]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ggc-page.c
[testsuite] Add missing dg-require-effective-target label_values
[thirdparty/gcc.git] / gcc / ggc-page.c
CommitLineData
911ab6b9 1/* "Bag-of-pages" garbage collector for the GNU compiler.
fbd26352 2 Copyright (C) 1999-2019 Free Software Foundation, Inc.
911ab6b9 3
f12b58b3 4This file is part of GCC.
911ab6b9 5
f12b58b3 6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8c4c00c1 8Software Foundation; either version 3, or (at your option) any later
f12b58b3 9version.
911ab6b9 10
f12b58b3 11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
911ab6b9 15
90856340 16You should have received a copy of the GNU General Public License
8c4c00c1 17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
911ab6b9 19
911ab6b9 20#include "config.h"
911ab6b9 21#include "system.h"
805e22b2 22#include "coretypes.h"
9ef16211 23#include "backend.h"
b20a8bb4 24#include "alias.h"
911ab6b9 25#include "tree.h"
f01a3c5e 26#include "rtl.h"
ad7b10a2 27#include "memmodel.h"
f8e15e8a 28#include "tm_p.h"
0b205f4c 29#include "diagnostic-core.h"
911ab6b9 30#include "flags.h"
ba72912a 31#include "ggc-internal.h"
74d2af64 32#include "timevar.h"
2a3edec5 33#include "params.h"
073c1fd5 34#include "cgraph.h"
3089b75c 35#include "cfgloop.h"
740cd0be 36#include "plugin.h"
f01a3c5e 37
901dfcc7 38/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39 file open. Prefer either to valloc. */
40#ifdef HAVE_MMAP_ANON
41# undef HAVE_MMAP_DEV_ZERO
901dfcc7 42# define USING_MMAP
71661611 43#endif
911ab6b9 44
901dfcc7 45#ifdef HAVE_MMAP_DEV_ZERO
901dfcc7 46# define USING_MMAP
80d3ceff 47#endif
48
80eb2355 49#ifndef USING_MMAP
50#define USING_MALLOC_PAGE_GROUPS
d3b95fd7 51#endif
911ab6b9 52
f4245e06 53#if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
54 && defined(USING_MMAP)
c5db973f 55# define USING_MADVISE
56#endif
57
442e3cb9 58/* Strategy:
911ab6b9 59
60 This garbage-collecting allocator allocates objects on one of a set
61 of pages. Each page can allocate objects of a single size only;
62 available sizes are powers of two starting at four bytes. The size
63 of an allocation request is rounded up to the next power of two
64 (`order'), and satisfied from the appropriate page.
65
66 Each page is recorded in a page-entry, which also maintains an
67 in-use bitmap of object positions on the page. This allows the
68 allocation state of a particular object to be flipped without
69 touching the page itself.
70
71 Each page-entry also has a context depth, which is used to track
72 pushing and popping of allocation contexts. Only objects allocated
3cfec666 73 in the current (highest-numbered) context may be collected.
911ab6b9 74
75 Page entries are arranged in an array of singly-linked lists. The
76 array is indexed by the allocation size, in bits, of the pages on
77 it; i.e. all pages on a list allocate objects of the same size.
78 Pages are ordered on the list such that all non-full pages precede
79 all full pages, with non-full pages arranged in order of decreasing
80 context depth.
81
82 Empty pages (of all orders) are kept on a single page cache list,
83 and are considered first when new pages are required; they are
84 deallocated at the start of the next collection if they haven't
85 been recycled by then. */
86
911ab6b9 87/* Define GGC_DEBUG_LEVEL to print debugging information.
88 0: No debugging output.
89 1: GC statistics only.
90 2: Page-entry allocations/deallocations as well.
91 3: Object allocations as well.
1e625a2e 92 4: Object marks as well. */
911ab6b9 93#define GGC_DEBUG_LEVEL (0)
911ab6b9 94\f
95/* A two-level tree is used to look up the page-entry for a given
96 pointer. Two chunks of the pointer's bits are extracted to index
97 the first and second levels of the tree, as follows:
98
99 HOST_PAGE_SIZE_BITS
100 32 | |
101 msb +----------------+----+------+------+ lsb
102 | | |
103 PAGE_L1_BITS |
104 | |
105 PAGE_L2_BITS
106
107 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
108 pages are aligned on system page boundaries. The next most
109 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
3cfec666 110 index values in the lookup table, respectively.
911ab6b9 111
71661611 112 For 32-bit architectures and the settings below, there are no
113 leftover bits. For architectures with wider pointers, the lookup
114 tree points to a list of pages, which must be scanned to find the
115 correct one. */
911ab6b9 116
117#define PAGE_L1_BITS (8)
118#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
337c992b 119#define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
120#define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
911ab6b9 121
122#define LOOKUP_L1(p) \
337c992b 123 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
911ab6b9 124
125#define LOOKUP_L2(p) \
337c992b 126 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
911ab6b9 127
2f6aecaf 128/* The number of objects per allocation page, for objects on a page of
129 the indicated ORDER. */
130#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
131
573aba85 132/* The number of objects in P. */
133#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
134
2f6aecaf 135/* The size of an object on a page of the indicated ORDER. */
136#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
137
40b9be5e 138/* For speed, we avoid doing a general integer divide to locate the
139 offset in the allocation bitmap, by precalculating numbers M, S
140 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
141 within the page which is evenly divisible by the object size Z. */
142#define DIV_MULT(ORDER) inverse_table[ORDER].mult
143#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
144#define OFFSET_TO_BIT(OFFSET, ORDER) \
145 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
146
3089b75c 147/* We use this structure to determine the alignment required for
148 allocations. For power-of-two sized allocations, that's not a
149 problem, but it does matter for odd-sized allocations.
150 We do not care about alignment for floating-point types. */
151
152struct max_alignment {
153 char c;
154 union {
3a4303e7 155 int64_t i;
3089b75c 156 void *p;
157 } u;
158};
159
160/* The biggest alignment required. */
161
162#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
163
164
2f6aecaf 165/* The number of extra orders, not corresponding to power-of-two sized
166 objects. */
167
3585dac7 168#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
2f6aecaf 169
7bf41779 170#define RTL_SIZE(NSLOTS) \
bf6b5685 171 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
7bf41779 172
761cbb5d 173#define TREE_EXP_SIZE(OPS) \
174 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
175
2f6aecaf 176/* The Ith entry is the maximum size of an object to be stored in the
177 Ith extra order. Adding a new entry to this array is the *only*
178 thing you need to do to add a new special allocation size. */
179
180static const size_t extra_order_size_table[] = {
3089b75c 181 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
182 There are a lot of structures with these sizes and explicitly
183 listing them risks orders being dropped because they changed size. */
184 MAX_ALIGNMENT * 3,
185 MAX_ALIGNMENT * 5,
186 MAX_ALIGNMENT * 6,
187 MAX_ALIGNMENT * 7,
188 MAX_ALIGNMENT * 9,
189 MAX_ALIGNMENT * 10,
190 MAX_ALIGNMENT * 11,
191 MAX_ALIGNMENT * 12,
192 MAX_ALIGNMENT * 13,
193 MAX_ALIGNMENT * 14,
194 MAX_ALIGNMENT * 15,
5ded8c6f 195 sizeof (struct tree_decl_non_common),
196 sizeof (struct tree_field_decl),
197 sizeof (struct tree_parm_decl),
198 sizeof (struct tree_var_decl),
8f2eb9e1 199 sizeof (struct tree_type_non_common),
1c2a6a66 200 sizeof (struct function),
201 sizeof (struct basic_block_def),
3089b75c 202 sizeof (struct cgraph_node),
203 sizeof (struct loop),
2f6aecaf 204};
205
206/* The total number of orders. */
207
208#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
209
573aba85 210/* Compute the smallest nonnegative number which when added to X gives
211 a multiple of F. */
212
213#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
214
25a28b44 215/* Round X to next multiple of the page size */
216
02ce3c0f 217#define PAGE_ALIGN(x) ROUND_UP ((x), G.pagesize)
25a28b44 218
2f6aecaf 219/* The Ith entry is the number of objects on a page or order I. */
220
221static unsigned objects_per_page_table[NUM_ORDERS];
222
223/* The Ith entry is the size of an object on a page of order I. */
224
225static size_t object_size_table[NUM_ORDERS];
911ab6b9 226
40b9be5e 227/* The Ith entry is a pair of numbers (mult, shift) such that
228 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
229 for all k evenly divisible by OBJECT_SIZE(I). */
230
231static struct
232{
2c06e494 233 size_t mult;
40b9be5e 234 unsigned int shift;
235}
236inverse_table[NUM_ORDERS];
237
911ab6b9 238/* A page_entry records the status of an allocation page. This
239 structure is dynamically sized to fit the bitmap in_use_p. */
6dc50383 240struct page_entry
911ab6b9 241{
242 /* The next page-entry with objects of the same size, or NULL if
243 this is the last page-entry. */
244 struct page_entry *next;
245
4a755ae7 246 /* The previous page-entry with objects of the same size, or NULL if
247 this is the first page-entry. The PREV pointer exists solely to
5aedf60c 248 keep the cost of ggc_free manageable. */
4a755ae7 249 struct page_entry *prev;
250
911ab6b9 251 /* The number of bytes allocated. (This will always be a multiple
252 of the host system page size.) */
253 size_t bytes;
254
255 /* The address at which the memory is allocated. */
256 char *page;
257
80eb2355 258#ifdef USING_MALLOC_PAGE_GROUPS
259 /* Back pointer to the page group this page came from. */
260 struct page_group *group;
261#endif
262
76e1b933 263 /* This is the index in the by_depth varray where this page table
264 can be found. */
265 unsigned long index_by_depth;
911ab6b9 266
267 /* Context depth of this page. */
938cf571 268 unsigned short context_depth;
911ab6b9 269
270 /* The number of free objects remaining on this page. */
271 unsigned short num_free_objects;
272
273 /* A likely candidate for the bit position of a free object for the
274 next allocation from this page. */
275 unsigned short next_bit_hint;
276
938cf571 277 /* The lg of size of objects allocated from this page. */
278 unsigned char order;
279
c5db973f 280 /* Discarded page? */
281 bool discarded;
282
911ab6b9 283 /* A bit vector indicating whether or not objects are in use. The
284 Nth bit is one if the Nth object on this page is allocated. This
285 array is dynamically sized. */
286 unsigned long in_use_p[1];
6dc50383 287};
911ab6b9 288
80eb2355 289#ifdef USING_MALLOC_PAGE_GROUPS
290/* A page_group describes a large allocation from malloc, from which
291 we parcel out aligned pages. */
6dc50383 292struct page_group
80eb2355 293{
294 /* A linked list of all extant page groups. */
295 struct page_group *next;
296
297 /* The address we received from malloc. */
298 char *allocation;
299
300 /* The size of the block. */
301 size_t alloc_size;
302
303 /* A bitmask of pages in use. */
304 unsigned int in_use;
6dc50383 305};
80eb2355 306#endif
911ab6b9 307
308#if HOST_BITS_PER_PTR <= 32
309
310/* On 32-bit hosts, we use a two level page table, as pictured above. */
311typedef page_entry **page_table[PAGE_L1_SIZE];
312
313#else
314
71661611 315/* On 64-bit hosts, we use the same two level page tables plus a linked
316 list that disambiguates the top 32-bits. There will almost always be
911ab6b9 317 exactly one entry in the list. */
318typedef struct page_table_chain
319{
320 struct page_table_chain *next;
321 size_t high_bits;
322 page_entry **table[PAGE_L1_SIZE];
323} *page_table;
324
325#endif
326
92f06184 327class finalizer
328{
329public:
330 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
331
332 void *addr () const { return m_addr; }
333
334 void call () const { m_function (m_addr); }
335
336private:
337 void *m_addr;
338 void (*m_function)(void *);
339};
340
341class vec_finalizer
342{
343public:
344 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
345 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
346
347 void call () const
348 {
349 for (size_t i = 0; i < m_n_objects; i++)
350 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
351 }
352
353 void *addr () const { return reinterpret_cast<void *> (m_addr); }
354
355private:
356 uintptr_t m_addr;
357 void (*m_function)(void *);
358 size_t m_object_size;
359 size_t m_n_objects;
5517ecc9 360};
92f06184 361
3e5823c9 362#ifdef ENABLE_GC_ALWAYS_COLLECT
363/* List of free objects to be verified as actually free on the
364 next collection. */
365struct free_object
366{
367 void *object;
368 struct free_object *next;
369};
370#endif
371
911ab6b9 372/* The rest of the global variables. */
9908fe4d 373static struct ggc_globals
911ab6b9 374{
375 /* The Nth element in this array is a page with objects of size 2^N.
