POS_XVECEXP0:
4457 change_state (os, pos->base, indent);
4458 printf_indent (indent, "x%d = XVECEXP (x%d, 0, %d);\n",
4459 var, os->id_to_var[pos->base->id], pos->arg);
4460 break;
4461 }
4462 os->seen_vars[var] = true;
4463}
4464
4465/* Print the enumerator constant for CODE -- the upcase version of
4466 the name. */
4467
4468static void
4469print_code (enum rtx_code code)
4470{
4471 const char *p;
4472 for (p = GET_RTX_NAME (code); *p; p++)
4473 putchar (TOUPPER (*p));
4474}
4475
4476/* Emit a uint64_t as an integer constant expression. We need to take
4477 special care to avoid "decimal constant is so large that it is unsigned"
4478 warnings in the resulting code. */
4479
4480static void
4481print_host_wide_int (uint64_t val)
4482{
4483 uint64_t min = uint64_t (1) << (HOST_BITS_PER_WIDE_INT - 1);
4484 if (val == min)
4485 printf ("(" HOST_WIDE_INT_PRINT_DEC_C " - 1)", val + 1);
4486 else
4487 printf (HOST_WIDE_INT_PRINT_DEC_C, val);
4488}
4489
4490/* Print the C expression for actual parameter PARAM. */
4491
4492static void
4493print_parameter_value (const parameter &param)
4494{
4495 if (param.is_param)
4496 printf ("i%d", (int) param.value + 1);
4497 else
4498 switch (param.type)
4499 {
4500 case parameter::UNSET:
4501 gcc_unreachable ();
4502 break;
4503
4504 case parameter::CODE:
4505 print_code ((enum rtx_code) param.value);
4506 break;
4507
4508 case parameter::MODE:
1e0295b9 4509 printf ("E_%smode", GET_MODE_NAME ((machine_mode) param.value));
59250a8d 4510 break;
4511
4512 case parameter::INT:
4513 printf ("%d", (int) param.value);
4514 break;
4515
15183fd2 4516 case parameter::UINT:
4517 printf ("%u", (unsigned int) param.value);
4518 break;
4519
59250a8d 4520 case parameter::WIDE_INT:
4521 print_host_wide_int (param.value);
4522 break;
4523 }
4524}
4525
4526/* Print the C expression for the rtx tested by TEST. */
4527
4528static void
abef0e58 4529print_test_rtx (output_state *os, const rtx_test &test)
59250a8d 4530{
4531 if (test.pos_operand >= 0)
4532 printf ("operands[%d]", test.pos_operand);
4533 else
4534 printf ("x%d", os->id_to_var[test.pos->id]);
4535}
4536
4537/* Print the C expression for non-boolean test TEST. */
4538
4539static void
abef0e58 4540print_nonbool_test (output_state *os, const rtx_test &test)
59250a8d 4541{
4542 switch (test.kind)
4543 {
abef0e58 4544 case rtx_test::CODE:
59250a8d 4545 printf ("GET_CODE (");
4546 print_test_rtx (os, test);
4547 printf (")");
4548 break;
4549
abef0e58 4550 case rtx_test::MODE:
59250a8d 4551 printf ("GET_MODE (");
4552 print_test_rtx (os, test);
4553 printf (")");
4554 break;
4555
abef0e58 4556 case rtx_test::VECLEN:
59250a8d 4557 printf ("XVECLEN (");
4558 print_test_rtx (os, test);
4559 printf (", 0)");
4560 break;
4561
abef0e58 4562 case rtx_test::INT_FIELD:
59250a8d 4563 printf ("XINT (");
4564 print_test_rtx (os, test);
4565 printf (", %d)", test.u.opno);
4566 break;
4567
15183fd2 4568 case rtx_test::REGNO_FIELD:
4569 printf ("REGNO (");
4570 print_test_rtx (os, test);
4571 printf (")");
4572 break;
4573
abef0e58 4574 case rtx_test::WIDE_INT_FIELD:
59250a8d 4575 printf ("XWINT (");
4576 print_test_rtx (os, test);
4577 printf (", %d)", test.u.opno);
4578 break;
4579
abef0e58 4580 case rtx_test::PATTERN:
59250a8d 4581 {
4582 pattern_routine *routine = test.u.pattern->routine;
4583 printf ("pattern%d (", routine->pattern_id);
4584 const char *sep = "";
4585 if (test.pos)
4586 {
4587 print_test_rtx (os, test);
4588 sep = ", ";
4589 }
4590 if (routine->insn_p)
4591 {
4592 printf ("%sinsn", sep);
4593 sep = ", ";
4594 }
4595 if (routine->pnum_clobbers_p)
4596 {
4597 printf ("%spnum_clobbers", sep);
4598 sep = ", ";
4599 }
4600 for (unsigned int i = 0; i < test.u.pattern->params.length (); ++i)
4601 {
4602 fputs (sep, stdout);
4603 print_parameter_value (test.u.pattern->params[i]);
4604 sep = ", ";
4605 }
4606 printf (")");
4607 break;
4608 }
4609
abef0e58 4610 case rtx_test::PEEP2_COUNT:
4611 case rtx_test::VECLEN_GE:
4612 case rtx_test::SAVED_CONST_INT:
4613 case rtx_test::DUPLICATE:
4614 case rtx_test::PREDICATE:
4615 case rtx_test::SET_OP:
4616 case rtx_test::HAVE_NUM_CLOBBERS:
4617 case rtx_test::C_TEST:
4618 case rtx_test::ACCEPT:
59250a8d 4619 gcc_unreachable ();
4620 }
4621}
4622
4623/* IS_PARAM and LABEL are taken from a transition whose source
4624 decision performs TEST. Print the C code for the label. */
4625
4626static void
abef0e58 4627print_label_value (const rtx_test &test, bool is_param, uint64_t value)
59250a8d 4628{
4629 print_parameter_value (parameter (transition_parameter_type (test.kind),
4630 is_param, value));
4631}
4632
4633/* If IS_PARAM, print code to compare TEST with the C variable i<VALUE+1>.
