]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ggc-page.c
Update Copyright years for files modified in 2011 and/or 2012.
[thirdparty/gcc.git] / gcc / ggc-page.c
CommitLineData
911ab6b9 1/* "Bag-of-pages" garbage collector for the GNU compiler.
ba72912a 2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009,
71e45bc2 3 2010, 2011, 2012 Free Software Foundation, Inc.
911ab6b9 4
f12b58b3 5This file is part of GCC.
911ab6b9 6
f12b58b3 7GCC is free software; you can redistribute it and/or modify it under
8the terms of the GNU General Public License as published by the Free
8c4c00c1 9Software Foundation; either version 3, or (at your option) any later
f12b58b3 10version.
911ab6b9 11
f12b58b3 12GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13WARRANTY; without even the implied warranty of MERCHANTABILITY or
14FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15for more details.
911ab6b9 16
90856340 17You should have received a copy of the GNU General Public License
8c4c00c1 18along with GCC; see the file COPYING3. If not see
19<http://www.gnu.org/licenses/>. */
911ab6b9 20
911ab6b9 21#include "config.h"
911ab6b9 22#include "system.h"
805e22b2 23#include "coretypes.h"
24#include "tm.h"
911ab6b9 25#include "tree.h"
f01a3c5e 26#include "rtl.h"
f8e15e8a 27#include "tm_p.h"
0b205f4c 28#include "diagnostic-core.h"
911ab6b9 29#include "flags.h"
f01a3c5e 30#include "ggc.h"
ba72912a 31#include "ggc-internal.h"
74d2af64 32#include "timevar.h"
2a3edec5 33#include "params.h"
0ca9a7b6 34#include "tree-flow.h"
3089b75c 35#include "cfgloop.h"
740cd0be 36#include "plugin.h"
f01a3c5e 37
901dfcc7 38/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
39 file open. Prefer either to valloc. */
40#ifdef HAVE_MMAP_ANON
41# undef HAVE_MMAP_DEV_ZERO
901dfcc7 42# define USING_MMAP
71661611 43#endif
911ab6b9 44
901dfcc7 45#ifdef HAVE_MMAP_DEV_ZERO
901dfcc7 46# define USING_MMAP
80d3ceff 47#endif
48
80eb2355 49#ifndef USING_MMAP
50#define USING_MALLOC_PAGE_GROUPS
d3b95fd7 51#endif
911ab6b9 52
f4245e06 53#if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
54 && defined(USING_MMAP)
c5db973f 55# define USING_MADVISE
56#endif
57
442e3cb9 58/* Strategy:
911ab6b9 59
60 This garbage-collecting allocator allocates objects on one of a set
61 of pages. Each page can allocate objects of a single size only;
62 available sizes are powers of two starting at four bytes. The size
63 of an allocation request is rounded up to the next power of two
64 (`order'), and satisfied from the appropriate page.
65
66 Each page is recorded in a page-entry, which also maintains an
67 in-use bitmap of object positions on the page. This allows the
68 allocation state of a particular object to be flipped without
69 touching the page itself.
70
71 Each page-entry also has a context depth, which is used to track
72 pushing and popping of allocation contexts. Only objects allocated
3cfec666 73 in the current (highest-numbered) context may be collected.
911ab6b9 74
75 Page entries are arranged in an array of singly-linked lists. The
76 array is indexed by the allocation size, in bits, of the pages on
77 it; i.e. all pages on a list allocate objects of the same size.
78 Pages are ordered on the list such that all non-full pages precede
79 all full pages, with non-full pages arranged in order of decreasing
80 context depth.
81
82 Empty pages (of all orders) are kept on a single page cache list,
83 and are considered first when new pages are required; they are
84 deallocated at the start of the next collection if they haven't
85 been recycled by then. */
86
911ab6b9 87/* Define GGC_DEBUG_LEVEL to print debugging information.
88 0: No debugging output.
89 1: GC statistics only.
90 2: Page-entry allocations/deallocations as well.
91 3: Object allocations as well.
1e625a2e 92 4: Object marks as well. */
911ab6b9 93#define GGC_DEBUG_LEVEL (0)
94\f
95#ifndef HOST_BITS_PER_PTR
96#define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
97#endif
98
911ab6b9 99\f
100/* A two-level tree is used to look up the page-entry for a given
101 pointer. Two chunks of the pointer's bits are extracted to index
102 the first and second levels of the tree, as follows:
103
104 HOST_PAGE_SIZE_BITS
105 32 | |
106 msb +----------------+----+------+------+ lsb
107 | | |
108 PAGE_L1_BITS |
109 | |
110 PAGE_L2_BITS
111
112 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
113 pages are aligned on system page boundaries. The next most
114 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
3cfec666 115 index values in the lookup table, respectively.
911ab6b9 116
71661611 117 For 32-bit architectures and the settings below, there are no
118 leftover bits. For architectures with wider pointers, the lookup
119 tree points to a list of pages, which must be scanned to find the
120 correct one. */
911ab6b9 121
122#define PAGE_L1_BITS (8)
123#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
337c992b 124#define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
125#define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
911ab6b9 126
127#define LOOKUP_L1(p) \
337c992b 128 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
911ab6b9 129
130#define LOOKUP_L2(p) \
337c992b 131 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
911ab6b9 132
2f6aecaf 133/* The number of objects per allocation page, for objects on a page of
134 the indicated ORDER. */
135#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
136
573aba85 137/* The number of objects in P. */
138#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
139
2f6aecaf 140/* The size of an object on a page of the indicated ORDER. */
141#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
142
40b9be5e 143/* For speed, we avoid doing a general integer divide to locate the
144 offset in the allocation bitmap, by precalculating numbers M, S
145 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
146 within the page which is evenly divisible by the object size Z. */
147#define DIV_MULT(ORDER) inverse_table[ORDER].mult
148#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
149#define OFFSET_TO_BIT(OFFSET, ORDER) \
150 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
151
3089b75c 152/* We use this structure to determine the alignment required for
153 allocations. For power-of-two sized allocations, that's not a
154 problem, but it does matter for odd-sized allocations.
155 We do not care about alignment for floating-point types. */
156
157struct max_alignment {
158 char c;
159 union {
160 HOST_WIDEST_INT i;
161 void *p;
162 } u;
163};
164
165/* The biggest alignment required. */
166
167#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
168
169
2f6aecaf 170/* The number of extra orders, not corresponding to power-of-two sized
171 objects. */
172
3585dac7 173#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
2f6aecaf 174
7bf41779 175#define RTL_SIZE(NSLOTS) \
bf6b5685 176 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
7bf41779 177
761cbb5d 178#define TREE_EXP_SIZE(OPS) \
179 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
180
2f6aecaf 181/* The Ith entry is the maximum size of an object to be stored in the
182 Ith extra order. Adding a new entry to this array is the *only*
183 thing you need to do to add a new special allocation size. */
184
185static const size_t extra_order_size_table[] = {
3089b75c 186 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
187 There are a lot of structures with these sizes and explicitly
188 listing them risks orders being dropped because they changed size. */
189 MAX_ALIGNMENT * 3,
190 MAX_ALIGNMENT * 5,
191 MAX_ALIGNMENT * 6,
192 MAX_ALIGNMENT * 7,
193 MAX_ALIGNMENT * 9,
194 MAX_ALIGNMENT * 10,
195 MAX_ALIGNMENT * 11,
196 MAX_ALIGNMENT * 12,
197 MAX_ALIGNMENT * 13,
198 MAX_ALIGNMENT * 14,
199 MAX_ALIGNMENT * 15,
5ded8c6f 200 sizeof (struct tree_decl_non_common),
201 sizeof (struct tree_field_decl),
202 sizeof (struct tree_parm_decl),
203 sizeof (struct tree_var_decl),
8f2eb9e1 204 sizeof (struct tree_type_non_common),
1c2a6a66 205 sizeof (struct function),
206 sizeof (struct basic_block_def),
3089b75c 207 sizeof (struct cgraph_node),
208 sizeof (struct loop),
2f6aecaf 209};
210
211/* The total number of orders. */
212
213#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
214
573aba85 215/* Compute the smallest nonnegative number which when added to X gives
216 a multiple of F. */
217
218#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
219
220/* Compute the smallest multiple of F that is >= X. */
221
222#define ROUND_UP(x, f) (CEIL (x, f) * (f))
223
25a28b44 224/* Round X to next multiple of the page size */
225
226#define PAGE_ALIGN(x) (((x) + G.pagesize - 1) & ~(G.pagesize - 1))
227
2f6aecaf 228/* The Ith entry is the number of objects on a page or order I. */
229
230static unsigned objects_per_page_table[NUM_ORDERS];
231
232/* The Ith entry is the size of an object on a page of order I. */
233
234static size_t object_size_table[NUM_ORDERS];
911ab6b9 235
40b9be5e 236/* The Ith entry is a pair of numbers (mult, shift) such that
237 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
238 for all k evenly divisible by OBJECT_SIZE(I). */
239
240static struct
241{
2c06e494 242 size_t mult;
40b9be5e 243 unsigned int shift;
244}
245inverse_table[NUM_ORDERS];
246
911ab6b9 247/* A page_entry records the status of an allocation page. This
248 structure is dynamically sized to fit the bitmap in_use_p. */
3cfec666 249typedef struct page_entry
911ab6b9 250{
251 /* The next page-entry with objects of the same size, or NULL if
252 this is the last page-entry. */
253 struct page_entry *next;
254
4a755ae7 255 /* The previous page-entry with objects of the same size, or NULL if
256 this is the first page-entry. The PREV pointer exists solely to
5aedf60c 257 keep the cost of ggc_free manageable. */
4a755ae7 258 struct page_entry *prev;
259
911ab6b9 260 /* The number of bytes allocated. (This will always be a multiple
261 of the host system page size.) */
262 size_t bytes;
263
264 /* The address at which the memory is allocated. */
265 char *page;
266
80eb2355 267#ifdef USING_MALLOC_PAGE_GROUPS
268 /* Back pointer to the page group this page came from. */
269 struct page_group *group;
270#endif
271
76e1b933 272 /* This is the index in the by_depth varray where this page table
273 can be found. */
274 unsigned long index_by_depth;
911ab6b9 275
276 /* Context depth of this page. */
938cf571 277 unsigned short context_depth;
911ab6b9 278
279 /* The number of free objects remaining on this page. */
280 unsigned short num_free_objects;
281
282 /* A likely candidate for the bit position of a free object for the
283 next allocation from this page. */
284 unsigned short next_bit_hint;
285
938cf571 286 /* The lg of size of objects allocated from this page. */
287 unsigned char order;
288
c5db973f 289 /* Discarded page? */
290 bool discarded;
291
911ab6b9 292 /* A bit vector indicating whether or not objects are in use. The
293 Nth bit is one if the Nth object on this page is allocated. This
294 array is dynamically sized. */
295 unsigned long in_use_p[1];
296} page_entry;
297
80eb2355 298#ifdef USING_MALLOC_PAGE_GROUPS
299/* A page_group describes a large allocation from malloc, from which
300 we parcel out aligned pages. */
301typedef struct page_group
302{
303 /* A linked list of all extant page groups. */
304 struct page_group *next;
305
306 /* The address we received from malloc. */
307 char *allocation;
308
309 /* The size of the block. */
310 size_t alloc_size;
311
312 /* A bitmask of pages in use. */
313 unsigned int in_use;
314} page_group;
315#endif
911ab6b9 316
317#if HOST_BITS_PER_PTR <= 32
318
319/* On 32-bit hosts, we use a two level page table, as pictured above. */
320typedef page_entry **page_table[PAGE_L1_SIZE];
321
322#else
323
71661611 324/* On 64-bit hosts, we use the same two level page tables plus a linked
325 list that disambiguates the top 32-bits. There will almost always be
911ab6b9 326 exactly one entry in the list. */
327typedef struct page_table_chain
328{
329 struct page_table_chain *next;
330 size_t high_bits;
331 page_entry **table[PAGE_L1_SIZE];
332} *page_table;
333
334#endif
335
3e5823c9 336#ifdef ENABLE_GC_ALWAYS_COLLECT
337/* List of free objects to be verified as actually free on the
338 next collection. */
339struct free_object
340{
341 void *object;
342 struct free_object *next;
343};
344#endif
345
911ab6b9 346/* The rest of the global variables. */
347static struct globals
348{
349 /* The Nth element in this array is a page with objects of size 2^N.
