]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ggc-page.c
[Ada] Disable unwanted warnings in Assertion_Policy(Ignore) mode
[thirdparty/gcc.git] / gcc / ggc-page.c
CommitLineData
21341cfd 1/* "Bag-of-pages" garbage collector for the GNU compiler.
8d9254fc 2 Copyright (C) 1999-2020 Free Software Foundation, Inc.
21341cfd 3
1322177d 4This file is part of GCC.
21341cfd 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
21341cfd 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
21341cfd 15
b9bfacf0 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
21341cfd 19
21341cfd 20#include "config.h"
21341cfd 21#include "system.h"
4977bab6 22#include "coretypes.h"
c7131fb2 23#include "backend.h"
40e23961 24#include "alias.h"
21341cfd 25#include "tree.h"
e5ecd4ea 26#include "rtl.h"
4d0cdd0c 27#include "memmodel.h"
1b42a6a9 28#include "tm_p.h"
718f9c0f 29#include "diagnostic-core.h"
21341cfd 30#include "flags.h"
a9429e29 31#include "ggc-internal.h"
2a9a326b 32#include "timevar.h"
442b4905 33#include "cgraph.h"
b78cd885 34#include "cfgloop.h"
ae2392a9 35#include "plugin.h"
e5ecd4ea 36
825b6926
ZW
37/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
38 file open. Prefer either to valloc. */
39#ifdef HAVE_MMAP_ANON
40# undef HAVE_MMAP_DEV_ZERO
825b6926 41# define USING_MMAP
005537df 42#endif
21341cfd 43
825b6926 44#ifdef HAVE_MMAP_DEV_ZERO
825b6926 45# define USING_MMAP
8342b467
RH
46#endif
47
130fadbb
RH
48#ifndef USING_MMAP
49#define USING_MALLOC_PAGE_GROUPS
5b918807 50#endif
21341cfd 51
87fb500b
RO
52#if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
53 && defined(USING_MMAP)
711a3d82
AK
54# define USING_MADVISE
55#endif
56
0fa2e4df 57/* Strategy:
21341cfd
AS
58
59 This garbage-collecting allocator allocates objects on one of a set
60 of pages. Each page can allocate objects of a single size only;
61 available sizes are powers of two starting at four bytes. The size
62 of an allocation request is rounded up to the next power of two
63 (`order'), and satisfied from the appropriate page.
64
65 Each page is recorded in a page-entry, which also maintains an
66 in-use bitmap of object positions on the page. This allows the
67 allocation state of a particular object to be flipped without
68 touching the page itself.
69
70 Each page-entry also has a context depth, which is used to track
71 pushing and popping of allocation contexts. Only objects allocated
589005ff 72 in the current (highest-numbered) context may be collected.
21341cfd
AS
73
74 Page entries are arranged in an array of singly-linked lists. The
75 array is indexed by the allocation size, in bits, of the pages on
76 it; i.e. all pages on a list allocate objects of the same size.
77 Pages are ordered on the list such that all non-full pages precede
78 all full pages, with non-full pages arranged in order of decreasing
79 context depth.
80
81 Empty pages (of all orders) are kept on a single page cache list,
82 and are considered first when new pages are required; they are
83 deallocated at the start of the next collection if they haven't
84 been recycled by then. */
85
21341cfd
AS
86/* Define GGC_DEBUG_LEVEL to print debugging information.
87 0: No debugging output.
88 1: GC statistics only.
89 2: Page-entry allocations/deallocations as well.
90 3: Object allocations as well.
6d2f8887 91 4: Object marks as well. */
21341cfd 92#define GGC_DEBUG_LEVEL (0)
21341cfd
AS
93\f
94/* A two-level tree is used to look up the page-entry for a given
95 pointer. Two chunks of the pointer's bits are extracted to index
96 the first and second levels of the tree, as follows:
97
98 HOST_PAGE_SIZE_BITS
99 32 | |
100 msb +----------------+----+------+------+ lsb
101 | | |
102 PAGE_L1_BITS |
103 | |
104 PAGE_L2_BITS
105
106 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
107 pages are aligned on system page boundaries. The next most
108 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
589005ff 109 index values in the lookup table, respectively.
21341cfd 110
005537df
RH
111 For 32-bit architectures and the settings below, there are no
112 leftover bits. For architectures with wider pointers, the lookup
113 tree points to a list of pages, which must be scanned to find the
114 correct one. */
21341cfd
AS
115
116#define PAGE_L1_BITS (8)
117#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
2a6e6fea
TG
118#define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
119#define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
21341cfd
AS
120
121#define LOOKUP_L1(p) \
2a6e6fea 122 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
21341cfd
AS
123
124#define LOOKUP_L2(p) \
2a6e6fea 125 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
21341cfd 126
2be510b8
MM
127/* The number of objects per allocation page, for objects on a page of
128 the indicated ORDER. */
129#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
130
17211ab5
GK
131/* The number of objects in P. */
132#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
133
2be510b8
MM
134/* The size of an object on a page of the indicated ORDER. */
135#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
136
8537ed68
ZW
137/* For speed, we avoid doing a general integer divide to locate the
138 offset in the allocation bitmap, by precalculating numbers M, S
139 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
140 within the page which is evenly divisible by the object size Z. */
141#define DIV_MULT(ORDER) inverse_table[ORDER].mult
142#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
143#define OFFSET_TO_BIT(OFFSET, ORDER) \
144 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
145
b78cd885
RG
146/* We use this structure to determine the alignment required for
147 allocations. For power-of-two sized allocations, that's not a
148 problem, but it does matter for odd-sized allocations.
149 We do not care about alignment for floating-point types. */
150
151struct max_alignment {
152 char c;
153 union {
a9243bfc 154 int64_t i;
b78cd885
RG
155 void *p;
156 } u;
157};
158
159/* The biggest alignment required. */
160
161#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
162
163
2be510b8
MM
164/* The number of extra orders, not corresponding to power-of-two sized
165 objects. */
166
ca7558fc 167#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
2be510b8 168
d1f1cc6a 169#define RTL_SIZE(NSLOTS) \
e1de1560 170 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
d1f1cc6a 171
5e26df64
SB
172#define TREE_EXP_SIZE(OPS) \
173 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
174
2be510b8
MM
175/* The Ith entry is the maximum size of an object to be stored in the
176 Ith extra order. Adding a new entry to this array is the *only*
177 thing you need to do to add a new special allocation size. */
178
179static const size_t extra_order_size_table[] = {
b78cd885
RG
180 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
181 There are a lot of structures with these sizes and explicitly
182 listing them risks orders being dropped because they changed size. */
183 MAX_ALIGNMENT * 3,
184 MAX_ALIGNMENT * 5,
185 MAX_ALIGNMENT * 6,
186 MAX_ALIGNMENT * 7,
187 MAX_ALIGNMENT * 9,
188 MAX_ALIGNMENT * 10,
189 MAX_ALIGNMENT * 11,
190 MAX_ALIGNMENT * 12,
191 MAX_ALIGNMENT * 13,
192 MAX_ALIGNMENT * 14,
193 MAX_ALIGNMENT * 15,
820cc88f
DB
194 sizeof (struct tree_decl_non_common),
195 sizeof (struct tree_field_decl),
196 sizeof (struct tree_parm_decl),
197 sizeof (struct tree_var_decl),
51545682 198 sizeof (struct tree_type_non_common),
f5938dcd
RG
199 sizeof (struct function),
200 sizeof (struct basic_block_def),
b78cd885 201 sizeof (struct cgraph_node),
99b1c316 202 sizeof (class loop),
2be510b8
MM
203};
204
205/* The total number of orders. */
206
207#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
208
17211ab5
GK
209/* Compute the smallest nonnegative number which when added to X gives
210 a multiple of F. */
211
212#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
213
3bc50163
AK
214/* Round X to next multiple of the page size */
215
54070b51 216#define PAGE_ALIGN(x) ROUND_UP ((x), G.pagesize)
3bc50163 217
2be510b8
MM
218/* The Ith entry is the number of objects on a page or order I. */
219
220static unsigned objects_per_page_table[NUM_ORDERS];
221
222/* The Ith entry is the size of an object on a page of order I. */
223
224static size_t object_size_table[NUM_ORDERS];
21341cfd 225
8537ed68
ZW
226/* The Ith entry is a pair of numbers (mult, shift) such that
227 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
228 for all k evenly divisible by OBJECT_SIZE(I). */
229
230static struct
231{
75d75435 232 size_t mult;
8537ed68
ZW
233 unsigned int shift;
234}
235inverse_table[NUM_ORDERS];
236
21341cfd
AS
237/* A page_entry records the status of an allocation page. This
238 structure is dynamically sized to fit the bitmap in_use_p. */
a79683d5 239struct page_entry
21341cfd
AS
240{
241 /* The next page-entry with objects of the same size, or NULL if
242 this is the last page-entry. */
243 struct page_entry *next;
244
9bf793f9
JL
245 /* The previous page-entry with objects of the same size, or NULL if
246 this is the first page-entry. The PREV pointer exists solely to
71cc389b 247 keep the cost of ggc_free manageable. */
9bf793f9
JL
248 struct page_entry *prev;
249
21341cfd
AS
250 /* The number of bytes allocated. (This will always be a multiple
251 of the host system page size.) */
252 size_t bytes;
253
254 /* The address at which the memory is allocated. */
255 char *page;
256
130fadbb
RH
257#ifdef USING_MALLOC_PAGE_GROUPS
258 /* Back pointer to the page group this page came from. */
259 struct page_group *group;
260#endif
261
c4775f82
MS
262 /* This is the index in the by_depth varray where this page table
263 can be found. */
264 unsigned long index_by_depth;
21341cfd
AS
265
266 /* Context depth of this page. */
ae373eda 267 unsigned short context_depth;
21341cfd
AS
268
269 /* The number of free objects remaining on this page. */
270 unsigned short num_free_objects;
271
272 /* A likely candidate for the bit position of a free object for the
273 next allocation from this page. */
274 unsigned short next_bit_hint;
275
ae373eda
MM
276 /* The lg of size of objects allocated from this page. */
277 unsigned char order;
278
711a3d82
AK
279 /* Discarded page? */
280 bool discarded;
281
21341cfd
AS
282 /* A bit vector indicating whether or not objects are in use. The
283 Nth bit is one if the Nth object on this page is allocated. This
284 array is dynamically sized. */
285 unsigned long in_use_p[1];
a79683d5 286};
21341cfd 287
130fadbb
RH
288#ifdef USING_MALLOC_PAGE_GROUPS
289/* A page_group describes a large allocation from malloc, from which
290 we parcel out aligned pages. */
a79683d5 291struct page_group
130fadbb
RH
292{
293 /* A linked list of all extant page groups. */
294 struct page_group *next;
295
296 /* The address we received from malloc. */
297 char *allocation;
298
299 /* The size of the block. */
300 size_t alloc_size;
301
302 /* A bitmask of pages in use. */
303 unsigned int in_use;
a79683d5 304};
130fadbb 305#endif
21341cfd
AS
306
307#if HOST_BITS_PER_PTR <= 32
308
309/* On 32-bit hosts, we use a two level page table, as pictured above. */
310typedef page_entry **page_table[PAGE_L1_SIZE];
311
312#else
313
005537df
RH
314/* On 64-bit hosts, we use the same two level page tables plus a linked
315 list that disambiguates the top 32-bits. There will almost always be
21341cfd
AS
316 exactly one entry in the list. */
317typedef struct page_table_chain
318{
319 struct page_table_chain *next;
320 size_t high_bits;
321 page_entry **table[PAGE_L1_SIZE];
322} *page_table;
323
324#endif
325
de49ce19
TS
326class finalizer
327{
328public:
329 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
330
331 void *addr () const { return m_addr; }
332
333 void call () const { m_function (m_addr); }
334
335private:
336 void *m_addr;
337 void (*m_function)(void *);
338};
339
340class vec_finalizer
341{
342public:
343 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
344 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
345
346 void call () const
347 {
348 for (size_t i = 0; i < m_n_objects; i++)
349 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
350 }
351
352 void *addr () const { return reinterpret_cast<void *> (m_addr); }
353
354private:
355 uintptr_t m_addr;
356 void (*m_function)(void *);
357 size_t m_object_size;
358 size_t m_n_objects;
2a304777 359};
de49ce19 360
9957322d
DK
361#ifdef ENABLE_GC_ALWAYS_COLLECT
362/* List of free objects to be verified as actually free on the
363 next collection. */
364struct free_object
365{
366 void *object;
367 struct free_object *next;
368};
369#endif
370
21341cfd 371/* The rest of the global variables. */
11478306 372static struct ggc_globals
21341cfd
AS
373{
374 /* The Nth element in this array is a page with objects of size 2^N.
