]> git.ipfire.org Git - thirdparty/gcc.git/blame - gcc/ggc-page.cc
c++, mingw: Fix up types of dtor hooks to __cxa_{,thread_}atexit/__cxa_throw on mingw...
[thirdparty/gcc.git] / gcc / ggc-page.cc
CommitLineData
21341cfd 1/* "Bag-of-pages" garbage collector for the GNU compiler.
a945c346 2 Copyright (C) 1999-2024 Free Software Foundation, Inc.
21341cfd 3
1322177d 4This file is part of GCC.
21341cfd 5
1322177d
LB
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
9dcd6f09 8Software Foundation; either version 3, or (at your option) any later
1322177d 9version.
21341cfd 10
1322177d
LB
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
21341cfd 15
b9bfacf0 16You should have received a copy of the GNU General Public License
9dcd6f09
NC
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
21341cfd 19
21341cfd 20#include "config.h"
21341cfd 21#include "system.h"
4977bab6 22#include "coretypes.h"
c7131fb2 23#include "backend.h"
40e23961 24#include "alias.h"
21341cfd 25#include "tree.h"
e5ecd4ea 26#include "rtl.h"
4d0cdd0c 27#include "memmodel.h"
1b42a6a9 28#include "tm_p.h"
718f9c0f 29#include "diagnostic-core.h"
21341cfd 30#include "flags.h"
a9429e29 31#include "ggc-internal.h"
2a9a326b 32#include "timevar.h"
442b4905 33#include "cgraph.h"
b78cd885 34#include "cfgloop.h"
ae2392a9 35#include "plugin.h"
e5ecd4ea 36
825b6926
ZW
37/* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
38 file open. Prefer either to valloc. */
39#ifdef HAVE_MMAP_ANON
40# undef HAVE_MMAP_DEV_ZERO
825b6926 41# define USING_MMAP
005537df 42#endif
21341cfd 43
825b6926 44#ifdef HAVE_MMAP_DEV_ZERO
825b6926 45# define USING_MMAP
8342b467
RH
46#endif
47
130fadbb
RH
48#ifndef USING_MMAP
49#define USING_MALLOC_PAGE_GROUPS
5b918807 50#endif
21341cfd 51
87fb500b
RO
52#if defined(HAVE_MADVISE) && HAVE_DECL_MADVISE && defined(MADV_DONTNEED) \
53 && defined(USING_MMAP)
711a3d82
AK
54# define USING_MADVISE
55#endif
56
0fa2e4df 57/* Strategy:
21341cfd
AS
58
59 This garbage-collecting allocator allocates objects on one of a set
60 of pages. Each page can allocate objects of a single size only;
61 available sizes are powers of two starting at four bytes. The size
62 of an allocation request is rounded up to the next power of two
63 (`order'), and satisfied from the appropriate page.
64
65 Each page is recorded in a page-entry, which also maintains an
66 in-use bitmap of object positions on the page. This allows the
67 allocation state of a particular object to be flipped without
68 touching the page itself.
69
70 Each page-entry also has a context depth, which is used to track
71 pushing and popping of allocation contexts. Only objects allocated
589005ff 72 in the current (highest-numbered) context may be collected.
21341cfd
AS
73
74 Page entries are arranged in an array of singly-linked lists. The
75 array is indexed by the allocation size, in bits, of the pages on
76 it; i.e. all pages on a list allocate objects of the same size.
77 Pages are ordered on the list such that all non-full pages precede
78 all full pages, with non-full pages arranged in order of decreasing
79 context depth.
80
81 Empty pages (of all orders) are kept on a single page cache list,
82 and are considered first when new pages are required; they are
83 deallocated at the start of the next collection if they haven't
84 been recycled by then. */
85
21341cfd
AS
86/* Define GGC_DEBUG_LEVEL to print debugging information.
87 0: No debugging output.
88 1: GC statistics only.
89 2: Page-entry allocations/deallocations as well.
90 3: Object allocations as well.
6d2f8887 91 4: Object marks as well. */
21341cfd 92#define GGC_DEBUG_LEVEL (0)
21341cfd
AS
93\f
94/* A two-level tree is used to look up the page-entry for a given
95 pointer. Two chunks of the pointer's bits are extracted to index
96 the first and second levels of the tree, as follows:
97
98 HOST_PAGE_SIZE_BITS
99 32 | |
100 msb +----------------+----+------+------+ lsb
101 | | |
102 PAGE_L1_BITS |
103 | |
104 PAGE_L2_BITS
105
106 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
107 pages are aligned on system page boundaries. The next most
108 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
589005ff 109 index values in the lookup table, respectively.
21341cfd 110
005537df
RH
111 For 32-bit architectures and the settings below, there are no
112 leftover bits. For architectures with wider pointers, the lookup
113 tree points to a list of pages, which must be scanned to find the
114 correct one. */
21341cfd
AS
115
116#define PAGE_L1_BITS (8)
117#define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
2a6e6fea
TG
118#define PAGE_L1_SIZE ((uintptr_t) 1 << PAGE_L1_BITS)
119#define PAGE_L2_SIZE ((uintptr_t) 1 << PAGE_L2_BITS)
21341cfd
AS
120
121#define LOOKUP_L1(p) \
2a6e6fea 122 (((uintptr_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
21341cfd
AS
123
124#define LOOKUP_L2(p) \
2a6e6fea 125 (((uintptr_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
21341cfd 126
2be510b8
MM
127/* The number of objects per allocation page, for objects on a page of
128 the indicated ORDER. */
129#define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
130
17211ab5
GK
131/* The number of objects in P. */
132#define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
133
2be510b8
MM
134/* The size of an object on a page of the indicated ORDER. */
135#define OBJECT_SIZE(ORDER) object_size_table[ORDER]
136
8537ed68
ZW
137/* For speed, we avoid doing a general integer divide to locate the
138 offset in the allocation bitmap, by precalculating numbers M, S
139 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
140 within the page which is evenly divisible by the object size Z. */
141#define DIV_MULT(ORDER) inverse_table[ORDER].mult
142#define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
143#define OFFSET_TO_BIT(OFFSET, ORDER) \
144 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
145
b78cd885
RG
146/* We use this structure to determine the alignment required for
147 allocations. For power-of-two sized allocations, that's not a
148 problem, but it does matter for odd-sized allocations.
149 We do not care about alignment for floating-point types. */
150
151struct max_alignment {
152 char c;
153 union {
a9243bfc 154 int64_t i;
b78cd885
RG
155 void *p;
156 } u;
157};
158
159/* The biggest alignment required. */
160
161#define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
162
163
2be510b8
MM
164/* The number of extra orders, not corresponding to power-of-two sized
165 objects. */
166
ca7558fc 167#define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
2be510b8 168
d1f1cc6a 169#define RTL_SIZE(NSLOTS) \
e1de1560 170 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
d1f1cc6a 171
5e26df64
SB
172#define TREE_EXP_SIZE(OPS) \
173 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
174
2be510b8
MM
175/* The Ith entry is the maximum size of an object to be stored in the
176 Ith extra order. Adding a new entry to this array is the *only*
177 thing you need to do to add a new special allocation size. */
178
179static const size_t extra_order_size_table[] = {
b78cd885
RG
180 /* Extra orders for small non-power-of-two multiples of MAX_ALIGNMENT.
181 There are a lot of structures with these sizes and explicitly
182 listing them risks orders being dropped because they changed size. */
183 MAX_ALIGNMENT * 3,
184 MAX_ALIGNMENT * 5,
185 MAX_ALIGNMENT * 6,
186 MAX_ALIGNMENT * 7,
187 MAX_ALIGNMENT * 9,
188 MAX_ALIGNMENT * 10,
189 MAX_ALIGNMENT * 11,
190 MAX_ALIGNMENT * 12,
191 MAX_ALIGNMENT * 13,
192 MAX_ALIGNMENT * 14,
193 MAX_ALIGNMENT * 15,
820cc88f
DB
194 sizeof (struct tree_decl_non_common),
195 sizeof (struct tree_field_decl),
196 sizeof (struct tree_parm_decl),
197 sizeof (struct tree_var_decl),
51545682 198 sizeof (struct tree_type_non_common),
f5938dcd
RG
199 sizeof (struct function),
200 sizeof (struct basic_block_def),
b78cd885 201 sizeof (struct cgraph_node),
99b1c316 202 sizeof (class loop),
2be510b8
MM
203};
204
205/* The total number of orders. */
206
207#define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
208
17211ab5
GK
209/* Compute the smallest nonnegative number which when added to X gives
210 a multiple of F. */
211
212#define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
213
3bc50163
AK
214/* Round X to next multiple of the page size */
215
54070b51 216#define PAGE_ALIGN(x) ROUND_UP ((x), G.pagesize)
3bc50163 217
2be510b8
MM
218/* The Ith entry is the number of objects on a page or order I. */
219
220static unsigned objects_per_page_table[NUM_ORDERS];
221
222/* The Ith entry is the size of an object on a page of order I. */
223
224static size_t object_size_table[NUM_ORDERS];
21341cfd 225
8537ed68
ZW
226/* The Ith entry is a pair of numbers (mult, shift) such that
227 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
228 for all k evenly divisible by OBJECT_SIZE(I). */
229
230static struct
231{
75d75435 232 size_t mult;
8537ed68
ZW
233 unsigned int shift;
234}
235inverse_table[NUM_ORDERS];
236
21341cfd
AS
237/* A page_entry records the status of an allocation page. This
238 structure is dynamically sized to fit the bitmap in_use_p. */
a79683d5 239struct page_entry
21341cfd
AS
240{
241 /* The next page-entry with objects of the same size, or NULL if
242 this is the last page-entry. */
243 struct page_entry *next;
244
9bf793f9
JL
245 /* The previous page-entry with objects of the same size, or NULL if
246 this is the first page-entry. The PREV pointer exists solely to
71cc389b 247 keep the cost of ggc_free manageable. */
9bf793f9
JL
248 struct page_entry *prev;
249
21341cfd
AS
250 /* The number of bytes allocated. (This will always be a multiple
251 of the host system page size.) */
252 size_t bytes;
253
254 /* The address at which the memory is allocated. */
255 char *page;
256
130fadbb
RH
257#ifdef USING_MALLOC_PAGE_GROUPS
258 /* Back pointer to the page group this page came from. */
259 struct page_group *group;
260#endif
261
c4775f82
MS
262 /* This is the index in the by_depth varray where this page table
263 can be found. */
264 unsigned long index_by_depth;
21341cfd
AS
265
266 /* Context depth of this page. */
ae373eda 267 unsigned short context_depth;
21341cfd
AS
268
269 /* The number of free objects remaining on this page. */
270 unsigned short num_free_objects;
271
272 /* A likely candidate for the bit position of a free object for the
273 next allocation from this page. */
274 unsigned short next_bit_hint;
275
ae373eda
MM
276 /* The lg of size of objects allocated from this page. */
277 unsigned char order;
278
711a3d82
AK
279 /* Discarded page? */
280 bool discarded;
281
21341cfd
AS
282 /* A bit vector indicating whether or not objects are in use. The
283 Nth bit is one if the Nth object on this page is allocated. This
284 array is dynamically sized. */
285 unsigned long in_use_p[1];
a79683d5 286};
21341cfd 287
130fadbb
RH
288#ifdef USING_MALLOC_PAGE_GROUPS
289/* A page_group describes a large allocation from malloc, from which
290 we parcel out aligned pages. */
a79683d5 291struct page_group
130fadbb
RH
292{
293 /* A linked list of all extant page groups. */
294 struct page_group *next;
295
296 /* The address we received from malloc. */
297 char *allocation;
298
299 /* The size of the block. */
300 size_t alloc_size;
301
302 /* A bitmask of pages in use. */
303 unsigned int in_use;
a79683d5 304};
130fadbb 305#endif
21341cfd
AS
306
307#if HOST_BITS_PER_PTR <= 32
308
309/* On 32-bit hosts, we use a two level page table, as pictured above. */
310typedef page_entry **page_table[PAGE_L1_SIZE];
311
312#else
313
005537df
RH
314/* On 64-bit hosts, we use the same two level page tables plus a linked
315 list that disambiguates the top 32-bits. There will almost always be
21341cfd
AS
316 exactly one entry in the list. */
317typedef struct page_table_chain
318{
319 struct page_table_chain *next;
320 size_t high_bits;
321 page_entry **table[PAGE_L1_SIZE];
322} *page_table;
323
324#endif
325
de49ce19
TS
326class finalizer
327{
328public:
329 finalizer (void *addr, void (*f)(void *)) : m_addr (addr), m_function (f) {}
330
331 void *addr () const { return m_addr; }
332
333 void call () const { m_function (m_addr); }
334
335private:
336 void *m_addr;
337 void (*m_function)(void *);
338};
339
340class vec_finalizer
341{
342public:
343 vec_finalizer (uintptr_t addr, void (*f)(void *), size_t s, size_t n) :
344 m_addr (addr), m_function (f), m_object_size (s), m_n_objects (n) {}
345
346 void call () const
347 {
348 for (size_t i = 0; i < m_n_objects; i++)
349 m_function (reinterpret_cast<void *> (m_addr + (i * m_object_size)));
350 }
351
352 void *addr () const { return reinterpret_cast<void *> (m_addr); }
353
354private:
355 uintptr_t m_addr;
356 void (*m_function)(void *);
357 size_t m_object_size;
358 size_t m_n_objects;
2a304777 359};
de49ce19 360
9957322d
DK
361#ifdef ENABLE_GC_ALWAYS_COLLECT
362/* List of free objects to be verified as actually free on the
363 next collection. */
364struct free_object
365{
366 void *object;
367 struct free_object *next;
368};
369#endif
370
21341cfd 371/* The rest of the global variables. */
11478306 372static struct ggc_globals
21341cfd
AS
373{
374 /* The Nth element in this array is a page with objects of size 2^N.