350 If there are any pages with free objects, they will be at the
351 head of the list. NULL if there are no page-entries for this
352 object size. */
2f6aecaf 353 page_entry *pages[NUM_ORDERS];
911ab6b9 354
355 /* The Nth element in this array is the last page with objects of
356 size 2^N. NULL if there are no page-entries for this object
357 size. */
2f6aecaf 358 page_entry *page_tails[NUM_ORDERS];
911ab6b9 359
360 /* Lookup table for associating allocation pages with object addresses. */
361 page_table lookup;
362
363 /* The system's page size. */
364 size_t pagesize;
365 size_t lg_pagesize;
366
367 /* Bytes currently allocated. */
368 size_t allocated;
369
370 /* Bytes currently allocated at the end of the last collection. */
371 size_t allocated_last_gc;
372
4e00b6fd 373 /* Total amount of memory mapped. */
374 size_t bytes_mapped;
375
598638e2 376 /* Bit N set if any allocations have been done at context depth N. */
377 unsigned long context_depth_allocations;
378
379 /* Bit N set if any collections have been done at context depth N. */
380 unsigned long context_depth_collections;
381
911ab6b9 382 /* The current depth in the context stack. */
2d15cd89 383 unsigned short context_depth;
911ab6b9 384
385 /* A file descriptor open to /dev/zero for reading. */
901dfcc7 386#if defined (HAVE_MMAP_DEV_ZERO)
911ab6b9 387 int dev_zero_fd;
388#endif
389
390 /* A cache of free system pages. */
391 page_entry *free_pages;
392
80eb2355 393#ifdef USING_MALLOC_PAGE_GROUPS
394 page_group *page_groups;
395#endif
396
911ab6b9 397 /* The file descriptor for debugging output. */
398 FILE *debug_file;
76e1b933 399
400 /* Current number of elements in use in depth below. */
401 unsigned int depth_in_use;
402
403 /* Maximum number of elements that can be used before resizing. */
404 unsigned int depth_max;
405
f0b5f617 406 /* Each element of this array is an index in by_depth where the given
76e1b933 407 depth starts. This structure is indexed by that given depth we
408 are interested in. */
409 unsigned int *depth;
410
411 /* Current number of elements in use in by_depth below. */
412 unsigned int by_depth_in_use;
413
414 /* Maximum number of elements that can be used before resizing. */
415 unsigned int by_depth_max;
416
417 /* Each element of this array is a pointer to a page_entry, all
418 page_entries can be found in here by increasing depth.
419 index_by_depth in the page_entry is the index into this data
420 structure where that page_entry can be found. This is used to
421 speed up finding all page_entries at a particular depth. */
422 page_entry **by_depth;
423
424 /* Each element is a pointer to the saved in_use_p bits, if any,
425 zero otherwise. We allocate them all together, to enable a
426 better runtime data access pattern. */
427 unsigned long **save_in_use;
c4e03242 428
429#ifdef ENABLE_GC_ALWAYS_COLLECT
430 /* List of free objects to be verified as actually free on the
431 next collection. */
3e5823c9 432 struct free_object *free_object_list;
c4e03242 433#endif
434
b7257530 435 struct
436 {
ba72912a 437 /* Total GC-allocated memory. */
b7257530 438 unsigned long long total_allocated;
ba72912a 439 /* Total overhead for GC-allocated memory. */
b7257530 440 unsigned long long total_overhead;
441
442 /* Total allocations and overhead for sizes less than 32, 64 and 128.
443 These sizes are interesting because they are typical cache line
b4b174c3 444 sizes. */
48e1416a 445
b7257530 446 unsigned long long total_allocated_under32;
447 unsigned long long total_overhead_under32;
48e1416a 448
b7257530 449 unsigned long long total_allocated_under64;
450 unsigned long long total_overhead_under64;
48e1416a 451
b7257530 452 unsigned long long total_allocated_under128;
453 unsigned long long total_overhead_under128;
48e1416a 454
86736f9e 455 /* The allocations for each of the allocation orders. */
456 unsigned long long total_allocated_per_order[NUM_ORDERS];
457
b4b174c3 458 /* The overhead for each of the allocation orders. */
b7257530 459 unsigned long long total_overhead_per_order[NUM_ORDERS];
460 } stats;
911ab6b9 461} G;
462
911ab6b9 463/* The size in bytes required to maintain a bitmap for the objects
464 on a page-entry. */
465#define BITMAP_SIZE(Num_objects) \
2f6aecaf 466 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
911ab6b9 467
80eb2355 468/* Allocate pages in chunks of this size, to throttle calls to memory
469 allocation routines. The first page is used, the rest go onto the
470 free list. This cannot be larger than HOST_BITS_PER_INT for the
28a61eb7 471 in_use bitmask for page_group. Hosts that need a different value
dac49aa5 472 can override this by defining GGC_QUIRE_SIZE explicitly. */
28a61eb7 473#ifndef GGC_QUIRE_SIZE
474# ifdef USING_MMAP
ada13b28 475# define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
28a61eb7 476# else
477# define GGC_QUIRE_SIZE 16
478# endif
479#endif
76e1b933 480
481/* Initial guess as to how many page table entries we might need. */
482#define INITIAL_PTE_COUNT 128
911ab6b9 483\f
6ec1f4e0 484static int ggc_allocated_p (const void *);
485static page_entry *lookup_page_table_entry (const void *);
486static void set_page_table_entry (void *, page_entry *);
80eb2355 487#ifdef USING_MMAP
4a2f812e 488static char *alloc_anon (char *, size_t, bool check);
80eb2355 489#endif
490#ifdef USING_MALLOC_PAGE_GROUPS
6ec1f4e0 491static size_t page_group_index (char *, char *);
492static void set_page_group_in_use (page_group *, char *);
493static void clear_page_group_in_use (page_group *, char *);
80eb2355 494#endif
6ec1f4e0 495static struct page_entry * alloc_page (unsigned);
496static void free_page (struct page_entry *);
497static void release_pages (void);
498static void clear_marks (void);
499static void sweep_pages (void);
500static void ggc_recalculate_in_use_p (page_entry *);
501static void compute_inverse (unsigned);
502static inline void adjust_depth (void);
503static void move_ptes_to_front (int, int);
911ab6b9 504
6ec1f4e0 505void debug_print_page_list (int);
506static void push_depth (unsigned int);
507static void push_by_depth (page_entry *, unsigned long *);
7d60cc60 508
76e1b933 509/* Push an entry onto G.depth. */
510
511inline static void
6ec1f4e0 512push_depth (unsigned int i)
76e1b933 513{
514 if (G.depth_in_use >= G.depth_max)
515 {
516 G.depth_max *= 2;
4077bf7a 517 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
76e1b933 518 }
519 G.depth[G.depth_in_use++] = i;
520}
521
522/* Push an entry onto G.by_depth and G.save_in_use. */
523
524inline static void
6ec1f4e0 525push_by_depth (page_entry *p, unsigned long *s)
76e1b933 526{
527 if (G.by_depth_in_use >= G.by_depth_max)
528 {
529 G.by_depth_max *= 2;
4077bf7a 530 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
531 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
532 G.by_depth_max);
76e1b933 533 }
534 G.by_depth[G.by_depth_in_use] = p;
535 G.save_in_use[G.by_depth_in_use++] = s;
536}
537
538#if (GCC_VERSION < 3001)
539#define prefetch(X) ((void) X)
540#else
541#define prefetch(X) __builtin_prefetch (X)
542#endif
543
544#define save_in_use_p_i(__i) \
545 (G.save_in_use[__i])
546#define save_in_use_p(__p) \
547 (save_in_use_p_i (__p->index_by_depth))
548
6ef828f9 549/* Returns nonzero if P was allocated in GC'able memory. */
911ab6b9 550
71661611 551static inline int
6ec1f4e0 552ggc_allocated_p (const void *p)
911ab6b9 553{
554 page_entry ***base;
71661611 555 size_t L1, L2;
911ab6b9 556
557#if HOST_BITS_PER_PTR <= 32
558 base = &G.lookup[0];
559#else
560 page_table table = G.lookup;
337c992b 561 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
71661611 562 while (1)
563 {
564 if (table == NULL)
565 return 0;
566 if (table->high_bits == high_bits)
567 break;
568 table = table->next;
569 }
911ab6b9 570 base = &table->table[0];
571#endif
572
4a82352a 573 /* Extract the level 1 and 2 indices. */
e3691812 574 L1 = LOOKUP_L1 (p);
575 L2 = LOOKUP_L2 (p);
576
577 return base[L1] && base[L1][L2];
578}
579
3cfec666 580/* Traverse the page table and find the entry for a page.