4634 If !IS_PARAM, print code to compare TEST with the C constant VALUE.
4635 Test for inequality if INVERT_P, otherwise test for equality. */
4636
4637static void
abef0e58 4638print_test (output_state *os, const rtx_test &test, bool is_param,
4639 uint64_t value, bool invert_p)
59250a8d 4640{
4641 switch (test.kind)
4642 {
4643 /* Handle the non-boolean TESTs. */
abef0e58 4644 case rtx_test::CODE:
4645 case rtx_test::MODE:
4646 case rtx_test::VECLEN:
15183fd2 4647 case rtx_test::REGNO_FIELD:
abef0e58 4648 case rtx_test::INT_FIELD:
4649 case rtx_test::WIDE_INT_FIELD:
4650 case rtx_test::PATTERN:
59250a8d 4651 print_nonbool_test (os, test);
4652 printf (" %s ", invert_p ? "!=" : "==");
4653 print_label_value (test, is_param, value);
4654 break;
4655
abef0e58 4656 case rtx_test::SAVED_CONST_INT:
59250a8d 4657 gcc_assert (!is_param && value == 1);
4658 print_test_rtx (os, test);
4659 printf (" %s const_int_rtx[MAX_SAVED_CONST_INT + ",
4660 invert_p ? "!=" : "==");
4661 print_parameter_value (parameter (parameter::INT,
4662 test.u.integer.is_param,
4663 test.u.integer.value));
4664 printf ("]");
4665 break;
4666
abef0e58 4667 case rtx_test::PEEP2_COUNT:
59250a8d 4668 gcc_assert (!is_param && value == 1);
4669 printf ("peep2_current_count %s %d", invert_p ? "<" : ">=",
4670 test.u.min_len);
4671 break;
4672
abef0e58 4673 case rtx_test::VECLEN_GE:
59250a8d 4674 gcc_assert (!is_param && value == 1);
4675 printf ("XVECLEN (");
4676 print_test_rtx (os, test);
4677 printf (", 0) %s %d", invert_p ? "<" : ">=", test.u.min_len);
4678 break;
4679
abef0e58 4680 case rtx_test::PREDICATE:
59250a8d 4681 gcc_assert (!is_param && value == 1);
4682 printf ("%s%s (", invert_p ? "!" : "", test.u.predicate.data->name);
4683 print_test_rtx (os, test);
4684 printf (", ");
4685 print_parameter_value (parameter (parameter::MODE,
4686 test.u.predicate.mode_is_param,
4687 test.u.predicate.mode));
4688 printf (")");
4689 break;
4690
abef0e58 4691 case rtx_test::DUPLICATE:
59250a8d 4692 gcc_assert (!is_param && value == 1);
4693 printf ("%srtx_equal_p (", invert_p ? "!" : "");
4694 print_test_rtx (os, test);
4695 printf (", operands[%d])", test.u.opno);
4696 break;
4697
abef0e58 4698 case rtx_test::HAVE_NUM_CLOBBERS:
59250a8d 4699 gcc_assert (!is_param && value == 1);
4700 printf ("pnum_clobbers %s NULL", invert_p ? "==" : "!=");
4701 break;
4702
abef0e58 4703 case rtx_test::C_TEST:
59250a8d 4704 gcc_assert (!is_param && value == 1);
4705 if (invert_p)
4706 printf ("!");
e1e9159b 4707 rtx_reader_ptr->print_c_condition (test.u.string);
59250a8d 4708 break;
4709
abef0e58 4710 case rtx_test::ACCEPT:
4711 case rtx_test::SET_OP:
59250a8d 4712 gcc_unreachable ();
4713 }
4714}
4715
4716static exit_state print_decision (output_state *, decision *,
4717 unsigned int, bool);
4718
4719/* Print code to perform S, indent each line by INDENT spaces.