376 If there are any pages with free objects, they will be at the
377 head of the list. NULL if there are no page-entries for this
378 object size. */
2f6aecaf 379 page_entry *pages[NUM_ORDERS];
911ab6b9 380
381 /* The Nth element in this array is the last page with objects of
382 size 2^N. NULL if there are no page-entries for this object
383 size. */
2f6aecaf 384 page_entry *page_tails[NUM_ORDERS];
911ab6b9 385
386 /* Lookup table for associating allocation pages with object addresses. */
387 page_table lookup;
388
389 /* The system's page size. */
390 size_t pagesize;
391 size_t lg_pagesize;
392
393 /* Bytes currently allocated. */
394 size_t allocated;
395
396 /* Bytes currently allocated at the end of the last collection. */
397 size_t allocated_last_gc;
398
4e00b6fd 399 /* Total amount of memory mapped. */
400 size_t bytes_mapped;
401
598638e2 402 /* Bit N set if any allocations have been done at context depth N. */
403 unsigned long context_depth_allocations;
404
405 /* Bit N set if any collections have been done at context depth N. */
406 unsigned long context_depth_collections;
407
911ab6b9 408 /* The current depth in the context stack. */
2d15cd89 409 unsigned short context_depth;
911ab6b9 410
411 /* A file descriptor open to /dev/zero for reading. */
901dfcc7 412#if defined (HAVE_MMAP_DEV_ZERO)
911ab6b9 413 int dev_zero_fd;
414#endif
415
416 /* A cache of free system pages. */
417 page_entry *free_pages;
418
80eb2355 419#ifdef USING_MALLOC_PAGE_GROUPS
420 page_group *page_groups;
421#endif
422
911ab6b9 423 /* The file descriptor for debugging output. */
424 FILE *debug_file;
76e1b933 425
426 /* Current number of elements in use in depth below. */
427 unsigned int depth_in_use;
428
429 /* Maximum number of elements that can be used before resizing. */
430 unsigned int depth_max;
431
f0b5f617 432 /* Each element of this array is an index in by_depth where the given
76e1b933 433 depth starts. This structure is indexed by that given depth we
434 are interested in. */
435 unsigned int *depth;
436
437 /* Current number of elements in use in by_depth below. */
438 unsigned int by_depth_in_use;
439
440 /* Maximum number of elements that can be used before resizing. */
441 unsigned int by_depth_max;
442
443 /* Each element of this array is a pointer to a page_entry, all
444 page_entries can be found in here by increasing depth.
445 index_by_depth in the page_entry is the index into this data
446 structure where that page_entry can be found. This is used to
447 speed up finding all page_entries at a particular depth. */
448 page_entry **by_depth;
449
450 /* Each element is a pointer to the saved in_use_p bits, if any,
451 zero otherwise. We allocate them all together, to enable a
452 better runtime data access pattern. */
453 unsigned long **save_in_use;
c4e03242 454
5517ecc9 455 /* Finalizers for single objects. The first index is collection_depth. */
456 vec<vec<finalizer> > finalizers;
92f06184 457
458 /* Finalizers for vectors of objects. */
5517ecc9 459 vec<vec<vec_finalizer> > vec_finalizers;
92f06184 460
c4e03242 461#ifdef ENABLE_GC_ALWAYS_COLLECT
462 /* List of free objects to be verified as actually free on the
463 next collection. */
3e5823c9 464 struct free_object *free_object_list;
c4e03242 465#endif
466
b7257530 467 struct
468 {
ba72912a 469 /* Total GC-allocated memory. */
b7257530 470 unsigned long long total_allocated;
ba72912a 471 /* Total overhead for GC-allocated memory. */
b7257530 472 unsigned long long total_overhead;
473
474 /* Total allocations and overhead for sizes less than 32, 64 and 128.
475 These sizes are interesting because they are typical cache line
b4b174c3 476 sizes. */
48e1416a 477
b7257530 478 unsigned long long total_allocated_under32;
479 unsigned long long total_overhead_under32;
48e1416a 480
b7257530 481 unsigned long long total_allocated_under64;
482 unsigned long long total_overhead_under64;
48e1416a 483
b7257530 484 unsigned long long total_allocated_under128;
485 unsigned long long total_overhead_under128;
48e1416a 486
86736f9e 487 /* The allocations for each of the allocation orders. */
488 unsigned long long total_allocated_per_order[NUM_ORDERS];
489
b4b174c3 490 /* The overhead for each of the allocation orders. */
b7257530 491 unsigned long long total_overhead_per_order[NUM_ORDERS];
492 } stats;
911ab6b9 493} G;
494
8f359205 495/* True if a gc is currently taking place. */
496
497static bool in_gc = false;
498
911ab6b9 499/* The size in bytes required to maintain a bitmap for the objects
500 on a page-entry. */
501#define BITMAP_SIZE(Num_objects) \
9af5ce0c 502 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
911ab6b9 503
80eb2355 504/* Allocate pages in chunks of this size, to throttle calls to memory
505 allocation routines. The first page is used, the rest go onto the
506 free list. This cannot be larger than HOST_BITS_PER_INT for the
28a61eb7 507 in_use bitmask for page_group. Hosts that need a different value
dac49aa5 508 can override this by defining GGC_QUIRE_SIZE explicitly. */
28a61eb7 509#ifndef GGC_QUIRE_SIZE
510# ifdef USING_MMAP
ada13b28 511# define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
28a61eb7 512# else
513# define GGC_QUIRE_SIZE 16
514# endif
515#endif
76e1b933 516
517/* Initial guess as to how many page table entries we might need. */
518#define INITIAL_PTE_COUNT 128
911ab6b9 519\f
6ec1f4e0 520static page_entry *lookup_page_table_entry (const void *);
521static void set_page_table_entry (void *, page_entry *);
80eb2355 522#ifdef USING_MMAP
4a2f812e 523static char *alloc_anon (char *, size_t, bool check);
80eb2355 524#endif
525#ifdef USING_MALLOC_PAGE_GROUPS
6ec1f4e0 526static size_t page_group_index (char *, char *);
527static void set_page_group_in_use (page_group *, char *);
528static void clear_page_group_in_use (page_group *, char *);
80eb2355 529#endif
6ec1f4e0 530static struct page_entry * alloc_page (unsigned);
531static void free_page (struct page_entry *);
532static void release_pages (void);
533static void clear_marks (void);
534static void sweep_pages (void);
535static void ggc_recalculate_in_use_p (page_entry *);
536static void compute_inverse (unsigned);
537static inline void adjust_depth (void);
538static void move_ptes_to_front (int, int);
911ab6b9 539
6ec1f4e0 540void debug_print_page_list (int);
541static void push_depth (unsigned int);
542static void push_by_depth (page_entry *, unsigned long *);
7d60cc60 543
76e1b933 544/* Push an entry onto G.depth. */
545
546inline static void
6ec1f4e0 547push_depth (unsigned int i)
76e1b933 548{
549 if (G.depth_in_use >= G.depth_max)
550 {
551 G.depth_max *= 2;
4077bf7a 552 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
76e1b933 553 }
554 G.depth[G.depth_in_use++] = i;
555}
556
557/* Push an entry onto G.by_depth and G.save_in_use. */
558
559inline static void
6ec1f4e0 560push_by_depth (page_entry *p, unsigned long *s)
76e1b933 561{
562 if (G.by_depth_in_use >= G.by_depth_max)
563 {
564 G.by_depth_max *= 2;
4077bf7a 565 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
566 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
567 G.by_depth_max);
76e1b933 568 }
569 G.by_depth[G.by_depth_in_use] = p;
570 G.save_in_use[G.by_depth_in_use++] = s;
571}
572
573#if (GCC_VERSION < 3001)
574#define prefetch(X) ((void) X)
575#else
576#define prefetch(X) __builtin_prefetch (X)
577#endif
578
579#define save_in_use_p_i(__i) \
580 (G.save_in_use[__i])
581#define save_in_use_p(__p) \
582 (save_in_use_p_i (__p->index_by_depth))
583
8a55e97d 584/* Traverse the page table and find the entry for a page.
585 If the object wasn't allocated in GC return NULL. */
911ab6b9 586
8a55e97d 587static inline page_entry *
588safe_lookup_page_table_entry (const void *p)
911ab6b9 589{
590 page_entry ***base;
71661611 591 size_t L1, L2;
911ab6b9 592
593#if HOST_BITS_PER_PTR <= 32
594 base = &G.lookup[0];
595#else
596 page_table table = G.lookup;
337c992b 597 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
71661611 598 while (1)
599 {
600 if (table == NULL)
8a55e97d 601 return NULL;
71661611 602 if (table->high_bits == high_bits)
603 break;
604 table = table->next;
605 }
911ab6b9 606 base = &table->table[0];
607#endif
608
4a82352a 609 /* Extract the level 1 and 2 indices. */
e3691812 610 L1 = LOOKUP_L1 (p);
611 L2 = LOOKUP_L2 (p);
8a55e97d 612 if (! base[L1])
613 return NULL;
e3691812 614
8a55e97d 615 return base[L1][L2];
e3691812 616}
617
3cfec666 618/* Traverse the page table and find the entry for a page.