e3691812 581 Die (probably) if the object wasn't allocated via GC. */
582
583static inline page_entry *
6ec1f4e0 584lookup_page_table_entry (const void *p)
e3691812 585{
586 page_entry ***base;
587 size_t L1, L2;
588
71661611 589#if HOST_BITS_PER_PTR <= 32
590 base = &G.lookup[0];
591#else
592 page_table table = G.lookup;
337c992b 593 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
71661611 594 while (table->high_bits != high_bits)
595 table = table->next;
596 base = &table->table[0];
597#endif
e3691812 598
4a82352a 599 /* Extract the level 1 and 2 indices. */
911ab6b9 600 L1 = LOOKUP_L1 (p);
601 L2 = LOOKUP_L2 (p);
602
603 return base[L1][L2];
604}
605
911ab6b9 606/* Set the page table entry for a page. */
e3c4633e 607
911ab6b9 608static void
6ec1f4e0 609set_page_table_entry (void *p, page_entry *entry)
911ab6b9 610{
611 page_entry ***base;
612 size_t L1, L2;
613
614#if HOST_BITS_PER_PTR <= 32
615 base = &G.lookup[0];
616#else
617 page_table table;
337c992b 618 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
911ab6b9 619 for (table = G.lookup; table; table = table->next)
620 if (table->high_bits == high_bits)
621 goto found;
622
623 /* Not found -- allocate a new table. */
c768b48b 624 table = XCNEW (struct page_table_chain);
911ab6b9 625 table->next = G.lookup;
626 table->high_bits = high_bits;
627 G.lookup = table;
628found:
629 base = &table->table[0];
630#endif
631
4a82352a 632 /* Extract the level 1 and 2 indices. */
911ab6b9 633 L1 = LOOKUP_L1 (p);
634 L2 = LOOKUP_L2 (p);
635
636 if (base[L1] == NULL)
4c36ffe6 637 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
911ab6b9 638
639 base[L1][L2] = entry;
640}
641
911ab6b9 642/* Prints the page-entry for object size ORDER, for debugging. */
e3c4633e 643
4b987fac 644DEBUG_FUNCTION void
6ec1f4e0 645debug_print_page_list (int order)
911ab6b9 646{
647 page_entry *p;
6ec1f4e0 648 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
649 (void *) G.page_tails[order]);
911ab6b9 650 p = G.pages[order];
651 while (p != NULL)
652 {
6ec1f4e0 653 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
f8cb9479 654 p->num_free_objects);
911ab6b9 655 p = p->next;
656 }
657 printf ("NULL\n");
658 fflush (stdout);
659}
660
80eb2355 661#ifdef USING_MMAP
911ab6b9 662/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
901dfcc7 663 (if non-null). The ifdef structure here is intended to cause a
664 compile error unless exactly one of the HAVE_* is defined. */
e3c4633e 665
911ab6b9 666static inline char *
4a2f812e 667alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
911ab6b9 668{
901dfcc7 669#ifdef HAVE_MMAP_ANON
4077bf7a 670 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
671 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
901dfcc7 672#endif
673#ifdef HAVE_MMAP_DEV_ZERO
4077bf7a 674 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
675 MAP_PRIVATE, G.dev_zero_fd, 0);
911ab6b9 676#endif
901dfcc7 677
678 if (page == (char *) MAP_FAILED)
71661611 679 {
4a2f812e 680 if (!check)
681 return NULL;
cb8bacb6 682 perror ("virtual memory exhausted");
018eba2e 683 exit (FATAL_EXIT_CODE);
71661611 684 }
911ab6b9 685
4e00b6fd 686 /* Remember that we allocated this memory. */
687 G.bytes_mapped += size;
688
dd359afe 689 /* Pretend we don't have access to the allocated pages. We'll enable
ba72912a 690 access to smaller pieces of the area in ggc_internal_alloc. Discard the
dd359afe 691 handle to avoid handle leak. */
a7779e75 692 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
dd359afe 693
911ab6b9 694 return page;
695}
80eb2355 696#endif
697#ifdef USING_MALLOC_PAGE_GROUPS
698/* Compute the index for this page into the page group. */
699
700static inline size_t
6ec1f4e0 701page_group_index (char *allocation, char *page)
80eb2355 702{
dfe09cce 703 return (size_t) (page - allocation) >> G.lg_pagesize;
80eb2355 704}
705
706/* Set and clear the in_use bit for this page in the page group. */
707
708static inline void
6ec1f4e0 709set_page_group_in_use (page_group *group, char *page)
80eb2355 710{
711 group->in_use |= 1 << page_group_index (group->allocation, page);
712}
713
714static inline void
6ec1f4e0 715clear_page_group_in_use (page_group *group, char *page)
80eb2355 716{
717 group->in_use &= ~(1 << page_group_index (group->allocation, page));
718}
719#endif
911ab6b9 720
721/* Allocate a new page for allocating objects of size 2^ORDER,
722 and return an entry for it. The entry is not added to the
723 appropriate page_table list. */
e3c4633e 724
911ab6b9 725static inline struct page_entry *
6ec1f4e0 726alloc_page (unsigned order)
911ab6b9 727{
728 struct page_entry *entry, *p, **pp;
729 char *page;
730 size_t num_objects;
731 size_t bitmap_size;
732 size_t page_entry_size;
733 size_t entry_size;
80eb2355 734#ifdef USING_MALLOC_PAGE_GROUPS
735 page_group *group;
736#endif
911ab6b9 737
738 num_objects = OBJECTS_PER_PAGE (order);
739 bitmap_size = BITMAP_SIZE (num_objects + 1);
740 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
2f6aecaf 741 entry_size = num_objects * OBJECT_SIZE (order);
9acc7238 742 if (entry_size < G.pagesize)
743 entry_size = G.pagesize;
25a28b44 744 entry_size = PAGE_ALIGN (entry_size);
911ab6b9 745
746 entry = NULL;
747 page = NULL;
748
749 /* Check the list of free pages for one we can use. */
018eba2e 750 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
911ab6b9 751 if (p->bytes == entry_size)
752 break;
753
754 if (p != NULL)
755 {
c5db973f 756 if (p->discarded)
757 G.bytes_mapped += p->bytes;
758 p->discarded = false;
759
aa40f561 760 /* Recycle the allocated memory from this page ... */
911ab6b9 761 *pp = p->next;
762 page = p->page;
018eba2e 763
80eb2355 764#ifdef USING_MALLOC_PAGE_GROUPS
765 group = p->group;
766#endif
018eba2e 767
911ab6b9 768 /* ... and, if possible, the page entry itself. */
769 if (p->order == order)
770 {
771 entry = p;
772 memset (entry, 0, page_entry_size);
773 }
774 else
775 free (p);
776 }
901dfcc7 777#ifdef USING_MMAP
9a2e8b0a 778 else if (entry_size == G.pagesize)
911ab6b9 779 {
9a2e8b0a 780 /* We want just one page. Allocate a bunch of them and put the
781 extras on the freelist. (Can only do this optimization with
782 mmap for backing store.) */
783 struct page_entry *e, *f = G.free_pages;
4a2f812e 784 int i, entries = GGC_QUIRE_SIZE;
9a2e8b0a 785
4a2f812e 786 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
787 if (page == NULL)
788 {
789 page = alloc_anon(NULL, G.pagesize, true);
790 entries = 1;
791 }
018eba2e 792
9a2e8b0a 793 /* This loop counts down so that the chain will be in ascending
794 memory order. */
4a2f812e 795 for (i = entries - 1; i >= 1; i--)
9a2e8b0a 796 {
4077bf7a 797 e = XCNEWVAR (struct page_entry, page_entry_size);
9acc7238 798 e->order = order;
799 e->bytes = G.pagesize;
800 e->page = page + (i << G.lg_pagesize);
9a2e8b0a 801 e->next = f;
802 f = e;
803 }
018eba2e 804
9a2e8b0a 805 G.free_pages = f;
911ab6b9 806 }
9a2e8b0a 807 else
4a2f812e 808 page = alloc_anon (NULL, entry_size, true);
80eb2355 809#endif
810#ifdef USING_MALLOC_PAGE_GROUPS
811 else
812 {
813 /* Allocate a large block of memory and serve out the aligned
814 pages therein. This results in much less memory wastage
815 than the traditional implementation of valloc. */
816
817 char *allocation, *a, *enda;
818 size_t alloc_size, head_slop, tail_slop;
819 int multiple_pages = (entry_size == G.pagesize);
820
821 if (multiple_pages)
822 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
823 else
824 alloc_size = entry_size + G.pagesize - 1;
781dec7f 825 allocation = XNEWVEC (char, alloc_size);
80eb2355 826
337c992b 827 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
80eb2355 828 head_slop = page - allocation;
829 if (multiple_pages)
830 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
831 else
832 tail_slop = alloc_size - entry_size - head_slop;
833 enda = allocation + alloc_size - tail_slop;
834
835 /* We allocated N pages, which are likely not aligned, leaving
836 us with N-1 usable pages. We plan to place the page_group
837 structure somewhere in the slop. */
838 if (head_slop >= sizeof (page_group))
839 group = (page_group *)page - 1;
840 else
841 {
842 /* We magically got an aligned allocation. Too bad, we have
843 to waste a page anyway. */
844 if (tail_slop == 0)
845 {
846 enda -= G.pagesize;
847 tail_slop += G.pagesize;
848 }
0d59b19d 849 gcc_assert (tail_slop >= sizeof (page_group));
80eb2355 850 group = (page_group *)enda;
851 tail_slop -= sizeof (page_group);
852 }
853
854 /* Remember that we allocated this memory. */
855 group->next = G.page_groups;
856 group->allocation = allocation;
857 group->alloc_size = alloc_size;
858 group->in_use = 0;
859 G.page_groups = group;
860 G.bytes_mapped += alloc_size;
861
862 /* If we allocated multiple pages, put the rest on the free list. */
863 if (multiple_pages)
864 {
865 struct page_entry *e, *f = G.free_pages;
866 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
867 {
781dec7f 868 e = XCNEWVAR (struct page_entry, page_entry_size);
80eb2355 869 e->order = order;
870 e->bytes = G.pagesize;
871 e->page = a;
872 e->group = group;
873 e->next = f;
874 f = e;
875 }
876 G.free_pages = f;
877 }
878 }
879#endif
911ab6b9 880
881 if (entry == NULL)
4077bf7a 882 entry = XCNEWVAR (struct page_entry, page_entry_size);
911ab6b9 883
884 entry->bytes = entry_size;
885 entry->page = page;
886 entry->context_depth = G.context_depth;
887 entry->order = order;
888 entry->num_free_objects = num_objects;
889 entry->next_bit_hint = 1;
890
598638e2 891 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
892
80eb2355 893#ifdef USING_MALLOC_PAGE_GROUPS
894 entry->group = group;
895 set_page_group_in_use (group, page);
896#endif
897
911ab6b9 898 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
899 increment the hint. */
900 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
901 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
902
903 set_page_table_entry (page, entry);
904
905 if (GGC_DEBUG_LEVEL >= 2)
3cfec666 906 fprintf (G.debug_file,
29e7390a 907 "Allocating page at %p, object size=%lu, data %p-%p\n",
6ec1f4e0 908 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
018eba2e 909 page + entry_size - 1);
911ab6b9 910
911 return entry;
912}
913
76e1b933 914/* Adjust the size of G.depth so that no index greater than the one
915 used by the top of the G.by_depth is used. */
916
917static inline void
6ec1f4e0 918adjust_depth (void)
76e1b933 919{
920 page_entry *top;
921
922 if (G.by_depth_in_use)
923 {
924 top = G.by_depth[G.by_depth_in_use-1];
925
d01481af 926 /* Peel back indices in depth that index into by_depth, so that
927 as new elements are added to by_depth, we note the indices
76e1b933 928 of those elements, if they are for new context depths. */
929 while (G.depth_in_use > (size_t)top->context_depth+1)
930 --G.depth_in_use;
931 }
932}
933
e3c4633e 934/* For a page that is no longer needed, put it on the free page list. */
911ab6b9 935
c4e03242 936static void
6ec1f4e0 937free_page (page_entry *entry)
911ab6b9 938{
939 if (GGC_DEBUG_LEVEL >= 2)
3cfec666 940 fprintf (G.debug_file,
6ec1f4e0 941 "Deallocating page at %p, data %p-%p\n", (void *) entry,
911ab6b9 942 entry->page, entry->page + entry->bytes - 1);
943
dd359afe 944 /* Mark the page as inaccessible. Discard the handle to avoid handle
945 leak. */
a7779e75 946 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
dd359afe 947
911ab6b9 948 set_page_table_entry (entry->page, NULL);
949
80eb2355 950#ifdef USING_MALLOC_PAGE_GROUPS
951 clear_page_group_in_use (entry->group, entry->page);
952#endif
953
76e1b933 954 if (G.by_depth_in_use > 1)
955 {
956 page_entry *top = G.by_depth[G.by_depth_in_use-1];
0d59b19d 957 int i = entry->index_by_depth;
958
959 /* We cannot free a page from a context deeper than the current
960 one. */
961 gcc_assert (entry->context_depth == top->context_depth);
48e1416a 962
0d59b19d 963 /* Put top element into freed slot. */
964 G.by_depth[i] = top;
965 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
966 top->index_by_depth = i;
76e1b933 967 }
968 --G.by_depth_in_use;
969
970 adjust_depth ();
971
911ab6b9 972 entry->next = G.free_pages;
973 G.free_pages = entry;
974}
975
e3c4633e 976/* Release the free page cache to the system. */
911ab6b9 977
c10b9b1c 978static void
6ec1f4e0 979release_pages (void)
911ab6b9 980{
c5db973f 981#ifdef USING_MADVISE
982 page_entry *p, *start_p;
983 char *start;
984 size_t len;
e8b7c612 985 size_t mapped_len;
986 page_entry *next, *prev, *newprev;
987 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
988
989 /* First free larger continuous areas to the OS.