375 If there are any pages with free objects, they will be at the
376 head of the list. NULL if there are no page-entries for this
377 object size. */
2be510b8 378 page_entry *pages[NUM_ORDERS];
21341cfd
AS
379
380 /* The Nth element in this array is the last page with objects of
381 size 2^N. NULL if there are no page-entries for this object
382 size. */
2be510b8 383 page_entry *page_tails[NUM_ORDERS];
21341cfd
AS
384
385 /* Lookup table for associating allocation pages with object addresses. */
386 page_table lookup;
387
388 /* The system's page size. */
389 size_t pagesize;
390 size_t lg_pagesize;
391
392 /* Bytes currently allocated. */
393 size_t allocated;
394
395 /* Bytes currently allocated at the end of the last collection. */
396 size_t allocated_last_gc;
397
3277221c
MM
398 /* Total amount of memory mapped. */
399 size_t bytes_mapped;
400
52895e1a
RH
401 /* Bit N set if any allocations have been done at context depth N. */
402 unsigned long context_depth_allocations;
403
404 /* Bit N set if any collections have been done at context depth N. */
405 unsigned long context_depth_collections;
406
21341cfd 407 /* The current depth in the context stack. */
d416576b 408 unsigned short context_depth;
21341cfd
AS
409
410 /* A file descriptor open to /dev/zero for reading. */
825b6926 411#if defined (HAVE_MMAP_DEV_ZERO)
21341cfd
AS
412 int dev_zero_fd;
413#endif
414
415 /* A cache of free system pages. */
416 page_entry *free_pages;
417
130fadbb
RH
418#ifdef USING_MALLOC_PAGE_GROUPS
419 page_group *page_groups;
420#endif
421
21341cfd
AS
422 /* The file descriptor for debugging output. */
423 FILE *debug_file;
c4775f82
MS
424
425 /* Current number of elements in use in depth below. */
426 unsigned int depth_in_use;
427
428 /* Maximum number of elements that can be used before resizing. */
429 unsigned int depth_max;
430
fa10beec 431 /* Each element of this array is an index in by_depth where the given
c4775f82
MS
432 depth starts. This structure is indexed by that given depth we
433 are interested in. */
434 unsigned int *depth;
435
436 /* Current number of elements in use in by_depth below. */
437 unsigned int by_depth_in_use;
438
439 /* Maximum number of elements that can be used before resizing. */
440 unsigned int by_depth_max;
441
442 /* Each element of this array is a pointer to a page_entry, all
443 page_entries can be found in here by increasing depth.
444 index_by_depth in the page_entry is the index into this data
445 structure where that page_entry can be found. This is used to
446 speed up finding all page_entries at a particular depth. */
447 page_entry **by_depth;
448
449 /* Each element is a pointer to the saved in_use_p bits, if any,
450 zero otherwise. We allocate them all together, to enable a
451 better runtime data access pattern. */
452 unsigned long **save_in_use;
685fe032 453
2a304777
JM
454 /* Finalizers for single objects. The first index is collection_depth. */
455 vec<vec<finalizer> > finalizers;
de49ce19
TS
456
457 /* Finalizers for vectors of objects. */
2a304777 458 vec<vec<vec_finalizer> > vec_finalizers;
de49ce19 459
685fe032
RH
460#ifdef ENABLE_GC_ALWAYS_COLLECT
461 /* List of free objects to be verified as actually free on the
462 next collection. */
9957322d 463 struct free_object *free_object_list;
685fe032
RH
464#endif
465
adc4adcd
GP
466 struct
467 {
a9429e29 468 /* Total GC-allocated memory. */
adc4adcd 469 unsigned long long total_allocated;
a9429e29 470 /* Total overhead for GC-allocated memory. */
adc4adcd
GP
471 unsigned long long total_overhead;
472
473 /* Total allocations and overhead for sizes less than 32, 64 and 128.
474 These sizes are interesting because they are typical cache line
938d968e 475 sizes. */
b8698a0f 476
adc4adcd
GP
477 unsigned long long total_allocated_under32;
478 unsigned long long total_overhead_under32;
b8698a0f 479
adc4adcd
GP
480 unsigned long long total_allocated_under64;
481 unsigned long long total_overhead_under64;
b8698a0f 482
adc4adcd
GP
483 unsigned long long total_allocated_under128;
484 unsigned long long total_overhead_under128;
b8698a0f 485
439a7e54
DN
486 /* The allocations for each of the allocation orders. */
487 unsigned long long total_allocated_per_order[NUM_ORDERS];
488
938d968e 489 /* The overhead for each of the allocation orders. */
adc4adcd
GP
490 unsigned long long total_overhead_per_order[NUM_ORDERS];
491 } stats;
21341cfd
AS
492} G;
493
b086d530
TS
494/* True if a gc is currently taking place. */
495
496static bool in_gc = false;
497
21341cfd
AS
498/* The size in bytes required to maintain a bitmap for the objects
499 on a page-entry. */
500#define BITMAP_SIZE(Num_objects) \
c3284718 501 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof (long))
21341cfd 502
130fadbb
RH
503/* Allocate pages in chunks of this size, to throttle calls to memory
504 allocation routines. The first page is used, the rest go onto the
505 free list. This cannot be larger than HOST_BITS_PER_INT for the
772299b3 506 in_use bitmask for page_group. Hosts that need a different value
471854f8 507 can override this by defining GGC_QUIRE_SIZE explicitly. */
772299b3
MA
508#ifndef GGC_QUIRE_SIZE
509# ifdef USING_MMAP
6c995fa5 510# define GGC_QUIRE_SIZE 512 /* 2MB for 4K pages */
772299b3
MA
511# else
512# define GGC_QUIRE_SIZE 16
513# endif
514#endif
c4775f82
MS
515
516/* Initial guess as to how many page table entries we might need. */
517#define INITIAL_PTE_COUNT 128
21341cfd 518\f
20c1dc5e
AJ
519static page_entry *lookup_page_table_entry (const void *);
520static void set_page_table_entry (void *, page_entry *);
130fadbb 521#ifdef USING_MMAP
25f0ea81 522static char *alloc_anon (char *, size_t, bool check);
130fadbb
RH
523#endif
524#ifdef USING_MALLOC_PAGE_GROUPS
20c1dc5e
AJ
525static size_t page_group_index (char *, char *);
526static void set_page_group_in_use (page_group *, char *);
527static void clear_page_group_in_use (page_group *, char *);
130fadbb 528#endif
20c1dc5e
AJ
529static struct page_entry * alloc_page (unsigned);
530static void free_page (struct page_entry *);
20c1dc5e
AJ
531static void clear_marks (void);
532static void sweep_pages (void);
533static void ggc_recalculate_in_use_p (page_entry *);
534static void compute_inverse (unsigned);
535static inline void adjust_depth (void);
536static void move_ptes_to_front (int, int);
21341cfd 537
20c1dc5e
AJ
538void debug_print_page_list (int);
539static void push_depth (unsigned int);
540static void push_by_depth (page_entry *, unsigned long *);
b6f61163 541
c4775f82
MS
542/* Push an entry onto G.depth. */
543
544inline static void
20c1dc5e 545push_depth (unsigned int i)
c4775f82
MS
546{
547 if (G.depth_in_use >= G.depth_max)
548 {
549 G.depth_max *= 2;
d3bfe4de 550 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
c4775f82
MS
551 }
552 G.depth[G.depth_in_use++] = i;
553}
554
555/* Push an entry onto G.by_depth and G.save_in_use. */
556
557inline static void
20c1dc5e 558push_by_depth (page_entry *p, unsigned long *s)
c4775f82
MS
559{
560 if (G.by_depth_in_use >= G.by_depth_max)
561 {
562 G.by_depth_max *= 2;
d3bfe4de
KG
563 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
564 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
565 G.by_depth_max);
c4775f82
MS
566 }
567 G.by_depth[G.by_depth_in_use] = p;
568 G.save_in_use[G.by_depth_in_use++] = s;
569}
570
571#if (GCC_VERSION < 3001)
572#define prefetch(X) ((void) X)
573#else
574#define prefetch(X) __builtin_prefetch (X)
575#endif
576
577#define save_in_use_p_i(__i) \
578 (G.save_in_use[__i])
579#define save_in_use_p(__p) \
580 (save_in_use_p_i (__p->index_by_depth))
581
acb14262
RB
582/* Traverse the page table and find the entry for a page.
583 If the object wasn't allocated in GC return NULL. */
21341cfd 584
acb14262
RB
585static inline page_entry *
586safe_lookup_page_table_entry (const void *p)
21341cfd
AS
587{
588 page_entry ***base;
005537df 589 size_t L1, L2;
21341cfd
AS
590
591#if HOST_BITS_PER_PTR <= 32
592 base = &G.lookup[0];
593#else
594 page_table table = G.lookup;
2a6e6fea 595 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
005537df
RH
596 while (1)
597 {
598 if (table == NULL)
acb14262 599 return NULL;
005537df
RH
600 if (table->high_bits == high_bits)
601 break;
602 table = table->next;
603 }
21341cfd
AS
604 base = &table->table[0];
605#endif
606
eaec9b3d 607 /* Extract the level 1 and 2 indices. */
74c937ca
MM
608 L1 = LOOKUP_L1 (p);
609 L2 = LOOKUP_L2 (p);
acb14262
RB
610 if (! base[L1])
611 return NULL;
74c937ca 612
acb14262 613 return base[L1][L2];
74c937ca
MM
614}
615
589005ff 616/* Traverse the page table and find the entry for a page.