e3691812 619 Die (probably) if the object wasn't allocated via GC. */
620
621static inline page_entry *
6ec1f4e0 622lookup_page_table_entry (const void *p)
e3691812 623{
624 page_entry ***base;
625 size_t L1, L2;
626
71661611 627#if HOST_BITS_PER_PTR <= 32
628 base = &G.lookup[0];
629#else
630 page_table table = G.lookup;
337c992b 631 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
71661611 632 while (table->high_bits != high_bits)
633 table = table->next;
634 base = &table->table[0];
635#endif
e3691812 636
4a82352a 637 /* Extract the level 1 and 2 indices. */
911ab6b9 638 L1 = LOOKUP_L1 (p);
639 L2 = LOOKUP_L2 (p);
640
641 return base[L1][L2];
642}
643
911ab6b9 644/* Set the page table entry for a page. */
e3c4633e 645
911ab6b9 646static void
6ec1f4e0 647set_page_table_entry (void *p, page_entry *entry)
911ab6b9 648{
649 page_entry ***base;
650 size_t L1, L2;
651
652#if HOST_BITS_PER_PTR <= 32
653 base = &G.lookup[0];
654#else
655 page_table table;
337c992b 656 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
911ab6b9 657 for (table = G.lookup; table; table = table->next)
658 if (table->high_bits == high_bits)
659 goto found;
660
661 /* Not found -- allocate a new table. */
c768b48b 662 table = XCNEW (struct page_table_chain);
911ab6b9 663 table->next = G.lookup;
664 table->high_bits = high_bits;
665 G.lookup = table;
666found:
667 base = &table->table[0];
668#endif
669
4a82352a 670 /* Extract the level 1 and 2 indices. */
911ab6b9 671 L1 = LOOKUP_L1 (p);
672 L2 = LOOKUP_L2 (p);
673
674 if (base[L1] == NULL)
4c36ffe6 675 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
911ab6b9 676
677 base[L1][L2] = entry;
678}
679
911ab6b9 680/* Prints the page-entry for object size ORDER, for debugging. */
e3c4633e 681
4b987fac 682DEBUG_FUNCTION void
6ec1f4e0 683debug_print_page_list (int order)
911ab6b9 684{
685 page_entry *p;
6ec1f4e0 686 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
687 (void *) G.page_tails[order]);
911ab6b9 688 p = G.pages[order];
689 while (p != NULL)
690 {
6ec1f4e0 691 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
f8cb9479 692 p->num_free_objects);
911ab6b9 693 p = p->next;
694 }
695 printf ("NULL\n");
696 fflush (stdout);
697}
698
80eb2355 699#ifdef USING_MMAP
911ab6b9 700/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
901dfcc7 701 (if non-null). The ifdef structure here is intended to cause a
702 compile error unless exactly one of the HAVE_* is defined. */
e3c4633e 703
911ab6b9 704static inline char *
4a2f812e 705alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
911ab6b9 706{
901dfcc7 707#ifdef HAVE_MMAP_ANON
4077bf7a 708 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
709 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
901dfcc7 710#endif
711#ifdef HAVE_MMAP_DEV_ZERO
4077bf7a 712 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
713 MAP_PRIVATE, G.dev_zero_fd, 0);
911ab6b9 714#endif
901dfcc7 715
716 if (page == (char *) MAP_FAILED)
71661611 717 {
4a2f812e 718 if (!check)
719 return NULL;
cb8bacb6 720 perror ("virtual memory exhausted");
018eba2e 721 exit (FATAL_EXIT_CODE);
71661611 722 }
911ab6b9 723
4e00b6fd 724 /* Remember that we allocated this memory. */
725 G.bytes_mapped += size;
726
dd359afe 727 /* Pretend we don't have access to the allocated pages. We'll enable
ba72912a 728 access to smaller pieces of the area in ggc_internal_alloc. Discard the
dd359afe 729 handle to avoid handle leak. */
a7779e75 730 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
dd359afe 731
911ab6b9 732 return page;
733}
80eb2355 734#endif
735#ifdef USING_MALLOC_PAGE_GROUPS
736/* Compute the index for this page into the page group. */
737
738static inline size_t
6ec1f4e0 739page_group_index (char *allocation, char *page)
80eb2355 740{
dfe09cce 741 return (size_t) (page - allocation) >> G.lg_pagesize;
80eb2355 742}
743
744/* Set and clear the in_use bit for this page in the page group. */
745
746static inline void
6ec1f4e0 747set_page_group_in_use (page_group *group, char *page)
80eb2355 748{
749 group->in_use |= 1 << page_group_index (group->allocation, page);
750}
751
752static inline void
6ec1f4e0 753clear_page_group_in_use (page_group *group, char *page)
80eb2355 754{
755 group->in_use &= ~(1 << page_group_index (group->allocation, page));
756}
757#endif
911ab6b9 758
759/* Allocate a new page for allocating objects of size 2^ORDER,
760 and return an entry for it. The entry is not added to the
761 appropriate page_table list. */
e3c4633e 762
911ab6b9 763static inline struct page_entry *
6ec1f4e0 764alloc_page (unsigned order)
911ab6b9 765{
766 struct page_entry *entry, *p, **pp;
767 char *page;
768 size_t num_objects;
769 size_t bitmap_size;
770 size_t page_entry_size;
771 size_t entry_size;
80eb2355 772#ifdef USING_MALLOC_PAGE_GROUPS
773 page_group *group;
774#endif
911ab6b9 775
776 num_objects = OBJECTS_PER_PAGE (order);
777 bitmap_size = BITMAP_SIZE (num_objects + 1);
778 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
2f6aecaf 779 entry_size = num_objects * OBJECT_SIZE (order);
9acc7238 780 if (entry_size < G.pagesize)
781 entry_size = G.pagesize;
25a28b44 782 entry_size = PAGE_ALIGN (entry_size);
911ab6b9 783
784 entry = NULL;
785 page = NULL;
786
787 /* Check the list of free pages for one we can use. */
018eba2e 788 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
911ab6b9 789 if (p->bytes == entry_size)
790 break;
791
792 if (p != NULL)
793 {
c5db973f 794 if (p->discarded)
795 G.bytes_mapped += p->bytes;
796 p->discarded = false;
797
aa40f561 798 /* Recycle the allocated memory from this page ... */
911ab6b9 799 *pp = p->next;
800 page = p->page;
018eba2e 801
80eb2355 802#ifdef USING_MALLOC_PAGE_GROUPS
803 group = p->group;
804#endif
018eba2e 805
911ab6b9 806 /* ... and, if possible, the page entry itself. */
807 if (p->order == order)
808 {
809 entry = p;
810 memset (entry, 0, page_entry_size);
811 }
812 else
813 free (p);
814 }
901dfcc7 815#ifdef USING_MMAP
9a2e8b0a 816 else if (entry_size == G.pagesize)
911ab6b9 817 {
9a2e8b0a 818 /* We want just one page. Allocate a bunch of them and put the
819 extras on the freelist. (Can only do this optimization with
820 mmap for backing store.) */
821 struct page_entry *e, *f = G.free_pages;
4a2f812e 822 int i, entries = GGC_QUIRE_SIZE;
9a2e8b0a 823
4a2f812e 824 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
825 if (page == NULL)
826 {
9af5ce0c 827 page = alloc_anon (NULL, G.pagesize, true);
4a2f812e 828 entries = 1;
829 }
018eba2e 830
9a2e8b0a 831 /* This loop counts down so that the chain will be in ascending
832 memory order. */
4a2f812e 833 for (i = entries - 1; i >= 1; i--)
9a2e8b0a 834 {
4077bf7a 835 e = XCNEWVAR (struct page_entry, page_entry_size);
9acc7238 836 e->order = order;
837 e->bytes = G.pagesize;
838 e->page = page + (i << G.lg_pagesize);
9a2e8b0a 839 e->next = f;
840 f = e;
841 }
018eba2e 842
9a2e8b0a 843 G.free_pages = f;
911ab6b9 844 }
9a2e8b0a 845 else
4a2f812e 846 page = alloc_anon (NULL, entry_size, true);
80eb2355 847#endif
848#ifdef USING_MALLOC_PAGE_GROUPS
849 else
850 {
851 /* Allocate a large block of memory and serve out the aligned
852 pages therein. This results in much less memory wastage
853 than the traditional implementation of valloc. */
854
855 char *allocation, *a, *enda;
856 size_t alloc_size, head_slop, tail_slop;
857 int multiple_pages = (entry_size == G.pagesize);
858
859 if (multiple_pages)
860 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
861 else
862 alloc_size = entry_size + G.pagesize - 1;
781dec7f 863 allocation = XNEWVEC (char, alloc_size);
80eb2355 864
337c992b 865 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
80eb2355 866 head_slop = page - allocation;
867 if (multiple_pages)
868 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
869 else
870 tail_slop = alloc_size - entry_size - head_slop;
871 enda = allocation + alloc_size - tail_slop;
872
873 /* We allocated N pages, which are likely not aligned, leaving
874 us with N-1 usable pages. We plan to place the page_group
875 structure somewhere in the slop. */
876 if (head_slop >= sizeof (page_group))
877 group = (page_group *)page - 1;
878 else
879 {
880 /* We magically got an aligned allocation. Too bad, we have
881 to waste a page anyway. */
882 if (tail_slop == 0)
883 {
884 enda -= G.pagesize;
885 tail_slop += G.pagesize;
886 }
0d59b19d 887 gcc_assert (tail_slop >= sizeof (page_group));
80eb2355 888 group = (page_group *)enda;
889 tail_slop -= sizeof (page_group);
890 }
891
892 /* Remember that we allocated this memory. */
893 group->next = G.page_groups;
894 group->allocation = allocation;
895 group->alloc_size = alloc_size;
896 group->in_use = 0;
897 G.page_groups = group;
898 G.bytes_mapped += alloc_size;
899
900 /* If we allocated multiple pages, put the rest on the free list. */
901 if (multiple_pages)
902 {
903 struct page_entry *e, *f = G.free_pages;
904 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
905 {
781dec7f 906 e = XCNEWVAR (struct page_entry, page_entry_size);
80eb2355 907 e->order = order;
908 e->bytes = G.pagesize;
909 e->page = a;
910 e->group = group;
911 e->next = f;
912 f = e;
913 }
914 G.free_pages = f;
915 }
916 }
917#endif
911ab6b9 918
919 if (entry == NULL)
4077bf7a 920 entry = XCNEWVAR (struct page_entry, page_entry_size);
911ab6b9 921
922 entry->bytes = entry_size;
923 entry->page = page;
924 entry->context_depth = G.context_depth;
925 entry->order = order;
926 entry->num_free_objects = num_objects;
927 entry->next_bit_hint = 1;
928
598638e2 929 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
930
80eb2355 931#ifdef USING_MALLOC_PAGE_GROUPS
932 entry->group = group;
933 set_page_group_in_use (group, page);
934#endif
935
911ab6b9 936 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
937 increment the hint. */
938 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
939 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
940
941 set_page_table_entry (page, entry);
942
943 if (GGC_DEBUG_LEVEL >= 2)
3cfec666 944 fprintf (G.debug_file,
29e7390a 945 "Allocating page at %p, object size=%lu, data %p-%p\n",
6ec1f4e0 946 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
018eba2e 947 page + entry_size - 1);
911ab6b9 948
949 return entry;
950}
951
76e1b933 952/* Adjust the size of G.depth so that no index greater than the one
953 used by the top of the G.by_depth is used. */
954
955static inline void
6ec1f4e0 956adjust_depth (void)
76e1b933 957{
958 page_entry *top;
959
960 if (G.by_depth_in_use)
961 {
962 top = G.by_depth[G.by_depth_in_use-1];
963
d01481af 964 /* Peel back indices in depth that index into by_depth, so that
965 as new elements are added to by_depth, we note the indices
76e1b933 966 of those elements, if they are for new context depths. */
967 while (G.depth_in_use > (size_t)top->context_depth+1)
968 --G.depth_in_use;
969 }
970}
971
e3c4633e 972/* For a page that is no longer needed, put it on the free page list. */
911ab6b9 973
c4e03242 974static void
6ec1f4e0 975free_page (page_entry *entry)
911ab6b9 976{
977 if (GGC_DEBUG_LEVEL >= 2)
3cfec666 978 fprintf (G.debug_file,
6ec1f4e0 979 "Deallocating page at %p, data %p-%p\n", (void *) entry,
911ab6b9 980 entry->page, entry->page + entry->bytes - 1);
981
dd359afe 982 /* Mark the page as inaccessible. Discard the handle to avoid handle
983 leak. */
a7779e75 984 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
dd359afe 985
911ab6b9 986 set_page_table_entry (entry->page, NULL);
987
80eb2355 988#ifdef USING_MALLOC_PAGE_GROUPS
989 clear_page_group_in_use (entry->group, entry->page);
990#endif
991
76e1b933 992 if (G.by_depth_in_use > 1)
993 {
994 page_entry *top = G.by_depth[G.by_depth_in_use-1];
0d59b19d 995 int i = entry->index_by_depth;
996
997 /* We cannot free a page from a context deeper than the current
998 one. */
999 gcc_assert (entry->context_depth == top->context_depth);
48e1416a 1000
0d59b19d 1001 /* Put top element into freed slot. */
1002 G.by_depth[i] = top;
1003 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1004 top->index_by_depth = i;
76e1b933 1005 }
1006 --G.by_depth_in_use;
1007
1008 adjust_depth ();
1009
911ab6b9 1010 entry->next = G.free_pages;
1011 G.free_pages = entry;
1012}
1013
e3c4633e 1014/* Release the free page cache to the system. */
911ab6b9 1015
c10b9b1c 1016static void
6ec1f4e0 1017release_pages (void)
911ab6b9 1018{
c5db973f 1019#ifdef USING_MADVISE
1020 page_entry *p, *start_p;
1021 char *start;
1022 size_t len;
e8b7c612 1023 size_t mapped_len;
1024 page_entry *next, *prev, *newprev;
1025 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1026
1027 /* First free larger continuous areas to the OS.