375 If there are any pages with free objects, they will be at the
376 head of the list. NULL if there are no page-entries for this
377 object size. */
2be510b8 378 page_entry *pages[NUM_ORDERS];
21341cfd
AS
379
380 /* The Nth element in this array is the last page with objects of
381 size 2^N. NULL if there are no page-entries for this object
382 size. */
2be510b8 383 page_entry *page_tails[NUM_ORDERS];
21341cfd
AS
384
385 /* Lookup table for associating allocation pages with object addresses. */
386 page_table lookup;
387
388 /* The system's page size. */
389 size_t pagesize;
390 size_t lg_pagesize;
391
392 /* Bytes currently allocated. */
393 size_t allocated;
394
395 /* Bytes currently allocated at the end of the last collection. */
396 size_t allocated_last_gc;
397
3277221c
MM
398 /* Total amount of memory mapped. */
399 size_t bytes_mapped;
400
52895e1a
RH
401 /* Bit N set if any allocations have been done at context depth N. */
402 unsigned long context_depth_allocations;
403
404 /* Bit N set if any collections have been done at context depth N. */
405 unsigned long context_depth_collections;
406
21341cfd 407 /* The current depth in the context stack. */
d416576b 408 unsigned short context_depth;
21341cfd
AS
409
410 /* A file descriptor open to /dev/zero for reading. */
825b6926 411#if defined (HAVE_MMAP_DEV_ZERO)
21341cfd
AS
412 int dev_zero_fd;
413#endif
414
415 /* A cache of free system pages. */
416 page_entry *free_pages;
417
130fadbb
RH
418#ifdef USING_MALLOC_PAGE_GROUPS
419 page_group *page_groups;
420#endif
421
21341cfd
AS
422 /* The file descriptor for debugging output. */
423 FILE *debug_file;
c4775f82
MS
424
425 /* Current number of elements in use in depth below. */
426 unsigned int depth_in_use;
427
428 /* Maximum number of elements that can be used before resizing. */
429 unsigned int depth_max;
430
fa10beec 431 /* Each element of this array is an index in by_depth where the given
c4775f82
MS
432 depth starts. This structure is indexed by that given depth we
433 are interested in. */
434 unsigned int *depth;
435
436 /* Current number of elements in use in by_depth below. */
437 unsigned int by_depth_in_use;
438
439 /* Maximum number of elements that can be used before resizing. */
440 unsigned int by_depth_max;
441
442 /* Each element of this array is a pointer to a page_entry, all
443 page_entries can be found in here by increasing depth.
444 index_by_depth in the page_entry is the index into this data
445 structure where that page_entry can be found. This is used to
446 speed up finding all page_entries at a particular depth. */
447 page_entry **by_depth;
448
449 /* Each element is a pointer to the saved in_use_p bits, if any,
450 zero otherwise. We allocate them all together, to enable a
451 better runtime data access pattern. */
452 unsigned long **save_in_use;
685fe032 453
2a304777
JM
454 /* Finalizers for single objects. The first index is collection_depth. */
455 vec<vec<finalizer> > finalizers;
de49ce19
TS
456
457 /* Finalizers for vectors of objects. */
2a304777 458 vec<vec<vec_finalizer> > vec_finalizers;
de49ce19 459
685fe032
RH
460#ifdef ENABLE_GC_ALWAYS_COLLECT
461 /* List of free objects to be verified as actually free on the
462 next collection. */
9957322d 463 struct free_object *free_object_list;
685fe032
RH
464#endif
465
adc4adcd
GP
466 struct
467 {
a9429e29 468 /* Total GC-allocated memory. */
adc4adcd 469 unsigned long long total_allocated;
a9429e29 470 /* Total overhead for GC-allocated memory. */
adc4adcd
GP
471 unsigned long long total_overhead;
472
473 /* Total allocations and overhead for sizes less than 32, 64 and 128.
474 These sizes are interesting because they are typical cache line
938d968e 475 sizes. */
b8698a0f 476
adc4adcd
GP
477 unsigned long long total_allocated_under32;
478 unsigned long long total_overhead_under32;
b8698a0f 479
adc4adcd
GP
480 unsigned long long total_allocated_under64;
481 unsigned long long total_overhead_under64;
b8698a0f 482
adc4adcd
GP
483 unsigned long long total_allocated_under128;
484 unsigned long long total_overhead_under128;
b8698a0f 485
439a7e54
DN
486 /* The allocations for each of the allocation orders. */
487 unsigned long long total_allocated_per_order[NUM_ORDERS];
488
938d968e 489 /* The overhead for each of the allocation orders. */
adc4adcd
GP
490 unsigned long long total_overhead_per_order[NUM_ORDERS];
491 } stats;
21341cfd
AS
492} G;
493
b086d530
TS
494/* True if a gc is currently taking place. */
495
496static bool in_gc = false;
497
21341cfd
AS
498/* The size in bytes required to maintain a bitmap for the objects
499 on a page-entry. */
500#define BITMAP_SIZE(Num_objects) \
c3284718 501 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
21341cfd 502
130fadbb
RH
503/* Allocate pages in chunks of this size, to throttle calls to memory
504 allocation routines. The first page is used, the rest go onto the
505 free list. This cannot be larger than HOST_BITS_PER_INT for the
772299b3 506 in_use bitmask for page_group. Hosts that need a different value
471854f8 507 can override this by defining GGC_QUIRE_SIZE explicitly. */
772299b3
MA
508#ifndef GGC_QUIRE_SIZE
509# ifdef USING_MMAP
6c995fa5 510# define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
772299b3
MA
511# else
512# define GGC_QUIRE_SIZE 16
513# endif
514#endif
c4775f82
MS
515
516/* Initial guess as to how many page table entries we might need. */
517#define INITIAL_PTE_COUNT 128
21341cfd 518\f
20c1dc5e
AJ
519static page_entry *lookup_page_table_entry (const void *);
520static void set_page_table_entry (void *, page_entry *);
130fadbb 521#ifdef USING_MMAP
25f0ea81 522static char *alloc_anon (char *, size_t, bool check);
130fadbb
RH
523#endif
524#ifdef USING_MALLOC_PAGE_GROUPS
20c1dc5e
AJ
525static size_t page_group_index (char *, char *);
526static void set_page_group_in_use (page_group *, char *);
527static void clear_page_group_in_use (page_group *, char *);
130fadbb 528#endif
20c1dc5e
AJ
529static struct page_entry * alloc_page (unsigned);
530static void free_page (struct page_entry *);
20c1dc5e
AJ
531static void clear_marks (void);
532static void sweep_pages (void);
533static void ggc_recalculate_in_use_p (page_entry *);
534static void compute_inverse (unsigned);
535static inline void adjust_depth (void);
536static void move_ptes_to_front (int, int);
21341cfd 537
20c1dc5e
AJ
538void debug_print_page_list (int);
539static void push_depth (unsigned int);
540static void push_by_depth (page_entry *, unsigned long *);
b6f61163 541
c4775f82
MS
542/* Push an entry onto G.depth. */
543
544inline static void
20c1dc5e 545push_depth (unsigned int i)
c4775f82
MS
546{
547 if (G.depth_in_use >= G.depth_max)
548 {
549 G.depth_max *= 2;
d3bfe4de 550 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
c4775f82
MS
551 }
552 G.depth[G.depth_in_use++] = i;
553}
554
555/* Push an entry onto G.by_depth and G.save_in_use. */
556
557inline static void
20c1dc5e 558push_by_depth (page_entry *p, unsigned long *s)
c4775f82
MS
559{
560 if (G.by_depth_in_use >= G.by_depth_max)
561 {
562 G.by_depth_max *= 2;
d3bfe4de
KG
563 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
564 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
565 G.by_depth_max);
c4775f82
MS
566 }
567 G.by_depth[G.by_depth_in_use] = p;
568 G.save_in_use[G.by_depth_in_use++] = s;
569}
570
571#if (GCC_VERSION < 3001)
572#define prefetch(X) ((void) X)
573#else
574#define prefetch(X) __builtin_prefetch (X)
575#endif
576
577#define save_in_use_p_i(__i) \
578 (G.save_in_use[__i])
579#define save_in_use_p(__p) \
580 (save_in_use_p_i (__p->index_by_depth))
581
acb14262
RB
582/* Traverse the page table and find the entry for a page.
583 If the object wasn't allocated in GC return NULL. */
21341cfd 584
acb14262
RB
585static inline page_entry *
586safe_lookup_page_table_entry (const void *p)
21341cfd
AS
587{
588 page_entry ***base;
005537df 589 size_t L1, L2;
21341cfd
AS
590
591#if HOST_BITS_PER_PTR <= 32
592 base = &G.lookup[0];
593#else
594 page_table table = G.lookup;
2a6e6fea 595 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
005537df
RH
596 while (1)
597 {
598 if (table == NULL)
acb14262 599 return NULL;
005537df
RH
600 if (table->high_bits == high_bits)
601 break;
602 table = table->next;
603 }
21341cfd
AS
604 base = &table->table[0];
605#endif
606
eaec9b3d 607 /* Extract the level 1 and 2 indices. */
74c937ca
MM
608 L1 = LOOKUP_L1 (p);
609 L2 = LOOKUP_L2 (p);
acb14262
RB
610 if (! base[L1])
611 return NULL;
74c937ca 612
acb14262 613 return base[L1][L2];
74c937ca
MM
614}
615
589005ff 616/* Traverse the page table and find the entry for a page.