74c937ca
MM
617 Die (probably) if the object wasn't allocated via GC. */
618
619static inline page_entry *
20c1dc5e 620lookup_page_table_entry (const void *p)
74c937ca
MM
621{
622 page_entry ***base;
623 size_t L1, L2;
624
005537df
RH
625#if HOST_BITS_PER_PTR <= 32
626 base = &G.lookup[0];
627#else
628 page_table table = G.lookup;
2a6e6fea 629 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
005537df
RH
630 while (table->high_bits != high_bits)
631 table = table->next;
632 base = &table->table[0];
633#endif
74c937ca 634
eaec9b3d 635 /* Extract the level 1 and 2 indices. */
21341cfd
AS
636 L1 = LOOKUP_L1 (p);
637 L2 = LOOKUP_L2 (p);
638
639 return base[L1][L2];
640}
641
21341cfd 642/* Set the page table entry for a page. */
cb2ec151 643
21341cfd 644static void
20c1dc5e 645set_page_table_entry (void *p, page_entry *entry)
21341cfd
AS
646{
647 page_entry ***base;
648 size_t L1, L2;
649
650#if HOST_BITS_PER_PTR <= 32
651 base = &G.lookup[0];
652#else
653 page_table table;
2a6e6fea 654 uintptr_t high_bits = (uintptr_t) p & ~ (uintptr_t) 0xffffffff;
21341cfd
AS
655 for (table = G.lookup; table; table = table->next)
656 if (table->high_bits == high_bits)
657 goto found;
658
659 /* Not found -- allocate a new table. */
4dc6c528 660 table = XCNEW (struct page_table_chain);
21341cfd
AS
661 table->next = G.lookup;
662 table->high_bits = high_bits;
663 G.lookup = table;
664found:
665 base = &table->table[0];
666#endif
667
eaec9b3d 668 /* Extract the level 1 and 2 indices. */
21341cfd
AS
669 L1 = LOOKUP_L1 (p);
670 L2 = LOOKUP_L2 (p);
671
672 if (base[L1] == NULL)
5ed6ace5 673 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
21341cfd
AS
674
675 base[L1][L2] = entry;
676}
677
21341cfd 678/* Prints the page-entry for object size ORDER, for debugging. */
cb2ec151 679
24e47c76 680DEBUG_FUNCTION void
20c1dc5e 681debug_print_page_list (int order)
21341cfd
AS
682{
683 page_entry *p;
20c1dc5e
AJ
684 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
685 (void *) G.page_tails[order]);
21341cfd
AS
686 p = G.pages[order];
687 while (p != NULL)
688 {
20c1dc5e 689 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
683eb0e9 690 p->num_free_objects);
21341cfd
AS
691 p = p->next;
692 }
693 printf ("NULL\n");
694 fflush (stdout);
695}
696
130fadbb 697#ifdef USING_MMAP
21341cfd 698/* Allocate SIZE bytes of anonymous memory, preferably near PREF,
825b6926
ZW
699 (if non-null). The ifdef structure here is intended to cause a
700 compile error unless exactly one of the HAVE_* is defined. */
cb2ec151 701
21341cfd 702static inline char *
25f0ea81 703alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size, bool check)
21341cfd 704{
825b6926 705#ifdef HAVE_MMAP_ANON
d3bfe4de
KG
706 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
707 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
825b6926
ZW
708#endif
709#ifdef HAVE_MMAP_DEV_ZERO
d3bfe4de
KG
710 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
711 MAP_PRIVATE, G.dev_zero_fd, 0);
21341cfd 712#endif
825b6926
ZW
713
714 if (page == (char *) MAP_FAILED)
005537df 715 {
25f0ea81
AK
716 if (!check)
717 return NULL;
1f978f5f 718 perror ("virtual memory exhausted");
bd0f0717 719 exit (FATAL_EXIT_CODE);
005537df 720 }
21341cfd 721
3277221c
MM
722 /* Remember that we allocated this memory. */
723 G.bytes_mapped += size;
724
9a0a7d5d 725 /* Pretend we don't have access to the allocated pages. We'll enable
a9429e29 726 access to smaller pieces of the area in ggc_internal_alloc. Discard the
9a0a7d5d 727 handle to avoid handle leak. */
35dee980 728 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
9a0a7d5d 729
21341cfd
AS
730 return page;
731}
130fadbb
RH
732#endif
733#ifdef USING_MALLOC_PAGE_GROUPS
734/* Compute the index for this page into the page group. */
735
736static inline size_t
20c1dc5e 737page_group_index (char *allocation, char *page)
130fadbb 738{
c4f2c499 739 return (size_t) (page - allocation) >> G.lg_pagesize;
130fadbb
RH
740}
741
742/* Set and clear the in_use bit for this page in the page group. */
743
744static inline void
20c1dc5e 745set_page_group_in_use (page_group *group, char *page)
130fadbb
RH
746{
747 group->in_use |= 1 << page_group_index (group->allocation, page);
748}
749
750static inline void
20c1dc5e 751clear_page_group_in_use (page_group *group, char *page)
130fadbb
RH
752{
753 group->in_use &= ~(1 << page_group_index (group->allocation, page));
754}
755#endif
21341cfd
AS
756
757/* Allocate a new page for allocating objects of size 2^ORDER,
758 and return an entry for it. The entry is not added to the
759 appropriate page_table list. */
cb2ec151 760
21341cfd 761static inline struct page_entry *
20c1dc5e 762alloc_page (unsigned order)
21341cfd
AS
763{
764 struct page_entry *entry, *p, **pp;
765 char *page;
766 size_t num_objects;
767 size_t bitmap_size;
768 size_t page_entry_size;
769 size_t entry_size;
130fadbb
RH
770#ifdef USING_MALLOC_PAGE_GROUPS
771 page_group *group;
772#endif
21341cfd
AS
773
774 num_objects = OBJECTS_PER_PAGE (order);
775 bitmap_size = BITMAP_SIZE (num_objects + 1);
776 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
2be510b8 777 entry_size = num_objects * OBJECT_SIZE (order);
ca79429a
RH
778 if (entry_size < G.pagesize)
779 entry_size = G.pagesize;
3bc50163 780 entry_size = PAGE_ALIGN (entry_size);
21341cfd
AS
781
782 entry = NULL;
783 page = NULL;
784
785 /* Check the list of free pages for one we can use. */
bd0f0717 786 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
21341cfd
AS
787 if (p->bytes == entry_size)
788 break;
789
790 if (p != NULL)
791 {
711a3d82
AK
792 if (p->discarded)
793 G.bytes_mapped += p->bytes;
794 p->discarded = false;
795
dc297297 796 /* Recycle the allocated memory from this page ... */
21341cfd
AS
797 *pp = p->next;
798 page = p->page;
bd0f0717 799
130fadbb
RH
800#ifdef USING_MALLOC_PAGE_GROUPS
801 group = p->group;
802#endif
bd0f0717 803
21341cfd
AS
804 /* ... and, if possible, the page entry itself. */
805 if (p->order == order)
806 {
807 entry = p;
808 memset (entry, 0, page_entry_size);
809 }
810 else
811 free (p);
812 }
825b6926 813#ifdef USING_MMAP
054f5e69 814 else if (entry_size == G.pagesize)
21341cfd 815 {
054f5e69
ZW
816 /* We want just one page. Allocate a bunch of them and put the
817 extras on the freelist. (Can only do this optimization with
818 mmap for backing store.) */
819 struct page_entry *e, *f = G.free_pages;
25f0ea81 820 int i, entries = GGC_QUIRE_SIZE;
054f5e69 821
25f0ea81
AK
822 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE, false);
823 if (page == NULL)
824 {
c3284718 825 page = alloc_anon (NULL, G.pagesize, true);
25f0ea81
AK
826 entries = 1;
827 }
bd0f0717 828
054f5e69
ZW
829 /* This loop counts down so that the chain will be in ascending
830 memory order. */
25f0ea81 831 for (i = entries - 1; i >= 1; i--)
054f5e69 832 {
d3bfe4de 833 e = XCNEWVAR (struct page_entry, page_entry_size);
ca79429a
RH
834 e->order = order;
835 e->bytes = G.pagesize;
836 e->page = page + (i << G.lg_pagesize);
054f5e69
ZW
837 e->next = f;
838 f = e;
839 }
bd0f0717 840
054f5e69 841 G.free_pages = f;
21341cfd 842 }
054f5e69 843 else
25f0ea81 844 page = alloc_anon (NULL, entry_size, true);
130fadbb
RH
845#endif
846#ifdef USING_MALLOC_PAGE_GROUPS
847 else
848 {
849 /* Allocate a large block of memory and serve out the aligned
850 pages therein. This results in much less memory wastage
851 than the traditional implementation of valloc. */
852
853 char *allocation, *a, *enda;
854 size_t alloc_size, head_slop, tail_slop;
855 int multiple_pages = (entry_size == G.pagesize);
856
857 if (multiple_pages)
858 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
859 else
860 alloc_size = entry_size + G.pagesize - 1;
ec4d7730 861 allocation = XNEWVEC (char, alloc_size);
130fadbb 862
2a6e6fea 863 page = (char *) (((uintptr_t) allocation + G.pagesize - 1) & -G.pagesize);
130fadbb
RH
864 head_slop = page - allocation;
865 if (multiple_pages)
866 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
867 else
868 tail_slop = alloc_size - entry_size - head_slop;
869 enda = allocation + alloc_size - tail_slop;
870
871 /* We allocated N pages, which are likely not aligned, leaving
872 us with N-1 usable pages. We plan to place the page_group
873 structure somewhere in the slop. */
874 if (head_slop >= sizeof (page_group))
875 group = (page_group *)page - 1;
876 else
877 {
878 /* We magically got an aligned allocation. Too bad, we have
879 to waste a page anyway. */
880 if (tail_slop == 0)
881 {
882 enda -= G.pagesize;
883 tail_slop += G.pagesize;
884 }
282899df 885 gcc_assert (tail_slop >= sizeof (page_group));
130fadbb
RH
886 group = (page_group *)enda;
887 tail_slop -= sizeof (page_group);
888 }
889
890 /* Remember that we allocated this memory. */
891 group->next = G.page_groups;
892 group->allocation = allocation;
893 group->alloc_size = alloc_size;
894 group->in_use = 0;
895 G.page_groups = group;
896 G.bytes_mapped += alloc_size;
897
898 /* If we allocated multiple pages, put the rest on the free list. */
899 if (multiple_pages)
900 {
901 struct page_entry *e, *f = G.free_pages;
902 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
903 {
ec4d7730 904 e = XCNEWVAR (struct page_entry, page_entry_size);
130fadbb
RH
905 e->order = order;
906 e->bytes = G.pagesize;
907 e->page = a;
908 e->group = group;
909 e->next = f;
910 f = e;
911 }
912 G.free_pages = f;
913 }
914 }
915#endif
21341cfd
AS
916
917 if (entry == NULL)
d3bfe4de 918 entry = XCNEWVAR (struct page_entry, page_entry_size);
21341cfd
AS
919
920 entry->bytes = entry_size;
921 entry->page = page;
922 entry->context_depth = G.context_depth;
923 entry->order = order;
924 entry->num_free_objects = num_objects;
925 entry->next_bit_hint = 1;
926
52895e1a
RH
927 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
928
130fadbb
RH
929#ifdef USING_MALLOC_PAGE_GROUPS
930 entry->group = group;
931 set_page_group_in_use (group, page);
932#endif
933
21341cfd
AS
934 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
935 increment the hint. */
936 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
937 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
938
939 set_page_table_entry (page, entry);
940
941 if (GGC_DEBUG_LEVEL >= 2)
589005ff 942 fprintf (G.debug_file,
89e93ce8
JJ
943 "Allocating page at %p, object size="
944 HOST_SIZE_T_PRINT_UNSIGNED ", data %p-%p\n",
945 (void *) entry, (fmt_size_t) OBJECT_SIZE (order),
c53930bb 946 (void *) page, (void *) (page + entry_size - 1));
21341cfd
AS
947
948 return entry;
949}
950
c4775f82
MS
951/* Adjust the size of G.depth so that no index greater than the one
952 used by the top of the G.by_depth is used. */
953
954static inline void
20c1dc5e 955adjust_depth (void)
c4775f82
MS
956{
957 page_entry *top;
958
959 if (G.by_depth_in_use)
960 {
961 top = G.by_depth[G.by_depth_in_use-1];
962
e0bb17a8
KH
963 /* Peel back indices in depth that index into by_depth, so that
964 as new elements are added to by_depth, we note the indices
c4775f82
MS
965 of those elements, if they are for new context depths. */
966 while (G.depth_in_use > (size_t)top->context_depth+1)
967 --G.depth_in_use;
968 }
969}
970
cb2ec151 971/* For a page that is no longer needed, put it on the free page list. */
21341cfd 972
685fe032 973static void
20c1dc5e 974free_page (page_entry *entry)
21341cfd
AS
975{
976 if (GGC_DEBUG_LEVEL >= 2)
589005ff 977 fprintf (G.debug_file,
20c1dc5e 978 "Deallocating page at %p, data %p-%p\n", (void *) entry,
c53930bb 979 (void *) entry->page, (void *) (entry->page + entry->bytes - 1));
21341cfd 980
9a0a7d5d
HPN
981 /* Mark the page as inaccessible. Discard the handle to avoid handle
982 leak. */
35dee980 983 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
9a0a7d5d 984
21341cfd
AS
985 set_page_table_entry (entry->page, NULL);
986
130fadbb
RH
987#ifdef USING_MALLOC_PAGE_GROUPS
988 clear_page_group_in_use (entry->group, entry->page);
989#endif
990
c4775f82
MS
991 if (G.by_depth_in_use > 1)
992 {
993 page_entry *top = G.by_depth[G.by_depth_in_use-1];
282899df
NS
994 int i = entry->index_by_depth;
995
996 /* We cannot free a page from a context deeper than the current
997 one. */
998 gcc_assert (entry->context_depth == top->context_depth);
b8698a0f 999
282899df
NS
1000 /* Put top element into freed slot. */
1001 G.by_depth[i] = top;
1002 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
1003 top->index_by_depth = i;
c4775f82
MS
1004 }
1005 --G.by_depth_in_use;
1006
1007 adjust_depth ();
1008
21341cfd
AS
1009 entry->next = G.free_pages;
1010 G.free_pages = entry;
1011}
1012
cb2ec151 1013/* Release the free page cache to the system. */
21341cfd 1014
4934cc53 1015static void
20c1dc5e 1016release_pages (void)
21341cfd 1017{
e5207f1a
JH
1018 size_t n1 = 0;
1019 size_t n2 = 0;
711a3d82
AK
1020#ifdef USING_MADVISE
1021 page_entry *p, *start_p;
1022 char *start;
1023 size_t len;
d33ef9a5
AK
1024 size_t mapped_len;
1025 page_entry *next, *prev, *newprev;
1026 size_t free_unit = (GGC_QUIRE_SIZE/2) * G.pagesize;
1027
1028 /* First free larger continuous areas to the OS.