4720 IS_FINAL is true if there are no fallback decisions to test on failure;
4721 if the state fails then the entire routine fails. */
4722
4723static exit_state
4724print_state (output_state *os, state *s, unsigned int indent, bool is_final)
4725{
4726 exit_state es = ES_FALLTHROUGH;
4727 for (decision *d = s->first; d; d = d->next)
4728 es = print_decision (os, d, indent, is_final && !d->next);
4729 if (es != ES_RETURNED && is_final)
4730 {
4731 printf_indent (indent, "return %s;\n", get_failure_return (os->type));
4732 es = ES_RETURNED;
4733 }
4734 return es;
4735}
4736
4737/* Print the code for subroutine call ACCEPTANCE (for which partial_p
4738 is known to be true). Return the C condition that indicates a successful
4739 match. */
4740
4741static const char *
4742print_subroutine_call (const acceptance_type &acceptance)
4743{
4744 switch (acceptance.type)
4745 {
4746 case SUBPATTERN:
4747 gcc_unreachable ();
4748
4749 case RECOG:
4750 printf ("recog_%d (x1, insn, pnum_clobbers)",
4751 acceptance.u.subroutine_id);
4752 return ">= 0";
4753
4754 case SPLIT:
4755 printf ("split_%d (x1, insn)", acceptance.u.subroutine_id);
4756 return "!= NULL_RTX";
4757
4758 case PEEPHOLE2:
4759 printf ("peephole2_%d (x1, insn, pmatch_len_)",
4760 acceptance.u.subroutine_id);
4761 return "!= NULL_RTX";
4762 }
4763 gcc_unreachable ();
4764}
4765
4766/* Print code for the successful match described by ACCEPTANCE.
4767 INDENT and IS_FINAL are as for print_state. */
4768
4769static exit_state
4770print_acceptance (const acceptance_type &acceptance, unsigned int indent,
4771 bool is_final)
4772{
4773 if (acceptance.partial_p)
4774 {
4775 /* Defer the rest of the match to a subroutine. */
4776 if (is_final)
4777 {
4778 printf_indent (indent, "return ");
4779 print_subroutine_call (acceptance);
4780 printf (";\n");
4781 return ES_RETURNED;
4782 }
4783 else
4784 {
4785 printf_indent (indent, "res = ");
4786 const char *res_test = print_subroutine_call (acceptance);
4787 printf (";\n");
4788 printf_indent (indent, "if (res %s)\n", res_test);
4789 printf_indent (indent + 2, "return res;\n");
4790 return ES_FALLTHROUGH;
4791 }
4792 }
4793 switch (acceptance.type)
4794 {
4795 case SUBPATTERN:
4796 printf_indent (indent, "return %d;\n", acceptance.u.full.code);
4797 return ES_RETURNED;
4798
4799 case RECOG:
4800 if (acceptance.u.full.u.num_clobbers != 0)
4801 printf_indent (indent, "*pnum_clobbers = %d;\n",
4802 acceptance.u.full.u.num_clobbers);
4803 printf_indent (indent, "return %d; /* %s */\n", acceptance.u.full.code,
4804 get_insn_name (acceptance.u.full.code));
4805 return ES_RETURNED;
4806
4807 case SPLIT:
4808 printf_indent (indent, "return gen_split_%d (insn, operands);\n",
4809 acceptance.u.full.code);
4810 return ES_RETURNED;
4811
4812 case PEEPHOLE2:
4813 printf_indent (indent, "*pmatch_len_ = %d;\n",
4814 acceptance.u.full.u.match_len);
4815 if (is_final)
4816 {
4817 printf_indent (indent, "return gen_peephole2_%d (insn, operands);\n",
4818 acceptance.u.full.code);
4819 return ES_RETURNED;
4820 }
4821 else
4822 {
4823 printf_indent (indent, "res = gen_peephole2_%d (insn, operands);\n",
4824 acceptance.u.full.code);
4825 printf_indent (indent, "if (res != NULL_RTX)\n");
4826 printf_indent (indent + 2, "return res;\n");
4827 return ES_FALLTHROUGH;
4828 }
4829 }
4830 gcc_unreachable ();
4831}
4832
4833/* Print code to perform D. INDENT and IS_FINAL are as for print_state. */
4834
4835static exit_state
4836print_decision (output_state *os, decision *d, unsigned int indent,
4837 bool is_final)
4838{
4839 uint64_t label;
4840 unsigned int base, count;
4841
4842 /* Make sure the rtx under test is available either in operands[] or
4843 in an xN variable. */
4844 if (d->test.pos && d->test.pos_operand < 0)
4845 change_state (os, d->test.pos, indent);
4846
4847 /* Look for cases where a pattern routine P1 calls another pattern routine
4848 P2 and where P1 returns X + BASE whenever P2 returns X. If IS_FINAL
4849 is true and BASE is zero we can simply use:
4850
4851 return patternN (...);
4852
4853 Otherwise we can use:
4854
4855 res = patternN (...);
4856 if (res >= 0)
4857 return res + BASE;
4858
4859 However, if BASE is nonzero and patternN only returns 0 or -1,
4860 the usual "return BASE;" is better than "return res + BASE;".