990 This allows other allocators to grab these areas if needed.
991 This is only done on larger chunks to avoid fragmentation.
992 This does not always work because the free_pages list is only
993 approximately sorted. */
994
995 p = G.free_pages;
996 prev = NULL;
997 while (p)
998 {
999 start = p->page;
1000 start_p = p;
1001 len = 0;
1002 mapped_len = 0;
1003 newprev = prev;
1004 while (p && p->page == start + len)
1005 {
1006 len += p->bytes;
1007 if (!p->discarded)
1008 mapped_len += p->bytes;
1009 newprev = p;
1010 p = p->next;
1011 }
1012 if (len >= free_unit)
1013 {
1014 while (start_p != p)
1015 {
1016 next = start_p->next;
1017 free (start_p);
1018 start_p = next;
1019 }
1020 munmap (start, len);
1021 if (prev)
1022 prev->next = p;
1023 else
1024 G.free_pages = p;
1025 G.bytes_mapped -= mapped_len;
1026 continue;
1027 }
1028 prev = newprev;
1029 }
1030
1031 /* Now give back the fragmented pages to the OS, but keep the address
1032 space to reuse it next time. */
c5db973f 1033
1034 for (p = G.free_pages; p; )
1035 {
1036 if (p->discarded)
1037 {
1038 p = p->next;
1039 continue;
1040 }
1041 start = p->page;
1042 len = p->bytes;
1043 start_p = p;
1044 p = p->next;
1045 while (p && p->page == start + len)
1046 {
1047 len += p->bytes;
1048 p = p->next;
1049 }
1050 /* Give the page back to the kernel, but don't free the mapping.
1051 This avoids fragmentation in the virtual memory map of the
1052 process. Next time we can reuse it by just touching it. */
1053 madvise (start, len, MADV_DONTNEED);
1054 /* Don't count those pages as mapped to not touch the garbage collector
1055 unnecessarily. */
1056 G.bytes_mapped -= len;
1057 while (start_p != p)
1058 {
1059 start_p->discarded = true;
1060 start_p = start_p->next;
1061 }
1062 }
1063#endif
1064#if defined(USING_MMAP) && !defined(USING_MADVISE)
80eb2355 1065 page_entry *p, *next;
911ab6b9 1066 char *start;
1067 size_t len;
1068
9a2e8b0a 1069 /* Gather up adjacent pages so they are unmapped together. */
911ab6b9 1070 p = G.free_pages;
911ab6b9 1071
1072 while (p)
1073 {
9a2e8b0a 1074 start = p->page;
911ab6b9 1075 next = p->next;
9a2e8b0a 1076 len = p->bytes;
911ab6b9 1077 free (p);
1078 p = next;
911ab6b9 1079
9a2e8b0a 1080 while (p && p->page == start + len)
1081 {
1082 next = p->next;
1083 len += p->bytes;
1084 free (p);
1085 p = next;
1086 }
1087
1088 munmap (start, len);
1089 G.bytes_mapped -= len;
1090 }
71661611 1091
911ab6b9 1092 G.free_pages = NULL;
80eb2355 1093#endif
1094#ifdef USING_MALLOC_PAGE_GROUPS
1095 page_entry **pp, *p;
1096 page_group **gp, *g;
1097
1098 /* Remove all pages from free page groups from the list. */
1099 pp = &G.free_pages;
1100 while ((p = *pp) != NULL)
1101 if (p->group->in_use == 0)
1102 {
1103 *pp = p->next;
1104 free (p);
1105 }
1106 else
1107 pp = &p->next;
1108
1109 /* Remove all free page groups, and release the storage. */
1110 gp = &G.page_groups;
1111 while ((g = *gp) != NULL)
1112 if (g->in_use == 0)
1113 {
1114 *gp = g->next;
3cfec666 1115 G.bytes_mapped -= g->alloc_size;
80eb2355 1116 free (g->allocation);
1117 }
1118 else
1119 gp = &g->next;
1120#endif
911ab6b9 1121}
1122
911ab6b9 1123/* This table provides a fast way to determine ceil(log_2(size)) for
f806fb68 1124 allocation requests. The minimum allocation size is eight bytes. */
f68513d3 1125#define NUM_SIZE_LOOKUP 512
1126static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
f806fb68 1127{
3cfec666 1128 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1129 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1130 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1131 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1132 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1133 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1134 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
911ab6b9 1135 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
911ab6b9 1136 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1137 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1138 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1139 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1140 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1141 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1142 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1143 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1c2a6a66 1144 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1145 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1146 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1147 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1148 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1149 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1150 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1151 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1152 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1153 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1154 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1155 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1156 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1157 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1158 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
8c14f57e 1159 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
911ab6b9 1160};
1161
1ae3520e 1162/* For a given size of memory requested for allocation, return the
1163 actual size that is going to be allocated, as well as the size
1164 order. */
1165
1166static void
1167ggc_round_alloc_size_1 (size_t requested_size,
1168 size_t *size_order,
1169 size_t *alloced_size)
1170{
1171 size_t order, object_size;
1172
1173 if (requested_size < NUM_SIZE_LOOKUP)
1174 {
1175 order = size_lookup[requested_size];
1176 object_size = OBJECT_SIZE (order);
1177 }
1178 else
1179 {
1180 order = 10;
1181 while (requested_size > (object_size = OBJECT_SIZE (order)))
1182 order++;
1183 }
1184
1185 if (size_order)
1186 *size_order = order;
1187 if (alloced_size)
1188 *alloced_size = object_size;
1189}
1190
1191/* For a given size of memory requested for allocation, return the
1192 actual size that is going to be allocated. */
1193
1194size_t
1195ggc_round_alloc_size (size_t requested_size)
1196{
1197 size_t size = 0;
1198
1199 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1200 return size;
1201}
1202
7d60cc60 1203/* Typed allocation function. Does nothing special in this collector. */
1204
1205void *
674b05f5 1206ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1207 MEM_STAT_DECL)
7d60cc60 1208{
ba72912a 1209 return ggc_internal_alloc_stat (size PASS_MEM_STAT);
7d60cc60 1210}
1211
908b11c1 1212/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
e3c4633e 1213
71661611 1214void *
ba72912a 1215ggc_internal_alloc_stat (size_t size MEM_STAT_DECL)
911ab6b9 1216{
c4e03242 1217 size_t order, word, bit, object_offset, object_size;
911ab6b9 1218 struct page_entry *entry;
1219 void *result;
1220
1ae3520e 1221 ggc_round_alloc_size_1 (size, &order, &object_size);
911ab6b9 1222
1223 /* If there are non-full pages for this size allocation, they are at
1224 the head of the list. */
1225 entry = G.pages[order];
1226
1227 /* If there is no page for this object size, or all pages in this
1228 context are full, allocate a new page. */
c10b9b1c 1229 if (entry == NULL || entry->num_free_objects == 0)
911ab6b9 1230 {
1231 struct page_entry *new_entry;
1232 new_entry = alloc_page (order);
3cfec666 1233
76e1b933 1234 new_entry->index_by_depth = G.by_depth_in_use;
1235 push_by_depth (new_entry, 0);
1236
1237 /* We can skip context depths, if we do, make sure we go all the
1238 way to the new depth. */
1239 while (new_entry->context_depth >= G.depth_in_use)
1240 push_depth (G.by_depth_in_use-1);
1241
4a755ae7 1242 /* If this is the only entry, it's also the tail. If it is not
1243 the only entry, then we must update the PREV pointer of the
1244 ENTRY (G.pages[order]) to point to our new page entry. */
911ab6b9 1245 if (entry == NULL)
1246 G.page_tails[order] = new_entry;
4a755ae7 1247 else
1248 entry->prev = new_entry;
3cfec666 1249
4a755ae7 1250 /* Put new pages at the head of the page list. By definition the
1251 entry at the head of the list always has a NULL pointer. */
911ab6b9 1252 new_entry->next = entry;
4a755ae7 1253 new_entry->prev = NULL;
911ab6b9 1254 entry = new_entry;
1255 G.pages[order] = new_entry;
1256
1257 /* For a new page, we know the word and bit positions (in the
1258 in_use bitmap) of the first available object -- they're zero. */
1259 new_entry->next_bit_hint = 1;
1260 word = 0;
1261 bit = 0;
1262 object_offset = 0;
1263 }
1264 else
1265 {
1266 /* First try to use the hint left from the previous allocation
1267 to locate a clear bit in the in-use bitmap. We've made sure
1268 that the one-past-the-end bit is always set, so if the hint
1269 has run over, this test will fail. */
1270 unsigned hint = entry->next_bit_hint;
1271 word = hint / HOST_BITS_PER_LONG;
1272 bit = hint % HOST_BITS_PER_LONG;
3cfec666 1273
911ab6b9 1274 /* If the hint didn't work, scan the bitmap from the beginning. */
1275 if ((entry->in_use_p[word] >> bit) & 1)
1276 {
1277 word = bit = 0;
1278 while (~entry->in_use_p[word] == 0)
1279 ++word;
bff49002 1280
1281#if GCC_VERSION >= 3004
1282 bit = __builtin_ctzl (~entry->in_use_p[word]);
1283#else
911ab6b9 1284 while ((entry->in_use_p[word] >> bit) & 1)
1285 ++bit;
bff49002 1286#endif
1287
911ab6b9 1288 hint = word * HOST_BITS_PER_LONG + bit;
1289 }
1290
1291 /* Next time, try the next bit. */
1292 entry->next_bit_hint = hint + 1;
1293
c4e03242 1294 object_offset = hint * object_size;
911ab6b9 1295 }
1296
1297 /* Set the in-use bit. */
1298 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1299
1300 /* Keep a running total of the number of free objects. If this page
1301 fills up, we may have to move it to the end of the list if the
1302 next page isn't full. If the next page is full, all subsequent
1303 pages are full, so there's no need to move it. */
1304 if (--entry->num_free_objects == 0
1305 && entry->next != NULL
1306 && entry->next->num_free_objects > 0)
1307 {
4a755ae7 1308 /* We have a new head for the list. */
911ab6b9 1309 G.pages[order] = entry->next;
4a755ae7 1310
1311 /* We are moving ENTRY to the end of the page table list.