1029 This allows other allocators to grab these areas if needed.
1030 This is only done on larger chunks to avoid fragmentation.
1031 This does not always work because the free_pages list is only
1032 approximately sorted. */
1033
1034 p = G.free_pages;
1035 prev = NULL;
1036 while (p)
1037 {
1038 start = p->page;
1039 start_p = p;
1040 len = 0;
1041 mapped_len = 0;
1042 newprev = prev;
1043 while (p && p->page == start + len)
1044 {
1045 len += p->bytes;
1046 if (!p->discarded)
1047 mapped_len += p->bytes;
1048 newprev = p;
1049 p = p->next;
1050 }
1051 if (len >= free_unit)
1052 {
1053 while (start_p != p)
1054 {
1055 next = start_p->next;
1056 free (start_p);
1057 start_p = next;
1058 }
1059 munmap (start, len);
1060 if (prev)
1061 prev->next = p;
1062 else
1063 G.free_pages = p;
1064 G.bytes_mapped -= mapped_len;
e5207f1a 1065 n1 += len;
d33ef9a5
AK
1066 continue;
1067 }
1068 prev = newprev;
1069 }
1070
1071 /* Now give back the fragmented pages to the OS, but keep the address
1072 space to reuse it next time. */
711a3d82
AK
1073
1074 for (p = G.free_pages; p; )
1075 {
1076 if (p->discarded)
1077 {
1078 p = p->next;
1079 continue;
1080 }
1081 start = p->page;
1082 len = p->bytes;
1083 start_p = p;
1084 p = p->next;
1085 while (p && p->page == start + len)
1086 {
1087 len += p->bytes;
1088 p = p->next;
1089 }
1090 /* Give the page back to the kernel, but don't free the mapping.
1091 This avoids fragmentation in the virtual memory map of the
1092 process. Next time we can reuse it by just touching it. */
1093 madvise (start, len, MADV_DONTNEED);
1094 /* Don't count those pages as mapped to not touch the garbage collector
1095 unnecessarily. */
1096 G.bytes_mapped -= len;
e5207f1a 1097 n2 += len;
711a3d82
AK
1098 while (start_p != p)
1099 {
1100 start_p->discarded = true;
1101 start_p = start_p->next;
1102 }
1103 }
1104#endif
1105#if defined(USING_MMAP) && !defined(USING_MADVISE)
130fadbb 1106 page_entry *p, *next;
21341cfd
AS
1107 char *start;
1108 size_t len;
1109
054f5e69 1110 /* Gather up adjacent pages so they are unmapped together. */
21341cfd 1111 p = G.free_pages;
21341cfd
AS
1112
1113 while (p)
1114 {
054f5e69 1115 start = p->page;
21341cfd 1116 next = p->next;
054f5e69 1117 len = p->bytes;
21341cfd
AS
1118 free (p);
1119 p = next;
21341cfd 1120
054f5e69
ZW
1121 while (p && p->page == start + len)
1122 {
1123 next = p->next;
1124 len += p->bytes;
1125 free (p);
1126 p = next;
1127 }
1128
1129 munmap (start, len);
e5207f1a 1130 n1 += len;
054f5e69
ZW
1131 G.bytes_mapped -= len;
1132 }
005537df 1133
21341cfd 1134 G.free_pages = NULL;
130fadbb
RH
1135#endif
1136#ifdef USING_MALLOC_PAGE_GROUPS
1137 page_entry **pp, *p;
1138 page_group **gp, *g;
1139
1140 /* Remove all pages from free page groups from the list. */
1141 pp = &G.free_pages;
1142 while ((p = *pp) != NULL)
1143 if (p->group->in_use == 0)
1144 {
1145 *pp = p->next;
1146 free (p);
1147 }
1148 else
1149 pp = &p->next;
1150
1151 /* Remove all free page groups, and release the storage. */
1152 gp = &G.page_groups;
1153 while ((g = *gp) != NULL)
1154 if (g->in_use == 0)
1155 {
1156 *gp = g->next;
589005ff 1157 G.bytes_mapped -= g->alloc_size;
e5207f1a 1158 n1 += g->alloc_size;
9e0d2031 1159 free (g->allocation);
130fadbb
RH
1160 }
1161 else
1162 gp = &g->next;
1163#endif
e5207f1a
JH
1164 if (!quiet_flag && (n1 || n2))
1165 {
1166 fprintf (stderr, " {GC");
1167 if (n1)
79f4e20d 1168 fprintf (stderr, " released " PRsa (0), SIZE_AMOUNT (n1));
e5207f1a 1169 if (n2)
79f4e20d 1170 fprintf (stderr, " madv_dontneed " PRsa (0), SIZE_AMOUNT (n2));
e5207f1a
JH
1171 fprintf (stderr, "}");
1172 }
21341cfd
AS
1173}
1174
21341cfd 1175/* This table provides a fast way to determine ceil(log_2(size)) for
9fd51e67 1176 allocation requests. The minimum allocation size is eight bytes. */
6583cf15
NC
1177#define NUM_SIZE_LOOKUP 512
1178static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
9fd51e67 1179{
589005ff
KH
1180 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1181 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1182 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1183 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1184 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1185 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1186 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
21341cfd 1187 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
21341cfd
AS
1188 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1189 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1190 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1191 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1192 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1193 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1194 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1195 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
f5938dcd
RG
1196 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1197 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1198 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1199 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1200 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1201 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1202 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1203 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1204 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1205 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1206 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1207 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1208 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1209 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1210 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
ecf7b86f 1211 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
21341cfd
AS
1212};
1213
b9bd6f74
TT
1214/* For a given size of memory requested for allocation, return the
1215 actual size that is going to be allocated, as well as the size
1216 order. */
1217
1218static void
1219ggc_round_alloc_size_1 (size_t requested_size,
1220 size_t *size_order,
1221 size_t *alloced_size)
1222{
1223 size_t order, object_size;
1224
1225 if (requested_size < NUM_SIZE_LOOKUP)
1226 {
1227 order = size_lookup[requested_size];
1228 object_size = OBJECT_SIZE (order);
1229 }
1230 else
1231 {
1232 order = 10;
1233 while (requested_size > (object_size = OBJECT_SIZE (order)))
1234 order++;
1235 }
1236
1237 if (size_order)
1238 *size_order = order;
1239 if (alloced_size)
1240 *alloced_size = object_size;
1241}
1242
1243/* For a given size of memory requested for allocation, return the
1244 actual size that is going to be allocated. */
1245
1246size_t
1247ggc_round_alloc_size (size_t requested_size)
1248{
1249 size_t size = 0;
1250
1251 ggc_round_alloc_size_1 (requested_size, NULL, &size);
1252 return size;
1253}
1254
2a304777
JM
1255/* Push a finalizer onto the appropriate vec. */
1256
1257static void
1258add_finalizer (void *result, void (*f)(void *), size_t s, size_t n)
1259{
1260 if (f == NULL)
1261 /* No finalizer. */;
1262 else if (n == 1)
1263 {
1264 finalizer fin (result, f);
1265 G.finalizers[G.context_depth].safe_push (fin);
1266 }
1267 else
1268 {
1269 vec_finalizer fin (reinterpret_cast<uintptr_t> (result), f, s, n);
1270 G.vec_finalizers[G.context_depth].safe_push (fin);
1271 }
1272}
1273
aa40083d 1274/* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
cb2ec151 1275
005537df 1276void *
de49ce19
TS
1277ggc_internal_alloc (size_t size, void (*f)(void *), size_t s, size_t n
1278 MEM_STAT_DECL)
21341cfd 1279{
685fe032 1280 size_t order, word, bit, object_offset, object_size;
21341cfd
AS
1281 struct page_entry *entry;
1282 void *result;
1283
b9bd6f74 1284 ggc_round_alloc_size_1 (size, &order, &object_size);
21341cfd
AS
1285
1286 /* If there are non-full pages for this size allocation, they are at
1287 the head of the list. */
1288 entry = G.pages[order];
1289
1290 /* If there is no page for this object size, or all pages in this
1291 context are full, allocate a new page. */
4934cc53 1292 if (entry == NULL || entry->num_free_objects == 0)
21341cfd
AS
1293 {
1294 struct page_entry *new_entry;
1295 new_entry = alloc_page (order);
589005ff 1296
c4775f82
MS
1297 new_entry->index_by_depth = G.by_depth_in_use;
1298 push_by_depth (new_entry, 0);
1299
1300 /* We can skip context depths, if we do, make sure we go all the
1301 way to the new depth. */
1302 while (new_entry->context_depth >= G.depth_in_use)
1303 push_depth (G.by_depth_in_use-1);
1304
9bf793f9
JL
1305 /* If this is the only entry, it's also the tail. If it is not
1306 the only entry, then we must update the PREV pointer of the
1307 ENTRY (G.pages[order]) to point to our new page entry. */
21341cfd
AS
1308 if (entry == NULL)
1309 G.page_tails[order] = new_entry;
9bf793f9
JL
1310 else
1311 entry->prev = new_entry;
589005ff 1312
9bf793f9
JL
1313 /* Put new pages at the head of the page list. By definition the
1314 entry at the head of the list always has a NULL pointer. */
21341cfd 1315 new_entry->next = entry;
9bf793f9 1316 new_entry->prev = NULL;
21341cfd
AS
1317 entry = new_entry;
1318 G.pages[order] = new_entry;
1319
1320 /* For a new page, we know the word and bit positions (in the
1321 in_use bitmap) of the first available object -- they're zero. */
1322 new_entry->next_bit_hint = 1;
1323 word = 0;
1324 bit = 0;
1325 object_offset = 0;
1326 }
1327 else
1328 {
1329 /* First try to use the hint left from the previous allocation
1330 to locate a clear bit in the in-use bitmap. We've made sure
1331 that the one-past-the-end bit is always set, so if the hint
1332 has run over, this test will fail. */
1333 unsigned hint = entry->next_bit_hint;
1334 word = hint / HOST_BITS_PER_LONG;
1335 bit = hint % HOST_BITS_PER_LONG;
589005ff 1336
21341cfd
AS
1337 /* If the hint didn't work, scan the bitmap from the beginning. */
1338 if ((entry->in_use_p[word] >> bit) & 1)
1339 {
1340 word = bit = 0;
1341 while (~entry->in_use_p[word] == 0)
1342 ++word;
6f0947e4
SB
1343
1344#if GCC_VERSION >= 3004
1345 bit = __builtin_ctzl (~entry->in_use_p[word]);
1346#else
21341cfd
AS
1347 while ((entry->in_use_p[word] >> bit) & 1)
1348 ++bit;
6f0947e4
SB
1349#endif
1350
21341cfd
AS
1351 hint = word * HOST_BITS_PER_LONG + bit;
1352 }
1353
1354 /* Next time, try the next bit. */
1355 entry->next_bit_hint = hint + 1;
1356
685fe032 1357 object_offset = hint * object_size;
21341cfd
AS
1358 }
1359
1360 /* Set the in-use bit. */
1361 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1362
1363 /* Keep a running total of the number of free objects. If this page
1364 fills up, we may have to move it to the end of the list if the
1365 next page isn't full. If the next page is full, all subsequent
1366 pages are full, so there's no need to move it. */
1367 if (--entry->num_free_objects == 0
1368 && entry->next != NULL
1369 && entry->next->num_free_objects > 0)
1370 {
9bf793f9 1371 /* We have a new head for the list. */
21341cfd 1372 G.pages[order] = entry->next;
9bf793f9
JL
1373
1374 /* We are moving ENTRY to the end of the page table list.