1028 This allows other allocators to grab these areas if needed.
1029 This is only done on larger chunks to avoid fragmentation.
1030 This does not always work because the free_pages list is only
1031 approximately sorted. */
1032
1033 p = G.free_pages;
1034 prev = NULL;
1035 while (p)
1036 {
1037 start = p->page;
1038 start_p = p;
1039 len = 0;
1040 mapped_len = 0;
1041 newprev = prev;
1042 while (p && p->page == start + len)
1043 {
1044 len += p->bytes;
1045 if (!p->discarded)
1046 mapped_len += p->bytes;
1047 newprev = p;
1048 p = p->next;
1049 }
1050 if (len >= free_unit)
1051 {
1052 while (start_p != p)
1053 {
1054 next = start_p->next;
1055 free (start_p);
1056 start_p = next;
1057 }
1058 munmap (start, len);
1059 if (prev)
1060 prev->next = p;
1061 else
1062 G.free_pages = p;
1063 G.bytes_mapped -= mapped_len;
1064 continue;
1065 }
1066 prev = newprev;
1067 }
1068
1069 /* Now give back the fragmented pages to the OS, but keep the address
1070 space to reuse it next time. */
c5db973f 1071
1072 for (p = G.free_pages; p; )
1073 {
1074 if (p->discarded)
1075 {
1076 p = p->next;
1077 continue;
1078 }
1079 start = p->page;
1080 len = p->bytes;
1081 start_p = p;
1082 p = p->next;
1083 while (p && p->page == start + len)
1084 {
1085 len += p->bytes;
1086 p = p->next;
1087 }
1088 /* Give the page back to the kernel, but don't free the mapping.
1089 This avoids fragmentation in the virtual memory map of the
1090 process. Next time we can reuse it by just touching it. */
1091 madvise (start, len, MADV_DONTNEED);
1092 /* Don't count those pages as mapped to not touch the garbage collector
1093 unnecessarily. */
1094 G.bytes_mapped -= len;
1095 while (start_p != p)
1096 {
1097 start_p->discarded = true;
1098 start_p = start_p->next;
1099 }
1100 }
1101#endif
1102#if defined(USING_MMAP) && !defined(USING_MADVISE)
80eb2355 1103 page_entry *p, *next;
911ab6b9 1104 char *start;
1105 size_t len;
1106
9a2e8b0a 1107 /* Gather up adjacent pages so they are unmapped together. */
911ab6b9 1108 p = G.free_pages;
911ab6b9 1109
1110 while (p)
1111 {
9a2e8b0a 1112 start = p->page;
911ab6b9 1113 next = p->next;
9a2e8b0a 1114 len = p->bytes;
911ab6b9 1115 free (p);
1116 p = next;
911ab6b9 1117
9a2e8b0a 1118 while (p && p->page == start + len)
1119 {
1120 next = p->next;
1121 len += p->bytes;
1122 free (p);
1123 p = next;
1124 }
1125
1126 munmap (start, len);
1127 G.bytes_mapped -= len;
1128 }
71661611 1129
911ab6b9 1130 G.free_pages = NULL;
80eb2355 1131#endif
1132#ifdef USING_MALLOC_PAGE_GROUPS
1133 page_entry **pp, *p;
1134 page_group **gp, *g;
1135
1136 /* Remove all pages from free page groups from the list. */
1137 pp = &G.free_pages;
1138 while ((p = *pp) != NULL)
1139 if (p->group->in_use == 0)
1140 {
1141 *pp = p->next;
1142 free (p);
1143 }
1144 else
1145 pp = &p->next;
1146
1147 /* Remove all free page groups, and release the storage. */
1148 gp = &G.page_groups;
1149 while ((g = *gp) != NULL)
1150 if (g->in_use == 0)
1151 {
1152 *gp = g->next;
3cfec666 1153 G.bytes_mapped -= g->alloc_size;
80eb2355 1154 free (g->allocation);
1155 }
1156 else
1157 gp = &g->next;
1158#endif
911ab6b9 1159}
1160
911ab6b9 1161/* This table provides a fast way to determine ceil(log_2(size)) for
f806fb68 1162 allocation requests. The minimum allocation size is eight bytes. */
f68513d3 1163#define NUM_SIZE_LOOKUP 512
1164static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
f806fb68 1165{
3cfec666 1166 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1167 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1168 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1169 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1170 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1171 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1172 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
911ab6b9 1173 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
911ab6b9 1174 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1175 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1176 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1177 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1178 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1179 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1180 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1181 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1c2a6a66 1182 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1183 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1184 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1185 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1186 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1187 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1188 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1189 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1190 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1191 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1192 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1193 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1194 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1195 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1196 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
8c14f57e 1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
911ab6b9 1198};
1199
1ae3520e 1200/* For a given size of memory requested for allocation, return the
1201 actual size that is going to be allocated, as well as the size
1202 order. */
1203
1204static void
1205ggc_round_alloc_size_1 (size_t requested_size,
1206 size_t *size_order,
1207 size_t *alloced_size)
1208{
1209 size_t order, object_size;
1210
1211 if (requested_size < NUM_SIZE_LOOKUP)
1212 {
1213 order = size_lookup[requested_size];
1214 object_size = OBJECT_SIZE (order);
1215 }
1216 else
1217 {
1218 order = 10;
1219 while (requested_size > (object_size = OBJECT_SIZE (order)))
1220 order++;
1221 }
1222
1223 if (size_order)
1224 *size_order = order;
1225 if (alloced_size)
1226 *alloced_size = object_size;
1227}
1228
1229/* For a given size of memory requested for allocation, return the
1230 actual size that is going to be allocated. */
1231
1232size_t
1233ggc_round_alloc_size (size_t requested_size)
1234{
1235 size_t size = 0;
1236
1237 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1238 return size;
1239}
1240
5517ecc9 1241/* Push a finalizer onto the appropriate vec. */
1242
1243static void
1244add_finalizer (void *result, void (*f)(void *), size_t s, size_t n)
1245{
1246 if (f == NULL)
1247 /* No finalizer. */;
1248 else if (n == 1)
1249 {
1250 finalizer fin (result, f);
1251 G.finalizers[G.context_depth].safe_push (fin);
1252 }
1253 else
1254 {
1255 vec_finalizer fin (reinterpret_cast<uintptr_t> (result), f, s, n);
1256 G.vec_finalizers[G.context_depth].safe_push (fin);
1257 }
1258}
1259
908b11c1 1260/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
e3c4633e 1261
71661611 1262void *
92f06184 1263ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1264 MEM_STAT_DECL)
911ab6b9 1265{
c4e03242 1266 size_t order, word, bit, object_offset, object_size;
911ab6b9 1267 struct page_entry *entry;
1268 void *result;
1269
1ae3520e 1270 ggc_round_alloc_size_1 (size, &order, &object_size);
911ab6b9 1271
1272 /* If there are non-full pages for this size allocation, they are at
1273 the head of the list. */
1274 entry = G.pages[order];
1275
1276 /* If there is no page for this object size, or all pages in this
1277 context are full, allocate a new page. */
c10b9b1c 1278 if (entry == NULL || entry->num_free_objects == 0)
911ab6b9 1279 {
1280 struct page_entry *new_entry;
1281 new_entry = alloc_page (order);
3cfec666 1282
76e1b933 1283 new_entry->index_by_depth = G.by_depth_in_use;
1284 push_by_depth (new_entry, 0);
1285
1286 /* We can skip context depths, if we do, make sure we go all the
1287 way to the new depth. */
1288 while (new_entry->context_depth >= G.depth_in_use)
1289 push_depth (G.by_depth_in_use-1);
1290
4a755ae7 1291 /* If this is the only entry, it's also the tail. If it is not
1292 the only entry, then we must update the PREV pointer of the
1293 ENTRY (G.pages[order]) to point to our new page entry. */
911ab6b9 1294 if (entry == NULL)
1295 G.page_tails[order] = new_entry;
4a755ae7 1296 else
1297 entry->prev = new_entry;
3cfec666 1298
4a755ae7 1299 /* Put new pages at the head of the page list. By definition the
1300 entry at the head of the list always has a NULL pointer. */
911ab6b9 1301 new_entry->next = entry;
4a755ae7 1302 new_entry->prev = NULL;
911ab6b9 1303 entry = new_entry;
1304 G.pages[order] = new_entry;
1305
1306 /* For a new page, we know the word and bit positions (in the
1307 in_use bitmap) of the first available object -- they're zero. */
1308 new_entry->next_bit_hint = 1;
1309 word = 0;
1310 bit = 0;
1311 object_offset = 0;
1312 }
1313 else
1314 {
1315 /* First try to use the hint left from the previous allocation
1316 to locate a clear bit in the in-use bitmap. We've made sure
1317 that the one-past-the-end bit is always set, so if the hint
1318 has run over, this test will fail. */
1319 unsigned hint = entry->next_bit_hint;
1320 word = hint / HOST_BITS_PER_LONG;
1321 bit = hint % HOST_BITS_PER_LONG;
3cfec666 1322
911ab6b9 1323 /* If the hint didn't work, scan the bitmap from the beginning. */
1324 if ((entry->in_use_p[word] >> bit) & 1)
1325 {
1326 word = bit = 0;
1327 while (~entry->in_use_p[word] == 0)
1328 ++word;
bff49002 1329
1330#if GCC_VERSION >= 3004
1331 bit = __builtin_ctzl (~entry->in_use_p[word]);
1332#else
911ab6b9 1333 while ((entry->in_use_p[word] >> bit) & 1)
1334 ++bit;
bff49002 1335#endif
1336
911ab6b9 1337 hint = word * HOST_BITS_PER_LONG + bit;
1338 }
1339
1340 /* Next time, try the next bit. */
1341 entry->next_bit_hint = hint + 1;
1342
c4e03242 1343 object_offset = hint * object_size;
911ab6b9 1344 }
1345
1346 /* Set the in-use bit. */
1347 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1348
1349 /* Keep a running total of the number of free objects. If this page
1350 fills up, we may have to move it to the end of the list if the
1351 next page isn't full. If the next page is full, all subsequent
1352 pages are full, so there's no need to move it. */
1353 if (--entry->num_free_objects == 0
1354 && entry->next != NULL
1355 && entry->next->num_free_objects > 0)
1356 {
4a755ae7 1357 /* We have a new head for the list. */
911ab6b9 1358 G.pages[order] = entry->next;
4a755ae7 1359
1360 /* We are moving ENTRY to the end of the page table list.