1312 The new page at the head of the list will have NULL in
1313 its PREV field and ENTRY will have NULL in its NEXT field. */
1314 entry->next->prev = NULL;
911ab6b9 1315 entry->next = NULL;
4a755ae7 1316
1317 /* Append ENTRY to the tail of the list. */
1318 entry->prev = G.page_tails[order];
911ab6b9 1319 G.page_tails[order]->next = entry;
1320 G.page_tails[order] = entry;
1321 }
1322
1323 /* Calculate the object's address. */
1324 result = entry->page + object_offset;
ecd52ea9 1325 if (GATHER_STATISTICS)
1326 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1327 result FINAL_PASS_MEM_STAT);
911ab6b9 1328
2a3edec5 1329#ifdef ENABLE_GC_CHECKING
dd359afe 1330 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1331 exact same semantics in presence of memory bugs, regardless of
1332 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1333 handle to avoid handle leak. */
a7779e75 1334 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
dd359afe 1335
791ceafe 1336 /* `Poison' the entire allocated object, including any padding at
1337 the end. */
c4e03242 1338 memset (result, 0xaf, object_size);
dd359afe 1339
1340 /* Make the bytes after the end of the object unaccessible. Discard the
1341 handle to avoid handle leak. */
a7779e75 1342 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1343 object_size - size));
911ab6b9 1344#endif
e3c4633e 1345
dd359afe 1346 /* Tell Valgrind that the memory is there, but its content isn't
1347 defined. The bytes at the end of the object are still marked
1348 unaccessible. */
a7779e75 1349 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
dd359afe 1350
911ab6b9 1351 /* Keep track of how many bytes are being allocated. This
1352 information is used in deciding when to collect. */
c4e03242 1353 G.allocated += object_size;
911ab6b9 1354
8d453ddb 1355 /* For timevar statistics. */
1356 timevar_ggc_mem_total += object_size;
1357
ecd52ea9 1358 if (GATHER_STATISTICS)
1359 {
1360 size_t overhead = object_size - size;
b7257530 1361
ecd52ea9 1362 G.stats.total_overhead += overhead;
1363 G.stats.total_allocated += object_size;
1364 G.stats.total_overhead_per_order[order] += overhead;
1365 G.stats.total_allocated_per_order[order] += object_size;
b7257530 1366
ecd52ea9 1367 if (size <= 32)
1368 {
1369 G.stats.total_overhead_under32 += overhead;
1370 G.stats.total_allocated_under32 += object_size;
1371 }
1372 if (size <= 64)
1373 {
1374 G.stats.total_overhead_under64 += overhead;
1375 G.stats.total_allocated_under64 += object_size;
1376 }
1377 if (size <= 128)
1378 {
1379 G.stats.total_overhead_under128 += overhead;
1380 G.stats.total_allocated_under128 += object_size;
1381 }
1382 }
c4e03242 1383
911ab6b9 1384 if (GGC_DEBUG_LEVEL >= 3)
3cfec666 1385 fprintf (G.debug_file,
29e7390a 1386 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
c4e03242 1387 (unsigned long) size, (unsigned long) object_size, result,
6ec1f4e0 1388 (void *) entry);
911ab6b9 1389
1390 return result;
1391}
1392
dfecde36 1393/* Mark function for strings. */
1394
1395void
1396gt_ggc_m_S (const void *p)
1397{
1398 page_entry *entry;
1399 unsigned bit, word;
1400 unsigned long mask;
1401 unsigned long offset;
1402
1403 if (!p || !ggc_allocated_p (p))
1404 return;
1405
1406 /* Look up the page on which the object is alloced. . */
1407 entry = lookup_page_table_entry (p);
1408 gcc_assert (entry);
1409
1410 /* Calculate the index of the object on the page; this is its bit
1411 position in the in_use_p bitmap. Note that because a char* might
1412 point to the middle of an object, we need special code here to
1413 make sure P points to the start of an object. */
1414 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1415 if (offset)
1416 {
1417 /* Here we've seen a char* which does not point to the beginning
1418 of an allocated object. We assume it points to the middle of
1419 a STRING_CST. */
1420 gcc_assert (offset == offsetof (struct tree_string, str));
1421 p = ((const char *) p) - offset;
4077bf7a 1422 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
dfecde36 1423 return;
1424 }
1425
1426 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1427 word = bit / HOST_BITS_PER_LONG;
1428 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1429
1430 /* If the bit was previously set, skip it. */
1431 if (entry->in_use_p[word] & mask)
1432 return;
1433
1434 /* Otherwise set it, and decrement the free object count. */
1435 entry->in_use_p[word] |= mask;
1436 entry->num_free_objects -= 1;
1437
1438 if (GGC_DEBUG_LEVEL >= 4)
1439 fprintf (G.debug_file, "Marking %p\n", p);
1440
1441 return;
1442}
1443
2b15d2ba 1444
1445/* User-callable entry points for marking string X. */
1446
1447void
1448gt_ggc_mx (const char *& x)
1449{
1450 gt_ggc_m_S (x);
1451}
1452
1453void
1454gt_ggc_mx (unsigned char *& x)
1455{
1456 gt_ggc_m_S (x);
1457}
1458
1459void
1460gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1461{
1462}
1463
e3c4633e 1464/* If P is not marked, marks it and return false. Otherwise return true.
911ab6b9 1465 P must have been allocated by the GC allocator; it mustn't point to
1466 static objects, stack variables, or memory allocated with malloc. */
e3c4633e 1467
71661611 1468int
6ec1f4e0 1469ggc_set_mark (const void *p)
911ab6b9 1470{
1471 page_entry *entry;
1472 unsigned bit, word;
1473 unsigned long mask;
1474
1475 /* Look up the page on which the object is alloced. If the object
1476 wasn't allocated by the collector, we'll probably die. */
e3691812 1477 entry = lookup_page_table_entry (p);
0d59b19d 1478 gcc_assert (entry);
911ab6b9 1479
1480 /* Calculate the index of the object on the page; this is its bit
1481 position in the in_use_p bitmap. */
40b9be5e 1482 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
911ab6b9 1483 word = bit / HOST_BITS_PER_LONG;
1484 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
3cfec666 1485
aa40f561 1486 /* If the bit was previously set, skip it. */
911ab6b9 1487 if (entry->in_use_p[word] & mask)
1488 return 1;
1489
1490 /* Otherwise set it, and decrement the free object count. */
1491 entry->in_use_p[word] |= mask;
1492 entry->num_free_objects -= 1;
1493
911ab6b9 1494 if (GGC_DEBUG_LEVEL >= 4)
1495 fprintf (G.debug_file, "Marking %p\n", p);
1496
1497 return 0;
1498}
1499
3cfec666 1500/* Return 1 if P has been marked, zero otherwise.
15d769aa 1501 P must have been allocated by the GC allocator; it mustn't point to
1502 static objects, stack variables, or memory allocated with malloc. */
1503
1504int
6ec1f4e0 1505ggc_marked_p (const void *p)
15d769aa 1506{
1507 page_entry *entry;
1508 unsigned bit, word;
1509 unsigned long mask;
1510
1511 /* Look up the page on which the object is alloced. If the object
1512 wasn't allocated by the collector, we'll probably die. */
1513 entry = lookup_page_table_entry (p);
0d59b19d 1514 gcc_assert (entry);
15d769aa 1515
1516 /* Calculate the index of the object on the page; this is its bit
1517 position in the in_use_p bitmap. */
40b9be5e 1518 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
15d769aa 1519 word = bit / HOST_BITS_PER_LONG;
1520 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
3cfec666 1521
291e3f96 1522 return (entry->in_use_p[word] & mask) != 0;
15d769aa 1523}
1524
e3c4633e 1525/* Return the size of the gc-able object P. */
1526
4e00b6fd 1527size_t
6ec1f4e0 1528ggc_get_size (const void *p)
4e00b6fd 1529{
1530 page_entry *pe = lookup_page_table_entry (p);
2f6aecaf 1531 return OBJECT_SIZE (pe->order);
4e00b6fd 1532}
c4e03242 1533
1534/* Release the memory for object P. */
1535
1536void
1537ggc_free (void *p)
1538{
1539 page_entry *pe = lookup_page_table_entry (p);
1540 size_t order = pe->order;
1541 size_t size = OBJECT_SIZE (order);
1542
ecd52ea9 1543 if (GATHER_STATISTICS)
1544 ggc_free_overhead (p);
0ca9a7b6 1545
c4e03242 1546 if (GGC_DEBUG_LEVEL >= 3)
1547 fprintf (G.debug_file,
1548 "Freeing object, actual size=%lu, at %p on %p\n",
1549 (unsigned long) size, p, (void *) pe);
1550
1551#ifdef ENABLE_GC_CHECKING
1552 /* Poison the data, to indicate the data is garbage. */
a7779e75 1553 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
c4e03242 1554 memset (p, 0xa5, size);
1555#endif
1556 /* Let valgrind know the object is free. */
a7779e75 1557 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
c4e03242 1558
1559#ifdef ENABLE_GC_ALWAYS_COLLECT
1560 /* In the completely-anal-checking mode, we do *not* immediately free
48e1416a 1561 the data, but instead verify that the data is *actually* not
c4e03242 1562 reachable the next time we collect. */
1563 {
4c36ffe6 1564 struct free_object *fo = XNEW (struct free_object);
c4e03242 1565 fo->object = p;
1566 fo->next = G.free_object_list;
1567 G.free_object_list = fo;
1568 }
1569#else
1570 {
1571 unsigned int bit_offset, word, bit;
1572
1573 G.allocated -= size;
1574
1575 /* Mark the object not-in-use. */
1576 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1577 word = bit_offset / HOST_BITS_PER_LONG;
1578 bit = bit_offset % HOST_BITS_PER_LONG;
1579 pe->in_use_p[word] &= ~(1UL << bit);
1580
1581 if (pe->num_free_objects++ == 0)
1582 {
4a755ae7 1583 page_entry *p, *q;
1584
c4e03242 1585 /* If the page is completely full, then it's supposed to
1586 be after all pages that aren't. Since we've freed one
1587 object from a page that was full, we need to move the
48e1416a 1588 page to the head of the list.