74c937ca
MM
617 Die (probably) if the object wasn't allocated via GC. */
618
619static inline page_entry *
20c1dc5e 620lookup_page_table_entry (const void *p)
74c937ca
MM
621{
622 page_entry ***base;
623 size_t L1, L2;
624
005537df
RH
625#if HOST_BITS_PER_PTR <= 32
626 base = &G.lookup[0];
627#else
628 page_table table = G.lookup;
2a6e6fea 629 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
005537df
RH
630 while (table->high_bits != high_bits)
631 table = table->next;
632 base = &table->table[0];
633#endif
74c937ca 634
eaec9b3d 635 /* Extract the level 1 and 2 indices. */
21341cfd
AS
636 L1 = LOOKUP_L1 (p);
637 L2 = LOOKUP_L2 (p);
638
639 return base[L1][L2];
640}
641
21341cfd 642/* Set the page table entry for a page. */
cb2ec151 643
21341cfd 644static void
20c1dc5e 645set_page_table_entry (void *p, page_entry *entry)
21341cfd
AS
646{
647 page_entry ***base;
648 size_t L1, L2;
649
650#if HOST_BITS_PER_PTR <= 32
651 base = &G.lookup[0];
652#else
653 page_table table;
2a6e6fea 654 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
21341cfd
AS
655 for (table = G.lookup; table; table = table->next)
656 if (table->high_bits == high_bits)
657 goto found;
658
659 /* Not found -- allocate a new table. */
4dc6c528 660 table = XCNEW (struct page_table_chain);
21341cfd
AS
661 table->next = G.lookup;
662 table->high_bits = high_bits;
663 G.lookup = table;
664found:
665 base = &table->table[0];
666#endif
667
eaec9b3d 668 /* Extract the level 1 and 2 indices. */
21341cfd
AS
669 L1 = LOOKUP_L1 (p);
670 L2 = LOOKUP_L2 (p);
671
672 if (base[L1] == NULL)
5ed6ace5 673 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
21341cfd
AS
674
675 base[L1][L2] = entry;
676}
677
21341cfd 678/* Prints the page-entry for object size ORDER, for debugging. */
cb2ec151 679
24e47c76 680DEBUG_FUNCTION void
20c1dc5e 681debug_print_page_list (int order)
21341cfd
AS
682{
683 page_entry *p;
20c1dc5e
AJ
684 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
685 (void *) G.page_tails[order]);
21341cfd
AS
686 p = G.pages[order];
687 while (p != NULL)
688 {
20c1dc5e 689 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
683eb0e9 690 p->num_free_objects);
21341cfd
AS
691 p = p->next;
692 }
693 printf ("NULL\n");
694 fflush (stdout);
695}
696
130fadbb 697#ifdef USING_MMAP
21341cfd 698/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
825b6926
ZW
699 (if non-null). The ifdef structure here is intended to cause a
700 compile error unless exactly one of the HAVE_* is defined. */
cb2ec151 701
21341cfd 702static inline char *
25f0ea81 703alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
21341cfd 704{
825b6926 705#ifdef HAVE_MMAP_ANON
d3bfe4de
KG
706 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
707 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
825b6926
ZW
708#endif
709#ifdef HAVE_MMAP_DEV_ZERO
d3bfe4de
KG
710 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
711 MAP_PRIVATE, G.dev_zero_fd, 0);
21341cfd 712#endif
825b6926
ZW
713
714 if (page == (char *) MAP_FAILED)
005537df 715 {
25f0ea81
AK
716 if (!check)
717 return NULL;
1f978f5f 718 perror ("virtual memory exhausted");
bd0f0717 719 exit (FATAL_EXIT_CODE);
005537df 720 }
21341cfd 721
3277221c
MM
722 /* Remember that we allocated this memory. */
723 G.bytes_mapped += size;
724
9a0a7d5d 725 /* Pretend we don't have access to the allocated pages. We'll enable
a9429e29 726 access to smaller pieces of the area in ggc_internal_alloc. Discard the
9a0a7d5d 727 handle to avoid handle leak. */
35dee980 728 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
9a0a7d5d 729
21341cfd
AS
730 return page;
731}
130fadbb
RH
732#endif
733#ifdef USING_MALLOC_PAGE_GROUPS
734/* Compute the index for this page into the page group. */
735
736static inline size_t
20c1dc5e 737page_group_index (char *allocation, char *page)
130fadbb 738{
c4f2c499 739 return (size_t) (page - allocation) >> G.lg_pagesize;
130fadbb
RH
740}
741
742/* Set and clear the in_use bit for this page in the page group. */
743
744static inline void
20c1dc5e 745set_page_group_in_use (page_group *group, char *page)
130fadbb
RH
746{
747 group->in_use |= 1 << page_group_index (group->allocation, page);
748}
749
750static inline void
20c1dc5e 751clear_page_group_in_use (page_group *group, char *page)
130fadbb
RH
752{
753 group->in_use &= ~(1 << page_group_index (group->allocation, page));
754}
755#endif
21341cfd
AS
756
757/* Allocate a new page for allocating objects of size 2^ORDER,
758 and return an entry for it. The entry is not added to the
759 appropriate page_table list. */
cb2ec151 760
21341cfd 761static inline struct page_entry *
20c1dc5e 762alloc_page (unsigned order)
21341cfd
AS
763{
764 struct page_entry *entry, *p, **pp;
765 char *page;
766 size_t num_objects;
767 size_t bitmap_size;
768 size_t page_entry_size;
769 size_t entry_size;
130fadbb
RH
770#ifdef USING_MALLOC_PAGE_GROUPS
771 page_group *group;
772#endif
21341cfd
AS
773
774 num_objects = OBJECTS_PER_PAGE (order);
775 bitmap_size = BITMAP_SIZE (num_objects + 1);
776 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
2be510b8 777 entry_size = num_objects * OBJECT_SIZE (order);
ca79429a
RH
778 if (entry_size < G.pagesize)
779 entry_size = G.pagesize;
3bc50163 780 entry_size = PAGE_ALIGN (entry_size);
21341cfd
AS
781
782 entry = NULL;
783 page = NULL;
784
785 /* Check the list of free pages for one we can use. */
bd0f0717 786 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
21341cfd
AS
787 if (p->bytes == entry_size)
788 break;
789
790 if (p != NULL)
791 {
711a3d82
AK
792 if (p->discarded)
793 G.bytes_mapped += p->bytes;
794 p->discarded = false;
795
dc297297 796 /* Recycle the allocated memory from this page ... */
21341cfd
AS
797 *pp = p->next;
798 page = p->page;
bd0f0717 799
130fadbb
RH
800#ifdef USING_MALLOC_PAGE_GROUPS
801 group = p->group;
802#endif
bd0f0717 803
21341cfd
AS
804 /* ... and, if possible, the page entry itself. */
805 if (p->order == order)
806 {
807 entry = p;
808 memset (entry, 0, page_entry_size);
809 }
810 else
811 free (p);
812 }
825b6926 813#ifdef USING_MMAP
054f5e69 814 else if (entry_size == G.pagesize)
21341cfd 815 {
054f5e69
ZW
816 /* We want just one page. Allocate a bunch of them and put the
817 extras on the freelist. (Can only do this optimization with
818 mmap for backing store.) */
819 struct page_entry *e, *f = G.free_pages;
25f0ea81 820 int i, entries = GGC_QUIRE_SIZE;
054f5e69 821
25f0ea81
AK
822 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
823 if (page == NULL)
824 {
c3284718 825 page = alloc_anon (NULL, G.pagesize, true);
25f0ea81
AK
826 entries = 1;
827 }
bd0f0717 828
054f5e69
ZW
829 /* This loop counts down so that the chain will be in ascending
830 memory order. */
25f0ea81 831 for (i = entries - 1; i >= 1; i--)
054f5e69 832 {
d3bfe4de 833 e = XCNEWVAR (struct page_entry, page_entry_size);
ca79429a
RH
834 e->order = order;
835 e->bytes = G.pagesize;
836 e->page = page + (i << G.lg_pagesize);
054f5e69
ZW
837 e->next = f;
838 f = e;
839 }
bd0f0717 840
054f5e69 841 G.free_pages = f;
21341cfd 842 }
054f5e69 843 else
25f0ea81 844 page = alloc_anon (NULL, entry_size, true);
130fadbb
RH
845#endif
846#ifdef USING_MALLOC_PAGE_GROUPS
847 else
848 {
849 /* Allocate a large block of memory and serve out the aligned
850 pages therein. This results in much less memory wastage
851 than the traditional implementation of valloc. */
852
853 char *allocation, *a, *enda;
854 size_t alloc_size, head_slop, tail_slop;
855 int multiple_pages = (entry_size == G.pagesize);
856
857 if (multiple_pages)
858 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
859 else
860 alloc_size = entry_size + G.pagesize - 1;
ec4d7730 861 allocation = XNEWVEC (char, alloc_size);
130fadbb 862
2a6e6fea 863 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
130fadbb
RH
864 head_slop = page - allocation;
865 if (multiple_pages)
866 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
867 else
868 tail_slop = alloc_size - entry_size - head_slop;
869 enda = allocation + alloc_size - tail_slop;
870
871 /* We allocated N pages, which are likely not aligned, leaving
872 us with N-1 usable pages. We plan to place the page_group
873 structure somewhere in the slop. */
874 if (head_slop >= sizeof (page_group))
875 group = (page_group *)page - 1;
876 else
877 {
878 /* We magically got an aligned allocation. Too bad, we have
879 to waste a page anyway. */
880 if (tail_slop == 0)
881 {
882 enda -= G.pagesize;
883 tail_slop += G.pagesize;
884 }
282899df 885 gcc_assert (tail_slop >= sizeof (page_group));
130fadbb
RH
886 group = (page_group *)enda;
887 tail_slop -= sizeof (page_group);
888 }
889
890 /* Remember that we allocated this memory. */
891 group->next = G.page_groups;
892 group->allocation = allocation;
893 group->alloc_size = alloc_size;
894 group->in_use = 0;
895 G.page_groups = group;
896 G.bytes_mapped += alloc_size;
897
898 /* If we allocated multiple pages, put the rest on the free list. */
899 if (multiple_pages)
900 {
901 struct page_entry *e, *f = G.free_pages;
902 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
903 {
ec4d7730 904 e = XCNEWVAR (struct page_entry, page_entry_size);
130fadbb
RH
905 e->order = order;
906 e->bytes = G.pagesize;
907 e->page = a;
908 e->group = group;
909 e->next = f;
910 f = e;
911 }
912 G.free_pages = f;
913 }
914 }
915#endif
21341cfd
AS
916
917 if (entry == NULL)
d3bfe4de 918 entry = XCNEWVAR (struct page_entry, page_entry_size);
21341cfd
AS
919
920 entry->bytes = entry_size;
921 entry->page = page;
922 entry->context_depth = G.context_depth;
923 entry->order = order;
924 entry->num_free_objects = num_objects;
925 entry->next_bit_hint = 1;
926
52895e1a
RH
927 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
928
130fadbb
RH
929#ifdef USING_MALLOC_PAGE_GROUPS
930 entry->group = group;
931 set_page_group_in_use (group, page);
932#endif
933
21341cfd
AS
934 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
935 increment the hint. */
936 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
937 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
938
939 set_page_table_entry (page, entry);
940
941 if (GGC_DEBUG_LEVEL >= 2)
589005ff 942 fprintf (G.debug_file,
8a951190 943 "Allocating page at %p, object size=%lu, data %p-%p\n",
c53930bb
ML
944 (void *) entry, (unsigned long) OBJECT_SIZE (order),
945 (void *) page, (void *) (page + entry_size - 1));
21341cfd
AS
946
947 return entry;
948}
949
c4775f82
MS
950/* Adjust the size of G.depth so that no index greater than the one
951 used by the top of the G.by_depth is used. */
952
953static inline void
20c1dc5e 954adjust_depth (void)
c4775f82
MS
955{
956 page_entry *top;
957
958 if (G.by_depth_in_use)
959 {
960 top = G.by_depth[G.by_depth_in_use-1];
961
e0bb17a8
KH
962 /* Peel back indices in depth that index into by_depth, so that
963 as new elements are added to by_depth, we note the indices
c4775f82
MS
964 of those elements, if they are for new context depths. */
965 while (G.depth_in_use > (size_t)top->context_depth+1)
966 --G.depth_in_use;
967 }
968}
969
cb2ec151 970/* For a page that is no longer needed, put it on the free page list. */
21341cfd 971
685fe032 972static void
20c1dc5e 973free_page (page_entry *entry)
21341cfd
AS
974{
975 if (GGC_DEBUG_LEVEL >= 2)
589005ff 976 fprintf (G.debug_file,
20c1dc5e 977 "Deallocating page at %p, data %p-%p\n", (void *) entry,
c53930bb 978 (void *) entry->page, (void *) (entry->page + entry->bytes - 1));
21341cfd 979
9a0a7d5d
HPN
980 /* Mark the page as inaccessible. Discard the handle to avoid handle
981 leak. */
35dee980 982 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
9a0a7d5d 983
21341cfd
AS
984 set_page_table_entry (entry->page, NULL);
985
130fadbb
RH
986#ifdef USING_MALLOC_PAGE_GROUPS
987 clear_page_group_in_use (entry->group, entry->page);
988#endif
989
c4775f82
MS
990 if (G.by_depth_in_use > 1)
991 {
992 page_entry *top = G.by_depth[G.by_depth_in_use-1];
282899df
NS
993 int i = entry->index_by_depth;
994
995 /* We cannot free a page from a context deeper than the current
996 one. */
997 gcc_assert (entry->context_depth == top->context_depth);
b8698a0f 998
282899df
NS
999 /* Put top element into freed slot. */
1000 G.by_depth[i] = top;
1001 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1002 top->index_by_depth = i;
c4775f82
MS
1003 }
1004 --G.by_depth_in_use;
1005
1006 adjust_depth ();
1007
21341cfd
AS
1008 entry->next = G.free_pages;
1009 G.free_pages = entry;
1010}
1011
cb2ec151 1012/* Release the free page cache to the system. */
21341cfd 1013
4934cc53 1014static void
20c1dc5e 1015release_pages (void)
21341cfd 1016{
e5207f1a
JH
1017 size_t n1 = 0;
1018 size_t n2 = 0;
711a3d82
AK
1019#ifdef USING_MADVISE
1020 page_entry *p, *start_p;
1021 char *start;
1022 size_t len;
d33ef9a5
AK
1023 size_t mapped_len;
1024 page_entry *next, *prev, *newprev;
1025 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1026
1027 /* First free larger continuous areas to the OS.