1361 The new page at the head of the list will have NULL in
1362 its PREV field and ENTRY will have NULL in its NEXT field. */
1363 entry->next->prev = NULL;
911ab6b9 1364 entry->next = NULL;
4a755ae7 1365
1366 /* Append ENTRY to the tail of the list. */
1367 entry->prev = G.page_tails[order];
911ab6b9 1368 G.page_tails[order]->next = entry;
1369 G.page_tails[order] = entry;
1370 }
1371
1372 /* Calculate the object's address. */
1373 result = entry->page + object_offset;
ecd52ea9 1374 if (GATHER_STATISTICS)
1375 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1376 result FINAL_PASS_MEM_STAT);
911ab6b9 1377
2a3edec5 1378#ifdef ENABLE_GC_CHECKING
dd359afe 1379 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1380 exact same semantics in presence of memory bugs, regardless of
1381 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1382 handle to avoid handle leak. */
a7779e75 1383 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
dd359afe 1384
791ceafe 1385 /* `Poison' the entire allocated object, including any padding at
1386 the end. */
c4e03242 1387 memset (result, 0xaf, object_size);
dd359afe 1388
1389 /* Make the bytes after the end of the object unaccessible. Discard the
1390 handle to avoid handle leak. */
a7779e75 1391 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1392 object_size - size));
911ab6b9 1393#endif
e3c4633e 1394
dd359afe 1395 /* Tell Valgrind that the memory is there, but its content isn't
1396 defined. The bytes at the end of the object are still marked
1397 unaccessible. */
a7779e75 1398 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
dd359afe 1399
911ab6b9 1400 /* Keep track of how many bytes are being allocated. This
1401 information is used in deciding when to collect. */
c4e03242 1402 G.allocated += object_size;
911ab6b9 1403
8d453ddb 1404 /* For timevar statistics. */
1405 timevar_ggc_mem_total += object_size;
1406
5517ecc9 1407 if (f)
1408 add_finalizer (result, f, s, n);
92f06184 1409
ecd52ea9 1410 if (GATHER_STATISTICS)
1411 {
1412 size_t overhead = object_size - size;
b7257530 1413
ecd52ea9 1414 G.stats.total_overhead += overhead;
1415 G.stats.total_allocated += object_size;
1416 G.stats.total_overhead_per_order[order] += overhead;
1417 G.stats.total_allocated_per_order[order] += object_size;
b7257530 1418
ecd52ea9 1419 if (size <= 32)
1420 {
1421 G.stats.total_overhead_under32 += overhead;
1422 G.stats.total_allocated_under32 += object_size;
1423 }
1424 if (size <= 64)
1425 {
1426 G.stats.total_overhead_under64 += overhead;
1427 G.stats.total_allocated_under64 += object_size;
1428 }
1429 if (size <= 128)
1430 {
1431 G.stats.total_overhead_under128 += overhead;
1432 G.stats.total_allocated_under128 += object_size;
1433 }
1434 }
c4e03242 1435
911ab6b9 1436 if (GGC_DEBUG_LEVEL >= 3)
3cfec666 1437 fprintf (G.debug_file,
29e7390a 1438 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
c4e03242 1439 (unsigned long) size, (unsigned long) object_size, result,
6ec1f4e0 1440 (void *) entry);
911ab6b9 1441
1442 return result;
1443}
1444
dfecde36 1445/* Mark function for strings. */
1446
1447void
1448gt_ggc_m_S (const void *p)
1449{
1450 page_entry *entry;
1451 unsigned bit, word;
1452 unsigned long mask;
1453 unsigned long offset;
1454
8a55e97d 1455 if (!p)
dfecde36 1456 return;
1457
8a55e97d 1458 /* Look up the page on which the object is alloced. If it was not
1459 GC allocated, gracefully bail out. */
1460 entry = safe_lookup_page_table_entry (p);
1461 if (!entry)
1462 return;
dfecde36 1463
1464 /* Calculate the index of the object on the page; this is its bit
1465 position in the in_use_p bitmap. Note that because a char* might
1466 point to the middle of an object, we need special code here to
1467 make sure P points to the start of an object. */
1468 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1469 if (offset)
1470 {
1471 /* Here we've seen a char* which does not point to the beginning
1472 of an allocated object. We assume it points to the middle of
1473 a STRING_CST. */
1474 gcc_assert (offset == offsetof (struct tree_string, str));
1475 p = ((const char *) p) - offset;
4077bf7a 1476 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
dfecde36 1477 return;
1478 }
1479
1480 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1481 word = bit / HOST_BITS_PER_LONG;
1482 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1483
1484 /* If the bit was previously set, skip it. */
1485 if (entry->in_use_p[word] & mask)
1486 return;
1487
1488 /* Otherwise set it, and decrement the free object count. */
1489 entry->in_use_p[word] |= mask;
1490 entry->num_free_objects -= 1;
1491
1492 if (GGC_DEBUG_LEVEL >= 4)
1493 fprintf (G.debug_file, "Marking %p\n", p);
1494
1495 return;
1496}
1497
2b15d2ba 1498
1499/* User-callable entry points for marking string X. */
1500
1501void
1502gt_ggc_mx (const char *& x)
1503{
1504 gt_ggc_m_S (x);
1505}
1506
1507void
1508gt_ggc_mx (unsigned char *& x)
1509{
1510 gt_ggc_m_S (x);
1511}
1512
1513void
1514gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1515{
1516}
1517
e3c4633e 1518/* If P is not marked, marks it and return false. Otherwise return true.
911ab6b9 1519 P must have been allocated by the GC allocator; it mustn't point to
1520 static objects, stack variables, or memory allocated with malloc. */
e3c4633e 1521
71661611 1522int
6ec1f4e0 1523ggc_set_mark (const void *p)
911ab6b9 1524{
1525 page_entry *entry;
1526 unsigned bit, word;
1527 unsigned long mask;
1528
1529 /* Look up the page on which the object is alloced. If the object
1530 wasn't allocated by the collector, we'll probably die. */
e3691812 1531 entry = lookup_page_table_entry (p);
0d59b19d 1532 gcc_assert (entry);
911ab6b9 1533
1534 /* Calculate the index of the object on the page; this is its bit
1535 position in the in_use_p bitmap. */
40b9be5e 1536 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
911ab6b9 1537 word = bit / HOST_BITS_PER_LONG;
1538 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
3cfec666 1539
aa40f561 1540 /* If the bit was previously set, skip it. */
911ab6b9 1541 if (entry->in_use_p[word] & mask)
1542 return 1;
1543
1544 /* Otherwise set it, and decrement the free object count. */
1545 entry->in_use_p[word] |= mask;
1546 entry->num_free_objects -= 1;
1547
911ab6b9 1548 if (GGC_DEBUG_LEVEL >= 4)
1549 fprintf (G.debug_file, "Marking %p\n", p);
1550
1551 return 0;
1552}
1553
3cfec666 1554/* Return 1 if P has been marked, zero otherwise.
15d769aa 1555 P must have been allocated by the GC allocator; it mustn't point to
1556 static objects, stack variables, or memory allocated with malloc. */
1557
1558int
6ec1f4e0 1559ggc_marked_p (const void *p)
15d769aa 1560{
1561 page_entry *entry;
1562 unsigned bit, word;
1563 unsigned long mask;
1564
1565 /* Look up the page on which the object is alloced. If the object
1566 wasn't allocated by the collector, we'll probably die. */
1567 entry = lookup_page_table_entry (p);
0d59b19d 1568 gcc_assert (entry);
15d769aa 1569
1570 /* Calculate the index of the object on the page; this is its bit
1571 position in the in_use_p bitmap. */
40b9be5e 1572 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
15d769aa 1573 word = bit / HOST_BITS_PER_LONG;
1574 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
3cfec666 1575
291e3f96 1576 return (entry->in_use_p[word] & mask) != 0;
15d769aa 1577}
1578
e3c4633e 1579/* Return the size of the gc-able object P. */
1580
4e00b6fd 1581size_t
6ec1f4e0 1582ggc_get_size (const void *p)
4e00b6fd 1583{
1584 page_entry *pe = lookup_page_table_entry (p);
2f6aecaf 1585 return OBJECT_SIZE (pe->order);
4e00b6fd 1586}
c4e03242 1587
1588/* Release the memory for object P. */
1589
1590void
1591ggc_free (void *p)
1592{
8f359205 1593 if (in_gc)
1594 return;
1595
c4e03242 1596 page_entry *pe = lookup_page_table_entry (p);
1597 size_t order = pe->order;
1598 size_t size = OBJECT_SIZE (order);
1599
ecd52ea9 1600 if (GATHER_STATISTICS)
1601 ggc_free_overhead (p);
0ca9a7b6 1602
c4e03242 1603 if (GGC_DEBUG_LEVEL >= 3)
1604 fprintf (G.debug_file,
1605 "Freeing object, actual size=%lu, at %p on %p\n",
1606 (unsigned long) size, p, (void *) pe);
1607
1608#ifdef ENABLE_GC_CHECKING
1609 /* Poison the data, to indicate the data is garbage. */
a7779e75 1610 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
c4e03242 1611 memset (p, 0xa5, size);
1612#endif
1613 /* Let valgrind know the object is free. */
a7779e75 1614 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
c4e03242 1615
1616#ifdef ENABLE_GC_ALWAYS_COLLECT
1617 /* In the completely-anal-checking mode, we do *not* immediately free
48e1416a 1618 the data, but instead verify that the data is *actually* not
c4e03242 1619 reachable the next time we collect. */
1620 {
4c36ffe6 1621 struct free_object *fo = XNEW (struct free_object);
c4e03242 1622 fo->object = p;
1623 fo->next = G.free_object_list;
1624 G.free_object_list = fo;
1625 }
1626#else
1627 {
1628 unsigned int bit_offset, word, bit;
1629
1630 G.allocated -= size;
1631
1632 /* Mark the object not-in-use. */
1633 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1634 word = bit_offset / HOST_BITS_PER_LONG;
1635 bit = bit_offset % HOST_BITS_PER_LONG;
1636 pe->in_use_p[word] &= ~(1UL << bit);
1637
1638 if (pe->num_free_objects++ == 0)
1639 {
4a755ae7 1640 page_entry *p, *q;
1641
c4e03242 1642 /* If the page is completely full, then it's supposed to
1643 be after all pages that aren't. Since we've freed one
1644 object from a page that was full, we need to move the
48e1416a 1645 page to the head of the list.