4861 If BASE is zero, "return res;" should be better than "return 0;",
4862 since no assignment to the return register is required. */
4863 if (os->type == SUBPATTERN
4864 && terminal_pattern_p (d, &base, &count)
4865 && (base == 0 || count > 1))
4866 {
4867 if (is_final && base == 0)
4868 {
4869 printf_indent (indent, "return ");
4870 print_nonbool_test (os, d->test);
4871 printf ("; /* [-1, %d] */\n", count - 1);
4872 return ES_RETURNED;
4873 }
4874 else
4875 {
4876 printf_indent (indent, "res = ");
4877 print_nonbool_test (os, d->test);
4878 printf (";\n");
4879 printf_indent (indent, "if (res >= 0)\n");
4880 printf_indent (indent + 2, "return res");
4881 if (base != 0)
4882 printf (" + %d", base);
4883 printf ("; /* [%d, %d] */\n", base, base + count - 1);
4884 return ES_FALLTHROUGH;
4885 }
4886 }
abef0e58 4887 else if (d->test.kind == rtx_test::ACCEPT)
59250a8d 4888 return print_acceptance (d->test.u.acceptance, indent, is_final);
abef0e58 4889 else if (d->test.kind == rtx_test::SET_OP)
59250a8d 4890 {
4891 printf_indent (indent, "operands[%d] = ", d->test.u.opno);
4892 print_test_rtx (os, d->test);
4893 printf (";\n");
4894 return print_state (os, d->singleton ()->to, indent, is_final);
4895 }
4896 /* Handle decisions with a single transition and a single transition
4897 label. */
4898 else if (d->if_statement_p (&label))
4899 {
4900 transition *trans = d->singleton ();
4901 if (mark_optional_transitions_p && trans->optional)
4902 printf_indent (indent, "/* OPTIONAL IF */\n");
4903
4904 /* Print the condition associated with TRANS. Invert it if IS_FINAL,
4905 so that we return immediately on failure and fall through on
4906 success. */
4907 printf_indent (indent, "if (");
4908 print_test (os, d->test, trans->is_param, label, is_final);
4909
4910 /* Look for following states that would be handled by this code
4911 on recursion. If they don't need any preparatory statements,
4912 include them in the current "if" statement rather than creating
4913 a new one. */
4914 for (;;)
4915 {
4916 d = trans->to->singleton ();
4917 if (!d
abef0e58 4918 || d->test.kind == rtx_test::ACCEPT
4919 || d->test.kind == rtx_test::SET_OP
59250a8d 4920 || !d->if_statement_p (&label)
4921 || !test_position_available_p (os, d->test))
4922 break;
4923 trans = d->first;
4924 printf ("\n");
4925 if (mark_optional_transitions_p && trans->optional)
4926 printf_indent (indent + 4, "/* OPTIONAL IF */\n");
4927 printf_indent (indent + 4, "%s ", is_final ? "||" : "&&");
4928 print_test (os, d->test, trans->is_param, label, is_final);
4929 }
4930 printf (")\n");
4931
4932 /* Print the conditional code with INDENT + 2 and the fallthrough
4933 code with indent INDENT. */
4934 state *to = trans->to;
4935 if (is_final)
4936 {
4937 /* We inverted the condition above, so return failure in the
4938 "if" body and fall through to the target of the transition. */
4939 printf_indent (indent + 2, "return %s;\n",
4940 get_failure_return (os->type));
4941 return print_state (os, to, indent, is_final);
4942 }
4943 else if (to->singleton ()
abef0e58 4944 && to->first->test.kind == rtx_test::ACCEPT
59250a8d 4945 && single_statement_p (to->first->test.u.acceptance))
4946 {
4947 /* The target of the transition is a simple "return" statement.
4948 It doesn't need any braces and doesn't fall through. */
4949 if (print_acceptance (to->first->test.u.acceptance,
4950 indent + 2, true) != ES_RETURNED)
4951 gcc_unreachable ();
4952 return ES_FALLTHROUGH;
4953 }
4954 else
4955 {
4956 /* The general case. Output code for the target of the transition
4957 in braces. This will not invalidate any of the xN variables
4958 that are already valid, but we mustn't rely on any that are
4959 set by the "if" body. */
4960 auto_vec <bool, 32> old_seen;
4961 old_seen.safe_splice (os->seen_vars);
4962
4963 printf_indent (indent + 2, "{\n");
4964 print_state (os, trans->to, indent + 4, is_final);
4965 printf_indent (indent + 2, "}\n");
4966
4967 os->seen_vars.truncate (0);
4968 os->seen_vars.splice (old_seen);
4969 return ES_FALLTHROUGH;
4970 }
4971 }
4972 else
4973 {
4974 /* Output the decision as a switch statement. */
4975 printf_indent (indent, "switch (");
4976 print_nonbool_test (os, d->test);
4977 printf (")\n");
4978
4979 /* Each case statement starts with the same set of valid variables.