c4e03242 1589
4a755ae7 1590 PE is the node we want to move. Q is the previous node
1591 and P is the next node in the list. */
1592 q = pe->prev;
c4e03242 1593 if (q && q->num_free_objects == 0)
1594 {
1595 p = pe->next;
4a755ae7 1596
c4e03242 1597 q->next = p;
4a755ae7 1598
1599 /* If PE was at the end of the list, then Q becomes the
1600 new end of the list. If PE was not the end of the
1601 list, then we need to update the PREV field for P. */
c4e03242 1602 if (!p)
1603 G.page_tails[order] = q;
4a755ae7 1604 else
1605 p->prev = q;
1606
1607 /* Move PE to the head of the list. */
c4e03242 1608 pe->next = G.pages[order];
4a755ae7 1609 pe->prev = NULL;
1610 G.pages[order]->prev = pe;
c4e03242 1611 G.pages[order] = pe;
1612 }
1613
1614 /* Reset the hint bit to point to the only free object. */
1615 pe->next_bit_hint = bit_offset;
1616 }
1617 }
1618#endif
1619}
911ab6b9 1620\f
40b9be5e 1621/* Subroutine of init_ggc which computes the pair of numbers used to
1622 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1623
1624 This algorithm is taken from Granlund and Montgomery's paper
1625 "Division by Invariant Integers using Multiplication"
1626 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1627 constants). */
1628
1629static void
6ec1f4e0 1630compute_inverse (unsigned order)
40b9be5e 1631{
48e1416a 1632 size_t size, inv;
2c06e494 1633 unsigned int e;
ff34fd94 1634
40b9be5e 1635 size = OBJECT_SIZE (order);
1636 e = 0;
1637 while (size % 2 == 0)
1638 {
1639 e++;
1640 size >>= 1;
1641 }
e3c4633e 1642
40b9be5e 1643 inv = size;
1644 while (inv * size != 1)
1645 inv = inv * (2 - inv*size);
1646
1647 DIV_MULT (order) = inv;
1648 DIV_SHIFT (order) = e;
1649}
1650
1651/* Initialize the ggc-mmap allocator. */
911ab6b9 1652void
6ec1f4e0 1653init_ggc (void)
911ab6b9 1654{
2f6aecaf 1655 unsigned order;
1656
911ab6b9 1657 G.pagesize = getpagesize();
1658 G.lg_pagesize = exact_log2 (G.pagesize);
1659
901dfcc7 1660#ifdef HAVE_MMAP_DEV_ZERO
911ab6b9 1661 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1662 if (G.dev_zero_fd == -1)
3a2aee0e 1663 internal_error ("open /dev/zero: %m");
911ab6b9 1664#endif
1665
1666#if 0
1667 G.debug_file = fopen ("ggc-mmap.debug", "w");
1668#else
1669 G.debug_file = stdout;
1670#endif
1671
901dfcc7 1672#ifdef USING_MMAP
42f8e268 1673 /* StunOS has an amazing off-by-one error for the first mmap allocation
1674 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1675 believe, is an unaligned page allocation, which would cause us to
1676 hork badly if we tried to use it. */
1677 {
4a2f812e 1678 char *p = alloc_anon (NULL, G.pagesize, true);
901dfcc7 1679 struct page_entry *e;
337c992b 1680 if ((uintptr_t)p & (G.pagesize - 1))
42f8e268 1681 {
1682 /* How losing. Discard this one and try another. If we still
1683 can't get something useful, give up. */
1684
4a2f812e 1685 p = alloc_anon (NULL, G.pagesize, true);
337c992b 1686 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
42f8e268 1687 }
901dfcc7 1688
aa40f561 1689 /* We have a good page, might as well hold onto it... */
4c36ffe6 1690 e = XCNEW (struct page_entry);
901dfcc7 1691 e->bytes = G.pagesize;
1692 e->page = p;
1693 e->next = G.free_pages;
1694 G.free_pages = e;
42f8e268 1695 }
1696#endif
2f6aecaf 1697
1698 /* Initialize the object size table. */
1699 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1700 object_size_table[order] = (size_t) 1 << order;
1701 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
918edee0 1702 {
1703 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
5da2078a 1704
1705 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1706 so that we're sure of getting aligned memory. */
1707 s = ROUND_UP (s, MAX_ALIGNMENT);
918edee0 1708 object_size_table[order] = s;
1709 }
2f6aecaf 1710
40b9be5e 1711 /* Initialize the objects-per-page and inverse tables. */
2f6aecaf 1712 for (order = 0; order < NUM_ORDERS; ++order)
1713 {
1714 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1715 if (objects_per_page_table[order] == 0)
1716 objects_per_page_table[order] = 1;
40b9be5e 1717 compute_inverse (order);
2f6aecaf 1718 }
1719
1720 /* Reset the size_lookup array to put appropriately sized objects in
1721 the special orders. All objects bigger than the previous power
1722 of two, but no greater than the special size, should go in the
5da2078a 1723 new order. */
2f6aecaf 1724 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1725 {
5da2078a 1726 int o;
1727 int i;
76e1b933 1728
f68513d3 1729 i = OBJECT_SIZE (order);
1730 if (i >= NUM_SIZE_LOOKUP)
1731 continue;
1732
1733 for (o = size_lookup[i]; o == size_lookup [i]; --i)
5da2078a 1734 size_lookup[i] = order;
1735 }
8c14f57e 1736
76e1b933 1737 G.depth_in_use = 0;
1738 G.depth_max = 10;
4c36ffe6 1739 G.depth = XNEWVEC (unsigned int, G.depth_max);
76e1b933 1740
1741 G.by_depth_in_use = 0;
1742 G.by_depth_max = INITIAL_PTE_COUNT;
4c36ffe6 1743 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1744 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
911ab6b9 1745}
1746
c10b9b1c 1747/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1748 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1749
1750static void
6ec1f4e0 1751ggc_recalculate_in_use_p (page_entry *p)
c10b9b1c 1752{
1753 unsigned int i;
1754 size_t num_objects;
1755
3cfec666 1756 /* Because the past-the-end bit in in_use_p is always set, we
c10b9b1c 1757 pretend there is one additional object. */
573aba85 1758 num_objects = OBJECTS_IN_PAGE (p) + 1;
c10b9b1c 1759
1760 /* Reset the free object count. */
1761 p->num_free_objects = num_objects;
1762
1763 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
3cfec666 1764 for (i = 0;
2f6aecaf 1765 i < CEIL (BITMAP_SIZE (num_objects),
1766 sizeof (*p->in_use_p));
c10b9b1c 1767 ++i)
1768 {
1769 unsigned long j;
1770
1771 /* Something is in use if it is marked, or if it was in use in a
1772 context further down the context stack. */
76e1b933 1773 p->in_use_p[i] |= save_in_use_p (p)[i];
c10b9b1c 1774
1775 /* Decrement the free object count for every object allocated. */
1776 for (j = p->in_use_p[i]; j; j >>= 1)
1777 p->num_free_objects -= (j & 1);
1778 }
1779
0d59b19d 1780 gcc_assert (p->num_free_objects < num_objects);
c10b9b1c 1781}
911ab6b9 1782\f
e3c4633e 1783/* Unmark all objects. */
1784
c4e03242 1785static void
6ec1f4e0 1786clear_marks (void)
911ab6b9 1787{
1788 unsigned order;
1789
2f6aecaf 1790 for (order = 2; order < NUM_ORDERS; order++)
911ab6b9 1791 {
911ab6b9 1792 page_entry *p;
1793
1794 for (p = G.pages[order]; p != NULL; p = p->next)
1795 {
573aba85 1796 size_t num_objects = OBJECTS_IN_PAGE (p);
1797 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1798
911ab6b9 1799 /* The data should be page-aligned. */
337c992b 1800 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
911ab6b9 1801
1802 /* Pages that aren't in the topmost context are not collected;
1803 nevertheless, we need their in-use bit vectors to store GC
1804 marks. So, back them up first. */
c10b9b1c 1805 if (p->context_depth < G.context_depth)
911ab6b9 1806 {
76e1b933 1807 if (! save_in_use_p (p))
4077bf7a 1808 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
76e1b933 1809 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
911ab6b9 1810 }
1811
1812 /* Reset reset the number of free objects and clear the
1813 in-use bits. These will be adjusted by mark_obj. */
1814 p->num_free_objects = num_objects;
1815 memset (p->in_use_p, 0, bitmap_size);
1816
1817 /* Make sure the one-past-the-end bit is always set. */
3cfec666 1818 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
911ab6b9 1819 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1820 }
1821 }
1822}
1823
e3c4633e 1824/* Free all empty pages. Partially empty pages need no attention
1825 because the `mark' bit doubles as an `unused' bit. */
1826
c4e03242 1827static void
6ec1f4e0 1828sweep_pages (void)
911ab6b9 1829{
1830 unsigned order;
1831
2f6aecaf 1832 for (order = 2; order < NUM_ORDERS; order++)
911ab6b9 1833 {
1834 /* The last page-entry to consider, regardless of entries
1835 placed at the end of the list. */
1836 page_entry * const last = G.page_tails[order];
1837
573aba85 1838 size_t num_objects;
9a2e8b0a 1839 size_t live_objects;
911ab6b9 1840 page_entry *p, *previous;
1841 int done;
3cfec666 1842
911ab6b9 1843 p = G.pages[order];
1844 if (p == NULL)
1845 continue;
1846
1847 previous = NULL;
1848 do
1849 {
1850 page_entry *next = p->next;
1851
1852 /* Loop until all entries have been examined. */
1853 done = (p == last);
6ec1f4e0 1854
573aba85 1855 num_objects = OBJECTS_IN_PAGE (p);
911ab6b9 1856
9a2e8b0a 1857 /* Add all live objects on this page to the count of
1858 allocated memory. */
1859 live_objects = num_objects - p->num_free_objects;
1860
2f6aecaf 1861 G.allocated += OBJECT_SIZE (order) * live_objects;
9a2e8b0a 1862
911ab6b9 1863 /* Only objects on pages in the topmost context should get
1864 collected. */
1865 if (p->context_depth < G.context_depth)
1866 ;
1867
1868 /* Remove the page if it's empty. */
9a2e8b0a 1869 else if (live_objects == 0)
911ab6b9 1870 {
4a755ae7 1871 /* If P was the first page in the list, then NEXT
1872 becomes the new first page in the list, otherwise
1873 splice P out of the forward pointers. */
911ab6b9 1874 if (! previous)
1875 G.pages[order] = next;
1876 else
1877 previous->next = next;
48e1416a 1878
4a755ae7 1879 /* Splice P out of the back pointers too. */
1880 if (next)
1881 next->prev = previous;
911ab6b9 1882
1883 /* Are we removing the last element? */
1884 if (p == G.page_tails[order])
1885 G.page_tails[order] = previous;
1886 free_page (p);
1887 p = previous;
1888 }
1889
1890 /* If the page is full, move it to the end. */
1891 else if (p->num_free_objects == 0)
1892 {
1893 /* Don't move it if it's already at the end. */
1894 if (p != G.page_tails[order])
1895 {
1896 /* Move p to the end of the list. */
1897 p->next = NULL;
4a755ae7 1898 p->prev = G.page_tails[order];