1028 This allows other allocators to grab these areas if needed.
1029 This is only done on larger chunks to avoid fragmentation.
1030 This does not always work because the free_pages list is only
1031 approximately sorted. */
1032
1033 p = G.free_pages;
1034 prev = NULL;
1035 while (p)
1036 {
1037 start = p->page;
1038 start_p = p;
1039 len = 0;
1040 mapped_len = 0;
1041 newprev = prev;
1042 while (p && p->page == start + len)
1043 {
1044 len += p->bytes;
1045 if (!p->discarded)
1046 mapped_len += p->bytes;
1047 newprev = p;
1048 p = p->next;
1049 }
1050 if (len >= free_unit)
1051 {
1052 while (start_p != p)
1053 {
1054 next = start_p->next;
1055 free (start_p);
1056 start_p = next;
1057 }
1058 munmap (start, len);
1059 if (prev)
1060 prev->next = p;
1061 else
1062 G.free_pages = p;
1063 G.bytes_mapped -= mapped_len;
e5207f1a 1064 n1 += len;
d33ef9a5
AK
1065 continue;
1066 }
1067 prev = newprev;
1068 }
1069
1070 /* Now give back the fragmented pages to the OS, but keep the address
1071 space to reuse it next time. */
711a3d82
AK
1072
1073 for (p = G.free_pages; p; )
1074 {
1075 if (p->discarded)
1076 {
1077 p = p->next;
1078 continue;
1079 }
1080 start = p->page;
1081 len = p->bytes;
1082 start_p = p;
1083 p = p->next;
1084 while (p && p->page == start + len)
1085 {
1086 len += p->bytes;
1087 p = p->next;
1088 }
1089 /* Give the page back to the kernel, but don't free the mapping.
1090 This avoids fragmentation in the virtual memory map of the
1091 process. Next time we can reuse it by just touching it. */
1092 madvise (start, len, MADV_DONTNEED);
1093 /* Don't count those pages as mapped to not touch the garbage collector
1094 unnecessarily. */
1095 G.bytes_mapped -= len;
e5207f1a 1096 n2 += len;
711a3d82
AK
1097 while (start_p != p)
1098 {
1099 start_p->discarded = true;
1100 start_p = start_p->next;
1101 }
1102 }
1103#endif
1104#if defined(USING_MMAP) && !defined(USING_MADVISE)
130fadbb 1105 page_entry *p, *next;
21341cfd
AS
1106 char *start;
1107 size_t len;
1108
054f5e69 1109 /* Gather up adjacent pages so they are unmapped together. */
21341cfd 1110 p = G.free_pages;
21341cfd
AS
1111
1112 while (p)
1113 {
054f5e69 1114 start = p->page;
21341cfd 1115 next = p->next;
054f5e69 1116 len = p->bytes;
21341cfd
AS
1117 free (p);
1118 p = next;
21341cfd 1119
054f5e69
ZW
1120 while (p && p->page == start + len)
1121 {
1122 next = p->next;
1123 len += p->bytes;
1124 free (p);
1125 p = next;
1126 }
1127
1128 munmap (start, len);
e5207f1a 1129 n1 += len;
054f5e69
ZW
1130 G.bytes_mapped -= len;
1131 }
005537df 1132
21341cfd 1133 G.free_pages = NULL;
130fadbb
RH
1134#endif
1135#ifdef USING_MALLOC_PAGE_GROUPS
1136 page_entry **pp, *p;
1137 page_group **gp, *g;
1138
1139 /* Remove all pages from free page groups from the list. */
1140 pp = &G.free_pages;
1141 while ((p = *pp) != NULL)
1142 if (p->group->in_use == 0)
1143 {
1144 *pp = p->next;
1145 free (p);
1146 }
1147 else
1148 pp = &p->next;
1149
1150 /* Remove all free page groups, and release the storage. */
1151 gp = &G.page_groups;
1152 while ((g = *gp) != NULL)
1153 if (g->in_use == 0)
1154 {
1155 *gp = g->next;
589005ff 1156 G.bytes_mapped -= g->alloc_size;
e5207f1a 1157 n1 += g->alloc_size;
9e0d2031 1158 free (g->allocation);
130fadbb
RH
1159 }
1160 else
1161 gp = &g->next;
1162#endif
e5207f1a
JH
1163 if (!quiet_flag && (n1 || n2))
1164 {
1165 fprintf (stderr, " {GC");
1166 if (n1)
1167 fprintf (stderr, " released %luk", (unsigned long)(n1 / 1024));
1168 if (n2)
1169 fprintf (stderr, " madv_dontneed %luk", (unsigned long)(n2 / 1024));
1170 fprintf (stderr, "}");
1171 }
21341cfd
AS
1172}
1173
21341cfd 1174/* This table provides a fast way to determine ceil(log_2(size)) for
9fd51e67 1175 allocation requests. The minimum allocation size is eight bytes. */
6583cf15
NC
1176#define NUM_SIZE_LOOKUP 512
1177static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
9fd51e67 1178{
589005ff
KH
1179 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1180 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1181 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1182 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1183 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1184 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1185 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
21341cfd 1186 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
21341cfd
AS
1187 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1188 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1189 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1190 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1191 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1192 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1193 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1194 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
f5938dcd
RG
1195 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1196 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1198 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1200 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1201 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1202 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1203 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1204 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1205 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1206 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1207 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1208 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1209 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
ecf7b86f 1210 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
21341cfd
AS
1211};
1212
b9bd6f74
TT
1213/* For a given size of memory requested for allocation, return the
1214 actual size that is going to be allocated, as well as the size
1215 order. */
1216
1217static void
1218ggc_round_alloc_size_1 (size_t requested_size,
1219 size_t *size_order,
1220 size_t *alloced_size)
1221{
1222 size_t order, object_size;
1223
1224 if (requested_size < NUM_SIZE_LOOKUP)
1225 {
1226 order = size_lookup[requested_size];
1227 object_size = OBJECT_SIZE (order);
1228 }
1229 else
1230 {
1231 order = 10;
1232 while (requested_size > (object_size = OBJECT_SIZE (order)))
1233 order++;
1234 }
1235
1236 if (size_order)
1237 *size_order = order;
1238 if (alloced_size)
1239 *alloced_size = object_size;
1240}
1241
1242/* For a given size of memory requested for allocation, return the
1243 actual size that is going to be allocated. */
1244
1245size_t
1246ggc_round_alloc_size (size_t requested_size)
1247{
1248 size_t size = 0;
1249
1250 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1251 return size;
1252}
1253
2a304777
JM
1254/* Push a finalizer onto the appropriate vec. */
1255
1256static void
1257add_finalizer (void *result, void (*f)(void *), size_t s, size_t n)
1258{
1259 if (f == NULL)
1260 /* No finalizer. */;
1261 else if (n == 1)
1262 {
1263 finalizer fin (result, f);
1264 G.finalizers[G.context_depth].safe_push (fin);
1265 }
1266 else
1267 {
1268 vec_finalizer fin (reinterpret_cast<uintptr_t> (result), f, s, n);
1269 G.vec_finalizers[G.context_depth].safe_push (fin);
1270 }
1271}
1272
aa40083d 1273/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
cb2ec151 1274
005537df 1275void *
de49ce19
TS
1276ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1277 MEM_STAT_DECL)
21341cfd 1278{
685fe032 1279 size_t order, word, bit, object_offset, object_size;
21341cfd
AS
1280 struct page_entry *entry;
1281 void *result;
1282
b9bd6f74 1283 ggc_round_alloc_size_1 (size, &order, &object_size);
21341cfd
AS
1284
1285 /* If there are non-full pages for this size allocation, they are at
1286 the head of the list. */
1287 entry = G.pages[order];
1288
1289 /* If there is no page for this object size, or all pages in this
1290 context are full, allocate a new page. */
4934cc53 1291 if (entry == NULL || entry->num_free_objects == 0)
21341cfd
AS
1292 {
1293 struct page_entry *new_entry;
1294 new_entry = alloc_page (order);
589005ff 1295
c4775f82
MS
1296 new_entry->index_by_depth = G.by_depth_in_use;
1297 push_by_depth (new_entry, 0);
1298
1299 /* We can skip context depths, if we do, make sure we go all the
1300 way to the new depth. */
1301 while (new_entry->context_depth >= G.depth_in_use)
1302 push_depth (G.by_depth_in_use-1);
1303
9bf793f9
JL
1304 /* If this is the only entry, it's also the tail. If it is not
1305 the only entry, then we must update the PREV pointer of the
1306 ENTRY (G.pages[order]) to point to our new page entry. */
21341cfd
AS
1307 if (entry == NULL)
1308 G.page_tails[order] = new_entry;
9bf793f9
JL
1309 else
1310 entry->prev = new_entry;
589005ff 1311
9bf793f9
JL
1312 /* Put new pages at the head of the page list. By definition the
1313 entry at the head of the list always has a NULL pointer. */
21341cfd 1314 new_entry->next = entry;
9bf793f9 1315 new_entry->prev = NULL;
21341cfd
AS
1316 entry = new_entry;
1317 G.pages[order] = new_entry;
1318
1319 /* For a new page, we know the word and bit positions (in the
1320 in_use bitmap) of the first available object -- they're zero. */
1321 new_entry->next_bit_hint = 1;
1322 word = 0;
1323 bit = 0;
1324 object_offset = 0;
1325 }
1326 else
1327 {
1328 /* First try to use the hint left from the previous allocation
1329 to locate a clear bit in the in-use bitmap. We've made sure
1330 that the one-past-the-end bit is always set, so if the hint
1331 has run over, this test will fail. */
1332 unsigned hint = entry->next_bit_hint;
1333 word = hint / HOST_BITS_PER_LONG;
1334 bit = hint % HOST_BITS_PER_LONG;
589005ff 1335
21341cfd
AS
1336 /* If the hint didn't work, scan the bitmap from the beginning. */
1337 if ((entry->in_use_p[word] >> bit) & 1)
1338 {
1339 word = bit = 0;
1340 while (~entry->in_use_p[word] == 0)
1341 ++word;
6f0947e4
SB
1342
1343#if GCC_VERSION >= 3004
1344 bit = __builtin_ctzl (~entry->in_use_p[word]);
1345#else
21341cfd
AS
1346 while ((entry->in_use_p[word] >> bit) & 1)
1347 ++bit;
6f0947e4
SB
1348#endif
1349
21341cfd
AS
1350 hint = word * HOST_BITS_PER_LONG + bit;
1351 }
1352
1353 /* Next time, try the next bit. */
1354 entry->next_bit_hint = hint + 1;
1355
685fe032 1356 object_offset = hint * object_size;
21341cfd
AS
1357 }
1358
1359 /* Set the in-use bit. */
1360 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1361
1362 /* Keep a running total of the number of free objects. If this page
1363 fills up, we may have to move it to the end of the list if the
1364 next page isn't full. If the next page is full, all subsequent
1365 pages are full, so there's no need to move it. */
1366 if (--entry->num_free_objects == 0
1367 && entry->next != NULL
1368 && entry->next->num_free_objects > 0)
1369 {
9bf793f9 1370 /* We have a new head for the list. */
21341cfd 1371 G.pages[order] = entry->next;
9bf793f9
JL
1372
1373 /* We are moving ENTRY to the end of the page table list.