4980 These are also the only variables will be valid on fallthrough. */
4981 auto_vec <bool, 32> old_seen;
4982 old_seen.safe_splice (os->seen_vars);
4983
4984 printf_indent (indent + 2, "{\n");
4985 for (transition *trans = d->first; trans; trans = trans->next)
4986 {
4987 gcc_assert (!trans->is_param);
4988 if (mark_optional_transitions_p && trans->optional)
4989 printf_indent (indent + 2, "/* OPTIONAL CASE */\n");
4990 for (int_set::iterator j = trans->labels.begin ();
4991 j != trans->labels.end (); ++j)
4992 {
4993 printf_indent (indent + 2, "case ");
4994 print_label_value (d->test, trans->is_param, *j);
4995 printf (":\n");
4996 }
4997 if (print_state (os, trans->to, indent + 4, is_final))
4998 {
4999 /* The state can fall through. Add an explicit break. */
5000 gcc_assert (!is_final);
5001 printf_indent (indent + 4, "break;\n");
5002 }
5003 printf ("\n");
6d69ff19 5004
59250a8d 5005 /* Restore the original set of valid variables. */
5006 os->seen_vars.truncate (0);
5007 os->seen_vars.splice (old_seen);
6d69ff19 5008 }
59250a8d 5009 /* Add a default case. */
5010 printf_indent (indent + 2, "default:\n");
5011 if (is_final)
5012 printf_indent (indent + 4, "return %s;\n",
5013 get_failure_return (os->type));
5014 else
5015 printf_indent (indent + 4, "break;\n");
5016 printf_indent (indent + 2, "}\n");
5017 return is_final ? ES_RETURNED : ES_FALLTHROUGH;
6d69ff19 5018 }
59250a8d 5019}
6d69ff19 5020
59250a8d 5021/* Make sure that OS has a position variable for POS. ROOT_P is true if
5022 POS is the root position for the routine. */
6d69ff19 5023
59250a8d 5024static void
5025assign_position_var (output_state *os, position *pos, bool root_p)
5026{
5027 unsigned int idx = os->id_to_var[pos->id];
5028 if (idx < os->var_to_id.length () && os->var_to_id[idx] == pos->id)
5029 return;
5030 if (!root_p && pos->type != POS_PEEP2_INSN)
5031 assign_position_var (os, pos->base, false);
5032 os->id_to_var[pos->id] = os->var_to_id.length ();
5033 os->var_to_id.safe_push (pos->id);
263287f7 5034}
5035
59250a8d 5036/* Make sure that OS has the position variables required by S. */
6d69ff19 5037
263287f7 5038static void
59250a8d 5039assign_position_vars (output_state *os, state *s)
263287f7 5040{
59250a8d 5041 for (decision *d = s->first; d; d = d->next)
6d69ff19 5042 {
59250a8d 5043 /* Positions associated with operands can be read from the
5044 operands[] array. */
5045 if (d->test.pos && d->test.pos_operand < 0)
5046 assign_position_var (os, d->test.pos, false);
5047 for (transition *trans = d->first; trans; trans = trans->next)
5048 assign_position_vars (os, trans->to);
6d69ff19 5049 }
6d69ff19 5050}
a698628e 5051
59250a8d 5052/* Print the open brace and variable definitions for a routine that
5053 implements S. ROOT is the deepest rtx from which S can access all
5054 relevant parts of the first instruction it matches. Initialize OS
5055 so that every relevant position has an rtx variable xN and so that
5056 only ROOT's variable has a valid value. */
a698628e 5057
5058static void
59250a8d 5059print_subroutine_start (output_state *os, state *s, position *root)
a698628e 5060{
59250a8d 5061 printf ("{\n rtx * const operands ATTRIBUTE_UNUSED"
5062 " = &recog_data.operand[0];\n");
5063 os->var_to_id.truncate (0);
5064 os->seen_vars.truncate (0);
5065 if (root)
a698628e 5066 {
59250a8d 5067 /* Create a fake entry for position 0 so that an id_to_var of 0
5068 is always invalid. This also makes the xN variables naturally
5069 1-based rather than 0-based. */
5070 os->var_to_id.safe_push (num_positions);
6d69ff19 5071
59250a8d 5072 /* Associate ROOT with x1. */
5073 assign_position_var (os, root, true);