911ab6b9 1899 G.page_tails[order]->next = p;
1900
1901 /* Update the tail pointer... */
1902 G.page_tails[order] = p;
1903
1904 /* ... and the head pointer, if necessary. */
1905 if (! previous)
1906 G.pages[order] = next;
1907 else
1908 previous->next = next;
4a755ae7 1909
1910 /* And update the backpointer in NEXT if necessary. */
1911 if (next)
1912 next->prev = previous;
1913
911ab6b9 1914 p = previous;
1915 }
1916 }
1917
1918 /* If we've fallen through to here, it's a page in the
1919 topmost context that is neither full nor empty. Such a
1920 page must precede pages at lesser context depth in the
1921 list, so move it to the head. */
1922 else if (p != G.pages[order])
1923 {
1924 previous->next = p->next;
4a755ae7 1925
1926 /* Update the backchain in the next node if it exists. */
1927 if (p->next)
1928 p->next->prev = previous;
1929
1930 /* Move P to the head of the list. */
911ab6b9 1931 p->next = G.pages[order];
4a755ae7 1932 p->prev = NULL;
1933 G.pages[order]->prev = p;
1934
1935 /* Update the head pointer. */
911ab6b9 1936 G.pages[order] = p;
4a755ae7 1937
911ab6b9 1938 /* Are we moving the last element? */
1939 if (G.page_tails[order] == p)
1940 G.page_tails[order] = previous;
1941 p = previous;
1942 }
1943
1944 previous = p;
1945 p = next;
3cfec666 1946 }
911ab6b9 1947 while (! done);
c10b9b1c 1948
1949 /* Now, restore the in_use_p vectors for any pages from contexts
1950 other than the current one. */
1951 for (p = G.pages[order]; p; p = p->next)
1952 if (p->context_depth != G.context_depth)
1953 ggc_recalculate_in_use_p (p);
911ab6b9 1954 }
1955}
1956
2a3edec5 1957#ifdef ENABLE_GC_CHECKING
e3c4633e 1958/* Clobber all free objects. */
1959
c4e03242 1960static void
6ec1f4e0 1961poison_pages (void)
911ab6b9 1962{
1963 unsigned order;
1964
2f6aecaf 1965 for (order = 2; order < NUM_ORDERS; order++)
911ab6b9 1966 {
2f6aecaf 1967 size_t size = OBJECT_SIZE (order);
911ab6b9 1968 page_entry *p;
1969
1970 for (p = G.pages[order]; p != NULL; p = p->next)
1971 {
573aba85 1972 size_t num_objects;
911ab6b9 1973 size_t i;
2d517b2f 1974
1975 if (p->context_depth != G.context_depth)
1976 /* Since we don't do any collection for pages in pushed
1977 contexts, there's no need to do any poisoning. And
1978 besides, the IN_USE_P array isn't valid until we pop
1979 contexts. */
1980 continue;
1981
573aba85 1982 num_objects = OBJECTS_IN_PAGE (p);
911ab6b9 1983 for (i = 0; i < num_objects; i++)
1984 {
1985 size_t word, bit;
1986 word = i / HOST_BITS_PER_LONG;
1987 bit = i % HOST_BITS_PER_LONG;
1988 if (((p->in_use_p[word] >> bit) & 1) == 0)
dd359afe 1989 {
1990 char *object = p->page + i * size;
1991
1992 /* Keep poison-by-write when we expect to use Valgrind,
1993 so the exact same memory semantics is kept, in case
1994 there are memory errors. We override this request
1995 below. */
a7779e75 1996 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1997 size));
dd359afe 1998 memset (object, 0xa5, size);
1999
2000 /* Drop the handle to avoid handle leak. */
a7779e75 2001 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
dd359afe 2002 }
911ab6b9 2003 }
2004 }
2005 }
2006}
c4e03242 2007#else
2008#define poison_pages()
2009#endif
2010
2011#ifdef ENABLE_GC_ALWAYS_COLLECT
2012/* Validate that the reportedly free objects actually are. */
2013
2014static void
2015validate_free_objects (void)
2016{
2017 struct free_object *f, *next, *still_free = NULL;
2018
2019 for (f = G.free_object_list; f ; f = next)
2020 {
2021 page_entry *pe = lookup_page_table_entry (f->object);
2022 size_t bit, word;
2023
2024 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2025 word = bit / HOST_BITS_PER_LONG;
2026 bit = bit % HOST_BITS_PER_LONG;
2027 next = f->next;
2028
2029 /* Make certain it isn't visible from any root. Notice that we
2030 do this check before sweep_pages merges save_in_use_p. */
0d59b19d 2031 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
c4e03242 2032
2033 /* If the object comes from an outer context, then retain the
2034 free_object entry, so that we can verify that the address
2035 isn't live on the stack in some outer context. */
2036 if (pe->context_depth != G.context_depth)
2037 {
2038 f->next = still_free;
2039 still_free = f;
2040 }
2041 else
2042 free (f);
2043 }
2044
2045 G.free_object_list = still_free;
2046}
2047#else
2048#define validate_free_objects()
911ab6b9 2049#endif
2050
e3c4633e 2051/* Top level mark-and-sweep routine. */
2052
911ab6b9 2053void
6ec1f4e0 2054ggc_collect (void)
911ab6b9 2055{
911ab6b9 2056 /* Avoid frequent unnecessary work by skipping collection if the
2057 total allocations haven't expanded much since the last
2058 collection. */
83142a4c 2059 float allocated_last_gc =
2a3edec5 2060 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
2061
83142a4c 2062 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
2a3edec5 2063
0ca9a7b6 2064 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
911ab6b9 2065 return;
911ab6b9 2066
74d2af64 2067 timevar_push (TV_GC);
911ab6b9 2068 if (!quiet_flag)
90856340 2069 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
c4e03242 2070 if (GGC_DEBUG_LEVEL >= 2)
2071 fprintf (G.debug_file, "BEGIN COLLECTING\n");
911ab6b9 2072
9a2e8b0a 2073 /* Zero the total allocated bytes. This will be recalculated in the
2074 sweep phase. */
911ab6b9 2075 G.allocated = 0;
2076
3cfec666 2077 /* Release the pages we freed the last time we collected, but didn't
911ab6b9 2078 reuse in the interim. */
2079 release_pages ();
2080
598638e2 2081 /* Indicate that we've seen collections at this context depth. */
2082 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2083
740cd0be 2084 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2085
911ab6b9 2086 clear_marks ();
2087 ggc_mark_roots ();
ecd52ea9 2088
2089 if (GATHER_STATISTICS)
2090 ggc_prune_overhead_list ();
2091
911ab6b9 2092 poison_pages ();
c4e03242 2093 validate_free_objects ();
e3c4633e 2094 sweep_pages ();
2095
911ab6b9 2096 G.allocated_last_gc = G.allocated;
2097
740cd0be 2098 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2099
74d2af64 2100 timevar_pop (TV_GC);
911ab6b9 2101
911ab6b9 2102 if (!quiet_flag)
74d2af64 2103 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
c4e03242 2104 if (GGC_DEBUG_LEVEL >= 2)
2105 fprintf (G.debug_file, "END COLLECTING\n");
911ab6b9 2106}
4e00b6fd 2107
2108/* Print allocation statistics. */
2a8997e8 2109#define SCALE(x) ((unsigned long) ((x) < 1024*10 \
2110 ? (x) \
2111 : ((x) < 1024*1024*10 \
2112 ? (x) / 1024 \
2113 : (x) / (1024*1024))))
0ca9a7b6 2114#define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
4e00b6fd 2115
2116void
6ec1f4e0 2117ggc_print_statistics (void)
4e00b6fd 2118{
2119 struct ggc_statistics stats;
c10b9b1c 2120 unsigned int i;
2a8997e8 2121 size_t total_overhead = 0;
4e00b6fd 2122
2123 /* Clear the statistics. */
3e9d8cee 2124 memset (&stats, 0, sizeof (stats));
3cfec666 2125
4e00b6fd 2126 /* Make sure collection will really occur. */
2127 G.allocated_last_gc = 0;
2128
2129 /* Collect and print the statistics common across collectors. */
2a8997e8 2130 ggc_print_common_statistics (stderr, &stats);
4e00b6fd 2131
c10b9b1c 2132 /* Release free pages so that we will not count the bytes allocated
2133 there as part of the total allocated memory. */
2134 release_pages ();
2135
3cfec666 2136 /* Collect some information about the various sizes of
4e00b6fd 2137 allocation. */
86736f9e 2138 fprintf (stderr,
2139 "Memory still allocated at the end of the compilation process\n");
b7257530 2140 fprintf (stderr, "%-5s %10s %10s %10s\n",
f806fb68 2141 "Size", "Allocated", "Used", "Overhead");
2f6aecaf 2142 for (i = 0; i < NUM_ORDERS; ++i)
4e00b6fd 2143 {
2144 page_entry *p;
2145 size_t allocated;
2146 size_t in_use;
2a8997e8 2147 size_t overhead;
4e00b6fd 2148
2149 /* Skip empty entries. */
2150 if (!G.pages[i])
2151 continue;
2152
2a8997e8 2153 overhead = allocated = in_use = 0;
4e00b6fd 2154
2155 /* Figure out the total number of bytes allocated for objects of
2a8997e8 2156 this size, and how many of them are actually in use. Also figure
2157 out how much memory the page table is using. */
4e00b6fd 2158 for (p = G.pages[i]; p; p = p->next)
2159 {
2160 allocated += p->bytes;
6ec1f4e0 2161 in_use +=
573aba85 2162 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2a8997e8 2163
2164 overhead += (sizeof (page_entry) - sizeof (long)
573aba85 2165 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
4e00b6fd 2166 }
29e7390a 2167 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2168 (unsigned long) OBJECT_SIZE (i),
0ca9a7b6 2169 SCALE (allocated), STAT_LABEL (allocated),
2170 SCALE (in_use), STAT_LABEL (in_use),
2171 SCALE (overhead), STAT_LABEL (overhead));
2a8997e8 2172 total_overhead += overhead;
4e00b6fd 2173 }
29e7390a 2174 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
0ca9a7b6 2175 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2176 SCALE (G.allocated), STAT_LABEL(G.allocated),
2177 SCALE (total_overhead), STAT_LABEL (total_overhead));
b7257530 2178
ecd52ea9 2179 if (GATHER_STATISTICS)
2180 {
2181 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2182
2183 fprintf (stderr, "Total Overhead: %10lld\n",
2184 G.stats.total_overhead);
2185 fprintf (stderr, "Total Allocated: %10lld\n",
2186 G.stats.total_allocated);
2187
2188 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2189 G.stats.total_overhead_under32);
2190 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2191 G.stats.total_allocated_under32);
2192 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2193 G.stats.total_overhead_under64);
2194 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2195 G.stats.total_allocated_under64);
2196 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2197 G.stats.total_overhead_under128);
2198 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2199 G.stats.total_allocated_under128);
2200