1374 The new page at the head of the list will have NULL in
1375 its PREV field and ENTRY will have NULL in its NEXT field. */
1376 entry->next->prev = NULL;
21341cfd 1377 entry->next = NULL;
9bf793f9
JL
1378
1379 /* Append ENTRY to the tail of the list. */
1380 entry->prev = G.page_tails[order];
21341cfd
AS
1381 G.page_tails[order]->next = entry;
1382 G.page_tails[order] = entry;
1383 }
1384
1385 /* Calculate the object's address. */
1386 result = entry->page + object_offset;
7aa6d18a
SB
1387 if (GATHER_STATISTICS)
1388 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1389 result FINAL_PASS_MEM_STAT);
21341cfd 1390
3788cc17 1391#ifdef ENABLE_GC_CHECKING
9a0a7d5d
HPN
1392 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1393 exact same semantics in presence of memory bugs, regardless of
1394 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1395 handle to avoid handle leak. */
35dee980 1396 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
9a0a7d5d 1397
f8a83ee3
ZW
1398 /* `Poison' the entire allocated object, including any padding at
1399 the end. */
685fe032 1400 memset (result, 0xaf, object_size);
9a0a7d5d
HPN
1401
1402 /* Make the bytes after the end of the object unaccessible. Discard the
1403 handle to avoid handle leak. */
35dee980
HPN
1404 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1405 object_size - size));
21341cfd 1406#endif
cb2ec151 1407
9a0a7d5d
HPN
1408 /* Tell Valgrind that the memory is there, but its content isn't
1409 defined. The bytes at the end of the object are still marked
1410 unaccessible. */
35dee980 1411 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
9a0a7d5d 1412
21341cfd
AS
1413 /* Keep track of how many bytes are being allocated. This
1414 information is used in deciding when to collect. */
685fe032 1415 G.allocated += object_size;
21341cfd 1416
8d18c628
ZD
1417 /* For timevar statistics. */
1418 timevar_ggc_mem_total += object_size;
1419
2a304777
JM
1420 if (f)
1421 add_finalizer (result, f, s, n);
de49ce19 1422
7aa6d18a
SB
1423 if (GATHER_STATISTICS)
1424 {
1425 size_t overhead = object_size - size;
adc4adcd 1426
7aa6d18a
SB
1427 G.stats.total_overhead += overhead;
1428 G.stats.total_allocated += object_size;
1429 G.stats.total_overhead_per_order[order] += overhead;
1430 G.stats.total_allocated_per_order[order] += object_size;
adc4adcd 1431
7aa6d18a
SB
1432 if (size <= 32)
1433 {
1434 G.stats.total_overhead_under32 += overhead;
1435 G.stats.total_allocated_under32 += object_size;
1436 }
1437 if (size <= 64)
1438 {
1439 G.stats.total_overhead_under64 += overhead;
1440 G.stats.total_allocated_under64 += object_size;
1441 }
1442 if (size <= 128)
1443 {
1444 G.stats.total_overhead_under128 += overhead;
1445 G.stats.total_allocated_under128 += object_size;
1446 }
1447 }
685fe032 1448
21341cfd 1449 if (GGC_DEBUG_LEVEL >= 3)
589005ff 1450 fprintf (G.debug_file,
8a951190 1451 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
685fe032 1452 (unsigned long) size, (unsigned long) object_size, result,
20c1dc5e 1453 (void *) entry);
21341cfd
AS
1454
1455 return result;
1456}
1457
dae4174e
TT
1458/* Mark function for strings. */
1459
1460void
1461gt_ggc_m_S (const void *p)
1462{
1463 page_entry *entry;
1464 unsigned bit, word;
1465 unsigned long mask;
1466 unsigned long offset;
1467
acb14262 1468 if (!p)
dae4174e
TT
1469 return;
1470
acb14262
RB
1471 /* Look up the page on which the object is alloced. If it was not
1472 GC allocated, gracefully bail out. */
1473 entry = safe_lookup_page_table_entry (p);
1474 if (!entry)
1475 return;
dae4174e
TT
1476
1477 /* Calculate the index of the object on the page; this is its bit
1478 position in the in_use_p bitmap. Note that because a char* might
1479 point to the middle of an object, we need special code here to
1480 make sure P points to the start of an object. */
1481 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1482 if (offset)
1483 {
1484 /* Here we've seen a char* which does not point to the beginning
1485 of an allocated object. We assume it points to the middle of
1486 a STRING_CST. */
1487 gcc_assert (offset == offsetof (struct tree_string, str));
1488 p = ((const char *) p) - offset;
d3bfe4de 1489 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
dae4174e
TT
1490 return;
1491 }
1492
1493 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1494 word = bit / HOST_BITS_PER_LONG;
1495 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1496
1497 /* If the bit was previously set, skip it. */
1498 if (entry->in_use_p[word] & mask)
1499 return;
1500
1501 /* Otherwise set it, and decrement the free object count. */
1502 entry->in_use_p[word] |= mask;
1503 entry->num_free_objects -= 1;
1504
1505 if (GGC_DEBUG_LEVEL >= 4)
1506 fprintf (G.debug_file, "Marking %p\n", p);
1507
1508 return;
1509}
1510
0823efed
DN
1511
1512/* User-callable entry points for marking string X. */
1513
1514void
1515gt_ggc_mx (const char *& x)
1516{
1517 gt_ggc_m_S (x);
1518}
1519
1520void
1521gt_ggc_mx (unsigned char *& x)
1522{
1523 gt_ggc_m_S (x);
1524}
1525
1526void
1527gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1528{
1529}
1530
cb2ec151 1531/* If P is not marked, marks it and return false. Otherwise return true.
21341cfd
AS
1532 P must have been allocated by the GC allocator; it mustn't point to
1533 static objects, stack variables, or memory allocated with malloc. */
cb2ec151 1534
005537df 1535int
20c1dc5e 1536ggc_set_mark (const void *p)
21341cfd
AS
1537{
1538 page_entry *entry;
1539 unsigned bit, word;
1540 unsigned long mask;
1541
1542 /* Look up the page on which the object is alloced. If the object
1543 wasn't allocated by the collector, we'll probably die. */
74c937ca 1544 entry = lookup_page_table_entry (p);
282899df 1545 gcc_assert (entry);
21341cfd
AS
1546
1547 /* Calculate the index of the object on the page; this is its bit
1548 position in the in_use_p bitmap. */
8537ed68 1549 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
21341cfd
AS
1550 word = bit / HOST_BITS_PER_LONG;
1551 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
589005ff 1552
dc297297 1553 /* If the bit was previously set, skip it. */
21341cfd
AS
1554 if (entry->in_use_p[word] & mask)
1555 return 1;
1556
1557 /* Otherwise set it, and decrement the free object count. */
1558 entry->in_use_p[word] |= mask;
1559 entry->num_free_objects -= 1;
1560
21341cfd
AS
1561 if (GGC_DEBUG_LEVEL >= 4)
1562 fprintf (G.debug_file, "Marking %p\n", p);
1563
1564 return 0;
1565}
1566
589005ff 1567/* Return 1 if P has been marked, zero otherwise.
4c160717
RK
1568 P must have been allocated by the GC allocator; it mustn't point to
1569 static objects, stack variables, or memory allocated with malloc. */
1570
1571int
20c1dc5e 1572ggc_marked_p (const void *p)
4c160717
RK
1573{
1574 page_entry *entry;
1575 unsigned bit, word;
1576 unsigned long mask;
1577
1578 /* Look up the page on which the object is alloced. If the object
1579 wasn't allocated by the collector, we'll probably die. */
1580 entry = lookup_page_table_entry (p);
282899df 1581 gcc_assert (entry);
4c160717
RK
1582
1583 /* Calculate the index of the object on the page; this is its bit
1584 position in the in_use_p bitmap. */
8537ed68 1585 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
4c160717
RK
1586 word = bit / HOST_BITS_PER_LONG;
1587 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
589005ff 1588
a4b5b2ae 1589 return (entry->in_use_p[word] & mask) != 0;
4c160717
RK
1590}
1591
cb2ec151
RH
1592/* Return the size of the gc-able object P. */
1593
3277221c 1594size_t
20c1dc5e 1595ggc_get_size (const void *p)
3277221c
MM
1596{
1597 page_entry *pe = lookup_page_table_entry (p);
2be510b8 1598 return OBJECT_SIZE (pe->order);
3277221c 1599}
685fe032
RH
1600
1601/* Release the memory for object P. */
1602
1603void
1604ggc_free (void *p)
1605{
b086d530
TS
1606 if (in_gc)
1607 return;
1608
685fe032
RH
1609 page_entry *pe = lookup_page_table_entry (p);
1610 size_t order = pe->order;
1611 size_t size = OBJECT_SIZE (order);
1612
7aa6d18a
SB
1613 if (GATHER_STATISTICS)
1614 ggc_free_overhead (p);
07724022 1615
685fe032
RH
1616 if (GGC_DEBUG_LEVEL >= 3)
1617 fprintf (G.debug_file,
1618 "Freeing object, actual size=%lu, at %p on %p\n",
1619 (unsigned long) size, p, (void *) pe);
1620
1621#ifdef ENABLE_GC_CHECKING
1622 /* Poison the data, to indicate the data is garbage. */
35dee980 1623 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
685fe032
RH
1624 memset (p, 0xa5, size);
1625#endif
1626 /* Let valgrind know the object is free. */
35dee980 1627 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
685fe032
RH
1628
1629#ifdef ENABLE_GC_ALWAYS_COLLECT
1630 /* In the completely-anal-checking mode, we do *not* immediately free
b8698a0f 1631 the data, but instead verify that the data is *actually* not
685fe032
RH
1632 reachable the next time we collect. */
1633 {
5ed6ace5 1634 struct free_object *fo = XNEW (struct free_object);
685fe032
RH
1635 fo->object = p;
1636 fo->next = G.free_object_list;
1637 G.free_object_list = fo;
1638 }
1639#else
1640 {
1641 unsigned int bit_offset, word, bit;
1642
1643 G.allocated -= size;
1644
1645 /* Mark the object not-in-use. */
1646 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1647 word = bit_offset / HOST_BITS_PER_LONG;
1648 bit = bit_offset % HOST_BITS_PER_LONG;
1649 pe->in_use_p[word] &= ~(1UL << bit);
1650
1651 if (pe->num_free_objects++ == 0)
1652 {
9bf793f9
JL
1653 page_entry *p, *q;
1654
685fe032
RH
1655 /* If the page is completely full, then it's supposed to
1656 be after all pages that aren't. Since we've freed one
1657 object from a page that was full, we need to move the
b8698a0f 1658 page to the head of the list.