a698628e 5074
59250a8d 5075 /* Assign xN variables to all other relevant positions. */
5076 assign_position_vars (os, s);
6d69ff19 5077
59250a8d 5078 /* Output the variable declarations (except for ROOT's, which is
5079 passed in as a parameter). */
5080 unsigned int num_vars = os->var_to_id.length ();
5081 if (num_vars > 2)
a698628e 5082 {
59250a8d 5083 for (unsigned int i = 2; i < num_vars; ++i)
5084 /* Print 8 rtx variables to a line. */
5085 printf ("%s x%d",
5086 i == 2 ? " rtx" : (i - 2) % 8 == 0 ? ";\n rtx" : ",", i);
5087 printf (";\n");
6d69ff19 5088 }
a698628e 5089
59250a8d 5090 /* Say that x1 is valid and the rest aren't. */
5091 os->seen_vars.safe_grow_cleared (num_vars);
5092 os->seen_vars[1] = true;
6d69ff19 5093 }
59250a8d 5094 if (os->type == SUBPATTERN || os->type == RECOG)
5095 printf (" int res ATTRIBUTE_UNUSED;\n");
5096 else
58a87a29 5097 printf (" rtx_insn *res ATTRIBUTE_UNUSED;\n");
a698628e 5098}
5099
59250a8d 5100/* Output the definition of pattern routine ROUTINE. */
82575fa7 5101
6d69ff19 5102static void
59250a8d 5103print_pattern (output_state *os, pattern_routine *routine)
6d69ff19 5104{
59250a8d 5105 printf ("\nstatic int\npattern%d (", routine->pattern_id);
5106 const char *sep = "";
5107 /* Add the top-level rtx parameter, if any. */
5108 if (routine->pos)
5109 {
5110 printf ("%srtx x1", sep);
5111 sep = ", ";
5112 }
5113 /* Add the optional parameters. */
5114 if (routine->insn_p)
5115 {
5116 /* We can't easily tell whether a C condition actually reads INSN,
5117 so add an ATTRIBUTE_UNUSED just in case. */
5118 printf ("%srtx_insn *insn ATTRIBUTE_UNUSED", sep);
5119 sep = ", ";
5120 }
5121 if (routine->pnum_clobbers_p)
5122 {
5123 printf ("%sint *pnum_clobbers", sep);
5124 sep = ", ";
5125 }
5126 /* Add the "i" parameters. */
5127 for (unsigned int i = 0; i < routine->param_types.length (); ++i)
5128 {
5129 printf ("%s%s i%d", sep,
5130 parameter_type_string (routine->param_types[i]), i + 1);
5131 sep = ", ";
5132 }
5133 printf (")\n");
5134 os->type = SUBPATTERN;
5135 print_subroutine_start (os, routine->s, routine->pos);
5136 print_state (os, routine->s, 2, true);
5137 printf ("}\n");
5138}
a698628e 5139
59250a8d 5140/* Output a routine of type TYPE that implements S. PROC_ID is the
5141 number of the subroutine associated with S, or 0 if S is the main
5142 routine. */
6d69ff19 5143
59250a8d 5144static void
5145print_subroutine (output_state *os, state *s, int proc_id)
5146{
59250a8d 5147 printf ("\n");
5148 switch (os->type)
e4ba8ded 5149 {
59250a8d 5150 case SUBPATTERN:
5151 gcc_unreachable ();
5152
e4ba8ded 5153 case RECOG:
59250a8d 5154 if (proc_id)
5155 printf ("static int\nrecog_%d", proc_id);
5156 else
5157 printf ("int\nrecog");
5158 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
30302b7c 5159 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5160 "\tint *pnum_clobbers ATTRIBUTE_UNUSED)\n");
e4ba8ded 5161 break;
59250a8d 5162
e4ba8ded 5163 case SPLIT:
59250a8d 5164 if (proc_id)
58a87a29 5165 printf ("static rtx_insn *\nsplit_%d", proc_id);
59250a8d 5166 else
58a87a29 5167 printf ("rtx_insn *\nsplit_insns");
5168 printf (" (rtx x1 ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED)\n");
e4ba8ded 5169 break;
59250a8d 5170
e4ba8ded 5171 case PEEPHOLE2:
59250a8d 5172 if (proc_id)
58a87a29 5173 printf ("static rtx_insn *\npeephole2_%d", proc_id);
59250a8d 5174 else
58a87a29 5175 printf ("rtx_insn *\npeephole2_insns");
59250a8d 5176 printf (" (rtx x1 ATTRIBUTE_UNUSED,\n"
58a87a29 5177 "\trtx_insn *insn ATTRIBUTE_UNUSED,\n"
5178 "\tint *pmatch_len_ ATTRIBUTE_UNUSED)\n");
e4ba8ded 5179 break;