2201 for (i = 0; i < NUM_ORDERS; i++)
2202 if (G.stats.total_allocated_per_order[i])
2203 {
2204 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2205 (unsigned long) OBJECT_SIZE (i),
2206 G.stats.total_overhead_per_order[i]);
2207 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2208 (unsigned long) OBJECT_SIZE (i),
2209 G.stats.total_allocated_per_order[i]);
2210 }
b7257530 2211 }
4e00b6fd 2212}
573aba85 2213\f
0b09525f 2214struct ggc_pch_ondisk
2215{
2216 unsigned totals[NUM_ORDERS];
2217};
2218
573aba85 2219struct ggc_pch_data
2220{
0b09525f 2221 struct ggc_pch_ondisk d;
337c992b 2222 uintptr_t base[NUM_ORDERS];
573aba85 2223 size_t written[NUM_ORDERS];
2224};
2225
2226struct ggc_pch_data *
6ec1f4e0 2227init_ggc_pch (void)
573aba85 2228{
4c36ffe6 2229 return XCNEW (struct ggc_pch_data);
573aba85 2230}
2231
6ec1f4e0 2232void
2233ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
1bb42c87 2234 size_t size, bool is_string ATTRIBUTE_UNUSED,
2235 enum gt_types_enum type ATTRIBUTE_UNUSED)
573aba85 2236{
2237 unsigned order;
2238
f68513d3 2239 if (size < NUM_SIZE_LOOKUP)
573aba85 2240 order = size_lookup[size];
2241 else
2242 {
1c2a6a66 2243 order = 10;
573aba85 2244 while (size > OBJECT_SIZE (order))
2245 order++;
2246 }
6ec1f4e0 2247
573aba85 2248 d->d.totals[order]++;
2249}
6ec1f4e0 2250
573aba85 2251size_t
6ec1f4e0 2252ggc_pch_total_size (struct ggc_pch_data *d)
573aba85 2253{
2254 size_t a = 0;
2255 unsigned i;
2256
2257 for (i = 0; i < NUM_ORDERS; i++)
25a28b44 2258 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
573aba85 2259 return a;
2260}
2261
2262void
6ec1f4e0 2263ggc_pch_this_base (struct ggc_pch_data *d, void *base)
573aba85 2264{
337c992b 2265 uintptr_t a = (uintptr_t) base;
573aba85 2266 unsigned i;
6ec1f4e0 2267
573aba85 2268 for (i = 0; i < NUM_ORDERS; i++)
2269 {
2270 d->base[i] = a;
25a28b44 2271 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
573aba85 2272 }
2273}
2274
2275
2276char *
6ec1f4e0 2277ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
1bb42c87 2278 size_t size, bool is_string ATTRIBUTE_UNUSED,
2279 enum gt_types_enum type ATTRIBUTE_UNUSED)
573aba85 2280{
2281 unsigned order;
2282 char *result;
6ec1f4e0 2283
f68513d3 2284 if (size < NUM_SIZE_LOOKUP)
573aba85 2285 order = size_lookup[size];
2286 else
2287 {
1c2a6a66 2288 order = 10;
573aba85 2289 while (size > OBJECT_SIZE (order))
2290 order++;
2291 }
2292
2293 result = (char *) d->base[order];
2294 d->base[order] += OBJECT_SIZE (order);
2295 return result;
2296}
2297
6ec1f4e0 2298void
2299ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2300 FILE *f ATTRIBUTE_UNUSED)
573aba85 2301{
2302 /* Nothing to do. */
2303}
2304
2305void
6ec1f4e0 2306ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2307 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
7d60cc60 2308 size_t size, bool is_string ATTRIBUTE_UNUSED)
573aba85 2309{
2310 unsigned order;
1a7c0ccb 2311 static const char emptyBytes[256] = { 0 };
573aba85 2312
f68513d3 2313 if (size < NUM_SIZE_LOOKUP)
573aba85 2314 order = size_lookup[size];
2315 else
2316 {
1c2a6a66 2317 order = 10;
573aba85 2318 while (size > OBJECT_SIZE (order))
2319 order++;
2320 }
6ec1f4e0 2321
573aba85 2322 if (fwrite (x, size, 1, f) != 1)
bf776685 2323 fatal_error ("can%'t write PCH file: %m");
573aba85 2324
89e22a52 2325 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
e9efa031 2326 object out to OBJECT_SIZE(order). This happens for strings. */
89e22a52 2327
2328 if (size != OBJECT_SIZE (order))
2329 {
2330 unsigned padding = OBJECT_SIZE(order) - size;
2331
2332 /* To speed small writes, we use a nulled-out array that's larger
2333 than most padding requests as the source for our null bytes. This
2334 permits us to do the padding with fwrite() rather than fseek(), and
822e391f 2335 limits the chance the OS may try to flush any outstanding writes. */
89e22a52 2336 if (padding <= sizeof(emptyBytes))
2337 {
2338 if (fwrite (emptyBytes, 1, padding, f) != padding)
bf776685 2339 fatal_error ("can%'t write PCH file");
89e22a52 2340 }
2341 else
2342 {
e9efa031 2343 /* Larger than our buffer? Just default to fseek. */
89e22a52 2344 if (fseek (f, padding, SEEK_CUR) != 0)
bf776685 2345 fatal_error ("can%'t write PCH file");
89e22a52 2346 }
2347 }
573aba85 2348
2349 d->written[order]++;
2350 if (d->written[order] == d->d.totals[order]
2351 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2352 G.pagesize),
2353 SEEK_CUR) != 0)
bf776685 2354 fatal_error ("can%'t write PCH file: %m");
573aba85 2355}
2356
2357void
6ec1f4e0 2358ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
573aba85 2359{
2360 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
bf776685 2361 fatal_error ("can%'t write PCH file: %m");
573aba85 2362 free (d);
2363}
2364
76e1b933 2365/* Move the PCH PTE entries just added to the end of by_depth, to the
2366 front. */
2367
2368static void
6ec1f4e0 2369move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
76e1b933 2370{
2371 unsigned i;
2372
2373 /* First, we swap the new entries to the front of the varrays. */
2374 page_entry **new_by_depth;
2375 unsigned long **new_save_in_use;
2376
4c36ffe6 2377 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2378 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
76e1b933 2379
2380 memcpy (&new_by_depth[0],
2381 &G.by_depth[count_old_page_tables],
2382 count_new_page_tables * sizeof (void *));
2383 memcpy (&new_by_depth[count_new_page_tables],
2384 &G.by_depth[0],
2385 count_old_page_tables * sizeof (void *));
2386 memcpy (&new_save_in_use[0],
2387 &G.save_in_use[count_old_page_tables],
2388 count_new_page_tables * sizeof (void *));
2389 memcpy (&new_save_in_use[count_new_page_tables],
2390 &G.save_in_use[0],
2391 count_old_page_tables * sizeof (void *));
2392
2393 free (G.by_depth);
2394 free (G.save_in_use);
6ec1f4e0 2395
76e1b933 2396 G.by_depth = new_by_depth;
2397 G.save_in_use = new_save_in_use;
2398
2399 /* Now update all the index_by_depth fields. */
2400 for (i = G.by_depth_in_use; i > 0; --i)
2401 {
2402 page_entry *p = G.by_depth[i-1];
2403 p->index_by_depth = i-1;
2404 }
2405
2406 /* And last, we update the depth pointers in G.depth. The first
2407 entry is already 0, and context 0 entries always start at index
2408 0, so there is nothing to update in the first slot. We need a
2409 second slot, only if we have old ptes, and if we do, they start
2410 at index count_new_page_tables. */
2411 if (count_old_page_tables)
2412 push_depth (count_new_page_tables);
2413}
2414
573aba85 2415void
6ec1f4e0 2416ggc_pch_read (FILE *f, void *addr)
573aba85 2417{
2418 struct ggc_pch_ondisk d;
2419 unsigned i;
4077bf7a 2420 char *offs = (char *) addr;
76e1b933 2421 unsigned long count_old_page_tables;
2422 unsigned long count_new_page_tables;
2423
2424 count_old_page_tables = G.by_depth_in_use;
2425
2426 /* We've just read in a PCH file. So, every object that used to be
2427 allocated is now free. */
573aba85 2428 clear_marks ();
32bbbaac 2429#ifdef ENABLE_GC_CHECKING
573aba85 2430 poison_pages ();
2431#endif
3fff4d99 2432 /* Since we free all the allocated objects, the free list becomes
2433 useless. Validate it now, which will also clear it. */
2434 validate_free_objects();
573aba85 2435
2436 /* No object read from a PCH file should ever be freed. So, set the
2437 context depth to 1, and set the depth of all the currently-allocated
2438 pages to be 1 too. PCH pages will have depth 0. */
0d59b19d 2439 gcc_assert (!G.context_depth);
573aba85 2440 G.context_depth = 1;
2441 for (i = 0; i < NUM_ORDERS; i++)
2442 {
2443 page_entry *p;
2444 for (p = G.pages[i]; p != NULL; p = p->next)
2445 p->context_depth = G.context_depth;
2446 }
2447
2448 /* Allocate the appropriate page-table entries for the pages read from
2449 the PCH file. */
2450 if (fread (&d, sizeof (d), 1, f) != 1)
bf776685 2451 fatal_error ("can%'t read PCH file: %m");
6ec1f4e0 2452
573aba85 2453 for (i = 0; i < NUM_ORDERS; i++)
2454 {
2455 struct page_entry *entry;
2456 char *pte;
2457 size_t bytes;
2458 size_t num_objs;
2459 size_t j;
76e1b933 2460
573aba85 2461 if (d.totals[i] == 0)
2462 continue;
76e1b933 2463
25a28b44 2464 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
573aba85 2465 num_objs = bytes / OBJECT_SIZE (i);
4077bf7a 2466 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2467 - sizeof (long)
2468 + BITMAP_SIZE (num_objs + 1)));
573aba85 2469 entry->bytes = bytes;
2470 entry->page = offs;
2471 entry->context_depth = 0;
2472 offs += bytes;
2473 entry->num_free_objects = 0;
2474 entry->order = i;
2475
6ec1f4e0 2476 for (j = 0;
573aba85 2477 j + HOST_BITS_PER_LONG <= num_objs + 1;
2478 j += HOST_BITS_PER_LONG)
2479 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2480 for (; j < num_objs + 1; j++)
6ec1f4e0 2481 entry->in_use_p[j / HOST_BITS_PER_LONG]
573aba85 2482 |= 1L << (j % HOST_BITS_PER_LONG);
2483
6ec1f4e0 2484 for (pte = entry->page;
2485 pte < entry->page + entry->bytes;
573aba85 2486 pte += G.pagesize)
2487 set_page_table_entry (pte, entry);
2488
2489 if (G.page_tails[i] != NULL)
2490 G.page_tails[i]->next = entry;
2491 else
2492 G.pages[i] = entry;
2493 G.page_tails[i] = entry;
76e1b933 2494
2495 /* We start off by just adding all the new information to the
2496 end of the varrays, later, we will move the new information
2497 to the front of the varrays, as the PCH page tables are at
2498 context 0. */
2499 push_by_depth (entry, 0);
573aba85 2500 }
2501
76e1b933 2502 /* Now, we update the various data structures that speed page table
2503 handling. */
2504 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2505
2506 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2507
573aba85 2508 /* Update the statistics. */
2509 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2510}
ba72912a 2511
2512struct alloc_zone
2513{
2514 int dummy;
2515};
2516
2517struct alloc_zone rtl_zone;
2518struct alloc_zone tree_zone;
2519struct alloc_zone tree_id_zone;