c4e03242 1646
4a755ae7 1647 PE is the node we want to move. Q is the previous node
1648 and P is the next node in the list. */
1649 q = pe->prev;
c4e03242 1650 if (q && q->num_free_objects == 0)
1651 {
1652 p = pe->next;
4a755ae7 1653
c4e03242 1654 q->next = p;
4a755ae7 1655
1656 /* If PE was at the end of the list, then Q becomes the
1657 new end of the list. If PE was not the end of the
1658 list, then we need to update the PREV field for P. */
c4e03242 1659 if (!p)
1660 G.page_tails[order] = q;
4a755ae7 1661 else
1662 p->prev = q;
1663
1664 /* Move PE to the head of the list. */
c4e03242 1665 pe->next = G.pages[order];
4a755ae7 1666 pe->prev = NULL;
1667 G.pages[order]->prev = pe;
c4e03242 1668 G.pages[order] = pe;
1669 }
1670
1671 /* Reset the hint bit to point to the only free object. */
1672 pe->next_bit_hint = bit_offset;
1673 }
1674 }
1675#endif
1676}
911ab6b9 1677\f
40b9be5e 1678/* Subroutine of init_ggc which computes the pair of numbers used to
1679 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1680
1681 This algorithm is taken from Granlund and Montgomery's paper
1682 "Division by Invariant Integers using Multiplication"
1683 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1684 constants). */
1685
1686static void
6ec1f4e0 1687compute_inverse (unsigned order)
40b9be5e 1688{
48e1416a 1689 size_t size, inv;
2c06e494 1690 unsigned int e;
ff34fd94 1691
40b9be5e 1692 size = OBJECT_SIZE (order);
1693 e = 0;
1694 while (size % 2 == 0)
1695 {
1696 e++;
1697 size >>= 1;
1698 }
e3c4633e 1699
40b9be5e 1700 inv = size;
1701 while (inv * size != 1)
1702 inv = inv * (2 - inv*size);
1703
1704 DIV_MULT (order) = inv;
1705 DIV_SHIFT (order) = e;
1706}
1707
1708/* Initialize the ggc-mmap allocator. */
911ab6b9 1709void
6ec1f4e0 1710init_ggc (void)
911ab6b9 1711{
415309e2 1712 static bool init_p = false;
2f6aecaf 1713 unsigned order;
1714
415309e2 1715 if (init_p)
1716 return;
1717 init_p = true;
1718
9af5ce0c 1719 G.pagesize = getpagesize ();
911ab6b9 1720 G.lg_pagesize = exact_log2 (G.pagesize);
1721
901dfcc7 1722#ifdef HAVE_MMAP_DEV_ZERO
911ab6b9 1723 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1724 if (G.dev_zero_fd == -1)
3a2aee0e 1725 internal_error ("open /dev/zero: %m");
911ab6b9 1726#endif
1727
1728#if 0
1729 G.debug_file = fopen ("ggc-mmap.debug", "w");
1730#else
1731 G.debug_file = stdout;
1732#endif
1733
901dfcc7 1734#ifdef USING_MMAP
42f8e268 1735 /* StunOS has an amazing off-by-one error for the first mmap allocation
1736 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1737 believe, is an unaligned page allocation, which would cause us to
1738 hork badly if we tried to use it. */
1739 {
4a2f812e 1740 char *p = alloc_anon (NULL, G.pagesize, true);
901dfcc7 1741 struct page_entry *e;
337c992b 1742 if ((uintptr_t)p & (G.pagesize - 1))
42f8e268 1743 {
1744 /* How losing. Discard this one and try another. If we still
1745 can't get something useful, give up. */
1746
4a2f812e 1747 p = alloc_anon (NULL, G.pagesize, true);
337c992b 1748 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
42f8e268 1749 }
901dfcc7 1750
aa40f561 1751 /* We have a good page, might as well hold onto it... */
4c36ffe6 1752 e = XCNEW (struct page_entry);
901dfcc7 1753 e->bytes = G.pagesize;
1754 e->page = p;
1755 e->next = G.free_pages;
1756 G.free_pages = e;
42f8e268 1757 }
1758#endif
2f6aecaf 1759
1760 /* Initialize the object size table. */
1761 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1762 object_size_table[order] = (size_t) 1 << order;
1763 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
918edee0 1764 {
1765 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
5da2078a 1766
1767 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1768 so that we're sure of getting aligned memory. */
1769 s = ROUND_UP (s, MAX_ALIGNMENT);
918edee0 1770 object_size_table[order] = s;
1771 }
2f6aecaf 1772
40b9be5e 1773 /* Initialize the objects-per-page and inverse tables. */
2f6aecaf 1774 for (order = 0; order < NUM_ORDERS; ++order)
1775 {
1776 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1777 if (objects_per_page_table[order] == 0)
1778 objects_per_page_table[order] = 1;
40b9be5e 1779 compute_inverse (order);
2f6aecaf 1780 }
1781
1782 /* Reset the size_lookup array to put appropriately sized objects in
1783 the special orders. All objects bigger than the previous power
1784 of two, but no greater than the special size, should go in the
5da2078a 1785 new order. */
2f6aecaf 1786 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1787 {
5da2078a 1788 int o;
1789 int i;
76e1b933 1790
f68513d3 1791 i = OBJECT_SIZE (order);
1792 if (i >= NUM_SIZE_LOOKUP)
1793 continue;
1794
1795 for (o = size_lookup[i]; o == size_lookup [i]; --i)
5da2078a 1796 size_lookup[i] = order;
1797 }
8c14f57e 1798
76e1b933 1799 G.depth_in_use = 0;
1800 G.depth_max = 10;
4c36ffe6 1801 G.depth = XNEWVEC (unsigned int, G.depth_max);
76e1b933 1802
1803 G.by_depth_in_use = 0;
1804 G.by_depth_max = INITIAL_PTE_COUNT;
4c36ffe6 1805 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1806 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
5517ecc9 1807
1808 /* Allocate space for the depth 0 finalizers. */
1809 G.finalizers.safe_push (vNULL);
1810 G.vec_finalizers.safe_push (vNULL);
1811 gcc_assert (G.finalizers.length() == 1);
911ab6b9 1812}
1813
c10b9b1c 1814/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1815 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1816
1817static void
6ec1f4e0 1818ggc_recalculate_in_use_p (page_entry *p)
c10b9b1c 1819{
1820 unsigned int i;
1821 size_t num_objects;
1822
3cfec666 1823 /* Because the past-the-end bit in in_use_p is always set, we
c10b9b1c 1824 pretend there is one additional object. */
573aba85 1825 num_objects = OBJECTS_IN_PAGE (p) + 1;
c10b9b1c 1826
1827 /* Reset the free object count. */
1828 p->num_free_objects = num_objects;
1829
1830 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
3cfec666 1831 for (i = 0;
2f6aecaf 1832 i < CEIL (BITMAP_SIZE (num_objects),
1833 sizeof (*p->in_use_p));
c10b9b1c 1834 ++i)
1835 {
1836 unsigned long j;
1837
1838 /* Something is in use if it is marked, or if it was in use in a
1839 context further down the context stack. */
76e1b933 1840 p->in_use_p[i] |= save_in_use_p (p)[i];
c10b9b1c 1841
1842 /* Decrement the free object count for every object allocated. */
1843 for (j = p->in_use_p[i]; j; j >>= 1)
1844 p->num_free_objects -= (j & 1);
1845 }
1846
0d59b19d 1847 gcc_assert (p->num_free_objects < num_objects);
c10b9b1c 1848}
911ab6b9 1849\f
e3c4633e 1850/* Unmark all objects. */
1851
c4e03242 1852static void
6ec1f4e0 1853clear_marks (void)
911ab6b9 1854{
1855 unsigned order;
1856
2f6aecaf 1857 for (order = 2; order < NUM_ORDERS; order++)
911ab6b9 1858 {
911ab6b9 1859 page_entry *p;
1860
1861 for (p = G.pages[order]; p != NULL; p = p->next)
1862 {
573aba85 1863 size_t num_objects = OBJECTS_IN_PAGE (p);
1864 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1865
911ab6b9 1866 /* The data should be page-aligned. */
337c992b 1867 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
911ab6b9 1868
1869 /* Pages that aren't in the topmost context are not collected;
1870 nevertheless, we need their in-use bit vectors to store GC
1871 marks. So, back them up first. */
c10b9b1c 1872 if (p->context_depth < G.context_depth)
911ab6b9 1873 {
76e1b933 1874 if (! save_in_use_p (p))
4077bf7a 1875 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
76e1b933 1876 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
911ab6b9 1877 }
1878
1879 /* Reset reset the number of free objects and clear the
1880 in-use bits. These will be adjusted by mark_obj. */
1881 p->num_free_objects = num_objects;
1882 memset (p->in_use_p, 0, bitmap_size);
1883
1884 /* Make sure the one-past-the-end bit is always set. */
3cfec666 1885 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
911ab6b9 1886 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1887 }
1888 }
1889}
1890
92960204 1891/* Check if any blocks with a registered finalizer have become unmarked. If so
1892 run the finalizer and unregister it because the block is about to be freed.
1893 Note that no garantee is made about what order finalizers will run in so
1894 touching other objects in gc memory is extremely unwise. */
1895
92f06184 1896static void
1897ggc_handle_finalizers ()
1898{
5517ecc9 1899 unsigned dlen = G.finalizers.length();
1900 for (unsigned d = G.context_depth; d < dlen; ++d)
92f06184 1901 {
5517ecc9 1902 vec<finalizer> &v = G.finalizers[d];
1903 unsigned length = v.length ();
1904 for (unsigned int i = 0; i < length;)
92f06184 1905 {
5517ecc9 1906 finalizer &f = v[i];
1907 if (!ggc_marked_p (f.addr ()))
1908 {
1909 f.call ();
1910 v.unordered_remove (i);
1911 length--;
1912 }
1913 else
1914 i++;
92f06184 1915 }
92f06184 1916 }
1917
5517ecc9 1918 gcc_assert (dlen == G.vec_finalizers.length());
1919 for (unsigned d = G.context_depth; d < dlen; ++d)
92f06184 1920 {
5517ecc9 1921 vec<vec_finalizer> &vv = G.vec_finalizers[d];
1922 unsigned length = vv.length ();
1923 for (unsigned int i = 0; i < length;)
92f06184 1924 {
5517ecc9 1925 vec_finalizer &f = vv[i];
1926 if (!ggc_marked_p (f.addr ()))
1927 {
1928 f.call ();
1929 vv.unordered_remove (i);
1930 length--;
1931 }
1932 else
1933 i++;
92f06184 1934 }
92f06184 1935 }
1936}
1937
e3c4633e 1938/* Free all empty pages. Partially empty pages need no attention
1939 because the `mark' bit doubles as an `unused' bit. */
1940
c4e03242 1941static void
6ec1f4e0 1942sweep_pages (void)
911ab6b9 1943{
1944 unsigned order;
1945
2f6aecaf 1946 for (order = 2; order < NUM_ORDERS; order++)
911ab6b9 1947 {
1948 /* The last page-entry to consider, regardless of entries
1949 placed at the end of the list. */
1950 page_entry * const last = G.page_tails[order];
1951
573aba85 1952 size_t num_objects;
9a2e8b0a 1953 size_t live_objects;
911ab6b9 1954 page_entry *p, *previous;
1955 int done;
3cfec666 1956
911ab6b9 1957 p = G.pages[order];
1958 if (p == NULL)
1959 continue;
1960
1961 previous = NULL;
1962 do
1963 {
1964 page_entry *next = p->next;
1965
1966 /* Loop until all entries have been examined. */
1967 done = (p == last);
6ec1f4e0 1968
573aba85 1969 num_objects = OBJECTS_IN_PAGE (p);
911ab6b9 1970
9a2e8b0a 1971 /* Add all live objects on this page to the count of
1972 allocated memory. */
1973 live_objects = num_objects - p->num_free_objects;
1974
2f6aecaf 1975 G.allocated += OBJECT_SIZE (order) * live_objects;
9a2e8b0a 1976
911ab6b9 1977 /* Only objects on pages in the topmost context should get
1978 collected. */
1979 if (p->context_depth < G.context_depth)
1980 ;
1981
1982 /* Remove the page if it's empty. */
9a2e8b0a 1983 else if (live_objects == 0)
911ab6b9 1984 {