1375 The new page at the head of the list will have NULL in
1376 its PREV field and ENTRY will have NULL in its NEXT field. */
1377 entry->next->prev = NULL;
21341cfd 1378 entry->next = NULL;
9bf793f9
JL
1379
1380 /* Append ENTRY to the tail of the list. */
1381 entry->prev = G.page_tails[order];
21341cfd
AS
1382 G.page_tails[order]->next = entry;
1383 G.page_tails[order] = entry;
1384 }
1385
1386 /* Calculate the object's address. */
1387 result = entry->page + object_offset;
7aa6d18a
SB
1388 if (GATHER_STATISTICS)
1389 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1390 result FINAL_PASS_MEM_STAT);
21341cfd 1391
3788cc17 1392#ifdef ENABLE_GC_CHECKING
9a0a7d5d
HPN
1393 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1394 exact same semantics in presence of memory bugs, regardless of
1395 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1396 handle to avoid handle leak. */
35dee980 1397 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
9a0a7d5d 1398
f8a83ee3
ZW
1399 /* `Poison' the entire allocated object, including any padding at
1400 the end. */
685fe032 1401 memset (result, 0xaf, object_size);
9a0a7d5d
HPN
1402
1403 /* Make the bytes after the end of the object unaccessible. Discard the
1404 handle to avoid handle leak. */
35dee980
HPN
1405 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1406 object_size - size));
21341cfd 1407#endif
cb2ec151 1408
9a0a7d5d
HPN
1409 /* Tell Valgrind that the memory is there, but its content isn't
1410 defined. The bytes at the end of the object are still marked
1411 unaccessible. */
35dee980 1412 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
9a0a7d5d 1413
21341cfd
AS
1414 /* Keep track of how many bytes are being allocated. This
1415 information is used in deciding when to collect. */
685fe032 1416 G.allocated += object_size;
21341cfd 1417
8d18c628
ZD
1418 /* For timevar statistics. */
1419 timevar_ggc_mem_total += object_size;
1420
2a304777
JM
1421 if (f)
1422 add_finalizer (result, f, s, n);
de49ce19 1423
7aa6d18a
SB
1424 if (GATHER_STATISTICS)
1425 {
1426 size_t overhead = object_size - size;
adc4adcd 1427
7aa6d18a
SB
1428 G.stats.total_overhead += overhead;
1429 G.stats.total_allocated += object_size;
1430 G.stats.total_overhead_per_order[order] += overhead;
1431 G.stats.total_allocated_per_order[order] += object_size;
adc4adcd 1432
7aa6d18a
SB
1433 if (size <= 32)
1434 {
1435 G.stats.total_overhead_under32 += overhead;
1436 G.stats.total_allocated_under32 += object_size;
1437 }
1438 if (size <= 64)
1439 {
1440 G.stats.total_overhead_under64 += overhead;
1441 G.stats.total_allocated_under64 += object_size;
1442 }
1443 if (size <= 128)
1444 {
1445 G.stats.total_overhead_under128 += overhead;
1446 G.stats.total_allocated_under128 += object_size;
1447 }
1448 }
685fe032 1449
21341cfd 1450 if (GGC_DEBUG_LEVEL >= 3)
589005ff 1451 fprintf (G.debug_file,
89e93ce8
JJ
1452 "Allocating object, requested size="
1453 HOST_SIZE_T_PRINT_UNSIGNED ", actual=" HOST_SIZE_T_PRINT_UNSIGNED
1454 " at %p on %p\n",
1455 (fmt_size_t) size, (fmt_size_t) object_size, result,
20c1dc5e 1456 (void *) entry);
21341cfd
AS
1457
1458 return result;
1459}
1460
dae4174e
TT
1461/* Mark function for strings. */
1462
1463void
1464gt_ggc_m_S (const void *p)
1465{
1466 page_entry *entry;
1467 unsigned bit, word;
1468 unsigned long mask;
1469 unsigned long offset;
1470
acb14262 1471 if (!p)
dae4174e
TT
1472 return;
1473
acb14262
RB
1474 /* Look up the page on which the object is alloced. If it was not
1475 GC allocated, gracefully bail out. */
1476 entry = safe_lookup_page_table_entry (p);
1477 if (!entry)
1478 return;
dae4174e
TT
1479
1480 /* Calculate the index of the object on the page; this is its bit
1481 position in the in_use_p bitmap. Note that because a char* might
1482 point to the middle of an object, we need special code here to
1483 make sure P points to the start of an object. */
1484 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1485 if (offset)
1486 {
1487 /* Here we've seen a char* which does not point to the beginning
1488 of an allocated object. We assume it points to the middle of
1489 a STRING_CST. */
1490 gcc_assert (offset == offsetof (struct tree_string, str));
1491 p = ((const char *) p) - offset;
d3bfe4de 1492 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
dae4174e
TT
1493 return;
1494 }
1495
1496 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1497 word = bit / HOST_BITS_PER_LONG;
1498 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1499
1500 /* If the bit was previously set, skip it. */
1501 if (entry->in_use_p[word] & mask)
1502 return;
1503
1504 /* Otherwise set it, and decrement the free object count. */
1505 entry->in_use_p[word] |= mask;
1506 entry->num_free_objects -= 1;
1507
1508 if (GGC_DEBUG_LEVEL >= 4)
1509 fprintf (G.debug_file, "Marking %p\n", p);
1510
1511 return;
1512}
1513
0823efed
DN
1514
1515/* User-callable entry points for marking string X. */
1516
1517void
1518gt_ggc_mx (const char *& x)
e69ac020
BE
1519{
1520 gt_ggc_m_S (x);
1521}
1522
1523void
1524gt_ggc_mx (char *& x)
0823efed
DN
1525{
1526 gt_ggc_m_S (x);
1527}
1528
1529void
1530gt_ggc_mx (unsigned char *& x)
1531{
1532 gt_ggc_m_S (x);
1533}
1534
1535void
1536gt_ggc_mx (unsigned char& x ATTRIBUTE_UNUSED)
1537{
1538}
1539
cb2ec151 1540/* If P is not marked, marks it and return false. Otherwise return true.
21341cfd
AS
1541 P must have been allocated by the GC allocator; it mustn't point to
1542 static objects, stack variables, or memory allocated with malloc. */
cb2ec151 1543
9a856f67 1544bool
20c1dc5e 1545ggc_set_mark (const void *p)
21341cfd
AS
1546{
1547 page_entry *entry;
1548 unsigned bit, word;
1549 unsigned long mask;
1550
1551 /* Look up the page on which the object is alloced. If the object
1552 wasn't allocated by the collector, we'll probably die. */
74c937ca 1553 entry = lookup_page_table_entry (p);
282899df 1554 gcc_assert (entry);
21341cfd
AS
1555
1556 /* Calculate the index of the object on the page; this is its bit
1557 position in the in_use_p bitmap. */
8537ed68 1558 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
21341cfd
AS
1559 word = bit / HOST_BITS_PER_LONG;
1560 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
589005ff 1561
dc297297 1562 /* If the bit was previously set, skip it. */
21341cfd 1563 if (entry->in_use_p[word] & mask)
9a856f67 1564 return true;
21341cfd
AS
1565
1566 /* Otherwise set it, and decrement the free object count. */
1567 entry->in_use_p[word] |= mask;
1568 entry->num_free_objects -= 1;
1569
21341cfd
AS
1570 if (GGC_DEBUG_LEVEL >= 4)
1571 fprintf (G.debug_file, "Marking %p\n", p);
1572
9a856f67 1573 return false;
21341cfd
AS
1574}
1575
9a856f67 1576/* Return true if P has been marked, zero otherwise.
4c160717
RK
1577 P must have been allocated by the GC allocator; it mustn't point to
1578 static objects, stack variables, or memory allocated with malloc. */
1579
9a856f67 1580bool
20c1dc5e 1581ggc_marked_p (const void *p)
4c160717
RK
1582{
1583 page_entry *entry;
1584 unsigned bit, word;
1585 unsigned long mask;
1586
1587 /* Look up the page on which the object is alloced. If the object
1588 wasn't allocated by the collector, we'll probably die. */
1589 entry = lookup_page_table_entry (p);
282899df 1590 gcc_assert (entry);
4c160717
RK
1591
1592 /* Calculate the index of the object on the page; this is its bit
1593 position in the in_use_p bitmap. */
8537ed68 1594 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
4c160717
RK
1595 word = bit / HOST_BITS_PER_LONG;
1596 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
589005ff 1597
a4b5b2ae 1598 return (entry->in_use_p[word] & mask) != 0;
4c160717
RK
1599}
1600
cb2ec151
RH
1601/* Return the size of the gc-able object P. */
1602
3277221c 1603size_t
20c1dc5e 1604ggc_get_size (const void *p)
3277221c
MM
1605{
1606 page_entry *pe = lookup_page_table_entry (p);
2be510b8 1607 return OBJECT_SIZE (pe->order);
3277221c 1608}
685fe032
RH
1609
1610/* Release the memory for object P. */
1611
1612void
1613ggc_free (void *p)
1614{
b086d530
TS
1615 if (in_gc)
1616 return;
1617
685fe032
RH
1618 page_entry *pe = lookup_page_table_entry (p);
1619 size_t order = pe->order;
1620 size_t size = OBJECT_SIZE (order);
1621
7aa6d18a
SB
1622 if (GATHER_STATISTICS)
1623 ggc_free_overhead (p);
07724022 1624
685fe032
RH
1625 if (GGC_DEBUG_LEVEL >= 3)
1626 fprintf (G.debug_file,
89e93ce8
JJ
1627 "Freeing object, actual size="
1628 HOST_SIZE_T_PRINT_UNSIGNED ", at %p on %p\n",
1629 (fmt_size_t) size, p, (void *) pe);
685fe032
RH
1630
1631#ifdef ENABLE_GC_CHECKING
1632 /* Poison the data, to indicate the data is garbage. */
35dee980 1633 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
685fe032
RH
1634 memset (p, 0xa5, size);
1635#endif
1636 /* Let valgrind know the object is free. */
35dee980 1637 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
685fe032
RH
1638
1639#ifdef ENABLE_GC_ALWAYS_COLLECT
1640 /* In the completely-anal-checking mode, we do *not* immediately free
b8698a0f 1641 the data, but instead verify that the data is *actually* not
685fe032
RH
1642 reachable the next time we collect. */
1643 {
5ed6ace5 1644 struct free_object *fo = XNEW (struct free_object);
685fe032
RH
1645 fo->object = p;
1646 fo->next = G.free_object_list;
1647 G.free_object_list = fo;
1648 }
1649#else
1650 {
1651 unsigned int bit_offset, word, bit;
1652
1653 G.allocated -= size;
1654
1655 /* Mark the object not-in-use. */
1656 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1657 word = bit_offset / HOST_BITS_PER_LONG;
1658 bit = bit_offset % HOST_BITS_PER_LONG;
1659 pe->in_use_p[word] &= ~(1UL << bit);
1660
1661 if (pe->num_free_objects++ == 0)
1662 {
9bf793f9
JL
1663 page_entry *p, *q;
1664
685fe032
RH
1665 /* If the page is completely full, then it's supposed to
1666 be after all pages that aren't. Since we've freed one
1667 object from a page that was full, we need to move the
b8698a0f 1668 page to the head of the list.