5180 }
59250a8d 5181 print_subroutine_start (os, s, &root_pos);
5182 if (proc_id == 0)
bf59a32d 5183 {
60ff05a9 5184 printf (" recog_data.insn = NULL;\n");
bf59a32d 5185 }
59250a8d 5186 print_state (os, s, 2, true);
5187 printf ("}\n");
6d69ff19 5188}
5189
59250a8d 5190/* Print out a routine of type TYPE that performs ROOT. */
a698628e 5191
263287f7 5192static void
59250a8d 5193print_subroutine_group (output_state *os, routine_type type, state *root)
263287f7 5194{
59250a8d 5195 os->type = type;
5196 if (use_subroutines_p)
5197 {
5198 /* Split ROOT up into smaller pieces, both for readability and to
5199 help the compiler. */
5200 auto_vec <state *> subroutines;
5201 find_subroutines (type, root, subroutines);
5202
5203 /* Output the subroutines (but not ROOT itself). */
5204 unsigned int i;
5205 state *s;
5206 FOR_EACH_VEC_ELT (subroutines, i, s)
5207 print_subroutine (os, s, i + 1);
5208 }
5209 /* Output the main routine. */
5210 print_subroutine (os, root, 0);
6d69ff19 5211}
82575fa7 5212
a545c6cd 5213/* Return the rtx pattern for the list of rtxes in a define_peephole2. */
5214
5215static rtx
c04601c1 5216get_peephole2_pattern (md_rtx_info *info)
a545c6cd 5217{
5218 int i, j;
c04601c1 5219 rtvec vec = XVEC (info->def, 0);
a545c6cd 5220 rtx pattern = rtx_alloc (SEQUENCE);
5221 XVEC (pattern, 0) = rtvec_alloc (GET_NUM_ELEM (vec));
5222 for (i = j = 0; i < GET_NUM_ELEM (vec); i++)
5223 {
5224 rtx x = RTVEC_ELT (vec, i);
5225 /* Ignore scratch register requirements. */
5226 if (GET_CODE (x) != MATCH_SCRATCH && GET_CODE (x) != MATCH_DUP)
5227 {
5228 XVECEXP (pattern, 0, j) = x;
5229 j++;
5230 }
5231 }
5232 XVECLEN (pattern, 0) = j;
5233 if (j == 0)
c04601c1 5234 error_at (info->loc, "empty define_peephole2");
a545c6cd 5235 return pattern;
5236}
5237
59250a8d 5238/* Return true if *PATTERN_PTR is a PARALLEL in which at least one trailing
5239 rtx can be added automatically by add_clobbers. If so, update
5240 *ACCEPTANCE_PTR so that its num_clobbers field contains the number
5241 of such trailing rtxes and update *PATTERN_PTR so that it contains
5242 the pattern without those rtxes. */
6d69ff19 5243
59250a8d 5244static bool
5245remove_clobbers (acceptance_type *acceptance_ptr, rtx *pattern_ptr)
5246{
5247 int i;
5248 rtx new_pattern;
6d69ff19 5249
59250a8d 5250 /* Find the last non-clobber in the parallel. */
5251 rtx pattern = *pattern_ptr;
5252 for (i = XVECLEN (pattern, 0); i > 0; i--)
6d69ff19 5253 {
59250a8d 5254 rtx x = XVECEXP (pattern, 0, i - 1);
5255 if (GET_CODE (x) != CLOBBER
5256 || (!REG_P (XEXP (x, 0))
5257 && GET_CODE (XEXP (x, 0)) != MATCH_SCRATCH))
5258 break;
263287f7 5259 }
a698628e 5260
59250a8d 5261 if (i == XVECLEN (pattern, 0))
5262 return false;
263287f7 5263
59250a8d 5264 /* Build a similar insn without the clobbers. */
5265 if (i == 1)
5266 new_pattern = XVECEXP (pattern, 0, 0);
f4adfe76 5267 else
a5deb6f6 5268 {
59250a8d 5269 new_pattern = rtx_alloc (PARALLEL);
5270 XVEC (new_pattern, 0) = rtvec_alloc (i);
5271 for (int j = 0; j < i; ++j)
5272 XVECEXP (new_pattern, 0, j) = XVECEXP (pattern, 0, j);
a5deb6f6 5273 }
f4adfe76 5274
59250a8d 5275 /* Recognize it. */
5276 acceptance_ptr->u.full.u.num_clobbers = XVECLEN (pattern, 0) - i;
5277 *pattern_ptr = new_pattern;
5278 return true;
6d69ff19 5279}
867b95d0 5280
263287f7 5281int
16570c04 5282main (int argc, const char **argv)
263287f7 5283{
59250a8d 5284 state insn_root, split_root, peephole2_root;
263287f7 5285
04b58880 5286 progname = "genrecog";
6d69ff19 5287
77ba95d0 5288 if (!init_rtx_reader_args (argc, argv))
c5ddd6b5 5289 return (FATAL_EXIT_CODE);
263287f7 5290
6d69ff19 5291 write_header ();