685fe032 1659
9bf793f9
JL
1660 PE is the node we want to move. Q is the previous node
1661 and P is the next node in the list. */
1662 q = pe->prev;
685fe032
RH
1663 if (q && q->num_free_objects == 0)
1664 {
1665 p = pe->next;
9bf793f9 1666
685fe032 1667 q->next = p;
9bf793f9
JL
1668
1669 /* If PE was at the end of the list, then Q becomes the
1670 new end of the list. If PE was not the end of the
1671 list, then we need to update the PREV field for P. */
685fe032
RH
1672 if (!p)
1673 G.page_tails[order] = q;
9bf793f9
JL
1674 else
1675 p->prev = q;
1676
1677 /* Move PE to the head of the list. */
685fe032 1678 pe->next = G.pages[order];
9bf793f9
JL
1679 pe->prev = NULL;
1680 G.pages[order]->prev = pe;
685fe032
RH
1681 G.pages[order] = pe;
1682 }
1683
1684 /* Reset the hint bit to point to the only free object. */
1685 pe->next_bit_hint = bit_offset;
1686 }
1687 }
1688#endif
1689}
21341cfd 1690\f
8537ed68
ZW
1691/* Subroutine of init_ggc which computes the pair of numbers used to
1692 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1693
1694 This algorithm is taken from Granlund and Montgomery's paper
1695 "Division by Invariant Integers using Multiplication"
1696 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1697 constants). */
1698
1699static void
20c1dc5e 1700compute_inverse (unsigned order)
8537ed68 1701{
b8698a0f 1702 size_t size, inv;
75d75435 1703 unsigned int e;
280cf02a 1704
8537ed68
ZW
1705 size = OBJECT_SIZE (order);
1706 e = 0;
1707 while (size % 2 == 0)
1708 {
1709 e++;
1710 size >>= 1;
1711 }
cb2ec151 1712
8537ed68
ZW
1713 inv = size;
1714 while (inv * size != 1)
1715 inv = inv * (2 - inv*size);
1716
1717 DIV_MULT (order) = inv;
1718 DIV_SHIFT (order) = e;
1719}
1720
1721/* Initialize the ggc-mmap allocator. */
21341cfd 1722void
20c1dc5e 1723init_ggc (void)
21341cfd 1724{
3edf64aa 1725 static bool init_p = false;
2be510b8
MM
1726 unsigned order;
1727
3edf64aa
DM
1728 if (init_p)
1729 return;
1730 init_p = true;
1731
c3284718 1732 G.pagesize = getpagesize ();
21341cfd
AS
1733 G.lg_pagesize = exact_log2 (G.pagesize);
1734
825b6926 1735#ifdef HAVE_MMAP_DEV_ZERO
21341cfd
AS
1736 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1737 if (G.dev_zero_fd == -1)
c770ac2b 1738 internal_error ("open /dev/zero: %m");
21341cfd
AS
1739#endif
1740
1741#if 0
1742 G.debug_file = fopen ("ggc-mmap.debug", "w");
1743#else
1744 G.debug_file = stdout;
1745#endif
1746
825b6926 1747#ifdef USING_MMAP
1b3e1423
RH
1748 /* StunOS has an amazing off-by-one error for the first mmap allocation
1749 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1750 believe, is an unaligned page allocation, which would cause us to
1751 hork badly if we tried to use it. */
1752 {
25f0ea81 1753 char *p = alloc_anon (NULL, G.pagesize, true);
825b6926 1754 struct page_entry *e;
2a6e6fea 1755 if ((uintptr_t)p & (G.pagesize - 1))
1b3e1423
RH
1756 {
1757 /* How losing. Discard this one and try another. If we still
1758 can't get something useful, give up. */
1759
25f0ea81 1760 p = alloc_anon (NULL, G.pagesize, true);
2a6e6fea 1761 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1b3e1423 1762 }
825b6926 1763
dc297297 1764 /* We have a good page, might as well hold onto it... */
5ed6ace5 1765 e = XCNEW (struct page_entry);
825b6926
ZW
1766 e->bytes = G.pagesize;
1767 e->page = p;
1768 e->next = G.free_pages;
1769 G.free_pages = e;
1b3e1423
RH
1770 }
1771#endif
2be510b8
MM
1772
1773 /* Initialize the object size table. */
1774 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1775 object_size_table[order] = (size_t) 1 << order;
1776 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
b1095f9c
MM
1777 {
1778 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
a469a4f2
RG
1779
1780 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1781 so that we're sure of getting aligned memory. */
1782 s = ROUND_UP (s, MAX_ALIGNMENT);
b1095f9c
MM
1783 object_size_table[order] = s;
1784 }
2be510b8 1785
8537ed68 1786 /* Initialize the objects-per-page and inverse tables. */
2be510b8
MM
1787 for (order = 0; order < NUM_ORDERS; ++order)
1788 {
1789 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1790 if (objects_per_page_table[order] == 0)
1791 objects_per_page_table[order] = 1;
8537ed68 1792 compute_inverse (order);
2be510b8
MM
1793 }
1794
1795 /* Reset the size_lookup array to put appropriately sized objects in
1796 the special orders. All objects bigger than the previous power
1797 of two, but no greater than the special size, should go in the
a469a4f2 1798 new order. */
2be510b8
MM
1799 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1800 {
a469a4f2
RG
1801 int o;
1802 int i;
c4775f82 1803
6583cf15
NC
1804 i = OBJECT_SIZE (order);
1805 if (i >= NUM_SIZE_LOOKUP)
1806 continue;
1807
1808 for (o = size_lookup[i]; o == size_lookup [i]; --i)
a469a4f2
RG
1809 size_lookup[i] = order;
1810 }
ecf7b86f 1811
c4775f82
MS
1812 G.depth_in_use = 0;
1813 G.depth_max = 10;
5ed6ace5 1814 G.depth = XNEWVEC (unsigned int, G.depth_max);
c4775f82
MS
1815
1816 G.by_depth_in_use = 0;
1817 G.by_depth_max = INITIAL_PTE_COUNT;
5ed6ace5
MD
1818 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1819 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2a304777
JM
1820
1821 /* Allocate space for the depth 0 finalizers. */
1822 G.finalizers.safe_push (vNULL);
1823 G.vec_finalizers.safe_push (vNULL);
1824 gcc_assert (G.finalizers.length() == 1);
21341cfd
AS
1825}
1826
4934cc53
MM
1827/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1828 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1829
1830static void
20c1dc5e 1831ggc_recalculate_in_use_p (page_entry *p)
4934cc53
MM
1832{
1833 unsigned int i;
1834 size_t num_objects;
1835
589005ff 1836 /* Because the past-the-end bit in in_use_p is always set, we
4934cc53 1837 pretend there is one additional object. */
17211ab5 1838 num_objects = OBJECTS_IN_PAGE (p) + 1;
4934cc53
MM
1839
1840 /* Reset the free object count. */
1841 p->num_free_objects = num_objects;
1842
1843 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
589005ff 1844 for (i = 0;
2be510b8
MM
1845 i < CEIL (BITMAP_SIZE (num_objects),
1846 sizeof (*p->in_use_p));
4934cc53
MM
1847 ++i)
1848 {
1849 unsigned long j;
1850
1851 /* Something is in use if it is marked, or if it was in use in a
1852 context further down the context stack. */
c4775f82 1853 p->in_use_p[i] |= save_in_use_p (p)[i];
4934cc53
MM
1854
1855 /* Decrement the free object count for every object allocated. */
1856 for (j = p->in_use_p[i]; j; j >>= 1)
1857 p->num_free_objects -= (j & 1);
1858 }
1859
282899df 1860 gcc_assert (p->num_free_objects < num_objects);
4934cc53 1861}
21341cfd 1862\f
cb2ec151
RH
1863/* Unmark all objects. */
1864
685fe032 1865static void
20c1dc5e 1866clear_marks (void)
21341cfd
AS
1867{
1868 unsigned order;
1869
2be510b8 1870 for (order = 2; order < NUM_ORDERS; order++)
21341cfd 1871 {
21341cfd
AS
1872 page_entry *p;
1873
1874 for (p = G.pages[order]; p != NULL; p = p->next)
1875 {
17211ab5
GK
1876 size_t num_objects = OBJECTS_IN_PAGE (p);
1877 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1878
21341cfd 1879 /* The data should be page-aligned. */
2a6e6fea 1880 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
21341cfd
AS
1881
1882 /* Pages that aren't in the topmost context are not collected;
1883 nevertheless, we need their in-use bit vectors to store GC
1884 marks. So, back them up first. */
4934cc53 1885 if (p->context_depth < G.context_depth)
21341cfd 1886 {
c4775f82 1887 if (! save_in_use_p (p))
d3bfe4de 1888 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
c4775f82 1889 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
21341cfd
AS
1890 }
1891
1892 /* Reset reset the number of free objects and clear the
1893 in-use bits. These will be adjusted by mark_obj. */
1894 p->num_free_objects = num_objects;
1895 memset (p->in_use_p, 0, bitmap_size);
1896
1897 /* Make sure the one-past-the-end bit is always set. */
589005ff 1898 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
21341cfd
AS
1899 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1900 }
1901 }
1902}
1903
c3af645c
TS
1904/* Check if any blocks with a registered finalizer have become unmarked. If so
1905 run the finalizer and unregister it because the block is about to be freed.
1906 Note that no garantee is made about what order finalizers will run in so
1907 touching other objects in gc memory is extremely unwise. */
1908
de49ce19
TS
1909static void
1910ggc_handle_finalizers ()
1911{
2a304777
JM
1912 unsigned dlen = G.finalizers.length();
1913 for (unsigned d = G.context_depth; d < dlen; ++d)
de49ce19 1914 {
2a304777
JM
1915 vec<finalizer> &v = G.finalizers[d];
1916 unsigned length = v.length ();
1917 for (unsigned int i = 0; i < length;)
de49ce19 1918 {
2a304777
JM
1919 finalizer &f = v[i];
1920 if (!ggc_marked_p (f.addr ()))
1921 {
1922 f.call ();
1923 v.unordered_remove (i);
1924 length--;
1925 }
1926 else
1927 i++;
de49ce19 1928 }
de49ce19
TS
1929 }
1930
2a304777
JM
1931 gcc_assert (dlen == G.vec_finalizers.length());
1932 for (unsigned d = G.context_depth; d < dlen; ++d)
de49ce19 1933 {
2a304777
JM
1934 vec<vec_finalizer> &vv = G.vec_finalizers[d];
1935 unsigned length = vv.length ();
1936 for (unsigned int i = 0; i < length;)
de49ce19 1937 {
2a304777
JM
1938 vec_finalizer &f = vv[i];
1939 if (!ggc_marked_p (f.addr ()))
1940 {
1941 f.call ();
1942 vv.unordered_remove (i);
1943 length--;
1944 }
1945 else
1946 i++;
de49ce19 1947 }
de49ce19
TS
1948 }
1949}
1950
cb2ec151
RH
1951/* Free all empty pages. Partially empty pages need no attention
1952 because the `mark' bit doubles as an `unused' bit. */
1953
685fe032 1954static void
20c1dc5e 1955sweep_pages (void)
21341cfd
AS
1956{
1957 unsigned order;
1958
2be510b8 1959 for (order = 2; order < NUM_ORDERS; order++)
21341cfd
AS
1960 {
1961 /* The last page-entry to consider, regardless of entries
1962 placed at the end of the list. */
1963 page_entry * const last = G.page_tails[order];
1964
17211ab5 1965 size_t num_objects;
054f5e69 1966 size_t live_objects;
21341cfd
AS
1967 page_entry *p, *previous;
1968 int done;
589005ff 1969
21341cfd
AS
1970 p = G.pages[order];
1971 if (p == NULL)
1972 continue;
1973
1974 previous = NULL;
1975 do
1976 {
1977 page_entry *next = p->next;
1978
1979 /* Loop until all entries have been examined. */
1980 done = (p == last);
20c1dc5e 1981
17211ab5 1982 num_objects = OBJECTS_IN_PAGE (p);
21341cfd 1983
054f5e69
ZW
1984 /* Add all live objects on this page to the count of
1985 allocated memory. */
1986 live_objects = num_objects - p->num_free_objects;
1987
2be510b8 1988 G.allocated += OBJECT_SIZE (order) * live_objects;
054f5e69 1989
21341cfd
AS
1990 /* Only objects on pages in the topmost context should get
1991 collected. */
1992 if (p->context_depth < G.context_depth)
1993 ;
1994
1995 /* Remove the page if it's empty. */
054f5e69 1996 else if (live_objects == 0)
21341cfd 1997 {
9bf793f9
JL
1998 /* If P was the first page in the list, then NEXT
1999 becomes the new first page in the list, otherwise
2000 splice P out of the forward pointers. */
21341cfd
AS
2001 if (! previous)
2002 G.pages[order] = next;
2003 else
2004 previous->next = next;