4a755ae7 1985 /* If P was the first page in the list, then NEXT
1986 becomes the new first page in the list, otherwise
1987 splice P out of the forward pointers. */
911ab6b9 1988 if (! previous)
1989 G.pages[order] = next;
1990 else
1991 previous->next = next;
48e1416a 1992
4a755ae7 1993 /* Splice P out of the back pointers too. */
1994 if (next)
1995 next->prev = previous;
911ab6b9 1996
1997 /* Are we removing the last element? */
1998 if (p == G.page_tails[order])
1999 G.page_tails[order] = previous;
2000 free_page (p);
2001 p = previous;
2002 }
2003
2004 /* If the page is full, move it to the end. */
2005 else if (p->num_free_objects == 0)
2006 {
2007 /* Don't move it if it's already at the end. */
2008 if (p != G.page_tails[order])
2009 {
2010 /* Move p to the end of the list. */
2011 p->next = NULL;
4a755ae7 2012 p->prev = G.page_tails[order];
911ab6b9 2013 G.page_tails[order]->next = p;
2014
2015 /* Update the tail pointer... */
2016 G.page_tails[order] = p;
2017
2018 /* ... and the head pointer, if necessary. */
2019 if (! previous)
2020 G.pages[order] = next;
2021 else
2022 previous->next = next;
4a755ae7 2023
2024 /* And update the backpointer in NEXT if necessary. */
2025 if (next)
2026 next->prev = previous;
2027
911ab6b9 2028 p = previous;
2029 }
2030 }
2031
2032 /* If we've fallen through to here, it's a page in the
2033 topmost context that is neither full nor empty. Such a
2034 page must precede pages at lesser context depth in the
2035 list, so move it to the head. */
2036 else if (p != G.pages[order])
2037 {
2038 previous->next = p->next;
4a755ae7 2039
2040 /* Update the backchain in the next node if it exists. */
2041 if (p->next)
2042 p->next->prev = previous;
2043
2044 /* Move P to the head of the list. */
911ab6b9 2045 p->next = G.pages[order];
4a755ae7 2046 p->prev = NULL;
2047 G.pages[order]->prev = p;
2048
2049 /* Update the head pointer. */
911ab6b9 2050 G.pages[order] = p;
4a755ae7 2051
911ab6b9 2052 /* Are we moving the last element? */
2053 if (G.page_tails[order] == p)
2054 G.page_tails[order] = previous;
2055 p = previous;
2056 }
2057
2058 previous = p;
2059 p = next;
3cfec666 2060 }
911ab6b9 2061 while (! done);
c10b9b1c 2062
2063 /* Now, restore the in_use_p vectors for any pages from contexts
2064 other than the current one. */
2065 for (p = G.pages[order]; p; p = p->next)
2066 if (p->context_depth != G.context_depth)
2067 ggc_recalculate_in_use_p (p);
911ab6b9 2068 }
2069}
2070
2a3edec5 2071#ifdef ENABLE_GC_CHECKING
e3c4633e 2072/* Clobber all free objects. */
2073
c4e03242 2074static void
6ec1f4e0 2075poison_pages (void)
911ab6b9 2076{
2077 unsigned order;
2078
2f6aecaf 2079 for (order = 2; order < NUM_ORDERS; order++)
911ab6b9 2080 {
2f6aecaf 2081 size_t size = OBJECT_SIZE (order);
911ab6b9 2082 page_entry *p;
2083
2084 for (p = G.pages[order]; p != NULL; p = p->next)
2085 {
573aba85 2086 size_t num_objects;
911ab6b9 2087 size_t i;
2d517b2f 2088
2089 if (p->context_depth != G.context_depth)
2090 /* Since we don't do any collection for pages in pushed
2091 contexts, there's no need to do any poisoning. And
2092 besides, the IN_USE_P array isn't valid until we pop
2093 contexts. */
2094 continue;
2095
573aba85 2096 num_objects = OBJECTS_IN_PAGE (p);
911ab6b9 2097 for (i = 0; i < num_objects; i++)
2098 {
2099 size_t word, bit;
2100 word = i / HOST_BITS_PER_LONG;
2101 bit = i % HOST_BITS_PER_LONG;
2102 if (((p->in_use_p[word] >> bit) & 1) == 0)
dd359afe 2103 {
2104 char *object = p->page + i * size;
2105
2106 /* Keep poison-by-write when we expect to use Valgrind,
2107 so the exact same memory semantics is kept, in case
2108 there are memory errors. We override this request
2109 below. */
a7779e75 2110 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2111 size));
dd359afe 2112 memset (object, 0xa5, size);
2113
2114 /* Drop the handle to avoid handle leak. */
a7779e75 2115 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
dd359afe 2116 }
911ab6b9 2117 }
2118 }
2119 }
2120}
c4e03242 2121#else
2122#define poison_pages()
2123#endif
2124
2125#ifdef ENABLE_GC_ALWAYS_COLLECT
2126/* Validate that the reportedly free objects actually are. */
2127
2128static void
2129validate_free_objects (void)
2130{
2131 struct free_object *f, *next, *still_free = NULL;
2132
2133 for (f = G.free_object_list; f ; f = next)
2134 {
2135 page_entry *pe = lookup_page_table_entry (f->object);
2136 size_t bit, word;
2137
2138 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2139 word = bit / HOST_BITS_PER_LONG;
2140 bit = bit % HOST_BITS_PER_LONG;
2141 next = f->next;
2142
2143 /* Make certain it isn't visible from any root. Notice that we
2144 do this check before sweep_pages merges save_in_use_p. */
0d59b19d 2145 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
c4e03242 2146
2147 /* If the object comes from an outer context, then retain the
2148 free_object entry, so that we can verify that the address
2149 isn't live on the stack in some outer context. */
2150 if (pe->context_depth != G.context_depth)
2151 {
2152 f->next = still_free;
2153 still_free = f;
2154 }
2155 else
2156 free (f);
2157 }
2158
2159 G.free_object_list = still_free;
2160}
2161#else
2162#define validate_free_objects()
911ab6b9 2163#endif
2164
e3c4633e 2165/* Top level mark-and-sweep routine. */
2166
911ab6b9 2167void
6ec1f4e0 2168ggc_collect (void)
911ab6b9 2169{
911ab6b9 2170 /* Avoid frequent unnecessary work by skipping collection if the
2171 total allocations haven't expanded much since the last
2172 collection. */
83142a4c 2173 float allocated_last_gc =
2a3edec5 2174 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2175
83142a4c 2176 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
0ca9a7b6 2177 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
911ab6b9 2178 return;
911ab6b9 2179
74d2af64 2180 timevar_push (TV_GC);
911ab6b9 2181 if (!quiet_flag)
90856340 2182 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
c4e03242 2183 if (GGC_DEBUG_LEVEL >= 2)
2184 fprintf (G.debug_file, "BEGIN COLLECTING\n");
911ab6b9 2185
9a2e8b0a 2186 /* Zero the total allocated bytes. This will be recalculated in the
2187 sweep phase. */
911ab6b9 2188 G.allocated = 0;
2189
3cfec666 2190 /* Release the pages we freed the last time we collected, but didn't
911ab6b9 2191 reuse in the interim. */
2192 release_pages ();
2193
598638e2 2194 /* Indicate that we've seen collections at this context depth. */
2195 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2196
740cd0be 2197 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2198
8f359205 2199 in_gc = true;
911ab6b9 2200 clear_marks ();
2201 ggc_mark_roots ();
92f06184 2202 ggc_handle_finalizers ();
ecd52ea9 2203
2204 if (GATHER_STATISTICS)
2205 ggc_prune_overhead_list ();
2206
911ab6b9 2207 poison_pages ();
c4e03242 2208 validate_free_objects ();
e3c4633e 2209 sweep_pages ();
2210
8f359205 2211 in_gc = false;
911ab6b9 2212 G.allocated_last_gc = G.allocated;
2213
740cd0be 2214 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2215
74d2af64 2216 timevar_pop (TV_GC);
911ab6b9 2217
911ab6b9 2218 if (!quiet_flag)
74d2af64 2219 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
c4e03242 2220 if (GGC_DEBUG_LEVEL >= 2)
2221 fprintf (G.debug_file, "END COLLECTING\n");
911ab6b9 2222}
4e00b6fd 2223
4f78e0a8 2224/* Assume that all GGC memory is reachable and grow the limits for next collection.
2225 With checking, trigger GGC so -Q compilation outputs how much of memory really is
2226 reachable. */
2227
2228void
2229ggc_grow (void)
2230{
382ecba7 2231 if (!flag_checking)
2232 G.allocated_last_gc = MAX (G.allocated_last_gc,
2233 G.allocated);
2234 else
2235 ggc_collect ();
4f78e0a8 2236 if (!quiet_flag)
2237 fprintf (stderr, " {GC start %luk} ", (unsigned long) G.allocated / 1024);
2238}
2239
4e00b6fd 2240void
6ec1f4e0 2241ggc_print_statistics (void)
4e00b6fd 2242{
2243 struct ggc_statistics stats;
c10b9b1c 2244 unsigned int i;
2a8997e8 2245 size_t total_overhead = 0;
4e00b6fd 2246
2247 /* Clear the statistics. */
3e9d8cee 2248 memset (&stats, 0, sizeof (stats));
3cfec666 2249
4e00b6fd 2250 /* Make sure collection will really occur. */
2251 G.allocated_last_gc = 0;
2252
2253 /* Collect and print the statistics common across collectors. */
2a8997e8 2254 ggc_print_common_statistics (stderr, &stats);
4e00b6fd 2255
c10b9b1c 2256 /* Release free pages so that we will not count the bytes allocated
2257 there as part of the total allocated memory. */
2258 release_pages ();
2259
3cfec666 2260 /* Collect some information about the various sizes of
4e00b6fd 2261 allocation. */
86736f9e 2262 fprintf (stderr,
2263 "Memory still allocated at the end of the compilation process\n");
98cc198b 2264 fprintf (stderr, "%-8s %10s %10s %10s\n",
f806fb68 2265 "Size", "Allocated", "Used", "Overhead");
2f6aecaf 2266 for (i = 0; i < NUM_ORDERS; ++i)
4e00b6fd 2267 {
2268 page_entry *p;
2269 size_t allocated;
2270 size_t in_use;
2a8997e8 2271 size_t overhead;
4e00b6fd 2272
2273 /* Skip empty entries. */
2274 if (!G.pages[i])
2275 continue;
2276
2a8997e8 2277 overhead = allocated = in_use = 0;
4e00b6fd 2278
2279 /* Figure out the total number of bytes allocated for objects of
2a8997e8 2280 this size, and how many of them are actually in use. Also figure
2281 out how much memory the page table is using. */
4e00b6fd 2282 for (p = G.pages[i]; p; p = p->next)
2283 {
2284 allocated += p->bytes;
6ec1f4e0 2285 in_use +=
573aba85 2286 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2a8997e8 2287
2288 overhead += (sizeof (page_entry) - sizeof (long)
573aba85 2289 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
4e00b6fd 2290 }
03fac02c 2291 fprintf (stderr, "%-8" PRIu64 " " PRsa (10) " " PRsa (10) " "
2292 PRsa (10) "\n",
2293 (uint64_t)OBJECT_SIZE (i),
7a413494 2294 SIZE_AMOUNT (allocated),
2295 SIZE_AMOUNT (in_use),
2296 SIZE_AMOUNT (overhead));
2a8997e8 2297 total_overhead += overhead;
4e00b6fd 2298 }
03fac02c 2299 fprintf (stderr, "%-8s " PRsa (10) " " PRsa (10) " " PRsa (10) "\n",
7a413494 2300 "Total",
2301 SIZE_AMOUNT (G.bytes_mapped),
2302 SIZE_AMOUNT (G.allocated),
2303 SIZE_AMOUNT (total_overhead));
b7257530 2304
ecd52ea9 2305 if (GATHER_STATISTICS)
2306 {
98cc198b 2307 fprintf (stderr, "\nTotal allocations and overheads during "
2308 "the compilation process\n");
ecd52ea9 2309
03fac02c 2310 fprintf (stderr, "Total Overhead: "
2311 PRsa (9) "\n",
7a413494 2312 SIZE_AMOUNT (G.stats.total_overhead));
03fac02c 2313 fprintf (stderr, "Total Allocated: "
2314 PRsa (9) "\n",
7a413494 2315 SIZE_AMOUNT (G.stats.total_allocated));
2316
03fac02c 2317 fprintf (stderr, "Total Overhead under 32B: "
2318 PRsa (9) "\n",
7a413494 2319 SIZE_AMOUNT (G.stats.total_overhead_under32));
03fac02c 2320 fprintf (stderr, "Total Allocated under 32B: "
2321 PRsa (9) "\n",