263287f7 5292
5293 /* Read the machine description. */
5294
c04601c1 5295 md_rtx_info info;
5296 while (read_md_rtx (&info))
263287f7 5297 {
c04601c1 5298 rtx def = info.def;
263287f7 5299
59250a8d 5300 acceptance_type acceptance;
5301 acceptance.partial_p = false;
c04601c1 5302 acceptance.u.full.code = info.index;
59250a8d 5303
a545c6cd 5304 rtx pattern;
c04601c1 5305 switch (GET_CODE (def))
6d69ff19 5306 {
cbf464bd 5307 case DEFINE_INSN:
59250a8d 5308 {
5309 /* Match the instruction in the original .md form. */
59250a8d 5310 acceptance.type = RECOG;
5311 acceptance.u.full.u.num_clobbers = 0;
c04601c1 5312 pattern = add_implicit_parallel (XVEC (def, 1));
5313 validate_pattern (pattern, &info, NULL_RTX, 0);
7c1b1064 5314 match_pattern (&insn_root, &info, pattern, acceptance);
59250a8d 5315
5316 /* If the pattern is a PARALLEL with trailing CLOBBERs,
5317 allow recog_for_combine to match without the clobbers. */
5318 if (GET_CODE (pattern) == PARALLEL
5319 && remove_clobbers (&acceptance, &pattern))
7c1b1064 5320 match_pattern (&insn_root, &info, pattern, acceptance);
59250a8d 5321 break;
5322 }
cbf464bd 5323
5324 case DEFINE_SPLIT:
59250a8d 5325 acceptance.type = SPLIT;
c04601c1 5326 pattern = add_implicit_parallel (XVEC (def, 0));
5327 validate_pattern (pattern, &info, NULL_RTX, 0);
7c1b1064 5328 match_pattern (&split_root, &info, pattern, acceptance);
59250a8d 5329
5330 /* Declare the gen_split routine that we'll call if the
5331 pattern matches. The definition comes from insn-emit.c. */
58a87a29 5332 printf ("extern rtx_insn *gen_split_%d (rtx_insn *, rtx *);\n",
c04601c1 5333 info.index);
cbf464bd 5334 break;
5335
5336 case DEFINE_PEEPHOLE2:
59250a8d 5337 acceptance.type = PEEPHOLE2;
c04601c1 5338 pattern = get_peephole2_pattern (&info);
5339 validate_pattern (pattern, &info, NULL_RTX, 0);
7c1b1064 5340 match_pattern (&peephole2_root, &info, pattern, acceptance);
59250a8d 5341
5342 /* Declare the gen_peephole2 routine that we'll call if the
5343 pattern matches. The definition comes from insn-emit.c. */
58a87a29 5344 printf ("extern rtx_insn *gen_peephole2_%d (rtx_insn *, rtx *);\n",
c04601c1 5345 info.index);
59250a8d 5346 break;
fcb53c1e 5347
cbf464bd 5348 default:
5349 /* do nothing */;
5350 }
263287f7 5351 }
5352
b638f5c8 5353 if (have_error)
0922b1b8 5354 return FATAL_EXIT_CODE;
5355
6d69ff19 5356 puts ("\n\n");
263287f7 5357
59250a8d 5358 /* Optimize each routine in turn. */
5359 optimize_subroutine_group ("recog", &insn_root);
5360 optimize_subroutine_group ("split_insns", &split_root);
5361 optimize_subroutine_group ("peephole2_insns", &peephole2_root);
6d69ff19 5362
59250a8d 5363 output_state os;
5364 os.id_to_var.safe_grow_cleared (num_positions);
6d69ff19 5365
59250a8d 5366 if (use_pattern_routines_p)
6d69ff19 5367 {
59250a8d 5368 /* Look for common patterns and split them out into subroutines. */
5369 auto_vec <merge_state_info> states;
5370 states.safe_push (&insn_root);
5371 states.safe_push (&split_root);
5372 states.safe_push (&peephole2_root);
5373 split_out_patterns (states);
5374
5375 /* Print out the routines that we just created. */
5376 unsigned int i;
5377 pattern_routine *routine;
5378 FOR_EACH_VEC_ELT (patterns, i, routine)
5379 print_pattern (&os, routine);
6d69ff19 5380 }
5381
59250a8d 5382 /* Print out the matching routines. */
5383 print_subroutine_group (&os, RECOG, &insn_root);
5384 print_subroutine_group (&os, SPLIT, &split_root);
5385 print_subroutine_group (&os, PEEPHOLE2, &peephole2_root);
940b9cea 5386
59250a8d 5387 fflush (stdout);
5388 return (ferror (stdout) != 0 ? FATAL_EXIT_CODE : SUCCESS_EXIT_CODE);
940b9cea 5389}