b8698a0f 2005
9bf793f9
JL
2006 /* Splice P out of the back pointers too. */
2007 if (next)
2008 next->prev = previous;
21341cfd
AS
2009
2010 /* Are we removing the last element? */
2011 if (p == G.page_tails[order])
2012 G.page_tails[order] = previous;
2013 free_page (p);
2014 p = previous;
2015 }
2016
2017 /* If the page is full, move it to the end. */
2018 else if (p->num_free_objects == 0)
2019 {
2020 /* Don't move it if it's already at the end. */
2021 if (p != G.page_tails[order])
2022 {
2023 /* Move p to the end of the list. */
2024 p->next = NULL;
9bf793f9 2025 p->prev = G.page_tails[order];
21341cfd
AS
2026 G.page_tails[order]->next = p;
2027
2028 /* Update the tail pointer... */
2029 G.page_tails[order] = p;
2030
2031 /* ... and the head pointer, if necessary. */
2032 if (! previous)
2033 G.pages[order] = next;
2034 else
2035 previous->next = next;
9bf793f9
JL
2036
2037 /* And update the backpointer in NEXT if necessary. */
2038 if (next)
2039 next->prev = previous;
2040
21341cfd
AS
2041 p = previous;
2042 }
2043 }
2044
2045 /* If we've fallen through to here, it's a page in the
2046 topmost context that is neither full nor empty. Such a
2047 page must precede pages at lesser context depth in the
2048 list, so move it to the head. */
2049 else if (p != G.pages[order])
2050 {
2051 previous->next = p->next;
9bf793f9
JL
2052
2053 /* Update the backchain in the next node if it exists. */
2054 if (p->next)
2055 p->next->prev = previous;
2056
2057 /* Move P to the head of the list. */
21341cfd 2058 p->next = G.pages[order];
9bf793f9
JL
2059 p->prev = NULL;
2060 G.pages[order]->prev = p;
2061
2062 /* Update the head pointer. */
21341cfd 2063 G.pages[order] = p;
9bf793f9 2064
21341cfd
AS
2065 /* Are we moving the last element? */
2066 if (G.page_tails[order] == p)
2067 G.page_tails[order] = previous;
2068 p = previous;
2069 }
2070
2071 previous = p;
2072 p = next;
589005ff 2073 }
21341cfd 2074 while (! done);
4934cc53
MM
2075
2076 /* Now, restore the in_use_p vectors for any pages from contexts
2077 other than the current one. */
2078 for (p = G.pages[order]; p; p = p->next)
2079 if (p->context_depth != G.context_depth)
2080 ggc_recalculate_in_use_p (p);
21341cfd
AS
2081 }
2082}
2083
3788cc17 2084#ifdef ENABLE_GC_CHECKING
cb2ec151
RH
2085/* Clobber all free objects. */
2086
685fe032 2087static void
20c1dc5e 2088poison_pages (void)
21341cfd
AS
2089{
2090 unsigned order;
2091
2be510b8 2092 for (order = 2; order < NUM_ORDERS; order++)
21341cfd 2093 {
2be510b8 2094 size_t size = OBJECT_SIZE (order);
21341cfd
AS
2095 page_entry *p;
2096
2097 for (p = G.pages[order]; p != NULL; p = p->next)
2098 {
17211ab5 2099 size_t num_objects;
21341cfd 2100 size_t i;
c831fdea
MM
2101
2102 if (p->context_depth != G.context_depth)
2103 /* Since we don't do any collection for pages in pushed
2104 contexts, there's no need to do any poisoning. And
2105 besides, the IN_USE_P array isn't valid until we pop
2106 contexts. */
2107 continue;
2108
17211ab5 2109 num_objects = OBJECTS_IN_PAGE (p);
21341cfd
AS
2110 for (i = 0; i < num_objects; i++)
2111 {
2112 size_t word, bit;
2113 word = i / HOST_BITS_PER_LONG;
2114 bit = i % HOST_BITS_PER_LONG;
2115 if (((p->in_use_p[word] >> bit) & 1) == 0)
9a0a7d5d
HPN
2116 {
2117 char *object = p->page + i * size;
2118
2119 /* Keep poison-by-write when we expect to use Valgrind,
2120 so the exact same memory semantics is kept, in case
2121 there are memory errors. We override this request
2122 below. */
35dee980
HPN
2123 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2124 size));
9a0a7d5d
HPN
2125 memset (object, 0xa5, size);
2126
2127 /* Drop the handle to avoid handle leak. */
35dee980 2128 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
9a0a7d5d 2129 }
21341cfd
AS
2130 }
2131 }
2132 }
2133}
685fe032
RH
2134#else
2135#define poison_pages()
2136#endif
2137
2138#ifdef ENABLE_GC_ALWAYS_COLLECT
2139/* Validate that the reportedly free objects actually are. */
2140
2141static void
2142validate_free_objects (void)
2143{
2144 struct free_object *f, *next, *still_free = NULL;
2145
2146 for (f = G.free_object_list; f ; f = next)
2147 {
2148 page_entry *pe = lookup_page_table_entry (f->object);
2149 size_t bit, word;
2150
2151 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2152 word = bit / HOST_BITS_PER_LONG;
2153 bit = bit % HOST_BITS_PER_LONG;
2154 next = f->next;
2155
2156 /* Make certain it isn't visible from any root. Notice that we
2157 do this check before sweep_pages merges save_in_use_p. */
282899df 2158 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
685fe032
RH
2159
2160 /* If the object comes from an outer context, then retain the
2161 free_object entry, so that we can verify that the address
2162 isn't live on the stack in some outer context. */
2163 if (pe->context_depth != G.context_depth)
2164 {
2165 f->next = still_free;
2166 still_free = f;
2167 }
2168 else
2169 free (f);
2170 }
2171
2172 G.free_object_list = still_free;
2173}
2174#else
2175#define validate_free_objects()
21341cfd
AS
2176#endif
2177
cb2ec151
RH
2178/* Top level mark-and-sweep routine. */
2179
21341cfd 2180void
20c1dc5e 2181ggc_collect (void)
21341cfd 2182{
21341cfd
AS
2183 /* Avoid frequent unnecessary work by skipping collection if the
2184 total allocations haven't expanded much since the last
2185 collection. */
19cc0dd4 2186 float allocated_last_gc =
028d4092 2187 MAX (G.allocated_last_gc, (size_t)param_ggc_min_heapsize * 1024);
3788cc17 2188
9fd052e7
JH
2189 /* It is also good time to get memory block pool into limits. */
2190 memory_block_pool::trim ();
2191
028d4092 2192 float min_expand = allocated_last_gc * param_ggc_min_expand / 100;
07724022 2193 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
21341cfd 2194 return;
21341cfd 2195
2a9a326b 2196 timevar_push (TV_GC);
685fe032
RH
2197 if (GGC_DEBUG_LEVEL >= 2)
2198 fprintf (G.debug_file, "BEGIN COLLECTING\n");
21341cfd 2199
054f5e69
ZW
2200 /* Zero the total allocated bytes. This will be recalculated in the
2201 sweep phase. */
e5207f1a 2202 size_t allocated = G.allocated;
21341cfd
AS
2203 G.allocated = 0;
2204
589005ff 2205 /* Release the pages we freed the last time we collected, but didn't
21341cfd
AS
2206 reuse in the interim. */
2207 release_pages ();
2208
e5207f1a
JH
2209 /* Output this later so we do not interfere with release_pages. */
2210 if (!quiet_flag)
2211 fprintf (stderr, " {GC %luk -> ", (unsigned long) allocated / 1024);
2212
52895e1a
RH
2213 /* Indicate that we've seen collections at this context depth. */
2214 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2215
ae2392a9
BS
2216 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2217
b086d530 2218 in_gc = true;
21341cfd
AS
2219 clear_marks ();
2220 ggc_mark_roots ();
de49ce19 2221 ggc_handle_finalizers ();
7aa6d18a
SB
2222
2223 if (GATHER_STATISTICS)
2224 ggc_prune_overhead_list ();
2225
21341cfd 2226 poison_pages ();
685fe032 2227 validate_free_objects ();
cb2ec151
RH
2228 sweep_pages ();
2229
b086d530 2230 in_gc = false;
21341cfd
AS
2231 G.allocated_last_gc = G.allocated;
2232
ae2392a9
BS
2233 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2234
2a9a326b 2235 timevar_pop (TV_GC);
21341cfd 2236
21341cfd 2237 if (!quiet_flag)
2a9a326b 2238 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
685fe032
RH
2239 if (GGC_DEBUG_LEVEL >= 2)
2240 fprintf (G.debug_file, "END COLLECTING\n");
21341cfd 2241}
3277221c 2242
e5207f1a
JH
2243/* Return free pages to the system. */
2244
2245void
2246ggc_trim ()
2247{
2248 timevar_push (TV_GC);
2249 G.allocated = 0;
2250 sweep_pages ();
2251 release_pages ();
2252 if (!quiet_flag)
2253 fprintf (stderr, " {GC trimmed to %luk, %luk mapped}",
2254 (unsigned long) G.allocated / 1024,
2255 (unsigned long) G.bytes_mapped / 1024);
2256 timevar_pop (TV_GC);
2257}
2258
2259/* Assume that all GGC memory is reachable and grow the limits for next
2260 collection. With checking, trigger GGC so -Q compilation outputs how much
2261 of memory really is reachable. */
fd1e9302
JH
2262
2263void
2264ggc_grow (void)
2265{
b2b29377
MM
2266 if (!flag_checking)
2267 G.allocated_last_gc = MAX (G.allocated_last_gc,
2268 G.allocated);
2269 else
2270 ggc_collect ();
fd1e9302 2271 if (!quiet_flag)
c9ef0409 2272 fprintf (stderr, " {GC %luk} ", (unsigned long) G.allocated / 1024);
fd1e9302
JH
2273}
2274
3277221c 2275void
20c1dc5e 2276ggc_print_statistics (void)
3277221c
MM
2277{
2278 struct ggc_statistics stats;
4934cc53 2279 unsigned int i;
fba0bfd4 2280 size_t total_overhead = 0;
3277221c
MM
2281
2282 /* Clear the statistics. */
d219c7f1 2283 memset (&stats, 0, sizeof (stats));
589005ff 2284
3277221c
MM
2285 /* Make sure collection will really occur. */
2286 G.allocated_last_gc = 0;
2287
2288 /* Collect and print the statistics common across collectors. */
fba0bfd4 2289 ggc_print_common_statistics (stderr, &stats);
3277221c 2290
4934cc53
MM
2291 /* Release free pages so that we will not count the bytes allocated
2292 there as part of the total allocated memory. */
2293 release_pages ();
2294
589005ff 2295 /* Collect some information about the various sizes of
3277221c 2296 allocation. */
439a7e54
DN
2297 fprintf (stderr,
2298 "Memory still allocated at the end of the compilation process\n");
b2b43e33 2299 fprintf (stderr, "%-8s %10s %10s %10s\n",
9fd51e67 2300 "Size", "Allocated", "Used", "Overhead");
2be510b8 2301 for (i = 0; i < NUM_ORDERS; ++i)
3277221c
MM
2302 {
2303 page_entry *p;
2304 size_t allocated;
2305 size_t in_use;
fba0bfd4 2306 size_t overhead;
3277221c
MM
2307
2308 /* Skip empty entries. */
2309 if (!G.pages[i])
2310 continue;
2311
fba0bfd4 2312 overhead = allocated = in_use = 0;
3277221c
MM
2313
2314 /* Figure out the total number of bytes allocated for objects of
fba0bfd4
ZW
2315 this size, and how many of them are actually in use. Also figure
2316 out how much memory the page table is using. */
3277221c
MM
2317 for (p = G.pages[i]; p; p = p->next)
2318 {
2319 allocated += p->bytes;
20c1dc5e 2320 in_use +=
17211ab5 2321 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
fba0bfd4
ZW
2322
2323 overhead += (sizeof (page_entry) - sizeof (long)
17211ab5 2324 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
3277221c 2325 }
a0b48080
MM
2326 fprintf (stderr, "%-8" PRIu64 " " PRsa (10) " " PRsa (10) " "
2327 PRsa (10) "\n",
2328 (uint64_t)OBJECT_SIZE (i),
40ce7fa6
ML
2329 SIZE_AMOUNT (allocated),
2330 SIZE_AMOUNT (in_use),
2331 SIZE_AMOUNT (overhead));
fba0bfd4 2332 total_overhead += overhead;
3277221c 2333 }
a0b48080 2334 fprintf (stderr, "%-8s " PRsa (10) " " PRsa (10) " " PRsa (10) "\n",
40ce7fa6
ML
2335 "Total",
2336 SIZE_AMOUNT (G.bytes_mapped),
2337 SIZE_AMOUNT (G.allocated),
2338 SIZE_AMOUNT (total_overhead));
adc4adcd 2339
7aa6d18a
SB
2340 if (GATHER_STATISTICS)
2341 {
b2b43e33
ML
2342 fprintf (stderr, "\nTotal allocations and overheads during "
2343 "the compilation process\n");
7aa6d18a 2344
a0b48080
MM
2345 fprintf (stderr, "Total Overhead: "
2346 PRsa (9) "\n",
40ce7fa6 2347 SIZE_AMOUNT (G.stats.total_overhead));
a0b48080
MM
2348 fprintf (stderr, "Total Allocated: "
2349 PRsa (9) "\n",
40ce7fa6
ML
2350 SIZE_AMOUNT (G.stats.total_allocated));
2351
a0b48080
MM