685fe032 1669
9bf793f9
JL
1670 PE is the node we want to move. Q is the previous node
1671 and P is the next node in the list. */
1672 q = pe->prev;
685fe032
RH
1673 if (q && q->num_free_objects == 0)
1674 {
1675 p = pe->next;
9bf793f9 1676
685fe032 1677 q->next = p;
9bf793f9
JL
1678
1679 /* If PE was at the end of the list, then Q becomes the
1680 new end of the list. If PE was not the end of the
1681 list, then we need to update the PREV field for P. */
685fe032
RH
1682 if (!p)
1683 G.page_tails[order] = q;
9bf793f9
JL
1684 else
1685 p->prev = q;
1686
1687 /* Move PE to the head of the list. */
685fe032 1688 pe->next = G.pages[order];
9bf793f9
JL
1689 pe->prev = NULL;
1690 G.pages[order]->prev = pe;
685fe032
RH
1691 G.pages[order] = pe;
1692 }
1693
1694 /* Reset the hint bit to point to the only free object. */
1695 pe->next_bit_hint = bit_offset;
1696 }
1697 }
1698#endif
1699}
21341cfd 1700\f
8537ed68
ZW
1701/* Subroutine of init_ggc which computes the pair of numbers used to
1702 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1703
1704 This algorithm is taken from Granlund and Montgomery's paper
1705 "Division by Invariant Integers using Multiplication"
1706 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1707 constants). */
1708
1709static void
20c1dc5e 1710compute_inverse (unsigned order)
8537ed68 1711{
b8698a0f 1712 size_t size, inv;
75d75435 1713 unsigned int e;
280cf02a 1714
8537ed68
ZW
1715 size = OBJECT_SIZE (order);
1716 e = 0;
1717 while (size % 2 == 0)
1718 {
1719 e++;
1720 size >>= 1;
1721 }
cb2ec151 1722
8537ed68
ZW
1723 inv = size;
1724 while (inv * size != 1)
1725 inv = inv * (2 - inv*size);
1726
1727 DIV_MULT (order) = inv;
1728 DIV_SHIFT (order) = e;
1729}
1730
1731/* Initialize the ggc-mmap allocator. */
21341cfd 1732void
20c1dc5e 1733init_ggc (void)
21341cfd 1734{
3edf64aa 1735 static bool init_p = false;
2be510b8
MM
1736 unsigned order;
1737
3edf64aa
DM
1738 if (init_p)
1739 return;
1740 init_p = true;
1741
c3284718 1742 G.pagesize = getpagesize ();
21341cfd
AS
1743 G.lg_pagesize = exact_log2 (G.pagesize);
1744
825b6926 1745#ifdef HAVE_MMAP_DEV_ZERO
21341cfd
AS
1746 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1747 if (G.dev_zero_fd == -1)
c770ac2b 1748 internal_error ("open /dev/zero: %m");
21341cfd
AS
1749#endif
1750
1751#if 0
1752 G.debug_file = fopen ("ggc-mmap.debug", "w");
1753#else
1754 G.debug_file = stdout;
1755#endif
1756
825b6926 1757#ifdef USING_MMAP
1b3e1423
RH
1758 /* StunOS has an amazing off-by-one error for the first mmap allocation
1759 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1760 believe, is an unaligned page allocation, which would cause us to
1761 hork badly if we tried to use it. */
1762 {
25f0ea81 1763 char *p = alloc_anon (NULL, G.pagesize, true);
825b6926 1764 struct page_entry *e;
2a6e6fea 1765 if ((uintptr_t)p & (G.pagesize - 1))
1b3e1423
RH
1766 {
1767 /* How losing. Discard this one and try another. If we still
1768 can't get something useful, give up. */
1769
25f0ea81 1770 p = alloc_anon (NULL, G.pagesize, true);
2a6e6fea 1771 gcc_assert (!((uintptr_t)p & (G.pagesize - 1)));
1b3e1423 1772 }
825b6926 1773
dc297297 1774 /* We have a good page, might as well hold onto it... */
5ed6ace5 1775 e = XCNEW (struct page_entry);
825b6926
ZW
1776 e->bytes = G.pagesize;
1777 e->page = p;
1778 e->next = G.free_pages;
1779 G.free_pages = e;
1b3e1423
RH
1780 }
1781#endif
2be510b8
MM
1782
1783 /* Initialize the object size table. */
1784 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1785 object_size_table[order] = (size_t) 1 << order;
1786 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
b1095f9c
MM
1787 {
1788 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
a469a4f2
RG
1789
1790 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1791 so that we're sure of getting aligned memory. */
1792 s = ROUND_UP (s, MAX_ALIGNMENT);
b1095f9c
MM
1793 object_size_table[order] = s;
1794 }
2be510b8 1795
8537ed68 1796 /* Initialize the objects-per-page and inverse tables. */
2be510b8
MM
1797 for (order = 0; order < NUM_ORDERS; ++order)
1798 {
1799 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1800 if (objects_per_page_table[order] == 0)
1801 objects_per_page_table[order] = 1;
8537ed68 1802 compute_inverse (order);
2be510b8
MM
1803 }
1804
1805 /* Reset the size_lookup array to put appropriately sized objects in
1806 the special orders. All objects bigger than the previous power
1807 of two, but no greater than the special size, should go in the
a469a4f2 1808 new order. */
2be510b8
MM
1809 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1810 {
a469a4f2
RG
1811 int o;
1812 int i;
c4775f82 1813
6583cf15
NC
1814 i = OBJECT_SIZE (order);
1815 if (i >= NUM_SIZE_LOOKUP)
1816 continue;
1817
1818 for (o = size_lookup[i]; o == size_lookup [i]; --i)
a469a4f2
RG
1819 size_lookup[i] = order;
1820 }
ecf7b86f 1821
c4775f82
MS
1822 G.depth_in_use = 0;
1823 G.depth_max = 10;
5ed6ace5 1824 G.depth = XNEWVEC (unsigned int, G.depth_max);
c4775f82
MS
1825
1826 G.by_depth_in_use = 0;
1827 G.by_depth_max = INITIAL_PTE_COUNT;
5ed6ace5
MD
1828 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1829 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2a304777
JM
1830
1831 /* Allocate space for the depth 0 finalizers. */
1832 G.finalizers.safe_push (vNULL);
1833 G.vec_finalizers.safe_push (vNULL);
1834 gcc_assert (G.finalizers.length() == 1);
21341cfd
AS
1835}
1836
4934cc53
MM
1837/* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1838 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1839
1840static void
20c1dc5e 1841ggc_recalculate_in_use_p (page_entry *p)
4934cc53
MM
1842{
1843 unsigned int i;
1844 size_t num_objects;
1845
589005ff 1846 /* Because the past-the-end bit in in_use_p is always set, we
4934cc53 1847 pretend there is one additional object. */
17211ab5 1848 num_objects = OBJECTS_IN_PAGE (p) + 1;
4934cc53
MM
1849
1850 /* Reset the free object count. */
1851 p->num_free_objects = num_objects;
1852
1853 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
589005ff 1854 for (i = 0;
2be510b8
MM
1855 i < CEIL (BITMAP_SIZE (num_objects),
1856 sizeof (*p->in_use_p));
4934cc53
MM
1857 ++i)
1858 {
1859 unsigned long j;
1860
1861 /* Something is in use if it is marked, or if it was in use in a
1862 context further down the context stack. */
c4775f82 1863 p->in_use_p[i] |= save_in_use_p (p)[i];
4934cc53
MM
1864
1865 /* Decrement the free object count for every object allocated. */
1866 for (j = p->in_use_p[i]; j; j >>= 1)
1867 p->num_free_objects -= (j & 1);
1868 }
1869
282899df 1870 gcc_assert (p->num_free_objects < num_objects);
4934cc53 1871}
21341cfd 1872\f
cb2ec151
RH
1873/* Unmark all objects. */
1874
685fe032 1875static void
20c1dc5e 1876clear_marks (void)
21341cfd
AS
1877{
1878 unsigned order;
1879
2be510b8 1880 for (order = 2; order < NUM_ORDERS; order++)
21341cfd 1881 {
21341cfd
AS
1882 page_entry *p;
1883
1884 for (p = G.pages[order]; p != NULL; p = p->next)
1885 {
17211ab5
GK
1886 size_t num_objects = OBJECTS_IN_PAGE (p);
1887 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1888
21341cfd 1889 /* The data should be page-aligned. */
2a6e6fea 1890 gcc_assert (!((uintptr_t) p->page & (G.pagesize - 1)));
21341cfd
AS
1891
1892 /* Pages that aren't in the topmost context are not collected;
1893 nevertheless, we need their in-use bit vectors to store GC
1894 marks. So, back them up first. */
4934cc53 1895 if (p->context_depth < G.context_depth)
21341cfd 1896 {
c4775f82 1897 if (! save_in_use_p (p))
d3bfe4de 1898 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
c4775f82 1899 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
21341cfd
AS
1900 }
1901
1902 /* Reset reset the number of free objects and clear the
1903 in-use bits. These will be adjusted by mark_obj. */
1904 p->num_free_objects = num_objects;
1905 memset (p->in_use_p, 0, bitmap_size);
1906
1907 /* Make sure the one-past-the-end bit is always set. */
589005ff 1908 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
21341cfd
AS
1909 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1910 }
1911 }
1912}
1913
c3af645c
TS
1914/* Check if any blocks with a registered finalizer have become unmarked. If so
1915 run the finalizer and unregister it because the block is about to be freed.
1916 Note that no garantee is made about what order finalizers will run in so
1917 touching other objects in gc memory is extremely unwise. */
1918
de49ce19
TS
1919static void
1920ggc_handle_finalizers ()
1921{
2a304777
JM
1922 unsigned dlen = G.finalizers.length();
1923 for (unsigned d = G.context_depth; d < dlen; ++d)
de49ce19 1924 {
2a304777
JM
1925 vec<finalizer> &v = G.finalizers[d];
1926 unsigned length = v.length ();
1927 for (unsigned int i = 0; i < length;)
de49ce19 1928 {
2a304777
JM
1929 finalizer &f = v[i];
1930 if (!ggc_marked_p (f.addr ()))
1931 {
1932 f.call ();
1933 v.unordered_remove (i);
1934 length--;
1935 }
1936 else
1937 i++;
de49ce19 1938 }
de49ce19
TS
1939 }
1940
2a304777
JM
1941 gcc_assert (dlen == G.vec_finalizers.length());
1942 for (unsigned d = G.context_depth; d < dlen; ++d)
de49ce19 1943 {
2a304777
JM
1944 vec<vec_finalizer> &vv = G.vec_finalizers[d];
1945 unsigned length = vv.length ();
1946 for (unsigned int i = 0; i < length;)
de49ce19 1947 {
2a304777
JM
1948 vec_finalizer &f = vv[i];
1949 if (!ggc_marked_p (f.addr ()))
1950 {
1951 f.call ();
1952 vv.unordered_remove (i);
1953 length--;
1954 }
1955 else
1956 i++;
de49ce19 1957 }
de49ce19
TS
1958 }
1959}
1960
cb2ec151
RH
1961/* Free all empty pages. Partially empty pages need no attention
1962 because the `mark' bit doubles as an `unused' bit. */
1963
685fe032 1964static void
20c1dc5e 1965sweep_pages (void)
21341cfd
AS
1966{
1967 unsigned order;
1968
2be510b8 1969 for (order = 2; order < NUM_ORDERS; order++)
21341cfd
AS
1970 {
1971 /* The last page-entry to consider, regardless of entries
1972 placed at the end of the list. */
1973 page_entry * const last = G.page_tails[order];
1974
17211ab5 1975 size_t num_objects;
054f5e69 1976 size_t live_objects;
21341cfd
AS
1977 page_entry *p, *previous;
1978 int done;
589005ff 1979
21341cfd
AS
1980 p = G.pages[order];
1981 if (p == NULL)
1982 continue;
1983
1984 previous = NULL;
1985 do
1986 {
1987 page_entry *next = p->next;
1988
1989 /* Loop until all entries have been examined. */
1990 done = (p == last);
20c1dc5e 1991
17211ab5 1992 num_objects = OBJECTS_IN_PAGE (p);
21341cfd 1993
054f5e69
ZW
1994 /* Add all live objects on this page to the count of
1995 allocated memory. */
1996 live_objects = num_objects - p->num_free_objects;
1997
2be510b8 1998 G.allocated += OBJECT_SIZE (order) * live_objects;
054f5e69 1999
21341cfd
AS
2000 /* Only objects on pages in the topmost context should get
2001 collected. */
2002 if (p->context_depth < G.context_depth)
2003 ;
2004
2005 /* Remove the page if it's empty. */
054f5e69 2006 else if (live_objects == 0)
21341cfd 2007 {
9bf793f9
JL
2008 /* If P was the first page in the list, then NEXT
2009 becomes the new first page in the list, otherwise
2010 splice P out of the forward pointers. */
21341cfd
AS
2011 if (! previous)
2012 G.pages[order] = next;
2013 else
2014 previous->next = next;