7a413494 2322 SIZE_AMOUNT (G.stats.total_allocated_under32));
03fac02c 2323 fprintf (stderr, "Total Overhead under 64B: "
2324 PRsa (9) "\n",
7a413494 2325 SIZE_AMOUNT (G.stats.total_overhead_under64));
03fac02c 2326 fprintf (stderr, "Total Allocated under 64B: "
2327 PRsa (9) "\n",
7a413494 2328 SIZE_AMOUNT (G.stats.total_allocated_under64));
03fac02c 2329 fprintf (stderr, "Total Overhead under 128B: "
2330 PRsa (9) "\n",
7a413494 2331 SIZE_AMOUNT (G.stats.total_overhead_under128));
03fac02c 2332 fprintf (stderr, "Total Allocated under 128B: "
2333 PRsa (9) "\n",
7a413494 2334 SIZE_AMOUNT (G.stats.total_allocated_under128));
ecd52ea9 2335
2336 for (i = 0; i < NUM_ORDERS; i++)
2337 if (G.stats.total_allocated_per_order[i])
2338 {
03fac02c 2339 fprintf (stderr, "Total Overhead page size %9" PRIu64 ": "
2340 PRsa (9) "\n",
2341 (uint64_t)OBJECT_SIZE (i),
7a413494 2342 SIZE_AMOUNT (G.stats.total_overhead_per_order[i]));
03fac02c 2343 fprintf (stderr, "Total Allocated page size %9" PRIu64 ": "
2344 PRsa (9) "\n",
2345 (uint64_t)OBJECT_SIZE (i),
7a413494 2346 SIZE_AMOUNT (G.stats.total_allocated_per_order[i]));
ecd52ea9 2347 }
b7257530 2348 }
4e00b6fd 2349}
573aba85 2350\f
0b09525f 2351struct ggc_pch_ondisk
2352{
2353 unsigned totals[NUM_ORDERS];
2354};
2355
573aba85 2356struct ggc_pch_data
2357{
0b09525f 2358 struct ggc_pch_ondisk d;
337c992b 2359 uintptr_t base[NUM_ORDERS];
573aba85 2360 size_t written[NUM_ORDERS];
2361};
2362
2363struct ggc_pch_data *
6ec1f4e0 2364init_ggc_pch (void)
573aba85 2365{
4c36ffe6 2366 return XCNEW (struct ggc_pch_data);
573aba85 2367}
2368
6ec1f4e0 2369void
2370ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
5cc13354 2371 size_t size, bool is_string ATTRIBUTE_UNUSED)
573aba85 2372{
2373 unsigned order;
2374
f68513d3 2375 if (size < NUM_SIZE_LOOKUP)
573aba85 2376 order = size_lookup[size];
2377 else
2378 {
1c2a6a66 2379 order = 10;
573aba85 2380 while (size > OBJECT_SIZE (order))
2381 order++;
2382 }
6ec1f4e0 2383
573aba85 2384 d->d.totals[order]++;
2385}
6ec1f4e0 2386
573aba85 2387size_t
6ec1f4e0 2388ggc_pch_total_size (struct ggc_pch_data *d)
573aba85 2389{
2390 size_t a = 0;
2391 unsigned i;
2392
2393 for (i = 0; i < NUM_ORDERS; i++)
25a28b44 2394 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
573aba85 2395 return a;
2396}
2397
2398void
6ec1f4e0 2399ggc_pch_this_base (struct ggc_pch_data *d, void *base)
573aba85 2400{
337c992b 2401 uintptr_t a = (uintptr_t) base;
573aba85 2402 unsigned i;
6ec1f4e0 2403
573aba85 2404 for (i = 0; i < NUM_ORDERS; i++)
2405 {
2406 d->base[i] = a;
25a28b44 2407 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
573aba85 2408 }
2409}
2410
2411
2412char *
6ec1f4e0 2413ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
5cc13354 2414 size_t size, bool is_string ATTRIBUTE_UNUSED)
573aba85 2415{
2416 unsigned order;
2417 char *result;
6ec1f4e0 2418
f68513d3 2419 if (size < NUM_SIZE_LOOKUP)
573aba85 2420 order = size_lookup[size];
2421 else
2422 {
1c2a6a66 2423 order = 10;
573aba85 2424 while (size > OBJECT_SIZE (order))
2425 order++;
2426 }
2427
2428 result = (char *) d->base[order];
2429 d->base[order] += OBJECT_SIZE (order);
2430 return result;
2431}
2432
6ec1f4e0 2433void
2434ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2435 FILE *f ATTRIBUTE_UNUSED)
573aba85 2436{
2437 /* Nothing to do. */
2438}
2439
2440void
98044fac 2441ggc_pch_write_object (struct ggc_pch_data *d,
6ec1f4e0 2442 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
7d60cc60 2443 size_t size, bool is_string ATTRIBUTE_UNUSED)
573aba85 2444{
2445 unsigned order;
1a7c0ccb 2446 static const char emptyBytes[256] = { 0 };
573aba85 2447
f68513d3 2448 if (size < NUM_SIZE_LOOKUP)
573aba85 2449 order = size_lookup[size];
2450 else
2451 {
1c2a6a66 2452 order = 10;
573aba85 2453 while (size > OBJECT_SIZE (order))
2454 order++;
2455 }
6ec1f4e0 2456
573aba85 2457 if (fwrite (x, size, 1, f) != 1)
85b9be9b 2458 fatal_error (input_location, "cannot write PCH file: %m");
573aba85 2459
89e22a52 2460 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
e9efa031 2461 object out to OBJECT_SIZE(order). This happens for strings. */
89e22a52 2462
2463 if (size != OBJECT_SIZE (order))
2464 {
9af5ce0c 2465 unsigned padding = OBJECT_SIZE (order) - size;
89e22a52 2466
2467 /* To speed small writes, we use a nulled-out array that's larger
2468 than most padding requests as the source for our null bytes. This
2469 permits us to do the padding with fwrite() rather than fseek(), and
822e391f 2470 limits the chance the OS may try to flush any outstanding writes. */
9af5ce0c 2471 if (padding <= sizeof (emptyBytes))
89e22a52 2472 {
2473 if (fwrite (emptyBytes, 1, padding, f) != padding)
85b9be9b 2474 fatal_error (input_location, "cannot write PCH file");
89e22a52 2475 }
2476 else
2477 {
e9efa031 2478 /* Larger than our buffer? Just default to fseek. */
89e22a52 2479 if (fseek (f, padding, SEEK_CUR) != 0)
85b9be9b 2480 fatal_error (input_location, "cannot write PCH file");
89e22a52 2481 }
2482 }
573aba85 2483
2484 d->written[order]++;
2485 if (d->written[order] == d->d.totals[order]
2486 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2487 G.pagesize),
2488 SEEK_CUR) != 0)
85b9be9b 2489 fatal_error (input_location, "cannot write PCH file: %m");
573aba85 2490}
2491
2492void
6ec1f4e0 2493ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
573aba85 2494{
2495 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
85b9be9b 2496 fatal_error (input_location, "cannot write PCH file: %m");
573aba85 2497 free (d);
2498}
2499
76e1b933 2500/* Move the PCH PTE entries just added to the end of by_depth, to the
2501 front. */
2502
2503static void
6ec1f4e0 2504move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
76e1b933 2505{
76e1b933 2506 /* First, we swap the new entries to the front of the varrays. */
2507 page_entry **new_by_depth;
2508 unsigned long **new_save_in_use;
2509
4c36ffe6 2510 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2511 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
76e1b933 2512
2513 memcpy (&new_by_depth[0],
2514 &G.by_depth[count_old_page_tables],
2515 count_new_page_tables * sizeof (void *));
2516 memcpy (&new_by_depth[count_new_page_tables],
2517 &G.by_depth[0],
2518 count_old_page_tables * sizeof (void *));
2519 memcpy (&new_save_in_use[0],
2520 &G.save_in_use[count_old_page_tables],
2521 count_new_page_tables * sizeof (void *));
2522 memcpy (&new_save_in_use[count_new_page_tables],
2523 &G.save_in_use[0],
2524 count_old_page_tables * sizeof (void *));
2525
2526 free (G.by_depth);
2527 free (G.save_in_use);
6ec1f4e0 2528
76e1b933 2529 G.by_depth = new_by_depth;
2530 G.save_in_use = new_save_in_use;
2531
2532 /* Now update all the index_by_depth fields. */
3df92687 2533 for (unsigned i = G.by_depth_in_use; i--;)
76e1b933 2534 {
3df92687 2535 page_entry *p = G.by_depth[i];
2536 p->index_by_depth = i;
76e1b933 2537 }
2538
2539 /* And last, we update the depth pointers in G.depth. The first
2540 entry is already 0, and context 0 entries always start at index
2541 0, so there is nothing to update in the first slot. We need a
2542 second slot, only if we have old ptes, and if we do, they start
2543 at index count_new_page_tables. */
2544 if (count_old_page_tables)
2545 push_depth (count_new_page_tables);
2546}
2547
573aba85 2548void
6ec1f4e0 2549ggc_pch_read (FILE *f, void *addr)
573aba85 2550{
2551 struct ggc_pch_ondisk d;
2552 unsigned i;
4077bf7a 2553 char *offs = (char *) addr;
76e1b933 2554 unsigned long count_old_page_tables;
2555 unsigned long count_new_page_tables;
2556
2557 count_old_page_tables = G.by_depth_in_use;
2558
2559 /* We've just read in a PCH file. So, every object that used to be
2560 allocated is now free. */
573aba85 2561 clear_marks ();
32bbbaac 2562#ifdef ENABLE_GC_CHECKING
573aba85 2563 poison_pages ();
2564#endif
3fff4d99 2565 /* Since we free all the allocated objects, the free list becomes
2566 useless. Validate it now, which will also clear it. */
9af5ce0c 2567 validate_free_objects ();
573aba85 2568
2569 /* No object read from a PCH file should ever be freed. So, set the
2570 context depth to 1, and set the depth of all the currently-allocated
2571 pages to be 1 too. PCH pages will have depth 0. */
0d59b19d 2572 gcc_assert (!G.context_depth);
573aba85 2573 G.context_depth = 1;
5517ecc9 2574 /* Allocate space for the depth 1 finalizers. */
2575 G.finalizers.safe_push (vNULL);
2576 G.vec_finalizers.safe_push (vNULL);
2577 gcc_assert (G.finalizers.length() == 2);
573aba85 2578 for (i = 0; i < NUM_ORDERS; i++)
2579 {
2580 page_entry *p;
2581 for (p = G.pages[i]; p != NULL; p = p->next)
2582 p->context_depth = G.context_depth;
2583 }
2584
2585 /* Allocate the appropriate page-table entries for the pages read from
2586 the PCH file. */
2587 if (fread (&d, sizeof (d), 1, f) != 1)
85b9be9b 2588 fatal_error (input_location, "cannot read PCH file: %m");
6ec1f4e0 2589
573aba85 2590 for (i = 0; i < NUM_ORDERS; i++)
2591 {
2592 struct page_entry *entry;
2593 char *pte;
2594 size_t bytes;
2595 size_t num_objs;
2596 size_t j;
76e1b933 2597
573aba85 2598 if (d.totals[i] == 0)
2599 continue;
76e1b933 2600
25a28b44 2601 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
573aba85 2602 num_objs = bytes / OBJECT_SIZE (i);
4077bf7a 2603 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2604 - sizeof (long)
2605 + BITMAP_SIZE (num_objs + 1)));
573aba85 2606 entry->bytes = bytes;
2607 entry->page = offs;
2608 entry->context_depth = 0;
2609 offs += bytes;
2610 entry->num_free_objects = 0;
2611 entry->order = i;
2612
6ec1f4e0 2613 for (j = 0;
573aba85 2614 j + HOST_BITS_PER_LONG <= num_objs + 1;
2615 j += HOST_BITS_PER_LONG)
2616 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2617 for (; j < num_objs + 1; j++)
6ec1f4e0 2618 entry->in_use_p[j / HOST_BITS_PER_LONG]
573aba85 2619 |= 1L << (j % HOST_BITS_PER_LONG);
2620
6ec1f4e0 2621 for (pte = entry->page;
2622 pte < entry->page + entry->bytes;
573aba85 2623 pte += G.pagesize)
2624 set_page_table_entry (pte, entry);
2625
2626 if (G.page_tails[i] != NULL)
2627 G.page_tails[i]->next = entry;
2628 else
2629 G.pages[i] = entry;
2630 G.page_tails[i] = entry;
76e1b933 2631
2632 /* We start off by just adding all the new information to the
2633 end of the varrays, later, we will move the new information
2634 to the front of the varrays, as the PCH page tables are at
2635 context 0. */
2636 push_by_depth (entry, 0);
573aba85 2637 }
2638
76e1b933 2639 /* Now, we update the various data structures that speed page table
2640 handling. */
2641 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2642
2643 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2644
573aba85 2645 /* Update the statistics. */
2646 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2647}