2352 fprintf (stderr, "Total Overhead under 32B: "
2353 PRsa (9) "\n",
40ce7fa6 2354 SIZE_AMOUNT (G.stats.total_overhead_under32));
a0b48080
MM
2355 fprintf (stderr, "Total Allocated under 32B: "
2356 PRsa (9) "\n",
40ce7fa6 2357 SIZE_AMOUNT (G.stats.total_allocated_under32));
a0b48080
MM
2358 fprintf (stderr, "Total Overhead under 64B: "
2359 PRsa (9) "\n",
40ce7fa6 2360 SIZE_AMOUNT (G.stats.total_overhead_under64));
a0b48080
MM
2361 fprintf (stderr, "Total Allocated under 64B: "
2362 PRsa (9) "\n",
40ce7fa6 2363 SIZE_AMOUNT (G.stats.total_allocated_under64));
a0b48080
MM
2364 fprintf (stderr, "Total Overhead under 128B: "
2365 PRsa (9) "\n",
40ce7fa6 2366 SIZE_AMOUNT (G.stats.total_overhead_under128));
a0b48080
MM
2367 fprintf (stderr, "Total Allocated under 128B: "
2368 PRsa (9) "\n",
40ce7fa6 2369 SIZE_AMOUNT (G.stats.total_allocated_under128));
7aa6d18a
SB
2370
2371 for (i = 0; i < NUM_ORDERS; i++)
2372 if (G.stats.total_allocated_per_order[i])
2373 {
a0b48080
MM
2374 fprintf (stderr, "Total Overhead page size %9" PRIu64 ": "
2375 PRsa (9) "\n",
2376 (uint64_t)OBJECT_SIZE (i),
40ce7fa6 2377 SIZE_AMOUNT (G.stats.total_overhead_per_order[i]));
a0b48080
MM
2378 fprintf (stderr, "Total Allocated page size %9" PRIu64 ": "
2379 PRsa (9) "\n",
2380 (uint64_t)OBJECT_SIZE (i),
40ce7fa6 2381 SIZE_AMOUNT (G.stats.total_allocated_per_order[i]));
7aa6d18a 2382 }
adc4adcd 2383 }
3277221c 2384}
17211ab5 2385\f
24b97832
ILT
2386struct ggc_pch_ondisk
2387{
2388 unsigned totals[NUM_ORDERS];
2389};
2390
17211ab5
GK
2391struct ggc_pch_data
2392{
24b97832 2393 struct ggc_pch_ondisk d;
2a6e6fea 2394 uintptr_t base[NUM_ORDERS];
17211ab5
GK
2395 size_t written[NUM_ORDERS];
2396};
2397
2398struct ggc_pch_data *
20c1dc5e 2399init_ggc_pch (void)
17211ab5 2400{
5ed6ace5 2401 return XCNEW (struct ggc_pch_data);
17211ab5
GK
2402}
2403
20c1dc5e
AJ
2404void
2405ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
cd030c07 2406 size_t size, bool is_string ATTRIBUTE_UNUSED)
17211ab5
GK
2407{
2408 unsigned order;
2409
6583cf15 2410 if (size < NUM_SIZE_LOOKUP)
17211ab5
GK
2411 order = size_lookup[size];
2412 else
2413 {
f5938dcd 2414 order = 10;
17211ab5
GK
2415 while (size > OBJECT_SIZE (order))
2416 order++;
2417 }
20c1dc5e 2418
17211ab5
GK
2419 d->d.totals[order]++;
2420}
20c1dc5e 2421
17211ab5 2422size_t
20c1dc5e 2423ggc_pch_total_size (struct ggc_pch_data *d)
17211ab5
GK
2424{
2425 size_t a = 0;
2426 unsigned i;
2427
2428 for (i = 0; i < NUM_ORDERS; i++)
3bc50163 2429 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
17211ab5
GK
2430 return a;
2431}
2432
2433void
20c1dc5e 2434ggc_pch_this_base (struct ggc_pch_data *d, void *base)
17211ab5 2435{
2a6e6fea 2436 uintptr_t a = (uintptr_t) base;
17211ab5 2437 unsigned i;
20c1dc5e 2438
17211ab5
GK
2439 for (i = 0; i < NUM_ORDERS; i++)
2440 {
2441 d->base[i] = a;
3bc50163 2442 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
17211ab5
GK
2443 }
2444}
2445
2446
2447char *
20c1dc5e 2448ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
cd030c07 2449 size_t size, bool is_string ATTRIBUTE_UNUSED)
17211ab5
GK
2450{
2451 unsigned order;
2452 char *result;
20c1dc5e 2453
6583cf15 2454 if (size < NUM_SIZE_LOOKUP)
17211ab5
GK
2455 order = size_lookup[size];
2456 else
2457 {
f5938dcd 2458 order = 10;
17211ab5
GK
2459 while (size > OBJECT_SIZE (order))
2460 order++;
2461 }
2462
2463 result = (char *) d->base[order];
2464 d->base[order] += OBJECT_SIZE (order);
2465 return result;
2466}
2467
20c1dc5e
AJ
2468void
2469ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2470 FILE *f ATTRIBUTE_UNUSED)
17211ab5
GK
2471{
2472 /* Nothing to do. */
2473}
2474
2475void
8ed00d76 2476ggc_pch_write_object (struct ggc_pch_data *d,
20c1dc5e 2477 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
b6f61163 2478 size_t size, bool is_string ATTRIBUTE_UNUSED)
17211ab5
GK
2479{
2480 unsigned order;
642324bb 2481 static const char emptyBytes[256] = { 0 };
17211ab5 2482
6583cf15 2483 if (size < NUM_SIZE_LOOKUP)
17211ab5
GK
2484 order = size_lookup[size];
2485 else
2486 {
f5938dcd 2487 order = 10;
17211ab5
GK
2488 while (size > OBJECT_SIZE (order))
2489 order++;
2490 }
20c1dc5e 2491
17211ab5 2492 if (fwrite (x, size, 1, f) != 1)
a9c697b8 2493 fatal_error (input_location, "cannot write PCH file: %m");
17211ab5 2494
674c7ef1 2495 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
0ee55ad8 2496 object out to OBJECT_SIZE(order). This happens for strings. */
674c7ef1
RB
2497
2498 if (size != OBJECT_SIZE (order))
2499 {
c3284718 2500 unsigned padding = OBJECT_SIZE (order) - size;
674c7ef1
RB
2501
2502 /* To speed small writes, we use a nulled-out array that's larger
2503 than most padding requests as the source for our null bytes. This
2504 permits us to do the padding with fwrite() rather than fseek(), and
3f117656 2505 limits the chance the OS may try to flush any outstanding writes. */
c3284718 2506 if (padding <= sizeof (emptyBytes))
674c7ef1
RB
2507 {
2508 if (fwrite (emptyBytes, 1, padding, f) != padding)
a9c697b8 2509 fatal_error (input_location, "cannot write PCH file");
674c7ef1
RB
2510 }
2511 else
2512 {
0ee55ad8 2513 /* Larger than our buffer? Just default to fseek. */
674c7ef1 2514 if (fseek (f, padding, SEEK_CUR) != 0)
a9c697b8 2515 fatal_error (input_location, "cannot write PCH file");
674c7ef1
RB
2516 }
2517 }
17211ab5
GK
2518
2519 d->written[order]++;
2520 if (d->written[order] == d->d.totals[order]
2521 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2522 G.pagesize),
2523 SEEK_CUR) != 0)
a9c697b8 2524 fatal_error (input_location, "cannot write PCH file: %m");
17211ab5
GK
2525}
2526
2527void
20c1dc5e 2528ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
17211ab5
GK
2529{
2530 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
a9c697b8 2531 fatal_error (input_location, "cannot write PCH file: %m");
17211ab5
GK
2532 free (d);
2533}
2534
c4775f82
MS
2535/* Move the PCH PTE entries just added to the end of by_depth, to the
2536 front. */
2537
2538static void
20c1dc5e 2539move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
c4775f82 2540{
c4775f82
MS
2541 /* First, we swap the new entries to the front of the varrays. */
2542 page_entry **new_by_depth;
2543 unsigned long **new_save_in_use;
2544
5ed6ace5
MD
2545 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2546 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
c4775f82
MS
2547
2548 memcpy (&new_by_depth[0],
2549 &G.by_depth[count_old_page_tables],
2550 count_new_page_tables * sizeof (void *));
2551 memcpy (&new_by_depth[count_new_page_tables],
2552 &G.by_depth[0],
2553 count_old_page_tables * sizeof (void *));
2554 memcpy (&new_save_in_use[0],
2555 &G.save_in_use[count_old_page_tables],
2556 count_new_page_tables * sizeof (void *));
2557 memcpy (&new_save_in_use[count_new_page_tables],
2558 &G.save_in_use[0],
2559 count_old_page_tables * sizeof (void *));
2560
2561 free (G.by_depth);
2562 free (G.save_in_use);
20c1dc5e 2563
c4775f82
MS
2564 G.by_depth = new_by_depth;
2565 G.save_in_use = new_save_in_use;
2566
2567 /* Now update all the index_by_depth fields. */
3608eff9 2568 for (unsigned i = G.by_depth_in_use; i--;)
c4775f82 2569 {
3608eff9
NS
2570 page_entry *p = G.by_depth[i];
2571 p->index_by_depth = i;
c4775f82
MS
2572 }
2573
2574 /* And last, we update the depth pointers in G.depth. The first
2575 entry is already 0, and context 0 entries always start at index
2576 0, so there is nothing to update in the first slot. We need a
2577 second slot, only if we have old ptes, and if we do, they start
2578 at index count_new_page_tables. */
2579 if (count_old_page_tables)
2580 push_depth (count_new_page_tables);
2581}
2582
17211ab5 2583void
20c1dc5e 2584ggc_pch_read (FILE *f, void *addr)
17211ab5
GK
2585{
2586 struct ggc_pch_ondisk d;
2587 unsigned i;
d3bfe4de 2588 char *offs = (char *) addr;
c4775f82
MS
2589 unsigned long count_old_page_tables;
2590 unsigned long count_new_page_tables;
2591
2592 count_old_page_tables = G.by_depth_in_use;
2593
22f8849d
IS
2594 if (fread (&d, sizeof (d), 1, f) != 1)
2595 fatal_error (input_location, "cannot read PCH file: %m");
2596
c4775f82
MS
2597 /* We've just read in a PCH file. So, every object that used to be
2598 allocated is now free. */
17211ab5 2599 clear_marks ();
c5d6d04a 2600#ifdef ENABLE_GC_CHECKING
17211ab5
GK
2601 poison_pages ();
2602#endif
ead8827d
LB
2603 /* Since we free all the allocated objects, the free list becomes
2604 useless. Validate it now, which will also clear it. */
c3284718 2605 validate_free_objects ();
17211ab5
GK
2606
2607 /* No object read from a PCH file should ever be freed. So, set the
2608 context depth to 1, and set the depth of all the currently-allocated
2609 pages to be 1 too. PCH pages will have depth 0. */
282899df 2610 gcc_assert (!G.context_depth);
17211ab5 2611 G.context_depth = 1;
2a304777
JM
2612 /* Allocate space for the depth 1 finalizers. */
2613 G.finalizers.safe_push (vNULL);
2614 G.vec_finalizers.safe_push (vNULL);
2615 gcc_assert (G.finalizers.length() == 2);
17211ab5
GK
2616 for (i = 0; i < NUM_ORDERS; i++)
2617 {
2618 page_entry *p;
2619 for (p = G.pages[i]; p != NULL; p = p->next)
2620 p->context_depth = G.context_depth;
2621 }
2622
2623 /* Allocate the appropriate page-table entries for the pages read from
2624 the PCH file. */
20c1dc5e 2625
17211ab5
GK
2626 for (i = 0; i < NUM_ORDERS; i++)
2627 {
2628 struct page_entry *entry;
2629 char *pte;
2630 size_t bytes;
2631 size_t num_objs;
2632 size_t j;
c4775f82 2633
17211ab5
GK
2634 if (d.totals[i] == 0)
2635 continue;
c4775f82 2636
3bc50163 2637 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
17211ab5 2638 num_objs = bytes / OBJECT_SIZE (i);
d3bfe4de
KG
2639 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2640 - sizeof (long)
2641 + BITMAP_SIZE (num_objs + 1)));
17211ab5
GK
2642 entry->bytes = bytes;
2643 entry->page = offs;
2644 entry->context_depth = 0;
2645 offs += bytes;
2646 entry->num_free_objects = 0;
2647 entry->order = i;
2648
20c1dc5e 2649 for (j = 0;
17211ab5
GK
2650 j + HOST_BITS_PER_LONG <= num_objs + 1;
2651 j += HOST_BITS_PER_LONG)
2652 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2653 for (; j < num_objs + 1; j++)
20c1dc5e 2654 entry->in_use_p[j / HOST_BITS_PER_LONG]
17211ab5
GK
2655 |= 1L << (j % HOST_BITS_PER_LONG);
2656
20c1dc5e
AJ
2657 for (pte = entry->page;
2658 pte < entry->page + entry->bytes;
17211ab5
GK
2659 pte += G.pagesize)
2660 set_page_table_entry (pte, entry);
2661
2662 if (G.page_tails[i] != NULL)
2663 G.page_tails[i]->next = entry;
2664 else
2665 G.pages[i] = entry;
2666 G.page_tails[i] = entry;
c4775f82
MS
2667
2668 /* We start off by just adding all the new information to the
2669 end of the varrays, later, we will move the new information
2670 to the front of the varrays, as the PCH page tables are at
2671 context 0. */
2672 push_by_depth (entry, 0);
17211ab5
GK
2673 }
2674
c4775f82
MS
2675 /* Now, we update the various data structures that speed page table
2676 handling. */
2677 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2678
2679 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2680
17211ab5
GK
2681 /* Update the statistics. */
2682 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2683}