b8698a0f 2015
9bf793f9
JL
2016 /* Splice P out of the back pointers too. */
2017 if (next)
2018 next->prev = previous;
21341cfd
AS
2019
2020 /* Are we removing the last element? */
2021 if (p == G.page_tails[order])
2022 G.page_tails[order] = previous;
2023 free_page (p);
2024 p = previous;
2025 }
2026
2027 /* If the page is full, move it to the end. */
2028 else if (p->num_free_objects == 0)
2029 {
2030 /* Don't move it if it's already at the end. */
2031 if (p != G.page_tails[order])
2032 {
2033 /* Move p to the end of the list. */
2034 p->next = NULL;
9bf793f9 2035 p->prev = G.page_tails[order];
21341cfd
AS
2036 G.page_tails[order]->next = p;
2037
2038 /* Update the tail pointer... */
2039 G.page_tails[order] = p;
2040
2041 /* ... and the head pointer, if necessary. */
2042 if (! previous)
2043 G.pages[order] = next;
2044 else
2045 previous->next = next;
9bf793f9
JL
2046
2047 /* And update the backpointer in NEXT if necessary. */
2048 if (next)
2049 next->prev = previous;
2050
21341cfd
AS
2051 p = previous;
2052 }
2053 }
2054
2055 /* If we've fallen through to here, it's a page in the
2056 topmost context that is neither full nor empty. Such a
2057 page must precede pages at lesser context depth in the
2058 list, so move it to the head. */
2059 else if (p != G.pages[order])
2060 {
2061 previous->next = p->next;
9bf793f9
JL
2062
2063 /* Update the backchain in the next node if it exists. */
2064 if (p->next)
2065 p->next->prev = previous;
2066
2067 /* Move P to the head of the list. */
21341cfd 2068 p->next = G.pages[order];
9bf793f9
JL
2069 p->prev = NULL;
2070 G.pages[order]->prev = p;
2071
2072 /* Update the head pointer. */
21341cfd 2073 G.pages[order] = p;
9bf793f9 2074
21341cfd
AS
2075 /* Are we moving the last element? */
2076 if (G.page_tails[order] == p)
2077 G.page_tails[order] = previous;
2078 p = previous;
2079 }
2080
2081 previous = p;
2082 p = next;
589005ff 2083 }
21341cfd 2084 while (! done);
4934cc53
MM
2085
2086 /* Now, restore the in_use_p vectors for any pages from contexts
2087 other than the current one. */
2088 for (p = G.pages[order]; p; p = p->next)
2089 if (p->context_depth != G.context_depth)
2090 ggc_recalculate_in_use_p (p);
21341cfd
AS
2091 }
2092}
2093
3788cc17 2094#ifdef ENABLE_GC_CHECKING
cb2ec151
RH
2095/* Clobber all free objects. */
2096
685fe032 2097static void
20c1dc5e 2098poison_pages (void)
21341cfd
AS
2099{
2100 unsigned order;
2101
2be510b8 2102 for (order = 2; order < NUM_ORDERS; order++)
21341cfd 2103 {
2be510b8 2104 size_t size = OBJECT_SIZE (order);
21341cfd
AS
2105 page_entry *p;
2106
2107 for (p = G.pages[order]; p != NULL; p = p->next)
2108 {
17211ab5 2109 size_t num_objects;
21341cfd 2110 size_t i;
c831fdea
MM
2111
2112 if (p->context_depth != G.context_depth)
2113 /* Since we don't do any collection for pages in pushed
2114 contexts, there's no need to do any poisoning. And
2115 besides, the IN_USE_P array isn't valid until we pop
2116 contexts. */
2117 continue;
2118
17211ab5 2119 num_objects = OBJECTS_IN_PAGE (p);
21341cfd
AS
2120 for (i = 0; i < num_objects; i++)
2121 {
2122 size_t word, bit;
2123 word = i / HOST_BITS_PER_LONG;
2124 bit = i % HOST_BITS_PER_LONG;
2125 if (((p->in_use_p[word] >> bit) & 1) == 0)
9a0a7d5d
HPN
2126 {
2127 char *object = p->page + i * size;
2128
2129 /* Keep poison-by-write when we expect to use Valgrind,
2130 so the exact same memory semantics is kept, in case
2131 there are memory errors. We override this request
2132 below. */
35dee980
HPN
2133 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
2134 size));
9a0a7d5d
HPN
2135 memset (object, 0xa5, size);
2136
2137 /* Drop the handle to avoid handle leak. */
35dee980 2138 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
9a0a7d5d 2139 }
21341cfd
AS
2140 }
2141 }
2142 }
2143}
685fe032
RH
2144#else
2145#define poison_pages()
2146#endif
2147
2148#ifdef ENABLE_GC_ALWAYS_COLLECT
2149/* Validate that the reportedly free objects actually are. */
2150
2151static void
2152validate_free_objects (void)
2153{
2154 struct free_object *f, *next, *still_free = NULL;
2155
2156 for (f = G.free_object_list; f ; f = next)
2157 {
2158 page_entry *pe = lookup_page_table_entry (f->object);
2159 size_t bit, word;
2160
2161 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
2162 word = bit / HOST_BITS_PER_LONG;
2163 bit = bit % HOST_BITS_PER_LONG;
2164 next = f->next;
2165
2166 /* Make certain it isn't visible from any root. Notice that we
2167 do this check before sweep_pages merges save_in_use_p. */
282899df 2168 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
685fe032
RH
2169
2170 /* If the object comes from an outer context, then retain the
2171 free_object entry, so that we can verify that the address
2172 isn't live on the stack in some outer context. */
2173 if (pe->context_depth != G.context_depth)
2174 {
2175 f->next = still_free;
2176 still_free = f;
2177 }
2178 else
2179 free (f);
2180 }
2181
2182 G.free_object_list = still_free;
2183}
2184#else
2185#define validate_free_objects()
21341cfd
AS
2186#endif
2187
cb2ec151
RH
2188/* Top level mark-and-sweep routine. */
2189
21341cfd 2190void
602fca42 2191ggc_collect (enum ggc_collect mode)
21341cfd 2192{
21341cfd
AS
2193 /* Avoid frequent unnecessary work by skipping collection if the
2194 total allocations haven't expanded much since the last
2195 collection. */
19cc0dd4 2196 float allocated_last_gc =
da871904 2197 MAX (G.allocated_last_gc, (size_t)param_ggc_min_heapsize * ONE_K);
3788cc17 2198
9fd052e7
JH
2199 /* It is also good time to get memory block pool into limits. */
2200 memory_block_pool::trim ();
2201
028d4092 2202 float min_expand = allocated_last_gc * param_ggc_min_expand / 100;
602fca42
TS
2203 if (mode == GGC_COLLECT_HEURISTIC
2204 && G.allocated < allocated_last_gc + min_expand)
21341cfd 2205 return;
21341cfd 2206
2a9a326b 2207 timevar_push (TV_GC);
685fe032
RH
2208 if (GGC_DEBUG_LEVEL >= 2)
2209 fprintf (G.debug_file, "BEGIN COLLECTING\n");
21341cfd 2210
054f5e69
ZW
2211 /* Zero the total allocated bytes. This will be recalculated in the
2212 sweep phase. */
e5207f1a 2213 size_t allocated = G.allocated;
21341cfd
AS
2214 G.allocated = 0;
2215
589005ff 2216 /* Release the pages we freed the last time we collected, but didn't
21341cfd
AS
2217 reuse in the interim. */
2218 release_pages ();
2219
e5207f1a
JH
2220 /* Output this later so we do not interfere with release_pages. */
2221 if (!quiet_flag)
79f4e20d 2222 fprintf (stderr, " {GC " PRsa (0) " -> ", SIZE_AMOUNT (allocated));
e5207f1a 2223
52895e1a
RH
2224 /* Indicate that we've seen collections at this context depth. */
2225 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
2226
ae2392a9
BS
2227 invoke_plugin_callbacks (PLUGIN_GGC_START, NULL);
2228
b086d530 2229 in_gc = true;
21341cfd
AS
2230 clear_marks ();
2231 ggc_mark_roots ();
de49ce19 2232 ggc_handle_finalizers ();
7aa6d18a
SB
2233
2234 if (GATHER_STATISTICS)
2235 ggc_prune_overhead_list ();
2236
21341cfd 2237 poison_pages ();
685fe032 2238 validate_free_objects ();
cb2ec151
RH
2239 sweep_pages ();
2240
b086d530 2241 in_gc = false;
21341cfd
AS
2242 G.allocated_last_gc = G.allocated;
2243
ae2392a9
BS
2244 invoke_plugin_callbacks (PLUGIN_GGC_END, NULL);
2245
2a9a326b 2246 timevar_pop (TV_GC);
21341cfd 2247
21341cfd 2248 if (!quiet_flag)
79f4e20d 2249 fprintf (stderr, PRsa (0) "}", SIZE_AMOUNT (G.allocated));
685fe032
RH
2250 if (GGC_DEBUG_LEVEL >= 2)
2251 fprintf (G.debug_file, "END COLLECTING\n");
21341cfd 2252}
3277221c 2253
e5207f1a
JH
2254/* Return free pages to the system. */
2255
2256void
2257ggc_trim ()
2258{
2259 timevar_push (TV_GC);
2260 G.allocated = 0;
2261 sweep_pages ();
2262 release_pages ();
2263 if (!quiet_flag)
79f4e20d
ML
2264 fprintf (stderr, " {GC trimmed to " PRsa (0) ", " PRsa (0) " mapped}",
2265 SIZE_AMOUNT (G.allocated), SIZE_AMOUNT (G.bytes_mapped));
e5207f1a
JH
2266 timevar_pop (TV_GC);
2267}
2268
2269/* Assume that all GGC memory is reachable and grow the limits for next
2270 collection. With checking, trigger GGC so -Q compilation outputs how much
2271 of memory really is reachable. */
fd1e9302
JH
2272
2273void
2274ggc_grow (void)
2275{
b2b29377
MM
2276 if (!flag_checking)
2277 G.allocated_last_gc = MAX (G.allocated_last_gc,
2278 G.allocated);
2279 else
2280 ggc_collect ();
fd1e9302 2281 if (!quiet_flag)
79f4e20d 2282 fprintf (stderr, " {GC " PRsa (0) "} ", SIZE_AMOUNT (G.allocated));
fd1e9302
JH
2283}
2284
3277221c 2285void
20c1dc5e 2286ggc_print_statistics (void)
3277221c
MM
2287{
2288 struct ggc_statistics stats;
4934cc53 2289 unsigned int i;
fba0bfd4 2290 size_t total_overhead = 0;
3277221c
MM
2291
2292 /* Clear the statistics. */
d219c7f1 2293 memset (&stats, 0, sizeof (stats));
589005ff 2294
3277221c
MM
2295 /* Make sure collection will really occur. */
2296 G.allocated_last_gc = 0;
2297
2298 /* Collect and print the statistics common across collectors. */
fba0bfd4 2299 ggc_print_common_statistics (stderr, &stats);
3277221c 2300
4934cc53
MM
2301 /* Release free pages so that we will not count the bytes allocated
2302 there as part of the total allocated memory. */
2303 release_pages ();
2304
589005ff 2305 /* Collect some information about the various sizes of
3277221c 2306 allocation. */
439a7e54
DN
2307 fprintf (stderr,
2308 "Memory still allocated at the end of the compilation process\n");
b2b43e33 2309 fprintf (stderr, "%-8s %10s %10s %10s\n",
9fd51e67 2310 "Size", "Allocated", "Used", "Overhead");
2be510b8 2311 for (i = 0; i < NUM_ORDERS; ++i)
3277221c
MM
2312 {
2313 page_entry *p;
2314 size_t allocated;
2315 size_t in_use;
fba0bfd4 2316 size_t overhead;
3277221c
MM
2317
2318 /* Skip empty entries. */
2319 if (!G.pages[i])
2320 continue;
2321
fba0bfd4 2322 overhead = allocated = in_use = 0;
3277221c
MM
2323
2324 /* Figure out the total number of bytes allocated for objects of
fba0bfd4
ZW
2325 this size, and how many of them are actually in use. Also figure
2326 out how much memory the page table is using. */
3277221c
MM
2327 for (p = G.pages[i]; p; p = p->next)
2328 {
2329 allocated += p->bytes;
20c1dc5e 2330 in_use +=
17211ab5 2331 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
fba0bfd4
ZW
2332
2333 overhead += (sizeof (page_entry) - sizeof (long)
17211ab5 2334 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
3277221c 2335 }
a0b48080
MM
2336 fprintf (stderr, "%-8" PRIu64 " " PRsa (10) " " PRsa (10) " "
2337 PRsa (10) "\n",
2338 (uint64_t)OBJECT_SIZE (i),
40ce7fa6
ML
2339 SIZE_AMOUNT (allocated),
2340 SIZE_AMOUNT (in_use),
2341 SIZE_AMOUNT (overhead));
fba0bfd4 2342 total_overhead += overhead;
3277221c 2343 }
a0b48080 2344 fprintf (stderr, "%-8s " PRsa (10) " " PRsa (10) " " PRsa (10) "\n",
40ce7fa6
ML
2345 "Total",
2346 SIZE_AMOUNT (G.bytes_mapped),
2347 SIZE_AMOUNT (G.allocated),
2348 SIZE_AMOUNT (total_overhead));
adc4adcd 2349
7aa6d18a
SB
2350 if (GATHER_STATISTICS)
2351 {
b2b43e33
ML
2352 fprintf (stderr, "\nTotal allocations and overheads during "
2353 "the compilation process\n");
7aa6d18a 2354
a0b48080
MM
2355 fprintf (stderr, "Total Overhead: "
2356 PRsa (9) "\n",
40ce7fa6 2357 SIZE_AMOUNT (G.stats.total_overhead));
a0b48080
MM
2358 fprintf (stderr, "Total Allocated: "
2359 PRsa (9) "\n",
40ce7fa6
ML
2360 SIZE_AMOUNT (G.stats.total_allocated));
2361
a0b48080
MM
2362 fprintf (stderr, "Total Overhead under 32B: "
2363 PRsa (9) "\n",
40ce7fa6 2364 SIZE_AMOUNT (G.stats.total_overhead_under32));
a0b48080
MM
2365 fprintf (stderr, "Total Allocated under 32B: "
2366 PRsa (9) "\n",
40ce7fa6 2367 SIZE_AMOUNT (G.stats.total_allocated_under32));
a0b48080
MM
2368 fprintf (stderr, "Total Overhead under 64B: "
2369 PRsa (9) "\n",
40ce7fa6 2370 SIZE_AMOUNT (G.stats.total_overhead_under64));
a0b48080
MM
2371 fprintf (stderr, "Total Allocated under 64B: "
2372 PRsa (9) "\n",
40ce7fa6 2373 SIZE_AMOUNT (G.stats.total_allocated_under64));
a0b48080
MM
2374 fprintf (stderr, "Total Overhead under 128B: "
2375 PRsa (9) "\n",
40ce7fa6 2376 SIZE_AMOUNT (G.stats.total_overhead_under128));
a0b48080
MM
2377 fprintf (stderr, "Total Allocated under 128B: "
2378 PRsa (9) "\n",
40ce7fa6 2379 SIZE_AMOUNT (G.stats.total_allocated_under128));
7aa6d18a
SB
2380
2381 for (i = 0; i < NUM_ORDERS; i++)
2382 if (G.stats.total_allocated_per_order[i])
2383 {
a0b48080
MM
2384 fprintf (stderr, "Total Overhead page size %9" PRIu64 ": "
2385 PRsa (9) "\n",
2386 (uint64_t)OBJECT_SIZE (i),
40ce7fa6 2387 SIZE_AMOUNT (G.stats.total_overhead_per_order[i]));
a0b48080
MM
2388 fprintf (stderr, "Total Allocated page size %9" PRIu64 ": "
2389 PRsa (9) "\n",
2390 (uint64_t)OBJECT_SIZE (i),
40ce7fa6 2391 SIZE_AMOUNT (G.stats.total_allocated_per_order[i]));
7aa6d18a 2392 }
adc4adcd 2393 }
3277221c 2394}
17211ab5 2395\f
24b97832
ILT
2396struct ggc_pch_ondisk
2397{
2398 unsigned totals[NUM_ORDERS];
2399};
2400
17211ab5
GK
2401struct ggc_pch_data
2402{
24b97832 2403 struct ggc_pch_ondisk d;
2a6e6fea 2404 uintptr_t base[NUM_ORDERS];
17211ab5
GK
2405 size_t written[NUM_ORDERS];
2406};
2407
2408struct ggc_pch_data *
20c1dc5e 2409init_ggc_pch (void)
17211ab5 2410{
5ed6ace5 2411 return XCNEW (struct ggc_pch_data);
17211ab5
GK
2412}
2413
20c1dc5e
AJ
2414void
2415ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
bbbe2dc1 2416 size_t size)
17211ab5
GK
2417{
2418 unsigned order;
2419
6583cf15 2420 if (size < NUM_SIZE_LOOKUP)
17211ab5
GK
2421 order = size_lookup[size];
2422 else
2423 {
f5938dcd 2424 order = 10;
17211ab5
GK
2425 while (size > OBJECT_SIZE (order))
2426 order++;
2427 }
20c1dc5e 2428
17211ab5
GK
2429 d->d.totals[order]++;
2430}
20c1dc5e 2431
17211ab5 2432size_t
20c1dc5e 2433ggc_pch_total_size (struct ggc_pch_data *d)
17211ab5
GK
2434{
2435 size_t a = 0;
2436 unsigned i;
2437
2438 for (i = 0; i < NUM_ORDERS; i++)
3bc50163 2439 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
17211ab5
GK
2440 return a;
2441}
2442
2443void
20c1dc5e 2444ggc_pch_this_base (struct ggc_pch_data *d, void *base)
17211ab5 2445{
2a6e6fea 2446 uintptr_t a = (uintptr_t) base;
17211ab5 2447 unsigned i;
20c1dc5e 2448
17211ab5
GK
2449 for (i = 0; i < NUM_ORDERS; i++)
2450 {
2451 d->base[i] = a;
3bc50163 2452 a += PAGE_ALIGN (d->d.totals[i] * OBJECT_SIZE (i));
17211ab5
GK
2453 }
2454}
2455
2456
2457char *
20c1dc5e 2458ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
bbbe2dc1 2459 size_t size)
17211ab5
GK
2460{
2461 unsigned order;
2462 char *result;
20c1dc5e 2463
6583cf15 2464 if (size < NUM_SIZE_LOOKUP)
17211ab5
GK
2465 order = size_lookup[size];
2466 else
2467 {
f5938dcd 2468 order = 10;
17211ab5
GK
2469 while (size > OBJECT_SIZE (order))
2470 order++;
2471 }
2472
2473 result = (char *) d->base[order];
2474 d->base[order] += OBJECT_SIZE (order);
2475 return result;
2476}
2477
20c1dc5e
AJ
2478void
2479ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2480 FILE *f ATTRIBUTE_UNUSED)
17211ab5
GK
2481{
2482 /* Nothing to do. */
2483}
2484
2485void
8ed00d76 2486ggc_pch_write_object (struct ggc_pch_data *d,
20c1dc5e 2487 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
bbbe2dc1 2488 size_t size)
17211ab5
GK
2489{
2490 unsigned order;
642324bb 2491 static const char emptyBytes[256] = { 0 };
17211ab5 2492
6583cf15 2493 if (size < NUM_SIZE_LOOKUP)
17211ab5
GK
2494 order = size_lookup[size];
2495 else
2496 {
f5938dcd 2497 order = 10;
17211ab5
GK
2498 while (size > OBJECT_SIZE (order))
2499 order++;
2500 }
20c1dc5e 2501
17211ab5 2502 if (fwrite (x, size, 1, f) != 1)
a9c697b8 2503 fatal_error (input_location, "cannot write PCH file: %m");
17211ab5 2504
674c7ef1 2505 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
0ee55ad8 2506 object out to OBJECT_SIZE(order). This happens for strings. */
674c7ef1
RB
2507
2508 if (size != OBJECT_SIZE (order))
2509 {
c3284718 2510 unsigned padding = OBJECT_SIZE (order) - size;
674c7ef1
RB
2511
2512 /* To speed small writes, we use a nulled-out array that's larger
2513 than most padding requests as the source for our null bytes. This
2514 permits us to do the padding with fwrite() rather than fseek(), and
3f117656 2515 limits the chance the OS may try to flush any outstanding writes. */
c3284718 2516 if (padding <= sizeof (emptyBytes))
674c7ef1
RB
2517 {
2518 if (fwrite (emptyBytes, 1, padding, f) != padding)
a9c697b8 2519 fatal_error (input_location, "cannot write PCH file");
674c7ef1
RB
2520 }
2521 else
2522 {
0ee55ad8 2523 /* Larger than our buffer? Just default to fseek. */
674c7ef1 2524 if (fseek (f, padding, SEEK_CUR) != 0)
a9c697b8 2525 fatal_error (input_location, "cannot write PCH file");
674c7ef1
RB
2526 }
2527 }
17211ab5
GK
2528
2529 d->written[order]++;
2530 if (d->written[order] == d->d.totals[order]
2531 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2532 G.pagesize),
2533 SEEK_CUR) != 0)
a9c697b8 2534 fatal_error (input_location, "cannot write PCH file: %m");
17211ab5
GK
2535}
2536
2537void
20c1dc5e 2538ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
17211ab5
GK
2539{
2540 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
a9c697b8 2541 fatal_error (input_location, "cannot write PCH file: %m");
17211ab5
GK
2542 free (d);
2543}
2544
c4775f82
MS
2545/* Move the PCH PTE entries just added to the end of by_depth, to the
2546 front. */
2547
2548static void
20c1dc5e 2549move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
c4775f82 2550{
c4775f82
MS
2551 /* First, we swap the new entries to the front of the varrays. */
2552 page_entry **new_by_depth;
2553 unsigned long **new_save_in_use;
2554
5ed6ace5
MD
2555 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2556 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
c4775f82
MS
2557
2558 memcpy (&new_by_depth[0],
2559 &G.by_depth[count_old_page_tables],
2560 count_new_page_tables * sizeof (void *));
2561 memcpy (&new_by_depth[count_new_page_tables],
2562 &G.by_depth[0],
2563 count_old_page_tables * sizeof (void *));
2564 memcpy (&new_save_in_use[0],
2565 &G.save_in_use[count_old_page_tables],
2566 count_new_page_tables * sizeof (void *));
2567 memcpy (&new_save_in_use[count_new_page_tables],
2568 &G.save_in_use[0],
2569 count_old_page_tables * sizeof (void *));
2570
2571 free (G.by_depth);
2572 free (G.save_in_use);
20c1dc5e 2573
c4775f82
MS
2574 G.by_depth = new_by_depth;
2575 G.save_in_use = new_save_in_use;
2576
2577 /* Now update all the index_by_depth fields. */
3608eff9 2578 for (unsigned i = G.by_depth_in_use; i--;)
c4775f82 2579 {
3608eff9
NS
2580 page_entry *p = G.by_depth[i];
2581 p->index_by_depth = i;
c4775f82
MS
2582 }
2583
2584 /* And last, we update the depth pointers in G.depth. The first
2585 entry is already 0, and context 0 entries always start at index
2586 0, so there is nothing to update in the first slot. We need a
2587 second slot, only if we have old ptes, and if we do, they start
2588 at index count_new_page_tables. */
2589 if (count_old_page_tables)
2590 push_depth (count_new_page_tables);
2591}
2592
17211ab5 2593void
20c1dc5e 2594ggc_pch_read (FILE *f, void *addr)
17211ab5
GK
2595{
2596 struct ggc_pch_ondisk d;
2597 unsigned i;
d3bfe4de 2598 char *offs = (char *) addr;
c4775f82
MS
2599 unsigned long count_old_page_tables;
2600 unsigned long count_new_page_tables;
2601
2602 count_old_page_tables = G.by_depth_in_use;
2603
22f8849d
IS
2604 if (fread (&d, sizeof (d), 1, f) != 1)
2605 fatal_error (input_location, "cannot read PCH file: %m");
2606
c4775f82
MS
2607 /* We've just read in a PCH file. So, every object that used to be
2608 allocated is now free. */
17211ab5 2609 clear_marks ();
c5d6d04a 2610#ifdef ENABLE_GC_CHECKING
17211ab5
GK
2611 poison_pages ();
2612#endif
ead8827d
LB
2613 /* Since we free all the allocated objects, the free list becomes
2614 useless. Validate it now, which will also clear it. */
c3284718 2615 validate_free_objects ();
17211ab5
GK
2616
2617 /* No object read from a PCH file should ever be freed. So, set the
2618 context depth to 1, and set the depth of all the currently-allocated
2619 pages to be 1 too. PCH pages will have depth 0. */
282899df 2620 gcc_assert (!G.context_depth);
17211ab5 2621 G.context_depth = 1;
2a304777
JM
2622 /* Allocate space for the depth 1 finalizers. */
2623 G.finalizers.safe_push (vNULL);
2624 G.vec_finalizers.safe_push (vNULL);
2625 gcc_assert (G.finalizers.length() == 2);
17211ab5
GK
2626 for (i = 0; i < NUM_ORDERS; i++)
2627 {
2628 page_entry *p;
2629 for (p = G.pages[i]; p != NULL; p = p->next)
2630 p->context_depth = G.context_depth;
2631 }
2632
2633 /* Allocate the appropriate page-table entries for the pages read from
2634 the PCH file. */
20c1dc5e 2635
17211ab5
GK
2636 for (i = 0; i < NUM_ORDERS; i++)
2637 {
2638 struct page_entry *entry;
2639 char *pte;
2640 size_t bytes;
2641 size_t num_objs;
2642 size_t j;
c4775f82 2643
17211ab5
GK
2644 if (d.totals[i] == 0)
2645 continue;
c4775f82 2646
3bc50163 2647 bytes = PAGE_ALIGN (d.totals[i] * OBJECT_SIZE (i));
17211ab5 2648 num_objs = bytes / OBJECT_SIZE (i);
d3bfe4de
KG
2649 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2650 - sizeof (long)
2651 + BITMAP_SIZE (num_objs + 1)));
17211ab5
GK
2652 entry->bytes = bytes;
2653 entry->page = offs;
2654 entry->context_depth = 0;
2655 offs += bytes;
2656 entry->num_free_objects = 0;
2657 entry->order = i;
2658
20c1dc5e 2659 for (j = 0;
17211ab5
GK
2660 j + HOST_BITS_PER_LONG <= num_objs + 1;
2661 j += HOST_BITS_PER_LONG)
2662 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2663 for (; j < num_objs + 1; j++)
20c1dc5e 2664 entry->in_use_p[j / HOST_BITS_PER_LONG]
17211ab5
GK
2665 |= 1L << (j % HOST_BITS_PER_LONG);
2666
20c1dc5e
AJ
2667 for (pte = entry->page;
2668 pte < entry->page + entry->bytes;
17211ab5
GK
2669 pte += G.pagesize)
2670 set_page_table_entry (pte, entry);
2671
2672 if (G.page_tails[i] != NULL)
2673 G.page_tails[i]->next = entry;
2674 else
2675 G.pages[i] = entry;
2676 G.page_tails[i] = entry;
c4775f82
MS
2677
2678 /* We start off by just adding all the new information to the
2679 end of the varrays, later, we will move the new information
2680 to the front of the varrays, as the PCH page tables are at
2681 context 0. */
2682 push_by_depth (entry, 0);
17211ab5
GK
2683 }
2684
c4775f82
MS
2685 /* Now, we update the various data structures that speed page table
2686 handling. */
2687 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2688
2689 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2690
17211ab5
GK
2691 /* Update the statistics. */
2692 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2693}